Sample records for phenobarbital-induced rat liver

  1. METABOLISM OF BENZ(J)ACEANTHRYLENE (CHOLANTHRYLENE) AND BENZ(L)ACEANTHRYLENE BY INDUCED RAT LIVER S9 (JOURNAL VERSION)

    EPA Science Inventory

    The metabolites of benz(j)aceanthrylene (B(j)A) and benz(l)aceanthrylene (B(l)A) produced by incubation with liver S9 proteins from rats induced with Aroclor-1254 and phenobarbital have been studied. Aroclor-1254 and phenobarbital induced rat liver S9 each metabolized B(j)A to tr...

  2. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster Ovary (CHO) Cells With and Without Metabolic Activation. Test Article: Dimethylamine-2-2ethyl azide (DMAZ)

    DTIC Science & Technology

    2008-07-26

    cultures at each concentration level were treated for 3 hours in serum-free medium containing phenobarbital !B-naphthoflavone-induced rat liver S-9...Research Laboratories and it consisted of phenobarbital -S,6-Benzoflavone (phenobarbitallB-naphthoflavone) -induced rat liver homogenate (S-9 fraction...Content: 4. Inducing Agent: S. Storage Condition: 6. Expiration Date: Moltox 2147 31.0 mg/rnL Phenobarbital -S,6-Benzoflavone < -70°C April

  3. A physiological role of AMP-activated protein kinase in phenobarbital-mediated constitutive androstane receptor activation and CYP2B induction

    PubMed Central

    Shindo, Sawako; Numazawa, Satoshi; Yoshida, Takemi

    2006-01-01

    CAR (constitutive androstane receptor) is a nuclear receptor that regulates the transcription of target genes, including CYP (cytochrome P450) 2B and 3A. The transactivation by CAR is regulated by its subcellular localization; however, the mechanism that governs nuclear translocation has yet to be clarified. It has been reported recently that AMPK (AMP-activated protein kinase) is involved in phenobarbital-mediated CYP2B induction in a particular culture system. We therefore investigated in vivo whether AMPK is involved in the activation of CAR-dependent gene expression. Immunoblot analysis using an antibody which recognizes Thr-172-phosphorylated AMPKα1/2 revealed phenobarbital-induced AMPK activation in rat and mouse livers as well. Phenobarbital, however, failed to increase the liver phospho-AMPK level of tumour-bearing rats in which CAR nuclear translocation had been impaired. In in vivo reporter gene assays employing PBREM (phenobarbital-responsive enhancer module) from CYP2B1, an AMPK inhibitor 8-bromo-AMP abolished phenobarbital-induced transactivation. In addition, Cyp2b10 gene expression was attenuated by 8-bromo-AMP. Forced expression of a dominant-negative mutant and the wild-type of AMPKα2 in the mouse liver suppressed and further enhanced phenobarbital-induced PBREM-reporter activity respectively. Moreover, the AMPK activator AICAR (5-amino-4-imidazolecarboxamide riboside) induced PBREM transactivation and an accumulation of CAR in the nuclear fraction of the mouse liver. However, AICAR and metformin, another AMPK activator, failed to induce hepatic CYP2B in mice and rats. These observations suggest that AMPK is at least partly involved in phenobarbital-originated signalling, but the kinase activation by itself is not sufficient for CYP2B induction in vivo. PMID:17032173

  4. Genotoxicity Assessment of an Energetic Propellant Compound, 3-nitro-1,2,4-triazol-5-one (NTO)

    DTIC Science & Technology

    2011-01-01

    Aldrich (St. Louis, MO). For the chromosome aberration test, phenobarbital /-naphthoflavone-induced rat hepatic S9 fraction was purchased fromMolecular... Phenobarbital /- naphthoflavone induced rat liver homogenate (S-9 fraction) and the cofactor pool. A range finding test was conducted to determine the toxicity of

  5. Tamoxifen mutagenesis and carcinogenesis in livers of lambda/lacI transgenic rats: selective influence of phenobarbital promotion.

    PubMed

    Styles, J A; Davies, R; Fenwick, S; Walker, J; White, I N; Smith, L L

    2001-01-10

    Administration of tamoxifen (TAM) (20 mg/kg per day p.o.) for 6 weeks to female lambda/lacI transgenic rats caused a 4-fold increase in mutation frequency (MF) at the lacI gene locus in the livers of dosed animals compared with controls. After cessation of dosing, the MF showed a further increase with time at 2, 12 and 24 weeks, respectively. Phenobarbital promotion of similarly treated animals resulted in no increase in mutation frequency compared with TAM alone. Treatment with phenobarbital or TAM+phenobarbital resulted in time-dependent increases in liver weight compared with the corresponding controls. There was an increase in cell proliferation in the phenobarbital and TAM+phenobarbital groups, and at 24 weeks in the TAM dosed animals compared with controls. There was also a progressive increase in the number of GST-P expressing foci in the livers of TAM and TAM + phenobarbital rats compared with controls. The induction of cell proliferation and GSTP foci in the rat liver by phenobarbital is consistent with its ability to promote tamoxifen-initiated liver tumours in the rat. If the lacI gene is regarded as being representative of the rat genome in general (albeit that the gene is bacterial) the above observations suggest that promotion by tamoxifen confers selective advantage on mutated genes at loci that contribute to the tumour phenotype and that promotion of rat liver tumours by tamoxifen is not dependent simply upon the enhancement of cellular proliferation.

  6. INHIBITION OF THE DEVELOPMENT OF HEPATIC MICROSOMAL DETOXIFICATION ENZYMES BY X-IRRADIATION.

    DTIC Science & Technology

    of young, male rats, on the activity of these enzymes in the livers of adult animals, and on induced enzyme synthesis by phenobarbital . Exposure of 23...caused by phenobarbital administration. The results of these studies indicate that radiation specifically inhibits the synthesis of increased microsomal

  7. Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide.

    PubMed Central

    Bonkovsky, H L; Sinclair, J F; Healey, J F; Sinclair, P R; Smith, E L

    1984-01-01

    The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem with the protein moiety of cytochrome P-450 and factors affecting breakdown of this protein. Images Fig. 2. Fig. 3. Fig. 5. PMID:6477526

  8. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster Ovary (CHO) Cells with and without Metabolic Activation, Test Article: 3-Nitro-1,2,4-Triazol-5-one (NTO)

    DTIC Science & Technology

    2008-10-30

    it consisted of phenobarbital -5,6-Benzoflavone (phenobarbitallB-naphthoflavone) -induced rat liver homogenate (S-9 fraction) and the cofactor pool...5. Storage Condition: 6. Expiration Date: Moltox 2059 32.1 mglmL (Lot No.: 2059) Phenobarbital -5,6-Benzoflavone <-70°C September 7,2008 (Lot...mL PREPARATION DATE: September 7. 2006 EXPIRATION DATE: September 7. 2008 BUllFER: O.lS4MKCl INDUCING AGENT(s): Phenobarbital • 5,6·Benzoflavone

  9. Effects of Phenobarbital and Carbazole on Carcinogenesis of the Lung, Thyroid, Kidney, and Bladder of Rats Pretreated with N‐Bis(2‐hydroxypropyl)nitrosamine

    PubMed Central

    Masuda, Atsuko; Imaida, Katsumi; Ogiso, Tadashi; Ito, Nobuyuki

    1988-01-01

    Studies were made on potential modifying effects of phenobarbital (PB) and carbazole on tumor development induced by N‐bis(2‐hydroxypropyl)nitrosamine (DHPN), a wide‐spectrum carcinogen in rats. Effects on the lung, thyroid, kidney, bladder and liver were investigated. Male F344 rats were given 0.2% DHPN in their drinking water for 1 week and then 0.05% PB or 0.6% carbazole in their diet for 50 weeks. Control animals were treated with either DHPN or PB or carbazole only. Neither PB nor carbazole affected the incidence or histology of lung tumors. However, PB promoted the development of thyroid tumors and preneoplastic lesions of the liver, while carbazole promoted the induction of renal pelvic tumors. PMID:3133336

  10. Nuclear receptor CAR specifically activates the two-pore K+ channel Kcnk1 gene in male mouse livers, which attenuates phenobarbital-induced hepatic hyperplasia.

    PubMed

    Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2013-03-01

    KCNK1, a member of the family of two-pore K(+) ion channels, is specifically induced in the livers of male mice after phenobarbital treatment. Here, we have determined the molecular mechanism of this male-specific activation of the Kcnk1 gene and characterized KCNK1 as a phenobarbital-inducible antihyperplasia factor. Upon activation by phenobarbital, nuclear receptor CAR binds the 97-bp response element (-2441/-2345) within the Kcnk1 promoter. This binding is observed in the livers of male mice, but not in the livers of female mice and requires the pituitary gland, because hypophysectomy abrogates it. Hyperplasia further progressed in the livers of Kcnk1 ( -/- ) male mice compared with those of Kcnk1 ( +/+ ) males after phenobarbital treatment. Thus, KCNK1 suppresses phenobarbital-induced hyperplasia. These results indicate that phenobarbital treatment induces KCNK1 to elicit a male-specific and growth-suppressing signal. Thus, KCNK1 and Kcnk1 ( -/- ) mice provide an experimental tool for further investigation into the molecular mechanism of CAR-mediated promotion of the development of hepatocellular carcinoma in mice.

  11. Metabolism of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Atropisomers in Tissue Slices from Phenobarbital or Dexamethasone-Induced Rats is Sex-Dependent

    PubMed Central

    Wu, Xianai; Kania-Korwel, Izabela; Chen, Hao; Stamou, Marianna; Dammanahalli, Karigowda J.; Duffel, Michael; Lein, Pamela J.; Lehmler, Hans-Joachim

    2013-01-01

    Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB metabolism may influence the developmental neurotoxicity of chiral PCBs. However, enantioselective disposition of PCBs has not been fully characterized.The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective metabolism of PCB 136 was studied using liver tissue slices prepared from naïve control (CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer) pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in hippocampal slices derived from untreated rat pups.In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer pretreatment, and OH-PCB levels followed the rank orders male > female and PB > DEX > CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites was independent of sex and inducer pretreatment. Only small amounts of PCB 136 partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected.Our results suggest that enantioselective metabolism, sex and induction status of P450 enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to chiral PCBs. PMID:23581876

  12. Nuclear Receptor CAR Specifically Activates the Two-Pore K+ Channel Kcnk1 Gene in Male Mouse Livers, Which Attenuates Phenobarbital-Induced Hepatic Hyperplasia

    PubMed Central

    Negishi, Masahiko

    2013-01-01

    KCNK1, a member of the family of two-pore K+ ion channels, is specifically induced in the livers of male mice after phenobarbital treatment. Here, we have determined the molecular mechanism of this male-specific activation of the Kcnk1 gene and characterized KCNK1 as a phenobarbital-inducible antihyperplasia factor. Upon activation by phenobarbital, nuclear receptor CAR binds the 97-bp response element (−2441/−2345) within the Kcnk1 promoter. This binding is observed in the livers of male mice, but not in the livers of female mice and requires the pituitary gland, because hypophysectomy abrogates it. Hyperplasia further progressed in the livers of Kcnk1 −/− male mice compared with those of Kcnk1 +/+ males after phenobarbital treatment. Thus, KCNK1 suppresses phenobarbital-induced hyperplasia. These results indicate that phenobarbital treatment induces KCNK1 to elicit a male-specific and growth-suppressing signal. Thus, KCNK1 and Kcnk1 −/− mice provide an experimental tool for further investigation into the molecular mechanism of CAR-mediated promotion of the development of hepatocellular carcinoma in mice. PMID:23291559

  13. The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1

    PubMed Central

    Shu, Nan; Hu, Mengyue; Ling, Zhaoli; Liu, Peihua; Wang, Fan; Xu, Ping; Zhong, Zeyu; Sun, Binbin; Zhang, Mian; Li, Feng; Xie, Qiushi; Liu, Xiaodong; Liu, Li

    2016-01-01

    Liver injury is a common adverse effect of atorvastatin. This study aimed to investigate atorvastatin-induced hepatotoxicity in diabetic rats induced by high-fat diet combined with streptozotocin. The results showed that 40 mg/kg atorvastatin was lethal to diabetic rats, whose mean survival time was 6.2 days. Severe liver injury also occurred in diabetic rats treated with 10 mg/kg and 20 mg/kg atorvastatin. The in vitro results indicated that atorvastatin cytotoxicity in hepatocytes of diabetic rats was more severe than normal and high-fat diet feeding rats. Expressions and activities of hepatic Cyp3a and SLCO1B1 were increased in diabetic rats, which were highly correlated with hepatotoxicity. Antioxidants (glutathione and N-Acetylcysteine), Cyp3a inhibitor ketoconazole and SLCO1B1 inhibitor gemfibrozil suppressed cytotoxicity and ROS formation in primary hepatocytes of diabetic rats. In HepG2 cells, up-regulations of CYP3A4 and SLCO1B1 potentiated hepatotoxicity and ROS generation, whereas knockdowns of CYP3A4 and SLCO1B1 as well as CYP3A4/SLCO1B1 inhibitions showed the opposite effects. Phenobarbital pretreatment was used to induce hepatic Cyp3a and SLCO1B1 in rats. Phenobarbital aggravated atorvastatin-induced hepatotoxicity, while decreased plasma exposure of atorvastatin. All these findings demonstrated that the upregulations of hepatic Cyp3a and SLCO1B1 in diabetic rats potentiated atorvastatin-induced hepatotoxicity via increasing ROS formation. PMID:27624558

  14. Selective inhibition by chloramphenicol of pregnenolone-16. cap alpha. -carbonitrile-inducible rat liver cytochrome P-450 isozymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, P.E.; Kaminsky, L.S.; Halpert, J.

