Sample records for phased array design

  1. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  2. Phased-array-fed antenna configuration study. Volume 1: Technology assessment

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.

    1983-01-01

    The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.

  3. Designing of a small wearable conformal phased array antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.

  4. S-band antenna phased array communications system

    NASA Technical Reports Server (NTRS)

    Delzer, D. R.; Chapman, J. E.; Griffin, R. A.

    1975-01-01

    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.

  5. Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.

  6. A phased array bread board for future remote sensing applications

    NASA Astrophysics Data System (ADS)

    Zahn, R. W.; Schmidt, E.

    The next generation of SAR antennas will be of the active phased-array type. The ongoing development of a phased-array breadboard for remote sensing is described. Starting from a detailed system design, a functional representative breadboard was developed. The design and the performance of the breadboard are discussed.

  7. Design and fabrication of a high temperature leading edge heating array, phase 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.

  8. Fabrication and Testing of Binary-Phase Fourier Gratings for Nonuniform Array Generation

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.; Nelson, Tom R., Jr.; Parker, Jack H.; Beecher, Elizabeth A.

    2004-01-01

    This effort describes the fabrication and testing of binary-phase Fourier gratings designed to generate an incoherent array of output source points with nonuniform user-defined intensities, symmetric about the zeroth order. Like Dammann fanout gratings, these binary-phase Fourier gratings employ only two phase levels to generate a defined output array. Unlike Dammann fanout gratings, these gratings generate an array of nonuniform, user-defined intensities when projected into the far-field regime. The paper describes the process of design, fabrication, and testing for two different version of the binary-phase grating; one designed for a 12 micron wavelength, referred to as the Long-Wavelength Infrared (LWIR) grating, and one designed for a 5 micron wavelength, referred to as the Mid-Wavelength Infrared Grating (MWIR).

  9. Phased Antenna Array for Global Navigation Satellite System Signals

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  10. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  11. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  12. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  13. Microwave power transmitting phased array antenna research project

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1978-01-01

    An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.

  14. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  15. Ultrasonic phased array controller for hyperthermia applications.

    PubMed

    Benkeser, P J; Pao, T L; Yoon, Y J

    1991-01-01

    Multiple and mechanically scanned ultrasound transducer systems have demonstrated the efficacy of using ultrasound to produce deep localized hyperthermia. The use of ultrasonic phased arrays has been proposed as an alternative to these systems. A phased array offers a more flexible approach to heating tumours in that the size, shape, and position of its focal region can be altered during the course of treatment in order to achieve the desired temperature distribution. This added flexibility comes at the cost of increased complexity of the hardware necessary to drive the transducer because each element requires its own amplifer with both phase and amplitude control. In order for phased arrays with large numbers of elements to be feasible for hyperthermia applications, the complexity of this circuitry must be minimized. This paper describes a circuit design which simplifies the electronics required to control a phased array transducer system for hyperthermia applications. The design is capable of controlling virtually any type of phased array transducer operating at frequencies less than 2 MHz. The system performance was verified through beam profile measurements using a 48-element tapered phased array transducer.

  16. Target tracking and pointing for arrays of phase-locked lasers

    NASA Astrophysics Data System (ADS)

    Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis

    2016-09-01

    Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.

  17. Development of components for an S-band phased array antenna subsystem

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system requirements, module test data, and S-band phased array subsystem test data are discussed. Of the two approaches to achieving antenna gain (mechanically steered reflector or electronically steered phased array), the phased array approach offers the greatest simplicity and lowest cost (size, weight, power, and dollars) for this medium gain. A competitive system design is described as well as hardware evaluation which will lead to timely availability of this technology for implementing such a system. The objectives of the study were: to fabricate and test six engineering model transmit/receive microelectronics modules; to design, fabricate, and test one dc and logic multilayer manifold; and to integrate and test an S-band phased array antenna subsystem composed of antenna elements, seven T/R modules, RF manifolds and dc manifold.

  18. Hierarchical sinuous-antenna phased array for millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-03-01

    We present the design, fabrication, and measured performance of a hierarchical sinuous-antenna phased array coupled to superconducting transition-edge-sensor (TES) bolometers for millimeter wavelengths. The architecture allows for dual-polarization wideband sensitivity with a beam width that is approximately frequency-independent. We report on measurements of a prototype device, which uses three levels of triangular phased arrays to synthesize beams that are approximately constant in width across three frequency bands covering a 3:1 bandwidth. The array element is a lens-coupled sinuous antenna. The device consists of an array of hemispherical lenses coupled to a lithographed wafer, which integrates TESs, planar sinuous antennas, and microwave circuitry including band-defining filters. The approximately frequency-independent beam widths improve coupling to telescope optics and keep the sensitivity of an experiment close to optimal across a broad frequency range. The design can be straightforwardly modified for use with non-TES lithographed cryogenic detectors such as kinetic inductance detectors. Additionally, we report on the design and measurements of a broadband 180° hybrid that can simplify the design of future multichroic focal planes including but not limited to hierarchical phased arrays.

  19. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  20. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.

  1. Two-Way Pattern Design for Distributed Subarray Antennas

    DTIC Science & Technology

    2012-09-01

    GUI Graphical User Interface HPBW Half-power Beamwidth MFR Multifunction Radar RCS Radar Cross Section RRE Radar Range Equation...The Aegis ships in the US Navy use phased arrays for the AN/SPY-1 multifunction radar ( MFR ) [2]. The phased array for the AN/SPY-1 radar is shown in...arrays. This is a challenge for design of antenna apertures for shipboard radar systems. One design approach is to use multi-function subarray

  2. Metamaterial-inspired reconfigurable series-fed arrays

    NASA Astrophysics Data System (ADS)

    Ijaz, Bilal

    One of the biggest challenges in modern day wireless communication systems is to attain agility and provide more degrees of freedom in parameters such as frequency, radiation pattern and polarization. Existing phased array antenna technology has limitations in frequency bandwidth and scan angle. So it is important to design frequency reconfigurable antenna arrays which can provide two different frequency bandwidths with a broadside radiation pattern having a lower sidelobe and reduced frequency scanning. The reconfigurable antenna array inspired by the properties of metamaterials presented here provides a solution to attain frequency agility in a wireless communication system. The adaptive change in operating frequency is attained by using RF p-i-n diodes on the antenna array. The artificially made materials having properties of negative permeability and negative permittivity have antiparallel group and phase velocities, and, in consequence of that, they support backward wave propagation. The key idea of this work is to demonstrate that the properties of metamaterial non-radiating phase shifting transmission lines can be utilized to design a series-fed antenna array to operate at two different frequency bands with a broadside radiation pattern in both configurations. In this research, first, a design of a series-fed microstrip array with composite right/left-handed transmission lines (CRLH-TLs) is proposed. To ensure that each element in the array is driven with the same voltage phase, dual-band CRLH-TLs are adopted instead of meander-line microstrip lines to provide a compact interconnect with a zero phase-constant at the frequency of operation. Next, the work is extended to design a reconfigurable series-fed antenna array with reconfigurable metamaterial interconnects, and the expressions for array factor are derived for both switching bands.

  3. Intracavitary ultrasound phased arrays for thermal therapies

    NASA Astrophysics Data System (ADS)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated that the heating capabilities of the constructed phased arrays were adequate for hyperthermia and thermal surgery treatments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  4. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  5. Design and simulation of a tactile display based on a CMUT array

    NASA Astrophysics Data System (ADS)

    Chouvardas, Vasilios G.; Hatalis, Miltiadis K.; Miliou, Amalia N.

    2012-10-01

    In this article, we present the design of a tactile display based on a CMUT-phased array. The array implements a 'pixel' of the display and is used to focus airborne ultrasound energy on the skin surface. The pressure field, generated by the focused ultrasound waves, is used to excite the mechanoreceptors under the skin and transmit tactile information. The results of Finite Element Analysis (FEA) of the Capacitive Micromachined Ultrasonic Transducer (CMUT) and the CMUT-phased array for ultrasound emission are presented. The 3D models of the device and the array were developed using a commercial FEA package. Modelling and simulations were performed using the parameters from the POLYMUMPS surface micromachining technology from MEMSCAP. During the analysis of the phased array, several parameters were studied in order to determine their importance in the design of the tactile display. The output of the array is compared with the acoustic intensity thresholds in order to prove the feasibility of the design. Taking into account the density of the mechanoreceptors in the skin, we conclude that there should be at least one receptor under the excitation area formed on the skin.

  6. Design and fabrication of microstrip antenna arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.

  7. Ka-Band Multibeam Aperture Phased Array Being Developed

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements fail. The arrays can be constructed to conform to a mounting surface, and multibeam capability is integral to the design. However, there are challenges for mission designers using monolithic-microwave-integrated-circuit- (MMIC-) based arrays because of reduced power efficiency, higher costs, and certain system effects that result in link degradations. The multibeam aperture phased-array antenna development is attempting to address some of these issues, particularly manufacturing, costs, and system performance.

  8. Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)

    DTIC Science & Technology

    2015-07-01

    turbulence impact of the WSMR solar array. 4) Designing , developing, testing , and evaluating integrated Data Acquisition System (DAS) hardware and...ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by

  9. Some design considerations for a synthetic aperture optical telescope array

    NASA Astrophysics Data System (ADS)

    Scott, P. W.

    1984-01-01

    Several design considerations inherent in the configuration of phased array transmission of multiwavelength laser beams are discussed. Attention is focused on the U.S.A.F. phased array (PHASAR) demonstration project, where problems have been encountered in dividing the beam(s), controlling the optical path differences between subapertures, and expanding individual beams.A piston-driven path length adjustment mechanism has been selected, along with an active control system and proven components for stability maintenance. The necessity of developing broadband, high reflectivity low phase shift coatings for the system mirrors is stressed.

  10. Phased array antenna matching: Simulation and optimization of a planar phased array of circular waveguide elements

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.

    1972-01-01

    A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.

  11. Configuration study for a 30 GHz monolithic receive array: Technical assessment

    NASA Technical Reports Server (NTRS)

    Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.

    1984-01-01

    The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.

  12. An Agile Beam Transmit Array Using Coupled Oscillator Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme

    1993-01-01

    A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its neighbors. Using this array, we have been able to verify the theoretical predictions concerning the effect of this phase on both the locking range and ensemble frequency of the array. However, the scan range achieved fell somewhat short of the theoretical value because of the amplitude variation of the oscillator outputs with tuning.

  13. Design of photonic phased array switches using nano electromechanical systems on silicon-on-insulator integration platform

    NASA Astrophysics Data System (ADS)

    Hussein, Ali Abdulsattar

    This thesis presents an introduction to the design and simulation of a novel class of integrated photonic phased array switch elements. The main objective is to use nano-electromechanical (NEMS) based phase shifters of cascaded under-etched slot nanowires that are compact in size and require a small amount of power to operate them. The structure of the switch elements is organized such that it brings the phase shifting elements to the exterior sides of the photonic circuits. The transition slot couplers, used to interconnect the phase shifters, are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the switch element, which is taken as a ground. Phased array switch elements ranging from 2x2 up to 8x8 multiple-inputs/multiple-outputs (MIMO) are conveniently designed within reasonable footprints native to the current fabrication technologies. Chapter one presents the general layout of the various designs of the switch elements and demonstrates their novel features. This demonstration will show how waveguide disturbances in the interconnecting network from conventional switch elements can be avoided by adopting an innovative design. Some possible applications for the designed switch elements of different sizes and topologies are indicated throughout the chapter. Chapter two presents the design of the multimode interference (MMI) couplers used in the switch elements as splitters, combiners and waveguide crossovers. Simulation data and design methodologies for the multimode couplers of interest are detailed in this chapter. Chapter three presents the design and analysis of the NEMS-operated phase shifters. Both simulations and numerical analysis are utilized in the design of a 0°-180° capable NEMS-operated phase shifter. Additionally, the response of some of the designed photonic phased array switch elements is demonstrated in this chapter. An executive summary and conclusions sections are also included in the thesis.

  14. Report for simultaneous, multiple independently steered beam study for Airborne Electronically Steerable Phased Array (AESPA) program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design concepts of an array for the formation of multiple, simultaneous, independently pointed beams for satellite communication links were investigated through tradeoffs of various approaches which were conceived as possible solutions to the problem. After the preferred approach was selected, a more detailed design was configured and is presented as a candidate system that should be given further consideration for development leading to a preliminary design. This array uses an attenuator and a phase shifter with every element. The aperture excitation necessary to form the four beams is calculated and then placed across the array using these devices. Pattern analysis was performed for two beam and four beam cases with numerous patterns being presented. Parameter evaluation shown includes pointing accuracy and beam shape, sidelobe characteristics, gain control, and beam normalization. It was demonstrated that a 4 bit phase shifter and a 6 bit, 30 dB attenuator were sufficient to achieve adequate pattern performances. The phase amplitude steered multibeam array offers the flexibility of 1 to 4 beams with an increase in gain of 6 dB if only one beam is selected.

  15. Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas

    NASA Astrophysics Data System (ADS)

    Poduval, Dhruva

    Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions. Finally, simulated beam scanning in several angles of the array is shown considering specific phases for each antenna element in the array.

  16. Developing an Inflatable Solar Array

    NASA Technical Reports Server (NTRS)

    Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.

    1992-01-01

    Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.

  17. Concept design of an 80-dual polarization element cryogenic phased array camera for the Arecibo Radio Telescope

    NASA Astrophysics Data System (ADS)

    Cortes-Medellin, German; Parshley, Stephen; Campbell, Donald B.; Warnick, Karl F.; Jeffs, Brian D.; Ganesh, Rajagopalan

    2016-08-01

    This paper presents the current concept design for ALPACA (Advanced L-Band Phased Array Camera for Arecibo) an L-Band cryo-phased array instrument proposed for the 305 m radio telescope of Arecibo. It includes the cryogenically cooled front-end with 160 low noise amplifiers, a RF-over-fiber signal transport and a digital beam former with an instantaneous bandwidth of 312.5 MHz per channel. The camera will digitally form 40 simultaneous beams inside the available field of view of the Arecibo telescope optics, with an expected system temperature goal of 30 K.

  18. Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2012-01-01

    Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept.

  19. On analytic design of loudspeaker arrays with uniform radiation characteristics

    PubMed

    Aarts; Janssen

    2000-01-01

    Some notes on analytical derived loudspeaker arrays with uniform radiation characteristics are presented. The array coefficients are derived via analytical means and compared with so-called maximal flat sequences known from telecommunications and information theory. It appears that the newly derived array, i.e., the quadratic phase array, has a higher efficiency than the Bessel array and a flatter response than the Barker array. The method discussed admits generalization to the design of arrays with desired nonuniform radiating characteristics.

  20. Receive Mode Analysis and Design of Microstrip Reflectarrays

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    Traditionally microstrip or printed reflectarrays are designed using the transmit mode technique. In this method, the size of each printed element is chosen so as to provide the required value of the reflection phase such that a collimated beam results along a given direction. The reflection phase of each printed element is approximated using an infinite array model. The infinite array model is an excellent engineering approximation for a large microstrip array since the size or orientation of elements exhibits a slow spatial variation. In this model, the reflection phase from a given printed element is approximated by that of an infinite array of elements of the same size and orientation when illuminated by a local plane wave. Thus the reflection phase is a function of the size (or orientation) of the element, the elevation and azimuth angles of incidence of a local plane wave, and polarization. Typically, one computes the reflection phase of the infinite array as a function of several parameters such as size/orientation, elevation and azimuth angles of incidence, and in some cases for vertical and horizontal polarization. The design requires the selection of the size/orientation of the printed element to realize the required phase by interpolating or curve fitting all the computed data. This is a substantially complicated problem, especially in applications requiring a computationally intensive commercial code to determine the reflection phase. In dual polarization applications requiring rectangular patches, one needs to determine the reflection phase as a function of five parameters (dimensions of the rectangular patch, elevation and azimuth angles of incidence, and polarization). This is an extremely complex problem. The new method employs the reciprocity principle and reaction concept, two well-known concepts in electromagnetics to derive the receive mode analysis and design techniques. In the "receive mode design" technique, the reflection phase is computed for a plane wave incident on the reflectarray from the direction of the beam peak. In antenna applications with a single collimated beam, this method is extremely simple since all printed elements see the same angles of incidence. Thus the number of parameters is reduced by two when compared to the transmit mode design. The reflection phase computation as a function of five parameters in the rectangular patch array discussed previously is reduced to a computational problem with three parameters in the receive mode. Furthermore, if the beam peak is in the broadside direction, the receive mode design is polarization independent and the reflection phase computation is a function of two parameters only. For a square patch array, it is a function of the size, one parameter only, thus making it extremely simple.

  1. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    NASA Technical Reports Server (NTRS)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  2. Adaptive multibeam phased array design for a Spacelab experiment

    NASA Technical Reports Server (NTRS)

    Noji, T. T.; Fass, S.; Fuoco, A. M.; Wang, C. D.

    1977-01-01

    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio.

  3. Spectrally resolved modal characteristics of leaky-wave-coupled quantum cascade phase-locked laser arrays

    NASA Astrophysics Data System (ADS)

    Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert

    2018-01-01

    The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.

  4. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Astrophysics Data System (ADS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1983-12-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.

  5. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1983-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.

  6. Binary-Phase Fourier Gratings for Nonuniform Array Generation

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.

    2003-01-01

    We describe a design method for a binary-phase Fourier grating that generates an array of spots with nonuniform, user-defined intensities symmetric about the zeroth order. Like the Dammann fanout grating approach, the binary-phase Fourier grating uses only two phase levels in its grating surface profile to generate the final spot array. Unlike the Dammann fanout grating approach, this method allows for the generation of nonuniform, user-defined intensities within the final fanout pattern. Restrictions governing the specification and realization of the array's individual spot intensities are discussed. Design methods used to realize the grating employ both simulated annealing and nonlinear optimization approaches to locate optimal solutions to the grating design problem. The end-use application driving this development operates in the near- to mid-infrared spectrum - allowing for higher resolution in grating specification and fabrication with respect to wavelength than may be available in visible spectrum applications. Fabrication of a grating generating a user-defined nine spot pattern is accomplished in GaAs for the near-infrared. Characterization of the grating is provided through the measurement of individual spot intensities, array uniformity, and overall efficiency. Final measurements are compared to calculated values with a discussion of the results.

  7. Microwave scanning beam approach and landing system phased array antenna.

    DOT National Transportation Integrated Search

    1971-09-01

    The design, operating instructions, detailed logic circuitry, and antenna test range results for the electronic circular scanning phased array developed at TSC (DOTSCAN) are described. Components developed for this effort are also described, and test...

  8. Phased array-fed antenna configuration study

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    The scope of this contract entails a configuration study for a phased array fed transmit antenna operating in the frequency band of 17.7 to 20.2 GHz. This initial contract provides a basis for understanding the design limitations and advantages of advanced phased array and cluster feeds (both utilizing intergral MMIC modules) illuminating folded reflector optics (both near field and focused types). Design parametric analyses are performed utilizing as constraints the objective secondary performance requirements of the Advanced Communications Technology Satellite (Table 1.0). The output of the study provides design information which serves as a data base for future active phased array fed antenna studies such as detailed designs required to support the development of a ground tested breadboard. In general, this study is significant because it provides the antenna community with an understanding of the basic principles which govern near field phased scanned feed effects on secondary reflector system performance. Although several articles have been written on analysis procedures and results for these systems, the authors of this report have observed phenomenon of near field antenna systems not previously documented. Because the physical justification for the exhibited performance is provided herein, the findings of this study add a new dimension to the available knowledge of the subject matter.

  9. MSAT-X phased array antenna adaptions to airborne applications

    NASA Technical Reports Server (NTRS)

    Sparks, C.; Chung, H. H.; Peng, S. Y.

    1988-01-01

    The Mobile Satellite Experiment (MSAT-X) phased array antenna is being modified to meet future requirements. The proposed system consists of two high gain antennas mounted on each side of a fuselage, and a low gain antenna mounted on top of the fuselage. Each antenna is an electronically steered phased array based on the design of the MSAT-X antenna. A beamforming network is connected to the array elements via coaxial cables. It is essential that the proposed antenna system be able to provide an adequate communication link over the required space coverage, which is 360 degrees in azimuth and from 20 degrees below the horizon to the zenith in elevation. Alternative design concepts are suggested. Both open loop and closed loop backup capabilities are discussed. Typical antenna performance data are also included.

  10. Large Phased Array Radar Using Networked Small Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.

  11. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Astrophysics Data System (ADS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  12. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  13. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  14. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  15. Baseline antenna design for space exploration initiative

    NASA Technical Reports Server (NTRS)

    Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz

    1993-01-01

    A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.

  16. Design and Characterization of Dual-Curvature 1.5-Dimensional High-Intensity Focused Ultrasound Phased-Array Transducer

    PubMed Central

    Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M.; Lin, Win-Li; Chang, Hsu; Shung, K. Kirk

    2013-01-01

    A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing. PMID:22293745

  17. Automated Array Assembly, Phase 2

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array Project is a process development task. The contract provides for the fabrication of modules from large area tandem junction cells (TJC). During this quarter, effort was focused on the design of a large area, approximately 36 sq cm, TJC and process verification runs. The large area TJC design was optimized for minimum I squared R power losses. In the TJM activity, the cell-module interfaces were defined, module substrates were formed and heat treated and clad metal interconnect strips were fabricated.

  18. Feed system design and experimental results in the uhf model study for the proposed Urbana phased array

    NASA Technical Reports Server (NTRS)

    Loane, J. T.; Bowhill, S. A.; Mayes, P. E.

    1982-01-01

    The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used.

  19. B1 transmit phase gradient coil for single-axis TRASE RF encoding.

    PubMed

    Deng, Qunli; King, Scott B; Volotovskyy, Vyacheslav; Tomanek, Boguslaw; Sharp, Jonathan C

    2013-07-01

    TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume. A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements. Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved. The Maxwell (sine)-Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The Implications of Encoder/Modulator/ Phased Array Designs for Future Broadband LEO Communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Jensen, Chris A.; Terry, John D.

    1997-01-01

    In this paper we summarize the effects of modulation and channel coding on the design of wide angle scan, broadband, phased army antennas. In the paper we perform several trade studies. First, we investigate the amplifier back-off requirement as a function of variability of modulation envelope. Specifically, we contrast constant and non-constant envelope modulations, as well as single and multiple carrier schemes. Additionally, we address the issues an(f concerns of using pulse shaping filters with the above modulation types. Second, we quantify the effects of beam steering on the quality of data, recovery using selected modulation techniques. In particular, we show that the frequency response of the array introduces intersymbol interference for broadband signals and that the mode of operation for the beam steering controller may introduce additional burst or random errors. Finally, we show that the encoder/modulator design must be performed in conjunction with the phased array antenna design.

  1. Design of a K-Band Transmit Phased Array For Low Earth Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Watson, Thomas; Miller, Stephen; Kershner, Dennis; Anzic, Godfrey

    2000-01-01

    The design of a light weight, low cost phased array antenna is presented. Multilayer printed wiring board (PWB) technology is utilized for Radio Frequencies (RF) and DC/Logic manifold distribution. Transmit modules are soldered on one side and patch antenna elements are on the other, allowing the use of automated assembly processes. The 19 GHz antenna has two independently steerable beams, each capable of transferring data at 622 Mbps. A passive, self-contained phase change thermal management system is also presented.

  2. Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2016-11-01

    Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.

  3. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  4. Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode

    NASA Astrophysics Data System (ADS)

    Hsin, Wei

    New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.

  5. Scientific grade CCDs from EG & G Reticon

    NASA Technical Reports Server (NTRS)

    Cizdziel, Philip J.

    1990-01-01

    The design and performance of three scientific grade CCDs are summarized: a 1200 x 400 astronomical array of 27 x 27 sq micron pixels, a 512 x 512 scientific array of 27 x 27 sq micron pixels and a 404 x 64 VNIR array of 52 x 52 sq micron pixels. Each of the arrays is fabricated using a four phase, double poly, buried n-channel, multi-pinned phase CCD process. Performance data for each sensor is presented.

  6. ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20 60 GHZ Active Phased Array for Wide Angle Scanning

    DTIC Science & Technology

    2017-08-08

    Another area of the design that needs to be experimentally tested is the SMPS connectors used to attach the two beamforming stages together. In...AFRL-RY-WP-TR-2017-0104 ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20-60...Order 0003: Design of a Circularly Polarized, 20-60 GHZ Active Phased Array for Wide Angle Scanning 5a. CONTRACT NUMBER FA8650-14-D-1714-0003 5b

  7. Phase-Scrambler Plate Spreads Point Image

    NASA Technical Reports Server (NTRS)

    Edwards, Oliver J.; Arild, Tor

    1992-01-01

    Array of small prisms retrofit to imaging lens. Phase-scrambler plate essentially planar array of small prisms partitioning aperture of lens into many subapertures, and prism at each subaperture designed to divert relatively large diffraction spot formed by that subaperture to different, specific point on focal plane.

  8. Cabling design for phased arrays

    NASA Technical Reports Server (NTRS)

    Kruger, I. D.; Turkiewicz, L.

    1972-01-01

    The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.

  9. Synthesis of Conformal Phased Antenna Arrays With A Novel Multiobjective Invasive Weed Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei

    2018-04-01

    By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.

  10. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  11. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  12. Design and development of high frequency matrix phased-array ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Spencer, Roger L.

    2012-05-01

    High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.

  13. A Phase Correction Technique Based on Spatial Movements of Antennas in Real-Time (S.M.A.R.T.) for Designing Self-Adapting Conformal Array Antennas

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    This research presents a real-time adaptive phase correction technique for flexible phased array antennas on conformal surfaces of variable shapes. Previously reported pattern correctional methods for flexible phased array antennas require prior knowledge on the possible non-planar shapes in which the array may adapt for conformal applications. For the first time, this initial requirement of shape curvature knowledge is no longer needed and the instantaneous information on the relative location of array elements is used here for developing a geometrical model based on a set of Bezier curves. Specifically, by using an array of inclinometer sensors and an adaptive phase-correctional algorithm, it has been shown that the proposed geometrical model can successfully predict different conformal orientations of a 1-by-4 antenna array in real-time without the requirement of knowing the shape-changing characteristics of the surface the array is attached upon. Moreover, the phase correction technique is validated by determining the field patterns and broadside gain of the 1-by-4 antenna array on four different conformal surfaces with multiple points of curvatures. Throughout this work, measurements are shown to agree with the analytical solutions and full-wave simulations.

  14. Sparse aperiodic arrays for optical beam forming and LIDAR.

    PubMed

    Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E

    2017-02-06

    We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.

  15. Airborne electronically steerable phased array

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  16. Phased Array Probe Optimization for the Inspection of Titanium Billets

    NASA Astrophysics Data System (ADS)

    Rasselkorde, E.; Cooper, I.; Wallace, P.; Lupien, V.

    2010-02-01

    The manufacturing process of titanium billets can produce multiple sub-surface defects that are particularly difficult to detect during the early stages of production. Failure to detect these defects can lead to subsequent in-service failure. A new and novel automated quality control system is being developed for the inspection of titanium billets destined for use in aerospace applications. The sensors will be deployed by an automated system to minimise the use of manual inspections, which should improve the quality and reliability of these critical inspections early on in the manufacturing process. This paper presents the first part of the work, which is the design and the simulation of the phased array ultrasonic inspection of the billets. A series of phased array transducers were designed to optimise the ultrasonic inspection of a ten inch diameter billet made from Titanium 6Al-4V. A comparison was performed between different probes including a 2D annular sectorial array.

  17. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    PubMed Central

    Saleh, Khaldon Y; Smith, Nadine Barrie

    2005-01-01

    Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements. PMID:15963237

  18. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  19. High Rate User Ka-Band Phased Array Antenna Test Results

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  20. The coating design of phase-shifting reflector array with high reflectance and specified reflection phase shifts for static Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanni; Zhang, Hui; Wang, Yijun

    2016-02-01

    The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.

  1. Radio-Frequency and Wideband Modulation Arraying

    NASA Technical Reports Server (NTRS)

    Brockman, M. H.

    1984-01-01

    Summing network receives coherent signals from all receivers in array. Method sums narrow-band radio-frequency (RF) carrier powers and wide-band spectrum powers of array of separate antenna/receiver systems designed for phase-locked-loop or suppressed-carrier operation.

  2. Inspection design using 2D phased array, TFM and cueMAP software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim

    2014-02-18

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imagingmore » performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.« less

  3. Solar array stepping problems in satellites and solutions

    NASA Astrophysics Data System (ADS)

    Maharana, P. K.; Goel, P. S.

    1992-01-01

    The dynamics problems arising due to stepping motion of the solar arrays of spacecraft are studied. To overcome these problems, design improvements in the drive logic based on the phase plane analysis are suggested. The improved designs are applied to the Solar Array Drive Assembly (SADA) of IRS-1B and INSAT-2A satellites. In addition, an alternate torquing strategy for very successful slewing of the arrays, and with minimum excitation of flexible modes, is proposed.

  4. A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner.

    PubMed

    Lee, R F; Giaquinto, R; Constantinides, C; Souza, S; Weiss, R G; Bottomley, P A

    2000-02-01

    Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly.

  5. Light propagation with phase discontinuities: generalized laws of reflection and refraction.

    PubMed

    Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno

    2011-10-21

    Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat's principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

  6. Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristov, Andrey I.; Kabashin, Andrei V., E-mail: kabashin@lp3.univ-mrs.fr; Zywietz, Urs

    2014-02-17

    By using methods of laser-induced transfer combined with nanoparticle lithography, we design and fabricate large-area gold nanoparticle-based metamaterial arrays exhibiting extreme Heaviside-like phase jumps in reflected light due to a strong diffractive coupling of localized plasmons. When employed in sensing schemes, these phase singularities provide the sensitivity of 5 × 10{sup 4} deg. of phase shift per refractive index unit change that is comparable with best values reported for plasmonic biosensors. The implementation of sensor platforms on the basis of such metamaterial arrays promises a drastic improvement of sensitivity and cost efficiency of plasmonic biosensing devices.

  7. True time-delay photonic beamforming with fine steerability and frequency-agility for spaceborne phased-arrays: a proof-of-concept demonstration

    NASA Astrophysics Data System (ADS)

    Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.

    1996-10-01

    Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.

  8. Steerable Beam Array Antenna for Use in ATS-6 Test Program

    DOT National Transportation Integrated Search

    1976-05-01

    The design and development of an advanced L-Band microstrip phased array antenna for aircraft is described. The array is: : Electronically steerable in elevation, Conformal to the surface of an aircraft, 0.20 inch thick, Low cost fabrication techniqu...

  9. Inspection of aircraft fastener holes using a conically shaped multi-element phased array probe

    NASA Astrophysics Data System (ADS)

    Selman, J. J.; Miller, J. T.; Moles, M. D. C.; Dupuis, O.; Herzog, P. G.

    2002-05-01

    A novel inspection technique is described using phased ultrasonic arrays to detect faying surface cracks in the first layer around the base of a fastener hole with fasteners installed. A unique phased array probe incorporates a matrix of ultrasonic elements arranged in a conical configuration encircling the fastener head. This arrangement permits deflection of the ultrasonic beam in three dimensions, and adapts to different hole diameters and skin thickness. Full circumferential scans are performed using a pre-programmed sequence of phased array focal laws. The inspection method uses pulse-echo at a variety of angles incident on the crack to thoroughly cover the fastener hole and surrounding area, and is designed to detect cracks as small as 0.030″ in length.

  10. A Cryogenic SiGe Low-noise Amplifier Optimized for Phased-array Feeds

    NASA Astrophysics Data System (ADS)

    Groves, Wavley M., III; Morgan, Matthew A.

    2017-08-01

    The growing number of phased-array feeds (PAF) being built for radio astronomy demonstrates an increasing need for low-noise amplifiers (LNA), which are designed for repeatability, low noise, and ease of manufacture. Specific design features that help to achieve these goals include the use of unpackaged transistors (for cryogenic operation); single-polarity biasing; straight plug-in radio frequency (RF) interfaces to facilitate installation and re-work; and the use of off-the-shelf components. The focal L-band array for the Green Bank Telescope (FLAG) is a cooperative effort by Brigham Young University and the National Radio Astronomy Observatory using warm dipole antennae and cryogenic Silicon Germanium Heterojunction Bipolar Transistor (SiGe HBT) LNAs. These LNAs have an in band gain average of 38 dB and 4.85 Kelvin average noise temperature. Although the FLAG instrument was the driving instrument behind this development, most of the key features of the design and the advantages they offer apply broadly to other array feeds, including independent-beam and phased, and for many antenna types such as horn, dipole, Vivaldi, connected-bowtie, etc. This paper focuses on the unique requirements array feeds have for low-noise amplifiers and how amplifier manufacturing can accommodate these needs.

