Buchko, Garry W; Weinfeld, Michael
2002-09-01
The nitroimidazole-linked phenanthridines 2-NLP-3 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide) and 2-NLP-4 (5-[3-(2-nitro-1-imidazoyl)-butyl]-phenanthridinium bromide) are composed of the radiosensitizer, 2-nitroimidazole, attached to the DNA intercalator phenanthridine by a 3- and 4-carbon linker, respectively. Previous in vitro assays showed both compounds to be 10-100 times more efficient as hypoxic cell radiosensitizers (based on external drug concentrations) than the untargeted 2-nitroimidazole radiosensitizer, misonidazole (Cowan et al., Radiat. Res. 127, 81-89, 1991). Here we have used a (32)P postlabeling assay and 5'-end-labeled oligonucleotide assay to compare the radiation-induced DNA damage generated in the presence of 2-NLP-3, 2-NLP-4, phenanthridine and misonidazole. After irradiation of the DNA under anoxic conditions, we observed a significantly greater level of 3'-phosphoglycolate DNA damage in the presence of 2-NLP-3 or 2-NLP-4 compared to irradiation of the DNA in the presence of misonidazole. This may account at least in part for the greater cellular radiosensitization shown by the nitroimidazole-linked phenanthridines over misonidazole. Of the two nitroimidazole-linked phenanthridines, the better in vitro radiosensitizer, 2-NLP-4, generated more 3'-phosphoglycolate in DNA than did 2-NLP-3. At all concentrations, phenanthridine had little effect on the levels of DNA damage, suggesting that the enhanced radiosensitization displayed by 2-NLP-3 and 2-NLP-4 is due to the localization of the 2-nitroimidazole to the DNA by the phenanthridine substituent and not to radiosensitization by the phenanthridine moiety itself.
Dichloridobis(phenanthridine-κN)zinc(II).
Khoshtarkib, Zeinab; Ebadi, Amin; Alizadeh, Robabeh; Ahmadi, Roya; Amani, Vahid
2009-06-06
In the mol-ecule of the title compound, [ZnCl(2)(C(13)H(9)N)(2)], the Zn(II) atom is four-coordinated in a distorted tetra-hedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intra-molecular C-H⋯Cl inter-action results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, π-π contacts between the phenanthridine systems [centroid-centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C-H⋯π inter-actions are also found.
Dichloridobis(phenanthridine-κN)zinc(II)
Khoshtarkib, Zeinab; Ebadi, Amin; Alizadeh, Robabeh; Ahmadi, Roya; Amani, Vahid
2009-01-01
In the molecule of the title compound, [ZnCl2(C13H9N)2], the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intramolecular C—H⋯Cl interaction results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, π–π contacts between the phenanthridine systems [centroid–centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C—H⋯π interactions are also found. PMID:21582680
An, Xiao-De; Yu, Shouyun
2015-06-05
A one-pot synthesis of phenanthridines and quinolines from commercially available or easily prepared aldehydes has been reported. O-(4-Cyanobenzoyl)hydroxylamine was utilized as the nitrogen source to generate O-acyl oximes in situ with aldehydes catalyzed by Brønsted acid. O-Acyl oximes were then subjected to visible light photoredox catalyzed cyclization via iminyl radicals to furnish aza-arenes. A variety of phenanthridines and quinolines have been prepared assisted by Brønsted acid and photocatalyst under visible light at room temperature with satisfactory yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchko, Garry W.; Weinfeld, Michael
The nitroimidazole-linked phenanthridines 2-NLP-3 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide) and 2-NLP-4 (5-[3-(2-nitro-1-imidazoyl)-butyl1]-phenanthridinium bromide) are composed of the radiosensitizer, 2-nitroimidazole, attached to the DNA intercalator phenanthridine via a 3- and 4-carbon linker, respectively. Previous in vitro assays show both compounds to be 10 - 100 times more efficient as hypoxic cell radiosensitizer, misonidazole[Cowan et al., Radiat. Res. 127, 81-89, 1991]. Here we have used a 32P postlabeling assay and 5'-end labeled oligonucleotide assay to compare the radiogenic DNA damage generated in the presence of 2-NLP-3, 2-NLP-4 compared to irradiation in the presence of misonidazole. This may account, at least in part, for the greatermore » cellular radiosensitization shown by the nitroimidazole-linked phenanthridines over misonidazole.« less
Phenanthridine synthesis through iron-catalyzed intramolecular N-arylation of O-acetyl oxime.
Deb, Indubhusan; Yoshikai, Naohiko
2013-08-16
O-Acetyl oximes derived from 2'-arylacetophenones undergo N-O bond cleavage/intramolecular N-arylation in the presence of a catalytic amount of iron(III) acetylacetonate in acetic acid. In combination with the conventional cross-coupling or directed C-H arylation, the reaction offers a convenient route to substituted phenanthridines.
Zebothsen, Inga; Kunze, Thomas; Clement, Bernd
2006-07-01
Besides assays for the evaluation of efficacy new drug candidates have to undergo extensive testings for enhancement of pharmaceutical drug safety and optimization of application. The objective of the present work was to investigate the pharmacokinetic drug drug interaction potential for the cytostatically active 6-aminobenzo[c]phenanthridines BP-11 (6-amino-11,12-dihydro-11-(4-hydroxy-3,5-dimethoxyphenyl)benzo[c]phenanthridine) and BP-D7 (6-amino-11-(3,4,5-trimethoxyphenyl)benzo[c]phenanthridine) in vitro through incubation with human hepatic microsomes and marker substrates. For these studies the cytochrome P-450 isoenzymes and corresponding marker substrates recommended by the EMEA (The European Agency for the Evaluation of Medicinal Products) were chosen. In detail these selective substrates were caffeine (CYP1A2), coumarin (CYP2A6), tolbutamide (CYP2C9), S-(+)-mephenytoin (CYP2C19), dextromethorphane (CYP2D6), chlorzoxazone (CYP2E1) and testosterone (CYP3A4). Incubations with each substrate were carried out without a possible inhibitor and in the presence of a benzo[c]phenanthridine or a selective inhibitor at varying concentrations. Marker activities were determined by HPLC (high performance liquid chromatography). For the isoenzymes showing more than 50% inhibition by the addition of 20 microM BP-11 or BP-D7 additional concentrations of substrate and inhibitor were tested for a characterization of the inhibition. The studies showed a moderate risk for BP-11 for interactions with the cytochrome P-450 isoenzymes CYP1A2, CYP2C9, CYP2D6 and CYP3A4. BP-D7, the compound with the highest cytotstatic efficacy, showed only a moderate risk for interactions with drugs, also metabolized by CYP3A4.