    Pregnenolone-16 ..cap alpha..-carbonitrile (PCN) has been shown to induce, in male rats, cytochrome P-450 isozymes responsible for the formation of R-10-hydroxywarfarin and R-dehydrowarfarin. Antibodies to the major PCN-inducible isozyme (PB/PCN-E) inhibit both activities in microsomal preparations. Recently the authors have shown that PCN treatment of female rats also induces the formation of both R-warfarin metabolites. However, in both sexes chloramphenicol (CAP) treatment selectively inhibits only the rate of formation of the R-dehydrowarfarin. A decrease in microsomal P-450 content occurs after in vivo administration of CAP to PCN-treated rats of both sexes. This is in contrast to the lack of effectmore » of CAP on P-450 levels in phenobarbital-treated rats. Covalent binding of /sup 14/C-CAP to microsomal protein in vitro was increased 3 to 4-fold following PCN treatment. Chromatographic evidences suggests the presence of at least two PCN-induced isozymes of similar molecular weights in both male and female rat liver microsomes. These data are consistent with the multiplicity of PCN-inducible P-450 in rat liver.« less

  15. Induced expression of hepatic N-methyl-D-aspartate receptor 2C subunit gene during liver enlargement induced by lead nitrate, a hepatocellular mitogen.

    PubMed

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Hikida, Tokihiro; Kojima, Misaki; Degawa, Masakuni

    2013-02-01

    We previously demonstrated the super-induced expression of the Grin2c gene encoding the N-methyl-D-aspartate receptor 2C subunit during the development of liver enlargement with hepatocellular hypertrophy induced by phenobarbital, clofibrate, or piperonyl butoxide. In the present study, we assessed whether or not Grin2c gene expression was induced during the development of chemically induced liver enlargement with hyperplasia. Male Sprague-Dawley (SD) rats, stroke-prone spontaneously hypertensive rats (SHRSPs), and SHRSP's normotensive control, Wistar-Kyoto (WKY) rats, were administered lead nitrate (LN) (0.1 mmol/kg, single i.v.), a direct inducer of liver hyperplasia, and changes in the level of Grin2c mRNA in the liver were assessed by real-time RT-PCR. The level of hepatic Grin2c mRNA was significantly higher 6-48 hr after the injection in SD rats (about 30~40- and 70-fold over the control at 6~24 hr and 48 hr, respectively) and in WKY rats (about 20-fold over the control only at 12 hr), but was not significantly higher in SHRSPs. Such differences in LN-induced levels of Grin2c mRNA among SD rats, WKY rats, and SHRSPs were closely correlated with those in the previously reported increase in liver weight 48 hr after LN administration. The present findings suggest that the increase in the level of hepatic Grin2c mRNA relates to development of chemically induced liver enlargement with hyperplasia.

  16. Influence of caffeine on allyl alcohol-induced hepatotoxicity in rats. I. In vivo study.

    PubMed

    Karas, M; Chakrabarti, S K

    2001-01-01

    Cotreatment of rats with a low hepatotoxic dose (30.7 mg/kg, i.p.) of allyl alcohol (AA) and a higher, but nontoxic, dose (150 mg/kg, oral) of caffeine (CF) potentiated the hepatotoxicity of AA. This was verified by significantly higher levels of plasma alanine aminotransferase (ALT) activity and histopathologically greater severity of lesions in the periportal hepatocytes than those due to AA alone. Treatment of rats with 4-methylpyrazole (4-MP) (0.5 mmol/kg, i.p.) (an inhibitor liver alcohol dehydrogenase) for 30 minutes, followed by similar cotreatment with AA and CF, completely prevented the elevation of plasma levels of ALT and histological damage induced by cotreatment with CF and AA 24 hours following their administration. Severe liver damage induced by cotreatment with CF and AA was further, markedly enhanced by phenobarbital pretreatment (80 mg/kg, i.p., 3 days). Thus, extensive necrosis of periportal hepatocytes was noted, as well as edema and accumulation of inflammatory cells in the necrotic foci caused by such pretreatment. The depression of hepatic nonprotein sulfhydryls resulting from CF plus AA was much more severe than that caused by AA or CF alone and appeared as early as 30 minutes after administration. However, much less marked depletion of protein thiols was observed following similar treatments. Significant increase in lipid peroxidation (as measured by melondialdehyde [MDA] formation) was also observed in rat liver but only 24 hours after administration. The production ofMDA in the rat liver was significantly higher after administration of AA plus CF than after administration of AA alone. Pretreatment of rats with phenobarbital further significantly enhanced the formation of 2,4-dinitrophenylhydrazine (DNP)-reactive metabolite(s) (measured as DNP-acrolein adduct equivalents) in rat liver induced by AA (30.7 mg/kg) plus CF (150 mg/kg) within 1 hour following such treatment. Cotreatment with AA and a higher dose of CF resulted in significantly higher excretion of urinary thioethers or mercapturic acids than in rats treated with AA alone. Thus, these data suggest that an increased bioactivation pathway of acrolein involving a P450 mixed-function oxidase system caused by CF may be involved in such potentiating effects of CF on AA-induced hepatotoxicity in rats.

  17. Effects of phenobarbital on aniline metabolism in primary liver cell culture of rats with ethionine-induced liver disorder.

    PubMed

    Noguchi, M; Nitoh, S; Mabuchi, M; Kawai, Y

    1996-04-01

    In experiment 1, the amount of aniline (AN) metabolites in the primary cell culture medium of the liver cells obtained from ethionine (ET)-treated rats was compared with that of the control (normal) rats. Although the metabolites detected in both groups were p-aminophenol (p-AP), N-acetyl-p-AP (AAP), acetoanilide (AAN), AAP-glucuronide (AAPG), phenylhydroxylamine sulfate (PHAS) and p-AP-glucuronide (p-APG), the amount of AAP was lower and that of p-APG was markedly higher in the ET-treated rats than in the control rats. In experiment 2, phenobarbital (PB) was orally administered to the ET-treated and control rats at a dose of 100 mg/kg. The time course changes in AN metabolites in the primary cell culture medium of liver cells obtained at 2 or 48 hr after PB treatment were compared with those without PB treatment. In the ET-treated rats, the amount of PHAS was slightly higher at 2 hr after PB treatment, and that of AAP was lower and that of p-APG was higher at 48 hr after PB treatment as compared with those without PB treatment. In the control rats, the amounts of AAP, AAN, p-AP and p-APG at 2 hr after PB treatment remained lower than those without PB treatment, and that of AAP was markedly lower and that of p-APG was higher at 48 hr after PB treatment as compared with those without PB treatment. These findings indicated greater detoxication in the primary liver cell culture in the ET-treated rats than in the control rats. Furthermore, detoxication was greater in the primary cell culture of liver cell obtained from the ET-treated rats after PB treatment than from those without PB treatment, because the production of acetylates (AAP) decreased and p-APG increased (induction of conjugated enzyme) in the PB treatment group.

  18. Phenobarbital Induces Alterations in the Proteome of Hepatocytes and Mesenchymal Cells of Rat Livers

    PubMed Central

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme. PMID:24204595

  19. Acute toxicity induced by 2-aryl-N-methylsuccinimides.

    PubMed

    Rankin, G O; Shih, H C; Teets, V J; Nicoll, D W; Brown, P I

    1990-04-01

    Phensuximide (PSX) is a 2-arylsuccinimide useful in the treatment of absence seizures. PSX is a mild urotoxicant and is structurally related to N-phenylsuccinimide (NPS) and its antifungal derivatives. Since substitution of the phenyl ring of NPS with chloro or tert-butyl groups can produce compounds with enhanced nephrotoxic potential, it was felt that similar substitutions on the phenyl ring of PSX also might produce derivatives with enhanced nephrotoxic potential. Three derivatives of PSX were prepared and tested: 2-(3-chlorophenyl)-N-methylsuccinimide (CPMS); 2-(4-tert-butylphenyl)-N-methylsuccinimide (BPMS) and 2-(3,5-dichlorophenyl)-N-methylsuccinimide (DPMS). In one set of experiments, male Fischer 344 rats were administered a single intraperitoneal (i.p.) injection of a succinimide (0.4 or 1.0 mmol kg-1) or vehicle (sesame oil, 2.5 ml kg-1) and renal function monitored at 24 and 48 h. Only minor changes in renal function were noted with the PSX derivatives. BPMS and DPMS (1.0 mmol kg-1) treatment induced mild renal tubular necrosis and thickening of the glomerular membranes. However, no significant morphological changes were noted in ureters, bladder or liver in any treatment group. In a second set of experiments, rats were pretreated with phenobarbital (75 mg kg-1 day-1, i.p., 3 days) followed by a single i.p. injection of DPMS (0.4 or 1.0 mmol kg-1) or DPMS vehicle. Renal function was monitored as before. Phenobarbital pretreatment did not markedly enhance the functional nephrotoxicity induced by DPMS (0.4 mmol), but tubular necrosis was greater than observed in non-phenobarbital-pretreated rats receiving DPMS (1.0 mmol kg-1). In addition, hepatotoxicity was observed as the appearance of numerous non-staining vacuoles in hypertrophied hepatocytes. In the phenobarbital plus DPMS (1.0 mmol kg-1) treatment group, all rats died by 48 h. Prior to death, rats exhibited increased proteinuria (+3), hematuria (+3) and blood urea nitrogen concentration. At 24 h, kidneys from rats treated with phenobarbital plus DPMS (1.0 mmol kg-1) exhibited extensive proximal tubular necrosis and numerous glomeruli with thickened membranes. Hepatotoxicity was more pronounced than with phenobarbital plus DPMS (0.4 mmol kg-1) at 48 h and urinary bladders had focal areas of erythrocytes pooling below the epithelial lining. These results demonstrate that although NPS and PSX are structural analogs, chemical substitutions that enhance the nephrotoxic potential of NPS do not have a similar effect on PSX. In addition, DPMS can induce urotoxicity in a manner similar to that observed for PSX and probably induces toxicity via one or more metabolites.

  20. Evaluation of possible interaction among drugs contemplated for use during manned space flights

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Possible interactions among drugs contemplated for use during manned spaceflights have been studied in several animal species. The following seven drugs were investigated: nitrofurantoin, chloral hydrate, hexobarbital, phenobarbital, flurazepam, diphenoxylate, and phenazopyridine. Particular combinations included: chloral hydrate, hexabarbital or flurazepam with nitrofurantoin; phenobarbital or flurazepam with phenazopyridine; and diphenoxylate with two does formulations of nitrofurantoin. Studies were carried out in several species to determine whether induction of liver microsomal enzymes would increase the tendency of phenazopyridine to produce methemoglobin in vivo. Animals were premedicated with phenobarbital, a known inducer of azoreductase, and in a separate experiment with flurazepam, before administration of phenazopyridine. Methemoglobin production was determined in each animal after receiving phenazopyridine. No evidence was found for increased production of methemoglobin in the rat, dog, or rabbit that could be attributed to increased amounts of microsomal enzymes.

  1. Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response.

