Schubert, M; Schaefer, H; Mayer, J; Laptev, A; Hettich, M; Merklein, M; He, C; Rummel, C; Ristow, O; Großmann, M; Luo, Y; Gusev, V; Samwer, K; Fonin, M; Dekorsy, T; Demsar, J
2015-08-14
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
NASA Astrophysics Data System (ADS)
Schubert, M.; Schaefer, H.; Mayer, J.; Laptev, A.; Hettich, M.; Merklein, M.; He, C.; Rummel, C.; Ristow, O.; Großmann, M.; Luo, Y.; Gusev, V.; Samwer, K.; Fonin, M.; Dekorsy, T.; Demsar, J.
2015-08-01
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
Phase transition kinetics for a Bose Einstein condensate in a periodically driven band system
NASA Astrophysics Data System (ADS)
Michon, E.; Cabrera-Gutiérrez, C.; Fortun, A.; Berger, M.; Arnal, M.; Brunaud, V.; Billy, J.; Petitjean, C.; Schlagheck, P.; Guéry-Odelin, D.
2018-05-01
The dynamical transition of an atomic Bose–Einstein condensate from a spatially periodic state to a staggered state with alternating sign in its wavefunction is experimentally studied using a one-dimensional phase modulated optical lattice. We observe the crossover from quantum to thermal fluctuations as the triggering mechanism for the nucleation of staggered states. In good quantitative agreement with numerical simulations based on the truncated Wigner method, we experimentally investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density, and the driving frequency. The effective inverted energy band in the driven lattice is identified as the key ingredient which explains the emergence of gap solitons as observed in numerics and the possibility to nucleate staggered states from interband excitations as reported experimentally.
Localized and delocalized motion of colloidal particles on a magnetic bubble lattice.
Tierno, Pietro; Johansen, Tom H; Fischer, Thomas M
2007-07-20
We study the motion of paramagnetic colloidal particles placed above magnetic bubble domains of a uniaxial garnet film and driven through the lattice by external magnetic field modulation. An external tunable precessing field propels the particles either in localized orbits around the bubbles or in superdiffusive or ballistic motion through the bubble array. This motion results from the interplay between the driving rotating signal, the viscous drag force and the periodic magnetic energy landscape. We explain the transition in terms of the incommensurability between the transit frequency of the particle through a unit cell and the modulation frequency. Ballistic motion dynamically breaks the symmetry of the array and the phase locked particles follow one of the six crystal directions.
Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitamura, H.; Watanuki, R.; Kaneko, Koji
Magnetic field (B) variation of the electrical polarization P c ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO 4) 2 is examined up to the saturation point of the magnetization for B⊥c. P c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation ofmore » which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less
Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet
Mitamura, H.; Watanuki, R.; Kaneko, Koji; ...
2014-10-01
Magnetic field (B) variation of the electrical polarization P c ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO 4) 2 is examined up to the saturation point of the magnetization for B⊥c. P c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation ofmore » which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less
Douglas, David R; Tennant, Christopher
2015-11-10
A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.
Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning
NASA Astrophysics Data System (ADS)
Reichhardt, Charles Michael
1998-12-01
We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming a devil's staircase structure.
Critical slowing down in driven-dissipative Bose-Hubbard lattices
NASA Astrophysics Data System (ADS)
Vicentini, Filippo; Minganti, Fabrizio; Rota, Riccardo; Orso, Giuliano; Ciuti, Cristiano
2018-01-01
We explore theoretically the dynamical properties of a first-order dissipative phase transition in coherently driven Bose-Hubbard systems, describing, e.g., lattices of coupled nonlinear optical cavities. Via stochastic trajectory calculations based on the truncated Wigner approximation, we investigate the dynamical behavior as a function of system size for one-dimensional (1D) and 2D square lattices in the regime where mean-field theory predicts nonlinear bistability. We show that a critical slowing down emerges for increasing number of sites in 2D square lattices, while it is absent in 1D arrays. We characterize the peculiar properties of the collective phases in the critical region.
Bending light via adiabatic optical transition in longitudinally modulated photonic lattices
Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan
2015-01-01
Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands. PMID:26511890
Topological gaps without masses in driven graphene-like systems
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Neupert, Titus; Chamon, Claudio
2014-03-01
We illustrate the possibility of realizing band gaps in graphene-like systems that fall outside the existing classification of gapped Dirac Hamiltonians in terms of masses. As our primary example we consider a band gap arising due to time-dependent distortions of the honeycomb lattice. By means of an exact, invertible, and transport-preserving mapping to a time-independent Hamiltonian, we show that the system exhibits Chern-insulating phases with quantized Hall conductivities +/-e2 / h . The chirality of the corresponding gapless edge modes is controllable by both the frequency of the driving and the manner in which sublattice symmetry is broken by the dynamical lattice modulations. We demonstrate that, while these phases are in the same topological sector as the Haldane model, they are nevertheless separated from the latter by a gap-closing transition unless an extra parameter is added to the Hamiltonian. Finally, we discuss a promising possible realization of this physics in photonic lattices. This work is supported in part by DOE Grant DEF-06ER46316 (T.I. and C.C.).
Collapsing lattice animals and lattice trees in two dimensions
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Grassberger, Peter
2005-06-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.
Bending and breaking of stripes in a charge ordered manganite.
Savitzky, Benjamin H; El Baggari, Ismail; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2017-12-01
In charge-ordered phases, broken translational symmetry emerges from couplings between charge, spin, lattice, or orbital degrees of freedom, giving rise to remarkable phenomena such as colossal magnetoresistance and metal-insulator transitions. The role of the lattice in charge-ordered states remains particularly enigmatic, soliciting characterization of the microscopic lattice behavior. Here we directly map picometer scale periodic lattice displacements at individual atomic columns in the room temperature charge-ordered manganite Bi 0.35 Sr 0.18 Ca 0.47 MnO 3 using aberration-corrected scanning transmission electron microscopy. We measure transverse, displacive lattice modulations of the cations, distinct from existing manganite charge-order models. We reveal locally unidirectional striped domains as small as ~5 nm, despite apparent bidirectionality over larger length scales. Further, we observe a direct link between disorder in one lattice modulation, in the form of dislocations and shear deformations, and nascent order in the perpendicular modulation. By examining the defects and symmetries of periodic lattice displacements near the charge ordering phase transition, we directly visualize the local competition underpinning spatial heterogeneity in a complex oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.
2011-11-15
We investigate the nature of the superfluid-insulator quantum phase transition driven by disorder for noninteracting ultracold atoms on one-dimensional lattices. We consider two different cases: Anderson-type disorder, with local energies randomly distributed, and pseudodisorder due to a potential incommensurate with the lattice, which is usually called the Aubry-Andre model. A scaling analysis of numerical data for the superfluid fraction for different lattice sizes allows us to determine quantum critical exponents characterizing the disorder-driven superfluid-insulator transition. We also briefly discuss the effect of interactions close to the noninteracting quantum critical point of the Aubry-Andre model.
Investigation of a driven fermionic system and detecting chiral edge modes in an optical lattice
NASA Astrophysics Data System (ADS)
Görg, Frederik; Messer, Michael; Jotzu, Gregor; Sandholzer, Kilian; Desbuquois, Rémi; Goldman, Nathan; Esslinger, Tilman
2017-04-01
Periodically driven systems of ultracold fermions in optical lattices allow to implement a large variety of effective Hamiltonians through Floquet engineering. An important question is whether this method can be extended to interacting systems. We investigate driven two-body systems in an array of double wells and measure the double occupancy and the spin-spin correlator in the large frequency limit and when driving resonantly to an energy scale of the underlying static Hamiltonian. We analyze whether the emerging states of the driven system can be adiabatically connected to states in the unshaken lattice. In addition, we measure the amplitude of the micromotion which describes the short time dynamics of the system and compare it directly to theory. In another context we propose a method to create topological interfaces and detect chiral edge modes in a two dimensional optical lattice. We illustrate this through an optical lattice realization of the Haldane model for cold atoms, where an additional spatially-varying lattice potential induces distinct topological phases in separated regions of space.
NASA Astrophysics Data System (ADS)
Levy, Yoann; Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.; Gurevich, Evgeny L.; Mocek, Tomáš
2016-06-01
Formation of laser-induced periodic surface structures (LIPSS) is a complicated phenomenon which involves periodic spatial modulation of laser energy absorption on the irradiated surface, transient changes in optical response, surface layer melting and/or ablation. The listed processes strongly depend on laser fluence and pulse duration as well as on material properties. This paper is aimed at studying the spatiotemporal evolution of a periodic modulation of the deposited laser energy, once formed upon irradiation of metal (Ti) and semiconductor (Si) surfaces. Assuming that the incoming laser pulse interferes with a surface electromagnetic wave, the resulting sinusoidal modulation of the absorbed laser energy is introduced into a two-dimensional two-temperature model developed for titanium and silicon. Simulations reveal that the lattice temperature modulation on the surfaces of both materials following from the modulated absorption remains significant for longer than 50 ps after the laser pulse. In the cases considered here, the partially molten phase exists 10 ps in Ti and more than 50 ps in Si, suggesting that molten matter can be subjected to temperature-driven relocation toward LIPSS formation, due to the modulated temperature profile on the material surfaces. Molten phase at nanometric distances (nano-melting) is also revealed.
Metallization of vanadium dioxide driven by large phonon entropy
Budai, John D.; Hong, Jiawang; Manley, Michael E.; ...
2014-11-10
Phase competition underlies many remarkable and technologically important phenomena in transition-metal oxides. Vanadium dioxide exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. Ongoing attempts to explain this coupled structural and electronic transition begin with two classic starting points: a Peierls MIT driven by instabilities in electron-lattice dynamics versus a Mott MIT where strong electron-electron correlations drive charge localization1-10. A key-missing piece of the VO2 puzzle is the role of lattice vibrations. Moreover, a comprehensive thermodynamic treatment must integrate both entropic and energetic aspects of themore » transition. Our measurements establish that the entropy driving the MIT is dominated by strongly anharmonic phonons rather than electronic contributions, and provide a direct determination of phonon dispersions. Our calculations identify softer bonding as the origin of the large vibrational entropy stabilizing the metallic rutile phase. They further reveal how a balance between higher entropy in the metal and orbital-driven lower energy in the insulator fully describes the thermodynamic forces controlling the MIT. This study illustrates the critical role of anharmonic lattice dynamics in metal-oxide phase competition, and provides guidance for the predictive design of new materials.« less
Topological phase transition and unexpected mass acquisition of Dirac fermion in TlBi(S1-xSex)2
NASA Astrophysics Data System (ADS)
Niu, Chengwang; Dai, Ying; Zhu, Yingtao; Lu, Jibao; Ma, Yandong; Huang, Baibiao
2012-10-01
Based on first-principles calculations and effective Hamiltonian analysis, we predict a topological phase transition from normal to topological insulators and the opening of a gap without breaking the time-reversal symmetry in TlBi(S1-xSex)2. The transition can be driven by modulating the Se concentration, and the rescaled spin-orbit coupling and lattice parameters are the key ingredients for the transition. For topological surface states, the Dirac cone evolves differently as the explicit breaking of inversion symmetry and the energy band can be opened under asymmetry surface. Our results present theoretical evidence for experimental observations [Xu et al., Science 332, 560 (2011); Sato et al., Nat. Phys. 7, 840 (2011)].
Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice
NASA Astrophysics Data System (ADS)
Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias
2018-02-01
Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi; Cai, Zhonghou; Chen, Pice
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less
Solis, Kyle J.; Martin, James E.
2017-07-06
In recent years a rich variety of emergent phenomena have been observed when suspensions of magnetic particles are subjected to alternating magnetic fields. These particle assemblies often exhibit vigorous dynamics due to the injection of energy from the field. These include surface and interface phenomena, such as highly organized, segmented “snakes” that can be induced to swim by structural symmetry breaking, and “asters” and “anti-asters,” particle assemblies that can be manipulated to capture and transport cargo. In bulk suspensions of magnetic platelets subjected to multiaxial alternating fields, advection lattices and even vortex lattices have been created, and a variety ofmore » biomimetic dynamics – serpents, bees and amoebas – have been discovered in magnetic fluids suspended in an immiscible liquid. In this paper several new driven phases are presented, including flying chevrons, dense spinning clusters, filaments, and examples of phase coexistence in driven phases. These observations broaden the growing field of driven magnetic suspensions and present new challenges to those interested in simulating the dynamics of these complex systems.« less
Ultrafast photo-induced dynamics across the metal-insulator transition of VO2
NASA Astrophysics Data System (ADS)
Wang, Siming; Ramírez, Juan Gabriel; Jeffet, Jonathan; Bar-Ad, Shimshon; Huppert, Dan; Schuller, Ivan K.
2017-04-01
The transient reflectivity of VO2 films across the metal-insulator transition clearly shows that with low-fluence excitation, when insulating domains are dominant, energy transfer from the optically excited electrons to the lattice is not instantaneous, but precedes the superheating-driven expansion of the metallic domains. This implies that the phase transition in the coexistence regime is lattice-, not electronically-driven, at weak laser excitation. The superheated phonons provide the latent heat required for the propagation of the optically-induced phase transition. For VO2 this transition path is significantly different from what has been reported in the strong-excitation regime. We also observe a slow-down of the superheating-driven expansion of the metallic domains around the metal-insulator transition, which is possibly due to the competition among several co-existing phases, or an emergent critical-like behavior.
Large local lattice expansion in graphene adlayers grown on copper
NASA Astrophysics Data System (ADS)
Chen, Chaoyu; Avila, José; Arezki, Hakim; Nguyen, Van Luan; Shen, Jiahong; Mucha-Kruczyński, Marcin; Yao, Fei; Boutchich, Mohamed; Chen, Yue; Lee, Young Hee; Asensio, Maria C.
2018-05-01
Variations of the lattice parameter can significantly change the properties of a material, and, in particular, its electronic behaviour. In the case of graphene, however, variations of the lattice constant with respect to graphite have been limited to less than 2.5% due to its well-established high in-plane stiffness. Here, through systematic electronic and lattice structure studies, we report regions where the lattice constant of graphene monolayers grown on copper by chemical vapour deposition increases up to 7.5% of its relaxed value. Density functional theory calculations confirm that this expanded phase is energetically metastable and driven by the enhanced interaction between the substrate and the graphene adlayer. We also prove that this phase possesses distinctive chemical and electronic properties. The inherent phase complexity of graphene grown on copper foils revealed in this study may inspire the investigation of possible metastable phases in other seemingly simple heterostructure systems.
Orthorhombic Zr2Co11 phase revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X. -Z.; Zhang, W. Y.; Sellmyer, D. J.
2014-10-01
The structure of the orthorhombic Zr2Co11 phase was revisited in the present work. Selected-area electron diffraction (SAED) and high-resolution electron microscopy (HREM) techniques were used to investigate the structure. They show the orthorhombic Zr2Co11 phase has a 1-D incommensurate modulated structure. The structure can be approximately described as a B-centered orthorhombic lattice. The lattice parameters of the orthorhombic Zr2Co11 phase have been determined by a tilt series of SAED patterns. A hexagonal network with a modulation wave has been observed in the HREM image and the hexagonal motif is considered as the basic structural unit.
Versatile strain-tuning of modulated long-period magnetic structures
Fobes, D. M.; Luo, Yongkang; León-Brito, N.; ...
2017-05-10
In this paper, we report a detailed small-angle neutron scattering (SANS) study of the skyrmion lattice phase of MnSi under compressive and tensile strain. In particular, we demonstrate that tensile strain applied to the skyrmion lattice plane, perpendicular to the magnetic field, acts to destabilize the skyrmion lattice phase. Finally, this experiment was enabled by our development of a versatile strain cell, unique in its ability to select the application of either tensile or compressive strain in-situ by using two independent helium-actuated copper pressure transducers, whose design has been optimized for magnetic SANS on modulated long-period magnetic structures and vortexmore » lattices, and is compact enough to fit in common sample environments such as cryostats and superconducting magnets.« less
Zhu, Yi; Cai, Zhonghou; Chen, Pice; ...
2016-02-26
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less
NASA Astrophysics Data System (ADS)
Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan
2016-02-01
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J; Jung, Il Woong; Walko, Donald A; Dufresne, Eric M; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P; Freeland, John W; Evans, Paul G; Wen, Haidan
2016-02-26
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.
Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R
2013-09-06
Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.
Debnath, Ananya; Thakkar, Foram M; Maiti, Prabal K; Kumaran, V; Ayappa, K G
2014-10-14
Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, Lβ', to the one dimensional (1D) rippled, Pβ' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel Lβ' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of ∼2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.
Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice
Mukherjee, Sebabrata; Spracklen, Alexander; Valiente, Manuel; Andersson, Erika; Öhberg, Patrik; Goldman, Nathan; Thomson, Robert R.
2017-01-01
Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime. PMID:28051060
Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Lee, Yoju; Verstraete, Frank; Gendiar, Andrej
2016-08-01
The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, Kyle J.; Martin, James E.
In recent years a rich variety of emergent phenomena have been observed when suspensions of magnetic particles are subjected to alternating magnetic fields. These particle assemblies often exhibit vigorous dynamics due to the injection of energy from the field. These include surface and interface phenomena, such as highly organized, segmented “snakes” that can be induced to swim by structural symmetry breaking, and “asters” and “anti-asters,” particle assemblies that can be manipulated to capture and transport cargo. In bulk suspensions of magnetic platelets subjected to multiaxial alternating fields, advection lattices and even vortex lattices have been created, and a variety ofmore » biomimetic dynamics – serpents, bees and amoebas – have been discovered in magnetic fluids suspended in an immiscible liquid. In this paper several new driven phases are presented, including flying chevrons, dense spinning clusters, filaments, and examples of phase coexistence in driven phases. These observations broaden the growing field of driven magnetic suspensions and present new challenges to those interested in simulating the dynamics of these complex systems.« less
Topological dynamics of gyroscopic and Floquet lattices from Newton's laws
NASA Astrophysics Data System (ADS)
Lee, Ching Hua; Li, Guangjie; Jin, Guliuxin; Liu, Yuhan; Zhang, Xiao
2018-02-01
Despite intense interest in realizing topological phases across a variety of electronic, photonic, and mechanical platforms, the detailed microscopic origin of topological behavior often remains elusive. To bridge this conceptual gap, we show how hallmarks of topological modes—boundary localization and chirality—emerge from Newton's laws in mechanical topological systems. We first construct a gyroscopic lattice with analytically solvable edge modes, and show how the Lorentz and spring restoring forces conspire to support very robust "dangling bond" boundary modes. The chirality and locality of these modes intuitively emerges from microscopic balancing of restoring forces and cyclotron tendencies. Next, we introduce the highlight of this work, an experimentally realistic mechanical nonequilibrium (Floquet) Chern lattice driven by ac electromagnets. Through appropriate synchronization of the ac driving protocol, the Floquet lattice is "pushed around" by a rotating potential analogous to an object washed ashore by water waves. Besides hosting "dangling bond" chiral modes analogous to the gyroscopic boundary modes, our Floquet Chern lattice also supports peculiar half-period chiral modes with no static analog, i.e., analogs of anomalous Floquet Chern insulators edge modes. With key parameters controlled electronically, our setup has the advantage of being dynamically tunable for applications involving arbitrary Floquet modulations. The physical intuition gleaned from our two prototypical topological systems is applicable not just to arbitrarily complicated mechanical systems, but also photonic and electrical topological setups.
Zhou, Kang; Bisoyi, Hari Krishna; Jin, Jian-Qiu; Yuan, Cong-Long; Liu, Zhen; Shen, Dong; Lu, Yan-Qing; Zheng, Zhi-Gang; Zhang, Weian; Li, Quan
2018-04-23
Self-organized stimuli-responsive smart materials with adjustable attributes are highly desirable for a plethora of device applications. Simple cubic lattice is quite uncommon in soft condensed matter due to its lower packing factor. Achieving a stable simple cubic soft lattice and endowing such a lattice with dynamic reconstruction capability solely by a facile light irradiation are of paramount significance for both fundamental studies and engineering explorations. Herein, an elegant stable self-organized simple cubic soft lattice, i.e., blue phase II, in a chiral liquid crystal (LC) system is disclosed, which is stable down to room temperature and exhibits both reversible lattice deformation and transformation to a helical superstructure, i.e., cholesteric LC, by light stimulation. Such an amazing trait is attained by doping a judiciously designed achiral photoresponsive molecular switch functionalized polyhedral oligomeric silsesquioxane nanocage into a chiral LC host. An unprecedented reversible collapse and reconstruction of such a high symmetric simple cubic blue phase II driven by light has been achieved. Furthermore, a well-defined conglomerate micropattern composed of simple cubic soft lattice and helical superstructure, which is challenging to fabricate in organic and inorganic crystalline materials, is produced using photomasking technology. Moreover, the promising photonic application based on such a micropattern is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pawan; Kar, Manoranjan, E-mail: mano@iitp.ac.in; Shankhwar, Nisha
2015-05-21
The co-doping of Ca and Mn in respective Bi and Fe-sites of BiFeO{sub 3} lattice leads to structural transition from rhombohedral (R3c space group) to orthorhombic (Pbnm space group) crystal symmetry. The tilt angle for anti-phase rotation of the oxygen octahedra of BiFeO{sub 3} at room temperature is observed to be ∼13.8°. It decreases with the increase in the co-doping percentage which suggests the composition-driven structural phase transition. The remnant magnetization for sample with 15% of co-doping becomes about 16 times that of BiFeO{sub 3}. It may be attributed to the suppression of cycloid spin structure and uncompensated spins atmore » the surface of nanocrystallites. Further increase in co-doping percentage results in the sharp reduction of remnant magnetization due to the dominant contribution from the collinear antiferromagnetic ordering in the Pbnm space group. The Arrott plot analysis clearly indicates the composition-driven crossover from the antiferromagnetic to weak ferromagnetic ordering and vice versa. Electron spin resonance results provide the evidence for the composition-driven phase transitions from an incommensurate spin cycloidal modulated state to one with nearly homogeneous spin order. The band gap (2.17 eV) of BiFeO{sub 3} measured using UV-Vis spectra was supported by the resonance Raman spectra.« less
Spatial Lattice Modulation for MIMO Systems
NASA Astrophysics Data System (ADS)
Choi, Jiwook; Nam, Yunseo; Lee, Namyoon
2018-06-01
This paper proposes spatial lattice modulation (SLM), a spatial modulation method for multipleinput-multiple-output (MIMO) systems. The key idea of SLM is to jointly exploit spatial, in-phase, and quadrature dimensions to modulate information bits into a multi-dimensional signal set that consists oflattice points. One major finding is that SLM achieves a higher spectral efficiency than the existing spatial modulation and spatial multiplexing methods for the MIMO channel under the constraint ofM-ary pulseamplitude-modulation (PAM) input signaling per dimension. In particular, it is shown that when the SLM signal set is constructed by using dense lattices, a significant signal-to-noise-ratio (SNR) gain, i.e., a nominal coding gain, is attainable compared to the existing methods. In addition, closed-form expressions for both the average mutual information and average symbol-vector-error-probability (ASVEP) of generic SLM are derived under Rayleigh-fading environments. To reduce detection complexity, a low-complexity detection method for SLM, which is referred to as lattice sphere decoding, is developed by exploiting lattice theory. Simulation results verify the accuracy of the conducted analysis and demonstrate that the proposed SLM techniques achieve higher average mutual information and lower ASVEP than do existing methods.
Lattice-Boltzmann simulation of coalescence-driven island coarsening
Basagaoglu, H.; Green, C.T.; Meakin, P.; McCoy, B.J.
2004-01-01
The first-order phase separation in a thin fluid film was simulated using a two-dimensional lattice-Boltzman model (LBM) with fluid-fluid interactions. The effects of the domain size on the intermediate asymptotic island size distribution were also discussed. It was observed that the overall process is dominated by coalescence which is independent of island mass. The results show that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations.
Different phases of a system of hard rods on three dimensional cubic lattice
NASA Astrophysics Data System (ADS)
Vigneshwar, N.; Dhar, Deepak; Rajesh, R.
2017-11-01
We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.
Current quantization and fractal hierarchy in a driven repulsive lattice gas.
Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco
2017-11-01
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
Current quantization and fractal hierarchy in a driven repulsive lattice gas
NASA Astrophysics Data System (ADS)
Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco
2017-11-01
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
2012-09-27
onto a 2D array of N 2 micromirrors [33] that are each individually phase modulated at a single frequency (and phase) [34] and are finally focused on...beams that strike an N × N array of micromirrors each independently modulated, or a spatial light modulator. overhead to the design and fabrication of
Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Xie, Haiqiong; Zeng, Zhong; Zhang, Liangqi; Yokota, Yuui; Kawazoe, Yoshiyuki; Yoshikawa, Akira
2016-04-01
A hybrid two-phase model, incorporating lattice Boltzmann method (LBM) and finite difference method (FDM), was developed to investigate the coalescence of two drops during their thermocapillary migration. The lattice Boltzmann method with a multi-relaxation-time (MRT) collision model was applied to solve the flow field for incompressible binary fluids, and the method was implemented in an axisymmetric form. The deformation of the drop interface was captured with the phase-field theory, and the continuum surface force model (CSF) was adopted to introduce the surface tension, which depends on the temperature. Both phase-field equation and the energy equation were solved with the finite difference method. The effects of Marangoni number and Capillary numbers on the drop's motion and coalescence were investigated.
Quantum anomalous Hall phase in a one-dimensional optical lattice
NASA Astrophysics Data System (ADS)
Liu, Sheng; Shao, L. B.; Hou, Qi-Zhe; Xue, Zheng-Yuan
2018-03-01
We propose to simulate and detect quantum anomalous Hall phase with ultracold atoms in a one-dimensional optical lattice, with the other synthetic dimension being realized by modulating spin-orbit coupling. We show that the system manifests a topologically nontrivial phase with two chiral edge states which can be readily detected in this synthetic two-dimensional system. Moreover, it is interesting that at the phase transition point there is a flat energy band and this system can also be in a topologically nontrivial phase with two Fermi zero modes existing at the boundaries by considering the synthetic dimension as a modulated parameter. We also show how to measure these topological phases experimentally in ultracold atoms. Another model with a random Rashba and Dresselhaus spin-orbit coupling strength is also found to exhibit topological nontrivial phase, and the impact of the disorder to the system is revealed.
Manipulating Topological Edge Spins in One-Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Liu, Xiong-Jun; Liu, Zheng-Xin; Cheng, Meng
2013-03-01
We propose to observe and manipulate topological edge spins in 1D optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in optical lattice. The manipulation of TSQs has potential applications to quantum computation. We acknowledge the support from JQI-NSF-PFC, Microsoft-Q, and DARPA- QuEST.
Simulations of water nano-confined between corrugated planes
NASA Astrophysics Data System (ADS)
Zubeltzu, Jon; Artacho, Emilio
2017-11-01
Water confined to nanoscale widths in two dimensions between ideal planar walls has been the subject of ample study, aiming at understanding the intrinsic response of water to confinement, avoiding the consideration of the chemistry of actual confining materials. In this work, we study the response of such nanoconfined water to the imposition of a periodicity in the confinement by means of computer simulations, both using empirical potentials and from first-principles. For that we propose a periodic confining potential emulating the atomistic oscillation of the confining walls, which allows varying the lattice parameter and amplitude of the oscillation. We do it for a triangular lattice, with several values of the lattice parameter: one which is ideal for commensuration with layers of Ih ice and other values that would correspond to more realistic substrates. For the former, the phase diagram shows an overall rise of the melting temperature. The liquid maintains a bi-layer triangular structure, however, despite the fact that it is not favoured by the external periodicity. The first-principles liquid is significantly affected by the modulation in its layering and stacking even at relatively small amplitudes of the confinement modulation. Beyond some critical modulation amplitude, the hexatic phase present in flat confinement is replaced by a trilayer crystalline phase unlike any of the phases encountered for flat confinement. For more realistic lattice parameters, the liquid does not display higher tendency to freeze, but it clearly shows inhomogeneous behaviour as the strength of the rugosity increases. In spite of this expected inhomogeneity, the structural and dynamical response of the liquid is surprisingly insensitive to the external modulation. Although the first-principles calculations give a more triangular liquid than the one observed with empirical potentials (TIP4P/2005), both agree remarkably well for the main conclusions of the study.
Zhu, Wenliang; Pezzotti, Giuseppe; Boffelli, Marco; Chotanaphuti, Thanainit; Khuangsirikul, Saradej; Sugano, Nobuhiko
2017-08-01
Ceramic-on-metal (CoM) hip implants were reported to experience lower wear rates in vitro as compared to metal-on-metal (MoM) bearings, thus hinting metal-ion release at lower levels in vivo. In this article, we show a spectroscopic study of two short-term retrieval cases of zirconia-toughened alumina (ZTA) femoral heads belonging to CoM hip prostheses, which instead showed poor wear performances in vivo. Metal contamination and abnormally high fractions of tetragonal-to-monoclinic (t→m) polymorphic transformation of the zirconia phase could be found on both ZTA heads, which contrasted with the optimistic predictions of in vitro experiments. At the molecular scale, incorporation of metal ions into the ceramic lattices could be recognized as due to frictionally assisted phenomena occurring at the ceramic surface. Driven by abnormal friction, diffusion of metal ions induced lattice shrinkage in the zirconia phases, while residual stress fields became stored at the surface of the femoral head. Diffusional alterations destabilized the chemistry of the ceramic surface and resulted in an abnormal increase in t→m phase transformation in vivo. Frictionally driven metal transfer to the ceramic lattice thus hinders the in vivo performance of CoM prostheses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1469-1480, 2017. © 2016 Wiley Periodicals, Inc.
Computational and Theoretical Investigations of Strongly Correlated Fermions in Optical Lattices
2013-08-29
and two-particle spectral functions across the disorder - driven superconductor - insulator transition". 22. Invited speaker, \\Fermions in Optical...energy gaps across the disorder - driven superconductor - insulator transition", October 7, 2010, Harvard. 27. Seminar on \\Probing Quantum Phases of...Perimeter Institute, November 14, 2011. 37. Seminar on \\Single and two-particle energy gaps across the disorder - driven superconductor - insulator transition
Interaction quenched ultracold few-boson ensembles in periodically driven lattices
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. It is shown that periodic driving enforces the bosons in the outer wells of the finite lattice to exhibit out-of-phase dipole-like modes, while in the central well the atomic cloud experiences a local breathing mode. The dynamical behavior is investigated with varying driving frequency, revealing a resonant-like behavior of the intra-well dynamics. An interaction quench in the periodically driven lattice gives rise to admixtures of different excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. We observe then multiple resonances between the inter- and intra-well dynamics at different quench amplitudes, with the position of the resonances being tunable via the driving frequency. Our results pave the way for future investigations on the use of combined driving protocols in order to excite different inter- and intra-well modes and to subsequently control them. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Two-dimensional, phase modulated lattice sums with application to the Helmholtz Green’s function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linton, C. M., E-mail: C.M.Linton@lboro.ac.uk
2015-01-15
A class of two-dimensional phase modulated lattice sums in which the denominator is an indefinite quadratic polynomial Q is expressed in terms of a single, exponentially convergent series of elementary functions. This expression provides an extremely efficient method for the computation of the quasi-periodic Green’s function for the Helmholtz equation that arises in a number of physical contexts when studying wave propagation through a doubly periodic medium. For a class of sums in which Q is positive definite, our new result can be used to generate representations in terms of θ-functions which are significant generalisations of known results.
NASA Astrophysics Data System (ADS)
Osada, Toshihito
2017-12-01
We demonstrate that a Chern insulator can be realized on an actual two-dimensional lattice of an organic Dirac semimetal, α-(BEDT-TTF)2I3, by introducing potential and magnetic modulations in a unit cell. It is a topologically-nontrivial insulator that exhibits the quantum Hall effect even at zero magnetic field. We assume a pattern of site potential and staggered plaquette magnetic flux on the lattice to imitate the observed stripe charge ordering pattern. When magnetic modulation is sufficiently large, the system becomes a Chern insulator, where the Berry curvatures around two gapped Dirac cones have the same sign on each band, and one chiral edge state connects the conduction and valence bands at each crystal edge. The present model is an organic version of Haldane's model, which discusses the Chern insulator on a honeycomb lattice with second nearest neighbor couplings.
The Kitaev honeycomb model on surfaces of genus g ≥ 2
NASA Astrophysics Data System (ADS)
Brennan, John; Vala, Jiří
2018-05-01
We present a construction of the Kitaev honeycomb lattice model on an arbitrary higher genus surface. We first generalize the exact solution of the model based on the Jordan–Wigner fermionization to a surface with genus g = 2, and then use this as a basic module to extend the solution to lattices of arbitrary genus. We demonstrate our method by calculating the ground states of the model in both the Abelian doubled {Z}}}2 phase and the non-Abelian Ising topological phase on lattices with the genus up to g = 6. We verify the expected ground state degeneracy of the system in both topological phases and further illuminate the role of fermionic parity in the Abelian phase.
Correspondence between a shaken honeycomb lattice and the Haldane model
NASA Astrophysics Data System (ADS)
Modugno, Michele; Pettini, Giulio
2017-11-01
We investigate the correspondence between the tight-binding Floquet Hamiltonian of a periodically modulated honeycomb lattice and the Haldane model. We show that—though the two systems share the same topological phase diagram, as reported in a breakthrough experiment with ultracold atoms in a stretched honeycomb lattice [G. Jotzu et al., Nature (London) 515, 237 (2014), 10.1038/nature13915]—the corresponding Hamiltonians are not equivalent, the one of the shaken lattice presenting a much richer structure.
Multiple Supersonic Phase Fronts Launched at a Complex-Oxide Heterointerface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Först, M.; Beyerlein, K. R.; Mankowsky, R.
Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We also measure the dynamics of the lattice and that of the charge disproportionation in NdNiO 3 , when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO 3 substrate. We findmore » that charge redistribution propagates at supersonic speeds from the interface into the NdNiO 3 film, followed by a sonic lattice wave. Our results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces, when combined with measurements of magnetic disordering and of the metal-insulator transition.« less
Multiple Supersonic Phase Fronts Launched at a Complex-Oxide Heterointerface
Först, M.; Beyerlein, K. R.; Mankowsky, R.; ...
2017-01-09
Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We also measure the dynamics of the lattice and that of the charge disproportionation in NdNiO 3 , when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO 3 substrate. We findmore » that charge redistribution propagates at supersonic speeds from the interface into the NdNiO 3 film, followed by a sonic lattice wave. Our results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces, when combined with measurements of magnetic disordering and of the metal-insulator transition.« less
Fast, externally triggered, digital phase controller for an optical lattice
NASA Astrophysics Data System (ADS)
Sadgrove, Mark; Nakagawa, Ken'ichi
2011-11-01
We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.
Phase transitions in a system of hard rectangles on the square lattice
NASA Astrophysics Data System (ADS)
Kundu, Joyjit; Rajesh, R.
2014-05-01
The phase diagram of a system of monodispersed hard rectangles of size m ×mk on a square lattice is numerically determined for m =2,3 and aspect ratio k =1,2,...,7. We show the existence of a disordered phase, a nematic phase with orientational order, a columnar phase with orientational and partial translational order, and a solidlike phase with sublattice order, but no orientational order. The asymptotic behavior of the phase boundaries for large k is determined using a combination of entropic arguments and a Bethe approximation. This allows us to generalize the phase diagram to larger m and k, showing that for k ≥7, the system undergoes three entropy-driven phase transitions with increasing density. The nature of the different phase transitions is established and the critical exponents for the continuous transitions are determined using finite size scaling.
Driven Bose-Hubbard model with a parametrically modulated harmonic trap
NASA Astrophysics Data System (ADS)
Mann, N.; Bakhtiari, M. Reza; Massel, F.; Pelster, A.; Thorwart, M.
2017-04-01
We investigate a one-dimensional Bose-Hubbard model in a parametrically driven global harmonic trap. The delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak interaction by analyzing a discretized Gross-Pitaevskii equation within a Gaussian variational ansatz, yielding a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified by the atom interaction strength. In particular, the effective eigenfrequency is reduced for growing interaction in the mean-field regime. For a stronger interaction, the impact of the global parametric drive is determined by the numerically exact time-evolving block decimation scheme. When the trapped bosons in the lattice are in a Mott insulating state, the absorption of energy from the driving field is suppressed due to the strongly reduced local compressibility of the quantum many-body state. In particular, we find that the width of the local Mott region shows a breathing dynamics. Finally, we observe that the global modulation also induces an effective time-independent inhomogeneous hopping strength for the atoms.
Savitzky, Benjamin H.; Admasu, Alemayehu S.; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F.
2018-01-01
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge–lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale (∼6 pm to 11 pm) transverse displacements, suggesting that charge–lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative “incommensurate” order in hole-doped oxides. PMID:29382750
Mode-coupling of interaction quenched ultracold bosons in periodically driven lattices
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Schmelcher, Peter
2016-05-01
The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. As a first attempt a brief analysis of the dynamics caused exclusively by the periodically driven lattice is presented and the induced low-lying modes are introduced. It is shown that the periodic driving enforces the bosons in the outer wells to exhibit out-of-phase dipole-like modes, while in the central well the cloud experiences a local-breathing mode. The dynamical behavior of the system is investigated with respect to the driving frequency, revealing a resonant-like behavior of the intra-well dynamics. Subsequently, we drive the system to a highly non-equilibrium state by performing an interaction quench upon the periodically driven lattice. This protocol gives rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result (of the quench) the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Finally, our study reveals that the position of the resonances can be adjusted e.g. via the driving frequency or the atom number manifesting their many-body nature. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice
NASA Astrophysics Data System (ADS)
Owen, E. T.; Jin, J.; Rossini, D.; Fazio, R.; Hartmann, M. J.