Read, Matthew Lovell; Gundersen, Lise-Lotte
2013-02-01
A novel and efficient synthesis of phenanthridines and aza analogues is reported. The key step is a microwave-mediated intramolecular Diels-Alder cyclization of o-furyl(allylamino)arenes. In the presence of a catalytic amount of acid, the DA-adduct reacts further to give the dihydrophenanthridines, which easily can be oxidized to fully aromatic compounds by air in the presence of UV light or by DDQ.
Zhang, Line; Ang, Gim Yean; Chiba, Shunsuke
2010-08-20
A copper-catalyzed synthesis of phenanthridine derivatives was developed starting from biaryl-2-carbonitriles and Grignard reagents. The present transformation is carried out by a sequence of nucleophilic addition of Grignard reagents to biaryl-2-carbonitriles to form N-H imines and their Cu-catalyzed C-N bond formation on the aromatic C-H bond, where molecular oxygen is a prerequisite to achieve the catalytic process.
Song, Weihong; Yan, Peipei; Shen, Dan; Chen, Zhangtao; Zeng, Xiaofei; Zhong, Guofu
2017-04-21
An efficient catalyst-, base-, and oxidant-free direct cyanoalkylarylation of isocyanides with AIBN has been developed under mild conditions. This strategy provides an elusive and rapid access to a wide range of cyano-containing phenanthridine derivatives in good yields via a one-pot alkylation/cyclization radical-cascade process. The mild reaction conditions together with no need of any catalyst, base, or oxidant make this protocol environmentally benign and practical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, D.S.; Panicucci, R.; McClelland, R.A.
The nitroimidazole-linked phenanthridine series of compounds (NLP-1, 2, and 3) were synthesized under the assumption that it should be possible to enhance the molar efficiency of 2-nitroimidazoles as hypoxic cell radiosensitizers and cytotoxins by targeting them to their likely site of action, DNA. The targeting group chosen was the phenanthridine moiety, the major component of the classical DNA intercalating compound, ethidium bromide. The sole difference between the compounds is the length of the hydrocarbon chain linking the nitroimidazole to the phenanthridine. The phenanthridine group with a three-carbon side chain, P-1, was also synthesized to allow studies on the effect ofmore » the targeting group by itself. The ability of the compounds to bind to DNA is inversely proportional to their linker chain length with binding constant values ranging from approximately 1 {times} 10(5) mol-1 for NLP-2 to 6 {times} 10(5) mol-1 for NLP-3. The NLP compounds show selective toxicity to hypoxic cells at 37 degrees C at external drug concentrations 10-40 times lower than would be required for untargeted 2-nitroimidazoles such as misonidazole in vitro. Toxicity to both hypoxic and aerobic cells is dependent on the linker chain: the shorter the chain, the greater the toxicity. In addition, the NLP compounds radiosensitize hypoxic cells at external drug concentrations as low as 0.05 mM with almost the full oxygen effect being observed at a concentration of 0.5 mM. These concentrations are 10-100 times lower than would be required for similar radiosensitization using misonidazole. Radiosensitizing ability is independent of linker chain length. The present compounds represent prototypes for further studies of the efficacy and mechanism of action of 2-nitroimidazoles targeted to DNA by linkage to an intercalating group.« less
George, Leema; Ramasamy, Tamizhselvi; Manickam, Venkatraman; Iyer, Sathiyanarayanan Kulathu; Radhakrishnan, Vidya
2016-08-01
This study was conducted to assess the anti-inflammatory effect of a novel synthesized phenanthridine alkaloid (PHE-4i) and to examine the possible involvement of hydrogen sulfide (H2S) in anti-inflammatory mechanism. The synthesized phenanthridine derivative PHE-4i (2, 5, and 10 mg/kg) was administered intraperitoneally to rats. One hour following treatment, inflammation was induced by intraplantar injection of carrageenan (1 %), in the hind paw. Paw volume as the index of inflammation was measured before and after carrageenan injection. Neutrophil sequestration into the hind paw was quantified by measuring tissue myeloperoxidase (MPO) activity and was compared for the inhibition of H2S production. Pretreatment with PHE-4i significantly reduced carrageenan-induced hind paw weight, MPO activity, leukocyte infiltration, and H2S production in a dose-dependent manner (p < 0.001). These results indicate that the anti-inflammatory effect of PHE-4i on carrageenan-induced rat paw oedema could be via the inhibition of the gaseous mediator H2S.
NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panicucci, R.; Heal, R.; Laderoute, K.
The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 ismore » reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.« less
Farrow, Scott C.; Facchini, Peter J.
2013-01-01
In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy. PMID:23928311
Farrow, Scott C; Facchini, Peter J
2013-10-04
In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy.
The photochemical alkylation and reduction of heteroarenes.
McCallum, T; Pitre, S P; Morin, M; Scaiano, J C; Barriault, L
2017-11-01
The functionalization of heteroarenes has been integral to the structural diversification of medicinally active molecules such as quinolines, pyridines, and phenanthridines. Electron-deficient heteroarenes are electronically compatible to react with relatively nucleophilic free radicals such as hydroxyalkyl. However, the radical functionalization of such heteroarenes has been marked by the use of transition-metal catalyzed processes that require initiators and stoichiometric oxidants. Herein, we describe the photochemical alkylation of quinolines, pyridines and phenanthridines, where through direct excitation of the protonated heterocycle, alcohols and ethers, such as methanol and THF, can serve as alkylating agents. We also report the discovery of a photochemical reduction of these heteroarenes using only iPrOH and HCl. Mechanistic studies to elucidate the underlying mechanism of these transformations, and preliminary results on catalytic methylations are also reported.
McCallum, T.; Pitre, S. P.; Morin, M.