  11. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  12. Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology.

    PubMed

    Pant, Apourv; Rai, J P N

    2018-04-15

    Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Multiple-access phased array antenna simulator for a digital beam-forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  14. Multiple-access phased array antenna simulator for a digital beam forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  15. Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Bourdais, F.; Le Polles, T.; Baque, F.

    2015-07-01

    This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)

  16. Phased Array Theory and Technology

    DTIC Science & Technology

    1981-07-01

    Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays

  17. Utilization of the k-space Computational Method to Design an Intracavitary Transrectal Ultrasound Phased Array Applicator for Hyperthermia Treatment of Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Al-Bataineh, Osama M.; Collins, Christopher M.; Sparrow, Victor W.; Keolian, Robert M.; Smith, Nadine Barrie

    2006-05-01

    This research utilizes the k-space computational method to design an intracavitary probe for hyperthermia treatment of prostate cancer. A three-dimensional (3D) photographical prostate model, utilizing imaging data from the Visible Human Project®, was the basis for inhomogeneous acoustical model development. The acoustical model accounted for sound speed, density, and absorption variations. The k-space computational method was used to simulate ultrasound wave propagation of the designed phased array through the acoustical model. To insure the uniformity and spread of the pressure in the length of the array, and the steering and focusing capability in the width of the array, the equal-sized elements of the phased array were 1 × 14 mm. The anatomical measurements of the prostate were used to predict the final phased array specifications (4 × 20 planar array, 1.2 MHz, element size = 1 × 14 mm, array size = 56 × 20 mm). Good agreement between the exposimetry and the k-space results was achieved. As an example, the -3 dB distances of the focal volume were differing by 9.1% in the propagation direction for k-space prostate simulation and exposimetry results. Temperature simulations indicated that the rectal wall temperature was elevated less than 2°C during hyperthermia treatment. Steering and focusing ability of the designed probe, in both azimuth and propagation directions, were found to span the entire prostate volume with minimal grating lobes (-10 dB reduction from the main lobe) and least heat damage to the rectal wall. Evaluations of the probe included ex vivo and in vivo controlled experiments to deliver the required thermal dose to the targeted tissue. With a desired temperature plateau of 43.0°C, the MRI temperature results at the steady state were 42.9 ± 0.38°C and 43.1 ± 0.80°C for ex vivo and in vivo experiments, respectively. Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield and temperature rise in sophisticated, large scale, 3D, inhomogeneous and coarse grid models.

  18. A Parameterized Pattern-Error Objective for Large-Scale Phase-Only Array Pattern Design

    DTIC Science & Technology

    2016-03-21

    12 4.4 Example 3: Sector Beam w/ Nonuniform Amplitude...fixed uniform amplitude illumination, phase-only optimization can also find application to arrays with fixed but nonuniform tapers. Such fixed tapers...arbitrary element locations nonuniform FFT algorithms exist [43–45] that have the same asymptotic complexity as the conventional FFT, although the

  19. SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Primiani, Rurik A.; Young, Kenneth H.; Young, André; Patel, Nimesh; Wilson, Robert W.; Vertatschitsch, Laura; Chitwood, Billie B.; Srinivasan, Ranjani; MacMahon, David; Weintroub, Jonathan

    2016-03-01

    A 32GHz bandwidth VLBI capable correlator and phased array has been designed and deployeda at the Smithsonian Astrophysical Observatory’s Submillimeter Array (SMA). The SMA Wideband Astronomical ROACH2 Machine (SWARM) integrates two instruments: a correlator with 140kHz spectral resolution across its full 32GHz band, used for connected interferometric observations, and a phased array summer used when the SMA participates as a station in the Event Horizon Telescope (EHT) very long baseline interferometry (VLBI) array. For each SWARM quadrant, Reconfigurable Open Architecture Computing Hardware (ROACH2) units shared under open-source from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) are equipped with a pair of ultra-fast analog-to-digital converters (ADCs), a field programmable gate array (FPGA) processor, and eight 10 Gigabit Ethernet (GbE) ports. A VLBI data recorder interface designated the SWARM digital back end, or SDBE, is implemented with a ninth ROACH2 per quadrant, feeding four Mark6 VLBI recorders with an aggregate recording rate of 64 Gbps. This paper describes the design and implementation of SWARM, as well as its deployment at SMA with reference to verification and science data.

  20. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.

  1. A 3T Sodium and Proton Composite Array Breast Coil

    PubMed Central

    Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.

    2013-01-01

    Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740

  2. Phase shifter for antenna beam steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jindal, Ravi, E-mail: rjindal21@gmail.com; Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aimmore » of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.« less

  3. Quantum Simulation of Spin Models on an Arbitrary Lattice with Trapped Ions (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2012-09-27

    onto a 2D array of N 2 micromirrors [33] that are each individually phase modulated at a single frequency (and phase) [34] and are finally focused on...beams that strike an N × N array of micromirrors each independently modulated, or a spatial light modulator. overhead to the design and fabrication of

  4. Control of small phased-array antennas

    NASA Technical Reports Server (NTRS)

    Doland, G. D.

    1978-01-01

    Series of reports, patent descriptions, calculator programs, and other literature describes antenna control and steering apparatus for seven-element phased array. Though series contains information specific to particular system, it illustrates methods that can be applied to antennas with greater or fewer numbers of elements. Included are programs for calculating beam parameters and design functions and information to interfacing digital controller to beam-steering apparatus.

  5. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    PubMed

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  6. Design of a patterned nanostructure array using a nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Yoshida, Yutaka; Ohnishi, Ko; Matsuo, Yasutaka; Watanabe, Seiichi

    2018-04-01

    For design the patterned nanostructure array (PNSA) on material surface using a nanosecond pulsed laser, we investigated the influence of phase shift between scattered lights on silicon (Si) substrate using 30-nm-wide gold lines (GLs) spacings. At a spacing of 5,871 nm, ten nanodot (ND) arrays were formed at intervals of 533 nm by nanosecond pulsed laser. The results show that the formation of the PNSA was affected by the resonance of scattered light. We conclude that ND arrays were formed with a spacing of Λ = nλ. And we have designed PNSA comprising two ND arrays on the substrate. The PNSA with dimensions of 1,600 nm × 1,600 nm was prepared using GLs.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Aaron A.; Chamberlin, Clyde E.; Edwards, Matthew K.

    This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL’s M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs—a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32×2, 64-element matrix phased-array ETU. The 1Dmore » probes are 32×1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.« less

  8. A Semi-flexible 64-channel Receive-only Phased Array for Pediatric Body MRI at 3T

    PubMed Central

    Zhang, Tao; Grafendorfer, Thomas; Cheng, Joseph Y.; Ning, Peigang; Rainey, Bob; Giancola, Mark; Ortman, Sarah; Robb, Fraser J.; Calderon, Paul D.; Hargreaves, Brian A.; Lustig, Michael; Scott, Greig C.; Pauly, John M.; Vasanawala, Shreyas S.

    2015-01-01

    Purpose To design, construct, and validate a semi-flexible 64-channel receive-only phased array for pediatric body MRI at 3T. Methods A 64-channel receive-only phased array was developed and constructed. The designed flexible coil can easily conform to different patient sizes with non-overlapping coil elements in the transverse plane. It can cover a field of view of up to 44 × 28 cm2 and removes the need for coil repositioning for body MRI patients with multiple clinical concerns. The 64-channel coil was compared with a 32-channel standard coil for signal-to-noise ratio (SNR) and parallel imaging performances on different phantoms. With IRB approval and informed consent/assent, the designed coil was validated on 21 consecutive pediatric patients. Results The pediatric coil provided higher SNR than the standard coil on different phantoms, with the averaged SNR gain at least 23% over a depth of 7 cm along the cross-section of phantoms. It also achieved better parallel imaging performance under moderate acceleration factors. Good image quality (average score 4.6 out of 5) was achieved using the developed pediatric coil in the clinical studies. Conclusion A 64-channel semi-flexible receive-only phased array has been developed and validated to facilitate high quality pediatric body MRI at 3T. PMID:26418283

  9. Resolving Phase Ambiguities in the Calibration of Redundant Interferometric Arrays: Implications for Array Design

    DTIC Science & Technology

    2016-03-04

    summary of the linear algebra involved. As we have seen, the RSC process begins with the interferometric phase measurement β, which due to wrapping will...mentary Divisors) in Section 2 and the following defi- nition of the matrix determinant. This definition is given in many linear algebra texts (see...principle solve for a particular solution of this system by arbitrarily setting two object phases (whose spatial frequencies are not co- linear ) and one

  10. Flight Integral Field Spectrograph (IFS) Optical Design for WFIRST Coronagraphic Exoplanet Demonstration

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Groff, Tyler D.; Zimmerman, Neil; Mandell, Avi; McElwain, Michael; Rizzo, Maxime; Saxena, Prabal

    2017-01-01

    Based on the experience from Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST, we have moved to the flight instrument design phase. The specifications for flight IFS have similarities and differences from the prototype. This paper starts with the science and system requirement, discusses a number of critical trade-offs: such as IFS type selection, lenslet array shape and layout versus detector pixel accuracy, how to accommodate the larger Field Of View (FOV) and wider wavelength band for a potential add-on StarShade occulter. Finally, the traditional geometric optical design is also investigated and traded: reflective versus refractive, telecentric versus non-telecentric relay. The relay before the lenslet array controls the chief angle distribution on the lenslet array. Our previous paper has addressed how the relay design combined with lenslet arraypinhole mask can further compress the residual star light and increase the contrast. Finally, a complete phase A IFS optical design is presented.

  11. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  12. Characterization and optimization of the magnetron directional amplifier

    NASA Astrophysics Data System (ADS)

    Hatfield, Michael Craig

    Many applications of microwave wireless power transmission (WPT) are dependent upon a high-powered electronically-steerable phased array composed of many radiating modules. The phase output from the high-gain amplifier in each module must be accurately controlled if the beam is to be properly steered. A highly reliable, rugged, and inexpensive design is essential for making WPT applications practical. A conventional microwave oven magnetron may be combined with a ferrite circulator and other external circuitry to create such a system. By converting it into a two-port amplifier, the magnetron is capable of delivering at least 30 dB of power gain while remaining phase-locked to the input signal over a wide frequency range. The use of the magnetron in this manner is referred to as a MDA (Magnetron Directional Amplifier). The MDA may be integrated with an inexpensive slotted waveguide array (SWA) antenna to form the Electronically-Steerable Phased Array Module (ESPAM). The ESPAM provides a building block approach to creating phased arrays for WPT. The size and shape of the phased array may be tailored to satisfy a diverse range of applications. This study provided an in depth examination into the capabilities of the MDA/ESPAM. The basic behavior of the MDA was already understood, as well as its potential applicability to WPT. The primary objective of this effort was to quantify how well the MDA could perform in this capacity. Subordinate tasks included characterizing the MDA behavior in terms of its system inputs, optimizing its performance, performing sensitivity analyses, and identifying operating limitations. A secondary portion of this study examined the suitability of the ESPAM in satisfying system requirements for the solar power satellite (SPS). Supporting tasks included an analysis of SPS requirements, modeling of the SWA antenna, and the demonstration of a simplified phased array constructed of ESPAM elements. The MDA/ESPAM is well suited for use as an amplifier or an element in a WPT phased array, providing over 75% efficiency and a fractional bandwidth exceeding 1.7% at 2.45 GHz. The results of this effort provide the WPT design engineer with tools to predict the MDA's optimum performance and limitations.

  13. Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Chanan, Gary; Roberts, Jennifer

    2010-01-01

    The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.

  14. Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.

    PubMed

    Raval, Manan; Poulton, Christopher V; Watts, Michael R

    2017-07-01

    We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.

  15. Design of diffractive microlens array integration with focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin

    2000-10-01

    The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.

  16. Spacecraft Multiple Array Communication System Performance Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  17. Serial multiplier arrays for parallel computation

    NASA Technical Reports Server (NTRS)

    Winters, Kel

    1990-01-01

    Arrays of systolic serial-parallel multiplier elements are proposed as an alternative to conventional SIMD mesh serial adder arrays for applications that are multiplication intensive and require few stored operands. The design and operation of a number of multiplier and array configurations featuring locality of connection, modularity, and regularity of structure are discussed. A design methodology combining top-down and bottom-up techniques is described to facilitate development of custom high-performance CMOS multiplier element arrays as well as rapid synthesis of simulation models and semicustom prototype CMOS components. Finally, a differential version of NORA dynamic circuits requiring a single-phase uncomplemented clock signal introduced for this application.

  18. Improved arrayed-waveguide-grating layout avoiding systematic phase errors.

    PubMed

    Ismail, Nur; Sun, Fei; Sengo, Gabriel; Wörhoff, Kerstin; Driessen, Alfred; de Ridder, René M; Pollnau, Markus

    2011-04-25

    We present a detailed description of an improved arrayed-waveguide-grating (AWG) layout for both, low and high diffraction orders. The novel layout presents identical bends across the entire array; in this way systematic phase errors arising from different bends that are inherent to conventional AWG designs are completely eliminated. In addition, for high-order AWGs our design results in more than 50% reduction of the occupied area on the wafer. We present an experimental characterization of a low-order device fabricated according to this geometry. The device has a resolution of 5.5 nm, low intrinsic losses (< 2 dB) in the wavelength region of interest for the application, and is polarization insensitive over a wide spectral range of 215 nm.

  19. Self-bending elastic waves and obstacle circumventing in wireless power transfer

    NASA Astrophysics Data System (ADS)

    Tol, S.; Xia, Y.; Ruzzene, M.; Erturk, A.

    2017-04-01

    We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing, and wireless power transfer around obstacles. The basic concept is illustrated through a geometric array, which is designed to implement a phase delay profile among the array elements that leads to self-bending along a specified circular trajectory. Experimental validation is conducted for the lowest asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the bandwidth of the approach. Experiments also illustrate the functionality of the array as a transmitter to deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and circumventing is achieved. A linear phased array counterpart of the geometric array is then constructed to illustrate the concept by imposing proper time delays to the array elements, which allows the generation of different trajectories using the same line source. This capability is demonstrated by tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to induce a variety of convex trajectories for self-bending elastic waves.

  20. Satellite-borne active phased array techniques for mobile communications

    NASA Astrophysics Data System (ADS)

    Sheehan, P. G.; Forrest, J. R.

    1986-07-01

    This paper investigates the design of active phased arrays for communications satellites. In particular, consideration is given to the problems occurring when active arrays are required to produce multiple beams. There is a real need to keep the complexity of the array electronics to a minimum, but this conflicts with the desire to obtain the greatest possible freedom of control of the radiation pattern produced. The paper demonstrates a method of coping with the problem. Low-gain elements are used to provide design freedom and they are grouped into subarrays to limit the complexity of the rest of the system. With appropriate configurations of subarrays, greatly improved radiation pattern characteristics can be obtained and frequency reuse between multiple beams becomes feasible. A demonstration model of 108 microstrip patches grouped into 32 subarrays, operating at 12 GHz, has been constructed and verifies that the technique is effective.

  1. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Qi, Mei Qing; Chen, Tian Yi; Cui, Tie Jun

    2016-02-01

    Digital phase shifters have been applied in traditional phased array antennas to realize beam steering. However, the phase shifter deals with the phase of the induced current; hence, it has to be in the path of each element of the antenna array, making the phased array antennas very expensive. Metamaterials and/or metasurfaces enable the direct modulation of electromagnetic waves by designing subwavelength structures, which opens a new way to control the beam scanning. Here, we present a direct digital mechanism to control the scattered electromagnetic waves using coding metasurface, in which each unit cell loads a pin diode to produce binary coding states of “1” and “0”. Through data lines, the instant communications are established between the coding metasurface and the internal memory of field-programmable gate arrays (FPGA). Thus, we realize the digital modulation of electromagnetic waves, from which we present the field-programmable reflective antenna with good measurement performance. The proposed mechanism and functional device have great application potential in new-concept radar and communication systems.

  2. Structural-electrical coupling optimisation for radiating and scattering performances of active phased array antenna

    NASA Astrophysics Data System (ADS)

    Wang, Congsi; Wang, Yan; Wang, Zhihai; Wang, Meng; Yuan, Shuai; Wang, Weifeng

    2018-04-01

    It is well known that calculating and reducing of radar cross section (RCS) of the active phased array antenna (APAA) are both difficult and complicated. It remains unresolved to balance the performance of the radiating and scattering when the RCS is reduced. Therefore, this paper develops a structure and scattering array factor coupling model of APAA based on the phase errors of radiated elements generated by structural distortion and installation error of the array. To obtain the optimal radiating and scattering performance, an integrated optimisation model is built to optimise the installation height of all the radiated elements in normal direction of the array, in which the particle swarm optimisation method is adopted and the gain loss and scattering array factor are selected as the fitness function. The simulation indicates that the proposed coupling model and integrated optimisation method can effectively decrease the RCS and that the necessary radiating performance can be simultaneously guaranteed, which demonstrate an important application value in engineering design and structural evaluation of APAA.

  3. Spaced-antenna wind estimation using an X-band active phased-array weather radar

    NASA Astrophysics Data System (ADS)

    Venkatesh, Vijay

    Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.

  4. Damage imaging using Lamb waves for SHM applications

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz; Ambroziński, Łukasz; Uhl, Tadeusz

    2015-03-01

    2-D ultrasonic arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for the inspection of plate-like structures using Lamb waves (LW). Contrary to the classical linear phased arrays (PAs) the 2D arrays enable unequivocal defect localization and they are even capable of mode selectivity of the received LWs . Recently, it has been shown that multistatic synthetic focusing (SF) algorithms applied for 2D arrays are much more effective than the classical phase array mode commonly used in NDT. The multistatic SF assumes multiple transmissions of elements in a transmitting aperture and off-line processing of the data acquired by a receiving aperture. In the simplest implementation of the technique, only a single multiplexed input and a number of output channels are required, which results in significant hardware simplification compared with the PA systems. On the one hand implementation of the multistatic SF to 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process. On the other hand, it enables designing sparse arrays with performance similar to that of the fully populated dense arrays. In this paper we present a general systematic approach to the design and optimization of imaging systems based on the 2D array operating in the multistatic mode. We start from presenting principles of the SF schemes applied to LW imaging. Then, we outline the coarray concept and demonstrate how it can be used for reducing number of elements of the 2D arrays. Finally, efficient tools for the investigation and experimental verification of the designed 2D array prototypes are presented. The first step in the investigation is theoretical evaluation performed using frequency-dependent structure transfer function (STF), which enables approximate simulation of an array excited with a tone-burst in a dispersive medium. Finally, we show how scanning laser vibrometer, sensing waves in multiple points corresponding to the locations of the 2D receiving array elements, can be used as a tool for rapid experimental verification of the developed topologies. The presented methods are discussed in terms of the beampatterns and sparse versions of the fully populated array topologies are be presented. The effect of apodization applied to the array elements is also investigated. Both simulated and experimental results are included.

  5. Broadband acoustic phased array with subwavelength active tube array

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yan; Yang, Zhang-Zhao; Zhu, Yi-Fan; Zou, Xin-Ye; Cheng, Jian-Chun

    2018-02-01

    Acoustic metasurfaces provide a way to manipulate wavefronts at anomalous reflection or refraction angles through subwavelength structures. Here, based on the generalized Snell's refraction law for acoustic metasurfaces and the classical acoustic phased array (PA) theory, a broadband acoustic PA with a subwavelength active tube array has been proposed to form a special acoustic beam and to determine the directivity characteristics of the acoustic source. Theoretical analysis shows that the dispersionless wavefront manipulation can be realized by the gradient model of the active tube array, and a wide working frequency band can be obtained in practical applications from the simulated and experimental results. The numerical results of forming a special acoustic beam and establishing an acoustic focus model with an arbitrary focal position are consistent with the theoretical predictions. The experimental results agree well with the simulated results in the model of forming the acoustic beam of 45 ° . By combining acoustic metamaterials and conventional acoustic PA, the model of the active tube array paves a way to design a composite acoustic PA with high radiation efficiency and system robustness without the need for any complex circuit control system. This design concept is expected to be used in the design of ultrasonic therapy devices and high-efficiency transducers.

  6. Experimental demonstration of conformal phased array antenna via transformation optics.

    PubMed

    Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang

    2018-02-28

    Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.

  7. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  8. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE PAGES

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...

    2017-04-17

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  9. Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves.

    PubMed

    Bonjour, R; Burla, M; Abrecht, F C; Welschen, S; Hoessbacher, C; Heni, W; Gebrewold, S A; Baeuerle, B; Josten, A; Salamin, Y; Haffner, C; Johnston, P V; Elder, D L; Leuchtmann, P; Hillerkuss, D; Fedoryshyn, Y; Dalton, L R; Hafner, C; Leuthold, J

    2016-10-31

    In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.

  10. Resolving phase ambiguities in the calibration of redundant interferometric arrays: implications for array design

    DTIC Science & Technology

    2016-05-18

    course of this paper, we will first iden- tify this ambiguity from a mathematical perspective, relate it to a particular physical structure (i.e. the...invariance to a physical condition on aperture place- ment is more intuitive when considering the raw phase mea- surements as opposed to their closures. For...to wrapping of the phase measure- ments. We have hence arrived at a a physical definition of a wrap-invariant pattern. We now apply Algorithm 1 to the

  11. Lightweight solar array blanket tooling, laser welding and cover process technology

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  12. Resolving phase ambiguities in the calibration of redundant interferometric arrays: implications for array design

    DTIC Science & Technology

    2015-11-30

    matrix determinant. This definition is given in many linear algebra texts (see e.g. Bretscher (2001)). Definition 3.1 : Suppose we have an n-by-n...Processing, 2, 767 Blanchard P., Greenaway A., Anderton R., Appleby R., 1996, J. Opt. Soc. Am. A, 13, 1593 Bretscher O., 2001, Linear Algebra with...frequencies are not co- linear ) and one piston phase. This particular solution will then differ from the true solution by a phase ramp in the Fourier

  13. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

    PubMed Central

    Al-Bataineh, Osama M; Collins, Christopher M; Park, Eun-Joo; Lee, Hotaik; Smith, Nadine Barrie

    2006-01-01

    Background Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. Methods A 3D acoustical prostate model was created using photographic data from the Visible Human Project®. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin® plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Results Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38°C and 43.1 ± 0.80°C, respectively, for 20 minutes of heating. Conclusion Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate. PMID:17064421

  14. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method.

    PubMed

    Al-Bataineh, Osama M; Collins, Christopher M; Park, Eun-Joo; Lee, Hotaik; Smith, Nadine Barrie

    2006-10-25

    Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43 degrees C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. A 3D acoustical prostate model was created using photographic data from the Visible Human Project. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 x 20 elements phased array were 1 x 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0 degrees C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 +/- 0.38 degrees C and 43.1 +/- 0.80 degrees C, respectively, for 20 minutes of heating. Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate.

  15. Metalenses based on the non-parallel double-slit arrays

    NASA Astrophysics Data System (ADS)

    Shao, Hongyan; Chen, Chen; Wang, Jicheng; Pan, Liang; Sang, Tian

    2017-09-01

    Metalenses based on surface plasmon polaritons have played an indispensable role in ultra-thin devices designing. The amplitude, phase and polarization of electromagnetic waves all can be controlled easily by modifying the metasurface structures. Here we propose and investigate a new type of structure with Babinet-inverted nano-antennas which can provide a series of unit-cells with phase-shifts covering 2π and ensure almost same transmittance simultaneously. As a result, the wavefront can be manipulated by arraying the units in course. Metalenses with the linear asymmetrical double slit unit-cell arrays are designed and the simulative results exhibit their perfect focusing characteristics, including single-focus lenses and multi-focus lenses. The small focus size and high numerical aperture make them stand out from the traditional counterparts in application of precision sensing devices. We expect our designs will provide new insights in the practical applications for metasurfaces in data storages, optical information processing and optical holography.

  16. A new antenna concept for satellite communications

    NASA Technical Reports Server (NTRS)

    Skahill, G.; Ciccolella, D.

    1982-01-01

    A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.

  17. Design and evaluation of a 63 element 1.75-dimensional ultrasound phased array for treating benign prostatic hyperplasia

    NASA Astrophysics Data System (ADS)

    Saleh, Khaldon Y.; Smith, Nadine B.

    2003-10-01

    Focused ultrasound surgery (FUS) is a clinical method for treating benign prostatic hyperplasia (BPH) in which tissue is noninvasively necrosed by elevating the temperature at the focal point above 60°C using short sonications. With 1.75-dimensional (1.75-D) arrays, the power and phase to the individual elements can be controlled electronically for focusing and steering. This research describes the design, construction and evaluation of a 1.75-D ultrasound phased array to be used in the treatment of benign prostatic hyperplasia. The array was designed with a steering angle of +/-13.5 deg in the transverse direction, and can move the focus in three parallel planes in the longitudinal direction with a relatively large focus size. A piezoelectric ceramic (PZT-8) was used as the material of the transducer and two matching layers were built for maximum acoustic power transmission to tissue. To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated fields. In vivo experiments were performed to verify the capability of the transducer to ablate tissue using short sonications. [Work supported by the Whitaker Foundation and the Department of Defense Congressionally Directed Medical Prostate Cancer Research Program.

  18. Improving MRI surface coil decoupling to reduce B1 distortion

    NASA Astrophysics Data System (ADS)

    Larson, Christian

    As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.

  19. Quartz/fused silica chip carriers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary objective of this research and development effort was to develop monolithic microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-wave frequencies. The packages incorporated fused silica as the substrate material which was selected due to its favorable electrical properties and potential performance improvement over more conventional materials for Ka-band operation. The first step towards meeting this objective is to develop a package that meets standard mechanical and thermal requirements using fused silica and to be compatible with semiconductor devices operating up to at least 44 GHz. The second step is to modify the package design and add multilayer and multicavity capacity to allow for application specific integrated circuits (ASIC's) to control multiple phase shifters. The final step is to adapt the package design to a phased array module with integral radiating elements. The first task was a continuation of the SBIR Phase 1 work. Phase 1 identified fused silica as a viable substrate material by demonstrating various plating, machining, and adhesion properties. In Phase 2 Task 1, a package was designed and fabricated to validate these findings. Task 2 was to take the next step in packaging and fabricate a multilayer, multichip module (MCM). This package is the predecessor to the phased array module and demonstrates the ability to via fill, circuit print, laminate, and to form vertical interconnects. The final task was to build a phased array module. The radiating elements were to be incorporated into the package instead of connecting to it with wire or ribbon bonds.

  20. Airborne electronically steerable phased array. [steerable antennas - systems analysis

    NASA Technical Reports Server (NTRS)

    Coats, R.

    1975-01-01

    Results of a study directed to the design of a lightweight high-gain, spaceborne communications array are presented. The array includes simultaneous transmission and receiving, automatic acquisition and tracking of a signal within a 60-degree cone from the array normal, and provides for independent forming of the transmit and receive beams. Application for this array is the space shuttle, space station, or any of the advanced manned (or unmanned) orbital vehicles. Performance specifications are also given.

  1. Simulation of sparse matrix array designs

    NASA Astrophysics Data System (ADS)

    Boehm, Rainer; Heckel, Thomas

    2018-04-01

    Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.

  2. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  3. Leak Detection in Spacecraft Using a 64-Element Multiplexed Passive Array to Monitor Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Chimenti, D. E.; Roberts, Ron

    2006-03-01

    We demonstrate an array sensor method intended to locate leaks in manned spacecraft using leak-generated, structure-borne ultrasonic noise. We have developed and tested a method for sensing and processing leak noise to reveal the leak location involving the use of a 64-element phased-array. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum have been used with a phased-array analysis to find the direction from the sensor to the leak. This method measures the propagation of guided ultrasonic Lamb waves passing under the PZT array sensor in the spacecraft skin structure. This paper will describe the custom-designed array with integrated electronics, as well as the performance of the array in prototype applications. We show that this method can be used to successfully locate leaks to within a few millimeters on a 0.6-m square aluminum plate.

  4. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.

  5. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  6. Wideband Monolithic Tile for Reconfigurable Phased Arrays

    DTIC Science & Technology

    2017-03-01

    has been developed for Reconfigurable Phased Array applications. Low loss and high isolation interconnection of switches within the radiating...there is no ground to connect shunt elements to. An integral part of the design was bias control. Mesa resistors are used for biasing. MIM...highest in resistance had the best performance over bandwidth because of reduced capacitive loading of the “off” arms of the Quad Switch on the central

  7. Phased-array laser radar: Concept and application

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1973-01-01

    The design and construction of a coaxial transmitter-receiver combination was investigated. Major emphasis was placed on simple permanent optical alignment, transmitter-receiver field of view matching, use of a pulsed gas laser as a transmitter maximum optical efficiency, complete digital control of data acquisition, and optical mount pointing and tracking. Also a means of expanding the coaxial transmitter-receiver concept to allow phased-array lidar, par-lidar was described.

  8. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    PubMed

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss <27  dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  9. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Foster, Benjamin; Kisner, Roger A

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, andmore » provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.« less

  10. Weak-signal Phase Calibration Strategies for Large DSN Arrays

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    2005-01-01

    The NASA Deep Space Network (DSN) is studying arrays of large numbers of small, mass-produced radio antennas as a cost-effective way to increase downlink sensitivity and data rates for future missions. An important issue for the operation of large arrays is the accuracy with which signals from hundreds of small antennas can be combined. This is particularly true at Ka band (32 GHz) where atmospheric phase variations can be large and rapidly changing. A number of algorithms exist to correct the phases of signals from individual antennas in the case where a spacecraft signal provides a useful signal-to-noise ratio (SNR) on time scales shorter than the atmospheric coherence time. However, for very weak spacecraft signals it will be necessary to rely on background natural radio sources to maintain array phasing. Very weak signals could result from a spacecraft emergency or by design, such as direct-to-Earth data transmissions from distant planetary atmospheric or surface probes using only low gain antennas. This paper considers the parameter space where external real-time phase calibration will be necessary, and what this requires in terms of array configuration and signal processing. The inherent limitations of this technique are also discussed.

  11. Transceiver-Phased Arrays for Human Brain Studies at 7 T

    PubMed Central

    2013-01-01

    The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations. PMID:23516332

  12. The Potential of Phased Arrays for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Pogorzelski, Ronald J.

    2000-01-01

    Phased array antennas provide a set of operational capabilities which are very attractive for certain mission applications and not very attractive for others. Such antennas are by no means a panacea for telecommunications. In this paper the features of phased arrays are reviewed and their implications for space missions are considered in terms of benefits and costs. The primary capability provided by a phased array is electronic beam agility. The beam direction may be controlled at electronic speeds (vs. mechanical actuation) permitting time division multiplexing of multiple "users." Moreover, the beam direction can be varied over a full hemisphere (for a planar array). On the other hand, such antennas are typically much more complicated than the more commonly used reflectors and horns and this implies higher cost. In some applications, this increased cost must be accepted if the mission is to be carried out at all. The SIR-C radar is an example of such a case albeit not for deep space. Assuming for the sake of argument that the complexity and cost of a phased array can be significantly reduced, where can such antennas be of value in the future of planetary exploration? Potential applications to be discussed are planetary rovers, landers, and orbiters including both the areosynchronous and low orbit varieties. In addition, consideration is given to links from deep space to earth. As may be fairly obvious, the deep space link to earth would not benefit from the wide angle steering capability provided by a phase array whereas a rover could gain advantage from the capability to steer a beam anywhere in the sky. In the rover case, however, physical size of the aperture becomes a significant factor which, of course, has implications regarding the choice of frequency band. Recent research work concerning phased arrays has suggested that future phased arrays might be made less complex and, therefore, less costly. Successful realization of such phased arrays would enable many of the planetary missions discussed in this paper and significantly broaden the telecommunications capabilities available to the mission designers of the future.

  13. Performance of the Broadband Golay 3x6 Array Associated with the 2016 IRIS Community Wavefields Experiment

    NASA Astrophysics Data System (ADS)

    Bolarinwa, O. J.; Langston, C. A.; Sweet, J. R.; Anderson, K. R.; Woodward, R.