2018-04-01
Driven-dissipative quantum many-body systems have attracted increasing interest in recent years as they lead to novel classes of quantum many-body phenomena. In particular, mean-field calculations predict limit cycle phases, slow oscillations instead of stationary states, in the long-time limit for a number of driven-dissipative quantum many-body systems. Using a cluster mean-field and a self-consistent Mori projector approach, we explore the persistence of such limit cycles as short range quantum correlations are taken into account in a driven-dissipative Heisenberg model.
Diffusion and transport in locally disordered driven lattices
NASA Astrophysics Data System (ADS)
Wulf, Thomas; Okupnik, Alexander; Schmelcher, Peter
2016-09-01
We study the effect of disorder on the particle density evolution in a classical Hamiltonian driven lattice setup. If the disorder is localized within a finite sub-domain of the lattice, the emergence of strong tails in the density distribution which even increases towards larger positions is shown, thus yielding a highly non-Gaussian particle density evolution. As the key underlying mechanism, we identify the conversion between different components of the unperturbed systems mixed phase space which is induced by the disorder. Based on the introduction of individual conversion rates between chaotic and regular components, a theoretical model is developed which correctly predicts the scaling of the particle density. The effect of disorder on the transport properties is studied where a significant enhancement of the transport for cases of localized disorder is shown, thereby contrasting strongly the merely weak modification of the transport for global disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, Jolly, E-mail: jolly.xavierp@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in
2014-02-24
We report sculptured diverse photonic lattices simultaneously embedded with intrinsic defects of tunable type, number, shape as well as position by a single-step dynamically reconfigurable fabrication approach based on a programmable phase spatial light modulator-assisted interference lithography. The presented results on controlled formation of intrinsic defects in periodic as well as transversely quasicrystallographic lattices, irrespective and independent of their designed lattice geometry, portray the flexibility and versatility of the approach. The defect-formation in photonic lattices is also experimentally analyzed. Further, we also demonstrate the feasibility of fabrication of such defects-embedded photonic lattices in a photoresist, aiming concrete integrated photonic applications.
Simultaneous Control of Multispecies Particle Transport and Segregation in Driven Lattices
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Aritra K.; Liebchen, Benno; Schmelcher, Peter
2018-05-01
We provide a generic scheme to separate the particles of a mixture by their physical properties like mass, friction, or size. The scheme employs a periodically shaken two-dimensional dissipative lattice and hinges on a simultaneous transport of particles in species-specific directions. This selective transport is achieved by controlling the late-time nonlinear particle dynamics, via the attractors embedded in the phase space and their bifurcations. To illustrate the spectrum of possible applications of the scheme, we exemplarily demonstrate the separation of polydisperse colloids and mixtures of cold thermal alkali atoms in optical lattices.
Resonant x-ray scattering from a skyrmion lattice
NASA Astrophysics Data System (ADS)
Roy, S.; Langner, M. C.; Mishra, S. K.; Lee, J. C. T.; Shi, X. W.; Hossain, M. A.; Chuang, Y.-D.; Kevan, S. D.; Schoenlein, R. W.; Seki, S.; Tokura, Y.
2014-03-01
Topologically protected novel phases in condensed matter systems are a current research topic of tremendous interest due to both the unique physics and their potential in device applications. Skyrmions are a topological phase that in magnetic systems manifest as a hexagonal lattice of spin-swirls. We report the first observation of the skyrmion lattice using resonant soft x-ray diffraction in Cu2OSeO3, a cubic insulator that exhibits degenerate helical magnetic structures along <100> axes in zero magnetic field. Within a narrow window of temperature and applied magnetic field we observed the six fold symmetric satellite peaks due to the skyrmion lattice around the (001) lattice Bragg peak. As a function of incident photon energy a rotational splitting of the skyrmion satellite peaks was observed that we ascribe to the two Cu sublattices of Cu2OSeO3, with different magnetically active orbitals. The splitting implies a long wavelength modulation of the skyrmion lattice. Work supported by U.S. DOE.
Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF
Lindsay, Lucas R.
2016-11-08
Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less
NASA Astrophysics Data System (ADS)
Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.
2014-08-01
We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.
NASA Astrophysics Data System (ADS)
Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.
2018-05-01
We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.
El Baggari, Ismail; Savitzky, Benjamin H; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2018-02-13
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge-lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature ([Formula: see text]93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale ([Formula: see text]6 pm to 11 pm) transverse displacements, suggesting that charge-lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative "incommensurate" order in hole-doped oxides. Copyright © 2018 the Author(s). Published by PNAS.
Polymer-stabilized liquid crystal blue phases.
Kikuchi, Hirotsugu; Yokota, Masayuki; Hisakado, Yoshiaki; Yang, Huai; Kajiyama, Tisato
2002-09-01
Blue phases are types of liquid crystal phases that appear in a temperature range between a chiral nematic phase and an isotropic liquid phase. Because blue phases have a three-dimensional cubic structure with lattice periods of several hundred nanometres, they exhibit selective Bragg reflections in the range of visible light corresponding to the cubic lattice. From the viewpoint of applications, although blue phases are of interest for fast light modulators or tunable photonic crystals, the very narrow temperature range, usually less than a few kelvin, within which blue phases exist has always been a problem. Here we show the stabilization of blue phases over a temperature range of more than 60 K including room temperature (260-326 K). Furthermore, we demonstrate an electro-optical switching with a response time of the order of 10(-4) s for the stabilized blue phases at room temperature.
Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.
Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G; Xiao, Jie; Perea, Daniel; Lauhon, Lincoln J; Bang, Junhyeok; Zhang, Shengbai; Wang, Chongmin; Gao, Fei
2013-09-11
The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.
Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Gu, Meng; Zhou, Yungang
2013-08-14
The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governsmore » the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.« less
Electronic structure of HxVO2 probed with in-situ spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Kim, So Yeun; Sandilands, Luke J.; Kang, Taedong; Son, Jaeseok; Sohn, C. H.; Yoon, Hyojin; Son, Junwoo; Moon, S. J.; Noh, T. W.
Vanadium dioxide (VO2) undergoes a metal-to-insulator transition (MIT) near 340K. Despite extensive studies on this material, the role of electron-electron correlation and electron-lattice interactions in driving this MIT is still under debate. Recently, it was demonstrated that hydrogen can be reversibly absorbed into VO2 thin film without destroying the lattice framework. This H-doping allows systematic control of the electron density and lattice structure which in turn leads to a insulator (VO2) - metal (HxVO2) - insulator (HVO2) phase modulation. To better understand the phase modulation of HxVO2, we used in-situ spectroscopic ellipsometry to monitor the electronic structure during the hydrogenization process, i.e. we measured the optical conductivity of HxVO2 while varying x. Starting in the high temperature rutile metallic phase of VO2, we observed a large change in the electronic structure upon annealing in H gas at 370K: the low energy conductivity is continuously suppressed, consistent with reported DC resistivity data, while the conductivity peaks at high energy show strong changes in energy and spectral weight. The implications of our results for the MIT in HxVO2 will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wenfei; Yang, Jing, E-mail: jyang@ee.ecnu.edu.cn, E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei
2015-05-07
Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){submore » 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher-concentration Al-doping.« less
Stochastic driven systems far from equilibrium
NASA Astrophysics Data System (ADS)
Kim, Kyung Hyuk
We study the dynamics and steady states of two systems far from equilibrium: a 1-D driven lattice gas and a driven Brownian particle with inertia. (1) We investigate the dynamical scaling behavior of a 1-D driven lattice gas model with two species of particles hopping in opposite directions. We confirm numerically that the dynamic exponent is equal to z = 1.5. We show analytically that a quasi-particle representation relates all phase points to a special phase line directly related to the single-species asymmetric simple exclusion process. Quasi-particle two-point correlations decay exponentially, and in such a manner that quasi-particles of opposite charge dynamically screen each other with a special balance. The balance encompasses all over the phase space. These results indicate that the model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. (2) We investigate the non-equilibrium thermodynamics of a Brownian particle with inertia under feedback control of its inertia. We find such open systems can act as a molecular refrigerator due to an entropy pumping mechanism. We extend the fluctuation theorems to the refrigerator. The entropy pumping modifies both the Jarzynski equality and the fluctuation theorems. We discover that the entropy pumping has a dual role of work and heat. We also investigate the thermodynamics of the particle under a hydrodynamic interaction described by a Langevin equation with a multiplicative noise. The Stratonovich stochastic integration prescription involved in the definition of heat is shown to be the unique physical choice.
Single-layer dual germanene phases on Ag(111)
NASA Astrophysics Data System (ADS)
Lin, Chung-Huang; Huang, Angus; Pai, Woei Wu; Chen, Wei-Chuan; Chen, Ting-Yu; Chang, Tay-Rong; Yukawa, Ryu; Cheng, Cheng-Maw; Mou, Chung-Yu; Matsuda, Iwao; Chiang, T.-C.; Jeng, H.-T.; Tang, S.-J.
2018-02-01
Two-dimensional (2D) honeycomb lattices beyond graphene promise new physical properties such as quantum spin Hall effect. While there have been claims of growth of such lattices (silicene, germanene, stanene), their existence needs further support and their preparation and characterization remain a difficult challenge. Our findings suggest that two distinct phases associated with germanene, the analog of graphene made of germanium (Ge) instead of carbon, can be grown on Ag(111) as observed by scanning tunneling microscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy. One such germanene exhibits an atom-resolved alternatively buckled full honeycomb lattice, which is tensile strained and partially commensurate with the substrate to form a striped phase (SP). The other, a quasifreestanding phase (QP), is also consistent with a honeycomb lattice with a lattice constant incommensurate with the substrate but very close to the theoretical value for freestanding germanene. The SP, with a lower atomic density, can be driven into the QP and coexist with the QP by additional Ge deposition. Band mapping and first-principles calculations with proposed SP and QP models reveal an interface state exists only in the SP but the characteristic σ band of freestanding germanene emerges only in the QP—this leads to an important conclusion that adlayer-substrate commensurability plays a key role to affect the electronic structure of germanene. The evolution of the dual germanene phases manifests the competitive formation of Ge-Ge covalent and Ge-Ag interfacial bonds.
Theoretical exploration of competing phases of lattice Bose gases in a cavity
NASA Astrophysics Data System (ADS)
Liao, Renyuan; Chen, Huang-Jie; Zheng, Dong-Chen; Huang, Zhi-Gao
2018-01-01
We consider bosonic atoms loaded into optical lattices with cavity-mediated infinite-range interactions. Competing short- and global-range interactions cultivate a rich phase diagram. With a systematic field-theoretical perspective, we present an analytical construction of a global ground-state phase diagram. We find that the infinite-range interaction enhances the fluctuation of the number density. In the strong-coupling regime, we find four branches of elementary excitations, with two being "particlelike" and two being "holelike," and that the excitation gap becomes soft at the phase boundary between compressible phases and incompressible phases. We derive an effective theory describing compressible superfluid and supersolid states. To complement this perturbative study, we construct a self-consistent mean-field theory and find numerical results consistent with our theoretical analysis. We map out the phase diagram and find that a charge density wave may undergo a structure phase transition to a different charge density wave before it finally enters into the supersolid phase driven by increasing the hopping amplitude.
Parametric instabilities in resonantly-driven Bose–Einstein condensates
NASA Astrophysics Data System (ADS)
Lellouch, S.; Goldman, N.
2018-04-01
Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.
Kelly, B. G.; Loether, A.; Unruh, K. M.; ...
2017-02-01
An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B. G.; Loether, A.; Unruh, K. M.
An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less
Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L.; Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
2014-01-13
We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1})more » phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.« less
Origin of modulated phases and magnetic hysteresis in TmB 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierschem, Keola; Sunku, Sai Swaroop; Kong, Tai
In this study, we investigate the low-temperature magnetic phases in TmB 4, a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB 4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB 4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the completemore » magnetic behavior of TmB 4.« less
Origin of modulated phases and magnetic hysteresis in TmB 4
Wierschem, Keola; Sunku, Sai Swaroop; Kong, Tai; ...
2015-12-23
In this study, we investigate the low-temperature magnetic phases in TmB 4, a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB 4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB 4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the completemore » magnetic behavior of TmB 4.« less
Synthetic dimensions for cold atoms from shaking a harmonic trap
NASA Astrophysics Data System (ADS)
Price, Hannah M.; Ozawa, Tomoki; Goldman, Nathan
2017-02-01
We introduce a simple scheme to implement synthetic dimensions in ultracold atomic gases, which only requires two basic and ubiquitous ingredients: the harmonic trap, which confines the atoms, combined with a periodic shaking. In our approach, standard harmonic oscillator eigenstates are reinterpreted as lattice sites along a synthetic dimension, while the coupling between these lattice sites is controlled by the applied time modulation. The phase of this modulation enters as a complex hopping phase, leading straightforwardly to an artificial magnetic field upon adding a second dimension. We show that this artificial gauge field has important consequences, such as the counterintuitive reduction of average energy under resonant driving, or the realization of quantum Hall physics. Our approach offers significant advantages over previous implementations of synthetic dimensions, providing an intriguing route towards higher-dimensional topological physics and strongly-correlated states.
Simulating condensation on microstructured surfaces using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Alexeev, Alexander; Vasyliv, Yaroslav
2017-11-01
We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.
Partially Disordered Phase in Frustrated Triangular Lattice Antiferromagnet CuFeO 2
NASA Astrophysics Data System (ADS)
Mitsuda, Setsuo; Kasahara, Noriaki; Uno, Takahiro; Mase, Motoshi
1998-12-01
We reinvestigated successive magnetic phase transitions (T N1˜14.0 K, T N2˜10.5 K) in a frustrated triangular lattice antiferromagnet (TLA) CuFeO2 by neutron diffraction measurements using single crystals. The magnetic structure of the intermediate-temperature phase between T N1 and T N2 is found to be a quasi-long range ordered sinusoidally amplitude-modulated structure with a temperature dependent propagation wave vector (q q 0). These features of successive phase transitions are well explained by reinvestigated Monte-Carlo simulation of a 2D Ising TLA with competing exchange interactions up to 3rd neighbors, in spite of the Heisenberg spin character of orbital singlet Fe3+ magnetic ions.
Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions
NASA Astrophysics Data System (ADS)
Plekhanov, Kirill; Roux, Guillaume; Le Hur, Karyn
2017-01-01
The realization of synthetic gauge fields has attracted a lot of attention recently in relation to periodically driven systems and the Floquet theory. In ultracold atom systems in optical lattices and photonic networks, this allows one to simulate exotic phases of matter such as quantum Hall phases, anomalous quantum Hall phases, and analogs of topological insulators. In this paper, we apply the Floquet theory to engineer anisotropic Haldane models on the honeycomb lattice and two-leg ladder systems. We show that these anisotropic Haldane models still possess a topologically nontrivial band structure associated with chiral edge modes. Focusing on (interacting) boson systems in s -wave bands of the lattice, we show how to engineer through the Floquet theory, a quantum phase transition (QPT) between a uniform superfluid and a Bose-Einstein condensate analog of Fulde-Ferrell-Larkin-Ovchinnikov states, where bosons condense at nonzero wave vectors. We perform a Ginzburg-Landau analysis of the QPT on the graphene lattice, and compute observables such as chiral currents and the momentum distribution. The results are supported by exact diagonalization calculations and compared with those of the isotropic situation. The validity of high-frequency expansion in the Floquet theory is also tested using time-dependent simulations for various parameters of the model. Last, we show that the anisotropic choice for the effective vector potential allows a bosonization approach in equivalent ladder (strip) geometries.
Low frequency piezoresonance defined dynamic control of terahertz wave propagation
NASA Astrophysics Data System (ADS)
Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan
2016-11-01
Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.
Low frequency piezoresonance defined dynamic control of terahertz wave propagation.
Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan
2016-11-30
Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao
2018-01-01
A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Petricek, V.; Rajput, Parasmani; Hill, Adrian H.; Suard, E.; Barman, S. R.; Pandey, Dhananjai
2014-07-01
The modulated structure of the martensite phase of Ni2MnGa is revisited using high-resolution synchrotron x-ray powder diffraction measurements, which reveal higher-order satellite reflections up to the third order and phason broadening of the satellite peaks. The structure refinement, using the (3+1) dimensional superspace group approach, shows that the modulated structure of Ni2MnGa can be described by orthorhombic superspace group Immm(00γ)s00 with lattice parameters a=4.218 61(2)Å,b=5.546 96(3)Å, and c=4.187 63(2) Å, and an incommensurate modulation wave vector q =0.43160(3)c*=(3/7+δ)c*, where δ =0.00303(3) is the degree of incommensuration of the modulated structure. Additional satellite peak broadening, which could not be accounted for in terms of the anisotropic strain broadening based on a lattice parameter distribution, has been modeled in terms of phasons using fourth-rank covariant strain-tensor representation for incommensurate structures. The simulation of single-crystal diffraction patterns from the refined structural parameters unambiguously reveals a rational approximant structure with 7M modulation. The inhomogeneous displacement of different atomic sites on account of incommensurate modulation and the presence of phason broadening clearly rule out the adaptive phase model proposed recently by Kaufmann et al. [S. Kaufmann, U. K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fähler, Phys. Rev. Lett. 104, 145702 (2010), 10.1103/PhysRevLett.104.145702] and suggest that the modulation in Ni2MnGa originates from soft-mode phonons.
Early, James W.
1990-01-01
A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.
Enhancement and sign change of magnetic correlations in a driven quantum many-body system
NASA Astrophysics Data System (ADS)
Görg, Frederik; Messer, Michael; Sandholzer, Kilian; Jotzu, Gregor; Desbuquois, Rémi; Esslinger, Tilman
2018-01-01
Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics. For static systems, extensive calculations have been performed to explain phenomena such as high-temperature superconductivity. Theoretical analyses of driven many-body Hamiltonians are more challenging, but approaches have now been developed, motivated by recent observations. Here we report an experimental quantum simulation in a periodically modulated hexagonal lattice and show that antiferromagnetic correlations in a fermionic many-body system can be reduced, enhanced or even switched to ferromagnetic correlations (sign reversal). We demonstrate that the description of the many-body system using an effective Floquet-Hamiltonian with a renormalized tunnelling energy remains valid in the high-frequency regime by comparing the results to measurements in an equivalent static lattice. For near-resonant driving, the enhancement and sign reversal of correlations is explained by a microscopic model of the system in which the particle tunnelling and magnetic exchange energies can be controlled independently. In combination with the observed sufficiently long lifetimes of the correlations in this system, periodic driving thus provides an alternative way of investigating unconventional pairing in strongly correlated systems experimentally.
Enhancement and sign change of magnetic correlations in a driven quantum many-body system.
Görg, Frederik; Messer, Michael; Sandholzer, Kilian; Jotzu, Gregor; Desbuquois, Rémi; Esslinger, Tilman
2018-01-24
Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics. For static systems, extensive calculations have been performed to explain phenomena such as high-temperature superconductivity. Theoretical analyses of driven many-body Hamiltonians are more challenging, but approaches have now been developed, motivated by recent observations. Here we report an experimental quantum simulation in a periodically modulated hexagonal lattice and show that antiferromagnetic correlations in a fermionic many-body system can be reduced, enhanced or even switched to ferromagnetic correlations (sign reversal). We demonstrate that the description of the many-body system using an effective Floquet-Hamiltonian with a renormalized tunnelling energy remains valid in the high-frequency regime by comparing the results to measurements in an equivalent static lattice. For near-resonant driving, the enhancement and sign reversal of correlations is explained by a microscopic model of the system in which the particle tunnelling and magnetic exchange energies can be controlled independently. In combination with the observed sufficiently long lifetimes of the correlations in this system, periodic driving thus provides an alternative way of investigating unconventional pairing in strongly correlated systems experimentally.
The nature of photoinduced phase transition and metastable states in vanadium dioxide
Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; ...
2016-12-16
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less
The nature of photoinduced phase transition and metastable states in vanadium dioxide
Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu
2016-01-01
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium. PMID:27982066
The nature of photoinduced phase transition and metastable states in vanadium dioxide
NASA Astrophysics Data System (ADS)
Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu
2016-12-01
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.
Evolutionary games combining two or three pair coordinations on a square lattice
NASA Astrophysics Data System (ADS)
Király, Balázs; Szabó, György
2017-10-01
We study multiagent logit-rule-driven evolutionary games on a square lattice whose pair interactions are composed of a maximal number of nonoverlapping elementary coordination games describing Ising-type interactions between just two of the available strategies. Using Monte Carlo simulations we investigate the macroscopic noise-level-dependent behavior of the two- and three-pair games and the critical properties of the continuous phase transtitions these systems exhibit. The four-strategy game is shown to be equivalent to a system that consists of two independent and identical Ising models.
Evolutionary games combining two or three pair coordinations on a square lattice.
Király, Balázs; Szabó, György
2017-10-01
We study multiagent logit-rule-driven evolutionary games on a square lattice whose pair interactions are composed of a maximal number of nonoverlapping elementary coordination games describing Ising-type interactions between just two of the available strategies. Using Monte Carlo simulations we investigate the macroscopic noise-level-dependent behavior of the two- and three-pair games and the critical properties of the continuous phase transtitions these systems exhibit. The four-strategy game is shown to be equivalent to a system that consists of two independent and identical Ising models.
Microstructural study of the polymorphic transformation in pentacene thin films.
Murakami, Yosuke; Tomiya, Shigetaka; Koshitani, Naoki; Kudo, Yoshihiro; Satori, Kotaro; Itabashi, Masao; Kobayashi, Norihito; Nomoto, Kazumasa
2009-10-02
We have observed, by high-resolution cross-sectional transmission electron microscopy, the first direct evidence of polymorphic transformation in pentacene thin films deposited on silicon oxide substrates. Polymorphic transformation from the thin-film phase to the bulk phase occurred preferentially near polycrystalline grain boundaries, which exhibit concave surfaces. This process is thought to be driven by compressive stress caused by the grain boundaries. In addition to this stress, lattice mismatch between the two phases also results in structural defect formation.
Quantum Simulation and Quantum Sensing with Ultracold Strontium
2015-09-18
quantum Kapitza pendulum , a novel Floquet system which we are investigating using modulated optical lattices. We have proposed and are developing...another goal of our AFOSR YIP project. To this end, we have developed the first theoretical treatment of a lattice-based quantum Kapitza pendulum . We have...classical single-particle analogue of this phase occurs in a rigid pendulum with an oscillating support (known as a Kapitza pendu- lum [9]). To prepare for
Henriques, M.S.; Gorbunov, D.I.; Kriegner, D.; Vališka, M.; Andreev, A.V.; Matěj, Z.
2018-01-01
Structural changes through the first-order paramagnetic-antiferromagnetic phase transition of Dy3Ru4Al12 at 7 K have been studied by means of X-ray diffraction and thermal expansion measurements. The compound crystallizes in a hexagonal crystal structure of Gd3Ru4Al12 type (P63/mmc space group), and no structural phase transition has been found in the temperature interval between 2.5 and 300 K. Nevertheless, due to the spin-lattice coupling the crystal volume undergoes a small orthorhombic distortion of the order of 2×10-5 as the compound enters the antiferromagnetic state. We propose that the first-order phase transition is not driven by the structural changes but rather by the exchange interactions present in the system. PMID:29445250
Zhang, Wei; Zeng, Zhao Yi; Ge, Ni Na; Li, Zhi Guo
2016-01-01
For a further understanding of the phase transitions mechanism in type-I silicon clathrates K8Si46, ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K8Si46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K8Si46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K8Si46 under different temperature and pressure were also predicted. PMID:28773736
Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Ke, Xuezhi; Chen, Changfeng
2011-01-01
We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.
NASA Astrophysics Data System (ADS)
Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang
We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.
Perturbing laser field dependent high harmonic phase modulations
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.
2018-06-01
A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.
Observation of dynamical vortices after quenches in a system with topology
NASA Astrophysics Data System (ADS)
Fläschner, N.; Vogel, D.; Tarnowski, M.; Rem, B. S.; Lühmann, D.-S.; Heyl, M.; Budich, J. C.; Mathey, L.; Sengstock, K.; Weitenberg, C.
2018-03-01
Topological phases constitute an exotic form of matter characterized by non-local properties rather than local order parameters1. The paradigmatic Haldane model on a hexagonal lattice features such topological phases distinguished by an integer topological invariant known as the first Chern number2. Recently, the identification of non-equilibrium signatures of topology in the dynamics of such systems has attracted particular attention3-6. Here, we experimentally study the dynamical evolution of the wavefunction using time- and momentum-resolved full state tomography for spin-polarized fermionic atoms in driven optical lattices7. We observe the appearance, movement and annihilation of dynamical vortices in momentum space after sudden quenches close to the topological phase transition. These dynamical vortices can be interpreted as dynamical Fisher zeros of the Loschmidt amplitude8, which signal a so-called dynamical phase transition9,10. Our results pave the way to a deeper understanding of the connection between topological phases and non-equilibrium dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less
Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices
NASA Astrophysics Data System (ADS)
Farnell, D. J. J.; Götze, O.; Richter, J.
2016-06-01
The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.
Fermi-Pasta-Ulam recurrence and modulation instability
NASA Astrophysics Data System (ADS)
Kuznetsov, E. A.
2017-01-01
We give a qualitative conceptual explanation of the Fermi-Pasta-Ulam (FPU) like recurrence in the onedimensional focusing nonlinear Schrodinger equation (NLSE). The recurrence can be considered as a result of the nonlinear development of the modulation instability. All known exact localized solitary wave solutions describing propagation on the background of the modulationally unstable condensate show the recurrence to the condensate state after its interaction with solitons. The condensate state locally recovers its original form with the same amplitude but a different phase after soliton leave its initial region. Based on the integrability of the NLSE, we demonstrate that the FPU recurrence takes place not only for condensate, but also for a more general solution in the form of the cnoidal wave. This solution is periodic in space and can be represented as a solitonic lattice. That lattice reduces to isolated soliton solution in the limit of large distance between solitons. The lattice transforms into the condensate in the opposite limit of dense soliton packing. The cnoidal wave is also modulationally unstable due to soliton overlapping. The recurrence happens at the nonlinear stage of the modulation instability. Due to generic nature of the underlying mathematical model, the proposed concept can be applied across disciplines and nonlinear systems, ranging from optical communications to hydrodynamics.
Quasiclassical analysis of vortex lattice states in Rashba noncentrosymmetric superconductors
NASA Astrophysics Data System (ADS)
Dan, Yuichiro; Ikeda, Ryusuke
2015-10-01
Vortex lattice states occurring in noncentrosymmetric superconductors with a spin-orbit coupling of Rashba type under a magnetic field parallel to the symmetry plane are examined by assuming the s -wave pairing case and in an approach combining the quasiclassical theory with the Landau level expansion of the superconducting order parameter. The resulting field-temperature phase diagrams include not only a discontinuous transition but a continuous crossover between different vortex lattice structures, and, further, a critical end point of a structural transition line is found at an intermediate field and a low temperature in the present approach. It is pointed out that the strange field dependence of the vortex lattice structure is a consequence of that of its anisotropy stemming from the Rashba spin-orbit coupling, and that the critical end point is related to the helical phase modulation peculiar to these materials in the ideal Pauli-limited case. Furthermore, calculation results on the local density of states detectable in STM experiments are also presented.
Dislocation-driven growth of two-dimensional lateral quantum-well superlattices
Chen, Jianyi; Li, Dongdong
2018-01-01
The advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Density functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width. PMID:29740600
Phenomenological analysis of thermal hysteresis in Ni-Mn-Ga Heusler alloys
NASA Astrophysics Data System (ADS)
Zagrebin, M. A.; Sokolovskiy, V. V.; Buchelnikov, V. D.
2018-05-01
The manipulation of thermal hysteresis in Ni-Mn-Ga Heusler alloys with coupled magnetostructural phase transition is studied theoretically using the Landau theory, including magnetic, elastic and crystal lattice modulation order parameters as well as an external magnetic field. It is shown that for the assigned combination of phenomenological parameters, in the phase diagrams, the Austenite-Martensite first-order phase transition has a finite (critical) point in which the thermal hysteresis is disappeared. Moreover, this point depends on the relation between modulation and elastic constants as well as on the magnetic field. Obtained results have been compared with other theoretical end experimental data.
Higher first Chern numbers in one-dimensional Bose-Fermi mixtures
NASA Astrophysics Data System (ADS)
Knakkergaard Nielsen, Kristian; Wu, Zhigang; Bruun, G. M.
2018-02-01
We propose to use a one-dimensional system consisting of identical fermions in a periodically driven lattice immersed in a Bose gas, to realise topological superfluid phases with Chern numbers larger than 1. The bosons mediate an attractive induced interaction between the fermions, and we derive a simple formula to analyse the topological properties of the resulting pairing. When the coherence length of the bosons is large compared to the lattice spacing and there is a significant next-nearest neighbour hopping for the fermions, the system can realise a superfluid with Chern number ±2. We show that this phase is stable in a large region of the phase diagram as a function of the filling fraction of the fermions and the coherence length of the bosons. Cold atomic gases offer the possibility to realise the proposed system using well-known experimental techniques.
Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2
NASA Astrophysics Data System (ADS)
White, J. S.; Niedermayer, Ch.; Gasparovic, G.; Broholm, C.; Park, J. M. S.; Shapiro, A. Ya.; Demianets, L. A.; Kenzelmann, M.
2013-08-01
RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field-induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero-field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses.
Chen, Jie; Chen, Wei-Kan; Tang, Jau; Rentzepis, Peter M
2011-11-22
We utilize 100 fs optical pulses to induce ultrafast disorder of 35- to 150-nm thick single Au(111) crystals and observe the subsequent structural evolution using 0.6-ps, 8.04-keV X-ray pulses. Monitoring the picosecond time-dependent modulation of the X-ray diffraction intensity, width, and shift, we have measured directly electron/phonon coupling, phonon/lattice interaction, and a histogram of the lattice disorder evolution, such as lattice breath due to a pressure wave propagating at sonic velocity, lattice melting, and recrystallization, including mosaic formation. Results of theoretical simulations agree and support the experimental data of the lattice/liquid phase transition process. These time-resolved X-ray diffraction data provide a detailed description of all the significant processes induced by ultrafast laser pulses impinging on thin metallic single crystals.
Chiral d -wave superconductivity in a triangular surface lattice mediated by long-range interaction
NASA Astrophysics Data System (ADS)
Cao, Xiaodong; Ayral, Thomas; Zhong, Zhicheng; Parcollet, Olivier; Manske, Dirk; Hansmann, Philipp
2018-04-01
Adatom systems on the Si(111) surface have recently attracted an increasing attention as strongly correlated systems with a rich phase diagram. We study these materials by a single band model on the triangular lattice, including 1 /r long-range interaction. Employing the recently proposed TRILEX method, we find an unconventional superconducting phase of chiral d -wave symmetry in hole-doped systems. Contrary to usual scenarios where charge and spin fluctuations are seen to compete, here the superconductivity is driven simultaneously by both charge and spin fluctuations and crucially relies on the presence of the long-range tail of the interaction. We provide an analysis of the relevant collective bosonic modes and predict how a cumulative charge and spin paring mechanism leads to superconductivity in doped silicon adatom materials.
Low-Temperature Dielectric Anisotropy Driven by an Antiferroelectric Mode in SrTiO3
NASA Astrophysics Data System (ADS)
Casals, Blai; Schiaffino, Andrea; Casiraghi, Arianna; Hämäläinen, Sampo J.; López González, Diego; van Dijken, Sebastiaan; Stengel, Massimiliano; Herranz, Gervasi
2018-05-01
Strontium titanate (SrTiO3 ) is the quintessential material for oxide electronics. One of its hallmark features is the transition, driven by antiferrodistortive (AFD) lattice modes, from a cubic to a ferroelastic low-temperature phase. Here we investigate the evolution of the ferroelastic twin walls upon application of an electric field. Remarkably, we find that the dielectric anisotropy of tetragonal SrTiO3 , rather than the intrinsic domain wall polarity, is the main driving force for the motion of the twins. Based on a combined first-principles and Landau-theory analysis, we show that such anisotropy is dominated by a trilinear coupling between the polarization, the AFD lattice tilts, and a previously overlooked antiferroelectric (AFE) mode. We identify the latter AFE phonon with the so-called "R mode" at ˜440 cm-1 , which was previously detected in IR experiments, but whose microscopic nature was unknown.
Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser
NASA Astrophysics Data System (ADS)
Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.
2017-12-01
A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.
NASA Astrophysics Data System (ADS)
Li, Xinying; Xiao, Jiangnan
2015-06-01
We propose a novel scheme for optical frequency-locked multi-carrier generation based on one electro-absorption modulated laser (EML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. The optimal operating zone for the cascaded EML and PM is found out based on theoretical analysis and numerical simulation. We experimentally demonstrate 25 optical subcarriers with frequency spacing of 12.5 GHz and power difference less than 5 dB can be generated based on the cascaded EML and PM operating in the optimal zone, which agrees well with the numerical simulation. We also experimentally demonstrate 28-Gbaud polarization division multiplexing quadrature phase shift keying (PDM-QPSK) modulated coherent optical transmission based on the cascaded EML and PM. The bit error ratio (BER) can be below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10-3 after 80-km single-mode fiber-28 (SMF-28) transmission.
NASA Astrophysics Data System (ADS)
Qin, Tao; Hofstetter, Walter
2018-03-01
Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.
Hidden magnetism in periodically modulated one dimensional dipolar fermions
NASA Astrophysics Data System (ADS)
Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.
2017-12-01
The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.
Makrinich, Maria; Gupta, Rupal; Polenova, Tatyana; Goldbourt, Amir
The ability of various pulse types, which are commonly applied for distance measurements, to saturate or invert quadrupolar spin polarization has been compared by observing their effect on magnetization recovery curves under magic-angle spinning. A selective central transition inversion pulse yields a bi-exponential recovery for a diamagnetic sample with a spin-3/2, consistent with the existence of two processes: the fluctuations of the electric field gradients with identical single (W 1 ) and double (W 2 ) quantum quadrupolar-driven relaxation rates, and spin exchange between the central transition of one spin and satellite transitions of a dipolar-coupled similar spin. Using a phase modulated pulse, developed for distance measurements in quadrupolar spins (Nimerovsky et al., JMR 244, 2014, 107-113) and suggested for achieving the complete saturation of all quadrupolar spin energy levels, a mono-exponential relaxation model fits the data, compatible with elimination of the spin exchange processes. Other pulses such as an adiabatic pulse lasting one-third of a rotor period, and a two-rotor-period long continuous-wave pulse, both used for distance measurements under special experimental conditions, yield good fits to bi-exponential functions with varying coefficients and time constants due to variations in initial conditions. Those values are a measure of the extent of saturation obtained from these pulses. An empirical fit of the recovery curves to a stretched exponential function can provide general recovery times. A stretching parameter very close to unity, as obtained for a phase modulated pulse but not for other cases, suggests that in this case recovery times and longitudinal relaxation times are similar. The results are experimentally demonstrated for compounds containing 11 B (spin-3/2) and 51 V (spin-7/2). We propose that accurate spin lattice relaxation rates can be measured by a short phase modulated pulse (<1-2ms), similarly to the "true T 1 " measured by saturation with an asynchronous pulse train (Yesinowski, JMR 252, 2015, 135-144). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kundin, Julia; Ajmal Choudhary, Muhammad
2017-07-01
In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas.
Geiger, Zachary A; Fujiwara, Kurt M; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V; Meier, Torsten; Weld, David M
2018-05-25
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas
NASA Astrophysics Data System (ADS)
Geiger, Zachary A.; Fujiwara, Kurt M.; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V.; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V.; Meier, Torsten; Weld, David M.
2018-05-01
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piazza, Francesco, E-mail: francesco.piazza@ph.tum.de; Strack, Philipp; Zwerger, Wilhelm
We provide an exact solution for the interplay between Bose–Einstein condensation and the Dicke–Hepp–Lieb self-organization transition of an ideal Bose gas trapped inside a single-mode optical cavity and subject to a transverse laser drive. Based on an effective action approach, we determine the full phase diagram at arbitrary temperature, which features a bi-critical point where the transitions cross. We calculate the dynamically generated band structure of the atoms and the associated suppression of the critical temperature for Bose–Einstein condensation in the phase with a spontaneous periodic density modulation. Moreover, we determine the evolution of the polariton spectrum due to themore » coupling of the cavity photons and the atomic field near the self-organization transition, which is quite different above or below the Bose–Einstein condensation temperature. At low temperatures, the critical value of the Dicke–Hepp–Lieb transition decreases with temperature and thus thermal fluctuations can enhance the tendency to a periodic arrangement of the atoms. -- Highlights: •Atoms inside a driven cavity can undergo two transitions: self-organization and BEC. •The phase diagram has four phases which coexist at a bi-critical point. •Atom–cavity coupling creates a dynamical lattice for the atoms. •Finite temperature can enhance the tendency towards self-organization. •We calculate the detailed spectrum of the polaritonic excitations.« less
Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O
Zhang, G.; Glasbrenner, J. K.; Flint, R.; ...
2017-05-01
Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less
Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G.; Glasbrenner, J. K.; Flint, R.
Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less
Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems
NASA Astrophysics Data System (ADS)
Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng
2018-03-01
Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.
Dislocation-driven growth of two-dimensional lateral quantum-well superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi
Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less
Dislocation-driven growth of two-dimensional lateral quantum-well superlattices
Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi; ...
2018-03-23
Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less
Glassy phases and driven response of the phase-field-crystal model with random pinning.
Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R
2011-09-01
We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.