2017-01-01
The functionalization of heteroarenes has been integral to the structural diversification of medicinally active molecules such as quinolines, pyridines, and phenanthridines. Electron-deficient heteroarenes are electronically compatible to react with relatively nucleophilic free radicals such as hydroxyalkyl. However, the radical functionalization of such heteroarenes has been marked by the use of transition-metal catalyzed processes that require initiators and stoichiometric oxidants. Herein, we describe the photochemical alkylation of quinolines, pyridines and phenanthridines, where through direct excitation of the protonated heterocycle, alcohols and ethers, such as methanol and THF, can serve as alkylating agents. We also report the discovery of a photochemical reduction of these heteroarenes using only iPrOH and HCl. Mechanistic studies to elucidate the underlying mechanism of these transformations, and preliminary results on catalytic methylations are also reported. PMID:29163892
NASA Astrophysics Data System (ADS)
Zhan, Guanqun; Qu, Xiaolan; Liu, Junjun; Tong, Qingyi; Zhou, Junfei; Sun, Bin; Yao, Guangmin
2016-09-01
Zephycandidine A (1), the first naturally occurring imidazo[1,2-f]phenanthridine alkaloid, was isolated from Zephyranthes candida (Amaryllidaceae). The structure of 1 was elucidated by spectroscopic analyses and NMR calculation, and a plausible biogenetic pathway for zephycandidine A (1) was proposed. Zephycandidine A (1) exhibited significant cytotoxicity against five cancer cell lines with IC50 values ranging from 1.98 to 7.03 μM with selectivity indices as high as 10 when compared to the normal Beas-2B cell. Further studies suggested that zephycandidine A (1) induces apoptosis in leukemia cells by the activation of caspase-3, upregulation of Bax, downregulation of Bcl-2, and degradation of PARP expression. In addition, zephycandidine A (1) showed acetylcholinesterase (AChE) inhibitory activity, and the docking studies of zephycandidine A (1) and galanthamine (2) with AChE revealed that interactions with W286 and Y337 are necessary.
Sanguinarine: A Novel Agent Against Prostate Cancer
2008-01-01
the possibility of treatment- toxicity , the effect of treatments on food/water consumption and body weight was monitored twice weekly throughout the...data not shown). Further, the treatments were not found to have any evident toxic effects (body weight, food/fluid consumption) on the TRAMP mice...c]phenanthridine alkaloids sanguinarine and chelerythrine: biological activities and dental care applications. Acta Univ Palacki Olomuc Fac Med 139:7
Naidu, Kalaga Mahalakshmi; Nagesh, Hunsur Nagendra; Singh, Manjeet; Sriram, Dharmarajan; Yogeeswari, Perumal; Gowri Chandra Sekhar, Kondapalli Venkata
2015-03-06
A series of thirty three novel 6-(piperazin-1-yl)phenanthridine amide and sulphonamide analogues were synthesized, characterized and screened for their in vitro antimycobacterial activity against Mycobacterium tuberculosis (MTB) H37Rv strain. These compounds exhibited minimum inhibitory concentration (MIC) between 1.56 and ≥50 μg/mL. Out of these derivatives, few compounds 6l, 6r, 7b, 7f, 7g and 7k exhibited moderate activity (MIC = 6.25 μg/mL) and compounds 6b, 6e, 6k, 6n, 7h, 7i and 7n displayed good activity (MIC = 3.13 μg/mL), whereas compounds 6m, 6s and 7d exhibited excellent anti-tubercular activity (MIC = 1.56 μg/mL). In addition, MTT assay was accomplished on the active analogues of the series against mouse macrophage (RAW 264.7) cells to evaluate the toxicity profile of the newly synthesized compounds and selectivity index of the compounds was determined. Additionally, compounds 6b and 7d were docked to the ATPase domain of M. tuberculosis GyrB protein to know the interaction profile and structures of compounds 6b and 7d were further substantiated through single crystal XRD. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Phenanthridine-Containing Pincer-like Amido Complexes of Nickel, Palladium, and Platinum.
Mandapati, Pavan; Giesbrecht, Patrick K; Davis, Rebecca L; Herbert, David E
2017-03-20
Proligands based on bis(8-quinolinyl)amine (L1) were prepared containing one (L2) and two (L3) benzo-fused N-heterocyclic phenanthridinyl (3,4-benzoquinolinyl) units. Taken as a series, L1-L3 provides a ligand template for exploring systematic π-extension in the context of tridentate pincer-like amido complexes of group 10 metals (1-M, 2-M, and 3-M; M = Ni, Pd, Pt). Inclusion of phenanthridinyl units was enabled by development of a cross-coupling/condensation route to 6-unsubstituted, 4-substituted phenanthridines (4-Br, 4-NO 2 , 4-NH 2 ) suitable for elaboration into the target ligand frameworks. Complexes 1-M, 2-M, and 3-M are redox-active; electrochemistry and UV-vis absorption spectroscopy were used to investigate the impact of π-extension on the electronic properties of the metal complexes. Unlike what is typically observed for benzannulated ligand-metal complexes, extending the π-system in metal complexes 1-M to 2-M to 3-M led to only a moderate red shift in the relative highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap as estimated by electrochemistry and similarly subtle changes to the onset of the lowest-energy absorption observed by UV-vis spectroscopy. Time-dependent density functional theory calculations revealed that benzannulation significantly impacts the atomic contributions to the LUMO and LUMO+1 orbitals, altering the orbital contributions to the lowest-energy transition but leaving the energy of this transition essentially unchanged.
NASA Astrophysics Data System (ADS)
Yalçın, Ergin; Duyar, Halil; Ihmels, Heiko; Seferoğlu, Zeynel
2018-05-01
An improved microwave-induced synthesis of five ethidium derivatives (Ethidium derivatives, 2a-d) is presented. As the derivatives 2a-d have been proposed previously to be telomerase inhibitors, the binding interactions of these ethidium derivatives with G-quadruplex DNA were evaluated by means of photometric and fluorimetric titration, thermal DNA denaturation, CD and 1H NMR spectroscopy. In particular, the compound bearing 3,8-bis(pyrrolidin-1-yl)propanamido substituent 2a exhibits high selectivity for G-quadruplex DNA relative to duplex DNA.