    2017-12-01

    A 6 km aperture regional array in the Golay 3x6 configuration was fielded as part of the IRIS Community Wavefields Experiment near Enid, Oklahoma from June 26 through November 12, 2016. The array consisted of 18 broadband CMG-3T seismometers deployed using a PASSCAL insulated vault design and RT130 data recorders. The Golay geometry is unusual in that it features 6 tripartite arrays in an open arrangement. Spacing and orientation of each tripartite array is such that the array uniformly samples the wavefield in space as determined from the co-array diagram even though the interior of the array configuration contains no seismic stations. The short wavelength performance of this array requires a high degree of phase correlation across its entire aperture, a characteristic that has been difficult to achieve for other regional array designs because of velocity heterogeneity in the earth. Located within an area of high regional seismicity, the IRIS experiment offered an opportunity to examine the slowness-frequency performance of a real-world Golay 3x6 array that was subject to constraints on land usage during deployment. Individual tripartite arrays fit well within a land survey quarter section but it proved difficult to match the ideal spacing between each subarray because of permitting problems. Nevertheless, these unavoidable geometry perturbations caused only minor changes to the theoretical array response. More surprisingly, observations of high frequency regional P and S phases show very high correlation over the array aperture that gives rise to precise array responses that are close to theoretical. Both the array geometry and relatively homogeneous structure under the array produces an exceptional facility that can be used for high-resolution studies of regional seismic waves.

  14. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    NASA Astrophysics Data System (ADS)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.

  15. Design and development of a brushless, direct drive solar array reorientation system

    NASA Technical Reports Server (NTRS)

    Jessee, R. D.

    1972-01-01

    This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.

  16. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    1998-11-01

    Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.

  17. Phased Array-Fed Reflector (PAFR) Antenna Architectures for Space-Based Sensors

    NASA Technical Reports Server (NTRS)

    Cooley, Michael E.

    2014-01-01

    Communication link and target ranges for satellite communications (SATCOM) and space-based sensors (e.g. radars) vary from approximately 1000 km (for LEO satellites) to 35,800 km (for GEO satellites). At these long ranges, large antenna gains are required and legacy payloads have usually employed large reflectors with single beams that are either fixed or mechanically steered. For many applications, there are inherent limitations that are associated with the use of these legacy antennas/payloads. Hybrid antenna designs using Phased Array Fed Reflectors (PAFRs) provide a compromise between reflectors and Direct Radiating phased Arrays (DRAs). PAFRs provide many of the performance benefits of DRAs while utilizing much smaller, lower cost (feed) arrays. The primary limitation associated with hybrid PAFR architectures is electronic scan range; approximately +/-5 to +/- 10 degrees is typical, but this range depends on many factors. For LEO applications, the earth FOV is approximately +/-55 degrees which is well beyond the range of electronic scanning for PAFRs. However, for some LEO missions, limited scanning is sufficient or the CONOPS and space vehicle designs can be developed to incorporate a combination mechanical slewing and electronic scanning. In this paper, we review, compare and contrast various PAFR architectures with a focus on their general applicability to space missions. We compare the RF performance of various PAFR architectures and describe key hardware design and implementation trades. Space-based PAFR designs are highly multi-disciplinary and we briefly address key hardware engineering design areas. Finally, we briefly describe two PAFR antenna architectures that have been developed at Northrop Grumman.

  18. Photovoltaic power system for a lunar base

    NASA Astrophysics Data System (ADS)

    Karia, Kris

    An assessment is provided of the viability of using photovoltaic power technology for lunar base application during the initial phase of the mission. The initial user power demands were assumed to be 25 kW (daytime) and 12.5 kW (night time). The effect of lunar adverse environmental conditions were also considered in deriving the photovoltaic power system concept. The solar cell array was found to impose no more design constraints than those solar arrays currently being designed for spacecraft and the Space Station Freedom. The long lunar night and the need to store sufficient energy to sustain a lunar facility during this period was found to be a major design driver. A photovoltaic power system concept was derived using high efficiency thin GaAs solar cells on a deployable flexible Kapton blanket. The solar array design was sized to generate sufficient power for daytime use and for a regenerative fuel cell (RFC) energy storage system to provide power during the night. Solar array sun-tracking is also proposed to maximize the array power output capability. The system launch mass was estimated to be approximately 10 metric tons. For mission application of photovoltaic technology other issues have to be addressed including the constraints imposed by launch vehicle, safety, and cost. For the initial phase of the mission a photovoltaic power system offers a safe option.

  19. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  20. An 11-Channel Radio Frequency Phased Array Coil for Magnetic Resonance Guided High Intensity Focused Ultrasound of the Breast

    PubMed Central

    Minalga, E.; Payne, A.; Merrill, R.; Todd, N.; Vijayakumar, S.; Kholmovski, E.; Parker, D. L.; Hadley, J. R.

    2012-01-01

    In this study, a radio-frequency (RF) phased array coil was built to image the breast in conjunction with a Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11-channels. The RF coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise-ratio (SNR) profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in SNR, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. PMID:22431301

  1. Linear array transducer for high-power airborne ultrasound using flextensional structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Jun; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-07-01

    To change the direction of ultrasonic irradiation without moving a transducer, a high-power airborne ultrasonic transducer for a one-dimensional phased array system was designed and tested. A flextensional element transducer with higher-mode bending vibration was fabricated to obtain a high vibration amplitude over a wide aperture, where a phase-compensating stepped structure was employed. The width of the main lobe at half maximum and the sidelobe level were measured to be 14.3 deg and 0.78, respectively. The maximal sound pressure of 132 dB (0 dB re. 0.02 mPa) was obtained under the applied voltage of 4.0 V. The beam steering characteristics of a phased array using eight elements were compared with the simple theory.

  2. A 1-MHz 2-D CMUT array for HIFU thermal ablation

    NASA Astrophysics Data System (ADS)

    Yoon, Hyo-Seon; Vaithilingam, Srikant; Park, Kwan Kyu; Nikoozadeh, Amin; Firouzi, Kamyar; Choe, Jung Woo; Watkins, Ronald D.; Oguz, Huseyin Kagan; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, Pierre

    2017-03-01

    We developed a fully-populated 2-D capacitive micromachined ultrasonic transducer (CMUT) array for high intensity focused ultrasound (HIFU) treatment. The 2-D CMUT array, which consists of 20 × 20 square CMUT elements with an element-to-element pitch of 1 mm, was designed and fabricated using the thick-buried-oxide (BOX) fabrication process. It was then assembled on a custom interface board that can provide various array configurations depending on the desired applications. In this study, the interface board groups the CMUT array elements into eight channels, based on the phase delay from the element to the targeted focal point at a 20-mm distance from the array surface, which corresponds to an F-number of 1. An 8-channel phase generating system supplies continuous waves with eight different phases to the eight channels of the CMUT array through bias-tees and amplifiers. This array aperture, grouped into eight channels, gives a focusing gain of 6.09 according to field simulation using Field II. Assuming a peak-to-peak pressure of 1 MPa at the surface of the array, our custom temperature simulator predicts successful tissue ablation at the focus. During the measurements, each channel was tuned with a series inductor for an operational frequency of 1 MHz. With a CMUT DC bias of 100 V and a 1-MHz AC input voltage of 55 V, we achieved peak-to-peak output pressures of 173.9 kPa and 568.7 kPa at the array surface and at the focus, respectively. The focusing gain calculated from this measurement is 3.27, which is lower than the simulated gain of 6.09 because of the mutual radiation impedance among the CMUT cells. Further optimization of the operating condition of this array and design improvements for reducing the effect of mutual radiation impedance are currently on-going.

  3. Removing Background Noise with Phased Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  4. A novel serrated columnar phased array ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  5. Epoch of Reionisation

    NASA Astrophysics Data System (ADS)

    Barry, N.; Beardsley, A.; Bowman, J.; Briggs, F.; Byrne, R.; Carroll, P.; Hazelton, B.; Jacobs, D.; Jordan, C.; Kittiwisit, P.; Lanman, A.; Lenc, E.; Li, W.; Line, J.; McKinley, B.; Mitchell, D.; Morales, M.; Murray, S.; Paul, S.; Pindor, B.; Pober, J.; Rahimi, M.; Riding, J.; Sethi, S.; Shankar, U.; Subrahmanyan, R.; Sullivan, I.; Takahashi, K.; Thyagarajan, N.; Tingay, S.; Trott, C.; Wayth, R.; Webster, R.; Wyithe, S.

    2017-01-01

    The Murchison Widefield Array is designed to measure the fluctuations in the 21cm emission from neutral hydrogen during the Epoch of Reionisation. The new hex configuration is explicitly designed to test the predicted increase in sensitivity of redundant baselines. However the challenge of the new array is to understand calibration with the new configuration. We have developed two new pipelines to reduce the hex data, and will compare the results with previous datasets from the Phase 1 array. We have now processed 80 hours of data refining the data analysis through our two established Phase 1 pipelines. This proposal requests as much observing time as possible in semester 2017-A to (1) obtain a comparable hex dataset to test the sensitivity and systematic limits with redundant arrays, (2) establish the optimal observing strategy for an EoR detection, and (3) continue to explore observational strategies in the three EoR fields to advise the design of SKA-low experiments. Due to the proposed changes in the array during the upcoming semester, we have not requested a specific number of hours, but will optimise our observing program as availability of the telescope becomes clear. We note that this observing proposal implements the key scientific program that can benefit from the new hex configuration.

  6. An RF phased array applicator designed for hyperthermia breast cancer treatments

    PubMed Central

    Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V

    2007-01-01

    An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427

  7. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  8. Integrated phased array for wide-angle beam steering.

    PubMed

    Yaacobi, Ami; Sun, Jie; Moresco, Michele; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R

    2014-08-01

    We demonstrate an on-chip optical phased array fabricated in a CMOS compatible process with continuous, fast (100 kHz), wide-angle (51°) beam-steering suitable for applications such as low-cost LIDAR systems. The device demonstrates the largest (51°) beam-steering and beam-spacing to date while providing the ability to steer continuously over the entire range. Continuous steering is enabled by a cascaded phase shifting architecture utilizing, low power and small footprint, thermo-optic phase shifters. We demonstrate these results in the telecom C-band, but the same design can easily be adjusted for any wavelength between 1.2 and 3.5 μm.

  9. Powersail High Power Propulsion System Design Study

    NASA Astrophysics Data System (ADS)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  10. Vehicle antenna for the mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Peng, Sheng Y.; Chung, H. H.; Leggiere, D.; Foy, W.; Schaffner, G.; Nelson, J.; Pagels, W.; Vayner, M.; Faller, H. L.; Messer, L.

    1988-01-01

    A low profile, low cost, printed circuit, electronically steered, right hand circularly polarized phase array antenna system has been developed for the Mobile Satellite Experiment (MSAT-X) Program. The success of this antenna is based upon the development of a crossed-slot element array and detailed trade-off analyses for both the phased array and pointing system design. The optimized system provides higher gain at low elevation angles (20 degrees above the horizon) and broader frequency coverage (approximately 8 1/2 percent bandwidth) than is possible with a patch array. Detailed analysis showed that optimum performance could be achieved with a 19 element array of a triangular lattice geometry of 3.9 inch element spacing. This configuration has the effect of minimizing grating lobes at large scan angles plus it improves the intersatellite isolation. The array has an aperture 20 inches in diameter and is 0.75 inch thick overall, exclusive of the RF and power connector. The pointing system employs a hybrid approach that operates with both an external rate sensor and an internal error signal as a means of fine tuning the beam acquisition and track. Steering the beam is done electronically via 18, 3-bit diode phase shifters. A nineteenth phase shifter is not required as the center element serves as a reference only. Measured patterns and gain show that the array meets the stipulated performance specifications everywhere except at some low elevation angles.

  11. High frequency GaAlAs modulator and photodetector for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Chorey, C. M.; Hill, S. M.; Bhasin, K. B.

    1988-01-01

    A waveguide Mach-Zehnder electro-optic modulator and an interdigitated photoconductive detector designed to operate at 820 nm, fabricated on different GaAlAs/GaAs heterostructure materials, are being investigated for use in optical interconnects in phased array antenna systems. Measured optical attenuation effects in the modulator are discussed and the observed modulation performance up to 1 GHz is presented. Measurements of detector frequency response are described and results presented.

  12. A digital optical phase-locked loop for diode lasers based on field programmable gate array.

    PubMed

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  13. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  14. Three Element Phased Array Coil for Imaging of Rat Spinal Cord at 7T

    PubMed Central

    Mogatadakala, Kishore V.; Bankson, James A.; Narayana, Ponnada A.

    2008-01-01

    In order to overcome some of the limitations of an implantable coil, including its invasive nature and limited spatial coverage, a three element phased array coil is described for high resolution magnetic resonance imaging (MRI) of rat spinal cord. This coil allows imaging both thoracic and cervical segments of rat spinal cord. In the current design, coupling between the nearest neighbors was minimized by overlapping the coil elements. A simple capacitive network was used for decoupling the next neighbor elements. The dimensions of individual coils in the array were determined based on the signal-to-noise ratio (SNR) measurements performed on a phantom with three different surface coils. SNR measurements on a phantom demonstrated higher SNR of the phased array coil relative to two different volume coils. In-vivo images acquired on rat spinal cord with our coil demonstrated excellent gray and white matter contrast. To evaluate the performance of the phased array coil under parallel imaging, g-factor maps were obtained for two different acceleration factors of 2 and 3. These simulations indicate that parallel imaging with acceleration factor of 2 would be possible without significant image reconstruction related noise amplifications. PMID:19025892

  15. Numerical Studies of an Array of Fluidic Diverter Actuators for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2011-01-01

    In this paper, we study the effect of boundary conditions on the behavior of an array of uniformly-spaced fluidic diverters with an ultimate goal to passively control their output phase. This understanding will aid in the development of advanced designs of actuators for flow control applications in turbomachinery. Computations show that a potential design is capable of generating synchronous outputs for various inlet boundary conditions if the flow inside the array is initiated from quiescence. However, when the array operation is originally asynchronous, several approaches investigated numerically demonstrate that re-synchronization of the actuators in the array is not practical since it is very sensitive to asymmetric perturbations and imperfections. Experimental verification of the insights obtained from the present study is currently being pursued.

  16. Study of large adaptive arrays for space technology applications

    NASA Technical Reports Server (NTRS)

    Berkowitz, R. S.; Steinberg, B.; Powers, E.; Lim, T.

    1977-01-01

    The research in large adaptive antenna arrays for space technology applications is reported. Specifically two tasks were considered. The first was a system design study for accurate determination of the positions and the frequencies of sources radiating from the earth's surface that could be used for the rapid location of people or vehicles in distress. This system design study led to a nonrigid array about 8 km in size with means for locating the array element positions, receiving signals from the earth and determining the source locations and frequencies of the transmitting sources. It is concluded that this system design is feasible, and satisfies the desired objectives. The second task was an experiment to determine the largest earthbound array which could simulate a spaceborne experiment. It was determined that an 800 ft array would perform indistinguishably in both locations and it is estimated that one several times larger also would serve satisfactorily. In addition the power density spectrum of the phase difference fluctuations across a large array was measured. It was found that the spectrum falls off approximately as f to the minus 5/2 power.

  17. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  18. Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range

    NASA Astrophysics Data System (ADS)

    Hughes, Alec; Hynynen, Kullervo

    2017-09-01

    The use of a phased array of ultrasound transducer elements to sonicate through the skull has opened the way for new treatments and the delivery of therapeutics beyond the blood-brain barrier. The limited steering range of current clinical devices, particularly at higher frequencies, limits the regions of the brain that are considered treatable by ultrasound. A new array design is introduced that allows for high levels of beam steering and increased transmission throughout the brain. These improvements are achieved using concave transducers normal to the outer-skull surface in a patient-specific configuration to target within the skull, so that the far-field of each beam is within the brain. It is shown that by using pulsed ultrasound waves timed to arrive in-phase at the desired target, sufficient levels of acoustic energy are delivered for blood-brain barrier opening throughout the brain.

  19. Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range.

    PubMed

    Hughes, Alec; Hynynen, Kullervo

    2017-08-03

    The use of a phased array of ultrasound transducer elements to sonicate through the skull has opened the way for new treatments and the delivery of therapeutics beyond the blood-brain barrier. The limited steering range of current clinical devices, particularly at higher frequencies, limits the regions of the brain that are considered treatable by ultrasound. A new array design is introduced that allows for high levels of beam steering and increased transmission throughout the brain. These improvements are achieved using concave transducers normal to the outer-skull surface in a patient-specific configuration to target within the skull, so that the far-field of each beam is within the brain. It is shown that by using pulsed ultrasound waves timed to arrive in-phase at the desired target, sufficient levels of acoustic energy are delivered for blood-brain barrier opening throughout the brain.

  20. Expected Science Performance of the Square Kilometre Array Phase 1 (SKA1)

    NASA Astrophysics Data System (ADS)

    Bourke, Tyler; Braun, Robert; Bonaldi, Anna; Garcia-Miro, Cristina; Keane, Evan; Wagg, Jeff; SKAO Science Team

    2018-01-01

    The Square Kilometre Array (SKA) will be the world’s largest radio telescope when Phase 1 (SKA1) is completed in the next decade. The past few years have seen great progress toward this goal, through extensive design activities, with construction to start before the end of this decade, and early operations anticipated to begin around 2026. This poster describes the SKA and presents the expected performance and capabilities of SKA1 based on the modelling and proto-typing to date.

  1. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    2000-09-01

    Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.

  2. In-line digital holography with phase-shifting Greek-ladder sieves

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  3. Photonics applications in high-capacity data link terminals

    NASA Astrophysics Data System (ADS)

    Shi, Zan; Foshee, James J.

    2001-12-01

    Radio systems and, in particular, RF data link systems are evolving toward progressively more bandwidth and higher data rates. For many military RF data link applications the data transfer requirements exceed one Gigabit per second. Airborne collectors need to transfer sensor information and other large data files to ground locations and other airborne terminals, including the rel time transfer of files. It is a challenge to the system designer to provide a system design, which meets the RF link budget requirements for a one Gigabit per second data link; and there is a corresponding challenge in the development of the terminal architecture and hardware. The utilization of photonic circuitry and devices as a part of the terminal design offers the designer some alternatives to the conventional RF hardware design within the radio. Areas of consideration for the implementation of photonic technology include Gigabit per second baseband data interfaces with fiber along with the associated clocking rates and extending these Gigabit data rates into the radio for optical processing technology; optical interconnections within the individual circuit boards in the radio; and optical backplanes to allow the transfer of not only the Gigabit per second data rates and high speed clocks but other RF signals within the radio. True time delay using photonics in phased array antennas has been demonstrated and is an alternative to the conventional phase shifter designs used in phased array antennas, and remoting of phased array antennas from the terminal electronics in the Ku and Ka frequency bands using fiber optics as the carrier to minimize the RF losses, negate the use of the conventional waveguides, and allow the terminal equipment to be located with other electronic equipment in the aircraft suitable for controlled environment, ready access, and maintenance. The various photonics design alternatives will be discussed including specific photonic design approaches. Packaging, performance, and affordability of the various design alternatives will also be discussed.

  4. Coupled ridge waveguide distributed feedback quantum cascade laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang

    2015-04-06

    A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less

  5. Phase Calibration of Microphones by Measurement in the Free-field

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Bartram, Scott M.; Humphreys, William M.; Zuckewar, Allan J.

    2006-01-01

    Over the past several years, significant effort has been expended at NASA Langley developing new Micro-Electro-Mechanical System (MEMS)-based microphone directional array instrumentation for high-frequency aeroacoustic measurements in wind tunnels. This new type of array construction solves two challenges which have limited the widespread use of large channel-count arrays, namely by providing a lower cost-per-channel and a simpler method for mounting microphones in wind tunnels and in field-deployable arrays. The current generation of array instrumentation is capable of extracting accurate noise source location and directivity on a variety of airframe components using sophisticated data reduction algorithms [1-2]. Commercially-available MEMS microphones are condenser-type devices and have some desirable characteristics when compared with conventional condenser-type microphones. The most important advantages of MEMS microphones are their size, price, and power consumption. However, the commercially-available units suffer from certain important shortcomings. Based on experiments with array prototypes, it was found that both the bandwidth and the sound pressure limit of the microphones should be increased significantly to improve the performance and flexibility of the microphone array [3]. It was also desired to modify the packaging to eliminate unwanted Helmholtz resonance s exhibited by the commercial devices. Thus, new requirements were defined as follows: Frequency response: 100 Hz to 100 KHz (+/-3dB) Upper sound pressure limit: Design 1: 130 dB SPL (THD less than 5%) Design 2: 150-160 dB SPL (THD less than 5%) Packaging: 3.73 x 6.13 x 1.3 mm can with laser-etched lid. In collaboration with Novusonic Acoustic Innovation, NASA modified a Knowles SiSonic MEMS design to meet these new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size [4]. Hence a substitution based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. The free-field sensitivity (voltage per unit sound pressure) was obtained using the procedure outlined in reference 4. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone. The free-field calibration procedure along with representative sensitivity and phase responses for the new high-frequency MEMS microphones are presented here.

  6. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.

    PubMed

    Wiggins, G C; Triantafyllou, C; Potthast, A; Reykowski, A; Nittka, M; Wald, L L

    2006-07-01

    A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g-factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g-factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g-factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Copyright (c) 2006 Wiley-Liss, Inc.

  7. A dual frequency microstrip antenna for Ka band

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Baddour, M. F.

    1985-01-01

    For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.

  8. Study of cross-shaped ultrasonic array sensor applied to partial discharge location in transformer oil.

    PubMed

    Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo

    2013-11-01

    A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.

  9. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  10. High-Isolation Low Cross-Polarization Phased-Array Antenna for MPAR Application

    NASA Astrophysics Data System (ADS)

    Saeidi-Manesh, Hadi; Karimkashi, Shaya; Zhang, Guifu; Doviak, Richard J.

    2017-12-01

    The design and analysis of 12 × 12-element planar array of a dual-polarized aperture-coupled microstrip patch antenna operating in the frequency band of 2.7 GHz to 3.0 GHz for multifunction applications are presented. High-isolation between horizontal and vertical polarization ports and low cross-polarization are achieved through an aperture-coupled feed. The reflection coefficient and the isolation of horizontal and vertical ports at different scan angles are examined. The array antenna is fabricated and its radiation patterns are measured in the far-field and near-field chambers. The embedded element pattern of designed element is measured in the near-field chamber and is used for calculating the array scanning radiation pattern.

  11. Phased-array-fed antenna configuration study, volume 2

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.

    1983-01-01

    Increased capacity in future satellite systems can be achieved through antenna systems which provide multiplicity of frequency reuses at K sub a band. A number of antenna configurations which can provide multiple fixed spot beams and multiple independent spot scanning beams at 20 GHz are addressed. Each design incorporates a phased array with distributed MMIC amplifiers and phasesifters feeding a two reflector optical system. The tradeoffs required for the design of these systems and the corresponding performances are presented. Five final designs are studied. In so doing, a type of MMIC/waveguide transition is described, and measured results of the breadboard model are presented. Other hardware components developed are described. This includes a square orthomode transducer, a subarray fed with a beamforming network to measure scanning performance, and another subarray used to study mutual coupling considerations. Discussions of the advantages and disadvantages of the final design are included.

  12. From Vision to Reality: 50 Years of Phased Array Development

    DTIC Science & Technology

    2016-09-30

    This paper cites the most prominent U.S.-deployed phased array radars as viewed by one phased-array radar advocate. Key words: radar, antenna array...phased array, phased array radar, radar antennas , array I. INTRODUCTION I welcome the opportunity to talk with today’s phased array engineers and...their test site in Fullerton, CA in the mid-1960s and was impressed by the size of the antennas . Eight apertures were deployed on each ship to

  13. Measurements of Infrared and Acoustic Source Distributions in Jet Plumes

    NASA Technical Reports Server (NTRS)

    Agboola, Femi A.; Bridges, James; Saiyed, Naseem

    2004-01-01

    The aim of this investigation was to use the linear phased array (LPA) microphones and infrared (IR) imaging to study the effects of advanced nozzle-mixing techniques on jet noise reduction. Several full-scale engine nozzles were tested at varying power cycles with the linear phased array setup parallel to the jet axis. The array consisted of 16 sparsely distributed microphones. The phased array microphone measurements were taken at a distance of 51.0 ft (15.5 m) from the jet axis, and the results were used to obtain relative overall sound pressure levels from one nozzle design to the other. The IR imaging system was used to acquire real-time dynamic thermal patterns of the exhaust jet from the nozzles tested. The IR camera measured the IR radiation from the nozzle exit to a distance of six fan diameters (X/D(sub FAN) = 6), along the jet plume axis. The images confirmed the expected jet plume mixing intensity, and the phased array results showed the differences in sound pressure level with respect to nozzle configurations. The results show the effects of changes in configurations to the exit nozzles on both the flows mixing patterns and radiant energy dissipation patterns. By comparing the results from these two measurements, a relationship between noise reduction and core/bypass flow mixing is demonstrated.

  14. Low Cost Beam-Steering Approach for a Series-Fed Array

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex and costly. This paper presents a concept which overcomes these detrimental attributes by eliminating all of the phased array backend (including phase shifters). Instead, a propagation constant reconfigurable transmission line in a series fed array arrangement is used to allow phase shifting with one small (less than or equal to 100mil) linear mechanical motion. A novel slotted coplanar stripline design improves on previous transmission lines by demonstrating a greater control of propagation constant, thus allowing practical prototypes to be built. Also, beam steering pattern control is explored. We show that with correct choice of line impedance, pattern control is possible for all scan angles. A 20 element array scanning from -25 deg less than or equal to theta less than or equal to 21 deg. with mostly uniform gain at 13GHz is presented. Measured patterns show a reduced scan range of 12 deg. less than or equal to theta less than or equal to 25 deg. due to a correctable manufacturing error as verified by simulation. Beam squint is measured to be plus or minus 2.5 deg for a 600MHz bandwidth and cross-pol is measured to be at least -15dB.

  15. Alphabus Solar Array- Versatile and Powerful Solar Arrays for Tomorrow's Commercial Telecom Satellites

    NASA Astrophysics Data System (ADS)

    Pfefferkorn, T.; Oxynos, C.; Greff, P.; Gerlach, L.

    2008-09-01

    After the successful series of Eurostar 3000 and Spacebus 4000 satellites and due to the demand of satellite operators for even larger and more powerful satellites, ESA decided to co-fund the development of a new satellite platform which covers the market segment beyond the upper limits of both satellite families.The new satellite bus family Alphabus is developed in the frame of ARTES 8 project by a joint project team of ASTRIUM and TAS, whereas the solar array is developed by ASTRIUM GmbH.The main approaches in this design phase for the Alphabus solar array were to find a standardized and scaleable design to production and to use qualification heritage from former projects, especially Eurostar 3000, as far as possible. The main challenges for the solar array design and test philosophy were the usage of lateral deployment and related sequential deployment and the bus voltage of 102,5V and related ESD precautions.This paper provides an overview of the different configurations, their main design features and performance parameters. In addition it summarizes the development and verification approach and shows the actual qualification status.

  16. Conceptual design of a coherent optical system of modular imaging collectors (COSMIC). [telescope array deployed by space shuttle in 1990's

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Davis, B. G.

    1982-01-01

    The Coherent Optical System of Modular Imaging Collectors (COSMIC) is the design concept for a phase-coherent optical telescope array that may be placed in earth orbit by the Space Shuttle in the 1990s. The initial system module is a minimum redundancy array whose photon collecting area is three times larger than that of the Space Telescope, and possesses a one-dimensional resoution of better than 0.01 arcsec in the visible range. Thermal structural requirements are assessed. Although the coherent beam combination requirements will be met by an active control system, the COSMIC structural/thermal design must meet more stringent performance criteria than even those of the Space Telescope.

  17. Evaluation of materials for high performance solar arrays

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Smith, C. F., Jr.; Peacock, C. L., Jr.; Little, S. A.

    1978-01-01

    A program has been underway to evaluate materials for advanced solar arrays which are required to provide power to weight ratios up to 100 W/kg. Severe mission environments together with the lack of knowledge of space environmental materials degradation rates require the generation of irradiation and outgassing engineering data for use in the initial design phase of the flight solar arrays. Therefore, approximately 25 candidate array materials were subjected to selected mission environments of vacuum, UV, and particle irradiation, and their mechanical and/or optical properties were determined where appropriate.

  18. Ultrasonic Array for Obstacle Detection Based on CDMA with Kasami Codes

    PubMed Central

    Diego, Cristina; Hernández, Álvaro; Jiménez, Ana; Álvarez, Fernando J.; Sanz, Rebeca; Aparicio, Joaquín

    2011-01-01

    This paper raises the design of an ultrasonic array for obstacle detection based on Phased Array (PA) techniques, which steers the acoustic beam through the environment by electronics rather than mechanical means. The transmission of every element in the array has been encoded, according to Code Division for Multiple Access (CDMA), which allows multiple beams to be transmitted simultaneously. All these features together enable a parallel scanning system which does not only improve the image rate but also achieves longer inspection distances in comparison with conventional PA techniques. PMID:22247675

  19. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat notemore » line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.« less

  20. Rocket experiment METS Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  1. Reconfigurable phased antenna array for extending cubesat operations to Ka-band: Design and feasibility

    NASA Astrophysics Data System (ADS)

    Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.

    2017-08-01

    Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.

  2. Joint stars phased array radar antenna

    NASA Astrophysics Data System (ADS)

    Shnitkin, Harold

    1994-10-01

    The Joint STARS phased array radar system is capable of performing long range airborne surveillance and was used during the Persian Gulf war on two E8-A aircraft to fly many around-the-clock missions to monitor the Kuwait and Iraq battlefield from a safe distance behind the front lines. This paper is a follow-on to previous publications on the subject of the Joint STARS antenna and deals mainly with mission performance and technical aspects not previously covered. Radar data of troop movements and armament installations will be presented, a brief review of the antenna design is given, followed by technical discussions concerning the three-port interferometry, gain and sidelobe design approach, cost control, range test implementation and future improvements.

  3. Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission.

    PubMed

    Marzo, Asier; Corkett, Tom; Drinkwater, Bruce W

    2018-01-01

    Modern ultrasonic phased-array controllers are electronic systems capable of delaying the transmitted or received signals of multiple transducers. Configurable transmit-receive array systems, capable of electronic steering and shaping of the beam in near real-time, are available commercially, for example, for medical imaging. However, emerging applications, such as ultrasonic haptics, parametric audio, or ultrasonic levitation, require only a small subset of the capabilities provided by the existing controllers. To meet this need, we present Ultraino, a modular, inexpensive, and open platform that provides hardware, software, and example applications specifically aimed at controlling the transmission of narrowband airborne ultrasound. Our system is composed of software, driver boards, and arrays that enable users to quickly and efficiently perform research in various emerging applications. The software can be used to define array geometries, simulate the acoustic field in real time, and control the connected driver boards. The driver board design is based on an Arduino Mega and can control 64 channels with a square wave of up to 17 Vpp and /5 phase resolution. Multiple boards can be chained together to increase the number of channels. The 40-kHz arrays with flat and spherical geometries are demonstrated for parametric audio generation, acoustic levitation, and haptic feedback.

  4. Frequency Domain Beamforming for a Deep Space Network Downlink Array

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2012-01-01

    This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.

  5. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    PubMed

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.

  6. Status of the MARE experiment in Milan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, E.; Arnaboldi, C.; Ceruti, G.

    2009-12-16

    An international collaboration has grown around the project of Microcalorimeter Arrays for a Rhenium Experiment (MARE) for a direct and calorimetric measurement of the electron antineutrino mass with sub-electronvolt sensitivity.MARE is divided into two phases. The first phase (MARE-1) consists of two independent experiments using the presently available detector technology to reach a sensitivity of m{sub v}{<=}2eV/c{sup 2}. The goal of the second phase (MARE-2) is to achieve a sub-electronvolt sensitivity on the neutrino mass.The Milan MARE-1 experiment is based on arrays of silicon implanted microcalorimeters, produced by NASA/GSFC, with dielectric silver perrhenate absorbers, AgReO{sub 4}. We present here themore » status of MARE-1 in Milan which is starting data taking with 2 arrays (72 detectors). In this configuration a sensitivity of about 5 eV can be achieved in two years. We describe in details the experimental setup which is designed to host up to 8 arrays (288 detectors). With 8 arrays, two years of measurement would improve the sensitivity to about 3 eV. This talk reports on the activity of the group for the MARE project in Milan.« less

  7. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  8. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.