Novel ways of creating and detecting topological order with cold atoms and ions
NASA Astrophysics Data System (ADS)
Lewenstein, Maciej
2015-03-01
In my talk I will focus on novel physics and novel quantum phases that are expected in lattice systems of ultra-cold atoms or ions in synthetic gauge fields, generated via lattice modulations and shaking. I will discuss fractal energy spectra and topological phases in long-range spin chains realized with trapped ions or atoms in nanofibers, and synthetic gauge fields in synthetic dimensions. I will spend large part of the talk discussing the ways to detect topological effects and order, via tomography of band insulators from quench dynamics, or via direct imaging of topological edge states. This work was supported by ERC AdG OSYRIS, EU IP SIQS, EU STREP EQUAM and Spanish Ministry Grant FOQUS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seung Sae; Yu, Jung Ho; Lu, Di
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less
Entropy-driven crystal formation on highly strained substrates
Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai
2013-01-01
In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate. PMID:23690613
Research and Development of a High Power-Laser Driven Electron-Accelerator Suitable for Applications
2011-06-12
autocorrelator to measure the temporal duration, an optical imaging system to correct for phase front tilt and a FROG device to measure and optimize the... Phase II Task Summary . . . . . . . . . . . . . . . . . . . . . 4 D.1 Module I: High-Energy Electron Accelerator . . . . . . 4 D.2 Module II: High-Energy...During Phase I of the HRS program, the team from the University of Ne- braska, Lincoln (UNL) made use of the unique capabilities of their high-power
Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow
NASA Astrophysics Data System (ADS)
Zheng, Lin; Zheng, Song; Zhai, Qinglan
2016-02-01
In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej
2018-04-01
An alternative model for a description of magnetization processes in coupled 2D spin-electron systems has been introduced and rigorously examined using the generalized decoration-iteration transformation and the corner transfer matrix renormalization group method. The model consists of localized Ising spins placed on nodal lattice sites and mobile electrons delocalized over the pairs of decorating sites. It takes into account a hopping term for mobile electrons, the Ising coupling between mobile electrons and localized spins as well as the Zeeman term acting on both types of particles. The ground-state and finite-temperature phase diagrams were established and comprehensively analyzed. It was found that the ground-state phase diagrams are very rich depending on the electron hopping and applied magnetic field. The diversity of magnetization curves can be related to intermediate magnetization plateaus, which may be continuously tuned through the density of mobile electrons. In addition, the existence of several types of reentrant phase transitions driven either by temperature or magnetic field was proven.
Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.
2013-02-15
Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed.« less
Spin-lattice coupling mediated multiferroicity in (ND 4) 2FeCl 5 • D 2O
Tian, Wei; Cao, Huibo; Wang, Jincheng; ...
2016-12-07
In this paper, we report a neutron diffraction study of the multiferroic mechanism in (ND 4) 2FeCl 5 • D 2O, a molecular compound that exhibits magnetically induced ferroelectricity. This material exhibits two successive magnetic transitions on cooling: a long-range order transition to an incommensurate (IC) collinear sinusoidal spin state at T N = 7.3 K, followed by a second transition to an IC cycloidal spin state at T FE = 6.8 K, the latter of which is accompanied by spontaneous ferroelectric polarization. The cycloid structure is strongly distorted by spin-lattice coupling, as evidenced by the observations of both oddmore » and even higher-order harmonics associated with the cycloid wave vector, and a weak commensurate phase that coexists with the IC phase. The second-order harmonic appears at T FE, thereby providing unambiguous evidence that the onset of the electric polarization is accompanied by a lattice modulation due to spin-lattice interaction. The neutron results, in conjunction with the negative thermal expansion and large magnetostriction observed, indicate that spin-lattice coupling plays a critical role in the ferroelectric mechanism of (ND 4) 2FeCl 5 • D 2O.« less
Metal insulator transitions in perovskite SrIrO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Abhijit; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr; Kim, Ki-Seok
Understanding of metal insulator transitions in a strongly correlated system, driven by Anderson localization (disorder) and/or Mott localization (correlation), is a long standing problem in condensed matter physics. The prevailing fundamental question would be how these two mechanisms contrive to accomplish emergent anomalous behaviors. Here, we have grown high quality perovskite SrIrO{sub 3} thin films, containing a strong spin orbit coupled 5d element Ir, on various substrates such as GdScO{sub 3} (110), DyScO{sub 3} (110), SrTiO{sub 3} (001), and NdGaO{sub 3} (110) with increasing lattice mismatch, in order to carry out a systematic study on the transport properties. We foundmore » that metal insulator transitions can be induced in this system; by either reducing thickness (on best lattice matched substrate) or changing degree of lattice strain (by lattice mismatch between film and substrates) of films. Surprisingly these two pathways seek two distinct types of metal insulator transitions; the former falls into disorder driven Anderson type whereas the latter turns out to be of unconventional Mott-Anderson type with the interplay of disorder and correlation. More interestingly, in the metallic phases of SrIrO{sub 3}, unusual non-Fermi liquid characteristics emerge in resistivity as Δρ ∝ T{sup ε} with ε evolving from 4/5 to 1 to 3/2 with increasing lattice strain. We discuss theoretical implications of these phenomena to shed light on the metal insulator transitions.« less
Mean field study of a propagation-turnover lattice model for the dynamics of histone marking
NASA Astrophysics Data System (ADS)
Yao, Fan; Li, FangTing; Li, TieJun
2017-02-01
We present a mean field study of a propagation-turnover lattice model, which was proposed by Hodges and Crabtree [Proc. Nat. Acad. Sci. 109, 13296 (2012)] for understanding how posttranslational histone marks modulate gene expression in mammalian cells. The kinetics of the lattice model consists of nucleation, propagation and turnover mechanisms, and exhibits second-order phase transition for the histone marking domain. We showed rigorously that the dynamics essentially depends on a non-dimensional parameter κ = k +/ k -, the ratio between the propagation and turnover rates, which has been observed in the simulations. We then studied the lowest order mean field approximation, and observed the phase transition with an analytically obtained critical parameter. The boundary layer analysis was utilized to investigate the structure of the decay profile of the mark density. We also studied the higher order mean field approximation to achieve sharper estimate of the critical transition parameter and more detailed features. The comparison between the simulation and theoretical results shows the validity of our theory.
Microstructure characterization of the non-modulated martensite in Ni-Mn-Ga alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, M.; Bennett, J.C.; Gharghouri, M.A.
2008-06-15
The microstructure of the non-modulated martensite in a Ni-Mn-Ga alloy has been characterized in detail by conventional transmission electron microscopy. Bright field images show that the martensite exhibits an internal substructure consisting of a high density of narrow twins. Using electron diffraction, it is found that the martensite has a tetragonal crystal structure. The lattice correspondence between the parent phase and the non-modulated martensite is investigated. Furthermore, the four twinning elements describing the microtwinning have been graphically and quantitatively determined. The results indicate that the microtwinning within the non-modulated martensite belongs to the compound type.
Tao, J.; Sun, K.; Yin, W. -G.; ...
2016-11-22
The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here, we provide direct observations of the evolution of the superstructure in La 1/3Ca 2/3MnO 3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystalmore » (ELC) phases. Furthermore, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.« less
Topological Fulde-Ferrell and Larkin-Ovchinnikov states in spin-orbit-coupled lattice system
NASA Astrophysics Data System (ADS)
Guo, Yao-Wu; Chen, Yan
2018-04-01
The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde-Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin-Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number ( C = -1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C = -1 (tBCS1) far from half filling and C = 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.
Intermetallic Compound Growth and Stress Development in Al-Cu Diffusion Couple
NASA Astrophysics Data System (ADS)
Mishler, M.; Ouvarov-Bancalero, V.; Chae, Seung H.; Nguyen, Luu; Kim, Choong-Un
2018-01-01
This paper reports experimental observations evidencing that the intermetallic compound phase interfaced with Cu in the Al-Cu diffusion couple is most likely α2-Cu3Al phase, not γ-Cu9Al4 phase as previously assumed, and that its growth to a critical thickness may result in interface failure by stress-driven fracture. These conclusions are made based on an interdiffusion study of a diffusion couple made of a thick Cu plate coated with ˜ 2- μm-thick Al thin film. The interface microstructure and lattice parameter were characterized using scanning electron microscopy and x-ray diffraction analysis. Specimens aged at temperature between 623 K (350°C) and 723 K (450°C) for various hours produced consistent results supporting the main conclusions. It is found that disordered α2-Cu3Al phase grows in a similar manner to solid-state epitaxy, probably owing to its structural similarity to the Cu lattice. The increase in the interface strain that accompanies the α2-Cu3Al phase growth ultimately leads to interface fracture proceeding from crack initiation and growth along the interface. This mechanism provides the most consistent explanation for interface failures observed in other studies.
Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.
Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia
2017-11-10
In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.
The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less
D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.; ...
2015-11-19
The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less
NASA Astrophysics Data System (ADS)
Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.
2018-02-01
Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.
Visual sensitivity to spatially sampled modulation in human observers
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Macleod, Donald I. A.
1991-01-01
Thresholds were measured for detecting spatial luminance modulation in regular lattices of visually discrete dots. Thresholds for modulation of a lattice are generally higher than the corresponding threshold for modulation of a continuous field, and the size of the threshold elevation, which depends on the spacing of the lattice elements, can be as large as a one log unit. The largest threshold elevations are seen when the sample spacing is 12 min arc or greater. Theories based on response compression cannot explain the further observation that the threshold elevations due to spatial sampling are also dependent on modulation frequency: the greatest elevations occur with higher modulation frequencies. The idea that this is due to masking of the modulation frequency by the spatial frequencies in the sampling lattice is considered.
Simple Z2 lattice gauge theories at finite fermion density
NASA Astrophysics Data System (ADS)
Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph
2017-11-01
Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.
Optimum resonance control knobs for sextupoles
NASA Astrophysics Data System (ADS)
Ögren, J.; Ziemann, V.
2018-06-01
We discuss the placement of extra sextupoles in a magnet lattice that allows to correct third-order geometric resonances, driven by the chromaticity-compensating sextupoles, in a way that requires the least excitation of the correction sextupoles. We consider a simplified case, without momentum-dependent effects or other imperfections, where suitably chosen phase advances between the correction sextupoles leads to orthogonal knobs with equal treatment of the different resonance driving terms.
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.; ...
2018-05-04
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Bolster, Diogo; Luo, Li-Shi
2017-07-01
We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time (WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct numerical simulation of two-phase flows in three dimensions. The proposed WMRT model enhances the numerical stability of the LBM for immiscible fluids at high density ratios, particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT-LBM-AMR is validated through simulations of (a) buoyancy-driven motion and deformation of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence mechanism of a liquid drop at a liquid-liquid interface. The numerical simulations agree well with available experimental data and theoretical approximations where applicable.
NASA Astrophysics Data System (ADS)
Ren, Y.; Ye, F.; Huang, Q.; Fernandez-Baca, J. A.; Dai, Pengcheng; Lynn, J. W.; Kimura, T.
2006-03-01
We use high resolution synchrotron X-ray and neutron diffraction to study the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2. We show that the occurrence of the two magnetic transitions, at 14 K and 11 K, respectively is accompanied simultaneously by a second-and first- order structural phase transitions from a hexagonal structure to a monoclinic form. This is the first observation of two successive spin-driven structural transitions directly coupled with incommensurate and commensurate magnetic orderings in frustrated TLA systems. This work is supported by the U. S. NSF DMR-0453804 and DOE Nos. DE-FG02-05ER46202 and DE-AC05-00OR22725 with UT/Battelle LLC. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.
Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A
2016-10-01
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
Ultrafast dynamics during the photoinduced phase transition in VO2
NASA Astrophysics Data System (ADS)
Wegkamp, Daniel; Stähler, Julia
2015-12-01
The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg; Marinov, Yordan G.; Petrov, Alexander G.
2016-03-25
We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii)more » spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.« less
Ultrafast modulators based on nonlinear photonic crystal waveguides
NASA Astrophysics Data System (ADS)
Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.
2011-03-01
Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot resonance compared to that of conventional waveguide. Measured transmission spectra show a bandgap in the ΓM direction in the reciprocal lattice that is in agreement with the simulated results using the finite-difference time-domain (FDTD) method. Compared to polarization intensity EO modulator with a half-wave voltage length product of 4.7 V•mm. The PhC based EO modulator has a factor of 6.6 improvement in the figure of merit performance. The thin film PhC waveguide devices show considerable potential for ultra-wide bandwidth electro-optic modulators as well as tunable optical filters and switches.
Challenges and complexities of multifrequency atomic force microscopy in liquid environments.
Solares, Santiago D
2014-01-01
This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip-sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.
NASA Astrophysics Data System (ADS)
London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi
2017-04-01
An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.
NASA Astrophysics Data System (ADS)
Tamatsukuri, Hiromu; Mitsuda, Setsuo; Nakamura, Tenfu; Takata, Kouhei; Nakajima, Taro; Prokes, Karel; Yokaichiya, Fabiano; Kiefer, Klaus
2017-05-01
We have investigated magnetic and ferroelectric (dielectric) properties of multiferroic CuFe0.982Ga0.018O2 , CuFe0.965Ga0.035O2 , and CuFe0.95Al0.05O2 under applied uniaxial pressure p up to 600 MPa. Unlike the results of the almost same experiments on CuFeO2 [Tamatsukuri et al., Phys. Rev. B 94, 174402 (2016), 10.1103/PhysRevB.94.174402], we have found that the application of p induces a new ferroelectric phase, which is different from the well-studied spin-driven ferroelectric phase with helical magnetic ordering, in all the doped samples investigated here. We have also constructed the temperature versus p magnetoelectric phase diagrams of the three samples. The ferroelectric polarization in the p -induced ferroelectric phase lies along the [110] direction as in the helical magnetoferroelectric phase, and its value is comparable with or larger than that in the helical magnetoferroelectric phase. The magnetic structure in the p -induced ferroelectric phase seems to be of a collinear sinusoidal type. Although this magnetic structure itself does not break the inversion symmetry, it is considered to play an important role in the origin of ferroelectricity in the p -induced ferroelectric phase through the spin-lattice coupling in this system.
NASA Astrophysics Data System (ADS)
Liu, Mengkun
The metal insulator transition in vanadates has been studied for decades and yet new discoveries still spring up revealing new physics, especially among two of the most studied members: Vanadium sesquioxide (V20 3) and Vanadium dioxide (VO2). Although subtleties abound, both of the materials have first order insulator to metal phase transitions that are considered to be related to strong electron-electron (e-e) correlation. Further, ultrafast spectroscopy of strongly correlated materials has generated great interest in the field given the potential to dynamically distinguish the difference between electronic (spin) response versus lattice responses due to the associated characteristic energy and time scales. In this thesis, I mainly focus on utilizing ultrafast optical and THz spectroscopy to study phase transition dynamics in high quality V20 3 and VO2 thin films epitaxially grown on different substrates. The main findings of the thesis are: (1) Despite the fact that the insulator to metal transition (IMT) in V203 is electron-correlation driven, lattice distortion plays an important role. Coherent oscillations in the far-infrared conductivity are observed resulting from coherent acoustic phonon modulation of the bandwidth W. The same order of lattice distortion induces less of an effect on the electron transport in VO2 in comparison to V203. This is directly related to the difference in latent heat of the phase transitions in VO2 and V203. (2) It is possible for the IMT to occur with very little structural change in epitaxial strained VO2 films, like in the case of Cr doped or strained V203. However, in V02, this necessitates a large strain which is only possible by clamping to a substrate with larger c axis parameter through epitaxial growth. This is demonstrated for VO 2 films on TiO2 substrates. (3) Initiating an ultrafast photo-induced insulator-to-metal transition (IMT) is not only possible with above bandgap excitation, but also possible with high-field far-infrared excitation. With the help of the field enhancement in metamaterial split ring resonator gaps, we obtain picosecond THz electric field transients of several MV/cm which is sufficient to drive the insulator to metal transition in V02.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, B.Z.; Zhou, S.L.; Wang, H.
2014-01-15
A series of compound with the nominal composition of Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6+δ} (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) were synthesized by the sol–gel method. Constituent phases and crystal structure of samples were analyzed by X-ray diffraction. It can be found that the Ca-doped Bi-2201 system was composed of Bi-2201 phase containing Ca and a small quantity of Bi{sub 16}(Sr,Ca){sub 14}O{sub 38}. For Bi-2201 unit cell containing Ca, chemical component and site preference of Ca atoms were characterized systematically by transmission electron microscopy. With the introduction of Ca atoms, Sr-sites have been occupiedmore » partially by Ca{sup 2+} in Bi-2201 unit cell, which leads to a decrease in the lattice parameters c and b of the Bi-2201 phase when the Ca-content x is below 0.6. Two types of new orthorhombic lattices are formed in the substitution. One is a lattice with space group Pma2 as the two nearest neighbor Sr-sites in the same Sr–O layer are occupied by Ca{sup 2+}. Its lattice parameters can be characterized as a = 5.402 Å, b = 5.313 Å and c = 24.272 Å, respectively. When two nearest Sr ions of the second neighboring Sr–O layers are replaced by Ca{sup 2+} ions, the lattice with the space group Pmn2{sub 1} can be formed. Its lattice parameters are close to that of the previous. The modulation vector is lying in the a*–c* plane in the two new orthorhombic lattices (Pma2 and Pmn2{sub 1}). Bi/Ca-2201 lattice (with Ca) and Bi-2201 lattice (without Ca) coexist in the same Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6}+{sub δ} grain, which can be described as an intergrowth structure.« less
Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu
2015-01-01
The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809
Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan
2016-07-06
Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.
Luo, Li-Shi
2011-10-01
In this Comment we reveal the falsehood of the claim that the lattice Bhatnagar-Gross-Krook (BGK) model "is capable of modeling shear-driven, pressure-driven, and mixed shear-pressure-driven rarified [sic] flows and heat transfer up to Kn=1 in the transitional regime" made in a recent paper [Ghazanfarian and Abbassi, Phys. Rev. E 82, 026307 (2010)]. In particular, we demonstrate that the so-called "Knudsen effects" described are merely numerical artifacts of the lattice BGK model and they are unphysical. Specifically, we show that the erroneous results for the pressure-driven flow in a microchannel imply the false and unphysical condition that 6σKn<-1, where Kn is the Knudsen number σ=(2-σ(v))/σ(v) and σ(v)∈(0,1] is the tangential momentum accommodation coefficient. We also show explicitly that the defects of the lattice BGK model can be completely removed by using the multiple-relaxation-time collision model.
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Interaction of charge carriers with lattice and molecular phonons in crystalline pentacene
NASA Astrophysics Data System (ADS)
Girlando, Alberto; Grisanti, Luca; Masino, Matteo; Brillante, Aldo; Della Valle, Raffaele G.; Venuti, Elisabetta
2011-08-01
The computational protocol we have developed for the calculation of local (Holstein) and non-local (Peierls) carrier-phonon coupling in molecular organic semiconductors is applied to both the low temperature and high temperature bulk crystalline phases of pentacene. The electronic structure is calculated by the semimpirical INDO/S (Intermediate Neglect of Differential Overlap with Spectroscopic parametrization) method. In the phonon description, the rigid molecule approximation is removed, allowing mixing of low-frequency intra-molecular modes with inter-molecular (lattice) phonons. A clear distinction remains between the low-frequency phonons, which essentially modulate the transfer integral from a molecule to another (Peierls coupling), and the high-frequency intra-molecular phonons, which modulate the on-site energy (Holstein coupling). The results of calculation agree well with the values extracted from experiment. The comparison with similar calculations made for rubrene allows us to discuss the implications for the current models of mobility.
Magnetism in S = 1 / 2 Double Perovskites with Strong Spin-Orbit Interactions
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroaki; Balents, Leon
2015-03-01
Motivated by recent studies on heavy-element double-perovskite (DP) compounds, we theoretically studied spin models on a FCC lattice with anisotropic interactions. In these systems, competition/cooperation of spin, orbital, and the lattice degrees of freedoms in the presence of the strong-spin orbit coupling is of particular interest. In a previous theoretical study, the magnetic phase diagrams of DP compounds with 5d1 electron configuration was studied using a model with four-fold degenerated single-ion state. On the other hand, a recent experiment on a DP material, Ba2Na2OsO6, reported that the compound is likely to be an effective S = 1 / 2 magnet. Inspired by the experimental observation, we considered spin models with symmetry-allowed anisotropic nearest-neighbor interactions. By a combination of various analytical and numerical techniques, we present the magnetic phase diagram of the model and the effect of thermal and quantum fluctuations. In particular, we show that fluctuations induce < 110 > anisotropy of magnetic moments. We also discuss a possible ``nematic'' phase driven by spin-phonon couplings.
Two-dimensional limit of crystalline order in perovskite membrane films
Hong, Seung Sae; Yu, Jung Ho; Lu, Di; Marshall, Ann F.; Hikita, Yasuyuki; Cui, Yi; Hwang, Harold Y.
2017-01-01
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO3 membrane lattice collapses below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. The transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices. PMID:29167822
Two-dimensional limit of crystalline order in perovskite membrane films
Hong, Seung Sae; Yu, Jung Ho; Lu, Di; ...
2017-11-17
Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less
Sun, Pengzhan; Wang, Yanlei; Liu, He; Wang, Kunlin; Wu, Dehai; Xu, Zhiping; Zhu, Hongwei
2014-01-01
A mild annealing procedure was recently proposed for the scalable enhancement of graphene oxide (GO) properties with the oxygen content preserved, which was demonstrated to be attributed to the thermally driven phase separation. In this work, the structure evolution of GO with mild annealing is closely investigated. It reveals that in addition to phase separation, the transformation of oxygen functionalities also occurs, which leads to the slight reduction of GO membranes and furthers the enhancement of GO properties. These results are further supported by the density functional theory based calculations. The results also show that the amount of chemically bonded oxygen atoms on graphene decreases gradually and we propose that the strongly physisorbed oxygen species constrained in the holes and vacancies on GO lattice might be responsible for the preserved oxygen content during the mild annealing procedure. The present experimental results and calculations indicate that both the diffusion and transformation of oxygen functional groups might play important roles in the scalable enhancement of GO properties. PMID:25372142
Complex modulation using tandem polarization modulators
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hall, Trevor
2017-11-01
A novel photonic technique for implementing frequency up-conversion or complex modulation is proposed. The proposed circuit consists of a sandwich of a quarter-wave plate between two polarization modulators, driven, respectively, by an in-phase and quadrature-phase signals. The operation of the circuit is modelled using a transmission matrix method. The theoretical prediction is then validated by simulation using an industry-standard software tool. The intrinsic conversion efficiency of the architecture is improved by 6 dB over a functionally equivalent design based on dual parallel Mach-Zehnder modulators. Non-ideal scenarios such as imperfect alignment of the optical components and power imbalances and phase errors in the electric drive signals are also analysed. As light travels, along one physical path, the proposed design can be implemented using discrete components with greater control of relative optical path length differences. The circuit can further be integrated in any material platform that offers electro-optic polarization modulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, J.; Sun, K.; Yin, W. -G.
The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here, we provide direct observations of the evolution of the superstructure in La 1/3Ca 2/3MnO 3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystalmore » (ELC) phases. Furthermore, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.« less
Statistical Transmutation in Floquet Driven Optical Lattices.
Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex
2015-11-06
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.
Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion
NASA Astrophysics Data System (ADS)
Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori
2018-05-01
We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.
Generation of dark solitons and their instability dynamics in two-dimensional condensates
NASA Astrophysics Data System (ADS)
Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish
2017-04-01
We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.
NASA Astrophysics Data System (ADS)
Cammarata, Antonio; Rondinelli, James
2012-02-01
Transition-metal oxides within the perovskite crystal family exhibit strong electron--electron correlation effects that coexist with complex structural distortions, leading to metal-insulator (MI) transitions. Using first-principles density functional calculations, we investigate the effects of cooperative octahedral rotations and dilations/contractions on the charge-ordering MI-transition in CaFeO3. By calculating the evolution in the lattice phonons, which describe the different octahedral distortions present in the low-symmetry monoclinic phase of CaFeO3 with increasing electron correlation, we show that the MI-transition results from a complex interplay between these modes and correlation effects. We combine this study with group theoretical tools to disentangle the electron--lattice interactions by computing the evolution in the low-energy electronic band structure with the lattice phonons, demonstrating the MI-transition in CaFeO3 proceeds through a symmetry-lowering transition driven by a cooperative three-dimensional octahedral dilation/contraction pattern. Finally, we suggest a possible route by which to control the charge ordering by fine-tuning the electron--lattice coupling.
Forbidden atomic transitions driven by an intensity-modulated laser trap.
Moore, Kaitlin R; Anderson, Sarah E; Raithel, Georg
2015-01-20
Spectroscopy is an essential tool in understanding and manipulating quantum systems, such as atoms and molecules. The model describing spectroscopy includes the multipole-field interaction, which leads to established spectroscopic selection rules, and an interaction that is quadratic in the field, which is not often employed. However, spectroscopy using the quadratic (ponderomotive) interaction promises two significant advantages over spectroscopy using the multipole-field interaction: flexible transition rules and vastly improved spatial addressability of the quantum system. Here we demonstrate ponderomotive spectroscopy by using optical-lattice-trapped Rydberg atoms, pulsating the lattice light and driving a microwave atomic transition that would otherwise be forbidden by established spectroscopic selection rules. This ability to measure frequencies of previously inaccessible transitions makes possible improved determinations of atomic characteristics and constants underlying physics. The spatial resolution of ponderomotive spectroscopy is orders of magnitude better than the transition frequency would suggest, promising single-site addressability in dense particle arrays for quantum computing applications.
Modulation of Polarization for Phase Extraction in Holographic Interferometry with Two References
NASA Astrophysics Data System (ADS)
Rodriguez-Zurita, G.; Vázquez-Castillo, J.-F.; Toto-Arellano, N.-I.; Meneses-Fabian, C.; Jiménez-Montero, L.-E.
2010-04-01
Heterodyne holographic interferometry allows high accuracy for phase-difference extraction between two wave fronts, especially when they are previously recorded in the same recording medium. In part, this is because the wave fronts can be affected by the recording process in a very similar way. The double reconstruction of a double-exposure hologram with two independent references results in a two-beam holographic interferometer with an arm conveying a wave modulated in frequency when using heterodyne techniques. The heterodyne frequency has been usually introduced with a plane mirror attached to a piezo-electric stack driven with a suitable variable power supply. For holographic interferometry, however, less attention has been devoted to alternative phase retrieval variants as, for example, phase-shifting with modulation of polarization or Fourier methods. In this work, we propose and demonstrate the basic capabilities of modulation of polarization performing as a phase-shifting technique for holographic interferometry with two references in a phase-stepping scheme. Experimental results are provided.
Response of the Higgs amplitude mode of superfluid Bose gases in a three-dimensional optical lattice
NASA Astrophysics Data System (ADS)
Nagao, Kazuma; Takahashi, Yoshiro; Danshita, Ippei
2018-04-01
We study the Higgs mode of superfluid Bose gases in a three-dimensional optical lattice, which emerges near the quantum phase transition to the Mott insulator at commensurate fillings. Specifically, we consider responses of the Higgs mode to temporal modulations of the onsite interaction and the hopping energy. In order to calculate the response functions including the effects of quantum and thermal fluctuations, we map the Bose-Hubbard model onto an effective pseudospin-1 model and use a perturbative expansion based on the imaginary-time Green's function theory. We also include the effects of an inhomogeneous trapping potential by means of a local density approximation. We find that the response function for the hopping modulation is equal to that for the interaction modulation within our approximation. At the unit filling rate and in the absence of a trapping potential, we show that the Higgs mode can exist as a sharp resonance peak in the dynamical susceptibilities at typical temperatures. However, the resonance peak is significantly broadened due to the trapping potential when the modulations are applied globally to the entire system. We suggest that the Higgs mode can be detected as a sharp resonance peak by partial modulations around the trap center.
Challenges and complexities of multifrequency atomic force microscopy in liquid environments
2014-01-01
Summary This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip–sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods. PMID:24778952
Characteristics of 5M modulated martensite in Ni-Mn-Ga magnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Ćakır, A.; Acet, M.; Righi, L.; Albertini, F.; Farle, M.
2015-09-01
The applicability of the magnetic shape memory effect in Ni-Mn-based martensitic Heusler alloys is closely related to the nature of the crystallographically modulated martensite phase in these materials. We study the properties of modulated phases as a function of temperature and composition in three magnetic shape memory alloys Ni49.8Mn25.0Ga25.2, Ni49.8Mn27.1Ga23.1 and Ni49.5Mn28.6Ga21.9. The effect of substituting Ga for Mn leads to an anisotropic expansion of the lattice, where the b-parameter of the 5M modulated structure increases and the a and c-parameters decrease with increasing Ga concentration. The modulation vector is found to be both temperature and composition dependent. The size of the modulation vector corresponds to an incommensurate structure for Ni49.8Mn25.0Ga25.2 at all temperatures. For the other samples the modulation is incommensurate at low temperatures but reaches a commensurate value of q ≈ 0.400 close to room temperature. The results show that commensurateness of the 5M modulated structure is a special case of incommensurate 5M at a particular temperature.
Phase Transitions and Scaling in Systems Far from Equilibrium
NASA Astrophysics Data System (ADS)
Täuber, Uwe C.
2017-03-01
Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.
Magnetoactive Acoustic Metamaterials.
Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming
2018-04-11
Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite
NASA Astrophysics Data System (ADS)
Pagounis, E.; Szczerba, M. J.; Chulist, R.; Laufenberg, M.
2015-10-01
We report the performance of a Ni-Mn-Ga single crystal with a seven-layered lattice modulation (14M martensite), demonstrating large actuation work output driven by an external magnetic field. A magnetic field-induced strain of 11.2%, a twinning stress of 0.64 MPa, and a magneto-crystalline anisotropy energy of 195 kJ/m3 are measured at room temperature, which exceed the best results reported in Ni-Mn-Ga 14M martensites. The produced magnetically induced work output of about 70 kJ/m3 makes the material attractive for actuator applications. Detailed XRD investigation reveals that the studied 14M martensite is stress-induced. With increasing compression stress, the stress-induced intermartensitic transformation sequence 10M → 14M → NM was demonstrated.
Theory of parametrically amplified electron-phonon superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babadi, Mehrtash; Knap, Michael; Martin, Ivar
2017-07-01
Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's functionmore » technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.« less
Tomita, Takafumi; Nakajima, Shuta; Danshita, Ippei; Takasu, Yosuke; Takahashi, Yoshiro
2017-01-01
Dissipation is ubiquitous in nature and plays a crucial role in quantum systems such as causing decoherence of quantum states. Recently, much attention has been paid to an intriguing possibility of dissipation as an efficient tool for the preparation and manipulation of quantum states. We report the realization of successful demonstration of a novel role of dissipation in a quantum phase transition using cold atoms. We realize an engineered dissipative Bose-Hubbard system by introducing a controllable strength of two-body inelastic collision via photoassociation for ultracold bosons in a three-dimensional optical lattice. In the dynamics subjected to a slow ramp-down of the optical lattice, we find that strong on-site dissipation favors the Mott insulating state: The melting of the Mott insulator is delayed, and the growth of the phase coherence is suppressed. The controllability of the dissipation is highlighted by quenching the dissipation, providing a novel method for investigating a quantum many-body state and its nonequilibrium dynamics. PMID:29291246
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun
2016-09-01
An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W. S.; Kung, Y. F.; Moritz, B.
We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Kinetic rate laws as derived from order parameter theory I: Theoretical concepts
NASA Astrophysics Data System (ADS)
Salje, Ekhard
1988-03-01
A theoretical concept is outlined, which links the kinetics of structural transformations with thermodynamic theories of structural phase transitions. Starting from Landau theory and Markovian processes, the general rate laws for crystals with long correlation lengths are derived. The rate laws in Ginzburg-Landau theory are 269_2004_Article_BF00311038_TeX2GIFE1.gif 1{text{n }}Δ Q - 1{text{n }}fleft( Q right) ∝ - t/tau {text{ for }}T ≪ T_c {text{ and }}T ≫ T_c and Q 2∝ for T ≈ T c . The physical meaning of the time constant τ and the correction term f( Q) are explained. Fluctuations of the order parameter lead to damping behaviour with explicit dependence on the wavelength of the fluctuation wave and modulation-dependent variations of the lattice strain. Lattice relaxations and activation processes are discussed. Typical rate laws are found to follow 269_2004_Article_BF00311038_TeX2GIFE2.gif begin{gathered} ln Δ Q = rlnΔ t, \\ lnQ/Q + {1\\varepsilon }/{2k_B T}left( {Q^2 - Q_0^2 } right) = {Δ t}/{tau *} \\ which leads for short time intervals to a linear rate law 269_2004_Article_BF00311038_TeX2GIFE3.gif Δ Q ∝ Δ t It is shown that linear terms in the Landau potential are equivalent to a logarithmic decay of the excess entropy Δ S ∝ ln Δ t which is also expected to be the dominant rate law in field-induced pseudo-spin glasses: 269_2004_Article_BF00311038_TeX2GIFE4.gif Δ Q ∝ 1{text{n }}Δ t{text{ and }}1{text{n}}left( {Δ {text{Q}} \\cdot Δ {text{t}}} right) = A{text{ }}Δ t + B Fluctuations lead to spatially heterogeneous distributions of the order parameter. A two phase field is found in this case where the nucleation energy is overcome by fluctuation processes. Random fields, arising, for example, from lattice imperfections, lead also to spacially inhomogeneous material. The dominant microstructure is the lattice modulation mostly in the form of a cross hatched pattern (tweed) but also in the form of incommensurate modulations.
Reward and attentional control in visual search.
Yantis, Steven; Anderson, Brian A; Wampler, Emma K; Laurent, Patryk A
2012-01-01
It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction--even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity.
Reward and Attentional Control in Visual Search
Anderson, Brian A.; Wampler, Emma K.; Laurent, Patryk A.
2015-01-01
It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction—even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity. PMID:23437631
Phase transitions in a system of hard Y-shaped particles on the triangular lattice
NASA Astrophysics Data System (ADS)
Mandal, Dipanjan; Nath, Trisha; Rajesh, R.
2018-03-01
We study the different phases and the phase transitions in a system of Y-shaped particles, examples of which include immunoglobulin-G and trinaphthylene molecules, on a triangular lattice interacting exclusively through excluded volume interactions. Each particle consists of a central site and three of its six nearest neighbors chosen alternately, such that there are two types of particles which are mirror images of each other. We study the equilibrium properties of the system using grand canonical Monte Carlo simulations that implement an algorithm with cluster moves that is able to equilibrate the system at densities close to full packing. We show that, with increasing density, the system undergoes two entropy-driven phase transitions with two broken-symmetry phases. At low densities, the system is in a disordered phase. As intermediate phases, there is a solidlike sublattice phase in which one type of particle is preferred over the other and the particles preferentially occupy one of four sublattices, thus breaking both particle symmetry as well as translational invariance. At even higher densities, the phase is a columnar phase, where the particle symmetry is restored, and the particles preferentially occupy even or odd rows along one of the three directions. This phase has translational order in only one direction, and breaks rotational invariance. From finite-size scaling, we demonstrate that both the transitions are first order in nature. We also show that the simpler system with only one type of particle undergoes a single discontinuous phase transition from a disordered phase to a solidlike sublattice phase with an increasing density of particles.
Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.
Bañas, Andrew; Palima, Darwin; Glückstad, Jesper
2012-04-23
We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection. © 2012 Optical Society of America
Topology-driven phase transitions in the classical monomer-dimer-loop model.
Li, Sazi; Li, Wei; Chen, Ziyu
2015-06-01
In this work, we investigate the classical loop models doped with monomers and dimers on a square lattice, whose partition function can be expressed as a tensor network (TN). In the thermodynamic limit, we use the boundary matrix product state technique to contract the partition function TN, and determine the thermodynamic properties with high accuracy. In this monomer-dimer-loop model, we find a second-order phase transition between a trivial monomer-condensation and a loop-condensation (LC) phase, which cannot be distinguished by any local order parameter, while nevertheless the two phases have distinct topological properties. In the LC phase, we find two degenerate dominating eigenvalues in the transfer-matrix spectrum, as well as a nonvanishing (nonlocal) string order parameter, both of which identify the topological ergodicity breaking in the LC phase and can serve as the order parameter for detecting the phase transitions.
Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Fangfei; Mulugeta Amare, Daniel; Tu, Weisong
Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Itsmore » formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.« less
Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping
Ming, Fangfei; Mulugeta Amare, Daniel; Tu, Weisong; ...
2017-03-07
Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Itsmore » formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.« less
Wang, Yonggang; Ying, Jianjun; Zhou, Zhengyang; Sun, Junliang; Wen, Ting; Zhou, Yannan; Li, Nana; Zhang, Qian; Han, Fei; Xiao, Yuming; Chow, Paul; Yang, Wenge; Struzhkin, Viktor V; Zhao, Yusheng; Mao, Ho-Kwang
2018-05-15
The discovery of iron-based superconductors (FeSCs), with the highest transition temperature (T c ) up to 55 K, has attracted worldwide research efforts over the past ten years. So far, all these FeSCs structurally adopt FeSe-type layers with a square iron lattice and superconductivity can be generated by either chemical doping or external pressure. Herein, we report the observation of superconductivity in an iron-based honeycomb lattice via pressure-driven spin-crossover. Under compression, the layered FePX 3 (X = S, Se) simultaneously undergo large in-plane lattice collapses, abrupt spin-crossovers, and insulator-metal transitions. Superconductivity emerges in FePSe 3 along with the structural transition and vanishing of magnetic moment with a starting T c ~ 2.5 K at 9.0 GPa and the maximum T c ~ 5.5 K around 30 GPa. The discovery of superconductivity in iron-based honeycomb lattice provides a demonstration for the pursuit of transition-metal-based superconductors via pressure-driven spin-crossover.