Wu, Chunli; Li, Pan; Shi, Xiufang; Pan, Xiaotao; Wu, Jizhou
2011-01-01
In the title compound, C22H16F3NO7S, the two benzene rings are almost perpendicular, the dihedral angle between their mean planes being 87.1 (1)°. The terminal O atom of the benzoate moiety is disordered over two positions with site occupancies of 0.244 (15) and 0.756 (15). The crystal structure is stablized by two types of weak intermolecular C—H⋯O hydrogen bonds. PMID:21523058
Exclusive destruction of mitotic spindles in human cancer cells.
Visochek, Leonid; Castiel, Asher; Mittelman, Leonid; Elkin, Michael; Atias, Dikla; Golan, Talia; Izraeli, Shai; Peretz, Tamar; Cohen-Armon, Malka
2017-03-28
We identified target proteins modified by phenanthrenes that cause exclusive eradication of human cancer cells. The cytotoxic activity of the phenanthrenes in a variety of human cancer cells is attributed by these findings to post translational modifications of NuMA and kinesins HSET/kifC1 and kif18A. Their activity prevented the binding of NuMA to α-tubulin and kinesins in human cancer cells, and caused aberrant spindles. The most efficient cytotoxic activity of the phenanthridine PJ34, caused significantly smaller aberrant spindles with disrupted spindle poles and scattered extra-centrosomes and chromosomes. Concomitantly, PJ34 induced tumor growth arrest of human malignant tumors developed in athymic nude mice, indicating the relevance of its activity for cancer therapy.
Balón, M; Guardado, P; Muñoz, M A; Carmona, C
1998-01-01
A spectroscopic (UV-vis, Fourier transform IR, steady state, and time-resolved fluorescence) study of the interactions of the ground and excited singlet states of harmane (1-methyl-9H-pyrido/3,4-b/indole) with quinoline has been carried out in cyclohexane, toluene, and buffered pH=8.7 aqueous solutions. To analyze how the number of rings in the substrate influences these interactions, pyridine and phenanthridine have also been included in this study. In cyclohexane and toluene 1:1 stoichiometric hydrogen-bonded complexes are formed in both the ground and the excited singlet states. As the number of rings of the benzopyridines and the solvent polarity increase hydrogen-bonding interactions weaken and pi-pi van der Waals interactions become apparent.
2014-01-01
Conspectus Selective syntheses are now available for compounds of many classes, based on C-centered radicals, exploiting a diverse range of mechanisms. The prospect for chemistry based around N- and O-centered radicals is probably more favorable because of the importance of heterocycles as biologically active materials. Heteroradical chemistry is still comparatively underdeveloped due to the need for safe and easy ways of generating them. Oxime esters appeared promising candidates to meet this need because literature reports and our EPR spectroscopic examinations showed they readily dissociated on photolysis with production of a pair of N- and O-centered radicals. It soon became apparent that a whole suite of benign oxime-containing molecules could be pressed into service. The bimodality of the oxime motif meant that by suitable choice of functionality the reactions could be directed to yield selectively products from either the N-centered radicals or from the O-centered radicals. We found that on one hand photolyses of acetophenone oxime esters of carboxylic acids yielded alicyclics. On the other hand, aromatic and heteroaromatic acyl oximes (as well as dioxime oxalates) afforded good yields of phenanthridines and related heterocycles. Easily prepared oxime oxalate amides released carbamoyl radicals, and pleasingly, β-lactams were thereby obtained. Oxime carbonates and oxime carbamates, available via our novel 1,1'-carbonyldiimidazole (CDI)-based preparations, were accessible alternatives for iminyl radicals and hence for phenanthridine preparations. In their second modes, these compounds proved their value as precursors for exotic alkoxycarbonyloxyl and carbamoyloxyl radicals. Microwave-assistance was shown to be a particularly convenient procedure with O-phenyl oxime ethers. The iminyl radicals generated from such precursors with alkene, alkyne, and aromatic acceptor substituents furnished pyrrole, quinoline, phenanthridine, benzonaphthiridine, indolopyridine, and other systems. Microwave irradiations with 2-(aminoaryl)alkanone O-phenyl oximes enabled either dihydroquinazolines or quinazolines to be obtained in very good yields. The fine quality of the EPR spectra, acquired during photolyses of all the O-carbonyl oxime types, marked this as an important complement to existing ways of obtaining such spectra in solution. Quantifications enabled SARs to be obtained for key reaction types of N- and O-centered radicals, thus putting mechanistic chemistry in this area on a much firmer footing. Surprises included the inverse gem-dimethyl effect in 5-exo-cyclizations of iminyls and the interplay of spiro- with ortho-cyclization onto aromatics. Insights into unusual 4-exo-cyclizations of carbamoyl radicals showed the process to be more viable than pent-4-enyl 4-exo-ring closure. Another surprise was the magnitude of the difference in CO2 loss rate from alkoxycarbonyloxyl radicals as compared with acyloxyl radicals. Their rapid 5-exo-cyclization was charted, as was their preferred spiro-cyclization onto aromatics. The first evidence that N-monosubstituted carbamoyloxyls had finite lifetimes was also forthcoming. It is evident that oxime derivatives have excellent credentials as reagents for radical generation and that there is ample room to extend their applications to additional radical types and for further heterocycle syntheses. There is also clear scope for the development of preparative procedures based around the alkoxyl and aminyl radicals that emerge downstream from oxime carbonate and oxime carbamate dissociations. PMID:24654991
Installing amino acids and peptides on N-heterocycles under visible-light assistance
Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua
2016-01-01
Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014
Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric
2015-04-13
With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Cueva, J.P.; Chemel, B.R.; Juncosa, J.I.; Lill, M.A.; Watts, V.J.; Nichols, D.E.
2012-01-01
Efforts to develop selective agonists for dopamine D 1-like receptors led to the discovery of dihydrexidine and doxanthrine, two bioisosteric ??-phenyldopamine-type full agonist ligands that display selectivity and potency at D 1-like receptors. We report herein an improved methodology for the synthesis of substituted chromanoisoquinolines (doxanthrine derivatives) and the evaluation of several new compounds for their ability to bind to D 1- and D 2-like receptors. Identical pendant phenyl ring substitutions on the dihydrexidine and doxanthrine templates surprisingly led to different effects on D 1-like receptor binding, suggesting important differences between the interactions of these ligands with the D 1 receptor. We propose, based on the biological results and molecular modeling studies, that slight conformational differences between the tetralin and chroman-based compounds lead to a shift in the location of the pendant ring substituents within the receptor. ?? 2011 Elsevier Ltd. All rights reserved.