    2018-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.

  9. The Lemur Conjecture

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    In previous research we designed an interferometric quantum seismograph that uses entangled photon states to enhance sensitivity in an optomechanic device. However, a spatially-distributed array of such sensors, with each sensor measuring only nm-vibrations, may not provide sufficient sensitivity for the prediction of major earthquakes because it fails to exploit potentially critical phase information. We conjecture that relative phase information can explain the anecdotal observations that animals such as lemurs exhibit sensitivity to impending earthquakes earlier than can be done confidently with traditional seismic technology. More specifically, we propose that lemurs use their limbs as ground motion sensors and that relative phase differences are fused in the brain in a manner similar to a phased-array or synthetic-aperture radar. In this paper we will describe a lemur-inspired quantum sensor network for early warning of earthquakes. The system uses 4 interferometric quantum seismographs (e.g., analogous to a lemurs limbs) and then conducts phase and data fusion of the seismic information. Although we discuss a quantum-based technology, the principles described can also be applied to classical sensor arrays

  10. Antennas for the array-based Deep Space Network: current status and future designs

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Gama, Eric

    2005-01-01

    Development of very large arrays1,2 of small antennas has been proposed as a way to increase the downlink capability of the NASA Deep Space Network DSN) by two or three orders of magnitude thereby enabling greatly increased science data from currently configured missions or enabling new mission concepts. The current concept is for an array of 400 x 12-m antennas at each of three longitudes. The DSN array will utilize radio astronomy sources for phase calibration and will have wide bandwidth correlation processing for this purpose. NASA has undertaken a technology program to prove the performance and cost of a very large DSN array. Central to that program is a 3-element interferometer to be completed in 2005. This paper describes current status of the low cost 6-meter breadboard antenna to be used as part of the interferometer and the RF design of the 12-meter antenna.

  11. Next generation miniature simultaneous multi-hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Gupta, Neelam

    2014-03-01

    The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.

  12. FY15 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Aaron A.; Larche, Michael R.; Mathews, Royce

    2015-09-01

    This Technical Letter Report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2015 on the under-sodium viewing (USV) PNNL project 58745, Work Package AT-15PN230102. This TLR satisfies PNNL’s M3AT-15PN2301027 milestone, and is focused on summarizing the design, development, and evaluation of a two-dimensional matrix phased-array probe referred to as serial number 3 (SN3). In addition, this TLR also provides the results from a performance demonstration of in-sodium target detection trials at 260°C using a one-dimensional 22-element linear array developed in FY14 and referred to as serial number 2 (SN2).

  13. Digital communication constraints in prior space missions

    NASA Technical Reports Server (NTRS)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this activity is to assist in the set-up of phase noise instrumentation, assist in the process of automated wire bonding, assist in the design and optimization of tunable microwave components, especially phase shifters, based on thin ferroelectric films, and learn how to use commercial electromagnetic simulation software.

  14. Rad-hard Dual-threshold High-count-rate Silicon Pixel-array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Adam

    In this program, a Voxtel-led team demonstrates a full-format (192 x 192, 100-µm pitch, VX-810) high-dynamic-range x-ray photon-counting sensor—the Dual Photon Resolved Energy Acquisition (DUPREA) sensor. Within the Phase II program the following tasks were completed: 1) system analysis and definition of the DUPREA sensor requirements; 2) design, simulation, and fabrication of the full-format VX-810 ROIC design; 3) design, optimization, and fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of the optically sensitive focal-plane array; 5) development of an evaluation camera; and 6)more » electrical and optical characterization of the sensor.« less

  15. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  16. Design of a HIFU array for the treatment of deep venous thrombosis: a simulation study

    NASA Astrophysics Data System (ADS)

    Smirnov, Petr; Hynynen, Kullervo

    2017-08-01

    Deep venous thrombosis of the iliofemoral veins is a common and morbid disease, with the recommended interventional treatment carrying a high risk of hemorrhaging and complications. High intensity focused ultrasound delivered with a single element transducer has been shown to successfully precipitate thrombolysis non-invasively in vitro and in vivo. However, in all previous studies damage to the veins or surrounding tissue has been observed. Using a simulation model of the human thigh, this study investigated whether a phased array device could overcome the large focal region limitations faced by single transducer treatment devices. Effects of the size, shape and frequency of the array on its focal region were considered. It was found that a λ/2 spaced array of 7680 elements operating at 500 kHz could consistently focus to a region fully contained within the femoral vein. Furthermore, it is possible to reduce the number of elements required by building arrays operating at lower frequencies. The results suggest that phased transducer arrays hold potential for developing a safe, non-invasive treatment of thrombolysis.

  17. Driving Circuitry for Focused Ultrasound Noninvasive Surgery and Drug Delivery Applications

    PubMed Central

    El-Desouki, Munir M.; Hynynen, Kullervo

    2011-01-01

    Recent works on focused ultrasound (FUS) have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU). PMID:22346589

  18. Driving circuitry for focused ultrasound noninvasive surgery and drug delivery applications.

    PubMed

    El-Desouki, Munir M; Hynynen, Kullervo

    2011-01-01

    Recent works on focused ultrasound (FUS) have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU).

  19. Iterative simulated quenching for designing irregular-spot-array generators.

    PubMed

    Gillet, J N; Sheng, Y

    2000-07-10

    We propose a novel, to our knowledge, algorithm of iterative simulated quenching with temperature rescaling for designing diffractive optical elements, based on an analogy between simulated annealing and statistical thermodynamics. The temperature is iteratively rescaled at the end of each quenching process according to ensemble statistics to bring the system back from a frozen imperfect state with a local minimum of energy to a dynamic state in a Boltzmann heat bath in thermal equilibrium at the rescaled temperature. The new algorithm achieves much lower cost function and reconstruction error and higher diffraction efficiency than conventional simulated annealing with a fast exponential cooling schedule and is easy to program. The algorithm is used to design binary-phase generators of large irregular spot arrays. The diffractive phase elements have trapezoidal apertures of varying heights, which fit ideal arbitrary-shaped apertures better than do trapezoidal apertures of fixed heights.

  20. CryoPAF4: a cryogenic phased array feed design

    NASA Astrophysics Data System (ADS)

    Locke, Lisa; Garcia, Dominic; Halman, Mark; Henke, Doug; Hovey, Gary; Jiang, Nianhua; Knee, Lewis; Lacy, Gordon; Loop, David; Rupen, Michael; Veidt, Bruce; Wierzbicki, Ramunas

    2016-07-01

    Phased array feed (PAF) receivers used on radio astronomy telescopes offer the promise of increased fields of view while maintaining the superlative performance attained with traditional single pixel feeds (SPFs). However, the much higher noise temperatures of room temperature PAFs compared to cryogenically-cooled SPFs have prevented their general adoption. Here we describe a conceptual design for a cryogenically cooled 2.8 - 5.18 GHz dual linear polarization PAF with estimated receiver temperature of 11 K. The cryogenic PAF receiver will comprise a 140 element Vivaldi antenna array and low-noise amplifiers housed in a 480 mm diameter cylindrical dewar covered with a RF transparent radome. A broadband two-section coaxial feed is integrated within each metal antenna element to withstand the cryogenic environment and to provide a 50 ohm impedance for connection to the rest of the receiver. The planned digital beamformer performs digitization, frequency band selection, beam forming and array covariance matrix calibration. Coupling to a 15 m offset Gregorian dual-reflector telescope, cryoPAF4 can expect to form 18 overlapping beams increasing the field of view by a factor of 8x compared to a single pixel receiver of equal system temperature.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, T.; Imhof, A.; Ingold, G.

    To vary the polarization vector of an APPLE II undulator continuously from 0 - 180 deg., all four magnet arrays need to be movable. Following the adjustable-phase undulator approach by R. Carr, a 3.4 m long fixed gap undulator for SLS with a gap of 11.6 mm has been constructed. It will be installed in fall 2006. The gap drive is replaced by a pair-wise shift of the magnet arrays to change the energy, while the polarization is changed by shifts of diagonal arrays. The high injection efficiency and standard operation top-up mode at the SLS allows this simplified undulatormore » design. The design as well as the operational aspects will be discussed.« less

  2. Optomechanical System Development of the AWARE Gigapixel Scale Camera

    NASA Astrophysics Data System (ADS)

    Son, Hui S.

    Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.

  3. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  4. Specific coil design for SENSE: a six-element cardiac array.

    PubMed

    Weiger, M; Pruessmann, K P; Leussler, C; Röschmann, P; Boesiger, P

    2001-03-01

    In sensitivity encoding (SENSE), the effects of inhomogeneous spatial sensitivity of surface coils are utilized for signal localization in addition to common Fourier encoding using magnetic field gradients. Unlike standard Fourier MRI, SENSE images exhibit an inhomogeneous noise distribution, which crucially depends on the geometrical sensitivity relations of the coils used. Thus, for optimum signal-to-noise-ratio (SNR) and noise homogeneity, specialized coil configurations are called for. In this article we study the implications of SENSE imaging for coil layout by means of simulations and imaging experiments in a phantom and in vivo. New, specific design principles are identified. For SENSE imaging, the elements of a coil array should be smaller than for common phased-array imaging. Furthermore, adjacent coil elements should not overlap. Based on the findings of initial investigations, a configuration of six coils was designed and built specifically for cardiac applications. The in vivo evaluation of this array showed a considerable SNR increase in SENSE images, as compared with a conventional array. Magn Reson Med 45:495-504, 2001. Copyright 2001 Wiley-Liss, Inc.

  5. A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System

    PubMed Central

    Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.

    2010-01-01

    A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066

  6. A Low Loss Microstrip Antenna for Radiometric Applications

    NASA Technical Reports Server (NTRS)

    Wahid, Parveen

    2000-01-01

    The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The antenna is composed of two subarrays. Each subarray consists of an equal number of microstrip patches all connected together with microstrip lines. In the first design microstrip array for linear polarization is presented which incorporated a series feeding technique. The next design, which is capable of dual linear polarization (V-polarization and H-polarization), utilizes a corporate feed network for the V-pol and series feed arrangement for the H-pol. The first element of each subarray for H-pol is coaxially fed with a 180 deg phase difference. This approach ensures a symmetric radiation pattern on broadside in H-pol. For the V-pol two feeds are in the same phase on the two subarrays ensuring a broadside beam in V-pol. The designs presented here are simulated using the IE3D code that utilizes the method of moments. Measured results are compared with simulated results and show good agreement.

  7. A Study of Phased Array Antennas for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.

    2001-01-01

    In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.

  8. Extending the scanning angle of a phased array antenna by using a null-space medium.

    PubMed

    Sun, Fei; He, Sailing

    2014-10-30

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome.

  9. Development of a Microphone Phased Array Capability for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M.; Brooks, Thomas F.; Bahr, Christopher J.; Spalt, Taylor B.; Bartram, Scott M.; Culliton, William G.; Becker, Lawrence E.

    2014-01-01

    A new aeroacoustic measurement capability has been developed for use in open-jet testing in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 tunnel). A suite of instruments has been developed to characterize noise source strengths, locations, and directivity for both semi-span and full-span test articles in the facility. The primary instrument of the suite is a fully traversable microphone phased array for identification of noise source locations and strengths on models. The array can be mounted in the ceiling or on either side of the facility test section to accommodate various test article configurations. Complementing the phased array is an ensemble of streamwise traversing microphones that can be placed around the test section at defined locations to conduct noise source directivity studies along both flyover and sideline axes. A customized data acquisition system has been developed for the instrumentation suite that allows for command and control of all aspects of the array and microphone hardware, and is coupled with a comprehensive data reduction system to generate information in near real time. This information includes such items as time histories and spectral data for individual microphones and groups of microphones, contour presentations of noise source locations and strengths, and hemispherical directivity data. The data acquisition system integrates with the 14x22 tunnel data system to allow real time capture of facility parameters during acquisition of microphone data. The design of the phased array system has been vetted via a theoretical performance analysis based on conventional monopole beamforming and DAMAS deconvolution. The performance analysis provides the ability to compute figures of merit for the array as well as characterize factors such as beamwidths, sidelobe levels, and source discrimination for the types of noise sources anticipated in the 14x22 tunnel. The full paper will summarize in detail the design of the instrumentation suite, the construction of the hardware system, and the results of the performance analysis. Although the instrumentation suite is designed to characterize noise for a variety of test articles in the 14x22 tunnel, this paper will concentrate on description of the instruments for two specific test campaigns in the facility, namely a full-span NASA Hybrid Wing Body (HWB) model entry and a semi-span Gulfstream aircraft model entry, tested in the facility in the winter of 2012 and spring of 2013, respectively.

  10. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces.

    PubMed

    Aieta, Francesco; Genevet, Patrice; Kats, Mikhail A; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico

    2012-09-12

    The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas. The lenses and axicons consist of V-shaped nanoantennas that introduce a radial distribution of phase discontinuities, thereby generating respectively spherical wavefronts and nondiffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high-numerical aperture lenses such as flat microscope objectives.

  11. Prospects for Future Synergies Between SKA and AtLAST

    NASA Astrophysics Data System (ADS)

    Wagg, Jeff

    2018-01-01

    The Square Kilometre Array will be the next major global radio astronomy observatory. Being built in two phases, the first phase will consist of a low frequency array in Australia and a mid to high frequency array of dishes in the Karoo of South Africa. The design of SKA1 is nearly complete with the expectation that construction should begin within the next two years. A significant fraction of the observing time on both SKA1-MID and SKA1-LOW will likely be devoted to large survey programmes covering a broad range of science objectives. Given the timeline for these SKA1 programmes to be completed, it is anticipated that they could naturally complement future high frequency surveys using AtLAST. I will highlight a few areas where such synergies should exist.

  12. Status of a Novel 4-Band Submm/mm Camera for the Caltech Submillimeter Observatory

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid; Day, P.; Glenn, J.; Golwala, S.; Kumar, S.; LeDuc, H. G.; Mazin, B.; Nguyen, H. T.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Zmuidzinas, J.

    2007-12-01

    Submillimeter observations are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. To this end, we are undertaking the construction of a 4-band (750, 850, 1100, 1300 microns) 8-arcminute field of view camera for the Caltech Submillimeter Observatory. The focal plane will make use of three novel technologies: photolithographic phased array antennae, on-chip band-pass filters, and microwave kinetic inductance detectors (MKID). The phased array antenna design obviates beam-defining feed horns. On-chip band-pass filters eliminate band-defining metal-mesh filters. Together, the antennae and filters enable each spatial pixel to observe in all four bands simultaneously. MKIDs are highly multiplexable background-limited photon detectors. Readout of the MKID array will be done with software-defined radio (See poster by Max-Moerbeck et al.). This camera will provide an order-of-magnitude larger mapping speed than existing instruments and will be comparable to SCUBA 2 in terms of the detection rate for dusty sources, but complementary to SCUBA 2 in terms of wavelength coverage. We present results from an engineering run with a demonstration array, the baseline design for the science array, and the status of instrument design, construction, and testing. We anticipate the camera will be available at the CSO in 2010. This work has been supported by NASA ROSES APRA grants NNG06GG16G and NNG06GC71G, the NASA JPL Research and Technology Development Program, and the Gordon and Betty Moore Foundation.

  13. Array of Josephson junctions with a nonsinusoidal current-phase relation as a model of the resistive transition of unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Carbone, Anna; Gilli, Marco; Mazzetti, Piero; Ponta, Linda

    2010-12-01

    An array of resistively and capacitively shunted Josephson junctions with nonsinusoidal current-phase relation is considered for modeling the transition in high-Tc superconductors. The emergence of higher harmonics, besides the simple sinusoid Ic sin ϕ, is expected for dominant d-wave symmetry of the Cooper pairs, random distribution of potential drops, dirty grains, or nonstationary conditions. We show that additional cosine and sine terms act, respectively, by modulating the global resistance and by changing the Josephson coupling of the mixed superconductive-normal states. First, the approach is applied to simulate the transition in disordered granular superconductors with the weak-links characterized by nonsinusoidal current-phase relation. In granular superconductors, the emergence of higher-order harmonics affects the slope of the transition. Then, arrays of intrinsic Josephson junctions, naturally formed by the CuO2 planes in cuprates, are considered. The critical temperature suppression, observed at values of hole doping close to p =1/8, is investigated. Such suppression, related to the sign change and modulation of the Josephson coupling across the array, is quantified in terms of the intensities of the first and second sinusoids of the current-phase relation. Applications are envisaged for the design and control of quantum devices based on stacks of intrinsic Josephson junctions.

  14. A prototype automatic phase compensation module

    NASA Technical Reports Server (NTRS)

    Terry, John D.

    1992-01-01

    The growing demands for high gain and accurate satellite communication systems will necessitate the utilization of large reflector systems. One area of concern of reflector based satellite communication is large scale surface deformations due to thermal effects. These distortions, when present, can degrade the performance of the reflector system appreciable. This performance degradation is manifested by a decrease in peak gain, and increase in sidelobe level, and pointing errors. It is essential to compensate for these distortion effects and to maintain the required system performance in the operating space environment. For this reason the development of a technique to offset the degradation effects is highly desirable. Currently, most research is direct at developing better material for the reflector. These materials have a lower coefficient of linear expansion thereby reducing the surface errors. Alternatively, one can minimize the distortion effects of these large scale errors by adaptive phased array compensation. Adaptive phased array techniques have been studied extensively at NASA and elsewhere. Presented in this paper is a prototype automatic phase compensation module designed and built at NASA Lewis Research Center which is the first stage of development for an adaptive array compensation module.

  15. Large Ka-Band Slot Array for Digital Beam-Forming Applications

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.

    2011-01-01

    This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall the 1x1 m array was found to be successful in meeting the objectives of the GLISTIN demonstration antenna, especially with respect to the 0.042deg, 1/10th of the beamwidth of each stick, relative beam alignment between sticks.

  16. Demonstration of an optical phased array using electro-optic polymer phase shifters

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  17. All-silicon nanorod-based Dammann gratings.

    PubMed

    Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong

    2015-09-15

    Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.

  18. Protocol optimization of sacroiliac joint MR Imaging at 3 Tesla: Impact of coil design and motion resistant sequences on image quality.

    PubMed

    Gondim Teixeira, P A; Bravetti, M; Hossu, G; Lecocq, S; Petit, D; Loeuille, D; Blum, A

    2017-12-01

    To evaluate the impact of coil design and motion-resistant sequences on the quality of sacroiliac magnetic resonance imaging (MRI) examination in patients with spondyloarthropathy. One hundred and twenty-one patients with suspected sacroiliitis and referred for MRI of the sacroiliac joints were retrospectively evaluated with MRI at 3-Tesla. There were 78 women and 43 men with a mean age of 36.7±11.5 (SD) years (range: 15.8-78.4 years). Conventional and motion-resistant fat-saturated fast-spin echo T2-weighted sequences were performed with two different coils. Image quality was subjectively evaluated by two independent readers (R1 and R2) using a four-point scale. Confidence in the identification of bone marrow edema pattern (BMEP) was also evaluated subjectively using a three-point scale. Phased array body coil yielded improved image quality compared to surface coil (14.1 to 30.4% for R1 and 14.6 to 25.7% for R2; P<0.0001). The impact of the sequence type on quality was also statistically significant (P=0.0046). BMEP was identified in 40 patients and best inter-reader agreement was obtained using the combination of phased-array body coil with motion-resistant T2-weighted sequence (kappa 0.990). The smallest number of indeterminate BMEP zones was seen on MRI set acquired with the phased-array body coil and motion-resistant T2-weighted sequence. Phased array body coil and motion-resistant T2-weighted sequences perform better than surface coil and conventional T2-weighted sequences for the evaluation of sacroiliac joints, increasing confidence in the identification of BMEP. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  19. Uses of infrared thermography in the low-cost solar array program

    NASA Technical Reports Server (NTRS)

    Glazer, S. D.

    1982-01-01

    The Jet Propulsion Laboratory has used infrared thermography extensively in the Low-Cost Solar Array (LSA) photovoltaics program. A two-dimensional scanning infrared radiometer has been used to make field inspections of large free-standing photovoltaic arrays and smaller demonstration sites consisting of integrally mounted rooftop systems. These field inspections have proven especially valuable in the research and early development phases of the program, since certain types of module design flaws and environmental degradation manifest themselves in unique thermal patterns. The infrared camera was also used extensively in a series of laboratory tests on photovoltaic cells to obtain peak cell temperatures and thermal patterns during off-design operating conditions. The infrared field inspections and the laboratory experiments are discussed, and sample results are presented.

  20. Design considerations for high-altitude, long-endurance, microwave-powered aircraft. M.S. Thesis - George Washington Univ., Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Q.

    1985-01-01

    The sizing and performance analyses have been conducted in the design of long-endurance, high-altitude airplanes. These airplanes receive power either continuously beamed from a phased array transmitter or intermittently beamed from a dish transmitter. Results are presented for the cases of flight in zero wind speed and nonzero wind speed. Sensitivity studies indicate that the vehicle size is relatively insensitive to changes in the transmitter size. Cost estimates were made using models that excluded the airplane cost. Using a reference payload, results obtained from array and dish configurations were compared. Comparisons showed savings in cost as well as smaller vehicle sizes when an array transmitter was used.

  1. Modal processing for acoustic communications in shallow water experiment.

    PubMed

    Morozov, Andrey K; Preisig, James C; Papp, Joseph

    2008-09-01

    Acoustical array data from the Shallow Water Acoustics experiment was processed to show the feasibility of broadband mode decomposition as a preprocessing method to reduce the effective channel delay spread and concentrate received signal energy in a small number of independent channels. The data were collected by a vertical array designed at the Woods Hole Oceanographic Institution. Phase-shift Keying (PSK) m-sequence modulated signals with different carrier frequencies were transmitted at a distance 19.2 km from the array. Even during a strong internal waves activity a low bit error rate was achieved.

  2. Alicudi project

    NASA Astrophysics Data System (ADS)

    Arcidiacono, V.; Corsi, S.; Iliceto, A.; Previ, A.; Taschini, A.

    Design features and goals of the photovoltaic array power system for Alicudi Island hamlets are described. The array will have two 40 kWe sections, a 3 kAh battery system, an inverter to assure three-phase, ac current, a data acquisition system, and a 60 kVA diesel back-up system. The semi-arid conic volcanic island has terraces and a slope ideally suited to installation of the array. A computer simulation was developed to optimize the output and load profile matching using historical insolation data. A block diagram is provided of the electricity distribution network.

  3. Conceptual approach study of a 200 watt per kilogram solar array, phase 1

    NASA Technical Reports Server (NTRS)

    Rayl, G. J.; Speight, K. M.; Stanhouse, R. W.

    1977-01-01

    Two alternative designs were studied; one a retractable rollout design and the other a nonretractable foldout configuration. An end of life (EOL) power for either design of 0.79 beginning of life (BOL) is predicted based on one solar flare during a 3 year interplanetary mission. Both array configurations incorporate the features of flexible substrates and cover sheets. A power capacity of 10 kilowatt is achieved in a blanket area of 76 sq m with an area utilization factor of 0.8. A single array consists of two identical solar cell blankets deployed concurrently by a single, coilable longeron boom. An out of plane angle of 8-1/4 deg is maintained between the two blankets so that the inherent inplane stiffness of the blankets may be used to obtain out of plane stiffness. This V-stiffened design results in a 67% reduction in the stiffness requirement for the boom. Since boom mass scales with stiffness, a lower requirement on boom stiffness results in a lower mass for the boom. These solar arrays are designed to be compatible with the shuttle launch environment and shuttle cargo bay size limitations.

  4. A Weather Radar Simulator for the Evaluation of Polarimetric Phased Array Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, Andrew D.; Ivic, Igor R.; Palmer, Robert D.

    A radar simulator capable of generating time series data for a polarimetric phased array weather radar has been designed and implemented. The received signals are composed from a high-resolution numerical prediction weather model. Thousands of scattering centers, each with an independent randomly generated Doppler spectrum, populate the field of view of the radar. The moments of the scattering center spectra are derived from the numerical weather model, and the scattering center positions are updated based on the three-dimensional wind field. In order to accurately emulate the effects of the system-induced cross-polar contamination, the array is modeled using a complete setmore » of dual-polarization radiation patterns. The simulator offers reconfigurable element patterns and positions as well as access to independent time series data for each element, resulting in easy implementation of any beamforming method. It also allows for arbitrary waveform designs and is able to model the effects of quantization on waveform performance. Simultaneous, alternating, quasi-simultaneous, and pulse-to-pulse phase coded modes of polarimetric signal transmission have been implemented. This framework allows for realistic emulation of the effects of cross-polar fields on weather observations, as well as the evaluation of possible techniques for the mitigation of those effects.« less

  5. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measuredmore » reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.« less

  6. Radar Attitude Sensing System (RASS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.

  7. How Learning Environments Can Stimulate Student Imagination

    ERIC Educational Resources Information Center

    Liang, Chaoyun; Hsu, Yuling; Huang, Yinghsiu; Chen, Sheng-Chih

    2012-01-01

    The purpose of this study was to investigate an array of environmental factors that can stimulate imagination and explore how these factors manifest in different design phases. The participants of this study were students in the field of educational technology from four universities across Taiwan. The instructional design process was divided into…

  8. Phased array ghost elimination.

    PubMed

    Kellman, Peter; McVeigh, Elliot R

    2006-05-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. Copyright (c) 2006 John Wiley & Sons, Ltd.

  9. Phased array ghost elimination

    PubMed Central

    Kellman, Peter; McVeigh, Elliot R.

    2007-01-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. PMID:16705636

  10. Advanced Precipitation Radar Antenna to Measure Rainfall From Space

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen

    2008-01-01

    To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds reduces the complexity from "NxN" transmit/receive (T/R) modules of a conventional planar-phased array to just "N" T/R modules. The antenna uses T/R modules with electronic phase-shifters for beam steering. The offset reflector does not provide poor cross-polarization like a double- curved offset reflector would, and it allows the wide scan angle in one plane required by the mission. Also, the cylindrical reflector with two linear array feeds provides dual-frequency performance with a single, shared aperture. The aperture comprises a reflective surface with a focal length of 1.89 m and is made from aluminized Kapton film. The reflective surface is of uniform thickness in the range of a few thousandths of an inch and is attached to the chain-link support structure via an adjustable suspension system. The film aperture rolls up, together with the chain-link structure, for launch and can be deployed in space by the deployment of the chain-link structure.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieregg, A.G.; Bechtol, K.; Romero-Wolf, A., E-mail: avieregg@kicp.uchicago.edu, E-mail: bechtol@kicp.uchicago.edu, E-mail: andrew.romero-wolf@jpl.nasa.gov

    The detection of high energy neutrinos (10{sup 15}–10{sup 20} eV) is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. In this energy range, there are two expected populations of neutrinos: the astrophysical flux observed with IceCube at lower energies (∼1 PeV) and the predicted cosmogenic flux at higher energies (∼10{sup 18} eV) . Radio detector arrays such as RICE, ANITA, ARA, and ARIANNA exploit the Askaryan effect and the radio transparency of glacial ice, which together enable enormous volumes of icemore » to be monitored with sparse instrumentation. We describe here the design for a phased radio array that would lower the energy threshold of radio techniques to the PeV scale, allowing measurement of the astrophysical flux observed with IceCube over an extended energy range. Meaningful energy overlap with optical Cherenkov telescopes could be used for energy calibration. The phased radio array design would also provide more efficient coverage of the large effective volume required to discover cosmogenic neutrinos.« less

  12. The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.

    2014-07-01

    The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.

  13. Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays

    DTIC Science & Technology

    2010-02-28

    Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam

  14. PAPER: The Precision Array To Probe The Epoch Of Reionization

    NASA Astrophysics Data System (ADS)

    Backer, Donald C.; Parsons, A.; Bradley, R.; Parashare, C.; Gugliucci, N.; Mastrantonio, E.; Herne, D.; Lynch, M.; Wright, M.; Werhimer, D.; Carilli, C.; Datta, A.; Aguirre, J.

    2007-12-01

    The Precision Array to Probe the Epoch of Reionization (PAPER) is an experiment that is being designed to detect the faint HI signal from the epoch of reionization. Our instrumentation goals include: the design and building of dipole elements that are optimized for operation from 120-190 MHz with a clean beam response; amplifiers and receivers with good impedance match and overall flat gain response over a large bandpass; and an FPGA correlator capable of producing full Stokes products for the array. The array is being built and evaluated in stages at the Green Bank Observatory in West Virginia with deployment of the full instrument in Western Australia. We present results from an eight-station deployment in Green Bank and four-station deployment in Western Australia, including phase and amplitude calibration, RFI mitigation and removal, full sky maps, and wide-field snapshot imaging. We have discovered new ways to improve our system's stability and sensitivity from these early experiments, and are applying these concepts to a 16-element array in Green Bank in early 2008 and a 32-element array in Western Australia later in 2008.

  15. MCM Polarimetric Radiometers for Planar Arrays

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase shift). Each of these beams enters the MCM through one of two WR-22 waveguide input terminals in the lid of the MCM. The h + i(nu0 and h - i(nu) signals are amplified, then fed to a phase-discriminator hybrid designed specifically to fit the predominantly planar character of the MCM geometry and to enable determination of Q and U. The phase-discriminator hybrid generates four outputs, which are detected and used to calculate I, Q, and U.

  16. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  17. The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array

    NASA Technical Reports Server (NTRS)

    Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.

    1994-01-01

    The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were essentially the same as that for the copper array. The measured gain of the YBCO antenna was greater than that for the room temperature copper design at temperatures below 82K, reaching a value of 3.4 dB at the lowest temperatures.

  18. RFI in the 0.5 to 10.8 GHz Band at the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Backus, Peter R.; Kilsdonk, T. N.; Allen Telescope Array Team

    2007-05-01

    Thanks to funding from the Paul G. Allen Foundation (and other philanthropic supporters) for the technology development and first phase of construction, the first 42 elements of the Allen Telescope Array (ATA-42) are being commissioned for rapid surveys of the astrophysical and technological sky. Because of the innovative design of this array that will eventually include 350 elements, traditional radio astronomy and SETI are enabled simultaneously 24x7. The array has been designed to provide an optimal snapshot image of a very large field of view and simultaneously, 16 (dual polarization) phased beams within the field of view to be analyzed by a suite of backend processors. Four independent 100 MHz bands may be tuned anywhere within the instantaneous receiver bandwidth from 0.5 to 11.2 GHz. One key to the success of rapid surveys for astrophysical or technological signals is a quiet background. This poster presents the results of initial surveys with 6.1 meter dishes at high-spectral-resolution of the background spectrum from 0.5 to 10.8 GHz at the Hat Creek Radio Observatory, where the ATA is being constructed, and compares it with the background spectrum from 1.2-3 GHz at other observatories where SETI observations have been conducted within the past 11 years.

  19. Big-Data Perspective to Operating an SKA-Type Synthesis Array Radio Telescope

    NASA Astrophysics Data System (ADS)

    Shanmugha Sundaram, GA

    2015-08-01

    Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the Square Kilometer Array (SKA), for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm levels, that form the Key Science Projects (KSPs) for the SKA, and interfacing them to an optimally designed array conguration, a critical evaluation of their radio imaging capabilities and metrics becomes paramount. Here, the various KSPs and instrument design specifications are discussed, for relative merits and adaptability to either site, from invoking well-founded and established array-design and optimization principles designed into a customized software tool. Since the problem of array design is one that encompasses variables on several scales such as separation distances between the radio interferometric pair (termed the baseline), factors such as redundancy, flux and phase calibration, bandwidth, integration time, clock synchronization for the correlation process at the detector, and many other ambient-defined parameters, there is a significant component of big data involved in the complex visibilities that are to be Fourier transformed from the spatial to the radio-sky domain (to generate a radio sky map) using vast computational infrastructure, with robust data connectivity and data handling facilities to support this. A crucial requirement exists to make the general public aware of the implications of such a massive scale scientific and technological venture, which shall be the focus of this presentation.

  20. An update on SCARLET hardware development and flight programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.A.; Murphy, D.M.; Piszczor, M.F.