Ku, Yuen-Ching; Chan, Chun-Kit; Chen, Lian-Kuan
2007-06-15
We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique using a phase-modulator-embedded fiber loop mirror. This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The measurement errors are less than 0.5 dB for an OSNR between 0 and 40 dB in a 10 Gbit/s non-return-to-zero system. This technique was also shown experimentally to have high robustness against various system impairments and high feasibility to be deployed in practical implementation.
Damping-free collective oscillations of a driven two-component Bose gas in optical lattices
NASA Astrophysics Data System (ADS)
Shchedrin, Gavriil; Jaschke, Daniel; Carr, Lincoln D.
2018-04-01
We explore the quantum many-body physics of a driven Bose-Einstein condensate in optical lattices. The laser field induces a gap in the generalized Bogoliubov spectrum proportional to the effective Rabi frequency. The lowest-lying modes in a driven condensate are characterized by zero group velocity and nonzero current. Thus, the laser field induces roton modes, which carry interaction in a driven condensate. We show that collective excitations below the energy of the laser-induced gap remain undamped, while above the gap they are characterized by a significantly suppressed Landau damping rate.
Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions
NASA Astrophysics Data System (ADS)
Tasios, Nikos; Samin, Sela; van Roij, René; Dijkstra, Marjolein
2017-11-01
We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a spatially modulated solvent composition, in which the ions partition between water-rich and water-poor regions according to their affinity. In addition to the recently observed lamellar phase, we find tubular and droplet phases, reminiscent of those found in block copolymers and surfactant systems. Interestingly, these structures stem from ion-mediated interactions, which allows for tuning of the phase behavior via the concentrations, the ionic properties, and the temperature.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
Lee, W. S.; Kung, Y. F.; Moritz, B.; ...
2017-03-13
Here, we investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W. S.; Kung, Y. F.; Moritz, B.
Here, we investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
NASA Astrophysics Data System (ADS)
Vinayagam, P. S.; Radha, R.; Al Khawaja, U.; Ling, Liming
2018-06-01
We investigate generalized nonlocal coupled nonlinear Schorödinger equation containing Self-Phase Modulation, Cross-Phase Modulation and four wave mixing involving nonlocal interaction. By means of Darboux transformation we obtained a family of exact breathers and solitons including the Peregrine soliton, Kuznetsov-Ma breather, Akhmediev breather along with all kinds of soliton-soliton and breather-soltion interactions. We analyze and emphasize the impact of the four-wave mixing on the nature and interaction of the solutions. We found that the presence of four wave mixing converts a two-soliton solution into an Akhmediev breather. In particular, the inclusion of four wave mixing results in the generation of a new solutions which is spatially and temporally periodic called "Soliton (Breather) lattice".
Frequency chirped light at large detuning with an injection-locked diode laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, K.; Disla, M.; Dellatto, J.
2015-04-15
We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (∼100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ∼6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generatemore » a 1 GHz frequency chirp in 5 ns.« less
Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers
Yadav, S. K.; Wang, J.; Liu, X. -Y.
2016-06-13
An unusual growth mechanism of metastable zincblende AlN thin film by diffusion of nitrogen atoms into Al lattice is established. Using first-principles density functional theory, we studied the possibility of thermodynamic stability of AlN as a zincblende phase due to epitaxial strains and interface effect, which fails to explain the formation of zincblende AlN. We then compared the formation energetics of rocksalt and zincblende AlN in fcc Al through direct diffusion of nitrogen atoms to Al octahedral and tetrahedral interstitials. Furthermore, the formation of a zincblende AlN thin film is determined to be a kinetically driven process, not a thermodynamicallymore » driven process.« less
Low-Frequency Raman Modes of 2H-TaSe2 in the Charge Density Wave Phase
NASA Astrophysics Data System (ADS)
Chowdhury, Sugata; Simpson, J.; Einstein, T. L.; Hight Walker, A. R.; Theoretical Collaboration
With changes in temperatures, tantalum diselenide (2H-TaSe2) , a layered, transition metal chalcogenides (TMD) exhibits unique super-lattice structures. The metallic ground state changes to an incommensurate charge density wave (CDW) state at 122?K followed by a commensurate CDW state at 90?K, and eventually a superconducting state 0.14 K. These phase transitions are driven by strong electron-phonon coupling and favored by the particular form of the Fermi surface of these systems. Here we theoretically studied the structural origin of low-frequency Raman modes of bulk 2H-TaSe2\\ in the CDW phases. Our calculations reveal that changes observed in the Raman modes are associated with the thermal expansion in the basal plane of 2H-TaSe2. The Grüneisen parameters of these two Raman modes increase in the CDW phases. Changes in the lattice parameter ``a'' are large compared to ``c'' which induces strain along the a-axis. We compared our results with experimental data which show low-frequency Raman phonon modes are very sensitive to temperature and are not observed in the metallic room-temperature state. In addition, we found that cation displacement is more than anion in CDW phase. Our results may shed more light on exact nature of the CDW instability and optical properties in this system.
NASA Astrophysics Data System (ADS)
Osipov, Vladimir Al.; Pullerits, Tõnu
2017-10-01
Application of the phase-modulated pulsed light for advance spectroscopic measurements is the area of growing interest. The phase modulation of the light causes modulation of the signal. Separation of the spectral components of the modulations allows to distinguish the contributions of various interaction pathways. The lasers with high repetition rate used in such experiments can lead to appearance of the accumulation effects, which become especially pronounced in systems with long-living excited states. Recently it was shown that such accumulation effects can be used to evaluate parameters of the dynamical processes in the material. In this work we demonstrate that the accumulation effects are also important in the quantum characteristics measurements provided by modulation spectroscopy. In particular, we consider a model of quantum two-level system driven by a train of phase-modulated light pulses, organized in analogy with the two-dimensional spectroscopy experiments. We evaluate the harmonics' amplitudes in the fluorescent signal and calculate corrections appearing from the accumulation effects. We show that the corrections can be significant and have to be taken into account at analysis of experimental data.
Dynamic behavior of the interface of striplike structures in driven lattice gases
NASA Astrophysics Data System (ADS)
Saracco, Gustavo P.; Albano, Ezequiel V.
2008-09-01
In this work, the dynamic behavior of the interfaces in both the standard and random driven lattice gas models (DLG and RDLG, respectively) is investigated via numerical Monte Carlo simulations in two dimensions. These models consider a lattice gas of density ρ=1/2 with nearest-neighbor attractive interactions between particles under the influence of an external driven field applied along one fixed direction in the case of the DLG model, and a randomly varying direction in the case of the RDLG model. The systems are also in contact with a reservoir at temperature T . Those systems undergo a second-order nonequilibrium phase transition between an ordered state characterized by high-density strips crossing the sample along the driving field, and a quasilattice gas disordered state. For T≲Tc , the average interface width of the strips (W) was measured as a function of the lattice size and the anisotropic shape factor. It was found that the saturation value Wsat2 only depends on the lattice size parallel to the external field axis Ly and exhibits two distinct regimes: Wsat2∝lnLy for low temperatures, that crosses over to Wsat2∝Ly2αI near the critical zone, αI=1/2 being the roughness exponent of the interface. By using the relationship αI=1/(1+ΔI) , the anisotropic exponent for the interface of the DLG model was estimated, giving ΔI≃1 , in agreement with the computed value for anisotropic bulk exponent ΔB in a recently proposed theoretical approach. At the crossover region between both regimes, we observed indications of bulk criticality. The time evolution of W at Tc was also monitored and shows two growing stages: first one observes that W∝lnt for several decades, and in the following times one has W∝tβI , where βI is the dynamic exponent of the interface width. By using this value we estimated the dynamic critical exponent of the correlation length in the perpendicular direction to the external field, giving z⊥I≈4 , which is consistent with the dynamic exponent of the bulk critical transition z⊥B in both theoretical approaches developed for the standard model. A similar scenario was also observed in the RDLG model, suggesting that both models may belong to the same universality class.
Ghaani, Mohammad Reza; English, Niall J
2018-03-21
Equilibrium and non-equilibrium molecular-dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar propane-hydrate interfaces in contact with liquid water over the 260-320 K range. Two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water, for comparison: a 001-direct surface cleavage and one with completed cages. Statistically significant differences in melting temperatures and initial break-up rates were observed between both interface types. Dissociation rates were observed to be strongly dependent on temperature, with higher rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model, developed previously, was applied to fit the observed dissociation profiles, and this helps us to identify clearly two distinct hydrate-decomposition régimes; following a highly temperature-dependent break-up phase, a second well-defined stage is essentially independent of temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. Further equilibrium MD-analysis of the two-phase systems at their melting point, with consideration of the relaxation times gleaned from the auto-correlation functions of fluctuations in a number of enclathrated guest molecules, led to statistically significant differences between the two surface-termination cases; a consistent correlation emerged in both cases between the underlying, non-equilibrium, thermal-driven dissociation rates sampled directly from melting with that from an equilibrium-MD fluctuation-dissipation approach.
NASA Astrophysics Data System (ADS)
Ghaani, Mohammad Reza; English, Niall J.
2018-03-01
Equilibrium and non-equilibrium molecular-dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar propane-hydrate interfaces in contact with liquid water over the 260-320 K range. Two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water, for comparison: a 001-direct surface cleavage and one with completed cages. Statistically significant differences in melting temperatures and initial break-up rates were observed between both interface types. Dissociation rates were observed to be strongly dependent on temperature, with higher rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model, developed previously, was applied to fit the observed dissociation profiles, and this helps us to identify clearly two distinct hydrate-decomposition régimes; following a highly temperature-dependent break-up phase, a second well-defined stage is essentially independent of temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. Further equilibrium MD-analysis of the two-phase systems at their melting point, with consideration of the relaxation times gleaned from the auto-correlation functions of fluctuations in a number of enclathrated guest molecules, led to statistically significant differences between the two surface-termination cases; a consistent correlation emerged in both cases between the underlying, non-equilibrium, thermal-driven dissociation rates sampled directly from melting with that from an equilibrium-MD fluctuation-dissipation approach.
Averaged variational principle for autoresonant Bernstein-Greene-Kruskal modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khain, P.; Friedland, L.
2010-10-15
Whitham's averaged variational principle is applied in studying dynamics of formation of autoresonant (continuously phase-locked) Bernstein-Greene-Kruskal (BGK) modes in a plasma driven by a chirped frequency ponderomotive wave. A flat-top electron velocity distribution is used as a model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable yields evolution equations for the slow field variables, allows uniform description of all stages of excitation of driven-chirped BGK modes, and predicts modulational stability of these nonlinear phase-space structures. Numerical solutions of the system of slow variational equations are in good agreement with Vlasov-Poissonmore » simulations.« less
Rotation-limited growth of three-dimensional body-centered-cubic crystals
NASA Astrophysics Data System (ADS)
Tarp, Jens M.; Mathiesen, Joachim
2015-07-01
According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25 . The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.
Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator-metal transition
Zhu, M.; Peng, J.; Zou, T.; ...
2016-05-25
Here, we present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca 3Ru 2O 7. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to searchmore » for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.« less
Rectangular QPSK for generation of optical eight-ary phase-shift keying.
Lu, Guo-Wei; Sakamoto, Takahide; Kawanishi, Tetsuya
2011-09-12
Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R-QPSK is proposed for the first time and applied to optical eight-ary phase-shift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution.
Wu, D.; Zhao, L. -D.; Tong, X.; ...
2015-05-19
Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe) 1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM)more » observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.« less
Control dynamics of interaction quenched ultracold bosons in periodically driven lattices
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team
2016-05-01
The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Kinesin expands and stabilizes the GDP-microtubule lattice
NASA Astrophysics Data System (ADS)
Peet, Daniel R.; Burroughs, Nigel J.; Cross, Robert A.
2018-05-01
Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering1. Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro2,3 and in vivo4, but the results are conflicting5-7 and the mechanisms are unclear. Here, we report a new dimension to the kinesin-microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by 1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track.
Confinement-Driven Phase Separation of Quantum Liquid Mixtures
NASA Astrophysics Data System (ADS)
Prisk, T. R.; Pantalei, C.; Kaiser, H.; Sokol, P. E.
2012-08-01
We report small-angle neutron scattering studies of liquid helium mixtures confined in Mobil Crystalline Material-41 (MCM-41), a porous silica glass with narrow cylindrical nanopores (d=3.4nm). MCM-41 is an ideal model adsorbent for fundamental studies of gas sorption in porous media because its monodisperse pores are arranged in a 2D triangular lattice. The small-angle scattering consists of a series of diffraction peaks whose intensities are determined by how the imbibed liquid fills the pores. Pure He4 adsorbed in the pores show classic, layer-by-layer film growth as a function of pore filling, leaving the long range symmetry of the system intact. In contrast, the adsorption of He3-He4 mixtures produces a structure incommensurate with the pore lattice. Neither capillary condensation nor preferential adsorption of one helium isotope to the pore walls can provide the symmetry-breaking mechanism. The scattering is consistent with the formation of randomly distributed liquid-liquid microdomains ˜2.3nm in size, providing evidence that confinement in a nanometer scale capillary can drive local phase separation in quantum liquid mixtures.
Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model
NASA Astrophysics Data System (ADS)
Kaczmarczyk, J.; Weimer, H.; Lemeshko, M.
2016-09-01
The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a potential for explaining the mystery of high-temperature superconductivity. Recent progress in ultracold atoms in optical lattices has paved the way to studying the model’s phase diagram using the tools of quantum simulation, which emerged as a promising alternative to the numerical calculations plagued by the infamous sign problem. However, the temperatures achieved using elaborate laser cooling protocols so far have been too high to show the appearance of antiferromagnetic (AF) and superconducting quantum phases directly. In this work, we demonstrate that using the machinery of dissipative quantum state engineering, one can observe the emergence of the AF order in the Fermi-Hubbard model with fermions in optical lattices. The core of the approach is to add incoherent laser scattering in such a way that the AF state emerges as the dark state of the driven-dissipative dynamics. The proposed controlled dissipation channels described in this work are straightforward to add to already existing experimental setups.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
Four-dimensional modulation and coding: An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.
1983-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. "Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-d modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
Four-dimensional modulation and coding - An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.; Srinath, N. K.
1984-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. 'Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-D modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework.
Hill, Joshua A; Christensen, Kirsten E; Goodwin, Andrew L
2017-09-15
Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt_{4}]Ag_{3}(CN)_{4}. We demonstrate the transition to involve spontaneous resolution of chiral [NEt_{4}]^{+} conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO_{2}, we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q=[0,0,q_{z}]^{*}. The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.
Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework
NASA Astrophysics Data System (ADS)
Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.
2017-09-01
Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.
A neutron diffraction study of the magnetic phases of CsCuCl3 for in-plane fields up to 17 T
NASA Astrophysics Data System (ADS)
Stüßer, N.; Schotte, U.; Hoser, A.; Meschke, M.; Meißner, M.; Wosnitza, J.
2002-05-01
Neutron diffraction investigations have been performed to study the magnetization process of CsCuCl3 with the magnetic field aligned within the ab-plane. In zero field the stacked, triangular-lattice antiferromagnet (TLA) CsCuCl3 has a helical structure incommensurate in the chain direction normal to the ab-plane. The magnetic phase diagram was investigated from 2 K up to TN in fields up to 17 T. The phase line for the expected incommensurate-commensurate (IC-C) phase transition could be determined throughout the whole phase diagram. At low temperature the IC-C transition is roughly at half the saturation field HS. The neutron diffraction patterns were found to be well described by a sinusoidally modulated spiral in fields up to HS/3. The initial increase of the scattering intensity in rising field indicates a continuous reduction of the spin frustration on the triangular lattice. Between HS/3 and HS/2 a new phase occurs where the spiral vector has a plateau in its field dependence. Close to the IC-C transition a growing asymmetry of magnetic satellite-peak intensities indicates domain effects which are related to the lifting of the chiral degeneracy in the ab-plane in rising field. The phase diagram obtained has some similarities with those calculated for stacked TLAs by considering the effects of quantum and thermal fluctuations.
Redistributing Chern numbers and quantum Hall transitions in multi-band lattices
NASA Astrophysics Data System (ADS)
Yu, H. L.; Zhai, Z. Y.; Jiang, C.
2018-07-01
We numerically study the integer quantum Hall effect (IQHE) on m-band lattices. With continuous modulating the next-nearest-neighbor hopping integral t' , it is found that the full band is divided into 2 m - 1 regions. There are m - 1 critical regions with pseudogaps induced by the merging between the two adjacent subbands, where both Chern numbers of the correlating Landau subbands and the corresponding Hall plateau are not well-defined. The other m regions with different well-defined Chern numbers are separated by the above m - 1 critical regions. Due to the redistributing Chern numbers of system induced by the merging of subbands, the Hall conductance exhibits a peculiar phase transition, which is characterized by the direct change of Hall plateau state.
An analog of photon-assisted tunneling in a periodically modulated waveguide array
Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying
2016-01-01
We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189
Segundo, J P; Vibert, J F; Stiber, M
1998-11-01
Codings involving spike trains at synapses with inhibitory postsynaptic potentials on pacemakers were examined in crayfish stretch receptor organs by modulating presynaptic instantaneous rates periodically (triangles or sines; frequencies, slopes and depths under, respectively, 5.0 Hz, 40.0/s/s and 25.0/s). Timings were described by interspike and cross-intervals ("phases"); patterns (dispersions, sequences) and forms (timing classes) were identified using pooled graphs (instant along the cycle when a spike occurs vs preceding interval) and return maps (plots of successive intervals). A remarkable heterogeneity of postsynaptic intervals and phases characterizes each modulation. All cycles separate into the same portions: each contains a particular form and switches abruptly to the next. Forms differ in irregularity and predictability: they are (see text) "p:q alternations", "intermittent", "phase walk-throughs", "messy erratic" and "messy stammering". Postsynaptic cycles are asymmetric (hysteresis). This contrasts with the presynaptic homogeneity, smoothness and symmetry. All control parameters are, individually and jointly, strongly influential. Presynaptic slopes, say, act through a postsynaptic sensitivity to their magnitude and sign; when increasing, hysteresis augments and forms change or disappear. Appropriate noise attenuates between-train contrasts, providing modulations are under 0.5 Hz. Postsynaptic natural intervals impose critical time bases, separating presynaptic intervals (around, above or below them) with dissimilar consequences. Coding rules are numerous and have restricted domains; generalizations are misleading. Modulation-driven forms are trendy pacemaker-driven forms. However, dissimilarities, slight when patterns are almost pacemaker, increase as inhibition departs from pacemaker and incorporate unpredictable features. Physiological significance-(1) Pacemaker-driven forms, simple and ubiquitous, appear to be elementary building blocks of synaptic codings, present always but in each case distorted typically. (2) Synapses are prototype: similar behaviours should be widespread, and networks simulations benefit by nonlinear units generating all forms. (3) Relevant to periodic functions are that few variables need be involved in form selection, that distortions are susceptible to noise levels and, if periods are heterogeneous, that simple input cycles impose heterogeneous outputs. (4) Slow Na inactivations are necessary for obtaining complex forms and hysteresis. Formal significance--(1) Pacemaker-driven forms and presumably their modulation-driven counterparts, pertain to universal periodic, intermittent, quasiperiodic and chaotic categories whose formal properties carry physiological connotations. (2) Only relatively elaborate, nonlinear geometric models show all forms; simpler ones, show only alternations and walk-throughs. (3) Bifurcations resemble those of simple maps that can provide useful guidelines. (4) Heterogeneity poses the unanswered question of whether or not the entire cycle and all portions have the same behaviours: therefore, whether trajectories are continuous or have discontinuities and/or singular points.
Turneaure, Stefan J.; Sinclair, N.; Gupta, Y. M.
2016-07-20
Experimental determination of atomistic mechanisms linking crystal structures during a compression driven solid-solid phase transformation is a long standing and challenging scientific objective. Also, when using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. Furthermore, this approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes.
Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.
Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G
2013-01-04
We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2011-07-01
We present a phase fluctuation calibration method for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method uses a low-voltage broadband polarization modulator driven by a synchronized sinusoidal burst waveform rather than an asynchronous waveform, together with the removal of the global phases of the measured Jones matrices by the use of matrix normalization. This makes it possible to average the measured Jones matrices to remove the artifact due to the speckle noise of the signal in the sample without introducing auxiliary optical components into the sample arm. This method was validated on measurements of an equine tendon sample by the PS-SS-OCT system.
NASA Astrophysics Data System (ADS)
Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.
2018-01-01
We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.
Phase separation and large deviations of lattice active matter
NASA Astrophysics Data System (ADS)
Whitelam, Stephen; Klymko, Katherine; Mandal, Dibyendu
2018-04-01
Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.
Field alignment of bent-core smectic liquid crystals for analog optical phase modulation
NASA Astrophysics Data System (ADS)
Shen, Y.; Goodhew, L.; Shao, R.; Moran, M.; Korblova, E.; Walba, D. M.; Clark, N. A.; Maclennan, J. E.; Rudquist, P.
2015-05-01
A general method for aligning bent-core smectic liquid crystal materials is described. Alternating electric fields between interdigitated electrodes patterned on one cell surface create torques on the liquid crystal that result in uniform "bookshelf" orientation of the smectic layers. The aligned cell can then be driven in the conventional way by applying an electric field between all of the stripe electrodes connected together and a monolithic electrode on the other cell surface. Fast, analog, optical phase-only modulation is demonstrated in a device containing a polar, bent-core SmAPF material aligned using this technique.
NASA Astrophysics Data System (ADS)
Wu, Tonggen; Ma, Jianxin
2017-12-01
This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.
Prediction of binary nanoparticle superlattices from soft potentials
Horst, Nathan; Travesset, Alex
2016-01-07
Driven by the hypothesis that a sufficiently continuous short-ranged potential is able to account for shell flexibility and phonon modes and therefore provides a more realistic description of nanoparticle interactions than a hard sphere model, we compute the solid phase diagram of particles of different radii interacting with an inverse power law potential. From a pool of 24 candidate lattices, the free energy is optimized with respect to additional internal parameters and the p-exponent, determining the short-range properties of the potential, is varied between p = 12 and p = 6. The phase diagrams contain the phases found in ongoingmore » self-assembly experiments, including DNA programmable self-assembly and nanoparticles with capping ligands assembled by evaporation from an organic solvent. Thus, the resulting phase diagrams can be mapped quantitatively to existing experiments as a function of only two parameters: Nanoparticle radius ratio (γ) and softness asymmetry.« less
Prediction of Binary Nanoparticle Superlattices from Soft Potentials
NASA Astrophysics Data System (ADS)
Horst, Nathan; Travesset, Alex
Driven by the hypothesis that a sufficiently continuous short-ranged potential is able to account for shell flexibility and phonon modes and therefore provides a more realistic description of nanoparticle interactions than a hard sphere model, we compute the solid phase diagram of particles of different radii interacting with an inverse power law potential. We explore 24 candidate lattices where the p-exponent, determining the short-range properties of the potential, is varied between p=12 and p=6, and optimize the free energy with respect to additional internal parameters. The phase diagrams contain the phases found in ongoing self-assembly experiments, including DNA programmable self-assembly and nanoparticles with capping ligands assembled by evaporation from an organic solvent. The resulting phase diagrams can be mapped quantitatively to existing experiments as a function of only two parameters: nanoparticle radius ratio (γ) and softness asymmetry (SA). Supported by DOE under Contract Number DE-AC02-07CH11358.
Prediction of binary nanoparticle superlattices from soft potentials
NASA Astrophysics Data System (ADS)
Horst, Nathan; Travesset, Alex
2016-01-01
Driven by the hypothesis that a sufficiently continuous short-ranged potential is able to account for shell flexibility and phonon modes and therefore provides a more realistic description of nanoparticle interactions than a hard sphere model, we compute the solid phase diagram of particles of different radii interacting with an inverse power law potential. From a pool of 24 candidate lattices, the free energy is optimized with respect to additional internal parameters and the p-exponent, determining the short-range properties of the potential, is varied between p = 12 and p = 6. The phase diagrams contain the phases found in ongoing self-assembly experiments, including DNA programmable self-assembly and nanoparticles with capping ligands assembled by evaporation from an organic solvent. The resulting phase diagrams can be mapped quantitatively to existing experiments as a function of only two parameters: Nanoparticle radius ratio (γ) and softness asymmetry.
Hunt, Sarah J; Cliffe, Matthew J; Hill, Joshua A; Cairns, Andrew B; Funnell, Nicholas P; Goodwin, Andrew L
2015-01-14
The metal-organic framework copper(i) tricyanomethanide, Cu(tcm), undergoes a ferroelastic transition on cooling below T f = 240 K. Thermal expansion measurements reveal an order-of-magnitude variation in framework flexibility across T f . The low-temperature phase α-Cu(tcm) exhibits colossal positive and negative thermal expansion that is the strongest ever reported for a framework material. On exposure to acetonitrile, Cu(tcm) undergoes a reconstructive solid-phase transition to acetonitrilocopper(i) tricyanomethanide. This transition can be reversed by heating under vacuum. Infrared spectroscopy measurements are sensitive to the phase change, suggesting that Cu(tcm) may find application in solid-phase acetonitrile sensing.
Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate
Reichhardt, Charles; Reichhardt, Cynthia Jane
2016-09-13
Here we numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinalmore » to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. Lastly, we map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.« less
Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Reichhardt, C. J. Olson
2016-09-01
We numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinal to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. We map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.
Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung
2016-04-21
A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.
Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opačić, M.; Lazarević, N.; Šćepanović, M.
2015-11-16
Polarized Raman scattering spectra of superconducting K xFe 2-ySe 2 and nonsuperconducting K 0.8Fe 1.8Co 0.2Se 2 single crystals were measured in a temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in frequency range from 150 to 325 cm -1 in both compounds, suggesting that K 0.8Fe 1.8Co 0.2Se 2 single crystal also has two-phase nature. Temperature dependence of Raman mode energy is analyzed in terms of lattice thermal expansion and phonon-phonon interaction. Temperature dependence of Raman mode linewidth is considered as temperature-inducedmore » anharmonic effects. It is shown that change of Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. Abrupt change of the A 1g mode energy near T C was observed in K xFe 2-ySe 2 , whereas it is absent in K 0.8Fe 1.8Co 0.2Se 2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below critical temperature.« less
Emergent dynamic structures and statistical law in spherical lattice gas automata.
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Emergent dynamic structures and statistical law in spherical lattice gas automata
NASA Astrophysics Data System (ADS)
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Multiple-Relaxation-Time Lattice Boltzmann Models in 3D
NASA Technical Reports Server (NTRS)
dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.
The Hydric Effect in Inorganic Nanomaterials for Nanoelectronics and Energy Applications.
Sun, Xu; Guo, Yuqiao; Wu, Changzheng; Xie, Yi
2015-07-08
Protons, as one of the world's smallest ions, are able to trigger the charge effect without obvious lattice expansion inside inorganic materials, offering a unique and important test-bed for controlling their diverse functionalities. Arising from the high chemical reactivity of hydrogen (easily losing an electron) with various main group anions (easily accepting a proton), the hydric effect provides a convenient and environmentally benign route to bring about fascinating new physicochemical properties, as well as to create new inorganic structures based on the "old lattice" without dramatically destroying the pristine structure, covering most inorganic materials. Moreover, hydrogen atoms tend to bond with anions or to produce intrinsic defects, both of which are expected to inject extra electrons into lattice framework, promising advances in control of bandgap, spin behavior, and carrier concentration, which determine functionality for wide applications. In this review article, recently developed effective hydric strategies are highlighted, which include the conventional hydric reaction under high temperature or room temperature, proton irradiation or hydrogen plasma treatment, and gate-electrolyte-driven adsorption or doping. The diverse physicochemical properties brought by the hydric effect via modulation of the intrinsic electronic structure are also summarized, finding wide applications in nanoelectronics, energy applications, and catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hasan, Mehedi; Hall, Trevor
2015-11-01
A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.
Zhu, Wei; Sheng, D. N.; Zhu, Jian -Xin
2017-08-14
Here, we study the magnetic field-driven metal-to-insulator transition in half-filled Hubbard model on the Bethe lattice, using the dynamical mean-field theory by solving the quantum impurity problem with density-matrix renormalization group algorithm. The method enables us to obtain a high-resolution spectral densities in the presence of a magnetic field. It is found that the Kondo resonance at the Fermi level splits at relatively high magnetic field: the spin-up and -down components move away from the Fermi level and finally form a spin-polarized band insulator. By calculating the magnetization and spin susceptibility, we clarify that an applied magnetic field drives amore » transition from a paramagnetic metallic phase to a band insulating phase. In the weak interaction regime, the nature of the transition is continuous and captured by the Stoner's description, while in the strong interaction regime the transition is very likely to be metamagnetic, evidenced by the hysteresis curve. Furthermore, we determine the phase boundary by tracking the kink in the magnetic susceptibility, and the steplike change of the entanglement entropy and the entanglement gap closing. Interestingly, the phase boundaries determined from these two different ways are largely consistent with each other.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Wei; Sheng, D. N.; Zhu, Jian -Xin
Here, we study the magnetic field-driven metal-to-insulator transition in half-filled Hubbard model on the Bethe lattice, using the dynamical mean-field theory by solving the quantum impurity problem with density-matrix renormalization group algorithm. The method enables us to obtain a high-resolution spectral densities in the presence of a magnetic field. It is found that the Kondo resonance at the Fermi level splits at relatively high magnetic field: the spin-up and -down components move away from the Fermi level and finally form a spin-polarized band insulator. By calculating the magnetization and spin susceptibility, we clarify that an applied magnetic field drives amore » transition from a paramagnetic metallic phase to a band insulating phase. In the weak interaction regime, the nature of the transition is continuous and captured by the Stoner's description, while in the strong interaction regime the transition is very likely to be metamagnetic, evidenced by the hysteresis curve. Furthermore, we determine the phase boundary by tracking the kink in the magnetic susceptibility, and the steplike change of the entanglement entropy and the entanglement gap closing. Interestingly, the phase boundaries determined from these two different ways are largely consistent with each other.« less
X-cube model on generic lattices: Fracton phases and geometric order
NASA Astrophysics Data System (ADS)
Slagle, Kevin; Kim, Yong Baek
2018-04-01
Fracton order is a new kind of quantum order characterized by topological excitations that exhibit remarkable mobility restrictions and a robust ground-state degeneracy (GSD) which can increase exponentially with system size. In this paper, we present a generic lattice construction (in three dimensions) for a generalized X-cube model of fracton order, where the mobility restrictions of the subdimensional particles inherit the geometry of the lattice. This helps explain a previous result that lattice curvature can produce a robust GSD, even on a manifold with trivial topology. We provide explicit examples to show that the (zero-temperature) phase of matter is sensitive to the lattice geometry. In one example, the lattice geometry confines the dimension-1 particles to small loops, which allows the fractons to be fully mobile charges, and the resulting phase is equivalent to (3+1)-dimensional toric code. However, the phase is sensitive to more than just lattice curvature; different lattices without curvature (e.g., cubic or stacked kagome lattices) also result in different phases of matter, which are separated by phase transitions. Unintuitively, however, according to a previous definition of phase [X. Chen et al., Phys. Rev. B 82, 155138 (2010), 10.1103/PhysRevB.82.155138], even just a rotated or rescaled cubic results in different phases of matter, which motivates us to propose a coarser definition of phase for gapped ground states and fracton order. This equivalence relation between ground states is given by the composition of a local unitary transformation and a quasi-isometry (which can rotate and rescale the lattice); equivalently, ground states are in the same phase if they can be adiabatically connected by varying both the Hamiltonian and the positions of the degrees of freedom (via a quasi-isometry). In light of the importance of geometry, we further propose that fracton orders should be regarded as a geometric order.
Quantum phase transition in strongly correlated systems
NASA Astrophysics Data System (ADS)
Jiang, Longhua
In this thesis, we investigated the strongly correlated phenomena in bilayer quantum Hall effect, inhomogeneous superconductivity and Boson Hubbard model. Bilayer quantum Hall system is studied in chapter 2. By using the Composite Boson (CB) theory developed by J. Ye, we derive the ground state, quasihole and a quasihole-pair wave functions from the CB theory and its dual action. We find that the ground state wave function is the product of two parts, one in the charge sector which is the well known Halperin's (111) wave function and the other in the spin sector which is non-trivial at any finite d due to the gapless mode. So the total groundstate wave function differs from the well known (111) wave function at any finite d. In addition to commonly known multiplicative factors, the quasihole and quasihole-pair wave functions also contain non-trivial normalization factors multiplying the correct ground state wave function. Then we continue to study the quantum phase transition from the excitonic superfluid (ESF) to a possible pseudo-spin density wave (PSDW) at some intermediate distances driven by the magneto-roton minimum collapsing at a finite wavevector. We analyze the properties of the PSDW and explicitly show that a square lattice is the favored lattice. We suggest that correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature-dependent drag, consistent with the experimental data. Comparisons with previous microscopic numerical calculations are made. Further experimental implications are given. In chapter 3, we investigate inhomogeneous superconductivity. Starting from the Ginzburg-Landau free energy describing the normal state to Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state transition, we evaluate the free energy of seven most common lattice structures: stripe, square, triangular, Simple Cubic (SC), Face centered Cubic (FCC), Body centered Cubic (BCC) and Quasicrystal (QC). We find that the stripe phase, which is the original LO state, is the most stable phase. This result may be relevant to the detection of the FFLO state in some heavy fermion compounds and the pairing lattice structure of fermions with unequal populations on the BCS side of the Feshbach resonance in ultra-cold atoms. In chapter 4, the Boson Hubbard model is studied by duality transformation. Interacting bosons at filling factor f = p/q hopping on a lattice can be mapped to interacting vortices hopping on the dual lattice subject to a fluctuating dual " magnetic field" whose average strength through a dual plaquette is equal to the boson density f = p/q. So the kinetic term of the vortices is the same as the Hofstadter problem of electrons moving in a lattice in the presence of f = p/q flux per plaquette. Motivated by this mapping, we study the Hofstadter bands of vortices hopping in the presence of magnetic flux f = p/q per plaquette on the 5 most common bipartite and frustrated lattices namely square, honeycomb, triangular, dice and kagome lattices. We count the total number of bands and determine the number of minima in the lowest band and their locations. We also numerically calculate the bandwidths of the lowest Hofstadter bands in these lattices, which directly measure the mobility of the dual vortices. The less mobile the dual vortices are, the more likely the bosons are in a superfluid state. We find that, except for the kagome lattice at odd q, they all satisfy the exponential decay law W = Ae-cq even at the smallest q. At given q, the bandwidth W decreases in the order: triangle, square and honeycomb lattice. This indicates that the domain of the superfluid state of the original bosons increases in the order of the corresponding direct lattices: honeycome, square and triangular. When q = 2, we find that the lowest Hofstadter band is completely flat for both kagome and dice lattices. There is a gap on the kagome lattice, but no gap on dice lattice. This indicates that the boson ground state at half filling with nearest neighbor hopping on kagome lattice is always a superfluid state. The superfluid state remains stable slightly away from half filling. Our results show that the behaviors of bosons at or near half filling on kagome lattice are quite distinct from those on square, honeycomb and triangular lattices studied previously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinskiy, S.; National University of Science and Technology “MISIS”, 4, Leninskiy prosp., Moscow 119049; Prokoshkin, S.
2014-02-15
Phase and structure transformations in biomedical Ti–21.8Nb–6.0Zr (TNZ) and Ti–19.7Nb–5.8Ta (TNT) shape memory alloys (at.%) under and without load in the − 150 to 100 °S temperature range are studied in situ using an original tensile module for a low-temperature chamber of an X-ray diffractometer. Alpha″- and beta-phase lattice parameters, the crystallographic resource of recovery strain, phase and structure transformation sequences, and microstress appearance and disappearance are examined, compared and discussed. For both alloys, the crystallographic resource of recovery strain decreases with temperature increase to become 4.5% for TNZ and 2.5% for TNT alloy (at RT). Loading at low temperaturesmore » leads to additional α″-phase formation and reorientation. Heating under load, as compared to strain-free heating, affects the reverse transformation sequence of both alloys in different ways. For TNZ alloy, strain-free heating results in simultaneous ω→β and α″→β transformations, whereas during heating under stress, they are sequential: β + ω→α″ precedes α″→β. For TNT alloy, strain-free heating results in reverse α″→β transformation, whereas during heating under stress, α″→β transformation is preceded by α″-phase reorientation. - Highlights: • Comparative in situ XRD analysis of Ti–Nb–Zr(Ta) shape memory alloys is realized. • Lattice parameters of β- and α″-phases are calculated in the − 150 to + 100 °C range. • The higher the temperature, the lower the α″→β transformation strain. • Loading at low temperatures results in α″-phase formation and reorientation. • Transformation sequences upon heating with and without loading are different.« less
Optical investigation of domain resonances in magnetic garnet films
NASA Astrophysics Data System (ADS)
Bahlmann, N.; Gerhardt, R.; Dötsch, H.
1996-08-01
Magnetic garnet films of composition (Y,Bi) 3(Fe,Al) 5O 12 are grown by liquid phase epitaxy on [111] oriented substrates of Gd 3Ga 5O 12. Lattices of parallel stripe domains are stabilized by a static induction applied in the film plane. The two branches DR ± of the domain resonance and the domain wall resonance DWR are excited by microwave magnetic fields in the frequency range up to 6 GHz. Light passing the stripe domain lattice parallel to the film normal is modulated at the excitation frequency. A modulation bandwidth of more than 2 GHz is observed. The resonances can be calculated with high accuracy by a hybridization model, if the quality factor Q of the film exceeds 0.5. For Q < 0.5 a simple approximation is used to describe the superposition of the DR + and DR - resonances. The superposition model predicts two stability states of the resonance DR + which are observed experimentally. From the optical measurements precession angles of the resonance DR - of nearly 6° and wall oscillation amplitudes up to 25 nm are derived.
Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Dutta, B.; ćakır, A.; Giacobbe, C.; Al-Zubi, A.; Hickel, T.; Acet, M.; Neugebauer, J.