    PubMed Central

    Waxman, D J; Morrissey, J J; Naik, S; Jauregui, H O

    1990-01-01

    The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove valuable for more detailed investigations of the molecular and mechanistic basis of the response to PB and its modulation by endogenous hormones. Images Fig. 3. Fig. 5. PMID:2222405

  2. Long term effects of PCBs (Phenoclor DP5) on rat microsomal enzymes, liver, and blood lipids after peri- and postnatal exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poul, J.M.

    1992-02-01

    It was shown that activities of some hepatic drug metabolizing enzymes and parameters of lipid metabolism were modified in adult rats (PND100), after exposure to PCBs (Phenoclor DP5) during lactation. Perinatal or early postnatal treatment with inducers, like phenobarbital and phenytoin, seems to induce permanent effects on hepatic microsomal enzymes in adults though the drugs have completely disappeared from the body. Time course evolution of induction-related parameters and tissue residues of DP5, from weaning to PND100, have been studied the effects observed in adult rats at PND100 could be residual aspects of the important changes induced before weaning by acutemore » exposure via milk or consequences of the relative high concentrations of PCBs still present in tissues. The present study was designed to investigate the effects of DP5, administered peri- and postnatally, on microsomal enzyme activities and in vitro genotoxic activation of 2-aminofluorene and on liver and blood lipids, in adult rats at PND180 and PND300. Tissue residues of Phenoclor DP5 were measured in liver, fat and brain at the same periods.« less

  3. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: A case study with phenobarbital as a model constitutive androstane receptor (CAR) activator

    PubMed Central

    Elcombe, Clifford R.; Peffer, Richard C.; Wolf, Douglas C.; Bailey, Jason; Bars, Remi; Bell, David; Cattley, Russell C.; Ferguson, Stephen S.; Geter, David; Goetz, Amber; Goodman, Jay I.; Hester, Susan; Jacobs, Abigail; Omiecinski, Curtis J.; Schoeny, Rita; Xie, Wen; Lake, Brian G.

    2014-01-01

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk. PMID:24180433

  4. Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes.

    PubMed

    Richert, Lysiane; Lamboley, Christelle; Viollon-Abadie, Catherine; Grass, Peter; Hartmann, Nicole; Laurent, Stephane; Heyd, Bruno; Mantion, Georges; Chibout, Salah-Dine; Staedtler, Frank

    2003-09-01

    The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1alpha (HNF1alpha) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis.

  5. Evidence for tangeretin O-demethylation by rat and human liver microsomes.

    PubMed

    Canivenc-Lavier, M C; Brunold, C; Siess, M H; Suschetet, M

    1993-03-01

    1. Tangeretin, a polymethoxylated flavone, was studied as a substrate for cytochrome P450-catalysed demethylation reactions by rat and human liver microsomes. Evidence has been presented for the production of formaldehyde in the presence of tangeretin and NAD(P)H. Kinetic studies showed a Km value for tangeretin of about 18 microM in both species. 2. The reaction was inhibited by CO, piperonyl butoxide, 7,8-benzoflavone, propyl gallate, aminobenzothiazole and metyrapone. 3. Rats pretreated with classical cytochrome P450 inducers (Aroclor 1254, 3-methylcholanthrene, phenobarbital, dexamethasone and ciprofibrate) or with flavonoids (flavone, flavanone, quercetin and tangeretin) resulted in increased microsomal demethylation of tangeretin after 3-methylcholanthrene and flavone only. Tangeretin did not enhance its own metabolism. 4. Tangeretin interacted with the oxidized form of cytochrome P450 to produce a reverse type I spectrum. 5. Results indicate that tangeretin is metabolized in liver microsomes by an O-demethylation reaction involving cytochrome P450.

  6. A mode of action for induction of liver tumors by Pyrethrins in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Roger J.; Walters, David G.; Finch, John M.

    2007-01-15

    High doses of Pyrethrins produce liver tumors in female rats. To elucidate the mode of action for tumor formation, the hepatic effects of Pyrethrins have been investigated. Male Sprague-Dawley CD rats were fed diets containing 0 (control) and 8000 ppm Pyrethrins and female rats' diets containing 0, 100, 3000 and 8000 ppm Pyrethrins for periods of 7, 14 and 42 days and 42 days followed by 42 days of reversal. As a positive control, rats were also fed diets containing 1200-1558 ppm sodium Phenobarbital (NaPB) for 7 and 14 days. The treatment of male rats with 8000 ppm Pyrethrins, femalemore » rats with 3000 and 8000 ppm Pyrethrins and both sexes with NaPB resulted in increased liver weights, which were associated with hepatocyte hypertrophy. Hepatocyte replicative DNA synthesis was also increased by treatment with Pyrethrins and NaPB. The treatment of male and female rats with Pyrethrins and NaPB produced significant increases in hepatic microsomal cytochrome P450 (CYP) content and a marked induction of CYP2B-dependent 7-pentoxyresorufin O-depentylase and testosterone 16{beta}-hydroxylase activities. Significant increases were also observed in CYP3A-dependent testosterone 6{beta}-hydroxylase activity. The hepatic effects of Pyrethrins were dose-dependent in female rats with 100 ppm being a no effect level and on cessation of treatment were reversible in both sexes. This study demonstrates that Pyrethrins are mitogenic CYP2B form inducers in rat liver. The mode of action for Pyrethrins-induced rat liver tumor formation appears to be similar to that of NaPB and some other non-genotoxic CYP2B inducers of hepatic xenobiotic metabolism.« less

  7. Differences in hepatic microsomal cytochrome P-450 isoenzyme induction by pyrazole, chronic ethanol, 3-methylcholanthrene, and phenobarbital in high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats.

    PubMed

    Lucas, D; Ménez, J F; Berthou, F; Cauvin, J M; Deitrich, R A

    1992-10-01

    High and low alcohol sensitivity (HAS and LAS) rats have been selected for their differences in ethanol-induced sleep time. Liver monooxygenase activities were studied in HAS and LAS rats before and after treatments with known inducers such as chronic ethanol, pyrazole, 3-methylcholanthrene (3-MC) and phenobarbital (PB) to determine whether the selection procedure also selected for differences in the cytochrome P-450 (P-450) inducibility. This previously has been shown with long sleep (LS) and short sleep (SS) mice, which were selected using a similar criterion. 3-MC and PB, in conjunction with chronic ethanol treatment, were used in order to evaluate the interactions of ethanol with these inducers. Prior to treatment, total P-450 content was slightly lower in LAS than in HAS rats. However, both lines displayed the same microsomal monooxygenase activities related to different P-450 isozymes. This was demonstrated by ethoxyresorufin deethylation (EROD) for cytochrome P-450 1A1 (CYP1A1), acetanilide hydroxylation (ACET) for CYP1A2, pentoxyresorufin dealkylation (PROD) for CYP2B, 1-butanol oxidation (BUTAN) and N-nitrosodimethylamine demethylation (NDMA) for CYP2E1. After the different treatments, HAS rats did not differ from LAS rats in their CYP2E1 inducibility. However, pyrazole, PB and 3-MC treatment led to differences in CYP1A and CYP2B monooxygenase activities between the two lines. The enhancement of PROD by pyrazole treatment was less prominent in LAS (1.7-fold of the control value) than in HAS rats (3.8-fold).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Evidence for complexation of P-450 IIC6 by an orphenadrine metabolite.

    PubMed

    Reidy, G F; Murray, M

    1990-01-30

    Removal of the orphenadrine metabolite from its complex with rat liver P-450 IIB1 is associated with a discrepancy in the reactivation of IIB1 activity. Two possible explanations are that either (1) NADPH-P-450-reductase is inaccessible to the restored IIB1, or (2) complexation of other P-450s may occur. Exogenous P-450 reductase increased all pathways of steroid hydroxylation (1.9 to 3.6-fold) but did not enhance reactivation of IIB1-dependent steroid 16 beta-hydroxylation. Instead, P-450 IIC6-dependent progesterone 21-hydroxylase activity was increased after dissociation to 122% of control. IIC6 activity was also inhibited in vitro in microsomes from phenobarbital-induced rats (ki = 151 microM). Thus, orphenadrine appears to complex P-450 IIC6 as well as IIB1 in rat liver.

  9. To Analyze the Amelioration of Phenobarbital Induced Oxidative Stress by Erucin, as Indicated by Biochemical and Histological Alterations.

    PubMed

    Arora, Rohit; Bhushan, Sakshi; Kumar, Rakesh; Mannan, Rahul; Kaur, Pardeep; Singh, Bikram; Sharma, Ritika; Vig, Adarsh Pal; Singh, Balbir; Singh, Amrit Pal; Arora, Saroj

    2016-01-01

    Phenobarbital is a commonly employed antidepressant and anti-epileptic drug. The cancer promoting activity of this genotoxic xenobiotic is often ignored. It is responsible for oxidative stress leading to modulation in xenobiotic and antioxidative enzymes. Glucosinolates and more specifically their hydrolytic products are known for their antioxidative and anticancer activities. The present study involves the analysis of hepatoprotective effect of erucin (isolated from Eruca sativa (Mill.) Thell.) against phenobarbital mediated hepatic damage in male wistar rats. The liver homogenate was analyzed for oxidative stress (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and lactate dehydrogenase), other oxidative parameters (thiobarbituric acid reactive species, conjugated dienes and lipid hydroperoxide), phase I enzymes (NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome P450 and cytochrome b5), phase II enzymes (γ-glutamyl transpeptidase, DT-diaphorase and glutathione-S-transferase), serum parameters (alkaline phosphatase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, direct bilirubin and total bilirubin) and certain histological parameters. Erucin accorded protection from phenobarbital induced hepatic damage by normalizing antioxidative enzymes, other oxidative parameters, phase I, II, and serum parameters. Erucin, an analogue of sulforaphane has the potential to act as an anticancer agent by regulating various biochemical parameters.

  10. Identification of the enzymes catalyzing metabolism of methoxyflurane.

    PubMed

    Waskell, L; Canova-Davis, E; Philpot, R; Parandoush, Z; Chiang, J Y

    1986-01-01

    The hepatic microsomal metabolism of methoxyflurane in rabbits is markedly stimulated by treatment with phenobarbital. However, the increased rate of metabolism cannot be completely accounted for by the activity of the purified phenobarbital-inducible cytochrome P-450 isozyme 2, even in the presence of cytochrome b5. The discovery of a second hepatic phenobarbital-inducible cytochrome P-450, isozyme 5, led us to undertake experiments to determine in hepatic and pulmonary preparations the portion of microsomal metabolism of methoxyflurane catalyzed by cytochrome P-450 isozymes 2 and 5. We report herein that isozyme 2 accounts for 25% and 29%, respectively, of the O-demethylation of methoxyflurane in hepatic microsomes from untreated and phenobarbital-treated rabbits, and for 25% of the methoxyflurane metabolism in pulmonary microsomes. Results for isozyme 5 indicate that it catalyzes 19% and 27% of methoxyflurane metabolism in control and phenobarbital-induced liver, and 47% of O-demethylation in the lung. In summary, we demonstrate that methoxyflurane O-demethylation in lung, phenobarbital-induced liver, and control liver microsomes is catalyzed by cytochrome P-450 isozymes 2 and 5. Results with purified cytochrome P-450 isozyme 5 are consistent with those obtained using microsomal preparations. Furthermore, metabolism of methoxyflurane by purified isozyme 5 is markedly stimulated by cytochrome b5. A role for cytochrome b5 in cytochrome P-450 isozyme 5-catalyzed metabolism of methoxyflurane was also demonstrated in microsomes. Antibody to isozyme 5 was unable to inhibit methoxyflurane metabolism in the presence of maximally inhibiting concentrations of cytochrome b5 antibody.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Dependence of microsomal methoxyflurane O-demethylation on cytochrome P-450 reductase and the stoichiometry of fluoride ion and formaldehyde release.

    PubMed

    Waskell, L; Gonzales, J

    1982-07-01

    In order to characterize further the in vitro liver microsomal O-demethylation and defluorination of the volatile anesthetic methoxyflurane, and obtain additional information regarding the participation of cytochrome P-450 in the oxidation, the stoichiometry of the reaction was determined and the effect of antibody to cytochrome P-450 reductase on this unique biotransformation was examined. Liver microsomes were isolated from rabbits and rats in which enzyme induction had previously been produced by phenobarbital. The O-demethylation of methoxyflurane by phenobarbital-induced microsomes results in the production of 1 mol of formaldehyde for every 2 mol of fluoride ion produced. Dichloroacetic acid is also a product of methoxyflurane O-demethylation. Antibody to cytochrome P-450 reductase inhibits by 85% the amount of fluoride ion produced by the microsomal metabolism of methoxyflurane. Thus critical indirect supportive data are contributed to the hypothesis that at least one, but perhaps more, cytochrome P-450 is indeed responsible for methoxyflurane O-demethylation and defluorination.