You, Jingsong; Shi, Yang; Zhang, Luoqiang; Lan, Jingbo; Zhang, Min; Zhou, Fulin; Wei, Wenlong
2018-06-03
Using the dual chelation-assisted strategy, a completely regiocontrolled oxidative C-H/C-H cross-coupling reaction between an N-acylaniline and a benzamide has been accomplished for the first time, which enables a step-economical and highly efficient pathway to 2-amino-2'-carboxybiaryl scaffolds from readily available substrates. A Cp*-free RhCl3/TFA catalytic system has been developed to replace the generally used [Cp*RhCl2]2/AgSbF6 (Cp* = pentamethyl cyclopentadienyl) in oxidative C-H/C-H cross-coupling reactions between two (hetero)arenes. The RhCl3/TFA system avoids the use of expensive Cp* ligand and AgSbF6. As an illustrative example, the protocol developed herein greatly streamlines access to naturally occurring benzo[c]phenanthridine alkaloid oxynitidine in an excellent overall yield. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Manli; Jiang, Bei; Xie, Guohua; Yang, Chuluo
2017-10-19
With the aim to achieve highly efficient deep-red emission, we introduced an exciplex forming cohost, 4,4',4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA): 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) (1:1). Due to the efficient triplet up-conversion processes upon the exciplex forming cohost, excellent performances of the devices were achieved with deep-red emission. Using the heteroleptic iridium complexes as the guest dopants, the solution-processed deep-red phosphorescent organic light-emitting diodes (PhOLEDs) with the iridium(III) bis(6-(4-(tert-butyl)phenyl)phenanthridine)acetylacetonate [(TP-BQ) 2 Ir(acac)]-based phosphorescent emitter exhibited an electroluminescent peak at 656 nm and a maximum external quantum efficiency (EQE) of 11.9%, which is 6.6 times that of the device based on the guest emitter doped in the polymer-based cohost. The unique exciplex with a typical hole transporter and a bipolar material is ideal and universal for hosting the red PhOLEDs and tremendously improves the device performances.
Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong
2018-05-01
Pressurized entrained-flow pyrolysis of Chlorella vulgaris microalgae was investigated. The impact of pressure on the yield and composition of pyrolysis products were studied. The results showed that the concentration of H 2 in bio-gas increased sharply with increasing pyrolysis pressure, while those of CO, CO 2 , CH 4 , and C 2 H 6 were dramatically decreased. The concentration of H 2 reached 88.01 vol% in bio-gas at 900 °C and 4 MPa. Higher pressures promoted the hydrogen transfer to bio-gas. The bio-oils derived from pressurized pyrolysis were rich in nitrogen-containing compounds and PAHs. The highest concentration of nitrogen-containing compounds in bio-oil was achieved at 800 °C and 1 MPa. Increasing pyrolysis pressure promoted the formation of nitrogen-containing compounds such as indole, quinoline, isoquinoline and phenanthridine. Higher pyrolysis pressures led to increased sphericity, enhanced swelling, and higher carbon order of bio-chars. Pressurized pyrolysis of biomass has a great potential for poly-generation of H 2 , nitrogen containing compounds and bio-char. Copyright © 2018 Elsevier Ltd. All rights reserved.
INFRARED STUDY OF UV/EUV IRRADIATION OF NAPHTHALENE IN
NASA Astrophysics Data System (ADS)
Chen, Y.-J.; Nuevo, M.; Yeh, F.-C.; Yih, T.-S.; Sun, W.-H.; Ip, W.-H.; Fung, H.-S.; Lee, Y.-Y.; Wu, C.-Y. R.
We have carried out photon irradiation study of naphthalene (C10H8), the smallest polycyclic aromatic hydrocarbon (PAH) in water and ammonia ice mixtures. Photons provided by a synchrotron radiation light source in two broad-band energy ranges in the ultraviolet/near extreme ultraviolet (4-20 eV) and the extreme ultraviolet (13-45 eV) ranges were used for the irradiation of H2O+NH3+C10H8 = 1:1:1 ice mixtures at 15K. We could identify several photo-products, namely CH4, C2H6, C3H8, CO, CO2, HNCO, OCN-, and probably quinoline (C9H7N) and phenanthridine (C13H9N). We found that the light hydrocarbons are preferably produced for the ice mixture subjected to 4-20 eV photons. However, the production yields of CO, CO2, and OCN- species seem to be higher for the mixture subjected to EUV photons (13-45 eV). Therefore, naphthalene and its photo-products appear to be more efficiently destroyed when high energy photons (E > 20 eV) are used. This has important consequences on the photochemical evolution of PAHs in astrophysical environments.
2011-01-01
Background Cells of most human cancers have supernumerary centrosomes. To enable an accurate chromosome segregation and cell division, these cells developed a yet unresolved molecular mechanism, clustering their extra centrosomes at two poles, thereby mimicking mitosis in normal cells. Failure of this bipolar centrosome clustering causes multipolar spindle structures and aberrant chromosomes segregation that prevent normal cell division and lead to 'mitotic catastrophe cell death'. Methods We used cell biology and biochemical methods, including flow cytometry, immunocytochemistry and live confocal imaging. Results We identified a phenanthrene derived PARP inhibitor, known for its activity in neuroprotection under stress conditions, which exclusively eradicated multi-centrosomal human cancer cells (mammary, colon, lung, pancreas, ovarian) while acting as extra-centrosomes de-clustering agent in mitosis. Normal human proliferating cells (endothelial, epithelial and mesenchymal cells) were not impaired. Despite acting as PARP inhibitor, the cytotoxic activity of this molecule in cancer cells was not attributed to PARP inhibition alone. Conclusion We identified a water soluble phenanthridine that exclusively targets the unique dependence of most human cancer cells on their supernumerary centrosomes bi-polar clustering for their survival. This paves the way for a new selective cancer-targeting therapy, efficient in a wide range of human cancers. PMID:21943092
Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri.