2016-01-01
Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.
Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga.
Dutta, B; Çakır, A; Giacobbe, C; Al-Zubi, A; Hickel, T; Acet, M; Neugebauer, J
2016-01-15
Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.
Ferroelastic modulation and the Bloch formalism
Mascarenhas, Angelo; Fluegel, Brian; Bhusal, Lekhnath
2017-06-07
The key to the development of advanced materials is to understand their electronic structure-property relationship. Utilization of this understanding to design new electronic materials with desired properties led to modern epitaxial growth approaches for synthesizing artificial lattices, which for almost half a century have become the mainstay of electronic and photonic technologies. In contrast to previous scalar modulation approaches, we now study synthetic crystal lattices that have a tensor artificial modulation and develop a theory for photons and conduction band states in these lattices in a regime with an unusual departure from the familiar consequences of translational symmetry and Bloch'smore » theorem. As a result, this study reveals that a nonmagnetic crystal lattice modulated by a purely geometrical orientational superlattice potential can lead to localized states or to spiral states for electrons and photons, as well as weakly or strongly localized states that could be used to markedly slow down the propagation of light and for optical energy storage applications.« less
Ferroelastic modulation and the Bloch formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarenhas, Angelo; Fluegel, Brian; Bhusal, Lekhnath
The key to the development of advanced materials is to understand their electronic structure-property relationship. Utilization of this understanding to design new electronic materials with desired properties led to modern epitaxial growth approaches for synthesizing artificial lattices, which for almost half a century have become the mainstay of electronic and photonic technologies. In contrast to previous scalar modulation approaches, we now study synthetic crystal lattices that have a tensor artificial modulation and develop a theory for photons and conduction band states in these lattices in a regime with an unusual departure from the familiar consequences of translational symmetry and Bloch'smore » theorem. As a result, this study reveals that a nonmagnetic crystal lattice modulated by a purely geometrical orientational superlattice potential can lead to localized states or to spiral states for electrons and photons, as well as weakly or strongly localized states that could be used to markedly slow down the propagation of light and for optical energy storage applications.« less
Bessas, D.; Winkler, M.; Sergueev, I.; ...
2015-09-03
We investigate the crystallinity and the lattice dynamics in elemental modulated Sbinline imageTeinline image films microscopically using high energy synchrotron radiation diffraction combined with inline imageSb nuclear inelastic scattering. The correlation length is found to be finite but less than 100 . Moreover, the element specific density of phonon states is extracted. A comparison with the element specific density of phonon states in bulk Sbinline imageTeinline image confirms that the main features in the density of phonon states arise from the layered structure. The average speed of sound at inline image inline image, is almost the same compared to bulkmore » Sbinline imageTeinline image at inline image, inline image. Similarly, the change in the acoustic cut-off energy is within the experimental detection limit. Therefore, we suggest that the lattice thermal conductivity in elemental modulated Sbinline imageTeinline image films should not be significantly changed from its bulk value.« less
Chern number distribution and quantum phase transition in three-band lattices
NASA Astrophysics Data System (ADS)
Yu, H. L.; Zhai, Z. Y.
2018-05-01
We numerically study the integer quantum Hall effect on a three-band lattice. With modulating the hopping integral, the peculiar behaviors have been found: (1) Chern numbers of Landau subbands are redistributed; (2) the Hall plateau exhibits a direct transition; (3) there are critical states, where the neighboring two subbands merge together and the pseudogap leads to undefined Chern numbers. By contrast, in the presence of disorder, we find that the higher Hall plateau is sensitive to the disorder and it is always destroyed earlier than lower ones. We also find that the insulator-plateau transition becomes sharper with increasing the size of system. And the critical energy Ec1 gradually shifts to the center of plateau while Ec2 is unaffected with increasing the disorder strength.
Detecting π-phase superfluids with p-wave symmetry in a quasi-1D optical lattice
NASA Astrophysics Data System (ADS)
Liu, Bo; Li, Xiaopeng; Hulet, Randall G.; Liu, W. Vincent
2016-05-01
We propose an experimental protocol to create a p-wave superfluid in a spin-polarized cold Fermi gas tuned by an s-wave Feshbach resonance. A crucial ingredient is to add an anisotropic 3D optical lattice and tune the fillings of two spins to the s and p band, respectively. The pairing order parameter is confirmed to inherit p-wave symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected π-phase modulation in a broad parameter regime. Experimental signatures are predicted in the momentum distributions, density of states and spatial densities for a realistic experimental setup. The π-phase p-wave superfluid is reminiscent of the π-state in superconductor-ferromagnet heterostructures but differs in symmetry and physical origin. The spatially-varying phases of the superfluid gap provide a novel approach to synthetic magnetic fields for neutral atoms. It would represent another example of p-wave pairing, first discovered in He-3 liquids. Work supported in part by U.S. ARO, AFOSR, NSF, ONR, Charles E. Kaufman Foundation, and The Pittsburgh Foundation, LPS-MPO-CMTC, JQI-NSF-PFC, ARO-Atomtronics-MURI, the Welch Foundation, ARO-MURI and NSF of China.
Wideband laser locking to an atomic reference with modulation transfer spectroscopy.
Negnevitsky, V; Turner, L D
2013-02-11
We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.
Observation of the Self-Modulation Instability via Time-Resolved Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, M.; Engel, J.; Good, J.
Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less
Observation of the Self-Modulation Instability via Time-Resolved Measurements
Gross, M.; Engel, J.; Good, J.; ...
2018-04-06
Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less
Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings
NASA Astrophysics Data System (ADS)
Karimelahi, Samira; Sheikholeslami, Ali
2016-05-01
We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.
Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers
NASA Astrophysics Data System (ADS)
Zhai, Xuechao; Jin, Guojun
2013-09-01
Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.
Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys
NASA Astrophysics Data System (ADS)
Balakrishna, Ananya Renuka; Carter, W. Craig
2018-04-01
Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Yang; Yang, Liuxiang; Chen, Cheng-Chien
The spin-orbit Mott insulator Sr 3Ir 2O 7 provides a fascinating playground to explore insulator-metal transition driven by intertwined charge, spin, and lattice degrees of freedom. Here, we report high-pressure electric resistance and resonant inelastic x-ray scattering measurements on single-crystal Sr 3Ir 2O 7 up to 63-65 GPa at 300 K. The material becomes a confined metal at 59.5 GPa, showing metallicity in the ab plane but an insulating behavior along the c axis. Such an unusual phenomenon resembles the strange metal phase in cuprate superconductors. Since there is no sign of the collapse of spin-orbit or Coulomb interactions inmore » x-ray measurements, this novel insulator-metal transition is potentially driven by a first-order structural change at nearby pressures. Our discovery points to a new approach for synthesizing functional materials.« less
Direct observation of two-step crystallization in nanoparticle superlattice formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jungwon; Zheng, Haimei; Lee, Won Chul
2011-10-06
Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the additionmore » of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.« less
Lattice model theory of the equation of state covering the gas, liquid, and solid phases
NASA Technical Reports Server (NTRS)
Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.
1975-01-01
The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.
Zu, Y Q; He, S
2013-04-01
A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.
NASA Astrophysics Data System (ADS)
Xie, Jian.-Fei.; He, S.; Zu, Y. Q.; Lamy-Chappuis, B.; Yardley, B. W. D.
2017-08-01
In this paper, the migration of supercritical carbon dioxide (CO2) in realistic sandstone rocks under conditions of saline aquifers, with applications to the carbon geological storage, has been investigated by a two-phase lattice Boltzmann method (LBM). Firstly the digital images of sandstone rocks were reproduced utilizing the X-ray computed microtomography (micro-CT), and high resolutions (up to 2.5 μm) were applied to the pore-scale LBM simulations. For the sake of numerical stability, the digital images were "cleaned" by closing the dead holes and removing the suspended particles in sandstone rocks. In addition, the effect of chemical reactions occurred in the carbonation process on the permeability was taken into account. For the wetting brine and non-wetting supercritical CO2 flows, they were treated as the immiscible fluids and were driven by pressure gradients in sandstone rocks. Relative permeabilities of brine and supercritical CO2 in sandstone rocks were estimated. Particularly the dynamic saturation was applied to improve the reliability of the calculations of the relative permeabilities. Moreover, the effects of the viscosity ratio of the two immiscible fluids and the resolution of digital images on the relative permeability were systematically investigated.
Lattice Design for a High-Power Infrared FEL
NASA Astrophysics Data System (ADS)
Douglas, D. R.
1997-05-01
A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.
Quantum phases of dipolar rotors on two-dimensional lattices
NASA Astrophysics Data System (ADS)
Abolins, B. P.; Zillich, R. E.; Whaley, K. B.
2018-03-01
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
NASA Astrophysics Data System (ADS)
Saraswathy, S.; Kalavathi, S.; Rajamadhavan, R.; Asuvathraman, R.
2018-04-01
Phase pure poly crystalline powder samples of spinel compounds with formula Zn1-xCuxCr2O4 have been synthesized. It is found that for a critical concentration of Cu with x=0.58 cubic structure of the parent ZnCr2O4 transforms into a tetragonal structure. The well-known co-operative Jahn-Teller effect induces the structural transition and the observed variation of lattice parameters as a function of Cu substitution displays the role of strain. Thermally driven destruction of the co-operative Jahn-Teller effect and the resultant reverting back to cubic structure is observed to complete at 850 K and 373 K in pristine CuCr2O4 and Zn0.4Cu0.6Cr2O4. A first order transition observed for Zn0.4Cu0.6Cr2O4 is at variance with the continuous transition observed in the literature for Mg0.46Cu0.54Cr2O4.
Precise determination of lattice phase shifts and mixing angles
Lu, Bing -Nan; Lähde, Timo A.; Lee, Dean; ...
2016-07-09
Here, we introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles formore » all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.« less
Klimczak, Mariusz; Soboń, Grzegorz; Kasztelanic, Rafał; Abramski, Krzysztof M.; Buczyński, Ryszard
2016-01-01
Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra. PMID:26759188
NASA Astrophysics Data System (ADS)
Klymko, Katherine; Geissler, Phillip L.; Whitelam, Stephen
2016-08-01
Colloidal particles of two types, driven in opposite directions, can segregate into lanes [Vissers et al., Soft Matter 7, 2352 (2011), 10.1039/c0sm01343a]. This phenomenon can be reproduced by two-dimensional Brownian dynamics simulations of model particles [Dzubiella et al., Phys. Rev. E 65, 021402 (2002), 10.1103/PhysRevE.65.021402]. Here we use computer simulation to assess the generality of lane formation with respect to variation of particle type and dynamical protocol. We find that laning results from rectification of diffusion on the scale of a particle diameter: oppositely driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with the Péclet number, a prediction confirmed by our numerics over a range of model parameters. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely driven nonattractive colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas [Katz, Leibowitz, and Spohn, J. Stat. Phys. 34, 497 (1984), 10.1007/BF01018556]. These features include long-ranged correlations in the disordered regime, a critical regime characterized by a change in slope of the particle current with the Péclet number, and fluctuations that grow with system size. By analogy, we suggest that lane formation in the driven colloid system is a phase transition in the macroscopic limit, but that macroscopic phase separation would not occur in finite time upon starting from disordered initial conditions.
Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound.
Zelený, Martin; Straka, Ladislav; Sozinov, Alexei; Heczko, Oleg
2018-05-08
In order to explain the formation of low-temperature phases in stoichiometric Ni 2 MnGa magnetic shape memory alloy, we investigate the phase transformation paths from cubic austenite with Heusler structure to low-symmetry martensitic structures. We used ab initio calculations combined with the generalized solid state nudged elastic band method to determine the minimum energy path and corresponding changes in crystal lattice. The four-, five-, and seven-layered modulated phases of martensite (4O, 10M, and 14M) are built as the relaxed nanotwinned non-modulated (NM) phase. Despite having a total energy larger than the other martensitic phases, the 10M phase will spontaneously form at 0 K, because there is no energy barrier on the path and the energy decreases with a large negative slope. Moreover, a similar negative slope in the beginning of path is found also for the transformation to the 6M premartensite, which appears as a local minimum on the path leading further to 10M martensite. Transformation paths to other structures exhibit more or less significant barriers in the beginning hindering such a transformation from austenite. These findings correspond to experiment and demonstrates that the kinetics of the transformation is decisive for the selection of the particular low-symmetry structure.
Ultrafast observation of lattice dynamics in laser-irradiated gold foils
Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.; ...
2017-02-13
Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less
Ultrafast observation of lattice dynamics in laser-irradiated gold foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.
Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less
BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2016-09-01
In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.
The deconfining phase transition in and out of equilibrium
NASA Astrophysics Data System (ADS)
Bazavov, Oleksiy
Recent experiments carried out at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory provide strong evidence that a matter can be driven from a confined, low-temperature phase, observed in our every day world into a deconfined high-temperature phase of liberated quarks and gluons. The equilibrium and dynamical properties of the deconfining phase transition are thus of great theoretical interest, since they also provide an information about the first femtoseconds of the evolution of our Universe, when the hot primordial soup while cooling has undergone a chain of phase transitions. The aspects of the deconfining phase transition studied in this work include: the dynamics of the SU(3) gauge theory after the heating quench (which models rapid heating in the heavy-ion collisions), equilibrium properties of the phase transition in the SU(3) gauge theory with boundaries at low temperature (small volumes at RHIC suggest that boundary effects cannot be neglected and periodic boundary conditions normally used in lattice simulations do not correspond to the experimental situation), and a study of the order of the transition in U(1) gauge theory.
Korn, Ariella R; Hennessy, Erin; Hammond, Ross A; Allender, Steven; Gillman, Matthew W; Kasman, Matt; McGlashan, Jaimie; Millar, Lynne; Owen, Brynle; Pachucki, Mark C; Swinburn, Boyd; Tovar, Alison; Economos, Christina D
2018-05-31
Involving groups of community stakeholders (e.g., steering committees) to lead community-wide health interventions appears to support multiple outcomes ranging from policy and systems change to individual biology. While numerous tools are available to measure stakeholder characteristics, many lack detail on reliability and validity, are not context specific, and may not be sensitive enough to capture change over time. This study describes the development and reliability of a novel survey to measure Stakeholder-driven Community Diffusion via assessment of stakeholders' social networks, knowledge, and engagement about childhood obesity prevention. This study was completed in three phases. Phase 1 included conceptualization and online survey development through literature reviews and expert input. Phase 2 included a retrospective study with stakeholders from two completed whole-of-community interventions. Between May-October 2015, 21 stakeholders from the Shape Up Somerville and Romp & Chomp interventions recalled their social networks, knowledge, and engagement pre-post intervention. We also assessed one-week test-retest reliability of knowledge and engagement survey modules among Shape Up Somerville respondents. Phase 3 included survey modifications and a second prospective reliability assessment. Test-retest reliability was assessed in May 2016 among 13 stakeholders involved in ongoing interventions in Victoria, Australia. In Phase 1, we developed a survey with 7, 20 and 50 items for the social networks, knowledge, and engagement survey modules, respectively. In the Phase 2 retrospective study, Shape Up Somerville and Romp & Chomp networks included 99 and 54 individuals. Pre-post Shape Up Somerville and Romp & Chomp mean knowledge scores increased by 3.5 points (95% CI: 0.35-6.72) and (- 0.42-7.42). Engagement scores did not change significantly (Shape Up Somerville: 1.1 points (- 0.55-2.73); Romp & Chomp: 0.7 points (- 0.43-1.73)). Intraclass correlation coefficients (ICCs) for knowledge and engagement were 0.88 (0.67-0.97) and 0.97 (0.89-0.99). In Phase 3, the modified knowledge and engagement survey modules included 18 and 25 items, respectively. Knowledge and engagement ICCs were 0.84 (0.62-0.95) and 0.58 (0.23-0.86). The survey measures upstream stakeholder properties-social networks, knowledge, and engagement-with good test-retest reliability. Future research related to Stakeholder-driven Community Diffusion should focus on prospective change and survey validation for intervention effectiveness.
NASA Astrophysics Data System (ADS)
Christy, Yohanes; Matsumoto, Kazuya; Kojima, Seiji
2015-07-01
The lattice instability of the incommensurate (IC) phase transition of uniaxial ferroelectric Ba2NaNb5O15 (BNN) was investigated by micro-Brillouin scattering. Spectra of the longitudinal acoustic (LA) mode were observed from room temperature to 750 K. In the vicinity of the IC phase transition temperature TIC = 573 K, elastic anomalies in the form of a sharp peak in the sound velocity and thermal hysteresis during the heating and cooling cycle were observed. During this transition, the crystal point group changed from tetragonal 4mm to orthorhombic 2mm along with the IC modulation. In order to deepen our understanding of the thermal hysteresis, aging experiment in the IC phase was conducted. We can conclude that the appearance of thermal hysteresis related to the relaxation of ferroelastic strain is related to the feature of the new type III IC phase transition mechanism of BNN.
Antiferromagnetic Chern Insulators in Noncentrosymmetric Systems
NASA Astrophysics Data System (ADS)
Jiang, Kun; Zhou, Sen; Dai, Xi; Wang, Ziqiang
2018-04-01
We investigate a new class of topological antiferromagnetic (AF) Chern insulators driven by electronic interactions in two-dimensional systems without inversion symmetry. Despite the absence of a net magnetization, AF Chern insulators (AFCI) possess a nonzero Chern number C and exhibit the quantum anomalous Hall effect (QAHE). Their existence is guaranteed by the bifurcation of the boundary line of Weyl points between a quantum spin Hall insulator and a topologically trivial phase with the emergence of AF long-range order. As a concrete example, we study the phase structure of the honeycomb lattice Kane-Mele model as a function of the inversion-breaking ionic potential and the Hubbard interaction. We find an easy z axis C =1 AFCI phase and a spin-flop transition to a topologically trivial x y plane collinear antiferromagnet. We propose experimental realizations of the AFCI and QAHE in correlated electron materials and cold atom systems.
Li, Junjie; Wang, Xuan; Zhou, Haidong; ...
2016-07-29
Here, we report a direct and real time measurement of photoinduced structure phase transition in single crystal La 0.84Sr 0.16MnO 3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. Furthermore, the fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion followingmore » the photo-excitation. We attribute the slow process to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.« less
Ab initio study on structural stability of uranium carbide
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2013-06-01
First principles calculations have been performed using plane wave pseudopotential and full potential linearized augmented plane wave (FP-LAPW) methods to analyze structural, elastic and dynamic stability of UC under hydrostatic compression. Our calculations within pseudopotential method suggest that the rocksalt (B1) structure will transform to body centered orthorhombic (bco) structure at ˜21.5 GPa. The FP-LAPW calculations put this transition at 23 GPa. The transition pressures determined from our calculations though agree reasonably with the experimental value of 27 GPa, the high pressure bco structure suggested by theory differs slightly from the experimentally reported pseudo bco phase. The elastic stability analysis of B1 phase suggests that the B1 to bco transition is driven by the failure of C44 modulus. This finding is further substantiated by the lattice dynamic calculations which demonstrate that the B1 phase becomes dynamically unstable around the transition pressure and the instability is of long wavelength nature.
Gate-tunable gigantic changes in lattice parameters and optical properties in VO2
NASA Astrophysics Data System (ADS)
Nakano, Masaki; Okuyama, Daisuke; Shibuya, Keisuke; Ogawa, Naoki; Hatano, Takafumi; Kawasaki, Masashi; Arima, Taka-Hisa; Iwasa, Yoshihiro; Tokura, Yoshinori
2014-03-01
The field-effect transistor provides an electrical switching function of current flowing through a channel surface by external gate voltage (VG). We recently reported that an electric-double-layer transistor (EDLT) based on vanadium dioxide (VO2) enables electrical switching of the metal-insulator phase transition, where the low-temperature insulating state can be completely switched to the metallic state by application of VG. Here we demonstrate that VO2-EDLT enables electrical switching of lattice parameters and optical properties as well as electrical current. We performed in-situ x-ray diffraction and optical transmission spectroscopy measurements, and found that the c-axis length and the infrared transmittance of VO2 can be significantly modulated by more than 1% and 40%, respectively, by application of VG. We emphasize that these distinguished features originate from the electric-field induced bulk phase transition available with VO2-EDLT. This work was supported by the Japan Society for the Promotion of Science (JSPS) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''
Photographic Video Disc Technology Assessment
1976-09-27
by a universal type motor that is driven from the ac power lines using a triac . The triac is controlled by a phase locked loop control circuit that...Regardless of signal format, direct analogue or an A/D converted digital signal, it is recorded by modulated laser beam and can be read out by either...was made to record with frequency modulation (FM) because of its immunity to noise at low frequencies where much of the system noise is. The usual
Pressurizing Field-Effect Transistors of Few-Layer MoS 2 in a Diamond Anvil Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yabin; Ke, Feng; Ci, Penghong
Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely explored to modulate physical properties of materials by tuning their lattice degree of freedom. Independently, electrical field is able to tune the electronic degree of freedom of functional materials via, for example, the field-effect transistor (FET) configuration. Combining these two orthogonal approaches would allow discovery of new physical properties and phases going beyond the known phase space. Such experiments are, however, technically challenging and have not been demonstrated. In this paper, we report a feasible strategy to prepare and measure FETs in a DAC by lithographically patterning the nanodevicesmore » onto the diamond culet. Multiple-terminal FETs were fabricated in the DAC using few-layer MoS 2 and BN as the channel semiconductor and dielectric layer, respectively. It is found that the mobility, conductance, carrier concentration, and contact conductance of MoS 2 can all be significantly enhanced with pressure. Finally, we expect that the approach could enable unprecedented ways to explore new phases and properties of materials under coupled mechano-electrostatic modulation.« less
Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opačić, M.; Lazarević, N.; Šćepanović, M.
2015-11-16
Polarized Raman scattering spectra of superconducting K x Fe2-y Se2 and non-superconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in the temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in the frequency range from 150 to 325 cm-1 in both compounds, suggesting that the K0.8Fe1.8Co0.2Se2 single crystal also has a two-phase nature. The temperature dependence of the Raman mode energy is analyzed in terms of lattice thermal expansion and phonon–phonon interaction. The temperature dependence of the Raman mode linewidth is dominated by temperature-induced anharmonic effects. It is shown that the change in Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. An abrupt change of the A1g mode energy nearmore » $${{T}_{\\text{C}}}$$ was observed in K x Fe2-y Se2, whereas it is absent in non-superconducting K0.8Fe1.8Co0.2Se2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below the critical temperature.« less
Noise-driven neuromorphic tuned amplifier.
Fanelli, Duccio; Ginelli, Francesco; Livi, Roberto; Zagli, Niccoló; Zankoc, Clement
2017-12-01
We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.
Modak, P; Verma, Ashok K
2016-03-28
Pressure induced structural sequences and their mechanism for light actinide (Th-U) mononitrides were studied as a function of 5f-electron number using first-principles total energy and electronic structure calculations. Zero pressure lattice constants, bulk module and C11 elastic module vary systematically with 5f-electron number implying its direct role on crystal binding. There is a critical 5f-electron number below which the system makes B1-B2 and above it B1-R3̄m-B2 structural sequence under pressure. Also, the B1-B2 transition pressure increases with increasing 5f-electron number whereas an opposite trend is obtained for the B1-R3̄m transition pressure. The ascending of N p anti-bonding states through the Fermi level at high pressure is responsible for the structural instability of the system. Above the critical 5f-electron number in the system a narrow 5f-band occurs very close to the Fermi level which allows the system to lower its symmetry via band Jahn-Teller type lattice distortion and the system undergoes a B1-R3̄m phase transition. However, below the critical 5f-electron number this mechanism is not favorable due to a lack of sufficient 5f-state occupancy and thus the system undergoes a B1-B2 phase transition like other ionic solids.
NASA Astrophysics Data System (ADS)
Feng, Yu; Li, Wei-Li; Yu, Yang; Jia, He-Nan; Qiao, Yu-Long; Fei, Wei-Dong
2017-11-01
An approach to greatly enhance the piezoelectric properties (˜4 00 pC/N) of the tetragonal BaTi O3 polycrystal using a small number of A -site acceptor-donor substitutions [D. Xu et al., Acta Mater. 79, 84 (2014), 10.1016/j.actamat.2014.07.023] has been proposed. In this study, Pb (ZrTi ) O3 (PZT) based polycrystals with various crystal symmetries (tetragonal, rhombohedral, and so on) were chosen to investigate the piezoelectricity enhancement mechanism. X-ray diffraction results show that doping generates an intrinsic uniaxial compressive stress along the [001] pc direction in the A B O3 lattices. Piezoelectric maps in the parameter space of temperature and Ti concentration in the PZT and doped system show a more significant enhancement effect of L i+-A l3 + codoping in tetragonal PZT than in the rhombohedral phase. Phenomenological thermodynamic analysis indicates that the compressive stress results in more serious flattening of the free-energy profile in tetragonal PZT, compared with that in the rhombohedral phase. The chemical stress obtained by this acceptor-donor codoping can be utilized to optimize the piezoelectric performance on the tetragonal-phase site of the morphotropic phase boundary in the PZT system. The present study provides a promising route to the large piezoelectric effect induced by chemical-stress-driven flattening of the free-energy profile.
Fast, High-Precision Optical Polarization Synthesizer for Ultracold-Atom Experiments
NASA Astrophysics Data System (ADS)
Robens, Carsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea
2018-03-01
We present a technique for the precision synthesis of arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017), 10.1103/PhysRevLett.118.065302] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices which trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.
NASA Astrophysics Data System (ADS)
Zhang, Z. T.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Khim, S.; Gass, S.; Wolter, A. U. B.; Wurmehl, S.; Grafe, H.-J.; Kühne, H.
2018-03-01
We report 75As nuclear magnetic resonance measurements on single crystals of RbFe2As2 and CsFe2As2 . Taking previously reported results for KFe2As2 into account, we find that the anisotropic electronic correlations evolve towards a magnetic instability in the A Fe2As2 series (with A =K , Rb, Cs). Upon isovalent substitution with larger alkali-metal ions, a drastic enhancement of the anisotropic nuclear spin-lattice relaxation rate and decreasing Knight shift reveal the formation of pronounced spin fluctuations with stripe-type modulation. Furthermore, a decreasing power-law exponent of the nuclear spin-lattice relaxation rate (1/T1)H ∥a b, probing the in-plane spin fluctuations, evidences an emergent deviation from Fermi-liquid behavior. All these findings clearly indicate that the expansion of the lattice in the A Fe2As2 series tunes the electronic correlations towards a quantum critical point at the transition to a yet unobserved ordered phase.
NASA Astrophysics Data System (ADS)
Goslar, Janina; Hoffmann, Stanislaw K.; Lijewski, Stefan
2016-08-01
ESR spectra and electron spin relaxation of nitroxide radical in 4-oxo-TEMPO-d16-15N in propylene glycol were studied at X-band in the temperature range 10-295 K. The spin-lattice relaxation in the liquid viscous state determined from the resonance line shape is governed by three mechanisms occurring during isotropic molecular reorientations. In the glassy state below 200 K the spin-lattice relaxation, phase relaxation and electron spin echo envelope modulations (ESEEM) were studied by pulse spin echo technique using 2-pulse and 3-pulse induced signals. Electron spin-lattice relaxation is governed by a single non-phonon relaxation process produced by localized oscillators of energy 76 cm-1. Electron spin dephasing is dominated by a molecular motion producing a resonance-type peak in the temperature dependence of the dephasing rate around 120 K. The origin of the peak is discussed and a simple method for the peak shape analysis is proposed, which gives the activation energy of a thermally activated motion Ea = 7.8 kJ/mol and correlation time τ0 = 10-8 s. The spin echo amplitude is strongly modulated and FT spectrum contains a doublet of lines centered around the 2D nuclei Zeeman frequency. The splitting into the doublet is discussed as due to a weak hyperfine coupling of nitroxide unpaired electron with deuterium of reorienting CD3 groups.
Mean-Field Scaling of the Superfluid to Mott Insulator Transition in a 2D Optical Superlattice.
Thomas, Claire K; Barter, Thomas H; Leung, Tsz-Him; Okano, Masayuki; Jo, Gyu-Boong; Guzman, Jennie; Kimchi, Itamar; Vishwanath, Ashvin; Stamper-Kurn, Dan M
2017-09-08
The mean-field treatment of the Bose-Hubbard model predicts properties of lattice-trapped gases to be insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination number z. We test this scaling directly by comparing coherence properties of ^{87}Rb gases that are driven across the superfluid to Mott insulator transition within optical lattices of either the kagome (z=4) or the triangular (z=6) geometries. The coherent fraction measured for atoms in the kagome lattice is lower than for those in a triangular lattice with the same interaction and tunneling energies. A comparison of measurements from both lattices agrees quantitatively with the scaling prediction. We also study the response of the gas to a change in lattice geometry, and observe the dynamics as a strongly interacting kagome-lattice gas is suddenly "hole doped" by introducing the additional sites of the triangular lattice.
Low cost label-free live cell imaging for biological samples
NASA Astrophysics Data System (ADS)
Seniya, C.; Towers, C. E.; Towers, D. P.
2017-02-01
This paper reports the progress to develop a practical phase measuring microscope offering new capabilities in terms of phase measurement accuracy and quantification of cell:cell interactions over the longer term. A novel, low cost phase interference microscope for imaging live cells (label-free) is described. The method combines the Zernike phase contrast approach with a dual mirror design to enable phase modulation between the scattered and un-scattered optical fields. Two designs are proposed and demonstrated, one of which retains the common path nature of Zernike's original microscopy concept. In both setups the phase shift is simple to control via a piezoelectric driven mirror in the back focal plane of the imaging system. The approach is significantly cheaper to implement than those based on spatial light modulators (SLM) at approximately 20% of the cost. A quantitative assessment of the performance of a set of phase shifting algorithms is also presented, specifically with regard to broad bandwidth illumination in phase contrast microscopy. The simulation results show that the phase measurement accuracy is strongly dependent on the algorithm selected and the optical path difference in the sample.
Negative-pressure-induced enhancement in a freestanding ferroelectric
NASA Astrophysics Data System (ADS)
Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava
2015-10-01
Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.
A quantitative theory of gamma synchronization in macaque V1.
Lowet, Eric; Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter
2017-08-31
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other's phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.
A quantitative theory of gamma synchronization in macaque V1
Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter
2017-01-01
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms. PMID:28857743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertz, Joshua L.; Prasad, Ajay K.
2015-09-06
The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before thismore » work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.« less
Ali, Roushown; Yashima, Masatomo
2003-05-01
Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.
NASA Astrophysics Data System (ADS)
Fan, L. L.; Chen, S.; Liao, G. M.; Chen, Y. L.; Ren, H.; Zou, C. W.
2016-06-01
As a typical strong correlation material, vanadium dioxide (VO2) has attracted wide interest due to its particular metal-insulator transition (MIT) property. However, the relatively high critical temperature (T c) of ~68 °C seriously hinders its practical applications. Thus modulating the phase transition process and decreasing the T c close to room temperature have been hot topics for VO2 study. In the current work, we conducted a multi-approach strategy to control the phase transition of VO2 films, including the interfacial tensile/compressive strain and oxygen vacancies. A synchrotron radiation reciprocal space mapping technique was used to directly record the interfacial strain evolution and variations of lattice parameters. The effects of interfacial strain and oxygen vacancies in the MIT process were systematically investigated based on band structure and d-orbital electron occupation. It was suggested that the MIT behavior can be modulated through the combined effects of the interfacial strain and oxygen vacancies, achieving the distinct phase transition close to room temperature. The current findings not only provide better understanding for strain engineering and oxygen vacancies controlling phase transition behavior, but also supply a combined way to control the phase transition of VO2 film, which is essential for VO2 film based device applications in the future.
Fan, L L; Chen, S; Liao, G M; Chen, Y L; Ren, H; Zou, C W
2016-06-29
As a typical strong correlation material, vanadium dioxide (VO2) has attracted wide interest due to its particular metal-insulator transition (MIT) property. However, the relatively high critical temperature (T c) of ~68 °C seriously hinders its practical applications. Thus modulating the phase transition process and decreasing the T c close to room temperature have been hot topics for VO2 study. In the current work, we conducted a multi-approach strategy to control the phase transition of VO2 films, including the interfacial tensile/compressive strain and oxygen vacancies. A synchrotron radiation reciprocal space mapping technique was used to directly record the interfacial strain evolution and variations of lattice parameters. The effects of interfacial strain and oxygen vacancies in the MIT process were systematically investigated based on band structure and d-orbital electron occupation. It was suggested that the MIT behavior can be modulated through the combined effects of the interfacial strain and oxygen vacancies, achieving the distinct phase transition close to room temperature. The current findings not only provide better understanding for strain engineering and oxygen vacancies controlling phase transition behavior, but also supply a combined way to control the phase transition of VO2 film, which is essential for VO2 film based device applications in the future.
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...
2016-02-03
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less
Modelling of Dispersed Gas-Liquid Flow using LBGK and LPT Approach
NASA Astrophysics Data System (ADS)
Agarwal, Alankar; Prakash, Akshay; Ravindra, B.
2017-11-01
The dynamics of gas bubbles play a significant, if not crucial, role in a large variety of industrial process that involves using reactors. Many of these processes are still not well understood in terms of optimal scale-up strategies.An accurate modeling of bubbles and bubble swarms become important for high fidelity bioreactor simulations. This study is a part of the development of robust bubble fluid interaction modules for simulation of industrial-scale reactors. The work presents the simulation of a single bubble rising in a quiescent water tank using current models presented in the literature for bubble-fluid interaction. In this multiphase benchmark problem, the continuous phase (water) is discretized using the Lattice Bhatnagar-Gross and Krook (LBGK) model of Lattice Boltzmann Method (LBM), while the dispersed gas phase (i.e. air-bubble) modeled with the Lagrangian particle tracking (LPT) approach. The cheap clipped fourth order polynomial function is used to model the interaction between two phases. The model is validated by comparing the simulation results for terminal velocity of a bubble at varying bubble diameter and the influence of bubble motion in liquid velocity with the theoretical and previously available experimental data. This work is supported by the ``Centre for Development of Advanced Computing (C-DAC), Pune'' by providing the advanced computational facility in PARAM Yuva-II.
Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films
NASA Astrophysics Data System (ADS)
Abreu, Elsa; Gilbert Corder, Stephanie N.; Yun, Sun Jin; Wang, Siming; Ramírez, Juan Gabriel; West, Kevin; Zhang, Jingdi; Kittiwatanakul, Salinporn; Schuller, Ivan K.; Lu, Jiwei; Wolf, Stuart A.; Kim, Hyun-Tak; Liu, Mengkun; Averitt, Richard D.
2017-09-01
Ultrafast optical pump-optical probe and optical pump-terahertz probe spectroscopy were performed on vanadium dioxide (VO2) and vanadium sesquioxide (V2O3 ) thin films over a wide temperature range. A comparison of the experimental data from these two different techniques and two different vanadium oxides, in particular a comparison of the spectral weight oscillations generated by the photoinduced longitudinal acoustic modulation, reveals the strong electron-phonon coupling that exists in both materials. The low-energy Drude response of V2O3 appears more amenable than VO2 to ultrafast strain control. Additionally, our results provide a measurement of the temperature dependence of the sound velocity in both systems, revealing a four- to fivefold increase in VO2 and a three- to fivefold increase in V2O3 across the insulator-to-metal phase transition. Our data also confirm observations of strong damping and phonon anharmonicity in the metallic phase of VO2, and suggest that a similar phenomenon might be at play in the metallic phase of V2O3 . More generally, our simple table-top approach provides relevant and detailed information about dynamical lattice properties of vanadium oxides, paving the way to similar studies in other complex materials.
Quantum fluids of light in acoustic lattices
NASA Astrophysics Data System (ADS)
Cerda-Méndez, E. A.; Krizhanovskii, D. N.; Skolnick, M. S.; Santos, P. V.
2018-01-01
In this topical review, we report on the recent advances on the manipulation of hybrid light-matter quasi-particles called exciton-polaritons and their quantum condensed phases by means of acoustic and static periodic potentials. Polaritons are a superposition of photons and excitons and form in optical microcavities with quantum wells embedded in it. They are low-mass bosons in the dilute limit and have strong inter-particle interactions inherited from the excitonic component. Their capability to form quantum-condensed phases at temperatures in the kelvin range and to behave like quantum fluids makes them very attractive for novel solid-state devices. Since their de Broglie wavelength is of the order of a few micrometers, polaritons can be manipulated using static or dynamic potentials with micrometer scales. We present here a summary of the techniques used to submit polaritons and their condensed phases to periodic potentials, with an emphasis in dynamic ones produced by surface acoustic waves. We discuss the interesting phenomena that occur under such a modulation, such as condensation in excited states of the Brillouin zone, fragmentation of a condensate, formation of self-localized wavepackets, and Dirac and massive polaritons in static hexagonal and kagome lattices, respectively. The different techniques explored open the way to implement polariton-based quantum simulators, nano-optomechanic resonators and polaritonic topological insulators.
NASA Astrophysics Data System (ADS)
Topcu, Turker; Derevianko, Andrei
2013-11-01
Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.
Site occupancy of interstitial deuterium atoms in face-centred cubic iron
Machida, Akihiko; Saitoh, Hiroyuki; Sugimoto, Hidehiko; Hattori, Takanori; Sano-Furukawa, Asami; Endo, Naruki; Katayama, Yoshinori; Iizuka, Riko; Sato, Toyoto; Matsuo, Motoaki; Orimo, Shin-ichi; Aoki, Katsutoshi
2014-01-01
Hydrogen composition and occupation state provide basic information for understanding various properties of the metal–hydrogen system, ranging from microscopic properties such as hydrogen diffusion to macroscopic properties such as phase stability. Here the deuterization process of face-centred cubic Fe to form solid-solution face-centred cubic FeDx is investigated using in situ neutron diffraction at high temperature and pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å3 per deuterium atom. The minor occupation of the tetrahedral site is thermally driven by the intersite movement of deuterium atoms along the ‹111› direction in the face-centred cubic metal lattice. PMID:25256789
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.; ...