  12. Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes.

    PubMed

    Haines, Corinne; Elcombe, Barbara M; Chatham, Lynsey R; Vardy, Audrey; Higgins, Larry G; Elcombe, Clifford R; Lake, Brian G

    2018-03-01

    Phenobarbital (PB), a constitutive androstane receptor (CAR) activator, produces liver tumours in rodents by a mitogenic mode of action involving CAR activation. In this study, the hepatic effects of sodium phenobarbital (NaPB) were compared in male C57BL/6J wild type (WT) mice and in humanized mice, where both the mouse CAR and pregnane X receptor (PXR) have been replaced by their human counterparts (hCAR/hPXR mice). Investigations were also performed in cultured male C57BL/6J and CD-1 mouse, male Sprague-Dawley rat and male and female human hepatocytes. The treatment of WT and hCAR/hPXR mice with 186-984 ppm NaPB in the diet for 7 days resulted in increased relative liver weight, hypertrophy and induction of cytochrome P450 (CYP) enzyme activities. Treatment with NaPB also produced dose-dependent increases in hepatocyte replicative DNA synthesis (RDS), with the effect being more marked in WT than in hCAR/hPXR mice. While the treatment of cultured C57BL/6J and CD-1 mouse, Sprague-Dawley rat and human hepatocytes with 100 and/or 1000 μM NaPB for 4 days induced CYP enzyme activities, increased RDS was only observed in mouse and rat hepatocytes. However, as a positive control, epidermal growth factor increased RDS in hepatocytes from all three species. In summary, although human hepatocytes are refractory to the mitogenic effects of NaPB, treatment with NaPB induced RDS in vivo in hCAR/hPXR mice, which is presumably due to the human CAR and PXR receptors operating in a mouse hepatocyte regulatory environment. As the response of the hCAR/hPXR mouse to the CAR activator NaPB differs markedly from that of human hepatocytes, the hCAR/hPXR mouse is thus not a suitable animal model for studies on the hepatic effects of nongenotoxic rodent CAR activators. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    EPA Science Inventory

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  14. Mechanism of Lethal Interaction of Hazardous Chemicals at Subtoxic Doses

    DTIC Science & Technology

    1991-09-20

    Mehendale, H. M. Phenobarbital-induced cytosolic cytoprotective mechanisms that offset increases in NADPH cytochrome P-450 reductase activity in menadione ...9. Utley, W. M. and Mehendale, H. M. Phenobarbital induced cytoprotective mechanisms in menadione metabolism: The role of glutathione reductase and...Mehendale, H. M. The contribution of DT-diaphorase in hepatocytes isolated from naive and phenobarbital preireaieu rats during menadione metabolism. FASEB J

  15. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  16. DIETARY EXPOSURE OF PHENOBARBITAL TO MALE AND FEMALE CD1 MICE FOR 2 OR 7 DAYS: EXAMINATION OF IN-LIFE, HEPATOCELLULAR ENZYME, PROLIFERATION, AND GENE EXPRESSION RESPONSES.

    EPA Science Inventory

    Phenobarbital (PB) is a barbiturate used to relieve anxiety and control epilepsy. PB is also an archetypical inducer of the constitutive androstane receptor (CAR), resulting in liver hypertrophy in humans and both liver hypertrophy and hyperplasia in rodents. In this study, male ...

  17. Phenobarbital increases monkey in vivo nicotine disposition and induces liver and brain CYP2B6 protein

    PubMed Central

    Lee, Anna M; Miksys, Sharon; Tyndale, Rachel F

    2006-01-01

    CYP2B6 is a drug-metabolizing enzyme expressed in the liver and brain that can metabolize bupropion (Zyban®, a smoking cessation drug), activate tobacco-smoke nitrosamines, and inactivate nicotine. Hepatic CYP2B6 is induced by phenobarbital and induction may affect in vivo nicotine disposition, while brain CYP2B6 induction may affect local levels of centrally acting substrates. We investigated the effect of chronic phenobarbital treatment on induction of in vivo nicotine disposition and CYP2B6 expression in the liver and brain of African Green (Vervet) monkeys. Monkeys were split into two groups (n=6 each) and given oral saccharin daily for 22 days; one group was supplemented with 20 mg kg−1 phenobarbital. Monkeys were given a 0.1 mg kg−1 nicotine dose subcutaneously before and after treatment. Phenobarbital treatment resulted in a significant, 56%, decrease (P=0.04) in the maximum nicotine plasma concentration and a 46% decrease (P=0.003) in the area under the concentration–time curve. Phenobarbital also increased hepatic CYP2B6 protein expression. In monkey brain, significant induction (P<0.05) of CYP2B6 protein levels was observed in all regions tested (caudate, putamen, hippocampus, cerebellum, brain stem and frontal cortex) ranging from 2-fold to 150-fold. CYP2B6 expression was induced in specific cells, such as frontal cortical pyramidal cells and thalamic neurons. In conclusion, chronic phenobarbital treatment in monkeys resulted in increased in vivo nicotine disposition, and induced hepatic and brain CYP2B6 protein levels and cellular expression. This induction may alter the metabolism of CYP2B6 substrates including peripherally acting drugs such as cyclophosphamide and centrally acting drugs such as bupropion, ecstasy and phencyclidine. PMID:16751792

  18. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 1): Identification of the nephrotoxic metabolic pathway.

    PubMed

    Kharasch, Evan D; Schroeder, Jesara L; Liggitt, H Denny; Park, Sang B; Whittington, Dale; Sheffels, Pamela

    2006-10-01

    Methoxyflurane nephrotoxicity results from biotransformation; inorganic fluoride is a toxic metabolite. Concern exists about potential renal toxicity from volatile anesthetic defluorination, but many anesthetics increase fluoride concentrations without consequence. Methoxyflurane is metabolized by both dechlorination to methoxydifluoroacetic acid (MDFA, which may degrade to fluoride) and O-demethylation to fluoride and dichloroacetatic acid. The metabolic pathway responsible for methoxyflurane nephrotoxicity has not, however, been identified, which was the aim of this investigation. Experiments evaluated methoxyflurane metabolite formation and effects of enzyme induction or inhibition on methoxyflurane metabolism and toxicity. Rats pretreated with phenobarbital, barium sulfate, or nothing were anesthetized with methoxyflurane, and renal function and urine methoxyflurane metabolite excretion were assessed. Phenobarbital effects on MDFA metabolism and toxicity in vivo were also assessed. Metabolism of methoxyflurane and MDFA in microsomes from livers of pretreated rats was determined in vitro. Phenobarbital pretreatment increased methoxyflurane nephrotoxicity in vivo (increased diuresis and blood urea nitrogen and decreased urine osmolality) and induced in vitro hepatic microsomal methoxyflurane metabolism to inorganic fluoride (2-fold), dichloroacetatic acid (1.5-fold), and MDFA (5-fold). In contrast, phenobarbital had no influence on MDFA renal effects in vivo or MDFA metabolism in vitro or in vivo. MDFA was neither metabolized to fluoride nor nephrotoxic. Barium sulfate diminished methoxyflurane metabolism and nephrotoxicity in vivo. Fluoride from methoxyflurane anesthesia derives from O-demethylation. Phenobarbital increases in methoxyflurane toxicity do not seem attributable to methoxyflurane dechlorination, MDFA toxicity, or MDFA metabolism to another toxic metabolite, suggesting that nephrotoxicity is attributable to methoxyflurane O-demethylation. Fluoride, one of many metabolites from O-demethylation, may be toxic and/or reflect formation of a different toxic metabolite. These results may have implications for interpreting anesthetic defluorination, volatile anesthetic use, and methods to evaluate anesthetic toxicity.

  19. Brief postnatal exposure to phenobarbital impairs passive-avoidance learning and sensorimotor gating in rats

    PubMed Central

    Gutherz, Samuel B.; Kulick, Catherine V.; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A.

    2014-01-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference to cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition as compared to vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention as compared to matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. PMID:25112558

  20. Brief postnatal exposure to phenobarbital impairs passive avoidance learning and sensorimotor gating in rats.

    PubMed

    Gutherz, Samuel B; Kulick, Catherine V; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A

    2014-08-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80 mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference for cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition compared with vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention compared with matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  2. A comparison of renal effects and metabolism of sevoflurane and methoxyflurane in enzyme-induced rats.

    PubMed

    Cook, T L; Beppu, W J; Hitt, B A; Kosek, J C; Mazze, R I

    1975-01-01

    Twenty-five 5-month-old male Fischer-344 rats were randomly divided into 5 groups: Group I, no anesthesia; Group II, 1.4 precent sevoflurane for 2 hours; Group III, 0.1 percent phenobarbital, ad lib, in drinking water for 7 days; followed by 1.4 percent sevoflurane for 2 hours; Group IV, 0.25 percent methoxyflurane, 1 hour; Group V, phenobarbital in water as in Group III, followed by methoxyflurane as in group IV. Pre- and postanesthetic serum and urinary osmolality, Na+, K+, urea nitrogen (BUN), inorganic fluoride (F-) levels, and 24-hour urine volume were measured. Kidney tissue was obtained for examination by light and electron microscopy. Sevoflurane was metabolized to F- to a lesser extent than was methoxyflurane; treatment with phenobarbital-sevoflurane doubled urinary F- excretion, resulting in a value similar to that seen after methoxyflurane alone. There was no functional or morphologic evidence of renal abnormalities in either group of rats anesthetized with sevoflurane. Methoxyflurane dosage was sufficiently low that renal abnormalities did not occur except in rats treated also with phenobarbital; these animals developed polyuria and the morphologic lesion typically associated with F--induced nephrotoxicity.

  3. Neonatal exposure to phenobarbital potentiates schizophrenia-like behavioral outcomes in the rat.

    PubMed

    Bhardwaj, S K; Forcelli, P A; Palchik, G; Gale, K; Srivastava, L K; Kondratyev, A

    2012-06-01

    Previous work has indicated an association between seizures early in life and increased risk of psychiatric disorders, including schizophrenia. However, because early-life seizures are commonly treated with antiepileptic drugs (AEDs) such as phenobarbital, the possibility that drug treatment may affect later-life psychiatric outcomes needs to be evaluated. We therefore tested the hypothesis that phenobarbital exposure in the neonatal rat increases the risk of schizophrenia-like behavioral abnormalities in adulthood. Thus, in this study, we examined the effects of a single acute neonatal exposure to phenobarbital on adult behavioral outcomes in the rat neonatal ventral hippocampal (nVH) lesion model of schizophrenia. We compared these outcomes to those in rats a) without nVH lesions and b) with nVH lesions, without phenobarbital. The tasks used for behavioral evaluation were: amphetamine-induced locomotion, prepulse inhibition, elevated plus-maze, and novel object recognition task. We found that neonatal phenobarbital treatment (in the absence of nVH lesions) was sufficient to disrupt sensorimotor gating (as tested by prepulse inhibition) in adulthood to an extent equivalent to nVH lesions. Additionally, neonatal phenobarbital exposure enhanced the locomotor response to amphetamine in adult animals with and without nVH lesions. Our findings suggest that neonatal exposure to phenobarbital can predispose to schizophrenia-like behavioral abnormalities. Our findings underscore the importance of examining AED exposure early in life as a potential risk factor for later-life neuropsychiatric abnormalities in clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Neonatal exposure to phenobarbital potentiates schizophrenia-like behavioral outcomes in the rat

    PubMed Central

    Bhardwaj, S.K.; Forcelli, P.A; Palchik, G.; Gale, K.; Srivastava, L.K.; Kondratyev, A.