    1995-10-01

    Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) is one of the first practical photovoltaic concentrator array technologies that offers a number of benefits for space applications (i.e. high array efficiency, protection from space radiation effects, a relatively light weight system, minimized plasma interactions, etc.) The line-focus concentrator concept, however, also offers two very important advantages: (1) low-cost mass production potential of the lens material; and (2) relaxation of precise array tracking requirements to only a single axis. These benefits offer unique capabilities to both commercial and government spacecraft users, specifically those interested in high radiation missions, such asmore » MEO orbits, and electric-powered propulsion LEO-to-GEO orbit raising applications. SCARLET is an aggressive hardware development and flight validation program sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center. Its intent is to bring technology to the level of performance and validation necessary for use by various government and commercial programs. The first phase of the SCARLET program culminated with the design, development and fabrication of a small concentrator array for flight on the METEOR satellite. This hardware will be the first in-space demonstration of concentrator technology at the `array level` and will provide valuable in-orbit performance measurements. The METEOR satellite is currently planned for a September/October 1995 launch. The next phase of the program is the development of large array for use by one of the NASA New Millenium Program missions. This hardware will incorporate a number of the significant improvements over the basic METEOR design. This presentation will address the basic SCARLET technology, examine its benefits to users, and describe the expected improvements for future missions.« less

  1. Multilayer Dielectric Transmissive Optical Phase Modulator

    NASA Technical Reports Server (NTRS)

    Keys, Andrew Scott; Fork, Richard Lynn

    2004-01-01

    A multilayer dielectric device has been fabricated as a prototype of a low-loss, low-distortion, transmissive optical phase modulator that would provide as much as a full cycle of phase change for all frequency components of a transmitted optical pulse over a frequency band as wide as 6.3 THz. Arrays of devices like this one could be an alternative to the arrays of mechanically actuated phase-control optics (adaptive optics) that have heretofore been used to correct for wave-front distortions in highly precise optical systems. Potential applications for these high-speed wave-front-control arrays of devices include agile beam steering, optical communications, optical metrology, optical tracking and targeting, directional optical ranging, and interferometric astronomy. The device concept is based on the same principle as that of band-pass interference filters made of multiple dielectric layers with fractional-wavelength thicknesses, except that here there is an additional focus on obtaining the desired spectral phase profile in addition to the device s spectral transmission profile. The device includes a GaAs substrate, on which there is deposited a stack of GaAs layers alternating with AlAs layers, amounting to a total of 91 layers. The design thicknesses of the layers range from 10 nm to greater than 1 micrometer. The number of layers and the thickness of each layer were chosen in a computational optimization process in which the wavelength dependences of the indices of refraction of GaAs and AlAs were taken into account as the design was iterated to maximize the transmission and minimize the group-velocity dispersion for a wavelength band wide enough to include all significant spectral components of the pulsed optical signal to be phase modulated.

  2. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    PubMed

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  3. Adaptive ground implemented phase array

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.

    1973-01-01

    The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.

  4. Combinatorial Solid-Phase Synthesis of Aromatic Oligoamides: A Research-Based Laboratory Module for Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Fuller, Amelia A.

    2016-01-01

    A five-week, research-based experiment suitable for second-semester introductory organic laboratory students is described. Each student designs, prepares, and analyzes a combinatorial array of six aromatic oligoamides. Molecules are prepared on solid phase via a six-step synthetic sequence, and purities and identities are determined by analysis of…

  5. AMPA experimental communications systems

    NASA Technical Reports Server (NTRS)

    Beckerman, D.; Fass, S.; Keon, T.; Sielman, P.

    1982-01-01

    The program was conducted to demonstrate the satellite communication advantages of Adaptive Phased Array Technology. A laboratory based experiment was designed and implemented to demonstrate a low earth orbit satellite communications system. Using a 32 element, L-band phased array augmented with 4 sets of weights (2 for reception and 2 for transmission) a high speed digital processing system and operating against multiple user terminals and interferers, the AMPA system demonstrated: communications with austere user terminals, frequency reuse, communications in the face of interference, and geolocation. The program and experiment objectives are described, the system hardware and software/firmware are defined, and the test performed and the resultant test data are presented.

  6. Extending the scanning angle of a phased array antenna by using a null-space medium

    PubMed Central

    Sun, Fei; He, Sailing

    2014-01-01

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198

  7. An Overview of the Square Kilometre Array

    NASA Technical Reports Server (NTRS)

    Huynh, Minh T.; Lazio, Joseph

    2013-01-01

    The Square Kilometre Array (SKA) will be the premier instrument to study radiation at centimetre and metre wavelengths from the cosmos, and in particular hydrogen, the most abundant element in the universe. The SKA will probe the dawn of galaxy formation as well as allow advances in many other areas of astronomy, such as fundamental physics, astrobiology and cosmology. Phase 1, which will be about 10% of the full SKA collecting area, will be built in Australia and South Africa. This paper describes the key science drivers of the SKA, provides an update on recent SKA Organisation activities and summarises the baseline design for Phase 1.

  8. UAVSAR Phased Array Aperture

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Zawadzki, Mark; Sadowy, Greg; Oakes, Eric; Brown, Kyle; Hodges, Richard

    2009-01-01

    This paper describes the development of a patch antenna array for an L-band repeat-pass interferometric synthetic aperture radar (InSAR) instrument that is to be flown on an unmanned aerial vehicle (UAV). The antenna operates at a center frequency of 1.2575 GHz and with a bandwidth of 80 MHz, consistent with a number of radar instruments that JPL has previously flown. The antenna is designed to radiate orthogonal linear polarizations in order to facilitate fully-polarimetric measurements. Beam-pointing requirements for repeat-pass SAR interferometry necessitate electronic scanning in azimuth over a range of -20degrees in order to compensate for aircraft yaw. Beam-steering is accomplished by transmit/receive (T/R) modules and a beamforming network implemented in a stripline circuit board. This paper, while providing an overview of phased array architecture, focuses on the electromagnetic design of the antenna tiles and associated interconnects. An important aspect of the design of this antenna is that it has an amplitude taper of 10dB in the elevation direction. This is to reduce multipath reflections from the wing that would otherwise be detrimental to interferometric radar measurements. This taper is provided by coupling networks in the interconnect circuits as opposed to attenuating the output of the T/R modules. Details are given of material choices and fabrication techniques that meet the demanding environmental conditions that the antenna must operate in. Predicted array performance is reported in terms of co-polarized and crosspolarized far-field antenna patterns, and also in terms of active reflection coefficient.

  9. Concepts and cost trade-offs for land vehicle antennas in satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.

    1948-01-01

    Several antenna design concepts, operating at UHF (821 to 825 MHz transmit and 866 to 870 MHz receive bands), with gain ranging between 6 and 12 dBic, that are suitable for land mobile vehicles are presented. The antennas may be used within CONUS and ALASKA to communicate to and from a geosynchronous satellite. Depending on the type of steering mechanism, the antennas are broken down into three categories; (1) electronically scanned arrays with phase shifters, (2) electronically switched arrays with switchable power dividers/combiners, and (3) mechanically steered arrays. The operating characteristics of two of these design concepts, one a conformal antenna with electronic beam steering and the other a nonconformal design with mechanical steering, were evaluated with regard to two and three satellite system. Cost estimates of various antenna concepts were made and plotted against their overall gain performance.

  10. A New Large-Well 1024x1024 Si:As Detector for the Mid-Infrared

    NASA Technical Reports Server (NTRS)

    Mainzer, Amanda K.; Hong, John H.; Stapelbroek, M. G.; Hogue, Henry; Molyneux, Dale; Ressler, Michael E.; Watkins, Ernie; Reekstin, John; Werner, Mike; Young, Erick

    2005-01-01

    We present a description of a new 1024x1024 Si:As array designed for ground-based use from 5 - 28 microns. With a maximum well depth of 5e6 electrons, this device brings large-format array technology to bear on ground-based mid-infrared programs, allowing entry to the mega-pixel realm previously only accessible to the near-IR. The multiplexer design features switchable gain, a 256x256 windowing mode for extremely bright sources, and it is two-edge buttable. The device is currently in its final design phase at DRS in Cypress, CA. We anticipate completion of the foundry run in October 2005. This new array will enable wide field, high angular resolution ground-based follow up of targets found by space-based missions such as the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE).

  11. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.N.

    1990-01-01

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less

  12. Analysis and synthesis of (SAR) waveguide phased array antennas

    NASA Astrophysics Data System (ADS)

    Visser, H. J.

    1994-02-01

    This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.

  13. 50 kW on-site concentrating solar photovoltaic power system. Phase I: design. Final report, 1 June 1978-28 February 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittman, P F

    1979-03-30

    This contract is part of a three phase program to design, fabricate, and operate a solar photovoltaic electric power system with concentrating optics. The system will be located beside a Local Operating Headquarters of the Georgia Power Company in Atlanta, Georgia and will provide part of the power for the on-site load. Fresnel lens concentrators will be used in 2-axis tracking arrays to focus solar energy onto silicon solar cells producing a peak power output of 56 kW. The present contract covers Phase I which has as its objective the complete design of the system and necessary subsystems.

  14. Design analysis tracking and data relay satellite simulation system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the equipment necessary to simulate the S-band multiple access link between user spacecraft, the Tracking and Data Relay Satellite, and a ground control terminal are discussed. The core of the S-band multiple access concept is the use of an Adaptive Ground Implemented Phased Array. The array contains thirty channels and provides the multiplexing and demultiplexing equipment required to demonstrate the ground implemented beam forming feature. The system provided will make it possible to demonstrate the performance of a desired user and ten interfering sources attempting to pass data through the multiple access system.

  15. Phase Synchronization for the Mid-Frequency Square Kilometre Array Telescope

    NASA Astrophysics Data System (ADS)

    Schediwy, Sascha; Gozzard, David; Stobie, Simon; Gravestock, Charles; Whitaker, Richard; Alachkar, Bassem; Malan, Sias; Boven, Paul; Grainge, Keith

    2018-01-01

    The Square Kilometre Array (SKA) project is an international effort to build the world’s most sensitive radio telescope operating in the 50 MHz to 14 GHz frequency range. Construction of the SKA has been divided into phases, with the first phase (SKA1) accounting for the first 10% of the telescope's receiving capacity. During SKA1, a low-frequency aperture array comprising over a hundred thousand individual dipole antenna elements will be constructed in Western Australia (SKA1-low), while an array of 197 parabolic-dish antennas, incorporating the 64 dishes of MeerKAT, will be constructed in South Africa (SKA1-mid).Radio telescope arrays such as the SKA require phase-coherent reference signals to be transmitted to each antenna site in the array. In the case of the SKA1-mid, these reference signals will be generated at a central site and transmitted to the antenna sites via fiber-optic cables up to 175 km in length. Environmental perturbations affect the optical path length of the fiber and act to degrade the phase stability of the reference signals received at the antennas, which has the ultimate effect of reducing the fidelity and dynamic range of the data.Since 2011, researchers at the University of Western Australia (UWA) have led the development of an actively-stabilized phase-synchronization system designed specifically to meet the scientific needs and technical challenges of the SKA telescope. Recently this system has been select as the official phase synchronization system for the SKA1-mid telescope. The system is an evolution of Atacama Large Millimeter Array’s distributed ‘photonic local oscillator system’, incorporating key advances made by the international frequency metrology community over the last decade, as well as novel innovations developed by UWA researchers.In this presentation I will describe the technical details of the system; outline how the system's performance was tested using metrology techniques in a laboratory setting, on 186 km of overhead fibre at the South African SKA site, and verified using existing astronomical radio interferometers; and how the system can enhance the astronomical performance of the SKA1-mid telescope.

  16. Analysis and Design of a High Power Laser Adaptive Phased Array Transmitter

    DTIC Science & Technology

    1977-12-01

    Report Number Assigned by Contract Monitor: SLL 80-711; CR75-537/501 Comments on Document: Archive, RRI, DEW Descriptors, Keywords: Analysis Design...Document: DEW j ^ yrf^N H tpm *■ ww CRT»5g:’’""J{ it.. 2. Government Accession No. 3. Recipient’s Catalog No. 4. Title and Subtitle Analysis...Target Plane (e = 0, Range = 185000 M, Five 0.96 M Subapertures, Pointing Plus Phase Adaption for 10.6 pm Propagation in Vacuum) ... 80 :il-14

  17. Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1996-01-01

    Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.

  18. Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems

    NASA Technical Reports Server (NTRS)

    Bernhard, Jennifer T.; Michielssen, Eric

    2005-01-01

    High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.

  19. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  20. Delamination Detection Using Guided Wave Phased Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara

    2016-01-01

    This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.

  1. Evaluation of the Performance of the Distributed Phased-MIMO Sonar.

    PubMed

    Pan, Xiang; Jiang, Jingning; Wang, Nan

    2017-01-11

    A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments.

  2. Evaluation of the Performance of the Distributed Phased-MIMO Sonar

    PubMed Central

    Pan, Xiang; Jiang, Jingning; Wang, Nan

    2017-01-01

    A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments. PMID:28085071

  3. Tunable ferroelectric meta-material phase shifter embedded inside low temperature co-fired ceramics (LTCC)

    NASA Astrophysics Data System (ADS)

    Tork, Hossam S.

    This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving directions for phased array antennas, reducing phase error, improving figure of merit (FOM) and phase shifter tunability around center frequency, and also enables the integration of the phase shifters with the microwave circuits on one substrate, thus substantially reducing the size, mass, and cost of the antennas.

  4. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  5. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  6. Resolving phase ambiguities in the calibration of redundant interferometric arrays: implications for array design

    NASA Astrophysics Data System (ADS)

    Kurien, Binoy G.; Tarokh, Vahid; Rachlin, Yaron; Shah, Vinay N.; Ashcom, Jonathan B.

    2016-10-01

    We provide new results enabling robust interferometric image reconstruction in the presence of unknown aperture piston variation via the technique of redundant spacing calibration (RSC). The RSC technique uses redundant measurements of the same interferometric baseline with different pairs of apertures to reveal the piston variation among these pairs. In both optical and radio interferometry, the presence of phase-wrapping ambiguities in the measurements is a fundamental issue that needs to be addressed for reliable image reconstruction. In this paper, we show that these ambiguities affect recently developed RSC phasor-based reconstruction approaches operating on the complex visibilities, as well as traditional phase-based approaches operating on their logarithm. We also derive new sufficient conditions for an interferometric array to be immune to these ambiguities in the sense that their effect can be rendered benign in image reconstruction. This property, which we call wrap-invariance, has implications for the reliability of imaging via classical three-baseline phase closures as well as generalized closures. We show that wrap-invariance is conferred upon arrays whose interferometric graph satisfies a certain cycle-free condition. For cases in which this condition is not satisfied, a simple algorithm is provided for identifying those graph cycles which prevent its satisfaction. We apply this algorithm to diagnose and correct a member of a pattern family popular in the literature.

  7. Real-Time Atmospheric Phase Fluctuation Correction Using a Phased Array of Widely Separated Antennas: X-Band Results and Ka-Band Progress

    NASA Astrophysics Data System (ADS)

    Geldzahler, B.; Birr, R.; Brown, R.; Grant, K.; Hoblitzell, R.; Miller, M.; Woods, G.; Argueta, A.; Ciminera, M.; Cornish, T.; D'Addario, L.; Davarian, F.; Kocz, J.; Lee, D.; Morabito, D.; Tsao, P.; Jakeman-Flores, H.; Ott, M.; Soloff, J.; Denn, G.; Church, K.; Deffenbaugh, P.

    2016-09-01

    NASA is pursuing a demonstration of coherent uplink arraying at 7.145-7.190 GHz (X-band) and 30-31 GHz (Kaband) using three 12m diameter COTS antennas separated by 60m at the Kennedy Space Center in Florida. In addition, we have used up to three 34m antennas separated by 250m at the Goldstone Deep Space Communication Complex in California at X-band 7.1 GHz incorporating real-time correction for tropospheric phase fluctuations. Such a demonstration can enable NASA to design and establish a high power, high resolution, 24/7 availability radar system for (a) tracking and characterizing observations of Near Earth Objects (NEOs), (b) tracking, characterizing and determining the statistics of small-scale (≤10cm) orbital debris, (c) incorporating the capability into its space communication and navigation tracking stations for emergency spacecraft commanding in the Ka band era which NASA is entering, and (d) fielding capabilities of interest to other US government agencies. We present herein the results of our phased array uplink combining at near 7.17 and 8.3 GHz using widely separated antennas demonstrations at both locales, the results of a study to upgrade from a communication to a radar system, and our vision for going forward in implementing a high performance, low lifecycle cost multi-element radar array.

  8. A CMOS ASIC Design for SiPM Arrays

    PubMed Central

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2012-01-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM). PMID:24825923

  9. Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    NASA Technical Reports Server (NTRS)

    Zomberg, Brian G.; Chren, William A., Jr.

    1994-01-01

    A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.

  10. Discovering the Highest Energy Neutrinos Using a Radio Phased Array

    NASA Astrophysics Data System (ADS)

    Vieregg, Abigail

    2018-06-01

    The detection of high energy neutrinos is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. IceCube has detected astrophysical neutrinos at lower energies, and at higher energies the best limits to date on the flux comes from IceCube and the ANITA experiment, a NASA balloon-borne radio telescope designed to detect coherent radio Cherenkov emission from cosmogenic ultra-high energy neutrinos. I will discuss a new radio phased array design that will push the achievable sensitivity and lower the energy threshold. I will discuss the initial deployment and performance of an 8-channel system in a ground-based experiment at the South Pole (ARA), and the plans for scaling to O(100) channels and lowering the power consumption for future balloon-borne and ground-based applications.

  11. The ARA Mark 3 solar array design and development

    NASA Technical Reports Server (NTRS)

    vanHassel, Rob H. A.

    1996-01-01

    The ARA (Advanced Rigid Array) Mark3 solar array of Fokker Space BV is currently in its final stages of qualification (wing tests to be completed in March, 1996; unit/part tests in April, 1996). With regard to its predecessor, the ARA Mark2, the design has not only been improved in terms of mechanical and electrical performance, but also with regard to production cost and throughput time. This 'state of the art' array is designed to fit the needs of a wide variety of geostationary telecommunications satellites and is qualified for launch on the complete range of medium/large size commercial launchers (Ariane IV & V, Atlas, Delta, Proton, Long March, H2). The first mission to fly the new ARA Mk3 array is Hot Bird 2 (customer: Eutelsat, prime contractor: Matra Marconi Space; launch: mid-1996). In this configuration, its end of life (EOL) power-to-mass ratio is 42 W/kg, with an operational life of more than 12 years. The main mechanisms on a solar array are typically found in the deployment system and in the hold down and release system. During the design and development phase of these mechanisms, extensive engineering and qualification tests have been performed. This paper presents the key design features of these mechanisms and the improvements that were made with regard to their predecessors. It also describes the qualification philosophy on unit/part and wing level. Finally, some of the development items that turned out to be critical, as well as the lessons learned from them, are discussed.

  12. Space Fed Subarray Synthesis Using Displaced Feed Location

    NASA Astrophysics Data System (ADS)

    Mailloux, Robert J.

    2002-01-01

    Wideband space-fed subarray systems are often proposed for large airborne or spaceborne scanning array applications. These systems allow the introduction of time delay devices at the subarray input terminals while using phase shifters in the array face. This can sometimes reduce the number of time delayed controls by an order of magnitude or more. The implementation of this technology has been slowed because the feed network, usually a Rotman Lens or Butler Matrix, is bulky, heavy and often has significant RF loss. In addition, the large lens aperture is necessarily filled with phase shifters, and so it introduces further loss, weight, and perhaps unacceptable phase shifter control power. These systems are currently viewed with increased interest because combination of low loss, low power MEMS phase shifters in the main aperture and solid state T/R modules in the feed might lead to large scanning arrays with much higher efficiency then previously realizable. Unfortunately, the conventional system design imposes an extremely large dynamic range requirement when used in the transmit mode, and requires very high output power from the T/R modules. This paper presents one possible solution to this problem using a modified feed geometry.

  13. Coherent beam control with an all-dielectric transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  14. Coherent beam control with an all-dielectric transformation optics based lens.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-05

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  15. A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank

    2013-01-01

    This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.

  16. Clinical evaluation of a microwave/radiofrequency system (BSD Corporation) for induction of local and regional hyperthermia.

    PubMed

    Gibbs, F A

    1981-06-01

    The technical aspects of an experience with clinical hyperthermia utilizing the BSD-1000 and BDS annular phased array applicator are reviewed. The design and operation of the basic console functions of the BSD apparatus relating to temperature data presentation and recording and computer control leave little need for significant improvement. Such improvements as may eventually be desired can probably be made as software changes in the computer programs. The 100 W generator capacity is occasionally inadequate to drive even a single applicator and certainly inadequate to supply multiple applicator arrays or larger low frequency applicators. Amplifiers will eventually be added for the frequency ranges of greatest interest. The temperature probes and utilization routines have been excellent but their diameter is undesirably large. However, the design of the basic instrument is such that improved smaller probes and systems for dynamic temperature sampling matrices can be interfaced readily. Due to the limited superficial volumes that can be presently heated with this device, most important potentially curable tumors cannot be treated. Possible important exceptions to this are a number of sites in the upper respiratory tract. The depth and superficial extent of heatable volumes may be moderately extended with increased power, appropriate study of applicator arrays and new applicator designs. Provisions for surface temperature control are important and will need to be incorporated. The annular phased array applicator, though still a prototype design, has demonstrated encouraging results regarding its possible use for regional heating of central abdominal and thoracic tumors. Improvements in "human engineering" and study of the effects and implications of departures from basic cylindrical anatomy are required and are in progress. The improved sophistication in temperature sampling techniques described is considered important for adequate monitoring of temperature gradients in the abdomen and chest.

  17. Quasi-optical frequency selective surface with phase compensation structure correcting the beam distortion.

    PubMed

    Yao, Xiayuan; Liang, Bingyuan; Bai, Ming

    2017-09-18

    In space-borne quasi-optical feed system, frequency selective surface (FSS) should meet both electrical properties and mechanical requirements. In the paper, we design and fabricate three FSSs to achieve these goals. We present a novel FFS with phase compensation structure correcting the beam distortion. The phase compensation structure consists of short-ended circular waveguide array, inspired by the idea of reflect array antenna. The first FSS meets the need of electrical performance, however, which is too weak to pass the mechanical test. The second one overcomes the former problem, but brings the aberration in reflection beam, due to the discontinuity of the reflection phase. The third one with phase compensation structure meets all the demands. The insertion phase of the unit cell compensates 119 and 183 GHz two reflection bands, reconfigures the field distributions on the cross section of beam waist simultaneously. What' more, this FSS extends the functionality of the original FSS. To some extent, the FSS with phase compensation structure shares the ellipsoidal reflector's pressure to adjust the beam.

  18. On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R.; Acorn, J.; Zawadzki, M.

    2000-01-01

    It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.

  19. Advances in SELEX ES infrared detectors for space and astronomy

    NASA Astrophysics Data System (ADS)

    Knowles, P.; Hipwood, L.; Baker, I.; Weller, H.

    2017-11-01

    Selex ES produces a wide range of infrared detectors from mercury cadmium telluride (MCT) and triglycine sulfate (TGS), and has supplied both materials into space programmes spanning a period of over 40 years. Current development activities that underpin potential future space missions include large format arrays for near- and short-wave infrared (NIR and SWIR) incorporating radiation-hard designs and suppression of glow. Improved heterostructures are aimed at the reduction of dark currents and avalanche photodiodes (APDs), and parallel studies have been undertaken for low-stress MCT array mounts. Much of this development work has been supported by ESA, UK Space, and ESO, and some has been performed in collaboration with the UK Astronomy Technology Centre and E2V. This paper focuses on MCT heterostructure developments and novel design elements in silicon read-out chips (ROICs). The 2048 x 2048 element, 17um pitch ROIC for ESA's SWIR array development forms the basis for the largest cooled infrared detector manufactured in Europe. Selex ES MCT is grown by metal organic vapour phase epitaxy (MOVPE), currently on 75mm diameter GaAs substrates. The MCT die size of the SWIR array is 35mm square and only a single array can be printed on the 75mm diameter wafer, utilising only 28% of the wafer area. The situation for 100mm substrates is little better, allowing only 2 arrays and 31% utilisation. However, low cost GaAs substrates are readily available in 150mm diameter and the MCT growth is scalable to this size, offering the real possibility of 6 arrays per wafer with 42% utilisation. A similar 2k x 2k ROIC is the goal of ESA's NIR programme, which is currently in phase 2 with a 1k x 1k demonstrator, and a smaller 320 x 256 ROIC (SAPHIRA) has been designed for ESO for the adaptive optics application in the VLT Gravity instrument. All 3 chips have low noise source-follower architecture and are enabled for MCT APD arrays, which have been demonstrated by ESO to be capable of single photon detection. The possibility therefore exists in the near future of demonstrating a photon counting, 2k x 2k SWIR MCT detector manufactured on an affordable wafer scale of 6 arrays per wafer.

  20. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  1. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  2. Technology Advances at the NRAO Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Lockman, Felix James

    2015-08-01

    The 100 meter diameter Green Bank Telescope, with its large frequency coverage, great sensitivity, all-sky tracking, and location at a protected, radio-quiet site, offers a unique platform for technological advances in astronomical instrumentation that can yield an immediate scientific payoff.MUSTANG-1.5 is a feedhorn-coupled bolometer array for 3mm that has recently been installed on the telescope. It has 64 pixels (expandable to 223) and offers sensitivity to angular scales from 9" to more than 3' over a band from 75 GHz to 105 GHz. Its capabilities for science at 3mm are complimentary to, and in some cases superior to, those offered by ALMA. MUSTANG-1.5 is a collaboration between UPenn., NIST, NRAO, and other institutions.ARGUS is a 16-pixel focal plane array for millimeter spectroscopy that will be in use on the GBT in 2015. The array architecture is designed as a scalable technology pathfinder for larger arrays, but by itself it will provide major capabilities for spectroscopy from 75-107 GHz with 8" angular resolution over a wide field-of-view. It is a collaboration between Stanford Univ., Caltech, JPL, Univ. Maryland, Univ. Miami, and NRAO.FLAG is a prototype phased array receiver operating at 21cm wavelength that is under development for the GBT. It will produce multiple beams over a wide field of view with a sensitivity competitive with that of single-pixel receivers, allowing rapid astronomical surveys. FLAG is a collaboration between BYU, WVU, and NRAO.Also under development is a mm-wave phased array receiver for the GBT, designed to operate near 90 GHz as a prototype for very large format phased array receivers in the 3mm band. It is a collaboration between UMass and BYU.VEGAS is the new spectrometer for the GBT, offering multiple configurations well matched to GBT receivers from 1 to 100 GHz and suitable for use with focal plane arrays. It is a collaboration between UCal (Berkeley) and NRAO.The new receivers and spectrometers create extremely big data sets during both observation and later processing. Studies are under way at the GBT of data-streaming methodologies and pipeline processing techniques to meet the challenges posed by this new generation of instrumentation.

  3. Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.

    2015-01-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948

  4. Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.

    PubMed

    Stephens, D N; Cannata, J; Liu, Ruibin; Zhao, Jian Zhong; Shung, K K; Nguyen, Hien; Chia, R; Dentinger, A; Wildes, D; Thomenius, K E; Mahajan, A; Shivkumar, K; Kim, Kang; O'Donnell, M; Nikoozadeh, A; Oralkan, O; Khuri-Yakub, P T; Sahn, D J

    2008-07-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters' ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools.

  5. MEMS ultrasonic transducer for monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  6. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects.

    PubMed

    Zou, Longfang; Cryan, Martin; Klemm, Maciej

    2014-10-06

    The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.

  7. Recent developments using TowerJazz SiGe BiCMOS platform for mmWave and THz applications

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Howard, David; Preisler, Edward J.; Racanelli, Marco

    2013-05-01

    In this paper, we report on the highest speed 240GHz/340GHz FT/FMAX NPN which is now available for product designs in the SBC18H4 process variant of TowerJazz's mature 0.18μm SBC18 silicon germanium (SiGe) BiCMOS technology platform. NFMIN of ~2dB at 50GHz has been obtained with these NPNs. We also describe the integration of earlier generation NPNs with FT/FMAX of 240GHz/280GHz into SBC13H3, a 0.13μm SiGe BiCMOS technology platform. Next, we detail the integration of the deep silicon via (DSV), through silicon via (TSV), high-resistivity substrate, sub-field stitching and hybrid-stitching capability into the 0.18μm SBC18 technology platform to enable higher performance and highly integrated product designs. The integration of SBC18H3 into a thick-film SOI substrate, with essentially unchanged FT and FMAX, is also described. We also report on recent circuit demonstrations using the SBC18H3 platform: (1) a 4-element phased-array 70-100GHz broadband transmit and receive chip with flat saturated power greater than 5dBm and conversion gain of 33dB; (2) a fully integrated W-band 9-element phase-controllable array with responsivity of 800MV/W and receiver NETD is 0.45K with 20ms integration time; (3) a 16-element 4x4 phased-array transmitter with scanning in both the E- and H-planes with maximum EIRP of 23-25 dBm at 100-110GHz; (4) a power efficient 200GHz VCO with -7.25dBm output power and tuning range of 3.5%; and (5) a 320GHz 16-element imaging receiver array with responsivity of 18KV/W at 315GHz, a 3dB bandwidth of 25GHz and a low NEP of 34pW/Hz1/2. Wafer-scale large-die implementation of the phased-arrays and mmWave imagers using stitching in TowerJazz SBC18 process are also discussed.

  8. Integrated optical phased arrays for quasi-Bessel-beam generation.

    PubMed

    Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R

    2017-09-01

    Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14  mm Bessel length and ∼30  μm power full width at half maximum.

  9. The Improved Power of the Central Lobe in the Beam Combination and High Power Output

    NASA Astrophysics Data System (ADS)

    Liu, Hou-Kang; Xue, Yu-Hao; Li, Zhen; He, Bing; Zhou, Jun; Ding, Ya-Qian; Jiao, Meng-Li; Liu, Chi; Qi, Yun-Feng; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong

    2012-04-01

    In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array, the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally. An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%. An optimized mirror array is carefully designed to obtain a high duty ratio, which is up to 53.3% at a high power level. By using these optimized methods and designs, the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained, and a pleasing interference pattern with 87% visibility is observed. The maximum coherent output power of the system is up to 1066 W.

  10. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  11. The mobile Sousy-Doppler radar: Technical design and first results

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Schmidt, G.; Ruster, R.

    1983-01-01

    A mobile VHF Doppler system was developed. The electronic part is installed in a 20 ft container and tested using a special log periodic aerial to illuminate the 300 m dish. The system was extended by designing a mobile phased antenna array with finally 576 Yagi elements. The grouping of the single Yagis, the system of transmission lines, the phase shifters, the power splitters and the T/R switch are described. Results from the first two campaigns and a survey of future programs demonstrating the flexibility of this mobile system are summarized.

  12. JPRS report: Science and technology. Central Eurasia

    NASA Astrophysics Data System (ADS)

    1995-02-01

    Translated articles cover the following topics: laser-controlled rotary microwave waveguide junction; optical pulse-phase modulation of semiconductor laser; amplitude-phase distortions of light beam obliquely propagating through ground layer of troposphere; antenna arrays with ultrafast beam scanning; materials for a walk on moon; textile-wood-coal briquette path to capitalism; and development of automated system for scientific research and design of heat and mass transfer processes.