2017-12-27
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
Experimental evidence for the lattice instability of Bi-based superconducting systems
NASA Astrophysics Data System (ADS)
Yusheng, He; Jiong, Xiang; Hsin, Wang; Aisheng, He; Jincang, Zhang; Fanggao, Chang
1989-11-01
Ultrasonic measurements, specific heat and thermal analysis experiments, X-ray diffraction study and infrared investigation revealed that there are anomalous structural changes or lattice instabilities near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O system. Detailed study showed that anomalous changes or lattice instabilities are isothermal-like processes and have the characteristics of a structural phase transition, accompanying with increases in lattice constants. Possible mechanism for this lattice instability is discussed.
Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.
Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L
2012-03-12
A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.
Direction-dependent stability of skyrmion lattice in helimagnets induced by exchange anisotropy
NASA Astrophysics Data System (ADS)
Hu, Yangfan
2018-06-01
Exchange anisotropy provides a direction dependent mechanism for the stability of the skyrmion lattice phase in noncentrosymmetric bulk chiral magnets. Based on the Fourier representation of the skyrmion lattice, we explain the direction dependence of the temperature-magnetic field phase diagram for bulk MnSi through a phenomenological mean-field model incorporating exchange anisotropy. Through quantitative comparison with experimental results, we clarify that the stability of the skyrmion lattice phase in bulk MnSi is determined by a combined effect of negative exchange anisotropy and thermal fluctuation. The effect of exchange anisotropy and the order of Fourier representation on the equilibrium properties of the skyrmion lattice is discussed in detail.
Yamamoto, Arata
2016-07-29
We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Successive field-induced transitions in BiFeO 3 around room temperature
Kawachi, Shiro; Miyake, Atsushi; Ito, Toshimitsu; ...
2017-07-21
The effects of high magnetic fields applied perpendicular to the spontaneous ferroelectric polarization on single crystals of BiFeO 3 were investigated in this paper through magnetization, magnetostriction, and neutron diffraction measurements. The magnetostriction measurements revealed lattice distortion of 2 x 10 -5 during the reorientation process of the cycloidal spin order by applied magnetic fields. Furthermore, anomalous changes in magnetostriction and electric polarization at a larger field demonstrate an intermediate phase between cycloidal and canted antiferromagnetic states, where a large magnetoelectric effect was observed. Neutron diffraction measurements clarified that incommensurate spin modulation along the [110] hex direction in the cycloidalmore » phase becomes Q = 0 commensurate along this direction in the intermediate phase. Finally, theoretical calculations based on the standard spin Hamiltonian of this material suggest an antiferromagnetic cone-type spin order in the intermediate phase.« less
Solution of semi-flexible self-avoiding trails on a Husimi lattice built with squares
NASA Astrophysics Data System (ADS)
Oliveira, Tiago J.; Dantas, Wellington G.; Prellberg, Thomas; Stilck, Jürgen F.
2018-02-01
We study a model of semi-flexible self-avoiding trails, where the lattice paths are constrained to visit each lattice edge at most once, with configurations weighted by the number of collisions, crossings and bends, on a Husimi lattice built with squares. We find a rich phase diagram with five phases: a non-polymerised phase (NP), low density (P1) and high density (P2) polymerised phases, and, for sufficiently large stiffness, two additional anisotropic (nematic) (AN1 and AN2) polymerised phases within the P1 phase. Moreover, the AN1 phase which shows a broken symmetry with a preferential direction, is separated from the P1 phase by the other nematic AN2 phase. Although this scenario is similar to what was found in our previous calculation on the Bethe lattice, where the AN-P1 transition was discontinuous and critical, the presence of the additional nematic phase between them introduces a qualitative difference. Other details of the phase diagram are that a line of tri-critical points may separate the P1-P2 transition surface into a continuous and a discontinuous portion, and that the same may happen at the NP-P1 transition surface, details of which depend on whether crossings are allowed or forbidden. A critical end-point line is also found in the phase diagram.
Controlling chaos-assisted directed transport via quantum resonance.
Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua
2016-06-01
We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
Controlling chaos-assisted directed transport via quantum resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jintao; Zou, Mingliang; Luo, Yunrong
2016-06-15
We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
Controlled electron doping into metallic atomic wires: Si(111)4×1-In
NASA Astrophysics Data System (ADS)
Morikawa, Harumo; Hwang, C. C.; Yeom, Han Woong
2010-02-01
We demonstrate the controllable electron doping into metallic atomic wires, indium wires self-assembled on the Si(111) surface, which feature one-dimensional (1D) band structure and temperature-driven metal-insulator transition. The electron filling of 1D metallic bands is systematically increased by alkali-metal adsorption, which, in turn, tunes the macroscopic property, that is, suppresses the metal-insulator transition. On the other hand, the dopant atoms induce a local lattice distortion without a band-gap opening, leading to a microscopic phase separation on the surface. The distinct bifunctional, electronic and structural, roles of dopants in different length scales are thus disclosed.
Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite
Piazza, L.; Ma, C.; Yang, H. X.; Mann, A.; Zhu, Y.; Li, J. Q.; Carbone, F.
2013-01-01
The transition between different states in manganites can be driven by various external stimuli. Controlling these transitions with light opens the possibility to investigate the microscopic path through which they evolve. We performed femtosecond (fs) transmission electron microscopy on a bi-layered manganite to study its response to ultrafast photoexcitation. We show that a photoinduced temperature jump launches a pressure wave that provokes coherent oscillations of the lattice parameters, detected via ultrafast electron diffraction. Their impact on the electronic structure are monitored via ultrafast electron energy loss spectroscopy, revealing the dynamics of the different orbitals in response to specific structural distortions. PMID:26913564
Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model
Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; ...
2016-08-25
We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionicmore » symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.« less
The fiber walk: a model of tip-driven growth with lateral expansion.
Bucksch, Alexander; Turk, Greg; Weitz, Joshua S
2014-01-01
Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been modeled as an elongating path or series of segments, without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modeling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce fiber walks as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modeled as a lateral contraction of the lattice. This contraction influences the possible subsequent steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, and thus enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from which to model both the extension and expansion of physical biological objects with finite thickness.
The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion
Bucksch, Alexander; Turk, Greg; Weitz, Joshua S.
2014-01-01
Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been modeled as an elongating path or series of segments, without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modeling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce fiber walks as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modeled as a lateral contraction of the lattice. This contraction influences the possible subsequent steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, and thus enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from which to model both the extension and expansion of physical biological objects with finite thickness. PMID:24465607
Still states of bistable lattices, compatibility, and phase transition
NASA Astrophysics Data System (ADS)
Cherkaev, Andrej; Kouznetsov, Andrei; Panchenko, Alexander
2010-09-01
We study a two-dimensional triangular lattice made of bistable rods. Each rod has two equilibrium lengths, and thus its energy has two equal minima. A rod undergoes a phase transition when its elongation exceeds a critical value. The lattice is subject to a homogeneous strain and is periodic with a sufficiently large period. The effective strain of a periodic element is defined. After phase transitions, the lattice rods are in two different states and lattice strain is inhomogeneous, the Cauchy-Born rule is not applicable. We show that the lattice has a number of deformed still states that carry no stresses. These states densely cover a neutral region in the space of entries of effective strains. In this region, the minimal energy of the periodic lattice is asymptotically close to zero. When the period goes to infinity, the effective energy of such lattices has the “flat bottom” which we explicitly describe. The compatibility of the partially transited lattice is studied. We derive compatibility conditions for lattices and demonstrate a family of compatible lattices (strips) that densely covers the flat bottom region. Under an additional assumption of the small difference of two equilibrium lengths, we demonstrate that the still structures continuously vary with the effective strain and prove a linear dependence of the average strain on the concentration of transited rods.
NASA Astrophysics Data System (ADS)
Hanf, Marian; Schaporin, Alexey V.; Hahn, Ramon; Doetzel, Wolfram; Gessner, Thomas
2005-01-01
The paper deals with a novel setup of a Hadamard transform spectrometer (HTS) which encoding mask is realized by a micro mirror array. In contrast to other applications of an HTS the mirrors of the array are not statically switched but dynamically driven to oscillate at the same frequency. The Hadamard transform is obtained by shifting the phase shift of oscillation. The paper gives a brief introduction in the entity of the Hadamard transform technique. The driving and detection circuits are presented and first measurement results are discussed.
Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek
By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.
Johnston, Steve; Monney, Claude; Bisogni, Valentina; ...
2016-02-17
Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li 2CuO 2, wheremore » Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li 2CuO 2.« less
Lattice Supersymmetry and Order-Disorder Coexistence in the Tricritical Ising Model
NASA Astrophysics Data System (ADS)
O'Brien, Edward; Fendley, Paul
2018-05-01
We introduce and analyze a quantum spin or Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit but also manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.
Dark Solitons in FPU Lattice Chain
NASA Astrophysics Data System (ADS)
Wang, Deng-Long; Yang, Ru-Shu; Yang, You-Tian
2007-11-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
Wave-driven Equatorial Annual Oscillation Induced and Modulated by the Solar Cycle
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.; Wolff, Charles
2005-01-01
Our model for the solar cycle (SC) modulation of the Quasi-Biennial Oscillation (QBO) produces a hemispherically symmetric 12-month Annual Oscillation (AO) in the zonal winds, which is confined to low latitudes. This Equatorial Annual Oscillation (EAO) is produced by interaction between the anti-symmetric component of SC forcing and the dominant anti-symmetric AO. The EA0 is amplified by the upward propagating small- scale gravity waves (GW), and the oscillation propagates down through the stratosphere like the QBO. The amplitude of the EA0 is relatively small, but its SC modulation contributes significantly to extend the effect to lower altitudes. Although the energy of the EA0 is concentrated at low latitudes, prominent signatures appear in the Polar Regions where the SC produces measurable temperature variations. At lower altitudes, the SC effects are significantly different in the two hemispheres because of the EAO, and due to its GW driven downward propagation the phase of the annual cycle is delayed.
Mott metal-insulator transition in the doped Hubbard-Holstein model
NASA Astrophysics Data System (ADS)
Kurdestany, Jamshid Moradi; Satpathy, S.
2017-08-01
Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.
Quantum magnetic phase transition in square-octagon lattice.
Bao, An; Tao, Hong-Shuai; Liu, Hai-Di; Zhang, XiaoZhong; Liu, Wu-Ming
2014-11-05
Quantum magnetic phase transition in square-octagon lattice was investigated by cellular dynamical mean field theory combining with continuous time quantum Monte Carlo algorithm. Based on the systematic calculation on the density of states, the double occupancy and the Fermi surface evolution of square-octagon lattice, we presented the phase diagrams of this splendid many particle system. The competition between the temperature and the on-site repulsive interaction in the isotropic square-octagon lattice has shown that both antiferromagnetic and paramagnetic order can be found not only in the metal phase, but also in the insulating phase. Antiferromagnetic metal phase disappeared in the phase diagram that consists of the anisotropic parameter λ and the on-site repulsive interaction U while the other phases still can be detected at T = 0.17. The results found in this work may contribute to understand well the properties of some consuming systems that have square-octagon structure, quasi square-octagon structure, such as ZnO.
NASA Astrophysics Data System (ADS)
Ding, Wan; Wu, Jianxu; Yao, Yan'an
2015-07-01
Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and provide the instruction to design the lattice modular robot.
NASA Astrophysics Data System (ADS)
Wu, Tai-Lung; Whittaker, Luisa; Patridge, C. J.; Banerjee, S.; Sambandamurthy, G.
2011-03-01
Vanadium oxide is a well-know material to study the metal-insulator transition (MIT) in correlated electron systems. Upon heating to about 340 K, VO2 undergoes orders of magnitude drop in resistance from an insulating phase (I) to a metallic phase (M) and accompanies a lattice structural phase transition from a low-temperature monoclinical phase (M1) to a high-temperature tetragonal phase (R). We present results from combined electrical transport and Raman spectroscopic measurements to discern the effects of doping in controllably tuning the MIT in individual nanowires of single crystal WxV1 - xO2 . The MIT temperature (Tc) in our WxV1 - xO2 nanowires can be tuned through a wide range from 280 to 330 K by controlling the dopant concentration. The M-I transition can also driven electrically in these nanowires. Our simultaneous measurement of electrical transport and Raman spectroscopic measurement help us understand the role of structural transition in affecting the macroscopic electrical transition in individual wires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, M.; Hong, Tao; Peng, J.
Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less
Zhu, M.; Hong, Tao; Peng, J.; ...
2018-01-09
Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less
Ultrafast large-amplitude relocation of electronic charge in ionic crystals
Zamponi, Flavio; Rothhardt, Philip; Stingl, Johannes; Woerner, Michael; Elsaesser, Thomas
2012-01-01
The interplay of vibrational motion and electronic charge relocation in an ionic hydrogen-bonded crystal is mapped by X-ray powder diffraction with a 100 fs time resolution. Photoexcitation of the prototype material KH2PO4 induces coherent low-frequency motions of the PO4 tetrahedra in the electronically excited state of the crystal while the average atomic positions remain unchanged. Time-dependent maps of electron density derived from the diffraction data demonstrate an oscillatory relocation of electronic charge with a spatial amplitude two orders of magnitude larger than the underlying vibrational lattice motions. Coherent longitudinal optical and tranverse optical phonon motions that dephase on a time scale of several picoseconds, drive the charge relocation, similar to a soft (transverse optical) mode driven phase transition between the ferro- and paraelectric phase of KH2PO4. PMID:22431621
Polarity-driven oxygen vacancy formation in ultrathin LaNiO 3 films on SrTiO 3
Tung, I-Cheng; Luo, Guangfu; Lee, June Hyuk; ...
2017-10-18
Oxide heterostructures offer a pathway to control emergent phases in complex oxides, but their creation often leads to boundaries that have a polar discontinuity. In order to fabricate atomic-scale arrangements of dissimilar materials, we need a clear understanding of the pathways by which materials resolve polarity issues. By examining the real-time lattice structure in-situ during growth for the case of polar LaNiO 3 synthesized on non-polar SrTiO 3 (001), we demonstrate how films in ultra-thin limit form as LaNiO 2.5 and then evolve into LaNiO 3 as the thickness increases. Theory explains how the polar energetics drives the formation ofmore » oxygen vacancies and the stability of these phases with thickness and structure.« less
NASA Astrophysics Data System (ADS)
Xu, Cenke
Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the graviton, although they have a soft w ˜ k2 dispersion relation. The dynamics of this novel phase is described by a new set of Maxwell's equations.
Structural and electronic properties of the alkali metal incommensurate phases
NASA Astrophysics Data System (ADS)
Woolman, Gavin; Naden Robinson, Victor; Marqués, Miriam; Loa, Ingo; Ackland, Graeme J.; Hermann, Andreas
2018-05-01
Under pressure, the alkali elements sodium, potassium, and rubidium adopt nonperiodic structures based on two incommensurate interpenetrating lattices. While all elements form the same "host" lattice, their "guest" lattices are all distinct. The physical mechanism that stabilizes these phases is not known, and detailed calculations are challenging due to the incommensurability of the lattices. Using a series of commensurate approximant structures, we tackle this issue using density functional theory calculations. In Na and K, the calculations prove accurate enough to reproduce not only the stability of the host-guest phases, but also the complicated pressure dependence of the host-guest ratio and the two guest-lattice transitions. We find Rb-IV to be metastable at all pressures, and suggest it is a high-temperature phase. The electronic structure of these materials is unique: they exhibit two distinct, coexisting types of electride behavior, with both fully localized pseudoanions and electrons localized in 1D wells in the host lattice, leading to low conductivity. While all phases feature pseudogaps in the electronic density of states, the perturbative free-electron picture applies to Na, but not to K and Rb, due to significant d -orbital population in the latter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-15
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zeromore » and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.« less
Twisted complex superfluids in optical lattices
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-01-01
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721
Magnetic Ordering of Erbium and Uranium NICKEL(2) SILICON(2) by Neutron Scattering
NASA Astrophysics Data System (ADS)
Lin, Hong
The magnetic ordering has been studied in UNi _2Si_2 and erbium single crystals by elastic neutron scattering. Abundant results are given regarding the magnetic structure, magnetic phase transitions, and the effect of a magnetic field on these properties. Three ordered phases are observed in UNi _2Si_2. They have been determined to be an incommensurate longitudinal spin density wave with a magnetic wave vector around q = 0.74c ^* in the high temperature phase, a simple body-centred antiferromagnet in the intermediate temperature phase, and a square wave in the low temperature phase. This square wave can be viewed equivalently as a longitudinal spin density wave with q = 2/3c ^* superimposed on a ferromagnetic component. Hysteresis and sample dependence are observed in the low-temperature phase transition. The two lower temperature phase transitions are both first order. The transition to paramagnetism is second order with a critical exponent beta = 0.35 +/- 0.03. When a magnetic field is applied along the c axis, the intermediate temperature phase is destabilised and disappears above a field of 3.5T. Although there is no new phase induced by the field, there exists a reentrant point where the three ordered phases can coexist. Erbium has three distinct ordered phases: the cone phase at low temperatures, the c-axis modulated (CAM) phase at higher temperatures, and the intermediate phase with moments modulated both along c and perpendicular to c. Within these phases the modulation of the moments may lock in to the lattice. The observed weak harmonics of the wave vector q in the basal plane for the cone phase and the q = 1/4c^* structure in the intermediate phase can be explained by a basal-plane spin slip model. The effect of magnetic field along the c axis on the magnetic structure is to stabilise the cone phase and to destabilise the intermediate phase. A new lock-in structure with q = 1/4c^* in the cone phase is induced by fields above 1.8T. The presence of the field also stabilises the lock-in structure with q = 2/7c^* in both the intermediate and the CAM phases.
Large Deviations in Weakly Interacting Boundary Driven Lattice Gases
NASA Astrophysics Data System (ADS)
van Wijland, Frédéric; Rácz, Zoltán
2005-01-01
One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.
Ising antiferromagnet on the Archimedean lattices.
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Ising antiferromagnet on the Archimedean lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Tangkui, E-mail: zhutangkui@sohu.com; Li, Miaoquan, E-mail: honeymli@nwpu.edu.cn
Effect of hydrogen content on the lattice parameter of Ti-6Al-4V alloy has been investigated by X-ray diffraction. The experimental results show that the solution of hydrogen in the Ti-6Al-4V alloy affects significantly on the lattice parameters of {alpha}, {beta} and {delta} phases, especially the {beta} phase. Furthermore, the critical hydrogen content of {delta} hydride formation for Ti-6Al-4V alloy is 0.385 wt.%. When the hydrogen content is lower than the critical hydrogen content, the {delta} hydride cannot precipitate and the lattice parameter ({alpha}) of {beta} phase linearly increases with the increasing of hydrogen content. When the hydrogen content is higher thanmore » the critical hydrogen content, the {delta} hydride precipitates and the lattice parameter ({alpha}) of {beta} phase varies inconspicuously with hydrogen content. In addition, the effects of lattice variations and {delta} hydride formation on microstructure are discussed. The {alpha}/{beta} interfaces of lamellar transformed {beta} phase become fuzzy with the increasing of hydrogen content because of the lattice expansion of {beta} phase. Compared with that of the Ti-6Al-4V alloy at low hydrogen content ({<=} 0.385 wt.%), the contrasts of primary {alpha} phase and transformed {beta} phase of Ti-6Al-4V alloy at high hydrogen content ({>=} 0.385 wt.%) were completely reversed due to the formation of {delta} hydride. - Research Highlights: {yields} A novel method for determining {delta} hydride in Ti-6Al-4V alloy is presented. {yields} The critical hydrogen content of {delta} hydride formation is 0.385 wt.%. {yields} The lattice parameter of {beta} phase can be expressed as follows: a=0.323(1+9.9x10{sup -2}C{sub H}) . {yields} Precipitation of {delta} hydride has a significant influence on the microstructure. {yields} The {alpha}/{beta} interfaces of transformed {beta} phase became fuzzy in the hydrogenated alloy.« less
Shock dynamics of two-lane driven lattice gases
NASA Astrophysics Data System (ADS)
Schiffmann, Christoph; Appert-Rolland, Cécile; Santen, Ludger
2010-06-01
Driven lattice gases such as those of the ASEP model are useful tools for the modelling of various stochastic transport processes carried out by self-driven particles, such as molecular motors or vehicles in road traffic. Often these processes take place in one-dimensional systems offering several tracks to the particles, and in many cases the particles are able to change track with a given rate. In this work we consider the case of strong coupling where the rate of hopping along the tracks and the exchange rates are of the same order, and show how a phenomenological approach based on a domain wall theory can be used to describe the dynamics of the system. In particular, the domain walls on the different tracks form pairs, whose dynamics dominate the behaviour of the system.
Graphical Representations and Cluster Algorithms for Ice Rule Vertex Models.
NASA Astrophysics Data System (ADS)
Shtengel, Kirill; Chayes, L.
2002-03-01
We introduce a new class of polymer models which is closely related to loop models, recently a topic of intensive studies. These particular models arise as graphical representations for ice-rule vertex models. The associated cluster algorithms provide a unification and generalisation of most of the existing algorithms. For many lattices, percolation in the polymer models evidently indicates first order phase transitions in the vertex models. Critical phases can be understood as being susceptible to colour symmetry breaking in the polymer models. The analysis includes, but is certainly not limited to the square lattice six-vertex model. In particular, analytic criteria can be found for low temperature phases in other even coordinated 2D lattices such as the triangular lattice, or higher dimensional lattices such as the hyper-cubic lattices of arbitrary dimensionality. Finally, our approach can be generalised to the vertex models that do not obey the ice rule, such as the eight-vertex model.
Extreme conditions magnetostriction study of the Shastry-Sutherland sample SCBO
NASA Astrophysics Data System (ADS)
Grockowiak, Audrey; Wehinger, BjöRn; Coniglio, William; Ruegg, Chistian; Tozer, Stanley; National High Magnetic Field Laboratory Team; Paul Scherrer Institute Collaboration
The Shasty-Sutherland model, which consists of a set of spin 1/2 dimers on a 2D square lattice, is simple and soluble but captures a central theme of condensed matter physics by sitting precariously on the quantum edge between isolated, gapped excitations and collective, ordered ground states. This model is realized in SrCu2(BO3)2. Recent x-ray diffraction data revealed a direct correlation of the lattice with magnetic susceptibility measurements at low temperatures. The variation of the lattice parameters with temperature is thus directly linked to the spin response of the system. Indeed, scattering intensities from the spin waves, measured by inelastic neutron scattering experiments, decay accordingly. The magnetic correlations can thus be monitored by the lattice parameters and are thus sensitive to magnetostriction. Ambient pressure magnetostriction up to 100.7 T show clear signatures related to the magnetization plateaus at 30, 40 and 80T. Together with total energy calculations these studies revealed a strong magneto elastic coupling driven by the super exchange angle CuOCu. Applying hydrostatic external pressure results in continuous and discontinuous quantum phase transitions. Zero field high pressure neutron spectroscopy measurements have revealed so far three phases : spin dimer from 0 to 2GPa, antiferromagnetic from 4 to 6 GPa, and a 4-spin plaquette singlet state was recently identified in the 2 to 4GPa region. We report here on high pressure (up to 2GPa), high magnetic field (up to 65T) and 3He temperature magnetostriction experiments, using FBGs. Fiber Bragg Grating (FBG) Dilatometry permits to measure the magnetostriction of a sample in function of the response of an optical fiber to applied strain. This work was performed at the NHMFL, supported by the NSF Cooperative Agreement No. DMR-1157490 and the State of Florida, and the DOE NNSA DE-NA0001979 Grant.
NASA Astrophysics Data System (ADS)
Haram, M.; Wang, T.; Gu, F.; Ball, A. D.
2012-05-01
Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.
Self-energy functional theory with symmetry breaking for disordered lattice bosons
NASA Astrophysics Data System (ADS)
Hügel, Dario; Strand, Hugo U. R.; Pollet, Lode
2018-07-01
We extend the self-energy functional theory to the case of interacting lattice bosons in the presence of symmetry breaking and quenched disorder. The self-energy functional we derive depends only on the self-energies of the disorder-averaged propagators, allowing for the construction of general non-perturbative approximations. Using a simple single-site reference system with only three variational parameters, we are able to reproduce numerically exact quantum Monte Carlo (QMC) results on local observables of the Bose–Hubbard model with box disorder with high accuracy. At strong interactions, the phase boundaries are reproduced qualitatively but shifted with respect to the ones observed with QMC due to the extremely low condensate fraction in the superfluid phase. Deep in the strongly-disordered weakly-interacting regime, the simple reference system employed is insufficient and no stationary solutions can be found within its restricted variational subspace. By systematically analyzing thermodynamical observables and the spectral function, we find that the strongly interacting Bose glass is characterized by different regimes, depending on which local occupations are activated as a function of the disorder strength. We find that the particles delocalize into isolated superfluid lakes over a strongly localized background around maximally-occupied sites whenever these sites are particularly rare. Our results indicate that the transition from the Bose glass to the superfluid phase around unit filling at strong interactions is driven by the percolation of superfluid lakes which form around doubly occupied sites.
Superfluid and Insulating Phases of Fermion Mixtures in Optical Lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iskin, M.; Sa de Melo, C. A. R.
2007-08-24
The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid-excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly themore » FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.« less
NASA Astrophysics Data System (ADS)
Hassdorf, R.; Arend, M.; Felsch, W.
1995-04-01
The flexural modulus EF of pure and hydrided cerium-iron multilayer films has been measured at 300 K as a function of the modulation wavelength Λ using a vibrating-reed technique. EF is strongly correlated to the structure of the layered systems. In the pure Ce/Fe multilayers, the Fe sublayers show a structural transition from an amorphous to the bcc crystalline phase for a thickness near 20 Å. At this transition, the modulus EF is reduced by ~70%. The elastic softening occurs already, as a precursor to the structural change, for the crystalline Fe sublayers somewhat above the thickness for amorphous growth. This behavior reveals close similarities to the crystal-to-glass transition in bulk metallic alloys and compounds which seems to be driven by a shear instability of the crystal lattice. Hydrogenation leads to multilayers built of CeH~2/Fe. The Fe sublayers grow in the bcc structure above 10 Å, with a pronounced (110) or (111) texture for low- or room-temperature deposition. The flexural moduli are larger as compared to the nonhydrided multilayers and distinctly different for the two Fe textures. A simple calculation shows that the texture-related differences mainly result from the bulk properties of the Fe layers, but a contribution of interfacial effects cannot be excluded.
White, Steven M; White, K A Jane
2005-08-21
Recently there has been a great deal of interest within the ecological community about the interactions of local populations that are coupled only by dispersal. Models have been developed to consider such scenarios but the theory needed to validate model outcomes has been somewhat lacking. In this paper, we present theory which can be used to understand these types of interaction when population exhibit discrete time dynamics. In particular, we consider a spatial extension to discrete-time models, known as coupled map lattices (CMLs) which are discrete in space. We introduce a general form of the CML and link this to integro-difference equations via a special redistribution kernel. General conditions are then derived for dispersal-driven instabilities. We then apply this theory to two discrete-time models; a predator-prey model and a host-pathogen model.
NASA Astrophysics Data System (ADS)
Banerjee, D.; Jiang, F.-J.; Olesen, T. Z.; Orland, P.; Wiese, U.-J.
2018-05-01
We consider the (2 +1 ) -dimensional S U (2 ) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges [which transform nontrivially under the Z (2 ) center of the S U (2 ) gauge group] are confined to each other by fractionalized strings with a delocalized Z (2 ) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the three-dimensional Ising universality class separates two confining phases: one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.
Extended skyrmion lattice scattering and long-time memory in the chiral magnet Fe1 -xCoxSi
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Kakurai, K.; Qian, F.; Lelièvre-Berna, E.; Dewhurst, C. D.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.
2016-09-01
Small angle neutron scattering measurements on a bulk single crystal of the doped chiral magnet Fe1 -xCoxSi with x =0.3 reveal a pronounced effect of the magnetic history and cooling rates on the magnetic phase diagram. The extracted phase diagrams are qualitatively different for zero and field cooling and reveal a metastable skyrmion lattice phase outside the A phase for the latter case. These thermodynamically metastable skyrmion lattice correlations coexist with the conical phase and can be enhanced by increasing the cooling rate. They appear in a wide region of the phase diagram at temperatures below the A phase but also at fields considerably smaller or higher than the fields required to stabilize the A phase.
Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo
2015-01-01
Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior. PMID:26469886
NASA Astrophysics Data System (ADS)
Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo
2015-10-01
Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.
Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J
2017-01-25
The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε 1 phase and a higher pressure NM ε 0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O 2 molecules in the (O 2 ) 4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O 2 ) 4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O 2 ) 4 unit cell for the low-pressure regime of the ε phase.
Double-image storage optimized by cross-phase modulation in a cold atomic system
NASA Astrophysics Data System (ADS)
Qiu, Tianhui; Xie, Min
2017-09-01
A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.
In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics
NASA Astrophysics Data System (ADS)
Wehrenberg, C. E.; McGonegle, D.; Bolme, C.; Higginbotham, A.; Lazicki, A.; Lee, H. J.; Nagler, B.; Park, H.-S.; Remington, B. A.; Rudd, R. E.; Sliwa, M.; Suggit, M.; Swift, D.; Tavella, F.; Zepeda-Ruiz, L.; Wark, J. S.
2017-10-01
Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. The techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.
In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehrenberg, C. E.; McGonegle, D.; Bolme, C.
We report that pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation ismore » challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. Lastly, the techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.« less
In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics
Wehrenberg, C. E.; McGonegle, D.; Bolme, C.; ...
2017-10-25
We report that pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation ismore » challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. Lastly, the techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.« less
Grand-canonical solution of semiflexible self-avoiding trails on the Bethe lattice.
Dantas, W G; Oliveira, Tiago J; Stilck, Jürgen F; Prellberg, Thomas
2017-02-01
We consider a model of semiflexible interacting self-avoiding trails (sISATs) on a lattice, where the walks are constrained to visit each lattice edge at most once. Such models have been studied as an alternative to the self-attracting self-avoiding walks (SASAWs) to investigate the collapse transition of polymers, with the attractive interactions being on site as opposed to nearest-neighbor interactions in SASAWs. The grand-canonical version of the sISAT model is solved on a four-coordinated Bethe lattice, and four phases appear: non-polymerized (NP), regular polymerized (P), dense polymerized (DP), and anisotropic nematic (AN), the last one present in the phase diagram only for sufficiently stiff chains. The last two phases are dense, in the sense that all lattice sites are visited once in the AN phase and twice in the DP phase. In general, critical NP-P and DP-P transition surfaces meet with a NP-DP coexistence surface at a line of bicritical points. The region in which the AN phase is stable is limited by a discontinuous critical transition to the P phase, and we study this somewhat unusual transition in some detail. In the limit of rods, where the chains are totally rigid, the P phase is absent and the three coexistence lines (NP-AN, AN-DP, and NP-DP) meet at a triple point, which is the endpoint of the bicritical line.
Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mary X.; Brodin, Jeffrey D.; Millan, Jaime A.
Colloidal crystal engineering with DNA can be used to realize precise control over nanoparticle (NP) arrangement. Here, we investigate a case of DNA-based assembly where the properties of DNA as a polyelectrolyte brush are employed to alter a hybridization-driven NP crystallization pathway. Using the co-assembly of DNA-conjugated proteins and spherical gold 2 nanoparticles (AuNPs) as a model system, we explore how steric repulsion between non-complementary, neighboring DNA-NPs due to overlapping DNA shells can influence their ligand-directed behavior. Specifically, our experimental data coupled with coarse-grained molecular dynamics (MD) simulations reveal that by changing factors related to NP repulsion, two structurally distinctmore » outcomes can be achieved. When steric repulsion between DNA-AuNPs is significantly greater than that between DNA-proteins, a lower packing density crystal lattice is favored over the structure that is predicted by design rules based on DNA-hybridization considerations alone. This is enabled by the large difference in DNA density on AuNPs versus proteins and can be tuned by modulating the flexibility, and thus conformational entropy, of the DNA on the constituent particles. At intermediate ligand flexibility, the crystallization pathways are energetically similar and the structural outcome can be adjusted using the density of DNA duplexes on DNA-AuNPs and by screening the Coulomb potential between them. Such lattices are shown to undergo dynamic reorganization upon changing salt concentration. These data help elucidate the structural considerations necessary for understanding repulsive forces in DNA-assembly and lay the groundwork for using them to increase architectural diversity in engineering colloidal crystals.« less
Mapping repulsive to attractive interaction in driven-dissipative quantum systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Koch, Jens
2017-11-01
Repulsive and attractive interactions usually lead to very different physics. Striking exceptions exist in the dynamics of driven-dissipative quantum systems. For the example of a photonic Bose-Hubbard dimer, we establish a one-to-one mapping relating cases of onsite repulsion and attraction. We prove that the mapping is valid for an entire class of Markovian open quantum systems with a time-reversal-invariant Hamiltonian and physically meaningful inverse-sign Hamiltonian. To underline the broad applicability of the mapping, we illustrate the one-to-one correspondence between the nonequilibrium dynamics in a geometrically frustrated spin lattice and those in a non-frustrated partner lattice.
Kwon, Kun-Sup; Yoon, Won-Sang
2010-01-01
In this paper we propose a method of removing from synthesizer output spurious signals due to quasi-amplitude modulation and superposition effect in a frequency-hopping synthesizer with direct digital frequency synthesizer (DDFS)-driven phase-locked loop (PLL) architecture, which has the advantages of high frequency resolution, fast transition time, and small size. There are spurious signals that depend on normalized frequency of DDFS. They can be dominant if they occur within the PLL loop bandwidth. We suggest that such signals can be eliminated by purposefully creating frequency errors in the developed synthesizer.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander
2015-03-01
In the characteristic γ / γ ‧ microstructure of single crystal superalloys, misfit stresses occur due to a significant lattice mismatch of those two phases. The magnitude of this lattice mismatch depends on the chemical composition of both phases as well as on temperature. Furthermore, the lattice mismatch of γ and γ ‧ phases can be either positive or negative in sign. The internal stresses caused by such lattice mismatch play a decisive role for the micromechanical processes that lead to the observed macroscopic athermal deformation behavior of these high-temperature alloys. Three-dimensional discrete dislocation dynamics (DDD) simulations are applied to investigate dislocation glide in γ matrix channels and shearing of γ ‧ precipitates by superdislocations under externally applied uniaxial stresses, by fully taking into account internal misfit stresses. Misfit stress fields are calculated by the fast Fourier transformation (FFT) method and hybridized with DDD simulations. For external loading along the crystallographic [001] direction of the single crystal, it was found that the different internal stress states for negative and positive lattice mismatch result in non-uniform dislocation movement and different dislocation patterns in horizontal and vertical γ matrix channels. Furthermore, positive lattice mismatch produces a lower deformation rate than negative lattice mismatch under the same tensile loading, but for an increasing magnitude of lattice mismatch, the deformation resistance always diminishes. Hence, the best deformation performance is expected to result from alloys with either small positive, or even better, vanishing lattice mismatch between γ and γ ‧ phase.
Transient Structures and Possible Limits of Data Recording in Phase-Change Materials.
Hu, Jianbo; Vanacore, Giovanni M; Yang, Zhe; Miao, Xiangshui; Zewail, Ahmed H
2015-07-28
Phase-change materials (PCMs) represent the leading candidates for universal data storage devices, which exploit the large difference in the physical properties of their transitional lattice structures. On a nanoscale, it is fundamental to determine their performance, which is ultimately controlled by the speed limit of transformation among the different structures involved. Here, we report observation with atomic-scale resolution of transient structures of nanofilms of crystalline germanium telluride, a prototypical PCM, using ultrafast electron crystallography. A nonthermal transformation from the initial rhombohedral phase to the cubic structure was found to occur in 12 ps. On a much longer time scale, hundreds of picoseconds, equilibrium heating of the nanofilm is reached, driving the system toward amorphization, provided that high excitation energy is invoked. These results elucidate the elementary steps defining the structural pathway in the transformation of crystalline-to-amorphous phase transitions and describe the essential atomic motions involved when driven by an ultrafast excitation. The establishment of the time scales of the different transient structures, as reported here, permits determination of the possible limit of performance, which is crucial for high-speed recording applications of PCMs.
Dynamically enriched topological orders in driven two-dimensional systems
NASA Astrophysics Data System (ADS)
Potter, Andrew C.; Morimoto, Takahiro
2017-04-01
Time-periodic driving of a quantum system can enable new dynamical topological phases of matter that could not exist in thermal equilibrium. We investigate two related classes of dynamical topological phenomena in 2D systems: Floquet symmetry-protected topological phases (FSPTs) and Floquet enriched topological orders (FETs). By constructing solvable lattice models for a complete set of 2D bosonic FSPT phases, we show that bosonic FSPTs can be understood as topological pumps which deposit loops of 1D SPT chains onto the boundary during each driving cycle, which protects a nontrivial edge state by dynamically tuning the edge to a self-dual point poised between the 1D SPT and trivial phases of the edge. By coupling these FSPT models to dynamical gauge fields, we construct solvable models of FET orders in which anyon excitations are dynamically transmuted into topologically distinct anyon types during each driving period. These bosonic FSPT and gauged FSPT models are classified by group cohomology methods. In addition, we also construct examples of "beyond cohomology" FET orders, which can be viewed as topological pumps of 1D topological chains formed of emergent anyonic quasiparticles.