    2012-01-01

    Previous work has indicated an association between seizures early in life and increased risk of psychiatric disorders, including schizophrenia. However, because early life seizures are commonly treated with antiepileptic drugs (AEDs) such as phenobarbital, the possibility that drug treatment may affect later-life psychiatric outcomes needs to be evaluated. We therefore tested the hypothesis that phenobarbital exposure in the neonatal rat increases the risk of schizophrenia-like behavioral abnormalities in adulthood. Thus, in this study, we examined the effects of a single acute neonatal exposure to phenobarbital on adult behavioral outcomes in the rat neonatal ventral hippocampal (nVH) lesion model of schizophrenia. We compared these outcomes to those in rats a) without nVH lesions and b) with nVH lesions, without phenobarbital. The tasks used for behavioral evaluation were: amphetamine-induced locomotion, prepulse inhibition, elevated plus-maze, and novel object recognition task. We found that neonatal phenobarbital treatment (in the absence of nVH lesions) was sufficient to disrupt sensorimotor gating (as tested by prepulse inhibition) in adulthood to an extent equivalent to nVH lesions. Additionally, neonatal phenobarbital exposure enhanced the locomotor response to amphetamine in adult animals with and without nVH lesions. Our findings suggest that neonatal exposure to phenobarbital can predispose to schizophrenia-like behavioral abnormalities. Our findings underscore the importance of examining AED exposure early in life as a potential risk factor for later-life neuropsychiatric abnormalities in clinical populations. PMID:22366076

  5. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  6. Increased hepatic nicotine elimination after phenobarbital induction in the conscious rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foth, H.; Walther, U.I.; Kahl, G.F.

    1990-09-15

    Elimination parameters of (14C)nicotine in conscious rats receiving nicotine (0.3 mg/kg) either intravenously or orally were studied. The oral availability of unchanged nicotine, derived by comparison of the respective areas under the concentration vs time curves (AUC), was 89%, indicating low hepatic extraction ratios of about 10%. Pretreatment of rats with phenobarbital (PB) markedly increased hepatic first-pass extraction of nicotine. The oral availability of unchanged nicotine in plasma dropped to 1.4% of the corresponding values obtained from PB-treated rats receiving nicotine iv. After PB pretreatment, the clearance of iv nicotine was increased approximately twofold over controls, much less than themore » observed more than ninefold increase of hepatic first-pass extraction. It is assumed that extrahepatic metabolism contributed significantly to the rapid removal of nicotine from the plasma. The elimination of cotinine, originating from nicotine administered either po or iv, was significantly increased by PB pretreatment, as determined by the ratio of corresponding AUCs. The pattern of nicotine metabolites in urine also indicated an increase in the rate of cotinine metabolic turnover. The amount of norcotinine in the organic extract of urine paralleled PB microsomal enzyme induction. The ratio between urinary concentrations of the normetabolite and cotinine correlated strongly with the PB-induced state of rat liver. This may be a suitable indicator of PB-inducible hepatic cytochrome P450 isoenzyme(s). Since smoking habits in man are feedback-regulated by nicotine plasma concentrations, a similar increase of nicotine elimination by microsomal enzyme induction in man may be of relevance for tobacco consumption.« less

  7. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver.

    PubMed

    Guo, Dongsheng; Sarkar, Joy; Ahmed, Mohamed R; Viswakarma, Navin; Jia, Yuzhi; Yu, Songtao; Sambasiva Rao, M; Reddy, Janardan K

    2006-08-25

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.

  8. The Peptide Near the C Terminus Regulates Receptor CAR Nuclear Translocation Induced by Xenochemicals in Mouse Liver

    PubMed Central

    Zelko, Igor; Sueyoshi, Tatsuya; Kawamoto, Takeshi; Moore, Rick; Negishi, Masahiko

    2001-01-01

    In response to phenobarbital (PB) and other PB-type inducers, the nuclear receptor CAR translocates to the mouse liver nucleus (T. Kawamoto et al., Mol. Cell. Biol. 19:6318–6322, 1999). To define the translocation mechanism, fluorescent protein-tagged human CAR (hCAR) was expressed in the mouse livers using the in situ DNA injection and gene delivery systems. As in the wild-type hCAR, the truncated receptor lacking the C-terminal 10 residues (i.e., AF2 domain) translocated to the nucleus, indicating that the PB-inducible translocation is AF2 independent. Deletion of the 30 C-terminal residues abolished the receptor translocation, and subsequent site-directed mutagenesis delineated the PB-inducible translocation activity of the receptor to the peptide L313GLL316AEL319. Ala mutations of Leu313, Leu316, or Leu319 abrogated the translocation of CAR in the livers, while those of Leu312 or Leu315 did not affect the nuclear translocation. The leucine-rich peptide dictates the nuclear translocation of hCAR in response to various PB-type inducers and appears to be conserved in the mouse and rat receptors. PMID:11283262

  9. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling

    PubMed Central

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2017-01-01

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr52, which then promoted the dephosphorylation of CAR at Thr38 by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR. PMID:23652203

  10. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    PubMed

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  11. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    PubMed

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  12. Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rettie, A.E.; Boberg, M.; Rettenmeier, A.W.

    1988-09-25

    The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is amore » more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction.« less

  13. Two-dimensional high-performance liquid chromatographic method to assay p-hydroxyphenylphenylhydantoin enantiomers in biological fluids and stereoselectivity of enzyme induction in phenytoin metabolism.

    PubMed

    Hsieh, C Y; Huang, J D

    1992-03-13

    A two-dimensional high-performance liquid chromatographic method was developed to assay the enantiomers of a major phenytoin metabolite, p-hydroxyphenylphenylhydantoin (p-HPPH). Racemic p-HPPH was first separated from phenytoin and other interfering peaks by a reversed-phase column and monitored by an ultraviolet detector. At the retention time of p-HPPH, the racemic p-HPPH peak was automatically transferred to a chiral ligand-exchange column to separate R-p-HPPH and S-p-HPPH by a time-programmed column-switching valve. The ratio of enantiomers was measured by a second ultraviolet detector. The method can be used to assay R- and S-p-HPPH enantiomers with reasonable sensitivity and reproducibility. By using this method, the stereoselectivity of enzyme induction and inhibition of phenytoin metabolism was investigated. Male rats were treated with phenobarbital, 3-methylcholanthrene, acetone, Aroclor 1254, pregnenolone-16 alpha-carbonitrile, dexamethasone and isosafrole. Microsomes were prepared from the rat liver and phenytoin hydroxylation was measured. Pretreatment with phenobarbital, pregnenolone-16 alpha-carbonitrile or acetone induced phenytoin metabolism non-stereoselectively. Pretreatment with dexamethasone decreased R-p-HPPH formation without affecting the formation of S-p-HPPH. Liver microsomes from female rats showed a higher S-p-HPPH formation, whereas R-p-HPPH formation remained the same. Various inhibitors were added to inhibit phenytoin metabolism by control microsomes. Sulphaphenazole, ketoconazole, 4,4-di(p-methoxyphenyl)hydantoin, cimetidine and diazepam inhibited the formation of R- and S-p-HPPH. Quinidine, tolbutamide and mephenytoin showed no significant inhibitory activity. None of these inhibitors showed stereoselectivity.

  14. Comparison of the long-term behavioral effects of neonatal exposure to retigabine or phenobarbital in rats.

    PubMed

    Frankel, Sari; Medvedeva, Natalia; Gutherz, Samuel; Kulick, Catherine; Kondratyev, Alexei; Forcelli, Patrick A

    2016-04-01

    Anticonvulsant drugs, when given during vulnerable periods of brain development, can have long-lasting consequences on nervous system function. In rats, the second postnatal week approximately corresponds to the late third trimester of gestation/early infancy in humans. Exposure to phenobarbital during this period has been associated with deficits in learning and memory, anxiety-like behavior, and social behavior, among other domains. Phenobarbital is the most common anticonvulsant drug used in neonatology. Several other drugs, such as lamotrigine, phenytoin, and clonazepam, have also been reported to trigger behavioral changes. A new generation anticonvulsant drug, retigabine, has not previously been evaluated for long-term effects on behavior. Retigabine acts as an activator of KCNQ channels, a mechanism that is unique among anticonvulsants. Here, we examined the effects retigabine exposure from postnatal day (P)7 to P14 on behavior in adult rats. We compared these effects with those produced by phenobarbital (as a positive control) and saline (as a negative control). Motor behavior was assessed by using the open field and rotarod, anxiety-like behavior by the open field, elevated plus maze, and light-dark transition task, and learning/memory by the passive avoidance task; social interactions were assessed in same-treatment pairs, and nociceptive sensitivity was assessed via the tail-flick assay. Motor behavior was unaltered by exposure to either drug. We found that retigabine exposure and phenobarbital exposure both induced increased anxiety-like behavior in adult animals. Phenobarbital, but not retigabine, exposure impaired learning and memory. These drugs also differed in their effects on social behavior, with retigabine-exposed animals displaying greater social interaction than phenobarbital-exposed animals. These results indicate that neonatal retigabine induces a subset of behavioral alterations previously described for other anticonvulsant drugs and extend our knowledge of drug-induced behavioral teratogenesis to a new mechanism of anticonvulsant action. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Comparison of the long-term behavioral effects of neonatal exposure to retigabine or phenobarbital in rats

    PubMed Central

    Frankel, Sari; Medvedeva, Natalia; Gutherz, Samuel; Kulick, Catherine; Kondratyev, Alexei; Forcelli, Patrick A.

    2016-01-01

    Anticonvulsant drugs, when given during vulnerable periods of brain development, can have long-lasting consequences on nervous system function. In rats, the second postnatal week approximately corresponds to the late third trimester of gestation/early infancy in humans. Exposure to phenobarbital during this period has been associated with deficits in learning and memory, anxiety-like behavior, and social behavior, among other domains. Phenobarbital is the most common anticonvulsant drug used in neonatology. Several other drugs, such as lamotrigine, phenytoin, and clonazepam have also been reported to trigger behavioral changes. A new generation anticonvulsant drug, retigabine, has not previously been evaluated for long-term effects on behavior. Retigabine acts as an activator of KCNQ channels, a mechanism that is unique among anticonvulsants. Here, we examined the effects retigabine exposure from postnatal day (P)7 to P14 on behavior in adult rats. We compared these effects to those produced by phenobarbital (as a positive control) and saline (as a negative control). Motor behavior was assessed using the open field and rotarod, anxiety-like behavior by the open field, elevated plus maze, and light-dark transition task, and learning/memory by the passive avoidance task; social interactions were assessed in same-treatment pairs and nociceptive sensitivity was assessed via the tail-flick assay. Motor behavior was unaltered by exposure to either drug. We found that retigabine and phenobarbital exposure both induced increased anxiety-like behavior in adult animals. Phenobarbital, but not retigabine exposure impaired learning and memory. These drugs also differed in their effects on social behavior, with retigabine-exposed animals displaying greater social interaction than phenobarbital-exposed animals. These results indicate that neonatal retigabine induces a subset of behavioral alterations previously described for other anticonvulsant drugs, and extend our knowledge of drug-induced behavioral teratogenesis to a new mechanism of anticonvulsant action. PMID:26921596

  16. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    PubMed

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Carcinogenicity of by-products of disinfection in mouse and rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herren-Freund, S.L.; Pereira, M.A.

    1986-11-01

    By-products of disinfection were tested for initiating and/or promoting activity in rat liver by using the rat liver foci bioassay. The assay uses an increased incidence of ..gamma..-glutamyltranspeptidase-positive foci (GGT foci) as an indicator of carcinogenicity. The by-products of disinfection, including chloramine, halogenated humic acids, halogenated ethanes, halogenated acetonitriles, halogenated methanes, halogenated ethylene, and N-Cl piperidine, did not initiate GGT foci, which would indicate that they are not capable of initiating carcinogenesis. Chloroform and halogenated benzenes were tested in this assay for their ability to promote the occurrence of GGT foci and tumors initiated by diethylnitrosamine (DENA). Chloroform either hadmore » no effect or inhibited the occurrence of GGT foci when administered subsequent to a single dose of DENA. However, when the chloroform was administered in drinking water concurrently with weekly doses of DENA, it enhanced the formation of liver tumors. Of 20 halogenated benzenes tested, only 1,2,4,5-tetrachlorobenzene and hexachlorobenzene promoted the occurrence of DENA-initiated GGT foci. Thus in rat liver, the tested by-products of drinking water disinfection did not demonstrate tumor-initiating activity, although a few appeared to possess tumor-promoting activity. Chloroform was also tested for tumor-promoting activity in 15-days-old Swiss mice initiated with ethylnitrosourea (ENU). ENU at 5 and 20 ..mu..g/g caused a dose-dependent increase in liver tumors. In male mice, chloroform inhibited both spontaneous and ENU-induced liver tumors. When administered in the drinking water, chloroform inhibited, whereas phenobarbital promoted, hepatocarcinogenesis in mice.« less

  18. 2'-Deoxyguanosine as a surrogate trapping agent for DNA reactive drug metabolites.