Dhawan, S; Lal, R; Kuhad, R C
2003-01-01
Effect of ethidium bromide, a DNA intercalating agent, on laccase production from Cyathus bulleri was studied. The bird's nest fungus, Cyathus bulleri was grown on 2% (w/v) malt extract agar (MEA) supplemented with 1.5 microg ml(-1) of the phenanthridine dye ethidium bromide (EtBr) for 7 d and when grown subsequently in malt extract broth (MEB), produced a 4.2-fold increase in laccase production as compared to the untreated fungus. The fungal cultures following a single EtBr treatment, when regrown on MEA devoid of EtBr, produced a sixfold increase in laccase in MEB. However, on subsequent culturing on MEA in the absence of EtBr, only a 2.5-fold increase in laccase production could be maintained. In another attempt, the initial EtBr-treated cultures, when subjected to a second EtBr treatment (1.5 microg ml(-1)) on MEA for 7 d, produced a 1.4-fold increase in laccase production in MEB. The white-rot fungus Cyathus bulleri, when treated with EtBr at a concentration of 1.5 microg ml(-1) and regrown on MEA devoid of EtBr, produced a sixfold increase in laccase production in MEB. The variable form of C. bulleri capable of hyper laccase production can improve the economic feasibility of environmentally benign processes involving use of fungal laccases in cosmetics (including hair dyes), food and beverages, clinical diagnostics, pulp and paper industry, industrial effluent treatment, animal biotechnology and biotransformations.
Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Thomas, J. D.; Witt, A. N.
2006-01-01
The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.
Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak.
Lauf, Peter K; Alqahtani, Tariq; Flues, Karin; Meller, Jaroslaw; Adragna, Norma C
2015-01-01
In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257-276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis. Copyright © 2015 the American Physiological Society.
Mondal, Rajarshi; Lozada, Issiah B; Davis, Rebecca L; Williams, J A Gareth; Herbert, David E
2018-05-07
Benzannulated bidentate pyridine/phosphine ( P^N) ligands bearing quinoline or phenanthridine (3,4-benzoquinoline) units have been prepared, along with their halide-bridged, dimeric Cu(I) complexes of the form [( P^N)Cu] 2 (μ-X) 2 . The copper complexes are phosphorescent in the orange-red region of the spectrum in the solid-state under ambient conditions. Structural characterization in solution and the solid-state reveals a flexible conformational landscape, with both diamond-like and butterfly motifs available to the Cu 2 X 2 cores. Comparing the photophysical properties of complexes of (quinolinyl)phosphine ligands with those of π-extended (phenanthridinyl)phosphines has revealed a counterintuitive impact of site-selective benzannulation. Contrary to conventional assumptions regarding π-extension and a bathochromic shift in the lowest energy absorption maxima, a blue shift of nearly 40 nm in the emission wavelength is observed for the complexes with larger ligand π-systems, which is assigned as phosphorescence on the basis of emission energies and lifetimes. Comparison of the ground-state and triplet excited state structures optimized from DFT and TD-DFT calculations allows attribution of this effect to a greater rigidity for the benzannulated complexes resulting in a higher energy emissive triplet state, rather than significant perturbation of orbital energies. This study reveals that ligand structure can impact photophysical properties for emissive molecules by influencing their structural rigidity, in addition to their electronic structure.
UV-Visible Spectra of PAHs and Derivatives Seeded in Supersonic Jet. Astrophysical Implications
NASA Astrophysics Data System (ADS)
Salma, Bejaoui; Salama, Farid
2018-06-01
Laboratory absorption spectra of Polycyclic Aromatic Hydrocarbons (PAHs) and PAH derivatives measured under astrophysical relevant conditions are crucial to test the PAHs-DIBs hypothesis as well as the PAH model for the IR emission bands. Our dedicated experimental setup on the COsmic SImulation Chamber (COSmIC) provides an excellent platform to study neutral and ionized PAHs under the low temperature and pressure conditions that are representative of interstellar environments [1]. In this work, we study the effect of the substitution of CH bond(s) by a nitrogen atom(s) on the electronic spectra of phenanthrene. The electronic transitions associated with the lower excited states of neutral phenanthrene (C14H10) and phenanthridine (C13H9N) are measured in gas phase in the 315-345 nm region. Molecules are seeded in a supersonic expansion of argon gas and the absorption spectra are measured using the Cavity Ring Down Spectroscopy (CRDS) technique. Additional measurements of the absorption spectra of phenanthrene, phenantridine and 1,10-phenanthroline (C12H8N2) isolated in 10 K argon matrices are also performed. The comparison between the CRDS spectra with the absorption of the matrix-isolated molecules highlight the matrix-induced perturbations in band position, profiles and broadening and illustrates the need of gas phase measurements for more accurate comparisons with astronomical spectra.[1] Salama, F., Galazutdinov, G., Krelowski, et al. ApJ 728, 154[FS1] (2011).[2] A. Tielens, ApJ 526 Pt 1265–273 (2008),Acknowledgements: This research is supported by the APRA Program of NASA SMD
Studies of the effect of selected nondonor solvents on coal liquefaction yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.