  13. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    NASA Technical Reports Server (NTRS)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  14. Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach

    DTIC Science & Technology

    2012-10-10

    IrwIn D. OlIn Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach Sotera Defense Solutions, Inc...2012 Formal Report Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach Irwin D. Olin* Naval...Manuscript approved June 30, 2012. 1 FLAT-TOP SECTOR BEAMS USING ONLY ARRAY ELEMENT PHASE WEIGHTING: A METAHEURISTIC

  15. Toward imaging the body at 10.5 tesla.

    PubMed

    Ertürk, M Arcan; Wu, Xiaoping; Eryaman, Yiğitcan; Van de Moortele, Pierre-François; Auerbach, Edward J; Lagore, Russell L; DelaBarre, Lance; Vaughan, J Thomas; Uğurbil, Kâmil; Adriany, Gregor; Metzger, Gregory J

    2017-01-01

    To explore the potential of performing body imaging at 10.5 Tesla (T) compared with 7.0T through evaluating the transmit/receive performance of similarly configured dipole antenna arrays. Fractionated dipole antenna elements for 10.5T body imaging were designed and evaluated using numerical simulations. Transmit performance of antenna arrays inside the prostate, kidneys and heart were investigated and compared with those at 7.0T using both phase-only radiofrequency (RF) shimming and multi-spoke pulses. Signal-to-noise ratio (SNR) comparisons were also performed. A 10-channel antenna array was constructed to image the abdomen of a swine at 10.5T. Numerical methods were validated with phantom studies at both field strengths. Similar power efficiencies were observed inside target organs with phase-only shimming, but RF nonuniformity was significantly higher at 10.5T. Spokes RF pulses allowed similar transmit performance with accompanying local specific absorption rate increases of 25-90% compared with 7.0T. Relative SNR gains inside the target anatomies were calculated to be >two-fold higher at 10.5T, and 2.2-fold SNR gain was measured in a phantom. Gradient echo and fast spin echo imaging demonstrated the feasibility of body imaging at 10.5T with the designed array. While comparable power efficiencies can be achieved using dipole antenna arrays with static shimming at 10.5T; increasing RF nonuniformities underscore the need for efficient, robust, and safe parallel transmission methods. Magn Reson Med 77:434-443, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Design and Application of Combined 8-Channel Transmit and 10-Channel Receive Arrays and Radiofrequency Shimming for 7-T Shoulder Magnetic Resonance Imaging

    PubMed Central

    Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.

    2014-01-01

    Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112

  17. A coherent through-wall MIMO phased array imaging radar based on time-duplexed switching

    NASA Astrophysics Data System (ADS)

    Chen, Qingchao; Chetty, Kevin; Brennan, Paul; Lok, Lai Bun; Ritchie, Matthiew; Woodbridge, Karl

    2017-05-01

    Through-the-Wall (TW) radar sensors are gaining increasing interest for security, surveillance and search and rescue applications. Additionally, the integration of Multiple-Input, Multiple-Output (MIMO) techniques with phased array radar is allowing higher performance at lower cost. In this paper we present a 4-by-4 TW MIMO phased array imaging radar operating at 2.4 GHz with 200 MHz bandwidth. To achieve high imaging resolution in a cost-effective manner, the 4 Tx and 4 Rx elements are used to synthesize a uniform linear array (ULA) of 16 virtual elements. Furthermore, the transmitter is based on a single-channel 4-element time-multiplexed switched array. In transmission, the radar utilizes frequency modulated continuous wave (FMCW) waveforms that undergo de-ramping on receive to allow digitization at relatively low sampling rates, which then simplifies the imaging process. This architecture has been designed for the short-range TW scenarios envisaged, and permits sufficient time to switch between antenna elements. The paper first outlines the system characteristics before describing the key signal processing and imaging algorithms which are based on traditional Fast Fourier Transform (FFT) processing. These techniques are implemented in LabVIEW software. Finally, we report results from an experimental campaign that investigated the imaging capabilities of the system and demonstrated the detection of personnel targets. Moreover, we show that multiple targets within a room with greater than approximately 1 meter separation can be distinguished from one another.

  18. First experimental demonstration of self-synchronous phase locking of an optical array

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Benham, Vincent; Baker, J. T.; Ward, Benjamin; Sanchez, Anthony D.; Culpepper, Mark A.; Pilkington, D.; Spring, Justin; Nelson, Douglas J.; Lu, Chunte A.

    2006-12-01

    A novel, highly accurate, all electronic technique for phase locking arrays of optical fibers is demonstrated. We report the first demonstration of the only electronic phase locking technique that doesn’t require a reference beam. The measured phase error is λ/20. Excellent phase locking has been demonstrated for fiber amplifier arrays.

  19. Structured Light in Structured Media: From Classical to Quantum Optics Incubator, OSA Workshop, Washington, DC 28 September-1 October 2013. Abstracts

    DTIC Science & Technology

    2013-09-29

    recent works on optical metasurfaces consisting of an array of plasmonic rods with spatially varying orientations, where the local phase profile is...the concept of interfacial phase discontinuity for circularly polarizations on a metasurface to the design of a novel type of helicity dependent SPP...realization of three dimensional (3D) holography by using metasurfaces . As the phase can be controlled locally at each subwavelength unit cell by the

  20. Project 8, Phase III Design: Placing an eV-Scale Limit on the Neutrino Mass using Cyclotron Radiation Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oblath, Noah; Project 8 Collaboration

    2016-09-01

    We report on the design concept for Phase III of the Project 8 experiment. In the third phase of Project 8 we aim to place a limit on the neutrino mass that is similar to the current limits set by tritium beta-decay experiments, mν < 2eV . From the first two phases of Project 8 we move to a novel design consisting of a 100cm3 cylindrical volume of tritium gas instrumented with two 30-element rings of inward-facing antennas. Beam-forming techniques similar to those used in radioastronomy will be employed to search for and track electron signals in the fiducial volume. This talk will present the quantitative design concept for the phased-array receiver, and illustrate how we are progressing towards the Phase IV experiment, which will have sensitivity to the neutrino mass scale allowed by the inverted mass hierarchy. This work is supported by the DOE Office of Science Early Career Research Program, and the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory.

  1. Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator.

    PubMed

    Takook, Pegah; Persson, Mikael; Gellermann, Johanna; Trefná, Hana Dobšíček

    2017-01-08

    Using UWB hyperthermia systems has the potential to improve the heat delivery to deep seated tumours. In this paper, we present a novel self-grounded Bow-Tie antenna design which is to serve as the basis element in a phased-array applicator. The UWB operation in the frequency range of 0.43-1 GHz is achieved by immersing the antenna in a water bolus. The radiation characteristics are improved by appropriate shaping the water bolus and by inclusion of dielectric layers on the top of the radiating arms of the antenna. In order to find the most appropriate design, we use a combination of performance indicators representing the most important attributes of the antenna. These are the UWB impedance matching, the transmission capability and the effective field size. The antenna was constructed and experimentally validated on muscle-like phantom. The measured reflection and transmission coefficients as well as radiation characteristics are in excellent agreement with the simulated results. MR image acquisitions with antenna located inside MR bore indicate a negligible distortion of the images by the antenna itself, which indicates MR compatibility.

  2. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  3. Defense Small Business Innovation Research Program (SBIR). Volume 1. Army Abstracts of Phase 1 Awards 1991

    DTIC Science & Technology

    1991-01-01

    Office: MICOM HUNTSVILLE, AL 35805 Contract #: DAAHO1-92-C-R150 Phone: (205) 876-7502 Pi: D. BRETI BEASLEY Title: INFRARED LASER DIODE BASED INFRARED ...TECHNIQUES WILL BE INVESTIGATED TO DESIGN A FORM FIT GIMBALL-MOUNTED 94 GHZ/ INFRARED FOCAL PLANE ARRAY DUAL-MODE MISSILE SEEKER SENSOR BASED ON LOW...RESOLUTION AT 94 GHZ AND A 128X128 ARRAY IR IMAGE PROCESSING FOR AUTONOMOUS TARGET RECOGNITION AND AIMPOINT SELECTION. THE 94 GHZ AND INFRARED ELECTRONICS

  4. Real Time Detecting and Processing Signals by an Integrated Sensor Chip Based on Meta-materials and Photonic Crystals

    DTIC Science & Technology

    2012-05-29

    the ring. At first, the resonating behavior of a typical SRR is noted by the red curve in Figure 13. Following that, with the omission of the inner...resonant frequency. Finally, in the third case, the resonance was eliminated altogether as shown in Figure 13 with the green curve . The ’short’ of the... Micromirror Devices (DMD) and phased array antenna design by controlling each element of the array or pixel electronically. 4.2.1 Numerical

  5. Innovative Techniques for the Production of Low Cost 2D Laser Diode Arrays. Supplies or Services and Prices/Costs

    DTIC Science & Technology

    1991-12-31

    continue on facet coatings, PL correlation to device performance, and CVD diamond. All global issues mentioned in Section 2.0 will be addresses and...The CVD diamond submounts will be hermetically sealed, electrically isolated and liquid cooled. (Deliverables: 5 5-bar arrays.) The following global ... issues not mentioned above will be investigated continuously throughout all four phases of this program: (1) design and development of a mask set to

  6. Ultrasound Transducer and System for Real-Time Simultaneous Therapy and Diagnosis for Noninvasive Surgery of Prostate Tissue

    PubMed Central

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K. Kirk

    2009-01-01

    For noninvasive treatment of prostate tissue using high intensity focused ultrasound (HIFU), this paper proposes a design of an integrated multi-functional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6 MHz array in the center row for imaging and two 4 MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA was verifeid. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured −6 dB and −20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be −48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded −6dB and −20dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be −40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy. PMID:19811994

  7. Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue.

    PubMed

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K Kirk

    2009-09-01

    For noninvasive treatment of prostate tissue using high-intensity focused ultrasound this paper proposes a design of an integrated multifunctional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6-MHz array in the center row for imaging and two 4-MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center-row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, we verified whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured -6 dB and -20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be -48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded -6 dB and -20 dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be -40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy.

  8. ATCRBS Antenna Modification Kit - Phase I

    DOT National Transportation Integrated Search

    1973-06-01

    The report describes the design, fabrication and test results of an improved ATCRBS (Air Traffic Control Radar Beacon System) array antenna for mounting on the reflector of an ASR radar antenna. The antenna consists of a 4-foot high by 26-foot wide a...

  9. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm).

  10. Wirelessly Networked Digital Phased Array: Analysis and Development of a Phase Synchronization Concept

    DTIC Science & Technology

    2007-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and

  11. Space station WP-04 power system. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.

  12. Complex Source and Radiation Behaviors of Small Elements of Linear and Matrix Flexible Ultrasonic Phased-Array Transducers

    NASA Astrophysics Data System (ADS)

    Amory, V.; Lhémery, A.

    2008-02-01

    Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.

  13. System-Level Integrated Circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  14. Modelling and restoration of ultrasonic phased-array B-scan images.

    PubMed

    Ardouin, J P; Venetsanopoulos, A N

    1985-10-01

    A model is presented for the radio-frequency image produced by a B-scan (pulse-echo) ultrasound imaging system using a phased-array transducer. This type of scanner is widely used for real-time heart imaging. The model allows for dynamic focusing as well as an acoustic lens focusing the beam in the elevation plane. A result of the model is an expression to compute the space-variant point spread function (PSF) of the system. This is made possible by the use of a combination of Fresnel and Fraunhoffer approximations which are valid in the range of interest for practical applications. The PSF is used to design restoration filters in order to improve image resolution. The filters are then applied to experimental images of wires.

  15. System-level integrated circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  16. Phased Array Antenna Testbed Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Kubat, Gregory; Johnson, Sandra K.; Anzic, Godfrey

    2003-01-01

    Ideal phased array antennas offer advantages for communication systems, such as wide-angle scanning and multibeam operation, which can be utilized in certain NASA applications. However, physically realizable, electronically steered, phased array antennas introduce additional system performance parameters, which must be included in the evaluation of the system. The NASA Glenn Research Center (GRC) is currently conducting research to identify these parameters and to develop the tools necessary to measure them. One of these tools is a testbed where phased array antennas may be operated in an environment that simulates their use. This paper describes the development of the testbed and its use in characterizing a particular K-Band, phased array antenna.

  17. Rocket experiment METS - Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  18. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    NASA Astrophysics Data System (ADS)

    Namin, Frank Farhad A.

    Quasicrystalline solids were first observed in nature in 1980s. Their lattice geometry is devoid of translational symmetry; however it possesses long-range order as well as certain orders of rotational symmetry forbidden by translational symmetry. Mathematically, such lattices are related to aperiodic tilings. Since their discovery there has been great interest in utilizing aperiodic geometries for a wide variety of electromagnetic (EM) and optical applications. The first thrust of this dissertation addresses applications of quasicrystalline geometries for wideband antenna arrays and plasmonic nano-spherical arrays. The first application considered is the design of suitable antenna arrays for micro-UAV (unmanned aerial vehicle) swarms based on perturbation of certain types of aperiodic tilings. Due to safety reasons and to avoid possible collision between micro-UAVs it is desirable to keep the minimum separation distance between the elements several wavelengths. As a result typical periodic planar arrays are not suitable, since for periodic arrays increasing the minimum element spacing beyond one wavelength will lead to the appearance of grating lobes in the radiation pattern. It will be shown that using this method antenna arrays with very wide bandwidths and low sidelobe levels can be designed. It will also be shown that in conjunction with a phase compensation method these arrays show a large degree of versatility to positional noise. Next aperiodic aggregates of gold nano-spheres are studied. Since traditional unit cell approaches cannot be used for aperiodic geometries, we start be developing new analytical tools for aperiodic arrays. A modified version of generalized Mie theory (GMT) is developed which defines scattering coefficients for aperiodic spherical arrays. Next two specific properties of quasicrystalline gold nano-spherical arrays are considered. The optical response of these arrays can be explained in terms of the grating response of the array (photonic resonance) and the plasmonic response of the spheres (plasmonic resonance). In particular the couplings between the photonic and plasmonic modes are studied. In periodic arrays this coupling leads to the formation of a so called photonic-plasmonic hybrid mode. The formation of hybrid modes is studied in quasicrystalline arrays. Quasicrystalline structures in essence possess several periodicities which in some cases can lead to the formation of multiple hybrid modes with wider bandwidths. It is also demonstrated that the performance of these arrays can be further enhanced by employing a perturbation method. The second property considered is local field enhancements in quasicrystalline arrays of gold nanospheres. It will be shown that despite a considerably smaller filling factor quasicrystalline arrays generate larger local field enhancements which can be even further enhanced by optimally placing perturbing spheres within the prototiles that comprise the aperiodic arrays. The second thrust of research in this dissertation focuses on designing all-dielectric filters and metamaterial coatings for the optical range. In higher frequencies metals tend to have a high loss and thus they are not suitable for many applications. Hence dielectrics are used for applications in optical frequencies. In particular we focus on designing two types of structures. First a near-perfect optical mirror is designed. The design is based on optimizing a subwavelength periodic dielectric grating to obtain appropriate effective parameters that will satisfy the desired perfect mirror condition. Second, a broadband anti-reflective all-dielectric grating with wide field of view is designed. The second design is based on a new computationally efficient genetic algorithm (GA) optimization method which shapes the sidewalls of the grating based on optimizing the roots of polynomial functions.

  19. A broadband 8-18GHz 4-input 4-output Butler matrix

    NASA Astrophysics Data System (ADS)

    Milner, Leigh; Parker, Michael

    2007-01-01

    Butler matrices can be used in antenna beam-forming networks to provide a linear phase distribution across the elements of an array. The development of an 8 to 18GHz micro-strip implementation of a 4-input 4-ouput Butler matrix is described. The designed Butler matrix uses March hybrids, Schiffman phase shifters and wire-bond crossovers integrated on a single 60mm x 70mm alumina substrate.

  20. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2015-05-01

    We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-π,π) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2π. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper, we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.

  1. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2015-05-01

    We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-pi, pi) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2pi. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.

  2. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  3. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we explored the possibility of developing these arrays in thin, flexible form to make conformable antennas.

  4. The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka Valley: Design, composition and commissioning

    NASA Astrophysics Data System (ADS)

    Gress, O.; Astapov, I.; Budnev, N.; Bezyazeekov, P.; Bogdanov, A.; Boreyko, V.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Dyachok, A.; Gress, T.; Epimakhov, S.; Fedoseev, E.; Gafarov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Grishin, O.; Horns, D.; Ivanova, A.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Yu.; Kirichkov, N.; Kiryuhin, S.; Kokoulin, R.; Komponiest, K.; Korosteleva, E.; Kozhin, V.; Kunnas, M.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popova, E.; Porelli, A.; Prosin, V.; Rubtsov, G.; Pushnin, A.; Samoliga, V.; Saunkin, A.; Semeney, Yu.; Shaibonov(ju), B.; Silaev, A.; Silaev(ju), A.; Skurikhin, A.; Slucka, V.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tarashchansky, B.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2017-02-01

    The new TAIGA-HiSCORE non-imaging Cherenkov array aims to detect air showers induced by gamma rays above 30 TeV and to study cosmic rays above 100 TeV. TAIGA-HiSCORE is made of integrating air Cherenkov detector stations with a wide field of view (0.6 sr), placed at a distance of about 100 m. They cover an area of initially ∼0.25 km2 (prototype array), and of ∼5 km2 at the final phase of the experiment. Each station includes 4 PMTs with 20 or 25 cm diameter, equipped with light guides shaped as Winstone cones. We describe the design, specifications of the read-out, DAQ and control and monitoring systems of the array. The present 28 detector stations of the TAIGA-HiSCORE engineering setup are in operation since September 2015.

  5. The Solar Array Photovoltaic Assembly for the INSAT 4CR Spacecraft Design, Development and In-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.

    2008-09-01

    The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.

  6. A Phased Array Coil for Human Cardiac Imaging

    PubMed Central

    Constantinides, Chris D.; Westgate, Charles R.; O'Dell, Walter G.; Zerhouni, Elias A.; McVeigh, Elliot R.

    2007-01-01

    A prototype cardiac phased array receiver coil was constructed that comprised a cylindrical array and a separate planar array. Both arrays had two coil loops with the same coil dimensions. Data acquisition with the cylindrical array placed on the human chest, and the planar array placed under the back, yielded an overall enhancement of the signal-to-noise ratio (SNR) over the entire heart by a factor of 1.1–2.85 over a commercially available flexible coil and a commercially available four-loop planar phased array coil. This improvement in SNR can be exploited in cardiac imaging to increase the spatial resolution and reduce the image acquisition time. PMID:7674903

  7. Microwave scanning beam approach and landing system phased array antenna volume I

    DOT National Transportation Integrated Search

    1973-02-01

    The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....

  8. Microwave scanning beam approach and landing system phased array antenna : volume II

    DOT National Transportation Integrated Search

    1973-02-01

    The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....

  9. High-performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays

    NASA Astrophysics Data System (ADS)

    Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.

    2002-12-01

    This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.

  10. Relationship between strong-motion array parameters and the accuracy of source inversion and physical waves

    USGS Publications Warehouse

    Iida, M.; Miyatake, T.; Shimazaki, K.

    1990-01-01

    We develop general rules for a strong-motion array layout on the basis of our method of applying a prediction analysis to a source inversion scheme. A systematic analysis is done to obtain a relationship between fault-array parameters and the accuracy of a source inversion. Our study of the effects of various physical waves indicates that surface waves at distant stations contribute significantly to the inversion accuracy for the inclined fault plane, whereas only far-field body waves at both small and large distances contribute to the inversion accuracy for the vertical fault, which produces more phase interference. These observations imply the adequacy of the half-space approximation used throughout our present study and suggest rules for actual array designs. -from Authors

  11. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    NASA Astrophysics Data System (ADS)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  12. Calibration Test Set for a Phase-Comparison Digital Tracker

    NASA Technical Reports Server (NTRS)

    Boas, Amy; Li, Samuel; McMaster, Robert

    2007-01-01

    An apparatus that generates four signals at a frequency of 7.1 GHz having precisely controlled relative phases and equal amplitudes has been designed and built. This apparatus is intended mainly for use in computer-controlled automated calibration and testing of a phase-comparison digital tracker (PCDT) that measures the relative phases of replicas of the same X-band signal received by four antenna elements in an array. (The relative direction of incidence of the signal on the array is then computed from the relative phases.) The present apparatus can also be used to generate precisely phased signals for steering a beam transmitted from a phased antenna array. The apparatus (see figure) includes a 7.1-GHz signal generator, the output of which is fed to a four-way splitter. Each of the four splitter outputs is attenuated by 10 dB and fed as input to a vector modulator, wherein DC bias voltages are used to control the in-phase (I) and quadrature (Q) signal components. The bias voltages are generated by digital-to-analog- converter circuits on a control board that receives its digital control input from a computer running a LabVIEW program. The outputs of the vector modulators are further attenuated by 10 dB, then presented at high-grade radio-frequency connectors. The attenuation reduces the effects of changing mismatch and reflections. The apparatus was calibrated in a process in which the bias voltages were first stepped through all possible IQ settings. Then in a reverse interpolation performed by use of MATLAB software, a lookup table containing 3,600 IQ settings, representing equal amplitude and phase increments of 0.1 , was created for each vector modulator. During operation of the apparatus, these lookup tables are used in calibrating the PCDT.

  13. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    PubMed

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  14. Spoof surface plasmon polaritons excitation and wavefront control by Pancharatnam–Berry phase manipulating metasurface

    NASA Astrophysics Data System (ADS)

    Meng, Yueyu; Ma, Hua; Li, Yongfeng; Feng, Mingde; Wang, Jiafu; Li, Zhiqiang; Qu, Shaobo

    2018-05-01

    Realizing fine control of surface plasmon polaritons (SPPs) and spoof surface plasmon polaritons (SSPPs) is highly desired in many integrated photonic and microwave applications, but the flexibility to control the wavefront of SPPs and SSPPs still need addressing. In this paper, a Pancharatnam–Berry (PB) phase manipulating metasurface (PMM) was designed to achieve SSPPs excitation and wavefront control. Under circular polarization (CP) incidence, simply by designing the rotation angle of the unit cells the reflection phase spatial distribution can be manipulated. By means of different phase profiles on the 2D unit cells array, the SSPPs can be excited with various wavefront shapes, without the need of special excitation structure pattern. Meanwhile, a plasmonic metal is also designed to support SSPPs with both TE and TM polarizations, which can efficiently guide out the energies from the input CP waves. As a proof of concept, a PB PMM composed of N-shape metallic structure was designed. Through designing the rotation of the unit cells, two typical phase profiles were designed to excite SSPPs in arbitrary slant direction or focusing. This scheme could be used to achieve SSPPs excitation with many other wavefront shapes, and would also enable promising applications in other spectra.

  15. Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture

    NASA Astrophysics Data System (ADS)

    Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William

    2016-03-01

    There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.

  16. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures

    DOE PAGES

    Horie, Yu; Arbabi, Amir; Arbabi, Ehsan; ...

    2016-05-19

    Here, we propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-Perot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250nm around λ = 1550nm (Δλ/λ = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwichedmore » metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.« less

  17. Reducing mechanical cross-coupling in phased array transducers using stop band material as backing

    NASA Astrophysics Data System (ADS)

    Henneberg, J.; Gerlach, A.; Storck, H.; Cebulla, H.; Marburg, S.

    2018-06-01

    Phased array transducers are widely used for acoustic imaging and surround sensing applications. A major design challenge is the achievement of low mechanical cross-coupling between the single transducer elements. Cross-coupling induces a loss of imaging resolution. In this work, the mechanical cross-coupling between acoustic transducers is investigated for a generic model. The model contains a common backing with two bending elements bonded on top. The dimensions of the backing are small; thus, wave reflections on the backing edges have to be considered. This is different to other researches. The operating frequency in the generic model is set to a low kHz range. Low operating frequencies are typical for surround sensing applications. The influence of the backing on cross-coupling is investigated numerically. In order to reduce mechanical cross-coupling a stop band material is designed. It is shown numerically that a reduction in mechanical cross-coupling can be achieved by using stop band material as backing. The effect is validated with experimental testing.

  18. Phase-locked laser array having a non-uniform spacing between lasing regions

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E. (Inventor)

    1986-01-01

    A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.

  19. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    DTIC Science & Technology

    2015-01-02

    with the laser array to understand the phase noise of elements on a common heat sink, and the relationship between linewidth and feedback speed...spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22, 160 (2012). [2] J. R. Leger, “Lateral mode control of an AlGaAs...Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22

  20. Feasibility of Using Lateral Mode Coupling Method for a Large Scale Ultrasound Phased Array for Noninvasive Transcranial Therapy

    PubMed Central

    Song, Junho; Hynynen, Kullervo

    2009-01-01

    A hemispherical-focused, ultrasound phased array was designed and fabricated using 1372 cylindrical piezoelectric transducers that utilize lateral coupling for noninvasive transcranial therapy. The cylindrical transducers allowed the electrical impedance to be reduced by at least an order of magnitude, such that effective operation could be achieved without electronic matching circuits. In addition, the transducer elements generated the maximum acoustic average surface intensity of 27 W/cm2. The array, driven at the low (306 kHz) or high frequency (840 kHz), achieved excellent focusing through an ex vivo human skull and an adequate beam steering range for clinical brain treatments. It could electronically steer the ultrasound beam over cylindrical volumes of 100 mm in diameter and 60 mm in height at 306 kHz, and 30-mm in diameter and 30-mm in height at 840 kHz. A scanning laser vibrometer was used to investigate the radial and length mode vibrations of the element. The maximum pressure amplitudes through the skull at the geometric focus were predicted to be 5.5 MPa at 306 kHz and 3.7 MPa at 840 kHz for RF power of 1 W on each element. This is the first study demonstrating the feasibility of using cylindrical transducer elements and lateral coupling in construction of ultrasound phased arrays. PMID:19695987

  1. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.

  2. 1983 AFOSR/AFRPL Chemical Rocket Research Meeting, Abstracts and Agenda. Includes: Abstracts on Advanced Diagnostics of Reacting Flow, 28 February - 3 March 1983, Lancaster, California.

    DTIC Science & Technology

    1983-02-01

    blow-off stability and fractional conversion was evaluated for design of an experimental study of these phenomena. The apparatus designed will be...the development of an array of experimental methods and test strategies designed to unravel a complex process that is very difficult to observe directly...this effort of lead field theoretic analysis as a design basis has made that possible. The experimental phase of the effort has three major

  3. An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Horvath, Csaba; Envia, Edmane

    2013-01-01

    Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.

  4. Coupled-mode analysis of gain and wavelength oscillation characteristics of diode laser phased arrays

    NASA Technical Reports Server (NTRS)

    Butler, J. K.; Ettenberg, M.; Ackley, D. E.

    1985-01-01

    The lasing wavelengths and gain characteristics of the modes of phase-locked arrays of channel-substrate-planar (CSP) lasers are presented. The gain values for the array modes are determined from complex coupling coefficients calculated using the fields of neighboring elements of the array. The computations show that, for index guided lasers which have nearly planar phase fronts, the highest order array mode will be preferred. The 'in-phase' or fundamental mode, which produces only one major lobe in the far-field radiation pattern, has the lowest modal gain of all array modes. The modal gain differential between the highest order and fundamental modes is less than 10/cm for weak coupling between the elements.

  5. Scalable, efficient ASICS for the square kilometre array: From A/D conversion to central correlation

    NASA Astrophysics Data System (ADS)

    Schmatz, M. L.; Jongerius, R.; Dittmann, G.; Anghel, A.; Engbersen, T.; van Lunteren, J.; Buchmann, P.

    2014-05-01

    The Square Kilometre Array (SKA) is a future radio telescope, currently being designed by the worldwide radio-astronomy community. During the first of two construction phases, more than 250,000 antennas will be deployed, clustered in aperture-array stations. The antennas will generate 2.5 Pb/s of data, which needs to be processed in real time. For the processing stages from A/D conversion to central correlation, we propose an ASIC solution using only three chip architectures. The architecture is scalable - additional chips support additional antennas or beams - and versatile - it can relocate its receiver band within a range of a few MHz up to 4GHz. This flexibility makes it applicable to both SKA phases 1 and 2. The proposed chips implement an antenna and station processor for 289 antennas with a power consumption on the order of 600W and a correlator, including corner turn, for 911 stations on the order of 90 kW.

  6. Design and Performance of a Miniature Radar L-Band Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, D.; Price, D.; Edelstein, W.

    2004-01-01

    Radar electronics developed for past JPL space missions historically had been custom designed and as such, given budgetary, time, and risk constraints, had not been optimized for maximum flexibility or miniaturization. To help reduce cost and risk of future radar missions, a generic radar module was conceived. The module includes a 1.25-GHz (L-band) transceiver and incorporates miniature high-density packaging of integrated circuits in die/chip form. The technology challenges include overcoming the effect of miniaturization and high packaging density to achieve the performance, reliability, and environmental ruggedness required for space missions. The module was chosen to have representative (generic) functionality most likely required from an L-band radar. For very large aperture phased-array spaceborne radar missions, the large dimensions of the array suggest the benefit of distributing the radar electronics into the antenna array. For such applications, this technology is essential in order to bring down the cost, mass, and power of the radar electronics module replicated in each panel of the array. For smaller sized arrays, a single module can be combined with the central radar controller and still provide the bene.ts of configuration .exibility, low power, and low mass. We present the design approach for the radar electronics module and the test results for its radio frequency (RF) portion: a miniature, low-power, radiation-hard L-band transceiver.

  7. Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.

    PubMed

    Ealo, Joao L; Camacho, Jorge J; Fritsch, Carlos

    2009-04-01

    In this work, a novel procedure that considerably simplifies the fabrication process of ferroelectret-based multielement array transducers is proposed and evaluated. Also, the potential of ferroelectrets being used as active material for air-coupled ultrasonic transducer design is demonstrated. The new construction method of multi-element transducers introduces 2 distinctive improvements. First, active ferroelectret material is not discretized into elements, and second, the need of structuring upper and/or lower electrodes in advance of the permanent polarization of the film is removed. The aperture discretization and the mechanical connection are achieved in one step using a through-thickness conductive tape. To validate the procedure, 2 linear array prototypes of 32 elements, with a pitch of 3.43 mm and a wide usable frequency range from 30 to 300 kHz, were built and evaluated using a commercial phased-array system. A low crosstalk among elements, below -30 dB, was measured by interferometry. Likewise, a homogeneous response of the array elements, with a maximum deviation of +/-1.8 dB, was obtained. Acoustic beam steering measurements were accomplished at different deflection angles using a calibrated microphone. The ultrasonic beam parameters, namely, lateral resolution, side lobe level, grating lobes, and focus depth, were congruent with theory. Acoustic images of a single reflector were obtained using one of the array elements as the receiver. Resulting images are also in accordance with numerical simulation, demonstrating the feasibility of using these arrays in pulse-echo mode. The proposed procedure simplifies the manufacturing of multidimensional arrays with arbitrary shape elements and not uniformly distributed. Furthermore, this concept can be extended to nonflat arrays as long as the transducer substrate conforms to a developable surface.

  8. Advanced Microstrip Antenna Developments : Volume I. Technology Studies for Aircraft Phased Arrays

    DOT National Transportation Integrated Search

    1981-06-01

    Work has continued on improvement of microstrip phased-array antenna technology since the first microstrip phased-array was flight-tested during the FAA 1974-1975 ATS-6 test program. The present development has extended this earlier work in three are...

  9. Simulation and experiment for the inspection of stainless steel bolts in servicing using an ultrasonic phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun

    2015-10-01

    The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.

  10. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  11. Bias-free spin-wave phase shifter for magnonic logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei

    2016-06-15

    A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.

  12. Recent Developments in the Analysis of Couple Oscillator Arrays

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    This presentation considers linear arrays of coupled oscillators. Our purpose in coupling oscillators together is to achieve high radiated power through the spatial power combining which results when the oscillators are injection locked to each other. York, et. al. have shown that, left to themselves, the ensemble of injection locked oscillators oscillate at the average of the tuning frequencies of all the oscillators. Coupling these arrays achieves high radiated power through coherent spatial power combining. The coupled oscillators are usually designed to produce constant aperture phase. Oscillators are injection locked to each other or to a master oscillator to produce coherent radiation. Oscillators do not necessarily oscillate at their tuning frequency.

  13. Development of a time synchronization methodology for a wireless seismic array

    NASA Astrophysics Data System (ADS)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  14. A source array for generating higher order acoustic modes in circular ducts

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.; Reethof, G.

    1976-01-01

    A unique source array has been developed for the generation of both spinning and non-spinning higher order modes in a circular duct. The array consists of two concentric rings of sources. Through individual control of the response of each element, the array provided phase and amplitude control in the radial as well as circumferential directions. Radial modes shapes were measured in a 12-inch diameter anechoically-terminated hollow duct. These modes could be generated at their cut-off frequency and throughout a frequency range extending to the cut-off frequency for the next higher order radial mode. Comparisons are given between theory and experiment for the generation of specific modes. The radial dependence of the measured mode shapes was enhanced considerably by the design of this array. The results indicate a significant improvement over previous mode generation mechanisms. The contamination of the generated mode by additional spurious modes is also considered for variations between individual elements within the source array.

  15. Low Average Sidelobe Slot Array Antennas for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.

    2012-01-01

    In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E-plane end-fire direction. Because of the alternating slot offsets, grating lobes called butterfly lobes are produced in non-principal planes close to the H-plane. An attempt to reduce the influence of such grating lobes resulted in a symmetric design.