    PubMed

    Häkkinen, Merja R; Laine, Jaana E; Juvonen, Risto O; Auriola, Seppo; Häyrinen, Jukka; Pasanen, Markku

    2011-11-10

    Drug metabolism can result in the production of highly reactive metabolites that may form adducts with cellular macromolecules, and thus initiate adverse drug reactions, cause toxicity, and even require the withdrawal of drug from the market. In this study, a 2'-deoxyguanosine (dG)-based chemical trapping test system was developed for use as a fast screening tool for DNA adducting metabolites of new drug candidates. Reactive metabolites were generated from parent compounds in in vitro incubations with phenobarbital-induced mouse liver microsomes, human liver microsomes and different recombinant human CYP enzymes in the presence of dG. The formed dG-adducts were separated, characterized and their stability was studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was evaluated with six test compounds, aflatoxin B1, estrone, clozapine, tolcapone, ticlopidine and imipramine. Estrone and aflatoxin B1 formed dG adducts with phenobarbital-induced mouse liver microsomes, human liver microsomes and human recombinant CYP enzymes. Adduct formation was also observed with tolcapone when phenobarbital-induced mouse liver microsomes were used as the enzyme source. The stability of each formed adduct was independent of the different enzyme sources. No dG-adducts were identified with ticlopidine, clozapine and imipramine. Compared to other classical DNA reactivity tests, e.g. Ames test, the present surrogate endpoint, the dG adduct, is faster, enables the characterization of the formed compounds, and also permits the investigation of more unstable adducts. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Mesenchyme-derived factors enhance preneoplastic growth by non-genotoxic carcinogens in rat liver.

    PubMed

    Nejabat, Marzieh; Riegler, Teresa; Reitinger, Tabea; Subosits, Sandra; Römer, Michael; Eichner, Johannes; Bilban, Martin; Zell, Andreas; Huber, Wolfgang W; Schulte-Hermann, Rolf; Grasl-Kraupp, Bettina

    2018-02-01

    Many frequently prescribed drugs are non-genotoxic carcinogens (NGC) in rodent liver. Their mode of action and health risks for humans remain to be elucidated. Here, we investigated the impact of two model NGC, the anti-epileptic drug phenobarbital (PB) and the contraceptive cyproterone acetate (CPA), on intrahepatic epithelial-mesenchymal crosstalk and on growth of first stages of hepatocarcinogenesis. Unaltered hepatocytes (HC) and preneoplastic HC (HC PREN ) were isolated from rat liver for primary culture. DNA replication of HC and HC PREN was increased by in vitro treatment with 10 µM CPA, but not 1 mM PB. Next, mesenchymal cells (MC) obtained from liver of rats treated with either PB (50 mg/kg bw/day) or CPA (100 mg/kg bw/day), were cultured. Supernatants from both types of MC raised DNA synthesis of HC and HC PREN . This indicates that PB induces replication of HC and HC PREN only indirectly, via growth factors secreted by MC. CPA, however, acts on HC and HC PREN directly as well as indirectly via mesenchymal factors. Transcriptomics and bio-informatics revealed that PB and CPA induce extensive changes in the expression profile of MC affecting many growth factors and pathways. MC from PB-treated rats produced and secreted enhanced levels of HBEGF and GDF15, factors found to suppress apoptosis and/or induce DNA synthesis in cultured HC and HC PREN . MC from CPA-treated animals showed enhanced expression and secretion of HGF, which strongly raised DNA replication of HC and HC PREN . In conclusion, our findings reveal profound effects of two prototypical NGC on the hepatic mesenchyme. The resulting release of factors, which suppress apoptosis and/or enhance cell replication preferentially in cancer prestages, appears to be crucial for tumor promotion by NGC in the liver.

  20. A possible mechanism for the decrease in serum thyroxine level by phenobarbital in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yoshihisa, E-mail: kato@kph.bunri-u.ac.jp; Suzuki, Hiroshi; Haraguchi, Koichi

    2010-12-15

    Effects of phenobarbital (PB) on the levels of serum thyroid hormones such as total thyroxine (T{sub 4}) and triiodothyronine were examined in male mice, hamsters, rats, and guinea pigs. One day after the final administration of PB (80 mg/kg, intraperitoneal, once daily for 4 days), significant decreases in the levels of the serum total T{sub 4} and free T{sub 4} occurred in mice, hamsters, and rats, while a significant decrease in the level of serum triiodothyronine was observed in hamsters and rats among the animals examined. In addition, a significant decrease in the level of serum thyroid-stimulating hormone was observedmore » in only hamsters among the rodents examined. Significant increases in the level and activity of hepatic T{sub 4}-UDP-glucuronosyltransferase (UGT1A) after the PB administration occurred in mice, hamsters, and rats, while the increase in the amount of biliary [{sup 125}I]T{sub 4}-glucuronide after an intravenous injection of [{sup 125}I]T{sub 4} to the PB-pretreated animals occurred only in rats. In mice, rats, and hamsters, but not guinea pigs, PB pretreatment promoted the clearance of [{sup 125}I]T{sub 4} from the serum, led to a significant increase in the steady-state distribution volumes of [{sup 125}I]T{sub 4}, and raised the concentration ratio (Kp value) of the liver to serum and the liver distribution of [{sup 125}I]T{sub 4}. The present findings indicate that the PB-mediated decreases in the serum T{sub 4} level in mice, hamsters, and rats, but not guinea pigs, occur mainly through an increase in the accumulation level of T{sub 4} in the liver.« less

  1. Transcriptional activation of PPARalpha by phenobarbital in the absence of CAR and PXR.

    PubMed

    Tamasi, Viola; Juvan, Peter; Beer, Markus; Rozman, Damjana; Meyer, Urs A

    2009-01-01

    The nuclear receptors CAR (constitutive androstane receptor) and PXR (pregnane X receptor) mediate the effects of phenobarbital on gene transcription. To investigate the relative contribution of these nuclear receptors to the expression of specific genes we studied the effect of phenobarbital in livers of wild type, CAR(-/-), PXR(-/-) and CAR/PXR(-/-) knockout mice. Spotted Steroltalk v1 cDNA arrays were applied containing probes for genes involved in drug metabolism, sterol biosynthesis, steroid synthesis/transport and heme synthesis. In the absence of CAR and PXR, phenobarbital unexpectedly induced mRNAs of several nuclear receptors, including PPARalpha and its target genes Cyp4a10 and Cyp4a14. Interestingly, in primary cultures of hepatocytes isolated from CAR/PXR(-/-) knockout mice, phenobarbital increased HNF-4alpha levels. In further experiments in these hepatocyte cultures we provide evidence that phenobarbital directly induces transcription of the PPARalpha gene via its HNF-4alpha response element, and indirectly by lack of inhibitory crosstalk of AMPK, CAR and PXR with HNF-4alpha. Our results provide further insight into CAR and PXR-independent effects of phenobarbital and the crosstalk between different nuclear receptor signaling pathways.

  2. Bumetanide is not capable of terminating status epilepticus but enhances phenobarbital efficacy in different rat models.

    PubMed

    Töllner, Kathrin; Brandt, Claudia; Erker, Thomas; Löscher, Wolfgang

    2015-01-05

    In about 20-40% of patients, status epilepticus (SE) is refractory to standard treatment with benzodiazepines, necessitating second- and third-line treatments that are not always successful, resulting in increased mortality. Rat models of refractory SE are instrumental in studying the changes underlying refractoriness and to develop more effective treatments for this severe medical emergency. Failure of GABAergic inhibition is a likely cause of the development of benzodiazepine resistance during SE. In addition to changes in GABAA receptor expression, trafficking, and function, alterations in Cl(-) homeostasis with increased intraneuronal Cl(-) levels may be involved. Bumetanide, which reduces intraneuronal Cl(-) by inhibiting the Cl(-) intruding Na(+), K(+), Cl(-) cotransporter NKCC1, has been reported to interrupt SE induced by kainate in urethane-anesthetized rats, indicating that this diuretic drug may be an interesting candidate for treatment of refractory SE. In this study, we evaluated the effects of bumetanide in the kainate and lithium-pilocarpine models of SE as well as a model in which SE is induced by sustained electrical stimulation of the basolateral amygdala. Unexpectedly, bumetanide alone was ineffective to terminate SE in both conscious and anesthetized adult rats. However, it potentiated the anticonvulsant effect of low doses of phenobarbital, although this was only seen in part of the animals; higher doses of phenobarbital, particularly in combination with diazepam, were more effective to terminate SE than bumetanide/phenobarbital combinations. These data do not suggest that bumetanide, alone or in combination with phenobarbital, is a valuable option in the treatment of refractory SE in adult patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Modifying influence of swine-serum-induced liver fibrosis on development of preneoplastic lesions in rat liver.

    PubMed

    Wada, S; Kato, T; Mutai, M; Ozaki, K; Yamaguchi, S; Kim, D J; Baba-Toriyama, H; Asamoto, M; Ito, N; Tsuda, H

    1996-03-01

    Modifying effects of fibrosis or a cirrhotic state, caused by treatment with swine serum (SS), on the induction of preneoplastic focal lesions were assessed in a rat medium-term liver bioassay model for the detection of environmental carcinogens, in which the test compound is administered during the promotion phase after initiation with diethylnitrosamine. In experiment I, repeated intraperitoneal administration of SS concomitantly with the hepatopromoting agent deoxycholic acid (DCA) or phenobarbital (PB) resulted in a cirrhotic state and a significant increase in the number or size of preneoplastic glutathione S-transferase placental form (GST-P)-positive liver cell foci as compared to the corresponding DCA or PB alone groups. In experiment II, SS was given prior to commencement of the same medium-term bioassay system, in which a known hepatopromoting agent, DCA, 17-alpha-ethynylestradiol, or 2-acetylaminofluorene, was applied. In this case, the liver did not show obvious cirrhotic change and, rather than any enhancement, slight inhibition of promotion occurred. The results indicate that a coexisting, but not a pre-existing, cirrhotic condition acts to increase growth pressure on GST-P+ preneoplastic foci, and suggest that concomitant administration of SS with the promoting agent could be applied to improve the sensitivity of the assay protocol.

  4. In vivo evaluation of anticonvulsant and antioxidant effects of phenobarbital microemulsion for transdermal administration in pilocarpine seizure rat model.

    PubMed

    Figueiredo, Kayo Alves; Medeiros, Shirlene Cesário; Neves, Jamilly Kelly Oliveira; da Silva, José Alexsandro; da Rocha Tomé, Adriana; Carvalho, André Luis Menezes; de Freitas, Rivelilson Mendes

    2015-04-01

    This study aimed to evaluate a microemulsion system (ME) containing phenobarbital in epilepsy model induced by pilocarpine in rats and to oxidative stress and histologic lesions in hippocampus. The microemulsion was applied to the shaved back of Wistar rats. The animals were divided into the following groups: control group (P400); ME50 40mg/kg, topically-t.p.; ME100, 40mg/kg, t.p.; EM50, 40mg/kg, t.p.; phenobarbital solution 40mg/kg (PS), oral. After 60min, behavioral changes were evaluated for 1h in the model of epileptical crisis induced by pilocarpine. Phenobarbital in microemulsion was able to increase the latency for status epilepticus (SE) (p<0.05), decrease the number of epileptical crisis (ME50: p<0.001; ME100: p<0.01) and decrease mortality rate by 80% compared to P400. In EM50 and PS groups, deaths were decreased by 53.3% and 100% respectively. The ME50 and ME100 groups were able to reduce oxidative stress in experimental animals when compared to the P400. The microemulsion was still capable of reducing neuronal damage in the hippocampal areas. The results of this study come in an innovative way, demonstrating the ability of transdermal ME50 and ME100 to reduce pilocarpine-induced epileptical crisis, oxidative stress, besides neuronal damages. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Enhancement of hepatic detoxification enzyme activity by dietary mercuric acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, D.J.