NASA Astrophysics Data System (ADS)
Zheng, Ming; Xu, Xiao-Ke; Ni, Hao; Qi, Ya-Ping; Li, Xiao-Min; Gao, Ju
2018-03-01
The phase separation, i.e., the competition between coexisting multi-phases, can be adjusted by external stimuli, such as magnetic field, electric field, current, light, and strain. Here, a multiferroic heterostructure composed of a charge-ordered Nd0.5Sr0.5MnO3 thin film and a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal is fabricated to investigate the lattice strain and magnetic field co-control of phase separation in resistive switching. The stable and nonvolatile resistance tuning is realized at room temperature using the electric-field-induced reversible ferroelastic strain effect, which can be enhanced by 84% under the magnetic field. Moreover, the magnetoresistance can be effectively tuned by the electrically driven ferroelastic strain. These findings reveal that the ferroelastic strain and the magnetic field strongly correlate with each other and are mediated by phase separation. Our work provides an approach to design strain-engineered multifunctional memory devices based on complex oxides by introducing an extra magnetic field stimulus.
A Rutile Chevron Modulation in Delafossite-Like Ga 3–x In 3 Ti x O 9+x/2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickert, Karl; Boullay, Philippe; Malo, Sylvie
2016-05-02
The structure solution of the modulated, delafossite-related, orthorhombic Ga 3–xIn 3Ti xO 9+x/2 for x = 1.5 is reported here in conjunction with a model describing the modulation as a function of x for the entire system. Previously reported structures in the related A 3–xIn 3Ti xO 9+x/2 (A = Al, Cr, or Fe) systems use X-ray diffraction to determine that the anion lattice is the source of modulation. Neutron diffraction, with its enhanced sensitivity to light atoms, offers a route to solving the modulation and is used here, in combination with precession electron diffraction tomography (PEDT), to solve themore » structure of Ga 1.5In 3Ti 1.5O 9.75. We construct a model that describes the anion modulation through the formation of rutile chevrons as a function of x. This model accommodates the orthorhombic phase (1.5 ≤ x ≤ 2.1) in the Ga 3-xIn 3Ti xO 9+x/2 system, which transitions to a biphasic mixture (2.2 ≤ x ≤ 2.3) with a monoclinic, delafossite-related phase (2.4 ≤ x ≤ 2.5). The optical band gaps of this system are determined, and are stable at ~3.4 eV before a ~0.4 eV decrease between x = 1.9 and 2.0. After this decrease, stability resumes at ~3.0 eV. Resistance to oxidation and reduction is also presented.« less
Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice
Tao, Hong-Shuai; Chen, Yao-Hua; Lin, Heng-Fu; Liu, Hai-Di; Liu, Wu-Ming
2014-01-01
Bilayer honeycomb lattice, with inter-layer tunneling energy, has a parabolic dispersion relation, and the inter-layer hopping can cause the charge imbalance between two sublattices. Here, we investigate the metal-insulator and magnetic phase transitions on the strongly correlated bilayer honeycomb lattice by cellular dynamical mean-field theory combined with continuous time quantum Monte Carlo method. The procedures of magnetic spontaneous symmetry breaking on dimer and non-dimer sites are different, causing a novel phase transition between normal anti-ferromagnet and layer anti-ferromagnet. The whole phase diagrams about the magnetism, temperature, interaction and inter-layer hopping are obtained. Finally, we propose an experimental protocol to observe these phenomena in future optical lattice experiments. PMID:24947369
Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators
NASA Astrophysics Data System (ADS)
Anisimovas, Egidijus; Žlabys, Giedrius; Anderson, Brandon M.; JuzeliÅ«nas, Gediminas; Eckardt, André
2015-06-01
Fractional Chern insulators are the proposed phases of matter mimicking the physics of fractional quantum Hall states on a lattice without an overall magnetic field. The notion of Floquet fractional Chern insulators refers to the potential possibilities to generate the underlying topological band structure by means of Floquet engineering. In these schemes, a highly controllable and strongly interacting system is periodically driven by an external force at a frequency such that double tunneling events during one forcing period become important and contribute to shaping the required effective energy bands. We show that in the described circumstances it is necessary to take into account also third order processes combining two tunneling events with interactions. Referring to the obtained contributions as micromotion-induced interactions, we find that those interactions tend to have a negative impact on the stability of fractional Chern insulating phases and discuss implications for future experiments.
Anomalous magnon Nernst effect of topological magnonic materials
NASA Astrophysics Data System (ADS)
Wang, X. S.; Wang, X. R.
2018-05-01
The magnon transport driven by a thermal gradient in a perpendicularly magnetized honeycomb lattice is studied. The system with the nearest-neighbor pseudodipolar interaction and the next-nearest-neighbor Dzyaloshinskii–Moriya interaction has various topologically nontrivial phases. When an in-plane thermal gradient is applied, a transverse in-plane magnon current is generated. This phenomenon is termed as the anomalous magnon Nernst effect that closely resembles the anomalous Nernst effect for an electronic system. The anomalous magnon Nernst coefficient and its sign are determined by the magnon Berry curvature distributions in the momentum space and magnon populations in the magnon bands. We predict a temperature-induced sign reversal in anomalous magnon Nernst effect under certain conditions.
Mobile bound states of Rydberg excitations in a lattice
NASA Astrophysics Data System (ADS)
Letscher, Fabian; Petrosyan, David
2018-04-01
Spin-lattice models play a central role in the studies of quantum magnetism and nonequilibrium dynamics of spin excitations—-magnons. We show that a spin lattice with strong nearest-neighbor interactions and tunable long-range hopping of excitations can be realized by a regular array of laser-driven atoms, with an excited Rydberg state representing the spin-up state and a Rydberg-dressed ground state corresponding to the spin-down state. We find exotic interaction-bound states of magnons that propagate in the lattice via the combination of resonant two-site hopping and nonresonant second-order hopping processes. Arrays of trapped Rydberg-dressed atoms can thus serve as a flexible platform to simulate and study fundamental few-body dynamics in spin lattices.
NASA Astrophysics Data System (ADS)
Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema
2014-04-01
Cerium doped Gadolinium garnets (Gd3AlxGa5-xO12 where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.
Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S
2014-05-01
We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.
Floquet spin states in graphene under ac-driven spin-orbit interaction
NASA Astrophysics Data System (ADS)
López, A.; Sun, Z. Z.; Schliemann, J.
2012-05-01
We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.
Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolloch, M.; Gruner, M. E.; Keune, W.
2016-11-01
We present phonon dispersions, element-resolved vibrational density of states (VDOS) and corresponding thermodynamic properties obtained by a combination of density functional theory (DFT) and nuclear resonant inelastic x-ray scattering (NRIXS) across the metamagnetic transition of B2 FeRh in the bulk material and thin epitaxial films. We see distinct differences in the VDOS of the antiferromagnetic (AF) and ferromagnetic (FM) phases, which provide a microscopic proof of strong spin-phonon coupling in FeRh. The FM VDOS exhibits a particular sensitivity to the slight tetragonal distortions present in epitaxial films, which is not encountered in the AF phase. This results in a notablemore » change in lattice entropy, which is important for the comparison between thin film and bulk results. Our calculations confirm the recently reported lattice instability in the AF phase. The imaginary frequencies at the X point depend critically on the Fe magnetic moment and atomic volume. Analyzing these nonvibrational modes leads to the discovery of a stable monoclinic ground-state structure, which is robustly predicted from DFT but not verified in our thin film experiments. Specific heat, entropy, and free energy calculated within the quasiharmonic approximation suggest that the new phase is possibly suppressed because of its relatively smaller lattice entropy. In the bulk phase, lattice vibrations contribute with the same sign and in similar magnitude to the isostructural AF-FM phase transition as excitations of the electronic and magnetic subsystems demonstrating that lattice degrees of freedom need to be included in thermodynamic modeling.« less
2013-02-15
Matthew James, Andre Carvalho and Michael Hush completed some work analyzing cross-phase modulation using single photon quantum filtering techniques...ANU Michael Hush January – June, 2012, Postdoc, ANU Matthew R. James Professor, Australian National University Ian R. Petersen Professor...appear, IEEE Trans. Aut. Control., 2013. A. R. R. Carvalho, M. R. Hush , and M. R. James, “Cavity driven by a single photon: Conditional dynamics and
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
Dimension changing phase transitions in instanton crystals
NASA Astrophysics Data System (ADS)
Kaplunovsky, Vadim; Sonnenschein, Jacob
2014-04-01
We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3D → 4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in [1]) we focus on lower dimensions — the 1D lattice of instantons in a harmonic potential V ∝ , and the zigzag-shaped lattice as a first stage of the 1D → 2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons' orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M 2 /M 3 /M 4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements of a , Klein, prismatic, or dihedral subgroup of the , as well as irrational but link-periodic patterns. For the zigzag-shaped lattices, we detected 4 distinct orientation phases — the anti-ferromagnet, another abelian phase, and two non-abelian phases. Allowing the zigzag amplitude to vary as a function of increasing compression force, we obtained the phase diagrams for the straight and zigzag-shaped lattices in the (force , M 3 /M 4), (chemical potential , M 3 /M 4), and (density , M 3 /M 4) planes. Some of the transitions between these phases are second-order while others are first-order. Our techniques can be applied to other types of non-abelian crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fei; Maier, T. A.; Scarola, V. W.
The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less
Measuring finite-range phase coherence in an optical lattice using Talbot interferometry
Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig
2017-01-01
One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose–Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications. PMID:28580941
Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiaojia; Wu, Congcong; Jha, Shikhar K.
2016-10-18
Though formamidinium lead triiodide (FAPbI 3) possesses a suitable band gap and good thermal stability, the phase transition from the pure black perovskite phase (α-phase) to the undesirable yellow nonperovskite polymorph (δ-phase) at room temperature, especially under humid air, hinders its practical application. Here, we investigate the intrinsic instability mechanism of the α-phase at ambient temperature and demonstrate the existence of an anisotropic strained lattice in the (111) plane that drives phase transformation into the δ-phase. Methylammonium bromide (MABr) alloying (or FAPbI 3-MABr) was found to cause lattice contraction, thereby balancing the lattice strain. This led to dramatic improvement inmore » the stability of α-FAPbI 3. As a result, solar cells fabricated using FAPbI 3-MABr demonstrated significantly enhanced stability under the humid air.« less
Qamar, Seema; Wang, GuoZhen; Randle, Suzanne J; Ruggeri, Francesco Simone; Varela, Juan A; Lin, Julie Qiaojin; Phillips, Emma C; Miyashita, Akinori; Williams, Declan; Ströhl, Florian; Meadows, William; Ferry, Rodylyn; Dardov, Victoria J; Tartaglia, Gian G; Farrer, Lindsay A; Kaminski Schierle, Gabriele S; Kaminski, Clemens F; Holt, Christine E; Fraser, Paul E; Schmitt-Ulms, Gerold; Klenerman, David; Knowles, Tuomas; Vendruscolo, Michele; St George-Hyslop, Peter
2018-04-19
Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Spin-1/2 Heisenberg antiferromagnet on an anisotropic triangular lattice
NASA Astrophysics Data System (ADS)
Starykh, Oleg
2007-03-01
The Triangular lattice spin-1/2 Heisenberg AntiFerromagnet (TAF) is a prototypical model of frustrated quantum magnetism. While it is believed to exhibit long-range order in the isotropic limit, changes such as spatial anisotropy can alter the delicate balance amongst competing ground states. I will describe the static and dynamic properties of the spatially anisotropic TAF, with inter-chain diagonal exchange J' much weaker than the intrachain exchange J. Treating J' as a perturbation of decoupled Heisenberg spin-1/2 chains, I find that the ground state is spontaneously dimerized in a four-fold degenerate zig-zag pattern. This dimerization instability is driven by quantum fluctuations, which are dramatically enhanced here by the frustrated nature of inter-chain exchange. A magnetic field partially relieves frustration, by canting the spins along the field direction, and causes a quantum phase transition into a magnetically-ordered spin-density-wave phase. This is followed by cone and, finally, fully polarized (saturated) phases, as a function of increasing magnetic field. I show that many of these features are in fact observed in experiments on the celebrated material Cs2CuCl4 (J'/J =1/3). I will also discuss the significant modification of the phase diagram by symmetry-breaking anisotropic Dzyaloshinskii-Moriya (DM) interactions, present in this interesting magnet. In addition to static and thermodynamic properties, the proposed ``one-dimensional'' approach offers a compelling explanation of the unusual experimentally measured dynamical structure factor of Cs2CuCl4 in terms of descendants of one-dimensional spinons. Quite generally, I find characteristic features of a momentum-dependent spinon bound state and a dispersing incoherent excitation in the structure factor, in agreement with experiments.
Phase shifts in I = 2 ππ-scattering from two lattice approaches
NASA Astrophysics Data System (ADS)
Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.
2013-12-01
We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.
Magnetic and crystal structures of the honeycomb lattice Na2IrO3 and single layer Sr2IrO4
NASA Astrophysics Data System (ADS)
Ye, Feng
2013-03-01
5 d based iridates have recently attracted great attention due to the large spin-orbit coupling (SOC). It is now recognized that the SOC that competes with other relevant energies, particularly the on-site Coulomb interaction U, and have driven novel electronic and magnetic phases. Combining single crystal neutron and x-ray diffractions, we have investigated the magnetic and crystal structures of the honeycomb lattice Na2IrO3. The system orders magnetically below 18.1 K with Ir4+ ions forming zigzag spin chains within the layered honeycomb network with ordered moment of 0.22 μB /Ir site. Such a configuration sharply contrasts the Neel or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the IrO6 octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5 d-electron based honeycomb lattice. Neutron diffraction experiments are also performed to investigate the magnetic and crystal structure of the single layer iridate Sr2IrO4, where new structural information and spin order are obtained that is not available from previous neutron powder diffraction measurement. This work was sponsored in part by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage
NASA Astrophysics Data System (ADS)
Kulshreshtha, Prashant Kumar
This thesis focuses on the fundamental understanding of stress-modified crack-propagation in photovoltaic (PV) silicon in relation to the critical issue of PV silicon "wafer breakage". The interactions between a propagating crack and impurities/defects/residual stresses have been evaluated for consequential fracture path in a thin PV Si wafer. To investigate the mechanism of brittle fracture in silicon, the phase transformations induced by elastic energy released at a propagating crack-tip have been evaluated by locally stressing the diamond cubic Si lattice using a rigid Berkovich nanoindenter tip (radius ≈50 nm). Unique pressure induced phase transformations and hardness variations have been then related to the distribution of precipitates (O, Cu, Fe etc.), and the local stresses in the wafer. This research demonstrates for the first time the "ductile-like fracture" in almost circular crack path that significantly deviates from its energetically favorable crystallographic [110](111) system. These large diameter (≈ 200 mm) Si wafers were sliced to less than 180 microm thickness from a Czochralski (CZ) ingot that was grown at faster than normal growth rates. The vacancy (vSi) driven precipitation of oxygen at enhanced thermal gradients in the wafer core develops large localized stresses (upto 100 MPa) which we evaluated using Raman spectral analysis. Additional micro-FTIR mapping and microscopic etch pit measurements in the wafer core have related the observed crack path deviations to the presence of concentric ring-like distributions of oxygen precipitates (OPs). To replicate these "real-world" breakage scenarios and provide better insight on crack-propagation, several new and innovative tools/devices/methods have been developed in this study. An accurate quantitative profiling of local stress, phase changes and load-carrying ability of Si lattice has been performed in the vicinity of the controlled micro-cracks created using micro-indentations to represent the surface/edge micro-cracks (i.e. sources of crack initiation). The low load (<10mN) nanoindentations using Hysitron Triboindenter RTM have been applied to estimate the zone of crack-propagation related plastic deformation and amorphization around the radial or the lateral cracks. The gradual reduction in hardness due to local stress field and phase change around the crack has been established using electron back scattered diffraction (EBSD), atomic force microscopy (AFM) and Raman spectroscopy, respectively, at nano- and micro-scale. The load (P) vs. displacement (h) curves depict characteristic phase transformation events (eg. elbow or pop-out) depending on the sign of residual stress in the silicon lattice. The formation of Si-XII/III phases (elastic phases) in large volumes during indentation of compressed Si lattice have been discussed as an option to eliminate the edge micro-cracks formed during wafer sawing by ductile flow. The stress gradient at an interface, which can be a grain-boundary (GB), twin or a interface between silicon and precipitate, has been evaluated for crack path modification. An direct-silicon-bonded (DSB) based ideal [110]/[100] interface has been examined to study the effect of crystallographic orientation variation across a planar silicon 2D boundary. Using constant source diffusion/annealing process, Fe and Cu impurities have been incorporated in model [110]/[100]GB to provide equivalence to a real decorated multi-crystalline grain boundary. We found that Fe precipitates harden the undecorated GB structure, whereas Cu precipitates introduce dislocation-induced plasticity to soften it. Aluminum Schottky diodes have been evaporated on the DSB samples to sensitively detect the instantaneous current response from the phase-transformed Si under nanoindenter tip. The impact of metallic impurity and their precipitates on characteristic phase transformations (i.e. pop-in or pop-out) demonstrate that scattered distribution of large Cu-precipitates (upto 50 nm) compresses Si-lattice to facilitate Si-XII/III formations, i.e. high pressure ductile phases. Sweeping voltage measurements at a given load determine that Si lattice has to be stressed beyond 1 mN to complete the Si-I (semiconducting) to Si-II (ohmic) phase changes. Above 1 mN load DSB sample has a varistor-like behavior due to higher grain-boundary resistance from interfacial states. The precipitate defect structure stimulated stresses at the bulk Si lattice or grain boundary modify the rate of elastic energy release at the crack-tip and associated phase change and hardness values in response to external loading. The systematic approach in this thesis elucidates that the interfacial surface area between Si-lattice and precipitate plays pivotal role in defining extent of stresses in the silicon, i.e. smaller precipitates in higher densities are severe than few larger volume precipitates. The finding of high-pressure ductile phase formation during loading of compressed silicon structure has been suggested to PV industry as a prospective candidate for reducing the wafer breakage and allowing larger handling stresses.
Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5ZrTi Alloy (Preprint)
2011-10-01
slightly enriched with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was...FCC phase was highly enriched with Cr and it was identified as a Laves C15 phase, ( Zr ,Ta)(Cr,Mo, Nb )2, with the lattice parameter a = 733.38 ± 0.18 pm...with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was enriched with Zr and Ti
Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.
Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane
2018-04-30
We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.
Prefrontal Parvalbumin Neurons in Control of Attention
Kim, Hoseok; Ährlund-Richter, Sofie; Wang, Xinming; Deisseroth, Karl; Carlén, Marie
2016-01-01
Summary While signatures of attention have been extensively studied in sensory systems, the neural sources and computations responsible for top-down control of attention are largely unknown. Using chronic recordings in mice, we found that fast-spiking parvalbumin (FS-PV) interneurons in medial prefrontal cortex (mPFC) uniformly show increased and sustained firing during goal-driven attentional processing, correlating to the level of attention. Elevated activity of FS-PV neurons on the timescale of seconds predicted successful execution of behavior. Successful allocation of attention was characterized by strong synchronization of FS-PV neurons, increased gamma oscillations, and phase locking of pyramidal firing. Phase-locked pyramidal neurons showed gamma-phase-dependent rate modulation during successful attentional processing. Optogenetic silencing of FS-PV neurons deteriorated attentional processing, while optogenetic synchronization of FS-PV neurons at gamma frequencies had pro-cognitive effects and improved goal-directed behavior. FS-PV neurons thus act as a functional unit coordinating the activity in the local mPFC circuit during goal-driven attentional processing. PMID:26771492
Wang, Huibo; Gao, Rui; Li, Zhengyao; Sun, Limei; Hu, Zhongbo; Liu, Xiangfeng
2018-05-07
P2-type layered oxides based on the elements Fe and Mn have attracted great interest as sodium ion battery (SIB) cathode materials owing to their inexpensive metal constituents and high specific capacity. However, they suffer from rapid capacity fading and complicated phase transformations. In this study, we modulate the crystal structure and optimize the electrochemical performances of Na 0.67 Mn 0.5 Fe 0.5 O 2 by Al doping for Mn or Fe, respectively, and the roles of Al in the enhancement of the rate capability and cycling performance are unraveled. (1) The substitution of Al for Mn or Fe decreases the lattice parameters a and c but enlarges d spacing and lengthens Na-O bonds, which enhances Na + diffusion and rate capability especially for Na 0.67 Mn 0.5 Fe 0.47 Al 0.03 O 2 . (2) Al doping reduces the thickness of TMO 2 and strengthens TM-O/O-O bonding. This enhances the layered structure stability and the capacity retention. (3) Al doping mitigates Mn 3+ and Jahn-Teller distortion, mitigating the irreversible phase transition. (4) Al doping also alleviates the lattice volume variation and the structure strain. This further improves the stability of the layered structure and the cycling performances particularly in the case of Al doping for Fe. The in-depth insights into the roles of Al substitution might be also useful for designing high-performance cathode materials for SIBs through appropriate lattice doping.
Quantum transport under ac drive from the leads: A Redfield quantum master equation approach
NASA Astrophysics Data System (ADS)
Purkayastha, Archak; Dubi, Yonatan
2017-08-01
Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.
Phase transitions in coupled map lattices and in associated probabilistic cellular automata.
Just, Wolfram
2006-10-01
Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting probabilistic cellular automaton for the critical behavior is pointed out.
Fermion masses through four-fermion condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayyar, Venkitesh; Chandrasekharan, Shailesh
Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less
Disordered Supersolids in the Extended Bose-Hubbard Model
Lin, Fei; Maier, T. A.; Scarola, V. W.
2017-10-06
The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less
Quantum phases of two-component bosons with spin-orbit coupling in optical lattices
NASA Astrophysics Data System (ADS)
Yamamoto, Daisuke; Spielman, I. B.; Sá de Melo, C. A. R.
2017-12-01
Ultracold bosons in optical lattices are one of the few systems where bosonic matter is known to exhibit strong correlations. Here we push the frontier of our understanding of interacting bosons in optical lattices by adding synthetic spin-orbit coupling, and show that new kinds of density and chiral orders develop. The competition between the optical lattice period and the spin-orbit coupling length—which can be made comparable in experiments—along with the spin hybridization induced by a transverse field (i.e., Rabi coupling) and interparticle interactions create a rich variety of quantum phases including uniform, nonuniform, and phase-separated superfluids, as well as Mott insulators. The spontaneous symmetry-breaking phenomena at the transitions between them are explained by a two-order-parameter Ginzburg-Landau model with multiparticle umklapp processes. Finally, in order to characterize each phase, we calculated their experimentally measurable crystal momentum distributions.
Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.
Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter
2016-11-18
We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.
The application of domain-driven design in NMS
NASA Astrophysics Data System (ADS)
Zhang, Jinsong; Chen, Yan; Qin, Shengjun
2011-12-01
In the traditional design approach of data-model-driven, system analysis and design phases are often separated which makes the demand information can not be expressed explicitly. The method is also easy to lead developer to the process-oriented programming, making codes between the modules or between hierarchies disordered. So it is hard to meet requirement of system scalability. The paper proposes a software hiberarchy based on rich domain model according to domain-driven design named FHRDM, then the Webwork + Spring + Hibernate (WSH) framework is determined. Domain-driven design aims to construct a domain model which not only meets the demand of the field where the software exists but also meets the need of software development. In this way, problems in Navigational Maritime System (NMS) development like big system business volumes, difficulty of requirement elicitation, high development costs and long development cycle can be resolved successfully.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H.
The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Paulimore » (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.« less
Quantum phase transition modulation in an atomtronic Mott switch
NASA Astrophysics Data System (ADS)
McLain, Marie A.; Carr, Lincoln D.
2018-07-01
Mott insulators provide stable quantum states and long coherence times due to small number fluctuations, making them good candidates for quantum memory and atomic circuits. We propose a proof-of-principle for a 1D Mott switch using an ultracold Bose gas and optical lattice. With time-evolving block decimation simulations—efficient matrix product state methods—we design a means for transient parameter characterization via a local excitation for ease of engineering into more complex atomtronics. We perform the switch operation by tuning the intensity of the optical lattice, and thus the interaction strength through a conductance transition due to the confined modifications of the ‘wedding cake’ Mott structure. We demonstrate the time-dependence of Fock state transmission and fidelity of the excitation as a means of tuning up the device in a double well and as a measure of noise performance. Two-point correlations via the g (2) measure provide additional information regarding superfluid fragments on the Mott insulating background due to the confinement of the potential.
Raman gas self-organizing into deep nano-trap lattice
Alharbi, M.; Husakou, A.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F.
2016-01-01
Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb–Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing. PMID:27677451
White light generation using photonic crystal fiber with sub-micron circular lattice
NASA Astrophysics Data System (ADS)
Saghaei, Hamed; Ghanbari, Ashkan
2017-08-01
In this paper, we study a photonic crystal fiber (PCF) with circular lattice and engineer linear and nonlinear parameters by varying the diameter of air-holes. It helps us obtain low and high zero dispersion wavelengths in the visible and nearinfrared regions. We numerically demonstrate that by launching 100 fs input pulses of 1, 2, and 5 kW peak powers with center wavelength of 532 nm from an unamplified Ti:sapphire laser into a 100 mm length of the engineered PCF, supercontinua as wide as 290, 440 and 830 nm can be obtained, respectively. The spectral broadening is due to the combined action of self-phase modulation, stimulated Raman scattering and parametric four-wave-mixing generation of the pump pulses. The third and the widest spectrum covers the entire visible range and a part of near infrared region making it a suitable source for both white light applications and optical coherence tomography to measure retinal oxygen metabolic response to systemic oxygenation.
Degenerate Ising model for atomistic simulation of crystal-melt interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schebarchov, D., E-mail: Dmitri.Schebarchov@gmail.com; Schulze, T. P., E-mail: schulze@math.utk.edu; Hendy, S. C.
2014-02-21
One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) latticesmore » with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.« less
Probing the exchange statistics of one-dimensional anyon models
NASA Astrophysics Data System (ADS)
Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis
2018-05-01
We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.
Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop
NASA Astrophysics Data System (ADS)
Gao, Yongsheng; Wen, Aijun; Li, Ningning; Wu, Xiaohui; Zhang, Huixing
2015-09-01
A photonic microwave signal generation scheme with frequency octupling is proposed and experimentally demonstrated. The scheme is based on bi-directional use of a dual-parallel Mach-Zehnder modulator (DPMZM) in a Sagnac loop. The two sub-modulators in the DPMZM are driven by two low-frequency signals with a π/2 phase difference, and the dc biases of the modulator are all set at the maximum transmission points. Due to the velocity mismatch of the modulator, only the light wave along the clockwise direction is effectively modulated by the drive signals to generate an optical signal with a carrier and ±4th order sidebands, while the modulation of the light wave along the counterclockwise direction is far less effective and can be ignored. By properly adjusting the polarization of the light wave output from the Sagnac loop, the optical carrier can be significantly suppressed at a polarizer, and then an optical signal with only ±4th order sidebands is generated. In the experiment, a pure 24-GHz microwave signal without additional phase noise from the optical system is generated using a 3-GHz local oscillator signal. As no electrical or optical filter is used, the photonic frequency octupler is of good frequency tunability.
Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2016-01-01
This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.
Mukherjee, S; Givan, U; Senz, S; de la Mata, M; Arbiol, J; Moutanabbir, O
2018-05-09
Nanowires are a versatile platform to investigate and harness phonon and thermal transport phenomena in nanoscale systems. With this perspective, we demonstrate herein the use of crystal phase and mass disorder as effective degrees of freedom to manipulate the behavior of phonons and control the flow of local heat in silicon nanowires. The investigated nanowires consist of isotopically pure and isotopically mixed nanowires bearing either a pure diamond cubic or a cubic-rhombohedral polytypic crystal phase. The nanowires with tailor-made isotopic compositions were grown using isotopically enriched silane precursors 28 SiH 4 , 29 SiH 4 , and 30 SiH 4 with purities better than 99.9%. The analysis of polytypic nanowires revealed ordered and modulated inclusions of lamellar rhombohedral silicon phases toward the center in otherwise diamond-cubic lattice with negligible interphase biaxial strain. Raman nanothermometry was employed to investigate the rate at which the local temperature of single suspended nanowires evolves in response to locally generated heat. Our analysis shows that the lattice thermal conductivity in nanowires can be tuned over a broad range by combining the effects of isotope disorder and the nature and degree of polytypism on phonon scattering. We found that the thermal conductivity can be reduced by up to ∼40% relative to that of isotopically pure nanowires, with the lowest value being recorded for the rhombohedral phase in isotopically mixed 28 Si x 30 Si 1- x nanowires with composition close to the highest mass disorder ( x ∼ 0.5). These results shed new light on the fundamentals of nanoscale thermal transport and lay the groundwork to design innovative phononic devices.
Concurrence and fidelity of a Bose-Fermi mixture in a one-dimensional optical lattice.
Ning, Wen-Qiang; Gu, Shi-Jian; Chen, Yu-Guang; Wu, Chang-Qin; Lin, Hai-Qing
2008-06-11
We study the ground-state fidelity and entanglement of a Bose-Fermi mixture loaded in a one-dimensional optical lattice. It is found that the fidelity is able to signal quantum phase transitions between the Luttinger liquid phase, the density-wave phase, and the phase separation state of the system, and the concurrence, as a measure of the entanglement, can be used to signal the transition between the density-wave phase and the Ising phase.
NASA Astrophysics Data System (ADS)
Chen, Yong; Yan, Zhenya; Li, Xin
2018-02-01
The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.
NASA Astrophysics Data System (ADS)
Lee, Ki Hoon; Chung, Suk Bum; Park, Kisoo; Park, Je-Geun
2018-05-01
We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic honeycomb lattices in the presence of the DM term.
Hierarchical Freezing in a Lattice Model
NASA Astrophysics Data System (ADS)
Byington, Travis W.; Socolar, Joshua E. S.
2012-01-01
A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants.
Robust calibration of an optical-lattice depth based on a phase shift
NASA Astrophysics Data System (ADS)
Cabrera-Gutiérrez, C.; Michon, E.; Brunaud, V.; Kawalec, T.; Fortun, A.; Arnal, M.; Billy, J.; Guéry-Odelin, D.
2018-04-01
We report on a method to calibrate the depth of an optical lattice. It consists of triggering the intrasite dipole mode of the cloud by a sudden phase shift. The corresponding oscillatory motion is directly related to the interband frequencies on a large range of lattice depths. Remarkably, for a moderate displacement, a single frequency dominates the oscillation of the zeroth and first orders of the interference pattern observed after a sufficiently long time of flight. The method is robust against atom-atom interactions and the exact value of the extra weak external confinement superimposed to the optical lattice.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-01-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-05-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing
2015-04-01
Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.
Metal-insulator-superconductor transition of spin-3/2 atoms on optical lattices
NASA Astrophysics Data System (ADS)
De Silva, Theja N.
2018-01-01
We use a slave-rotor approach within a mean-field theory to study the competition of metallic, Mott-insulating, and superconducting phases of spin-3/2 fermions subjected to a periodic optical lattice potential. In addition to the metallic, the Mott-insulating, and the superconducting phases that are associated with the gauge symmetry breaking of the spinon field, we identify an emerging superconducting phase that breaks both roton and spinon field gauge symmetries. This superconducting phase emerges as a result of the competition between spin-0 singlet and spin-2 quintet interaction channels naturally available for spin-3/2 systems. The two superconducting phases can be distinguished from each other by quasiparticle weight. We further discuss the properties of these phases for both two-dimensional square and three-dimensional cubic lattices at zero and finite temperatures.
Pressure–Temperature Phase Diagram Reveals Spin–Lattice Interactions in Co[N(CN) 2 ] 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musfeldt, J. L.; O’Neal, K. R.; Brinzari, T. V.
2017-04-07
Diamond anvil cell techniques, synchrotron-based infrared and Raman spectroscopies, and lattice dynamics calculations are combined with prior magnetic property work to reveal the pressure–temperature phase diagram of Co[N(CN)2]2. The second-order structural boundaries converge on key areas of activity involving the spin state exposing how the pressure-induced local lattice distortions trigger the ferromagnetic → antiferromagnetic transition in this quantum material.
NASA Astrophysics Data System (ADS)
Yamauchi, Touru; Ueda, Hiroaki; Ohwada, Kenji; Nakao, Hironori; Ueda, Yutaka
2018-03-01
A common characteristic of quasi-one-dimensional (q1D) conductors β -A0.33V2O5 (A = Li, Na, and Ag) is that the charge ordering (CO), the ground state (GS) at ambient pressure, and the superconducting (SC) phases, the GS under high pressure, are competing with each other. We have explored high-pressure properties of divalent β -vanadium bronzes, β -A0.33V2O5 (A = Ca, Sr, and Pb), which are A -cation stoichiometry finely controlled single-crystal/powder samples, and found the absence of the SC phase. In these observations, however, we observed enormous and novel phase transitions, a kind of "devil's staircase"-type phase transitions in the charge ordering (CO) phases. The most surprising discovery in this devil's staircase, which was found mainly in β -Sr0.33V2O5 , is that all the charge modulation vectors of many kinds of CO phases can be represented as a primitive lattice translation vector along the b axis multiplied by several odd numbers. This discovery surely demonstrates interplay between the charge degree freedom and the crystallographic symmetry. We propose two possible mechanisms to explain this phenomenon: "self-charge transfer (carrier redistribution)" between the two subsystems in these compounds and "sequential symmetry reduction" that was discussed in Landau theory of phase transitions. In β -Ca0.33V2O5 we also found a P -T phase diagram similar in outlook but different in detail. The devil's staircase was also observed but it is an incomplete one. Furthermore, the charge modulation vectors in it are shorter than those in β -Sr0.33V2O5 . In β -Pb0.33V2O5 , which has no CO phase at ambient pressure, the pressure-induced antiferromagnetic ordering was observed at around 50 K above 0.5 GPa. Using these two kinds of mechanisms, we also explain the global high-pressure properties in all the stoichiometric divalent β -vanadium bronzes, which were observed as a wide variety of electromagnetic states. In addition, we also discuss a possible key for the presence/absence of the SC phase under pressure.
Two-dimensional lattice-fluid model with waterlike anomalies.
Buzano, C; De Stefanis, E; Pelizzola, A; Pretti, M
2004-06-01
We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.
Dicke superradiance as nondestructive probe for the state of atoms in optical lattices
NASA Astrophysics Data System (ADS)
ten Brinke, Nicolai; Schützhold, Ralf
2016-04-01
We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
Mixtures of bosonic and fermionic atoms in optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albus, Alexander; Dipartimento di Fisica, Universita di Salerno, Via S. Allende, I-84081 Baronissi; Illuminati, Fabrizio
2003-08-01
We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulatormore » are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.« less
NASA Astrophysics Data System (ADS)
Lu, Bin; Cheng, Xiaomin; Feng, Jinlong; Guan, Xiawei; Miao, Xiangshui
2016-07-01
Nonvolatile memory devices or circuits that can implement both storage and calculation are a crucial requirement for the efficiency improvement of modern computer. In this work, we realize logic functions by using [GeTe/Sb2Te3]n super lattice phase change memory (PCM) cell in which higher threshold voltage is needed for phase change with a magnetic field applied. First, the [GeTe/Sb2Te3]n super lattice cells were fabricated and the R-V curve was measured. Then we designed the logic circuits with the super lattice PCM cell verified by HSPICE simulation and experiments. Seven basic logic functions are first demonstrated in this letter; then several multi-input logic gates are presented. The proposed logic devices offer the advantages of simple structures and low power consumption, indicating that the super lattice PCM has the potential in the future nonvolatile central processing unit design, facilitating the development of massive parallel computing architecture.
A quantum diffractor for thermal flux
NASA Astrophysics Data System (ADS)
José Martínez-Pérez, Maria; Giazotto, Francesco
2014-04-01
Macroscopic phase coherence between weakly coupled superconductors leads to peculiar interference phenomena. Among these, magnetic flux-driven diffraction might be produced, in full analogy to light diffraction through a rectangular slit. This can be experimentally revealed by the electric current and, notably, also by the heat current transmitted through the circuit. The former was observed more than 50 years ago and represented the first experimental evidence of the phase-coherent nature of the Josephson effect, whereas the second one was still lacking. Here we demonstrate the existence of heat diffraction by measuring the modulation of the electronic temperature of a small metallic electrode nearby-contacted to a thermally biased short Josephson junction subjected to an in-plane magnetic field. The observed temperature dependence exhibits symmetry under magnetic flux reversal, and clear resemblance with a Fraunhofer-like modulation pattern. Our approach, joined to widespread methods for phase-biasing superconducting circuits, might represent an effective tool for controlling the thermal flux in nanoscale devices.
NASA Astrophysics Data System (ADS)
Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.
2016-12-01
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan
2014-04-24
Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.
Tsai, Tina I; Joachimsthaler, Anneka; Kremers, Jan
2017-10-01
The clearer divergence in spectral sensitivity between native rod and human L-cone (L*-cone) opsins in the transgenic Opn1lwLIAIS mouse (LIAIS) allows normal visual processes mediated by these photoreceptor subtypes to be isolated effectively using the silent substitution technique. The objective of this study was to further characterize the influence of mean luminance and temporal frequency on the functional properties of signals originating in each photoreceptor separately and independently of adaptation state in LIAIS mice. Electroretinographic (ERG) recordings to sine-wave rod and L*-cone modulation at different mean luminances (0.1-130.0 cd/m2) and temporal frequencies (6-26 Hz) were examined in anesthetized LIAIS (N = 17) and C57Bl/6 mice (N = 8). We report maximum rod-driven response with 8-Hz modulation at 0.1 to 0.5 cd/m2, which was almost four times larger than maximum cone-driven response at 8 Hz, 21.5 to 130 cd/m2. Over these optimal luminances, both rod- and cone-driven response amplitudes exhibited low-pass functions with similar frequency resolution limits, albeit their distinct luminance sensitivities. There were, however, two distinguishing features: (1) the frequency-dependent amplitude decrease of rod-driven responses was more profound, and (2) linear relationships describing rod-driven response phases as a function of stimulus frequency were steeper. Employing the silent substitution method with stimuli of appropriate luminance on the LIAIS mouse (as on human observers) increases the specificity, robustness, and scope to which photoreceptor-driven responses can be reliably assayed compared to the standard photoreceptor isolation methods.