The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol andmore » two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hyunjin; Bergeron, Eric; Senta, Helena
2010-08-27
Research highlights: {yields} We show for the first time the effect of sanguinarine (SA) on MG63 and SaOS-2 cells. {yields} SA altered osteosarcoma cell viability in a concentration and time dependent manner. {yields} SA induced osteosarcoma cell apoptosis and increased caspase-8 and -9 activities. {yields} SA decreased dose dependently the Bcl-2 protein level only in MG63 cells. {yields} SaOS-2 which are osteoblast-derived, seemed more resistant to SA than MG63. -- Abstract: The quaternary benzo[c]phenanthridine alkaloid sanguinarine inhibits the proliferation of cancerous cells from different origins, including lung, breast, pancreatic and colon, but nothing is known of its effects on osteosarcoma,more » a primary malignant bone tumour. We have found that sanguinarine alters the morphology and reduces the viability of MG-63 and SaOS-2 human osteosarcoma cell lines in concentration- and time-dependent manner. Incubation with 1 {mu}mol/L sanguinarine for 4 and 24 h killed more efficiently MG-63 cells than SaOS-2 cells, while incubation with 5 {mu}mol/L sanguinarine killed almost 100% of both cell populations within 24 h. This treatment also changed the mitochondrial membrane potential in both MG-63 and SaOS-2 cells within 1 h, caused chromatin condensation and the formation of apoptotic bodies. It activated multicaspases, and increased the activities of caspase-8 and caspase-9 in both MG-63 and SaOS-2 cells. These data highlight sanguinarine as a novel potential agent for bone cancer therapy.« less
Processing and thermodynamics research, Volume II. Monthly progress report, November 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Data assembly is in progress on the Venezuelan Cerro Negro, California, Wilmington and Mexican Mayan crudes. A draft of a proposal is in preparation that might join this correlational work with complementary correlational work at the University of Oklahoma (Project BPT1). Cerro Negro 200 to 425/sup 0/C and 425 to 550/sup 0/C saturate fractions were analyzed with the CEC 21-103 mass spectrometer using ASTM method D2786, and experiments were devised to establish reproducibility of analyses with the KRATOS MS-50 (Project BPT2). Thermodynamic property measurements on organic nitrogen compounds included a liquid phase heat capacity study of 2,5-dimethylpyridine, and the oxygenmore » sensitivity of phenanthridine was checked prior to bomb calorimetry (Project BPT3A). Heat capacity measurements on chroman are progressing well, and vapor pressure measurements of tetrahydrophenanthrene are in progress (Project BPT3B). Work was begun on the design and procurement of equipment necessary for construction of a bench scale catalytic cracking unit. The supercritical extraction unit is being assembled (Project OPT1). Thiopene separations were begun on Cerro Negro 425 to 550/sup 0/C neutrals, and separation of sulfides from Cerro Negro 550 to 700/sup 0/C and 700+/sup 0/C neutrals was completed (Project OPT2). Preparations for PVT studies of methanol are nearing completion, and a list of critically needed PVT measurements was reviewed to help select the next compound for study. A possible candidate is hydrogen sulfide. (Project OPT3). Good progress continues in the treatment of the RP feed (Project OPT4) to recover Milspec F-76. It is anticipated that 85% recovery is possible by the chemical treatment/distillation process.« less
Tang, Zheng-Hai; Cao, Wen-Xiang; Wang, Zhao-Yu; Lu, Jia-Hong; Liu, Bo; Chen, Xiuping; Lu, Jin-Jian
2017-08-01
Chelerythrine (CHE), a natural benzo[c]phenanthridine alkaloid, shows anti-cancer effect through a number of mechanisms. Herein, the effect and mechanism of the CHE-induced autophagy, a type II programmed cell death, in non-small cell lung cancer (NSCLC) cells were studied for the first time. CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a concentration-dependent manner in NSCLC A549 and NCI-H1299 cells. In addition, CHE triggered the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II). The CHE-induced expression of LC3-II was further increased in the combination treatment with chloroquine (CQ), an autophagy inhibitor, and large amounts of red-puncta were observed in the CHE-treated A549 cells with stable expression of mRFP-EGFP-LC3, indicating that CHE induces autophagy flux. Silence of beclin 1 reversed the CHE-induced expression of LC3-II. Inhibition of autophagy remarkably reversed the CHE-induced cell viability decrease and apoptosis in NCI-H1299 cells but not in A549 cells. Furthermore, CHE triggered reactive oxygen species (ROS) generation in both cell lines. A decreased level of ROS through pretreatment with N-acetyl-L-cysteine reversed the CHE-induced cell viability decrease, apoptosis, and autophagy. Taken together, CHE induced distinctive autophagy in A549 (accompanied autophagy) and NCI-H1299 (pro-death autophagy) cells and a decreased level of ROS reversed the effect of CHE in NSCLC cells in terms of cell viability, apoptosis, and autophagy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Protective effect of chelerythrine against ethanol-induced gastric ulcer in mice.
Li, Wei-Feng; Hao, Ding-Jun; Fan, Ting; Huang, Hui-Min; Yao, Huan; Niu, Xiao-Feng
2014-02-05
The quaternary benzo[c]phenanthridine alkaloid, chelerythrine (CHE), is of great practical and research interest because of its pronounced, widespread physiological effects, primarily antimicrobial and anti-inflammatory, arising from its ability to interact with proteins and DNA. Although CHE was originally shown to possess anti-inflammatory properties, its effects on acute gastric ulcer have not been previously explored. The aim of the present study is to evaluate the protective effect of CHE on ethanol induced gastric ulcer in mice. Administration of CHE at doses of 1, 5 and 10mg/kg bodyweight prior to ethanol ingestion dose-dependently inhibited gastric ulcer. The gastric mucosal lesion was assessed by ulcer area, gastric juice acidity, myeloperoxidase (MPO) activities, macroscopic and histopathological examinations. CHE significantly reduced the gastric ulcer index, myeloperoxidase activities, macroscopic and histological score in a dose-dependent manner. In addition, CHE also significantly inhibited nitric oxide (NO) concentration, pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) level in serum and gastric mucosal in the mice exposed to ethanol induced ulceration in a dose-dependent manner. In addition, immunohistochemical analysis revealed that CHE markedly attenuated the overexpression of nuclear factor-κB in gastric mucosa of mice. It was concluded that CHE represents a potential therapeutic option to reduce the risk of gastric ulceration. In addition, acute toxicity study revealed no abnormal sign to the mice treated with CHE (15mg/kg). These findings suggest that the gastroprotective activity of CHE might contribute in adjusting the inflammatory cytokine by regulating the NF-κB signalling pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Dorney, Kevin M; Sizemore, Ioana E P; Alqahtani, Tariq; Adragna, Norma C; Lauf, Peter K
2013-01-01
The quaternary benzo-phenanthridine alkaloid (QBA) chelerythrine (CET) is a pro-apoptotic drug and Na(+)/K(+) pump (NKP) inhibitor in human lens epithelial cells (HLECs). In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm(-1) marker band as a function of CET concentration. SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET(+)) accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect. © 2014 S. Karger AG, Basel.