    1973-01-01

    This report deals with stimulation of liver microsomal enzymes by dietary mercuric acetate (HgAc) and interactions of HgAc with phenobarbital sodium (PB). There is a diphasic response of microsomal enzymes in rats exposed to mercurials. Detoxication activity increased as the dietary dose of HgAc was increased. Liver weight was unaffected by ingestion of HgAc . Toxicity of HgAc increased with dosage. There were no deaths among animals fed diets of 2000 ppM HgAc or less but all five animals fed the diet of 5000 ppM died after five but before ten days on the experiment. The mercury-phenobarbital interactions support speculationmore » that mercury in combination with other chemicals in the environment may have enzyme stimulatory capacity at low exposure levels. 25 references, 1 figure, 1 table.« less

  6. Suicide inactivation of cytochrome P-450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, G.; Descatoire, V.; Beaune, P.

    Incubation of rat liver microsomes with (3H)methoxsalen and NADPH resulted in the covalent binding of a methoxsalen intermediate to proteins comigrating with cytochromes P-450 UT-A, PB-B/D, ISF-G and PCN-E. Binding was increased by pretreatments with phenobarbital, beta-naphthoflavone (beta NF) and dexamethasone. Such pretreatments also increased the loss of CO-binding capacity either after administration of methoxsalen, or after incubation of hepatic microsomes with methoxsalen and NADPH. Immunoprecipitation of the methoxsalen metabolite-protein adducts in phenobarbital-induced microsomes was moderate with anti-UT-A antibodies, but marked with anti-PB-B/D and anti-PCN-E antibodies. Immunoprecipitation was observed also with anti-ISF-G (anti-beta NF-B) antibodies in beta NF-induced microsomes. Methoxsalenmore » (0.25 mM) inhibited markedly the benzphetamine demethylase activity of phenobarbital-induced microsomes and the erythromycin demethylase activity of dexamethasone-induced microsomes. Whereas methoxsalen itself did not produce any binding spectrum, in contrast either in vivo administration of methoxsalen or incubation in vitro with methoxsalen and NADPH resulted in a low-to-high spin conversion of cytochrome P-450 as suggested by the appearance of a spectrum analogous to a type I binding spectrum. This low-to-high spin conversion was apparently due to a methoxsalen intermediate (probably, covalently bound to the protein and preventing partial sixth ligation of the iron). We conclude that suicide inactivation of cytochrome P-450 by methoxsalen is related to the covalent binding of a methoxsalen intermediate to the protein moiety of several cytochrome P-450 isoenzymes (including UT-A, PB-B/D, PCN-E as well as ISF-G and/or beta NF-B).« less

  7. Early life status epilepticus and stress have distinct and sex-specific effects on learning, subsequent seizure outcomes, including anticonvulsant response to phenobarbital.

    PubMed

    Akman, Ozlem; Moshé, Solomon L; Galanopoulou, Aristea S

    2015-02-01

    Neonatal status epilepticus (SE) is often associated with adverse cognitive and epilepsy outcomes. We investigate the effects of three episodes of kainic acid-induced SE (3KA-SE) and maternal separation in immature rats on subsequent learning, seizure susceptibility, and consequences, and the anticonvulsant effects of phenobarbital, according to sex, type, and age at early life (EL) event. 3KA-SE or maternal separation was induced on postnatal days (PN) 4-6 or 14-16. Rats were tested on Barnes maze (PN16-19), or lithium-pilocarpine SE (PN19) or flurothyl seizures (PN32). The anticonvulsant effects of phenobarbital (20 or 40 mg/kg/rat, intraperitoneally) pretreatment were tested on flurothyl seizures. FluoroJadeB staining assessed hippocampal injury. 3KA-SE or separation on PN4-6 caused more transient learning delays in males and did not alter lithium-pilocarpine SE latencies, but aggravated its outcomes in females. Anticonvulsant effects of phenobarbital were preserved and potentiated in specific groups depending on sex, type, and age at EL event. Early life 3KA-SE and maternal separation cause more but transient cognitive deficits in males but aggravate the consequences of subsequent lithium-pilocarpine SE in females. In contrast, on flurothyl seizures, EL events showed either beneficial or no effect, depending on gender, type, and age at EL events. © 2014 John Wiley & Sons Ltd.

  8. In vitro covalent binding of new brain tracer, para-125I-amphetamine, to rat liver and lung microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joulin, Y.; Delaforge, M.; Hoellinger, H.

    1990-01-01

    p-125I-amphetamine (I-Amp) is retained significantly in liver and lung during brain tomoscintigraphy. To attempt to explain this clinical observation, we have investigated the interaction of I-Amp with rat liver and lung microsomal proteins. Studies using spectral shift technique indicate that low concentration of I-Amp gives a type I complex and high concentration appears very stable type II complex with cytochrome P-450 Fe III. In the presence of NADPH, I-Amp gives rise to a 455 nm absorbing complex with similar properties to the Fe-RNO complexes. This complex formation was greatly enhanced with phenobarbital treated liver microsomes. The in vitro binding studymore » shows that I-Amp and/or its metabolites was covalently bound to macromolecules in the presence of the molecular oxygen and NADPH-generating system. Incubation in the presence of glutathione, cystein and radical scavengers decreases binding. Mixed function oxydase (MFO) inhibitors diminish the amount of covalent binding and alter the extent of metabolite formation. The total covalent binding level increased with liver microsomes from PB pretreated rats as it was observed with the 455nm complex formation. The radioactivity distribution on microsomal proteins was examinated with SDS polyacrylamide gel electrophoresis and autoradiography. This experiment proves that the radiolabelled compounds are bound on the cytochrome P-450. The radioactivity bound increased when the PB induced rat liver microsomes were used. All these results indicate that I-Amp was activated by an oxydative process dependent on the MFO system which suggests a N-oxydation of I-Amp and the formation of reactive entities which covalently bind to proteins.« less

  9. Human hepatocytes support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogen sodium phenobarbital in an in vivo study using a chimeric mouse with humanized liver.

    PubMed

    Yamada, Tomoya; Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Takeuchi, Hayato; Nagahori, Hirohisa; Fukuda, Takako; Lake, Brian G; Cohen, Samuel M; Kawamura, Satoshi

    2014-11-01

    High doses of sodium phenobarbital (NaPB), a constitutive androstane receptor (CAR) activator, have been shown to produce hepatocellular tumors in rodents by a mitogenic mode of action (MOA) involving CAR activation. The effect of 1-week dietary treatment with NaPB on liver weight and histopathology, hepatic CYP2B enzyme activity and CYP2B/3A mRNA expression, replicative DNA synthesis and selected genes related to cell proliferation, and functional transcriptomic and metabolomic analyses was studied in male CD-1 mice, Wistar Hannover (WH) rats, and chimeric mice with human hepatocytes. The treatment of chimeric mice with 1000-1500-ppm NaPB resulted in plasma levels around 3-5-fold higher than those observed in human subjects given therapeutic doses of NaPB. NaPB produced dose-dependent increases in hepatic CYP2B activity and CYP2B/3A mRNA levels in all animal models. Integrated functional metabolomic and transcriptomic analyses demonstrated that the responses to NaPB in the human liver were clearly different from those in rodents. Although NaPB produced a dose-dependent increase in hepatocyte replicative DNA synthesis in CD-1 mice and WH rats, no increase in replicative DNA synthesis was observed in human hepatocyte-originated areas of chimeric mice. In addition, treatment with NaPB had no effect on Ki-67, PCNA, GADD45β, and MDM2 mRNA expression in chimeric mice, whereas significant increases were observed in CD-1 mice and/or WH rats. However, increases in hepatocyte replicative DNA synthesis were observed in chimeric mice both in vivo and in vitro after treatment epidermal growth factor. Thus, although NaPB could activate CAR in both rodent and human hepatocytes, NaPB did not increase replicative DNA synthesis in human hepatocytes of chimeric mice, whereas it was mitogenic to rat and mouse hepatocytes. As human hepatocytes are refractory to the mitogenic effects of NaPB, the MOA for NaPB-induced rodent liver tumor formation is thus not relevant for humans. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Biochemical Characterization of Porphobilinogen Deaminase–Deficient Mice During Phenobarbital Induction of Heme Synthesis and the Effect of Enzyme Replacement

    PubMed Central

    Johansson, Annika; Möller, Christer; Fogh, Jens; Harper, Pauline

    2003-01-01

    Acute intermittent porphyria (AIP) is a genetic disorder caused by a deficiency of porphobilinogen deaminase (PBGD), the 3rd enzyme in heme synthesis. It is clinically characterized by acute attacks of neuropsychiatric symptoms and biochemically by increased urinary excretion of the porphyrin precursors porphobilinogen (PBG) and 5-aminolevulinic acid (ALA). A mouse model that is partially deficient in PBGD and biochemically mimics AIP after induction of the hepatic ALA synthase by phenobarbital was used in this study to identify the site of formation of the presumably toxic porphyrin precursors and study the effect of enzyme-replacement therapy by using recombinant human PBGD (rhPBGD). After 4 d of phenobarbital administration, high levels of PBG and ALA were found in liver, kidney, plasma, and urine of the PBGD-deficient mice. The administration of rhPBGD intravenously or subcutaneously after a 4-d phenobarbital induction was shown to lower the PBG level in plasma in a dose-dependent manner with maximal effect seen after 30 min and 2 h, respectively. Injection of rhPBGD subcutaneously twice daily during a 4-d phenobarbital induction reduced urinary PBG excretion to 25% of the levels found in PBGD-deficient mice administered with only phenobarbital. This study points to the liver as the main producer of PBG and ALA in the phenobarbital-induced PBGD-deficient mice and demonstrates efficient removal of accumulated PBG in plasma and urine by enzyme-replacement therapy. PMID:15208740

  11. Differences in primary cellular factors influencing the metabolism and distribution of 3,5,3′-L-triiodothyronine and L-thyroxine

    PubMed Central

    Oppenheimer, Jack H.; Schwartz, Harold L.; Shapiro, Harvey C.; Bernstein, Gerald; Surks, Martin I.

    1970-01-01

    Administration of phenobarbital, which acts exclusively on cellular sites, results in an augmentation of the liver/plasma concentration ratio of L-thyroxine (T4) in rats but no change in the liver/plasma concentration ratio of L-triiodothyronine (T3). Whereas phenobarbital stimulates the fecal clearance rate both of T3 and T4, it increases the deiodinative clearance rate of T4 only. These findings suggest basic differences in the cellular metabolism of T3 and T4. Further evidence pointing to cellular differences was obtained from a comparison of the distribution and metabolism of these hormones with appropriate corrections for the effect of differential plasma binding. The percentage of total exchangeable cellular T4 within the liver (28.5) is significantly greater than the corresponding percentage of exchangeable cellular T3 within this organ (12.3). Extrahepatic tissues bind T3 twice as firmly as T4. The cellular metabolic clearance rate (= free hormone clearance rate) of T3 exceeds that of T4 by a factor 1.8 in the rat. The corresponding ratio in man, 2.4, was determined by noncompartmental analysis of turnover studies in four individuals after the simultaneous injection of T4-125I and T3-131I. The greater cellular metabolic clearance rate of T3 both in rat and man may be related to the higher specific hormonal potency of this iodothyronine. PMID:5441537

  12. Current and emerging challenges in toxicopathology: Carcinogenic threshold of phenobarbital and proof of arsenic carcinogenicity using rat medium-term bioassays for carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Shoji; Morimura, Keiichirou; Wanibuchi, Hideki

    2005-09-01

    For the last 25 years, Prof. Nobuyuki Ito and his laboratory have focused on the development of liver medium-term bioassay system for detection of carcinogens in F344 rats utilizing glutathione S-transferase placental form (GST-P)-positive foci as an end point marker. In this presentation, the outline and samples of medium-term bioassay systems were described. Furthermore, our data demonstrated the presence of a threshold for the non-genotoxic carcinogen, phenobarbital (PB), and the lack of linearity in the low-dose area of the dose-response curve, providing evidence for hormesis. In addition, the establishment and applications of multiorgan carcinogenicity bioassay (DMBDD model), used for themore » examination of the carcinogenicity of genotoxic and non-genotoxic chemicals, are discussed. Dimethylarsinic acid, one of organic arsenics, was found to be carcinogenic in rat bladder using DMBDD model and carcinogenicity test.« less

  13. Differential display in rat livers treated for 13 weeks with phenobarbital implicates a role for metabolic and oxidative stress in nongenotoxic carcinogenicity.