  16. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  17. Employment of Adaptive Learning Techniques for the Discrimination of Acoustic Emissions.

    DTIC Science & Technology

    1983-11-01

    Dereverberation Simulations ... ............ .. 96 Ŗ 4. ARRAY OPTIMIZATION ......... ...................... . 115 * 4.1 Phased Array Fundamentals... 115 4.2 Phased Array Diffraction Suboptimization ......... ... 121 , .i Page s 4.3 Diffraction Pattern Simulations of Phased Arrays...by differentiating (2.13.14) with respect to z and • -- equating equal powers of z , giving n-i c n bn + I/n kckbn-k (2.13.15)nk= This is very

  18. Ultrabroadband Phased-Array Receivers Based on Optical Techniques

    DTIC Science & Technology

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0121 Ultrabroadband Phased- array Receivers Based on Optical Techniques Christopher Schuetz UNIVERSITY OF DELAWARE Final Report...Jul 15 4. TITLE AND SUBTITLE Ultrabroadband Phased- Array Receivers Based on Optical Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...receiver that enables us to capture and convert signals across an array using photonic modulators, routing these signals to a central location using

  19. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  20. A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM)

    DTIC Science & Technology

    2017-10-01

    TECHNICAL REPORT 3079 October 2017 A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM...Head 55190 Networks Division iii EXECUTIVE SUMMARY This report summarizes the methodology developed to improve the radar threshold modeling...PHASED ARRAY RADAR CONFIGURATION ..................................................................... 1 3. METHODOLOGY

  1. Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer

    PubMed Central

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun

    2012-01-01

    Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999

  2. Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the resulting far-zone radiation pattern is displayed as well.

  3. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate approximately five satellites on the orbital arc. Spread spectrum techniques will be employed to keep the power impinging on the adjacent satellites below their noise floor so that no interference results. This antenna is power limited. If the antenna elements (currently 254) are increased by a factor of 4 (1024) or 16 (4096), the gain will increase and the beamwidth will decrease in proportion. For the latter two antenna sizes, the power must be "backed off" to prevent interference with the neighboring satellites. The receiving antenna, which is approximately 90-cm high, 60-cm wide, and 3.5-cm thick, is composed of 1500 phased-array elements. The system phased-array controller can control both a 1500-element receiving antenna and a 500-element transmitting antenna. For ground testing, this controller will allow manual beam pointing and polarization alignment. For normal operation, the system can be connected to the receiving antenna and the navigation system for real-time autonomous track operation. This will be accomplished by first pointing both antennas at the satellite using information from the aircraft data bus. Then, the system phased-array controller will electronically adjust the antenna pointing of the receiving antenna to find the peak signal. After the peak signal has been found, the beam of the transmitting antenna will be pointed to the same steering angles as the receiving antenna. For initial ground testing without an aircraft, the ARINC 429 data bus (ARINC Inc., Annapolis, Maryland) will be simulated by a gyro system purchased for the follow-on to the Monolithic Microwave Integrated Circuit (MMIC) Arrays for Satellite Communication on the Move (MASCOM) Project. MASCOM utilized the Advanced Communications Technology Satellite (ACTS) with a pair of Ka-band experimental phased-array antennas.

  4. The Automated Array Assembly Task of the Low-cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Grenon, L.; Pastirik, E. M.; Pryor, R. A.; Sparks, T. G.

    1978-01-01

    An advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner is discussed. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are given. A detailed cost analysis was performed to indicate future areas of fruitful cost reduction effort. Recommendations for advanced investigations are included.

  5. Organic single-crystal arrays from solution-phase growth using micropattern with nucleation control region.

    PubMed

    Goto, Osamu; Tomiya, Shigetaka; Murakami, Yosuke; Shinozaki, Akira; Toda, Akira; Kasahara, Jiro; Hobara, Daisuke

    2012-02-21

    A method for forming organic single-crystal arrays from solution is demonstrated using an organic semiconductor, 3,9-bis(4-ethylphenyl)-peri-xanthenoxanthene (C(2) Ph-PXX). Supersaturation of C(2) Ph-PXX/tetralin solution is spatially changed by making a large difference in solvent evaporation to generate nuclei at the designated location. The method is simple to implement since it employs only a micropattern and control of the solvent vapor pressure during growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A broadband double-slot waveguide antenna

    NASA Astrophysics Data System (ADS)

    Kisliuk, M.; Axelrod, A.

    1987-09-01

    A double transverse slot broadband antenna based on the H-guide transverse-slot radiator design of Kisliuk and Axelrod (1985) is described. The double transverse slot antenna may be used in microwave and mm-wave applications (as a phased array element), in imaging systems, or as a stand-alone linearly polarized antenna. The equations for calculating the radiation efficiency and the input impedance and the experimental and theoretical curves for radiation efficiency of the double-slot antenna are presented along with diagrams of the antenna and the equivalent circuit of an individual slot in a slot array.

  7. Lithium niobate guided-wave beam former for steering phased-array antennas.

    PubMed

    Armenise, M N; Passaro, V M; Noviello, G

    1994-09-10

    We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.

  8. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    PubMed

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  9. First light from a kilometer-baseline Scintillation Auroral GPS Array

    PubMed Central

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-01-01

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318

  10. Extended-Range Passive RFID and Sensor Tags

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Kennedy, Timothy F.; Lin, Gregory Y.; Barton, Richard

    2012-01-01

    Extended-range passive radio-frequency identification (RFID) tags and related sensor tags are undergoing development. A tag of this type incorporates a retroreflective antenna array, so that it reflects significantly more signal power back toward an interrogating radio transceiver than does a comparable passive RFID tag of prior design, which does not incorporate a retroreflective antenna array. Therefore, for a given amount of power radiated by the transmitter in the interrogating transceiver, a tag of this type can be interrogated at a distance greater than that of the comparable passive RFID or sensor tag of prior design. The retroreflective antenna array is, more specifically, a Van Atta array, named after its inventor and first published in a patent issued in 1959. In its simplest form, a Van Atta array comprises two antenna elements connected by a transmission line so that the signal received by each antenna element is reradiated by the other antenna element (see Figure 1). The phase relationships among the received and reradiated signals are such as to produce constructive interference of the reradiated signals; that is, to concentrate the reradiated signal power in a direction back toward the source. Hence, an RFID tag equipped with a Van Atta antenna array automatically tracks the interrogating transceiver. The effective gain of a Van Atta array is the same as that of a traditional phased antenna array having the same number of antenna elements. Additional pairs of antenna elements connected by equal-length transmission lines can be incorporated into a Van Atta array to increase its directionality. Like some RFID tags here-to-fore commercially available, an RFID or sensor tag of the present developmental type includes one-port surface-acoustic-wave (SAW) devices. In simplified terms, the mode of operation of a basic one-port SAW device as used heretofore in an RFID device is the following: An interrogating radio signal is converted, at an input end, from an electrical signal to an acoustic wave that propagates along a surface and encounters multiple reflectors suitably positioned along the surface. Upon returning to the input end, the reflected acoustic wave is re-converted to an electrical signal, which, in turn, is reradiated from an antenna. The distances between the reflectors in the SAW device and the corresponding times between reflections encode the identifying or sensory information onto the reradiated signal. The fundamental problem in the present development is how to combine a Van Atta antenna array (which is inherently a multiple-port device) and one or more one-port SAW device(s) into a single, compact, passive unit that can function as a retroreflective RFID tag. The solution is to use one or more hybrid, half-power 90 couplers. A basic unit of this type, shown in Figure 2, includes a half-power 90 hybrid coupler; two identical SAW devices (SAW1 and SAW2) connected to ports 3 and 4 of the coupler, respectively; and antenna elements connected to ports 1 and 2 of the coupler. Necessarily omitting details for the sake of brevity, it must suffice to report that the phase relationships among the coupler inputs and outputs are such as to couple the incident signal from the antenna elements to the SAW devices and couple the reflected signals from the SAW devices back to the antenna elements in the phase relationships required for a Van Atta array. Hence, the reradiated signal is automatically directed back toward the interrogating transceiver and contains identifying and/or sensory information encoded in time intervals between reflections.

  11. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  12. Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Farca, George; Rommel, Scott D.; Johnson, Seth; Anderson, Michael H.

    2010-02-01

    A new electro-optic waveguide platform, which provides unprecedented voltage control over optical phase delays (> 2mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), will be presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing their historic limitations. The waveguide geometry provides nematic relaxation speeds in the 10's of microseconds and LC scattering losses that are reduced by orders of magnitude from bulk transmissive LC optics. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: 2-D analog non-mechanical beamsteerers, chip-scale widely tunable lasers, chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay devices for phased array antennas, and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, FSO, laser illumination, phased array radar, etc. Performance attributes of several example devices and application data will be presented. In particular, we will present a non-mechanical beamsteerer that steers light in both the horizontal and vertical dimensions.

  13. Concept of an interlaced phased array for beam switching

    NASA Astrophysics Data System (ADS)

    Reddy, C. A.; Janardhanan, K. V.; Mukundan, K. K.; Shenoy, K. S. V.

    1990-04-01

    A novel concept is described for feeding and phasing a large linear array of N antenna elements using only three or five feed points and phase shifters and still achieving beam switching. The idea consists of drastically reducing the number of input points by interlacing a small number of serially fed subarrays which are suitably phased. This so-called interlaced phased array (IPA) concept was tested using an array of 15 four-element Yagi antennas with a spacing equal to 0.8 wavelengths and found feasible. Some of the distinct advantages of the IPA in comparison with a conventional system of beam switching are reduced power loss, reduced phasing errors, reduced cost, increased reliability resulting from greatly reduced number of phase shifters, and better symmetry of off-zenith beams.

  14. Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis.

    PubMed

    Tian, Yi; Lv, Lijun; Jiang, Liwei; Wang, Xin; Li, Yanhong; Yu, Haiming; Feng, Xiaochen; Li, Qi; Zhang, Li; Li, Zhuo

    2013-08-01

    We investigated the design method of an infrared (IR)/microwave (MW) micromirror array type of beam combiner. The size of micromirror is in microscopic levels and comparable to MW wavelengths, so that the MW will not react in these dimensions, whereas the much shorter optical wavelengths will be reflected by them. Hence, the MW multilayered substrate was simplified and designed using transmission line theory. The beam combiner used an IR wavefront-division imaging technique to reflect the IR radiation image to the unit under test (UUT)'s pupil in a parallel light path. In addition, the boresight error detected by phase monopulse radar was analyzed using a moment-of method (MoM) and multilevel fast multipole method (MLFMM) acceleration technique. The boresight error introduced by the finite size of the beam combiner was less than 1°. Finally, in order to verify the wavefront-division imaging technique, a prototype of a micromirror array was fabricated, and IR images were tested. The IR images obtained by the thermal imager verified the correctness of the wavefront-division imaging technique.

  15. Design and Analysis of an Axisymmetric Phased Array Fed Gregorian Reflector System for Limited Scanning

    DTIC Science & Technology

    2016-01-22

    applications. For space applications, attitude control systems can provide good angular control of the antenna aperture with small residual angular...Bilyeu, and G.R. Veal, Development of Flight Hardware for a Large Inflatable- Deployable Antenna Experiment , Acta Astronautica, Vol. 38, Nos. 4-8

  16. Space Solar Power Management and Distribution (PMAD)

    NASA Technical Reports Server (NTRS)

    Lynch, Thomas H.

    2000-01-01

    This paper presents, in viewgraph form, SSP PMAD (Space Solar Power Management and Distribution). The topics include: 1) Architecture; 2) Backside Thermal View; 3) Solar Array Interface; 4) Transformer design and risks; 5) Twelve phase rectifier; 6) Antenna (80V) Converters; 7) Distribution Cables; 8) Weight Analysis; and 9) PMAD Summary.

  17. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design specifications for optical testing, but 5- micron IR illumination of the 1-4 and 1-2 beamfanners yielded no convincing results of beam splitting in the detector plane 340 microns from the surface of the beamfanner array.

  18. A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Peng, Zhengyu; Li, Changzhi

    2017-05-01

    A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)

  19. Brazilian Decimetric Array (BDA) project - Phase II

    NASA Astrophysics Data System (ADS)

    Faria, C.; Stephany, S.; Sawant, H. S.; Cecatto, J. R.; Fernandes, F. C. R.

    2010-02-01

    The configuration of the second phase of the Brazilian Decimetric Array (BDA), installed at Cachoeira Paulista, Brazil (Longitude 45° 0‧ 20″ W and Latitude 22° 41‧ 19″ S), is a T-shaped array where 21 antennas are being added to existing 5 antennas of the first phase. In the third phase, in each arm of the T array, four more antennas will be added and baselines will be increased to 2.5 × 1.25 km in east-west and south directions, respectively. The antennas will be equally spaced at the distances of 250 meters from the central antenna of the T-array. Also, the frequency range will be increased to 1.2-1.7, 2.8 and 5.6 GHz. The Second phase of the BDA should be operational by the middle of 2010 and will operate in the frequency range of (1.2-1.7) GHz for solar and non solar observations. Here, we present the characteristics of the second phase of the BDA project, details of the array configuration, the u-v coverage, the synthesized beam obtained for the proposed configuration.

  20. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Adaptive antenna arrays for satellite communications: Design and testing

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Swarner, W. G.; Walton, E. K.

    1985-01-01

    When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented.

  2. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  3. Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Strickland, P. C.

    1995-01-01

    CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.

  4. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  5. Algorithms and Array Design Criteria for Robust Imaging in Interferometry

    NASA Astrophysics Data System (ADS)

    Kurien, Binoy George

    Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.

  6. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena; Dumortier, Pierre

    2015-12-10

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. Atmore » the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and simulate the effectiveness of a feedback control algorithm for the 2nd stage matching and demonstrates the simultaneous matching and control of the 4 RDLs: 11 feedback loops control 21 actuators (8 capacitors, 4 phase shifters and 4 stubs for the 2nd stage matching, 4 main phase shifters controlling of the toroidal phasing and the electronically controlled phase between RF sources feeding top and bottom parts of the array and determines the poloidal phasing of the array which is solved explicitly at each time step) on (simulated) ELMy plasmas.« less

  7. Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.

    PubMed

    Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T

    2013-05-10

    We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.

  8. A Tikhonov Regularization Scheme for Focus Rotations with Focused Ultrasound Phased Arrays

    PubMed Central

    Hughes, Alec; Hynynen, Kullervo

    2016-01-01

    Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually-driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations. PMID:27913323

  9. A Tikhonov Regularization Scheme for Focus Rotations With Focused Ultrasound-Phased Arrays.

    PubMed

    Hughes, Alec; Hynynen, Kullervo

    2016-12-01

    Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound-phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations.

  10. Modeling and measurement of electrostatic micromirror array fabricated with single-layer polysilicon micromachining technology

    NASA Astrophysics Data System (ADS)

    Min, Young-Hoon; Kim, Yong-Kweon

    1998-09-01

    A silicon based micro mirror array is a highly efficient component for use in optical applications as adaptive optical systems and optical correlators. Many types of micro mirror or micro mirror array have been studied and proposed in order to obtain the optimal performance according to their own purposes. A micro mirror array designed, fabricated and tested in this paper consists of 5 X 5 single layer polysilicon-based, electrostatically driven actuators. The micro mirror array for the optical phase modulation is made by using only two masks and can be driven independently by 25 channel circuits. About 6 (pi) phase modulation is obtained in He-Ne laser ((lambda) equals 633 nm) with 67% fill-factor. In this paper, the deflection characteristics of the actuators in controllable range were studied. The experimental results show that the deflection characteristics is much dependent upon a residual stress in flexure, the initial curvature of mirror due to stress gradient and an electrostatic force acted on other element except for mirror itself. The modeling results agree well with the experimental results. Also, it is important to fabricate a flat mirror that is not initially curved because the curved mirror brings a bad performance in optical use. Therefore, a new method to obtain the flat mirror by using the gold metallization in spite of the residual stress unbalance is proposed in this paper.

  11. International Design Concepts for the SKA

    NASA Astrophysics Data System (ADS)

    Tarter, J.

    2001-12-01

    In August of 2000, representatives of eleven countries signed a Memorandum of Understanding to Establish the International Square Kilometre Array Steering Committee (ISSC). Arguably, the SKA could be built today, but without question it would be unaffordable. Increasing collecting area by a factor of 100 beyond today's largest array cannot be done cost effectively by simple extensions of what has been done before. New concepts, new designs, and new technologies will be required, as well as a paradigm shift. It will be necessary to heavily exploit emerging communications and consumer market technologies; to "hammer" them into shapes required to solve the SKA challenges, rather than inventing our own solutions from scratch. Or if we do invent ab initio solutions, we should look at creating consumer markets to embrace them, so that the full benefits of mass production and manufacturing can be realized. The strawman science goals of the SKA are extremely ambitious. Today there are six primary design concepts being studied that attempt to meet some or all of these goals; phased arrays of active elements embedded into flat tiles, "super Arecibo" antennas constructed in individual limestone karst sinkholes and arrayed together, large arrays of small, spherical (or hemispherical) Luneberg lenses, large deformable apertures with long focal ratios and aerostat-borne focal plane array receivers, arrays of large parabolic antennas constructed from steel "ropes," and large arrays of small parabolic dishes derived from the TVRO industry. This talk summarizes the strengths and weaknesses of these various designs in their current, incomplete state. In the US, the US SKA Consortium of 10 academic and research organizations has generated a roadmap to guide and assess the technology development that will be required to produce a successful SKA design, with well understood costs, performance, and minimal risk. The design and construction efforts for the ATA, LOFAR and the EVLA will provide essential opportunities for proofs-of-concept for portions of the preferred US design; a very large number of small elements configured into a Large-N number of stations. An aggressive timetable has been adopted for choosing a final (hybrid?) SKA design and the selection of a site, with a target date of 2005. The first, tentative steps have been taken to create an international project office capable of overseeing the development and construction of this facility, negotiating creative solutions to problems of radio frequency interference, and along the way, inventing the infrastructure and management appropriate to this "born international" venture.

  12. Vertical comb-drive microscanner with 4x4 array of micromirrors for phase-shifting Mirau microinterferometry

    NASA Astrophysics Data System (ADS)

    Bargiel, Sylwester; Lullin, Justine; Lemoal, Patrice; Perrin, Stéphane; Passilly, Nicolas; Albero, Jorge; Froehly, Luc; Lardet-Vieudrin, Franck; Gorecki, Christophe

    2016-04-01

    In this paper, we present construction, fabrication and characterization of an electrostatic MOEMS vertical microscanner for generation of an optical phase shift in array-type interferometric microsystems. The microscanner employs asymmetric comb-drives for a vertical displacement of a large 4x4 array of reference micromirrors and for in-situ position sensing. The device is designed to be fully compatible with Mirau configuration and with vertical integration strategy. This enables further integration of the device within an "active" multi-channel Mirau micro-interferometer and implementation of the phase shifting interferometry (PSI) technique for imaging applications. The combination of micro-interferometer and PSI is particularly interesting in the swept-source optical coherence tomography, since it allows not only strong size reduction of a system but also improvement of its performance (sensitivity, removal of the image artefacts). The technology of device is based on double-side DRIE of SOI wafer and vapor HF releasing of the suspended platform. In the static mode, the device provides vertical displacement of micromirrors up to 2.8μm (0 - 40V), whereas at resonance (fo=500 Hz), it reaches 0.7 μm for only 1VDC+1VAC. In both operation modes, the measured displacement is much more than required for PSI implementation (352nm peak-to-peak). The presented device is a key component of array-type Mirau micro-interferometer that enables the construction of portable, low-cost interferometric systems, e.g. for in vivo medical diagnostics.

  13. Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1980-01-01

    The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.

  14. A wideband analog correlator system for AMiBA

    NASA Astrophysics Data System (ADS)

    Li, Chao-Te; Kubo, Derek; Han, Chih-Chiang; Chen, Chung-Cheng; Chen, Ming-Tang; Lien, Chun-Hsien; Wang, Huei; Wei, Ray-Ming; Yang, Chia-Hsiang; Chiueh, Tzi-Dar; Peterson, Jeffrey; Kesteven, Michael; Wilson, Warwick

    2004-10-01

    A wideband correlator system with a bandwidth of 16 GHz or more is required for Array for Microwave Background Anisotropy (AMiBA) to achieve the sensitivity of 10μK in one hour of observation. Double-balanced diode mixers were used as multipliers in 4-lag correlator modules. Several wideband modules were developed for IF signal distribution between receivers and correlators. Correlator outputs were amplified, and digitized by voltage-to-frequency converters. Data acquisition circuits were designed using field programmable gate arrays (FPGA). Subsequent data transfer and control software were based on the configuration for Australia Telescope Compact Array. Transform matrix method will be adopted during calibration to take into account the phase and amplitude variations of analog devices across the passband.

  15. Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides.

    PubMed

    Jung, Young Jin; Park, Dongwon; Koo, Sukmo; Yu, Sunkyu; Park, Namkyoo

    2009-10-12

    We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 mum free-space Gaussian beam to the 0.36 mum Si waveguide within a working distance of a few mum.

  16. Automated Array Assembly, Phase 2. Low-cost Solar Array Project, Task 4

    NASA Technical Reports Server (NTRS)

    Lopez, M.

    1978-01-01

    Work was done to verify the technological readiness of a select process sequence with respect to satisfying the Low Cost Solar Array Project objectives of meeting the designated goals of $.50 per peak watt in 1986 (1975 dollars). The sequence examined consisted of: (1) 3 inches diameter as-sawn Czochralski grown 1:0:0 silicon, (2) texture etching, (3) ion implanting, (4) laser annealing, (5) screen printing of ohmic contacts and (6) sprayed anti-reflective coatings. High volume production projections were made on the selected process sequence. Automated processing and movement of hardware at high rates were conceptualized to satisfy the PROJECT's 500 MW/yr capability. A production plan was formulated with flow diagrams integrating the various processes in the cell fabrication sequence.

  17. Phase I - Final report: Improved position sensitive detectors for thermal neutrons. Design, fabrication, and results of testing the Phase I - Proof-of-Principal Improved Position Sensitive Thermal Neutron Detector Prototype in the laboratory and at the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, Carter D.

    A position sensitive neutron detector was designed and fabricated with bundles of individual detector elements with diameters of 120 mm. These neutron scintillating fibers were coupled with optoelectronic arrays to produce a ''Fiber Detector.'' A fiber position sensitive detector was completed and tested with scattered and thermal neutrons. Deployment of improved 2D PSDs with high signal to noise ratios at lower costs per area was the overall objective of the project.

  18. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    NASA Technical Reports Server (NTRS)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  19. The latency validation of the optical link for the ATLAS Liquid Argon Calorimeter Phase-I trigger upgrade

    NASA Astrophysics Data System (ADS)

    Deng, B.; Xiao, L.; Zhao, X.; Baker, E.; Gong, D.; Guo, D.; He, H.; Hou, S.; Liu, C.; Liu, T.; Sun, Q.; Thomas, J.; Wang, J.; Xiang, A. C.; Yang, D.; Ye, J.; Zhou, W.

    2018-05-01

    Two optical data link data transmission Application Specific Integrated Circuits (ASICs), the baseline and its backup, have been designed for the ATLAS Liquid Argon (LAr) Calorimeter Phase-I trigger upgrade. The latency of each ASIC and that of its corresponding receiver implemented in a back-end Field-Programmable Gate Array (FPGA) are critical specifications. In this paper, we present the latency measurements and simulation of two ASICs. The measurement results indicate that both ASICs achieve their design goals and meet the latency specifications. The consistency between the simulation and measurements validates the ASIC latency characterization.

  20. Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions

    NASA Astrophysics Data System (ADS)

    Warnick, Karl F.; Ivashina, Marianna V.; Wijnholds, Stefan J.; Maaskant, Rob

    2012-01-01

    For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation.

  1. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation.

    PubMed

    Wiggins, Graham C; Polimeni, Jonathan R; Potthast, Andreas; Schmitt, Melanie; Alagappan, Vijay; Wald, Lawrence L

    2009-09-01

    The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g-factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g-factor for 96 channels compared to 32; for example, the 96-channel maximum g-factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images.

  2. Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation.

    PubMed

    Hasan, Mehedi; Guemri, Rabiaa; Maldonado-Basilio, Ramón; Lucarz, Frédéric; de Bougrenet de la Tocnaye, Jean-Louis; Hall, Trevor

    2014-12-15

    A photonic circuit design for implementing frequency 8-tupling and 24-tupling is proposed. The front- and back-end of the circuit comprises 4×4 MMI couplers enclosing an array of four pairs of phase modulators and 2×2 MMI couplers. The proposed design for frequency multiplication requires no optical or electrical filters, the operation is not limited to carefully adjusted modulation indexes, and the drift originated from static DC bias is mitigated by making use of the intrinsic phase relations of multi-mode interference couplers. A transfer matrix approach is used to represent the main building blocks of the design and hence to describe the operation of the frequency 8-tupling and 24-tupling. The concept is theoretically developed and demonstrated by simulations. Ideal and imperfect power imbalances in the multi-mode interference couplers, as well as ideal and imperfect phases of the electric drives to the phase modulators, are analyzed.

  3. Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.

    2013-01-01

    The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.

  4. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.

    PubMed

    Song, Junho; Lucht, Benjamin; Hynynen, Kullervo

    2012-07-01

    With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.

  5. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  6. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array

    NASA Astrophysics Data System (ADS)

    Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.

    2013-04-01

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm-2 in the free field in water and 40 W cm-2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.

  7. The role of acoustic nonlinearity in tissue heating behind the rib cage using high intensity focused ultrasound phased array

    PubMed Central

    Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.

    2013-01-01

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path, and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low power sonications. Intensity levels at the face of the array elements that corresponded to formation of high amplitude shock fronts in the focal region were determined as 10 W·cm−2 in the free field in water and 40 W·cm−2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue. PMID:23528338

  8. Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Wu, Yupan; Wang, Chunhui; Ding, Haitao; Jiang, Hongyuan; Ding, Yucheng

    2016-09-01

    Traveling-wave electroosmotic (TWEO) pumping arises from the action of an imposed traveling-wave (TW) electric field on its own induced charge in the diffuse double layer, which is formed on top of an electrode array immersed in electrolyte solutions. Such a traveling field can be merely realized in practice by a discrete electrode array upon which the corresponding voltages of correct phase are imposed. By employing the theory of linear and weakly nonlinear double-layer charging dynamics, a physical model incorporating both the nonlinear surface capacitance of diffuse layer and Faradaic current injection is developed herein in order to quantify the changes in TWEO pumping performance from a single-mode TW to discrete electrode configuration. Benefiting from the linear analysis, we investigate the influence of using discrete electrode array to create the TW signal on the resulting fluid motion, and several approaches are suggested to improve the pumping performance. In the nonlinear regime, our full numerical analysis considering the intervening isolation spacing indicates that a practical four-phase discrete electrode configuration of equal electrode and gap width exhibits stronger nonlinearity than expected from the idealized pump applied with a single-mode TW in terms of voltage-dependence of the ideal pumping frequency and peak flow rate, though it has a much lower pumping performance. For model validation, pumping of electrolytes by TWEO is achieved over a confocal spiral four-phase electrode array covered by an insulating microchannel; measurement of flow velocity indicates the modified nonlinear theory considering moderate Faradaic conductance is indeed a more accurate physical description of TWEO. These results offer useful guidelines for designing high-performance TWEO microfluidic pumps with discrete electrode array.

  9. Phase-locked laser array through global antenna mutual coupling

    DOE PAGES

    Kao, Tsung -Yu; Reno, John L.; Hu, Qing

    2016-01-01

    Here, phase locking of an array of lasers is a highly effective way in beam shaping, to increase the output power, and to reduce lasing threshold. In this work, we present a novel phase-locking mechanism based on "antenna mutual coupling" wherein laser elements interact through far-field radiations with definite phase relations. This allows long-range global coupling among array elements to achieve robust 2-dimensional phase-locked laser array. The new scheme is ideal for lasers with deep sub-wavelength confined cavity such as nanolasers, where the divergent beam pattern could be used to form strong coupling among elements in the array. We experimentallymore » demonstrated such a scheme using sub-wavelength short-cavity surface-emitting lasers at terahertz frequency. More than 37 laser elements are phase-locked to each other, delivering up to 6.5 mW single-mode radiations at ~3 terahertz, with maximum 450-mW/A slope efficiency and near diffraction limit beam divergence.« less

  10. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    NASA Astrophysics Data System (ADS)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  11. New customizable phased array UT instrument opens door for furthering research and better industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Gavin; Ginzel, Robert

    2014-02-18

    Phased array UT as an inspection technique in itself continues to gain wide acceptance. However, there is much room for improvement in terms of implementation of Phased Array (PA) technology for every unique NDT application across several industries (e.g. oil and petroleum, nuclear and power generation, steel manufacturing, etc.). Having full control of the phased array instrument and customizing a software solution is necessary for more seamless and efficient inspections, from setting the PA parameters, collecting data and reporting, to the final analysis. NDT researchers and academics also need a flexible and open platform to be able to control variousmore » aspects of the phased array process. A high performance instrument with advanced PA features, faster data rates, a smaller form factor, and capability to adapt to specific applications, will be discussed.« less

  12. Development of a high-definition IR LED scene projector

    NASA Astrophysics Data System (ADS)

    Norton, Dennis T.; LaVeigne, Joe; Franks, Greg; McHugh, Steve; Vengel, Tony; Oleson, Jim; MacDougal, Michael; Westerfeld, David

    2016-05-01

    Next-generation Infrared Focal Plane Arrays (IRFPAs) are demonstrating ever increasing frame rates, dynamic range, and format size, while moving to smaller pitch arrays.1 These improvements in IRFPA performance and array format have challenged the IRFPA test community to accurately and reliably test them in a Hardware-In-the-Loop environment utilizing Infrared Scene Projector (IRSP) systems. The rapidly-evolving IR seeker and sensor technology has, in some cases, surpassed the capabilities of existing IRSP technology. To meet the demands of future IRFPA testing, Santa Barbara Infrared Inc. is developing an Infrared Light Emitting Diode IRSP system. Design goals of the system include a peak radiance >2.0W/cm2/sr within the 3.0-5.0μm waveband, maximum frame rates >240Hz, and >4million pixels within a form factor supported by pixel pitches <=32μm. This paper provides an overview of our current phase of development, system design considerations, and future development work.

  13. The Applicability of Incoherent Array Processing to IMS Seismic Array Stations

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.

    2012-04-01

    The seismic arrays of the International Monitoring System for the CTBT differ greatly in size and geometry, with apertures ranging from below 1 km to over 60 km. Large and medium aperture arrays with large inter-site spacings complicate the detection and estimation of high frequency phases since signals are often incoherent between sensors. Many such phases, typically from events at regional distances, remain undetected since pipeline algorithms often consider only frequencies low enough to allow coherent array processing. High frequency phases that are detected are frequently attributed qualitatively incorrect backazimuth and slowness estimates and are consequently not associated with the correct event hypotheses. This can lead to missed events both due to a lack of contributing phase detections and by corruption of event hypotheses by spurious detections. Continuous spectral estimation can be used for phase detection and parameter estimation on the largest aperture arrays, with phase arrivals identified as local maxima on beams of transformed spectrograms. The estimation procedure in effect measures group velocity rather than phase velocity and the ability to estimate backazimuth and slowness requires that the spatial extent of the array is large enough to resolve time-delays between envelopes with a period of approximately 4 or 5 seconds. The NOA, AKASG, YKA, WRA, and KURK arrays have apertures in excess of 20 km and spectrogram beamforming on these stations provides high quality slowness estimates for regional phases without additional post-processing. Seven arrays with aperture between 10 and 20 km (MJAR, ESDC, ILAR, KSRS, CMAR, ASAR, and EKA) can provide robust parameter estimates subject to a smoothing of the resulting slowness grids, most effectively achieved by convolving the measured slowness grids with the array response function for a 4 or 5 second period signal. The MJAR array in Japan recorded high SNR Pn signals for both the 2006 and 2009 North Korea nuclear tests but, due to signal incoherence, failed to contribute to the automatic event detections. It is demonstrated that the smoothed incoherent slowness estimates for the MJAR Pn phases for both tests indicate unambiguously the correct type of phase and a backazimuth estimate within 5 degrees of the great-circle backazimuth. The detection part of the algorithm is applicable to all IMS arrays, and spectrogram-based processing may offer a reduction in the false alarm rate for high frequency signals. Significantly, the local maxima of the scalar functions derived from the transformed spectrogram beams provide good estimates of the signal onset time. High frequency energy is of greater significance for lower event magnitudes and in, for example, the cavity decoupling detection evasion scenario. There is a need to characterize propagation paths with low attenuation of high frequency energy and situations in which parameter estimation on array stations fails.