NASA Astrophysics Data System (ADS)
Tamatsukuri, H.; Mitsuda, S.; Hiroura, K.; Nakajima, T.; Fujihala, M.; Yamano, M.; Toshioka, Y.; Kaneko, C.; Takehana, K.; Imanaka, Y.; Terada, N.; Kitazawa, H.
2018-06-01
We find magnetic-field-dependent dielectric dispersions specific to successive field-induced magnetic phases of a geometrically frustrated magnet CuFeO2 up to 28 T. The dielectric dispersions in the three field-induced collinear-commensurate magnetic phases are well described by the superposition of Debye-type relaxations, and the number of contributions to the Debye-type dispersions differs in these phases. In contrast, the dielectric dispersions in the noncollinear-incommensurate phase, known as a spin-driven ferroelectric phase, cannot be simply described by the Debye-type relaxations. In addition, we find that the temperature dependence of the Debye relaxation frequencies follows the Arrhenius law, and that the activation energies derived from the Arrhenius equation also depend on the magnetic field. Considering the magnetostriction effect in combination with elongation/contraction of spins resulting from the application of a magnetic field, we show that the number of Debye relaxation components is equivalent to the number of states of local Fe3O clusters determined by oxygen displacement within a triangular Fe lattice. Based on this correspondence, we propose a possible explanation that excess charges resulting from a lack of stoichiometry hop over the double-well potentials within each local Fe3O cluster, like small polarons.
Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong
2017-10-01
Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.
Exact results for the star lattice chiral spin liquid
NASA Astrophysics Data System (ADS)
Kells, G.; Mehta, D.; Slingerland, J. K.; Vala, J.
2010-03-01
We examine the star lattice Kitaev model whose ground state is a chiral spin liquid. We fermionize the model such that the fermionic vacua are toric-code states on an effective Kagome lattice. This implies that the Abelian phase of the system is inherited from the fermionic vacua and that time-reversal symmetry is spontaneously broken at the level of the vacuum. In terms of these fermions we derive the Bloch-matrix Hamiltonians for the vortex-free sector and its time-reversed counterpart and illuminate the relationships between the sectors. The phase diagram for the model is shown to be a sphere in the space of coupling parameters around the triangles of the lattices. The Abelian phase lies inside the sphere and the critical boundary between topologically distinct Abelian and non-Abelian phases lies on the surface. Outside the sphere the system is generically gapped except in the planes where the coupling parameters between the vertices on triangles are zero. These cases correspond to bipartite lattice structures and the dispersion relations are similar to that of the original Kitaev honeycomb model. In a further analysis we demonstrate the threefold non-Abelian ground-state degeneracy on a torus by explicit calculation.
Modulation of magnetic interaction in Bismuth ferrite through strain and spin cycloid engineering
NASA Astrophysics Data System (ADS)
Yadav, Rama Shanker; Reshi, Hilal Ahmad; Pillai, Shreeja; Rana, D. S.; Shelke, Vilas
2016-12-01
Bismuth ferrite, a widely studied room temperature multiferroic, provides new horizons of multifunctional behavior in phase transited bulk and thin film forms. Bismuth ferrite thin films were deposited on lattice mismatched LaAlO3 substrate using pulsed laser deposition technique. X-ray diffraction confirmed nearly tetragonal (T-type) phase of thin film involving role of substrate induced strain. The film thickness of 56 nm was determined by X-ray reflectivity measurement. The perfect coherence and epitaxial nature of T- type film was observed through reciprocal space mapping. The room temperature Raman measurement of T-type bismuth ferrite thin film also verified phase transition with appearance of only few modes. In parallel, concomitant La and Al substituted Bi1-xLaxFe0.95Al0.05O3 (x = 0.1, 0.2, 0.3) bulk samples were synthesized using solid state reaction method. A structural phase transition into orthorhombic (Pnma) phase at x = 0.3 was observed. The structural distortion at x = 0.1, 0.2 and phase transition at x = 0.3 substituted samples were also confirmed by changes in Raman active modes. The remnant magnetization moment of 0.199 emu/gm and 0.28 emu/gm were observed for x = 0.2 and 0.3 bulk sample respectively. The T-type bismuth ferrite thin film also showed high remnant magnetization of around 20emu/cc. The parallelism in magnetic behavior between T-type thin film and concomitant La and Al substituted bulk samples is indication of modulation, frustration and break in continuity of spiral spin cycloid.
Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory
NASA Astrophysics Data System (ADS)
Zemen, J.; Mendive-Tapia, E.; Gercsi, Z.; Banerjee, R.; Staunton, J. B.; Sandeman, K. G.
2017-05-01
We model changes of magnetic ordering in Mn-based antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a noncollinear spin-polarized density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilized by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first-order transition) and a large adiabatic temperature change (due to the second-order transition).
Levitation of current carrying states in the lattice model for the integer quantum Hall effect.
Koschny, T; Potempa, H; Schweitzer, L
2001-04-23
The disorder driven quantum Hall to insulator transition is investigated for a two-dimensional lattice model. The Hall conductivity and the localization length are calculated numerically near the transition. For uncorrelated and weakly correlated disorder potentials the current carrying states are annihilated by the negative Chern states originating from the band center. In the presence of correlated disorder potentials with correlation length larger than approximately half the lattice constant the floating up of the critical states in energy without merging is observed. This behavior is similar to the levitation scenario proposed for the continuum model.
Quantum spin Hall phase in 2D trigonal lattice
Wang, Z. F.; Jin, Kyung-Hwan; Liu, Feng
2016-01-01
The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin–orbit coupling (SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ∼73 meV, facilitating the possible room-temperature measurement. Our results will extend the search for substrate supported QSH materials to new lattice and orbital types. PMID:27599580
Pretransitional phenomena and pinning in liquid-crystalline blue phases
NASA Astrophysics Data System (ADS)
Demikhov, E.; Stegemeyer, H.; Tsukruk, V.
1992-10-01
Blue phases (BP's) in liquid-crystalline systems of high chirality exhibiting a short cholesteric temperature interval are investigated. In a BP I supercooled with respect to the cholesteric phase, the orientation of the cubic lattice with the (1,1,0) wave vector perpendicular to the substrate is spontaneously turned to a [200] orientation within small areas of several tenths of micrometers in diameter. A pinning of BP I lattice temperature waves is observed on the [200] orientational inhomogeneities. The pinning effect explains the observed saturation of the BP I lattice constant on decreasing temperature and its dependence on the cooling rate observed in supercooled region. A different type of cubic blue phase, BP S (``S'' represents supercooled), is observed transforming reversibly from the supercooled BP I but metastable with respect to the cholesteric phase. The BP S has two scales of order: a long-range orientational blue-phase-like order and a short-range positional smecticlike order.
Metal-insulator and charge ordering transitions in oxide nanostructures
NASA Astrophysics Data System (ADS)
Singh, Sujay Kumar
Strongly correlated oxides are a class of materials wherein interplay of various degrees of freedom results in novel electronic and magnetic phenomena. Vanadium oxides are widely studied correlated materials that exhibit metal-insulator transitions (MIT) in a wide temperature range from 70 K to 380 K. In this Thesis, results from electrical transport measurements on vanadium dioxide (VO2) and vanadium oxide bronze (MxV 2O5) (where M: alkali, alkaline earth, and transition metal cations) are presented and discussed. Although the MIT in VO2 has been studied for more than 50 years, the microscopic origin of the transition is still debated since a slew of external parameters such as light, voltage, and strain are found to significantly alter the transition. Furthermore, recent works on electrically driven switching in VO2 have shown that the role of Joule heating to be a major cause as opposed to electric field. We explore the mechanisms behind the electrically driven switching in single crystalline nanobeams of VO2 through DC and AC transport measurements. The harmonic analysis of the AC measurement data shows that non-uniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. Surprisingly, field assisted emission mechanisms such as Poole-Frenkel effect is found to be absent and the role of percolation is also identified in the electrically driven transition. This Thesis also provides a new insight into the mechanisms behind the electrolyte gating induced resistance modulation and the suppression of MIT in VO2. We show that the metallic phase of VO2 induced by electrolyte gating is due to an electrochemical process and can be both reversible and irreversible under different conditions. The kinetics of the redox processes increase with temperature; a complete suppression of the transition and the stabilization of the metallic phase are achievable by gating in the rutile metallic phase. First principles calculations show that the destabilization of the insulating phase during the gating arises due to the formation of oxygen vacancies in VO2; the rutile phase is far more amenable to electrochemical reduction as compared to the monoclinic phase, likely due to its higher electrical conductivity. The generation of oxygen vacancies appears thermodynamically favorable if the removed oxygen atoms from VO2 oxidize the anions in the ionic liquid. Finally, electronic properties of single crystalline, individual nanowires of vanadium oxide bronzes (MxVO 2O5) are presented. The intercalation effects of metal cation and the stoichiometry (x) are explored and discussed. These nanowires exhibit thermally and electrically driven charge ordering and metal to insulator transitions. The electrolyte gating measurements show resistance modulations across the phase transition but the effect is not as dramatic as in VO2.
NASA Astrophysics Data System (ADS)
Anderson, Joshua; Travesset, Alex; Lorenz, Chris
2007-03-01
We discuss molecular dynamics simulations aimed at predicting phase diagrams in Pluronic systems. Crystalline phases with cubic symmetries are particularly challenging to simulate. A general method that is able to obtain these phases is presented. As an example, we show our results for a system of ABA triblock polymers where each hydrophilic A block contains 10 beads and the hydrophobic block B contains 7 beads. These values match the ratio of PEO to PPO in Pluronic F127. Numerous simulation runs are carried out with differing initial conditions, which consistently produce textbook bcc and fcc lattices of micelles along with two other distorted bcc lattices. We find that the formation of a lattice is sensitive to the system's preparation and depends mainly on the kinetic temperature and equilibration time. Examination of the distorted lattices shows that they are related to the finite size of the simulation box. We conclude with some discussion on using these crystals as a template for nanoparticles or biomineralization.
New Baxter phase in the Ashkin-Teller model on a cubic lattice
NASA Astrophysics Data System (ADS)
Santos, J. P.; Rosa, D. S.; Sá Barreto, F. C.
2018-02-01
The mean field theory results are obtained from the Bogoliubov inequality for the spin-1/2 Ashkin-Teller model on a cubic lattice for different cluster sizes. The phase diagram, magnetization and free energy are obtained. From those expressions we observed a new phase in the model. Denoted in the course of this work by Baxter(2) this new phase presents 〈 S 〉 ≠ 〈 σ 〉 ≠ 0. The phase transitions between the Baxter(2) and the others well known phases for the model are studied and classified.
Entanglement renormalization and gauge symmetry
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Vidal, G.
2011-03-01
A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.
Programmable and reversible plasmon mode engineering.
Yang, Ankun; Hryn, Alexander J; Bourgeois, Marc R; Lee, Won-Kyu; Hu, Jingtian; Schatz, George C; Odom, Teri W
2016-12-13
Plasmonic nanostructures with enhanced localized optical fields as well as narrow linewidths have driven advances in numerous applications. However, the active engineering of ultranarrow resonances across the visible regime-and within a single system-has not yet been demonstrated. This paper describes how aluminum nanoparticle arrays embedded in an elastomeric slab may exhibit high-quality resonances with linewidths as narrow as 3 nm at wavelengths not accessible by conventional plasmonic materials. We exploited stretching to improve and tune simultaneously the optical response of as-fabricated nanoparticle arrays by shifting the diffraction mode relative to single-particle dipolar or quadrupolar resonances. This dynamic modulation of particle-particle spacing enabled either dipolar or quadrupolar lattice modes to be selectively accessed and individually optimized. Programmable plasmon modes offer a robust way to achieve real-time tunable materials for plasmon-enhanced molecular sensing and plasmonic nanolasers and opens new possibilities for integrating with flexible electronics.
Valbuena, Alejandro; Mateu, Mauricio G
2017-02-28
Self-assembling protein layers provide a "bottom-up" approach for precisely organizing functional elements at the nanoscale over a large solid surface area. The design of protein sheets with architecture and physical properties suitable for nanotechnological applications may be greatly facilitated by a thorough understanding of the principles that underlie their self-assembly and disassembly. In a previous study, the hexagonal lattice formed by the capsid protein (CA) of human immunodeficiency virus (HIV) was self-assembled as a monomolecular layer directly onto a solid substrate, and its mechanical properties and dynamics at equilibrium were analyzed by atomic force microscopy. Here, we use atomic force microscopy to analyze the kinetics of self-assembly of the planar CA lattice on a substrate and of its disassembly, either spontaneous or induced by materials fatigue. Both self-assembly and disassembly of the CA layer are cooperative reactions that proceed until a phase equilibrium is reached. Self-assembly requires a critical protein concentration and is initiated by formation of nucleation points on the substrate, followed by lattice growth and eventual merging of CA patches into a continuous monolayer. Disassembly of the CA layer showed hysteresis and appears to proceed only after large enough defects (nucleation points) are formed in the lattice, whose number is largely increased by inducing materials fatigue that depends on mechanical load and its frequency. Implications of the kinetic results obtained for a better understanding of self-assembly and disassembly of the HIV capsid and protein-based two-dimensional nanomaterials and the design of anti-HIV drugs targeting (dis)assembly and biocompatible nanocoatings are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Three-dimensional envelope instability in periodic focusing channels
NASA Astrophysics Data System (ADS)
Qiang, Ji
2018-03-01
The space-charge driven envelope instability can be of great danger in high intensity accelerators and was studied using a two-dimensional (2D) envelope model and three-dimensional (3D) macroparticle simulations before. In this paper, we study the instability for a bunched beam using a three-dimensional envelope model in a periodic solenoid and radio-frequency (rf) focusing channel and a periodic quadrupole and rf focusing channel. This study shows that when the transverse zero current phase advance is below 90 ° , the beam envelope can still become unstable if the longitudinal zero current phase advance is beyond 90 ° . For the transverse zero current phase advance beyond 90 ° , the instability stopband width becomes larger with the increase of the longitudinal focusing strength and even shows different structure from the 2D case when the longitudinal zero current phase advance is beyond 90 ° . Breaking the symmetry of two longitudinal focusing rf cavities and the symmetry between the horizontal focusing and the vertical focusing in the transverse plane in the periodic quadrupole and rf channel makes the instability stopband broader. This suggests that a more symmetric accelerator lattice design might help reduce the range of the envelope instability in parameter space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, R. L.; Wang, Y. D.; Nie, Z. H.
2008-01-01
This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.
Phase stability in the two-dimensional anisotropic boson Hubbard Hamiltonian
Ying, T.; Batrouni, G. G.; Rousseau, V. G.; ...
2013-05-15
The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a ‘checkerboard’ charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. Lastly, by consideringmore » the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the ˆx and ˆy directions, we conclude that phase separation still occurs.« less
Two-dimensional lattice-fluid model with waterlike anomalies
NASA Astrophysics Data System (ADS)
Buzano, C.; de Stefanis, E.; Pelizzola, A.; Pretti, M.
2004-06-01
We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the “Mercedes Benz” type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.
NASA Astrophysics Data System (ADS)
Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing
2018-07-01
A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.
Giardina, A.R.
1981-03-03
A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
The variable rotation period of the inner region of Saturn's plasma disk.
Gurnett, D A; Persoon, A M; Kurth, W S; Groene, J B; Averkamp, T F; Dougherty, M K; Southwood, D J
2007-04-20
We show that the plasma and magnetic fields in the inner region of Saturn's plasma disk rotate in synchronism with the time-variable modulation period of Saturn's kilometric radio emission. This relation suggests that the radio modulation has its origins in the inner region of the plasma disk, most likely from a centrifugally driven convective instability and an associated plasma outflow that slowly slips in phase relative to Saturn's internal rotation. The slippage rate is determined by the electrodynamic coupling of the plasma disk to Saturn and by the drag force exerted by its interaction with the Enceladus neutral gas torus.
NASA Astrophysics Data System (ADS)
Sajna, A. S.; Polak, T. P.
2018-06-01
Gauge potentials with different configurations have been recently realized in the optical lattice experiments. It is remarkable that one of the simplest gauge potential can generate particle energy spectrum with the self-similar structure known as a Hofstadter butterfly. We investigate theoretically the impact of strong on-site interaction on such a spectrum in the bosonic Mott insulator within Bose-Hubbard model. In particular, it is shown that the fractal structure is encoded in the quasi-particle and hole bosonic branches for different lattice backgrounds. For example a square lattice and other structures (brick-wall and staggered magnetic flux lattice) which contain Dirac points in energy dispersions are considered. This shows that single-particle physics is still present even in the strong interaction limit for whole Hofstadter spectrum. Additionally we observe, that although in brick-wall and staggered flux lattices the quasi-particle densities of states look qualitatively similar, the corresponding Hofstadter butterfly assumes different forms. In particular, we use a superposition of two different synthetic gauge fields which appears to be a generator of non-trivial phenomena in the optical lattice systems. We also discuss the consequences of these phenomena on the phase diagrams between bosonic Mott insulator and superfluid phase. The analysis is carried out within the strong coupling expansion method on the finite size lattices and also at finite temperatures which are relevant for the currently made experiments.
The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD
Beane, S. R.; Chang, E.; Detmold, W.; ...
2012-02-16
The π +π + s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m π ≈ 390 MeV with an anisotropic n f = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b s ≈ 0.123 fm in the spatial direction and b t b s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π +π + systems with both zero and non-zero total momentum in the latticemore » volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m π 2 a r = 3+O(m π 2/Λ χ 2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less
The evolution of meaning: spatio-temporal dynamics of visual object recognition.
Clarke, Alex; Taylor, Kirsten I; Tyler, Lorraine K
2011-08-01
Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input.
Henry, Molly J.; Herrmann, Björn; Kunke, Dunja; Obleser, Jonas
2017-01-01
Healthy aging is accompanied by listening difficulties, including decreased speech comprehension, that stem from an ill-understood combination of sensory and cognitive changes. Here, we use electroencephalography to demonstrate that auditory neural oscillations of older adults entrain less firmly and less flexibly to speech-paced (∼3 Hz) rhythms than younger adults’ during attentive listening. These neural entrainment effects are distinct in magnitude and origin from the neural response to sound per se. Non-entrained parieto-occipital alpha (8–12 Hz) oscillations are enhanced in young adults, but suppressed in older participants, during attentive listening. Entrained neural phase and task-induced alpha amplitude exert opposite, complementary effects on listening performance: higher alpha amplitude is associated with reduced entrainment-driven behavioural performance modulation. Thus, alpha amplitude as a task-driven, neuro-modulatory signal can counteract the behavioural corollaries of neural entrainment. Balancing these two neural strategies may present new paths for intervention in age-related listening difficulties. PMID:28654081
NASA Astrophysics Data System (ADS)
Roy, Bitan; Foster, Matthew S.
2018-01-01
We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the ASM from the AFM and superconducting orders, respectively. Our phase diagram shows an intriguing interplay among CDW, AFM, and s -wave paired states that can be germane for a uniaxially strained optical honeycomb lattice for ultracold fermion atoms, or the organic compound α -(BEDT -TTF )2I3 .
Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)
NASA Astrophysics Data System (ADS)
Lin, Tsung-Hsien
2015-10-01
Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.
Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelc, D.; Grafe, H. -J.; Gu, G. D.
In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less
Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4
Pelc, D.; Grafe, H. -J.; Gu, G. D.; ...
2017-02-15
In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less
Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice
NASA Astrophysics Data System (ADS)
Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.
2017-05-01
The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.
Tunneling anisotropic magnetoresistance driven by magnetic phase transition.
Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F
2017-09-06
The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.
Cao, Ye; Yang, Mr. Shuzhen; Jesse, Stephen; ...
2016-01-01
Many functional properties of ferroelectrics are underlain by structural instabilities, which render these materials very susceptible to small alternating applied fields (electric, mechanical, etc.) through certain constitutive coupling relations, e.g., elastic compliance and piezoelectric response, and often such instabilities can be shifted by static applied fields thus meaning tunable dynamic properties. Structural instabilities are naturally accommodated on the brink of morphotropic phase boundaries (MPB s) where multiple phases of small energy difference coexist in different crystallographic forms. Canonical MPB is realized through compositional mixture, as is typically exemplified by Pb(Zr1-xTix)O3 solid solutions and relaxor ferroelectrics of (1-x)PbMg1/3Nb2/3O3-xPbTiO3. More recently, amore » strain-driven MPB has been discovered in BiFeO3 (BFO) thin films epitaxially grown on LaAlO3 (LAO) crystal substrates (which imposes about -4.5% in-plane strains). Such an MPB is in between a rhombohedral (R) phase that bulk BFO exhibits and a so-called super-tetragonal (T) phase, which name hints at its giant lattice axial ratio (c/a ~ 1.23) and accordingly high electric polarization (~1.5 C m-2). The discovery of an MPB in BFO has revealed another facet of this multiferroic system, further adding opportunities to its many exotic functionalities such as domain wall conduction, magnetoelectric and photovoltaic effects As with other MPB s, large electric-field induced strains as well as more underlying lattice softening effects are observed near this MPB promising piezoelectric-based applications. In addition, T-phase BFO itself shows distinct properties, e.g., electronic band gap and optical absorption, from the R-phase and the resultant switching effects between them may also be exploitable. However, unlike conventional ferroelectric oxides where the phases across an MPB usually have subtle difference caused by rotations of an ion off-centering polarization, the BFO system bears multiple structural degrees of freedom, in particular antiferrodistortive modes of oxygen octahedral tilt, and a multitude of structural transition paths are thereby facilitated. Moreover, since the MPB of BFO is driven by epitaxial strain, it is sensitive to the strain relaxation related to film thickness and growth conditions, and above some critical thickness the films appear in the form of a hierarchical mixed-phase microstructure involving several coexistent polymorphs with distinct lattice distortion (monoclinic phases) and tilts. Elastic and electrical heterogeneities are necessary consequences of such complex microstructure, which couple to the intrinsic order parameters and expectedly have profound influence on the structural dynamics and material properties. All these make it a demanding task to obtain a deep understanding of this MPB system on par with its application prospect. The thin-film material form also brings in experimental restrictions to the MPB phase transition studies of BFO since many pertinent techniques fail to operate at the nanoscale or suffer from formidably weak signals. Therefore, static structural characterizations using e.g. X-ray diffraction, electron microscopy and Raman scattering have prevailed thus far. Recently, we adapted band-excitation piezoresponse spectroscopy (BEPS) to probe the bias-induced R/T phase transition dynamics of BFO/SrTiO3 (STO) thin films, and revealed the soft-mode elastic behavior of the transition. The efficacy of our method, along with standard piezoresponse force microscopy (PFM), can be significantly leveraged by integrating a variety of local and/or global excitations, e.g., tip pressure (10 s GPa attainable), heating, photo-irradiation, available to modern scanning probe platforms. This can thus afford unique opportunities to survey the structural dynamics of ferroelectric materials coupled to those field variables, enabling rapid discovery or validation of their functional properties. In this study, we focus on the T-phase BFO/LAO system; we have examined its phase transition behavior not only due to local coaction of tip bias and loading force, but also under device-level global electric fields in a coplanar capacitor. The intrinsic elastic softening phenomena near the structural transitions are comprehensively revealed by BEPS and corroborated by phase-field modeling. Our findings may open a new pathway for technological utilization of the MPB phase instabilities of BFO.« less
Superlattices assembled through shape-induced directional binding
NASA Astrophysics Data System (ADS)
Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg
2015-04-01
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fang; Yager, Kevin G.; Zhang, Yugang
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less
Nonreciprocal signal routing in an active quantum network
NASA Astrophysics Data System (ADS)
Metelmann, A.; Türeci, H. E.
2018-04-01
As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain parametrically driven elements selectively embedded in the circuit, offer a viable solution. Here, we present a general strategy for routing nonreciprocally quantum signals between two sites of a given lattice of oscillators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of overdamped oscillators linking the nodes of the main lattice. Solutions for spatially selective driving of the lattice elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to nonreciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the dynamical matrix of the network. We also demonstrate that signal and noise transmission characteristics can be separately optimized.
Superlattices assembled through shape-induced directional binding
Lu, Fang; Yager, Kevin G.; Zhang, Yugang; ...
2015-04-23
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less
NASA Astrophysics Data System (ADS)
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-01
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Hierarchical mean-field approach to the J1-J2 Heisenberg model on a square lattice
NASA Astrophysics Data System (ADS)
Isaev, L.; Ortiz, G.; Dukelsky, J.
2009-01-01
We study the quantum phase diagram and excitation spectrum of the frustrated J1-J2 spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying relevant degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry-preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers, and other degrees of freedom, and show that only the symmetric plaquette covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) plaquette crystal, connected with the neighboring Néel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the Néel and columnar phases. Our results suggest that the quantum phase transition between Néel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.
Hierarchical mean-field approach to the J1-J2 Heisenberg model on a square lattice
NASA Astrophysics Data System (ADS)
Isaev, Leonid; Ortiz, Gerardo; Dukelsky, Jorge
2009-03-01
We study the quantum phase diagram and excitation spectrum of the frustrated J1-J2 spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying relevant degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers and other degrees of freedom, and show that only the symmetric plaquette covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) plaquette crystal, connected with the neighbouring N'eel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the N'eel and columnar phases. Our results suggest that the quantum phase transition between N'eel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.
NASA Astrophysics Data System (ADS)
Aini, N.; Ningsih, R.; Maulina, D.; Lami’, F. F.; Chasanah, S. N.
2018-03-01
TiO2 has been widely investigated due to its superior photocatalytic activity under ultraviolet irradiation among the photocatalyst materials. In this research, vanadium (V3+) was doped into TiO2 to enhance its light response under visible irradiation for wider application. Vanadium was introduced into TiO2 lattice at various concentration respectively 0.3, 0.5, 0.7 and 0.9% using simple and fast sonochemical method. X-Ray Diffraction data show that vanadium doped TiO2 crystallized in anatase phase with I41amd space group. X-Ray Diffraction pattern shifted to lower value of 2θ due to vanadium dopant. It indicated that V3+ was incorporated into anatase lattice. UV-Vis Diffuse Reflectance Spectra was revealed that the doped TiO2 has lowered reflectance and enhanced absorption coefficient in visible region than undoped TiO2 and commercial anatase TiO2. Band gap energy for undoped and doped TiO2 were respectively 3.22, 3.05, 2.93, 3.03 and 2.40 eV. Therefore vanadium doped TiO2 had potential to be applied under visible light.
Lattice dynamics and elasticity for ε-plutonium [First-principles lattice dynamics for ε-plutonium
Söderlind, Per
2017-04-25
Here, lattice dynamics and elasticity for the high-temperature ε phase (body-centered cubic; bcc) of plutonium is predicted utilizing first-principles electronic structure coupled with a self-consistent phonon method that takes phonon-phonon interaction and strong anharmonicity into account. These predictions establish the first sensible lattice-dynamics and elasticity data on ε-Pu. The atomic forces required for the phonon scheme are highly accurate and derived from the total energies obtained from relativistic and parameter-free density-functional theory. The results appear reasonable but no data exist to compare with except those from dynamical mean-field theory that suggest ε-plutonium is mechanically unstable. Fundamental knowledge and understanding ofmore » the high-temperature bcc phase, that is generally present in all actinide metals before melting, is critically important for a proper interpretation of the phase diagram as well as practical modeling of high-temperature properties.« less
Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network
NASA Astrophysics Data System (ADS)
Zhu, Weiwei; Hou, Shanshan; Long, Yang; Chen, Hong; Ren, Jie
2018-02-01
Inspired by the topological insulator circuit experimentally proposed by Jia Ningyuan et al. [Phys. Rev. X 5, 021031 (2015), 10.1103/PhysRevX.5.021031], we theoretically realize the topological Lieb lattice, a line-centered square lattice with rich topological properties, in a radio-frequency circuit. We design a specific capacitor-inductor connection to resemble the intrinsic spin-orbit coupling and construct the analog spin by mixing degrees of freedom of voltages. As such, we are able to simulate the quantum spin Hall effect in the topological Lieb lattice of linear circuits. We then investigate the spin-resolved topological edge mode and the topological phase transition of the band structure varied with capacitances. Finally, we discuss the extension of the π /2 phase change of hopping between sites to arbitrary phase values. Our results may find implications in engineering microwave topological metamaterials for signal transmission and energy harvesting.
Photonic zero mode in a non-Hermitian photonic lattice.
Pan, Mingsen; Zhao, Han; Miao, Pei; Longhi, Stefano; Feng, Liang
2018-04-03
Zero-energy particles (such as Majorana fermions) are newly predicted quasiparticles and are expected to play an important role in fault-tolerant quantum computation. In conventional Hermitian quantum systems, however, such zero states are vulnerable and even become vanishing if couplings with surroundings are of the same topological nature. Here we demonstrate a robust photonic zero mode sustained by a spatial non-Hermitian phase transition in a parity-time (PT) symmetric lattice, despite the same topological order across the entire system. The non-Hermitian-enhanced topological protection ensures the reemergence of the zero mode at the phase transition interface when the two semi-lattices under different PT phases are decoupled effectively in their real spectra. Residing at the midgap level of the PT symmetric spectrum, the zero mode is topologically protected against topological disorder. We experimentally validated the robustness of the zero-energy mode by ultrafast heterodyne measurements of light transport dynamics in a silicon waveguide lattice.
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; ...
2016-08-22
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
NASA Astrophysics Data System (ADS)
Song, Juntao; Fine, Carolyn; Prodan, Emil
2014-11-01
The effect of strong disorder on chiral-symmetric three-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the noncommutative winding number, as functions of disorder strength and model's parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study reconfirms the accurate quantization of the noncommutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so-called "levitation and pair annihilation" process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the one-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.
High pressure phase transformation in uranium carbide: A first principle study
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2013-02-01
First principles calculations have been carried out to analyze structural, elastic and dynamic stability, of UC under hydrostatic compression. The comparison of enthalpies of rocksalt type (B1) and body centered orthorhombic (bco) structures as a function of pressure suggests the B1 →bco transition at ˜ 23 GPa, in good agreement with experimental value of 27 GPa. From the lattice dynamic calculations we have determined the phonon dispersion relations for B1 phase at various compressions. It is found that TA phonon branch along Γ-X direction becomes imaginary around the transition pressure. Further, the phonon instability so caused is of long wavelength nature as it occurs near the Brillouin zone centre. This long wavelength phonon instability at the transition point indicates that the B1 →bco transition is driven by elastic failure (the vanishing of C44 modulus). Various physical quantities such as equilibrium volume, bulk modulus, pressure derivative of bulk modulus and elastic constants have been determined at zero pressure and compared with data available in literature.
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; Gati, Cornelius; Kimura, Tetsunari; Milne, Christopher; Milathianaki, Despina; Kubo, Minoru; Wu, Wenting; Conrad, Chelsie; Coe, Jesse; Bean, Richard; Zhao, Yun; Båth, Petra; Dods, Robert; Harimoorthy, Rajiv; Beyerlein, Kenneth R.; Rheinberger, Jan; James, Daniel; DePonte, Daniel; Li, Chufeng; Sala, Leonardo; Williams, Garth J.; Hunter, Mark S.; Koglin, Jason E.; Berntsen, Peter; Nango, Eriko; Iwata, So; Chapman, Henry N.; Fromme, Petra; Frank, Matthias; Abela, Rafael; Boutet, Sébastien; Barty, Anton; White, Thomas A.; Weierstall, Uwe; Spence, John; Neutze, Richard; Schertler, Gebhard; Standfuss, Jörg
2016-01-01
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX. PMID:27545823
Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures.
Zhang, Qiang; Chen, Yuxuan; Zhang, Chendong; Pan, Chi-Ruei; Chou, Mei-Yin; Zeng, Changgan; Shih, Chih-Kang
2016-12-14
The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe 2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelling microscopy and spectroscopy, we found that the quasi-particle bandgap of MoSe 2 on hBN/Ru is about 0.25 eV smaller than those on graphene or graphite substrates. We attribute this result to the strong interaction between hBN/Ru, which causes residual metallic screening from the substrate. In addition, the electronic structure and the work function of MoSe 2 are modulated electrostatically with an amplitude of ∼0.13 eV. Most interestingly, this electrostatic modulation is spatially in phase with the Moiré pattern of hBN on Ru(0001) whose surface also exhibits a work function modulation of the same amplitude.
Photoassociation dynamics driven by a modulated two-color laser field
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zhao, Ze-Yu; Xie, Ting; Wang, Gao-Ren; Huang, Yin; Cong, Shu-Lin
2011-11-01
Photoassociation (PA) dynamics of ultracold cesium atoms steered by a modulated two-color laser field E(t)=E0f(t)cos((2π)/(Tp)-φ)cos(ωLt) is investigated theoretically by numerically solving the time-dependent Schrödinger equation. The PA dynamics is sensitive to the phase of envelope (POE) φ and the period of the envelope Tp, which indicates that it can be controlled by varying POE φ and period Tp. Moreover, we introduce the time- and frequency-resolved spectrum to illustrate how the POE φ and the period Tp influence the intensity distribution of the modulated laser pulse and hence change the time-dependent population distribution of photoassociated molecules. When the Gaussian envelope contains a few oscillations, the PA efficiency is also dependent on POE φ. The modulated two-color laser field is available in the current experiment based on laser mode-lock technology.
Frequency Invariability of (Pb,La)(Zr,Ti)O₃ Antiferroelectric Thick-Film Micro-Cantilevers.
An, Kun; Jin, Xuechen; Meng, Jiang; Li, Xiao; Ren, Yifeng
2018-05-13
Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.
Magnetic Structure and Quadrupolar Order Parameter Driven by Geometrical Frustration Effect in NdB 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta
2017-04-15
Neutron diffraction experiments have been carried out to characterize the magnetic structures and order parameters in an intermediate phase of NdB 4 showing the successive phase transitions at T 0 = 17.2 K, T N1 = 7.0 K, and T N2 = 4.8 K. We have revealed the antiferromagnetic ordering with the propagation vectors q0=(0,0,0), q0 and qs1=(δ,δ,0.4) (δ ~ 0.14), and q 0 and q s2=(0.2,0,0.4) in phase II (T N1 < T < T 0), phase III (T N2 < T < T N1), and phase IV (T < T N2), respectively. The observed patterns in phase IImore » are successfully explained by postulating a coplanar structure with static magnetic moments in the tetragonal ab-plane. We have found that the magnetic structure in phase II can be uniquely determined to be a linear combination of antiferromagnetic “all-in/all-out”-type (Γ 4) and “vortex”-type (Γ 2) structures, consisting of a Γ 4 main component (77%) with a small amplitude of Γ 2 (23%). Finally, we propose that the quadrupolar interaction holds the key to stabilizing the noncollinear magnetic structure and quadrupolar order. Here, the frustration in the Shastry–Sutherland lattice would play an essential role in suppressing the dominance of the magnetic interaction.« less
Magnetic Structure and Quadrupolar Order Parameter Driven by Geometrical Frustration Effect in NdB4
NASA Astrophysics Data System (ADS)
Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta; Suzuki, Kazuya; Fukazawa, Hiroshi; Chi, Songxue; Fernandez-Baca, Jaime A.
2017-04-01
Neutron diffraction experiments have been carried out to characterize the magnetic structures and order parameters in an intermediate phase of NdB4 showing the successive phase transitions at T0 = 17.2 K, TN1 = 7.0 K, and TN2 = 4.8 K. We have revealed the antiferromagnetic ordering with the propagation vectors q0 = (0,0,0), q0 and qs1 = (δ ,δ ,0.4) (δ ˜ 0.14), and q0 and qs2 = (0.2,0,0.4) in phase II (TN1 < T < T0), phase III (TN2 < T < TN1), and phase IV (T < TN2), respectively. The observed patterns in phase II are successfully explained by postulating a coplanar structure with static magnetic moments in the tetragonal ab-plane. We have found that the magnetic structure in phase II can be uniquely determined to be a linear combination of antiferromagnetic "all-in/all-out"-type (Γ4) and "vortex"-type (Γ2) structures, consisting of a Γ4 main component (77%) with a small amplitude of Γ2 (23%). We propose that the quadrupolar interaction holds the key to stabilizing the noncollinear magnetic structure and quadrupolar order. Here, the frustration in the Shastry-Sutherland lattice would play an essential role in suppressing the dominance of the magnetic interaction.
Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.
NASA Astrophysics Data System (ADS)
Huang, Ran
The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.
Ultracold Realization of AntiFerromagenteic Order
NASA Astrophysics Data System (ADS)
Shrestha, Uttam
2011-03-01
We investigate numerically the experimental feasibility of observing the antiferromagnetic (AF) order in the bosonic mixtures of rubidium (87 Rb) and potassium (41 K) in a two-dimensional optical lattice with external trapping potential. Within the mean-field approximation we have found the ground states which, for a specific range of parameters such as inter-species interactions and lattice height, interpolate from phase separation to the AF order. For the moderate lattice heights the coexistence of the Mott and AF phase is possible for rubidium atoms while the potassium atoms remain superfluid with overlapped AF phase. In our view there has not been any study on AF order in two-component systems when one component remains in the superfluid phase while the other is in the Mott phase. Therefore, this observation may provide a novel regime for studying quantum magnetism in ultracold systems. This work was supported by the EU Contract EU STREP NAMEQUAM.