Brulik, Jan; Simek, Zdenek; de Voogt, Pim
2013-06-14
A new method for the analysis of azaarenes and their degradation products (azaarones) was developed, optimized and validated using liquid chromatography coupled with atmospheric pressure photo ionization tandem mass spectrometric detection (LC-APPI/MS/MS). Seventeen compounds including 4 PAHs (naphthalene, anthracene, phenanthrene, benz[a]anthracene), 7 azaarenes (quinoline, acridine, phenanthridine, 5,6-benzoquinoline and 7,8-benzoquinoline, benzo[a]acridine, benzo[c]acridine), and 6 azaarones (2-OH-quinoline, 4-OH-quinoline, 5-OH-quinoline, 6-OH-quinoline, 9(10H)-acridone, 6(5H)phenanthridinone) were analyzed in sediment samples from Dutch rivers. All compounds were analyzed simultaneously in multi reaction monitoring (MRM) mode. Soxhlet extraction was used for the extraction of analytes from sediments. The limits of quantification of azaarenes and azaarones varied from 0.21 to 1.12μg/l and from 0.23 to 1.58μg/l, respectively. The limits of quantification for PAHs varied from 32 to 769μg/l. Matrix-independent recoveries of sediment samples were in the range 85-110%; matrix-dependent recoveries were in the range 73-148%, respectively. The method was tested on real sediment samples and the results were compared with a previous study in which GC/MS/MS was used for the simultaneous measurement of azaarenes and azaarones. 4-, 5- and 6-OH-quinolines and naphthalene, anthracene and phenanthrene were not present or below detection limits in some samples. All other analytes were present in samples in the concentration range 0.2-1200ng/g (dw). To our knowledge, this is the first report showing the possibility of measurement non-polar polyaromatic hydrocarbons together with polar azaarenes and their degradation products azaarones simultaneously with sufficient sensitivity and accuracy using LC/MS/MS. Copyright © 2013 Elsevier B.V. All rights reserved.
Juskiewicz, J; Gruzauskas, R; Zdunczyk, Z; Semaskaite, A; Jankowski, J; Totilas, Z; Jarule, V; Sasyte, V; Zdunczyk, P; Raceviciute-Stupeliene, A; Svirmickas, G
2011-04-01
The aim of this experiment was to investigate whether a low-dietary application (15 mg/kg) of an alkaloid preparation containing quaternary benzo[c]phenanthridine alkaloids and obtained from Macleaya cordata (Sangrovit) influenced caecal metabolism, growth performance and long-chain fatty acid composition of breast meat. One-day-old broiler chicks (Cobb 500) were fed a diet without supplement or with a 15 mg/kg dose of Sangrovit (C and A groups respectively) for 5 weeks. Although the A treatment was not accompanied by an enhanced final body weight of broilers, the intake of a diet with Sangrovit influenced the caecal microflora activity. The addition of Sangrovit to a diet decreased potentially harmful β-glucuronidase and β-glucosidase activities (p<0.05 and p=0.075 respectively), and at the same time led to a significant increase in activities of bacterial glycolytic enzymes α-glucosidase, α-galactosidase, β-galactosidase in comparison to the control group. The concentration of total short-chain fatty acids in the caecal digesta was increased in the A treatment contributing to the tendency towards lower caecal pH (p=0.078). The analysis of breast meat fatty acids showed that the dietary application of Sangrovit evoked some changes in contents of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) contents. The applied dosage of Sangrovit caused an increase in the sum of MUFA and the tendency towards lower PUFA sum (p<0.05 and p=0.062 respectively) as in relation with the C group. Although the nutritionally relevant n-6/n-3 PUFA and the (PUFA+MUFA)/saturated fatty acids ratios remained similar in both groups, further research is postulated to establish the effect of this preparation on meat quality. To sum up, despite of a lack of the improvement in final body weight, a low dose of dietary Sangrovit was found to exert positive effects on the caecal metabolism of the broilers. © 2010 Blackwell Verlag GmbH.
Iodine(III) Reagents in Radical Chemistry
2017-01-01
Conspectus The chemistry of hypervalent iodine(III) compounds has gained great interest over the past 30 years. Hypervalent iodine(III) compounds show valuable ionic reactivity due to their high electrophilicity but also express radical reactivity as single electron oxidants for carbon and heteroatom radical generation. Looking at ionic chemistry, these iodine(III) reagents can act as electrophiles to efficiently construct C–CF3, X–CF3 (X = heteroatom), C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase their electrophilicity. In these transformations, the iodine(III) compounds react as formal “CF3+”, “Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other hand, one electron reduction of the I(III) reagents opens the door to the radical world, which is the topic of this Account that focuses on radical reactivity of hypervalent iodine(III) compounds such as the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium triflates. Radical generation starting with I(III) reagents can also occur via thermal or light mediated homolysis of the weak hypervalent bond in such reagents. This reactivity can be used for alkane C–H functionalization. We will address important pioneering work in the area but will mainly focus on studies that have been conducted by our group over the last 5 years. We entered the field by investigating transition metal free single electron reduction of Togni type reagents using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl salt (TEMPONa) as an organic one electron reductant for clean generation of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable approach was later successfully also applied to the generation of azidyl and aryl radicals starting with the corresponding benziodoxole (Zhdankin reagent) and iodonium salts. In the presence of alkenes as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation products result via a sequence comprising radical addition to the alkene and subsequent TEMPO trapping. Electron-rich arenes also react with I(III) reagents via single electron transfer (SET) to give arene radical cations, which can then engage in arylation reactions. We also recognized that the isonitrile functionality in aryl isonitriles is a highly efficient perfluoroalkyl radical acceptor, and reaction of Rf-benziodoxoles (Togni type reagents) in the presence of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.). We further found that aryliodonium ylides, previously used as carbene precursors in metal-mediated cyclopropanation reactions, react via SET reduction with TEMPONa to the corresponding aryl radicals. As a drawback of all these transformations, we realized that only one ligand of the iodine(III) reagent gets transferred to the substrate. To further increase atom-economy of such conversions, we identified cyano or perfluoroalkyl iodonium triflate salts as valuable reagents for stereoselective vicinal alkyne difunctionalization, where two ligands from the I(III) reagent are sequentially transferred to an alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles as radical acceptors for alkynylation reactions. Similar reactivity was found for the Zhdankin reagent that has been successfully applied to azidation of C-radicals, and also cyanation is possible with a cyano I(III) reagent. To summarize, this Account focuses on the design, development, mechanistic understanding, and synthetic application of hypervalent iodine(III) reagents in radical chemistry. PMID:28636313