  14. Development of ultrasound focusing discrete array for air-coupled ultrasound generation

    NASA Astrophysics Data System (ADS)

    Korobov, Alexander I.; Izosimova, Maria Y.; Toschov, Sergey A.

    2010-01-01

    The technique and results of synthesis of ultrasound focusing discrete arrays for air-coupled ultrasound generation are presented. One of the arrays is an antenna 22 cm in diameter. It consists of 60 transmitters of Murata Company. The resonant frequency of each transmitter is 40 kHz, diameter is 16 mm. The transmitters were placed in first four Fresnel zones. Each of the zones was emitting with anti-phases. Position data and pressure field in focus were calculated using Rayleigh integral. Parameters of made array were measured using method of air-coupled vibrometry with laser scanning vibrometer. Measured parameters (operating frequency is 40 ± 1 kHz, focal distance is 308 mm, size of focal spot is 16.3 mm, and pressure in focus is about 150 dB) are in good agreement with calculated data. The examples of use of designed arrays for noncontact non-destructive diagnostics of some structural materials are reported. Work supported by RFBR.

  15. Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications.

    PubMed

    Smith, Kevin B; Abrantes, Antonio A M; Larraza, Andres

    2003-06-01

    The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.

  16. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the fundamentals of the GLW-based phased array approach and the development of an innovative signal processing algorithm associated with the 2-D spiral phased sensor array. The SHM approach based on array responses determined by the proposed phased array algorithm implementation is addressed. The experimental validation of the GLW-based 2-D spiral phased array technology and the associated damage detection applications to thin isotropic plate and anisotropic composite plate structures are presented.

  17. Performance of the first HAWAII 4RG-15 arrays in the laboratory and at the telescope

    NASA Astrophysics Data System (ADS)

    Hall, Donald N. B.; Atkinson, Dani; Beletic, James W.; Blank, Richard; Farris, Mark; Hodapp, Klaus W.; Jacobson, Shane M.; Loose, Markus; Luppino, Gerard

    2012-07-01

    The primary goal of the HAWAII 4RG-15 (H4RG-15) development is to provide a 16 megapixel 4096x4096 format at significantly reduced price per pixel while maintaining the superb low background performance of the HAWAII 2RG (H2RG). The H4RG-15 design incorporates several new features, notably clocked reference output and interleaved reference pixel readout, that promise to significantly improve noise performance while the reduction in pixel pitch from 18 to 15 microns should improve transimpedance gain although at the expense of some degradation in full well and crosstalk. During the Phase-1 development, Teledyne has produced and screen tested six hybrid arrays. In preparation for Phase-2, the most promising of these are being extensively characterized in the University of Hawaii’s (UH) ULBCam test facility originally developed for the JWST H2RG program. The end-to-end performance of the most promising array has been directly established through astronomical imaging observations at the UH 88-inch telescope on Mauna Kea. We report the performance of these Phase-1 H4RG-15s within the context of established H2RG performance for key parameters (primarily CDS read noise), also highlighting the improvements from the new readout modes.

  18. Project PARAS: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.

  19. Numerical and experimental simulation of linear shear piezoelectric phased arrays for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui

    2017-04-01

    A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.

  20. Means for phase locking the outputs of a surface emitting laser diode array

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor)

    1987-01-01

    An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.

  1. Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui

    2016-03-01

    We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.

  2. Modified plenoptic camera for phase and amplitude wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Davis, Christopher C.

    2013-09-01

    Shack-Hartmann sensors have been widely applied in wavefront sensing. However, they are limited to measuring slightly distorted wavefronts whose local tilt doesn't surpass the numerical aperture of its micro-lens array and cross talk of incident waves on the mrcro-lens array should be strictly avoided. In medium to strong turbulence cases of optic communication, where large jitter in angle of arrival and local interference caused by break-up of beam are common phenomena, Shack-Hartmann sensors no longer serve as effective tools in revealing distortions in a signal wave. Our design of a modified Plenoptic Camera shows great potential in observing and extracting useful information from severely disturbed wavefronts. Furthermore, by separating complex interference patterns into several minor interference cases, it may also be capable of telling regional phase difference of coherently illuminated objects.

  3. Synthetic Seismogram Modeling.

    DTIC Science & Technology

    1982-11-15

    various phases ( designated A, B, C, etc.) are indicated on the seismic record section at the top of the diagram. The observed travel times show a good...structure of the Yellowstone aperture seismic array (LAS), Moatana, U.S. region and experiment design , J. Geophys. Geol. Suwv. Open File Rep. 1671, 1972. Res...also display little For clarity in both typography and conitext, we coherence in waveform or even in the envelope of shall henceforth write -P-bar in

  4. Realization of multiple orbital angular momentum modes simultaneously through four-dimensional antenna arrays.

    PubMed

    Sun, Chao; Yang, Shiwen; Chen, Yikai; Guo, Jixin; Qu, Shiwei

    2018-01-09

    Electromagnetic waves carrying orbital angular momentum (OAM) in radio frequency range have drawn great attention owing to its potential applications in increasing communication capacity. In this paper, both single-pole single-throw (SPST) switches and single-pole double-throw (SPDT) switches are designed and implemented. Optimal time sequence allows four-dimensional (4-D) circular antenna array to generate multiple OAM-carrying waves as well as enhance the field intensity of each OAM-carrying wave. A novel experimental platform is developed to measure the phase distribution when the transmitting antenna and the receiving antenna operate at different frequencies. The good agreement between the measurement and simulation results demonstrate that 4-D circular antenna array is able to generate multiple OAM modes simultaneously. Furthermore, the superiority of the 4-D circular antenna array in receiving and demodulating multiple OAM-carrying signals is validated through the filter and bit error rate (BER) simulations.

  5. THz wavefront manipulation based on metal waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shen, Changyu; Shi, Guohua; Han, Zhanghua

    2018-07-01

    In this paper, two waveguiding structures for arbitrary wavefront manipulation in the terahertz spectral region were proposed, designed and characterized. The first structure consists of parallel stack copper plates forming an array of parallel-plate waveguides (PPWGs). The second structure is three-dimensional metal rectangular waveguides array. The phase delay of the input wave after passing through the waveguide array is mainly determined by the effective index of the waveguides. Therefore, the waveguide array can be engineered using different core width distribution to generate any desired light beam. Examples, working at the frequency of 0.3 THz show that good focusing phenomenon with different focus lengths and spot sizes were observed, as well as arbitrarily tilted propagation of incident plane waves. The structure introduces a new method to perform wavefront manipulation, and can be utilized in many important applications in terahertz imaging and communication systems.

  6. Optimising reversed-phase liquid chromatographic separation of an acidic mixture on a monolithic stationary phase with the aid of response surface methodology and experimental design.

    PubMed

    Wang, Y; Harrison, M; Clark, B J

    2006-02-10

    An optimization strategy for the separation of an acidic mixture by employing a monolithic stationary phase is presented, with the aid of experimental design and response surface methodology (RSM). An orthogonal array design (OAD) OA(16) (2(15)) was used to choose the significant parameters for the optimization. The significant factors were optimized by using a central composite design (CCD) and the quadratic models between the dependent and the independent parameters were built. The mathematical models were tested on a number of simulated data set and had a coefficient of R(2) > 0.97 (n = 16). On applying the optimization strategy, the factor effects were visualized as three-dimensional (3D) response surfaces and contour plots. The optimal condition was achieved in less than 40 min by using the monolithic packing with the mobile phase of methanol/20 mM phosphate buffer pH 2.7 (25.5/74.5, v/v). The method showed good agreement between the experimental data and predictive value throughout the studied parameter space and were suitable for optimization studies on the monolithic stationary phase for acidic compounds.

  7. Lightwave technology in microwave systems

    NASA Astrophysics Data System (ADS)

    Popa, A. E.; Gee, C. M.; Yen, H. W.

    1986-01-01

    Many advanced microwave system concepts such as active aperture phased array antennas use distributed topologies in which lightwave circuits are being proposed to interconnect both the analog and digital modules of the system. Lightwave components designed to implement these interconnects are reviewed and their performance analyzed. The impact of trends in component development are discussed.

  8. High altitude subsonic parachute field programmable gate array

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout; launch, ascent, deployment and descent phases of the subsonic parachute test.

  9. Phased Arrays 1985 Symposium - Proceedings

    DTIC Science & Technology

    1985-08-01

    have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed

  10. Two-phase interdigitated microelectrode arrays for electrokinetic transport of microparticles

    NASA Astrophysics Data System (ADS)

    Bligh, Mathew; Stanley, Kevin G.; Hubbard, Ted; Kujath, Marek

    2008-05-01

    In this paper, we demonstrate long-range particle transport using linear two-phase interdigitated arrays with electrodes of equal size but with asymmetric spacing between them. We report net motion of 6 µm polystyrene spheres in an aqueous electrolyte and characterize the dependence of particle velocity on frequency, potential and phase, and show consistency with previous experiments that involved four-phase arrays producing AC electroosmotic and dielectrophoretic forces. We explore the effect of increasing the asymmetry of the electrode spacing and show that this decreases the performance of the array. We also examine the effect of increasing the overall scale of the array while maintaining geometric proportions and particle size and report that this also decreases the performance. We compare our results to previous analytical theoretical predictions and find general agreement.

  11. Analysis and design of a high power laser adaptive phased array transmitter

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.

    1977-01-01

    The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.

  12. Distributed phased array architecture study

    NASA Technical Reports Server (NTRS)

    Bourgeois, Brian

    1987-01-01

    Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.

  13. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  14. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.

    PubMed

    Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L

    2012-03-12

    A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

  15. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  16. Gimbals Drive and Control Electronics Design, Development and Testing of the LRO High Gain Antenna and Solar Array Systems

    NASA Technical Reports Server (NTRS)

    Chernyakov, Boris; Thakore, Kamal

    2010-01-01

    Launched June 18, 2009 on an Atlas V rocket, NASA's Lunar Reconnaissance Orbiter (LRO) is the first step in NASA's Vision for Space Exploration program and for a human return to the Moon. The spacecraft (SC) carries a wide variety of scientific instruments and provides an extraordinary opportunity to study the lunar landscape at resolutions and over time scales never achieved before. The spacecraft systems are designed to enable achievement of LRO's mission requirements. To that end, LRO's mechanical system employed two two-axis gimbal assemblies used to drive the deployment and articulation of the Solar Array System (SAS) and the High Gain Antenna System (HGAS). This paper describes the design, development, integration, and testing of Gimbal Control Electronics (GCE) and Actuators for both the HGAS and SAS systems, as well as flight testing during the on-orbit commissioning phase and lessons learned.

  17. Laser Micromachining Fabrication of THz Components

    NASA Technical Reports Server (NTRS)

    DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.

    2001-01-01

    Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.

  18. A micromachined efficient parametric array loudspeaker with a wide radiation frequency band.

    PubMed

    Je, Yub; Lee, Haksue; Been, Kyounghun; Moon, Wonkyu

    2015-04-01

    Parametric array (PA) loudspeakers generate directional audible sound via the PA effect, which can make private listening possible. The practical applications of PA loudspeakers include information technology devices that require large power efficiency transducers with a wide frequency bandwidth. Piezoelectric micromachined ultrasonic transducers (PMUTs) are compact and efficient units for PA sources [Je, Lee, and Moon, Ultrasonics 53, 1124-1134 (2013)]. This study investigated the use of an array of PMUTs to make a PA loudspeaker with high power efficiency and wide bandwidth. The achievable maximum radiation bandwidth of the driver was calculated, and an array of PMUTs with two distinct resonance frequencies (f1 = 100 kHz, f2 = 110 kHz) was designed. Out-of-phase driving was used with the dual-resonance transducer array to increase the bandwidth. The fabricated PMUT array exhibited an efficiency of up to 71%, together with a ±3-dB bandwidth of 17 kHz for directly radiated primary waves, and 19.5 kHz (500 Hz to 20 kHz) for the difference frequency waves (with equalization).

  19. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.

  20. The design of the local monitor and control system of SKA dishes

    NASA Astrophysics Data System (ADS)

    Schillirò, F.; Baldini, V.; Becciani, U.; Cirami, R.; Costa, A.; Ingallinera, A.; Marassi, A.; Nicotra, G.; Nocita, C.; Riggi, S.; Trigilio, C.

    2016-08-01

    The Square Kilometer Array (SKA) project aims at building the world's largest radio observatory to observe the sky with unprecedented sensitivity and collecting area. In the first phase of the project (SKA1), an array of dishes, SKA1-MID, will be built in South Africa. It will consist of 133 15m-dishes, which will include the MeerKAT array, for the 0.350-20 GHz frequency band observations. Each antenna will be provided with a local monitor and control system (LMC), enabling operations both to the Telescope Manager remote system, and to the engineers and maintenance staff; it provides different environment for the telescope control (positioning, pointing, observational bands), metadata collection for monitoring and database storaging, operational modes and functional states management for all the telescope capabilities. In this paper we present the LMC software architecture designed for the detailed design phase (DD), where we describe functional and physical interfaces with monitored and controlled sub-elements, and highlight the data flow between each LMC modules and its sub-element controllers from one side, and Telescope Manager on the other side. We also describe the complete Product Breakdown Structure (PBS) created in order to optimize resources allocation in terms of calculus and memory, able to perform required task for each element according to the proper requirements. Among them, time response and system reliability are the most important, considering the complexity of SKA dish network and its isolated placement. Performances obtained by software implementation using TANGO framework will be discussed, matching them with technical requirements derived by SKA science drivers.

  1. Digital Interface Board to Control Phase and Amplitude of Four Channels

    NASA Technical Reports Server (NTRS)

    Smith, Amy E.; Cook, Brian M.; Khan, Abdur R.; Lux, James P.

    2011-01-01

    An increasing number of parts are designed with digital control interfaces, including phase shifters and variable attenuators. When designing an antenna array in which each antenna has independent amplitude and phase control, the number of digital control lines that must be set simultaneously can grow very large. Use of a parallel interface would require separate line drivers, more parts, and thus additional failure points. A convenient form of control where single-phase shifters or attenuators could be set or the whole set could be programmed with an update rate of 100 Hz is needed to solve this problem. A digital interface board with a field-programmable gate array (FPGA) can simultaneously control an essentially arbitrary number of digital control lines with a serial command interface requiring only three wires. A small set of short, high-level commands provides a simple programming interface for an external controller. Parity bits are used to validate the control commands. Output timing is controlled within the FPGA to allow for rapid update rates of the phase shifters and attenuators. This technology has been used to set and monitor eight 5-bit control signals via a serial UART (universal asynchronous receiver/transmitter) interface. The digital interface board controls the phase and amplitude of the signals for each element in the array. A host computer running Agilent VEE sends commands via serial UART connection to a Xilinx VirtexII FPGA. The commands are decoded, and either outputs are set or telemetry data is sent back to the host computer describing the status and the current phase and amplitude settings. This technology is an integral part of a closed-loop system in which the angle of arrival of an X-band uplink signal is detected and the appropriate phase shifts are applied to the Ka-band downlink signal to electronically steer the array back in the direction of the uplink signal. It will also be used in the non-beam-steering case to compensate for phase shift variations through power amplifiers. The digital interface board can be used to set four 5-bit phase shifters and four 5-bit attenuators and monitor their current settings. Additionally, it is useful outside of the closed-loop system for beamsteering alone. When the VEE program is started, it prompts the user to initialize variables (to zero) or skip initialization. After that, the program enters into a continuous loop waiting for the telemetry period to elapse or a button to be pushed. A telemetry request is sent when the telemetry period is elapsed (every five seconds). Pushing one of the set or reset buttons will send the appropriate command. When a command is sent, the interface status is returned, and the user will be notified by a pop-up window if any error has occurred. The program runs until the End Program button is depressed.

  2. Off-Grid Direction of Arrival Estimation Based on Joint Spatial Sparsity for Distributed Sparse Linear Arrays

    PubMed Central

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-01-01

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150

  3. Direct phase projection and transcranial focusing of ultrasound for brain therapy.

    PubMed

    Pinton, Gianmarco F; Aubry, Jean-Francois; Tanter, Mickaël

    2012-06-01

    Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's individual skull morphology. Currently, three-dimensional finite-difference time-domain simulations are used to model a point source at the target. The outward-propagating wave crosses the measured representation of the human skull and is recorded at the therapy array transducer locations. The signal is then time reversed and experimentally transmitted back to its origin. These simulations are resource intensive and add a significant delay to treatment planning. Ray propagation is computationally efficient because it neglects diffraction and only describes two propagation parameters: the wave's direction and the phase. We propose a minimal method that is based only on the phase. The phase information is projected from the external skull surface to the array locations. This replaces computationally expensive finite-difference computations with an almost instantaneous direct phase projection calculation. For the five human skull samples considered, the phase distribution outside of the skull is shown to vary by less than λ/20 as it propagates over a 5 cm distance and the validity of phase projection is established over these propagation distances. The phase aberration introduced by the skull is characterized and is shown to have a good correspondence with skull morphology. The shape of this aberration is shown to have little variation with propagation distance. The focusing quality with the proposed phase-projection algorithm is shown to be indistinguishable from the gold-standard full finite-difference simulation. In conclusion, a spherical wave that is aberrated by the skull has a phase propagation that can be accurately described as radial, even after it has been distorted. By combining finite-difference simulations with a phase-projection algorithm, the time required for treatment planning is significantly reduced. The correlation length of the phase is used to validate the algorithm and it can also be used to provide guiding parameters for clinical array transducer design in terms of transducer spacing and phase error.

  4. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    PubMed

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  5. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  6. Laser-phased-array beam steering based on crystal fiber

    NASA Astrophysics Data System (ADS)

    Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei

    2011-06-01

    Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.

  7. Cryogenic phased-array for high resolution magnetic resonance imaging (MRI); assessment of clinical and research applications

    NASA Astrophysics Data System (ADS)

    Ip, Flora S.

    Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons, the MR counter-rotating current coil is sufficient and demonstrated its simplicity over a phased array in this application.

  8. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Vasant A.; Prakash, Punit; Rieke, Viola; Ozhinsky, Eugene; Plata, Juan; Kurhanewicz, John; Hsu, I.-C. Joe; Diederich, Chris J.

    2017-03-01

    Here, operational modifications to a commercial MR-guided ultrasound phased array designed for prostate ablation (part of ExAblate 2100, InSightec Ltd) are presented for the delivery of protracted mild (40 - 45°C) hyperthermia to large contiguous target volumes in the prostate. This high-intensity focused ultrasound phased array is already in clinical trials for prostate ablation, and can be potentially fast-tracked for clinical hyperthermia treatments. As a part of this preliminary feasibility study, patient-specific numerical simulations were performed using Pennes bioheat model and acoustic field calculations were conducted using the rectangular radiator method for the ExAblate prostate array (2.3 MHz, 2.3×4.0 cm2, ˜1000 channels). Thermal solutions were computed using 3D finite element methods (FEM) implemented using Comsol Multiphysics (Comsol Inc). The patient-specific geometries were created through manual segmentation of anatomical structures from representative patient MRIs and 3D rendering (Mimics 15.01, Materialise) and generation of finite element meshes (3-Matic 7.01, Materialise). Array beamforming was employed and acoustic fields were synthesized (Matlab 2010a, MathWorks) to deliver protracted continuous wave hyperthermia to focal prostate cancer targets identified in the patient-specific models. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Sonication strategies explored during modeling were implemented on the ExAblate prostate array and preliminary experiments were conducted in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). Therapeutic temperatures (40 - 45 °C) could be established conformably in focal cancer volumes in a single prostate quadrant using focused heating patterns and hemi-gland heating was possible using diffused heating patterns (iso-phase or diverging). T>41 °C was calculated in 13-23 cm3 volumes for sonications with planar or diverging beam patterns at 0.9-1.2 W/cm2, in 1.5-4 cm3 volumes for simultaneous multi-point focus beam patterns at 2 - 3.4 W/cm2, and in ˜6.0 cm3 for curvilinear (cylindrical) beam patterns at 0.75 W/cm2. Patient-specific models also revealed that treatable volume sizes may be limited from pubic bone heating, especially if the pubic bone is within 15 mm from the prostate. Parametric studies also showed therapeutic heating was possible within power constraints of the phased array for a range of perfusion values (0.5 - 8 kg/m3/s), rectal cooling (22 - 35 °C) and sonication duty cycles (80% - 90%). Focused (simultaneous 4-point, cylindrical) and diffused (iso-phase, cylindrically diverging) phasing patterns investigated during modeling were successfully implemented on the ExAblate prostate array produced 4-12 °C temperature rises during protracted heating of phantom experiments (˜0.86 W/cm2, 15 min).

  9. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  10. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel

    2015-08-21

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurementsmore » reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.« less

  11. A review of the design and clinical evaluation of the ShefStim array-based functional electrical stimulation system.

    PubMed

    Kenney, Laurence P; Heller, Ben W; Barker, Anthony T; Reeves, Mark L; Healey, Jamie; Good, Timothy R; Cooper, Glen; Sha, Ning; Prenton, Sarah; Liu, Anmin; Howard, David

    2016-11-01

    Functional electrical stimulation has been shown to be a safe and effective means of correcting foot drop of central neurological origin. Current surface-based devices typically consist of a single channel stimulator, a sensor for determining gait phase and a cuff, within which is housed the anode and cathode. The cuff-mounted electrode design reduces the likelihood of large errors in electrode placement, but the user is still fully responsible for selecting the correct stimulation level each time the system is donned. Researchers have investigated different approaches to automating aspects of setup and/or use, including recent promising work based on iterative learning techniques. This paper reports on the design and clinical evaluation of an electrode array-based FES system for the correction of drop foot, ShefStim. The paper reviews the design process from proof of concept lab-based study, through modelling of the array geometry and interface layer to array search algorithm development. Finally, the paper summarises two clinical studies involving patients with drop foot. The results suggest that the ShefStim system with automated setup produces results which are comparable with clinician setup of conventional systems. Further, the final study demonstrated that patients can use the system without clinical supervision. When used unsupervised, setup time was 14min (9min for automated search plus 5min for donning the equipment), although this figure could be reduced significantly with relatively minor changes to the design. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Passive monitoring using a combination of focused and phased array radiometry: a simulation study.

    PubMed

    Farantatos, Panagiotis; Karanasiou, Irene S; Uzunoglu, Nikolaos

    2011-01-01

    Aim of this simulation study is to use the focusing properties of a conductive ellipsoidal reflector in conjunction with directive phased microwave antenna configurations in order to achieve brain passive monitoring with microwave radiometry. One of the main modules of the proposed setup which ensures the necessary beamforming and focusing on the body and brain areas of interest is a symmetrical axis ellipsoidal conductive wall cavity. The proposed system operates in an entirely non-invasive contactless manner providing temperature and/or conductivity variations monitoring and is designed to also provide hyperthermia treatment. In the present paper, the effect of the use of patch antennas as receiving antennas on the system's focusing properties and specifically the use of phased array setups to achieve scanning of the areas under measurement is investigated. Extensive simulations to compute the electric field distributions inside the whole ellipsoidal reflector and inside two types of human head models were carried out using single and two element microstrip patch antennas. The results show that clear focusing (creation of "hot spots") inside the head models is achieved at 1.53GHz. In the case of the two element antennas, the "hot spot" performs a linear scan around the brain area of interest while the phase difference of the two microstrip patch antennas significantly affects the way the scanning inside the head model is achieved. In the near future, phased array antennas with multiband and more elements will be used in order to enhance the system scanning properties toward the acquisition of tomography images without the need of subject movement.

  13. Methods for validating the presence of and characterizing proteins deposited onto an array

    DOEpatents

    Schabacker, Daniel S.

    2010-09-21

    A method of determining if proteins have been transferred from liquid-phase protein fractions to an array comprising staining the array with a total protein stain and imaging the array, optionally comparing the staining with a standard curve generated by staining known amounts of a known protein on the same or a similar array; a method of characterizing proteins transferred from liquid-phase protein fractions to an array including staining the array with a post-translational modification-specific (PTM-specific) stain and imaging the array and, optionally, after staining the array with a PTM-specific stain and imaging the array, washing the array, re-staining the array with a total protein stain, imaging the array, and comparing the imaging with the PTM-specific stain with the imaging with the total protein stain; stained arrays; and images of stained arrays.

  14. Phase Grating Design for a Dual-Band Snapshot Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Scholl, James F.; Dereniak, Eustace L.; Descour, Michael R.; Tebow, Christopher P.; Volin, Curtis E.

    2003-01-01

    Infrared spectral features have proved useful in the identification of threat objects. Dual-band focal-plane arrays (FPAs) have been developed in which each pixel consists of superimposed midwave and long-wave photodetectors [Dyer and Tidrow, Conference on Infrared Detectors and Focal Plane Arrays (SPIE, Bellingham, Wash., 1999), pp. 434 -440 . Combining dual-band FPAs with imaging spectrometers capable of interband hyperspectral resolution greatly improves spatial target discrimination. The computed-tomography imaging spectrometer (CTIS) ] [Descour and Dereniak, Appl. Opt. 34, 4817 -4826 (1995) has proved effective in producing hyperspectral images in a single spectral region. Coupling the CTIS with a dual-band detector can produce two hyperspectral data cubes simultaneously. We describe the design of two-dimensional, surface-relief, computer-generated hologram dispersers that permit image information in these two bands simultaneously.

  15. Synthetic aperture radar images with composite azimuth resolution

    DOEpatents

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  16. Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array

    DTIC Science & Technology

    2017-01-16

    Lincoln Laboratory Lexington, Massachusetts, USA Abstract—The Aperture- Level Simultaneous Transmit and Re- ceive (ALSTAR) architecture enables extremely...In [1], the Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture was proposed for achieving STAR using a fully digital phased array...Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture enables STAR functionality in a digital phased array without the use of specialized

  17. A K-Band Linear Phased Array Antenna Based on Ba(0.60)Sr(0.40)TiO3 Thin Film Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R.; Bernhard, J.; Washington, G.; VanKeuls, F.; Miranda, F.; Cannedy, C.

    2000-01-01

    This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.

  18. Development of a Receiver Processor For UAV Video Signal Acquisition and Tracking Using Digital Phased Array Antenna

    DTIC Science & Technology

    2010-09-01

    53 Figure 26. Image of the phased array antenna...................................................................54...69 Figure 38. Computation of correction angle from array factor and sum/difference beams...71 Figure 39. Front panel of the tracking algorithm

  19. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    NASA Astrophysics Data System (ADS)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an ultrasound phased-array. The phased-array allows for electronic steering of the HIFU focus and imaging of the acoustic medium. Investigating the dual-mode ultrasound array (DMUA) required the design and construction of a novel ultrasound-guided focused ultrasound (USgFUS) platform. The platform consisted of custom hardware designed for the unique requirements of operating a phased-array in both therapeutic and imaging modes. The platform also required the development of FPGA based signal processing and GPU based beamforming algorithms for online monitoring of the therapy process. The results presented in this thesis represent the first demonstration of a real-time USgFUS platform based around a DMUA. Experimental imaging and therapy results from series of animal experiments, including a 12 animal GLP study, are presented. In addition, in vitro control results, which build upon the DMUT work, are presented.

  20. The GenoChip: A New Tool for Genetic Anthropology

    PubMed Central

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G.; Greenspan, Bennett; Spencer Wells, R.

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics. PMID:23666864

  1. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    NASA Astrophysics Data System (ADS)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document, airflow studies and antenna aperture simulations We will further outline the next steps needed to bring this exceptional tool into full operation.

  2. The GenoChip: a new tool for genetic anthropology.

    PubMed

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G; Greenspan, Bennett; Spencer Wells, R

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project's new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics.

  3. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  4. Experimental demonstration of an optical phased array antenna for laser space communications.

    PubMed

    Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L

    1994-06-20

    The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.

  5. Designing artificial 2D crystals with site and size controlled quantum dots.

    PubMed

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  6. The charge pump PLL clock generator designed for the 1.56 ns bin size time-to-digital converter pixel array of the Timepix3 readout ASIC

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Brezina, C.; Desch, K.; Poikela, T.; Llopart, X.; Campbell, M.; Massimiliano, D.; Gromov, V.; Kluit, R.; van Beauzekom, M.; Zappon, F.; Zivkovic, V.

    2014-01-01

    Timepix3 is a newly developed pixel readout chip which is expected to be operated in a wide range of gaseous and silicon detectors. It is made of 256 × 256 pixels organized in a square pixel-array with 55 μm pitch. Oscillators running at 640 MHz are distributed across the pixel-array and allow for a highly accurate measurement of the arrival time of a hit. This paper concentrates on a low-jitter phase locked loop (PLL) that is located in the chip periphery. This PLL provides a control voltage which regulates the actual frequency of the individual oscillators, allowing for compensation of process, voltage, and temperature variations.

  7. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-11-01

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.

  8. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    PubMed Central

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-01-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the −6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the −3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and −8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery. PMID:27353347

  9. Self-referenced locking of optical coherence by single-detector electronic-frequency tagging

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard

    2006-02-01

    We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.

  10. Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

    NASA Technical Reports Server (NTRS)

    Novak, M.; Alwan, Elias; Miranda, Felix; Volakis, John

    2015-01-01

    There is a continuing need for reducing size and weight of satellite systems, and is also strong interest to increase the functional role of small- and nano-satellites (for instance SmallSats and CubeSats). To this end, a family of arrays is presented, demonstrating ultra-wideband operation across the numerous satellite communications and sensing frequencies up to the Ku-, Ka-, and Millimeter-Wave bands. An example design is demonstrated to operate from 3.5-18.5 GHz with VSWR2 at broadside, and validated through fabrication of an 8 x 8 prototype. This design is optimized for low cost, using Printed Circuit Board (PCB) fabrication. With the same fabrication technology, scaling is shown to be feasible up to a 9-49 GHz band. Further designs are discussed, which extend this wideband operation beyond the Ka-band, for instance from 20-80 GHz. Finally we will discuss recent efforts in the direct integration of such arrays with digital beamforming back-ends. It will be shown that using a novel on-site coding architecture, orders of magnitude reduction in hardware size, power, and cost is accomplished in this transceiver.

  11. Active noise control using a steerable parametric array loudspeaker.

    PubMed

    Tanaka, Nobuo; Tanaka, Motoki

    2010-06-01

    Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.

  12. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  13. A Flexible Nested Sodium and Proton Coil Array with Wideband Matching for Knee Cartilage MRI at 3 Tesla

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.

    2015-01-01

    Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310

  14. Application of X-Y Separable 2-D Array Beamforming for Increased Frame Rate and Energy Efficiency in Handheld Devices

    PubMed Central

    Owen, Kevin; Fuller, Michael I.; Hossack, John A.

    2015-01-01

    Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phaserotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 × 60 channel array using a 40 × 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can significantly improve frame rate and battery life for hand-held devices with 2-D arrays. PMID:22828829

  15. Communication in Pipes Using Acoustic Modems that Provide Minimal Obstruction to Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Archer, Eric D. (Inventor)

    2016-01-01

    A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.

  16. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  17. Code-modulated interferometric imaging system using phased arrays

    NASA Astrophysics Data System (ADS)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  18. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    PubMed Central

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106

  19. Tanlock loop noise reduction using an optimised phase detector

    NASA Astrophysics Data System (ADS)

    Al-kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh

    2013-06-01

    This article proposes a time-delay digital tanlock loop (TDTL), which uses a new phase detector (PD) design that is optimised for noise reduction making it amenable for applications that require wide lock range without sacrificing the level of noise immunity. The proposed system uses an improved phase detector design which uses two phase detectors; one PD is used to optimise the noise immunity whilst the other is used to control the acquisition time of the TDTL system. Using the modified phase detector it is possible to reduce the second- and higher-order harmonics by at least 50% compared with the conventional TDTL system. The proposed system was simulated and tested using MATLAB/Simulink using frequency step inputs and inputs corrupted with varying levels of harmonic distortion. A hardware prototype of the system was implemented using a field programmable gate array (FPGA). The practical and simulation results indicate considerable improvement in the noise performance of the proposed system over the conventional TDTL architecture.

  20. A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.

    2015-03-01

    The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.

Top