    PubMed

    Elrick, Mollisa M; Kramer, Jeffrey A; Alden, Carl L; Blomme, Eric A G; Bunch, Roderick T; Cabonce, Marc A; Curtiss, Sandra W; Kier, Larry D; Kolaja, Kyle L; Rodi, Charles P; Morris, Dale L

    2005-01-01

    Hepatic enzyme inducers such as phenobarbital are often nongenotoxic rodent hepatocarcinogens. Currently, nongenotoxic hepatocarcinogens can only be definitively identified through costly and extensive long-term, repeat-dose studies (e.g., 2-year rodent carcinogenicity assays). Although liver tumors caused by these compounds are often not found to be relevant to human health, the mechanism(s) by which they cause carcinogenesis are not well understood. Toxicogenomic technologies represent a new approach to understanding the molecular bases of toxicological liabilities such asnongenotoxic carcinogenicity early in the drug discovery/development process. Microarrays have been used to identify mechanistic molecular markers of nongenotoxic rodent hepatocarcinogenesis in short-term, repeat-dose preclinical safety studies. However, the initial "noise" of early adaptive changes may confound mechanistic interpretation of transcription profiling data from short-term studies, and the molecular processes triggered by treatment with a xenobiotic agent are likely to change over the course of long-term treatment. Here, we describe the use of a differential display technology to understand the molecular mechanisms related to 13 weeks of dosing with the prototype rodent nongenotoxic hepatocarcinogen, phenobarbital. These findings implicate a continuing role for oxidative stress in nongenotoxic carcinogenicity.An Excel data file containing raw data is available in full at http://taylorandfrancis.metapress.com/openurl.asp?genre=journal&issn=0192-6233. Click on the issue link for 33(1), then select this article. A download option appears at the bottom of this abstract. The file contains raw data for all gene changes detected by AFLP, including novel genes and genes of unknown function; sequences of detected genes; and animal body and liver weight ratios. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org.

  14. A review of epidemiological data on epilepsy, phenobarbital, and risk of liver cancer.

    PubMed

    La Vecchia, Carlo; Negri, Eva

    2014-01-01

    Phenobarbital is not genotoxic, but has been related to promotion of liver cancer (as well as inhibition) in rodents. In October 2012, we carried out a systematic literature search in the Medline database and searched reference lists of retrieved publications. We identified 15 relevant papers. Epidemiological data on epileptics/anticonvulsant use and liver cancer were retrieved from eight reports from seven cohort (record linkage) studies of epileptics, and data on phenobarbital use from a pharmacy-based record linkage investigation of patients treated with phenobarbital (three reports), plus a case-control study nested in one of the cohort studies and including information on phenobarbital use. Of the studies of cancer in epileptics, two showed no excess risk of liver cancer. A long-term (1933-1984) Danish cohort study of epileptics found relative risks (RRs) of 4.7 [95% confidence interval (CI) 3.2-6.8] of liver cancer and of 2.2 (95% CI 1.2-3.5) of biliary tract cancers. Such apparent excess risks could, however, be largely or completely attributed to thorotrast, a contrast medium used in the past in epileptic patients for cerebral angiography. A Finnish cohort study of epileptics obtained an RR of 1.7 (95% CI 1.2-2.4). Such an apparent excess risk, however, was not related to phenobarbital or to any specific anticonvulsant drug. The long-term follow-up of two UK cohorts found some excess risk of liver cancer among severe, but not among mild, epileptics. Some excess risk of liver cancer was also found in cohort studies of patients hospitalized for epilepsy in Sweden and Taiwan, in the absence, however, of association with any specific drugs. A UK General Practice database, comparing epileptics treated with valproate with unexposed ones, found a very low incidence of liver cancer. Of the studies of cancer in patients treated with phenobarbital, a large US pharmacy-based cohort investigation showed no excess risk of liver cancer. In a case-control study, nested in the Danish cohort of epileptics, no association was observed between phenobarbital and liver cancer among patients who had not received thorotrast (RR=1.0 for liver and 0.8 for biliary tract cancers). Thus, some, although not all, studies reported excess risk of all cancers and liver cancer in severe, but not in milder epileptics. There is no evidence of a specific role of phenobarbital in human liver cancer risk, but data on the topic are limited.

  15. Effects of three hypnotics on the sleep-wakefulness cycle in sleep-disturbed rats.

    PubMed

    Shinomiya, Kazuaki; Shigemoto, Yuki; Omichi, Junji; Utsu, Yoshiaki; Mio, Mitsunobu; Kamei, Chiaki

    2004-04-01

    New sleep disturbance model in rats is useful for estimating the characteristics of some hypnotics. The present study was undertaken to investigate the utility of a sleep disturbance model by placing rats on a grid suspended over water using three kinds of hypnotics, that is, short-acting benzodiazepine (triazolam), intermediate-acting benzodiazepine (flunitrazepam) and long-acting barbiturate (phenobarbital). Electrodes for measurement of EEG and EMG were implanted into the frontal cortex and the dorsal neck muscle of rats. EEG and EMG were recorded with an electroencephalogram. SleepSign ver.2.0 was used for EEG and EMG analysis. Total times of wakefulness, non-REM and REM sleep were measured from 0900 to 1500 hours. In rats placed on the grid suspended over water up to 1 cm under the grid surface, not only triazolam but also flunitrazepam and phenobarbital caused a shortening of sleep latency. Both flunitrazepam and phenobarbital were effective in increasing of total non-REM sleep time in rats placed on sawdust or the grid, and the effects of both drugs in rats placed on the grid were larger than those in rats placed on sawdust. Measurement of the hourly non-REM sleep time was useful for investigating the peak time and duration of effect of the three hypnotics. Phenobarbital showed a decrease in total REM sleep time in rats placed on the grid, although both triazolam and flunitrazepam were without effect. The present insomnia model can be used as a sleep disturbance model for testing not only the sleep-inducing effects but also the sleep-maintaining effects including non-REM sleep and REM sleep of hypnotics.

  16. OXIDATION OF POLYCHLORINATED BIPHENYLS BY LIVER TISSUE SLICES FROM PHENOBARBITAL-PRETREATED MICE IS CONGENER-SPECIFIC AND ATROPSELECTIVE

    PubMed Central

    Wu, Xianai; Duffel, Michael; Lehmler, Hans-Joachim

    2013-01-01

    Mouse models are powerful tools to study the developmental neurotoxicity of polychlorinated biphenyls (PCBs); however, studies of the oxidation of chiral PCB congeners to potentially neurotoxic hydroxylated metabolites (OH-PCBs) in mice have not been reported. Here we investigate the atropselective oxidation of chiral PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) and PCB 149 (2,2',3,4',5',6-hexachlorobiphenyl) to OH-PCBs in liver tissue slices prepared from female mice. The metabolite profile of PCB 136 typically followed the rank order 5-OH-PCB > 4-OH-PCB > 4,5-OH-PCB, and metabolite levels increased with PCB concentration and incubation time. A similar OH-PCB profile was observed with the other PCB congeners, with 5-OH-PCB:4-OH-PCB ratios ranging from 2 to 12. More 5-OH-PCB 136 was formed in liver tissue slices obtained from animals pretreated with phenobarbital (P450 2B inducer) or, to a lesser extent, dexamethasone (P450 2B and 3A enzyme inducer) compared to tissue slices prepared from vehicle-pretreated animals. The apparent rate of 5-OH-PCBs formation followed the approximate rank order PCB 149 > PCB 91 > PCB 132 ~ PCB 136 > PCB 95. Atropselective gas chromatography revealed a congener-specific atropisomeric enrichment of major OH-PCB metabolites. Comparison of our results with published OH-PCB patterns and chiral signatures (i.e., the direction and extent of the atropisomeric enrichment) from rat liver microsomal revealed drastic differences between both species, especially following induction of P450 2B enzymes. These species differences in the metabolism of chiral PCBs should be considered in developmental neurotoxicity studies of PCBs. PMID:24107130

  17. Comparison of the hepatic and thyroid gland effects of sodium phenobarbital in wild type and constitutive androstane receptor (CAR) knockout rats and pregnenolone-16α-carbonitrile in wild type and pregnane X receptor (PXR) knockout rats.

    PubMed

    Haines, Corinne; Chatham, Lynsey R; Vardy, Audrey; Elcombe, Clifford R; Foster, John R; Lake, Brian G

    2018-05-01

    A number of chemicals produce liver and thyroid gland tumours in rodents by nongenotoxic modes of action (MOAs). In this study the hepatic and thyroid gland effects of the constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) were examined in male Sprague-Dawley wild type (WT) rats and in CAR knockout (CAR KO) rats and the effects of the pregnane X receptor (PXR) activator pregnenolone-16α-carbonitrile (PCN) were examined in WT and PXR knockout (PXR KO) rats. Rats were either fed diets containing 0 (control) or 500 ppm NaPB or were dosed with 0 (control) or 100 mg/kg/day PCN orally for 7 days. The treatment of WT rats with NaPB and PCN for 7 days resulted in increased relative liver weight, increased hepatocyte replicative DNA synthesis (RDS) and the induction of cytochrome P450 CYP2B and CYP3A subfamily enzyme, mRNA and protein levels. In marked contrast, the treatment of CAR KO rats with NaPB and PXR KO rats with PCN did not result in any increases in liver weight and induction of CYP2B and CYP3A enzymes. The treatment of CAR KO rats with NaPB had no effect on hepatocyte RDS, while PCN produced only a small increase in hepatocyte RDS in PXR KO rats. Treatment with NaPB had no effect on thyroid gland weight in WT and CAR KO rats, whereas treatment with PCN resulted in an increase in relative thyroid gland weight in WT, but not in PXR KO, rats. Thyroid gland follicular cell RDS was increased by the treatment of WT rats with NaPB and PCN, with NaPB also producing a small increase in thyroid gland follicular cell RDS in CAR KO rats. Overall, the present study with CAR KO rats demonstrates that a functional CAR is required for NaPB-mediated increases in liver weight, stimulation of hepatocyte RDS and induction of hepatic CYP enzymes. The studies with PXR KO rats demonstrate that a functional PXR is required for PCN-mediated increases in liver weight and induction of hepatic CYP enzymes; with induction of hepatocyte RDS also being largely mediated through PXR. The hepatic effects of NaPB in CAR KO rats and of PCN in PXR KO rats are in agreement with those observed in other recent literature studies. These results suggest that CAR KO and PXR KO rats are useful experimental models for liver MOA studies with rodent CAR and PXR activators and may also be useful for thyroid gland MOA studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    PubMed

    Cleary, Ryan T; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M; Li, Yijun; Rotenberg, Alexander; Talos, Delia M; Kahle, Kristopher T; Jackson, Michele; Rakhade, Sanjay N; Berry, Gerard T; Berry, Gerard; Jensen, Frances E

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  19. Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures

    PubMed Central

    Cleary, Ryan T.; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M.; Li, Yijun; Rotenberg, Alexander; Talos, Delia M.; Kahle, Kristopher T.; Jackson, Michele; Rakhade, Sanjay N.; Berry, Gerard; Jensen, Frances E.

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na+-K+-2 Cl− cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures. PMID:23536761

  20. Effect of phenytoin (DPH) treatment on methoxyflurane metabolism in rats.

    PubMed

    Caughey, G H; Rice, S A; Kosek, J C; Mazze, R I

    1979-08-01

    The toxicity and metabolism of the fluorinated anesthetic methoxyflurane were compared in Fischer 344 rats pretreated with phenytoin or phenobarbital. Treatment with either drug potentiated the polyuric effects of methoxyflurane by more than 100%. Also, serum inorganic fluoride (F-) levels and urinary F- excretions after methoxyflurane exposure were comparable in phenytoin- and phenobarbital-treated rats, a 26 to 49% increase as compared to rats treated with methoxyflurane alone. In vitro, 10-fold increases in the rate of hepatic microsomal methoxyflurane defluorination were observed after treatment of rats with either phenytoin or phenobarbital. Kinetic studies with microsomes demonstrated inhibition of methoxyflurane defluorination in the presence of phenytoin. Defluorination of three additional fluorinated ether anesthetics, enflurane, isoflurane and sevoflurane, also was examined in vitro. Phenytoin and phenobarbital treatment resulted in similar enhancement of defluorination of the latter two anesthetics, but not enflurane. Phenytoin and phenobarbital treatment increase defluorination of fluorinated ether anesthetics to approximately the same extent in vitro and in vivo in Fischer 344 rats.

  1. The effect of alloxan diabetes on the activity of some mixed function oxidases in male rats.

    PubMed

    Nedjar, A; Stoytchev, T

    1990-01-01

    The effect of alloxan-induced diabetes on the duration of hexobarbital sleep (HB sleep) the activity of ethylmorphine-N-demethylase (EMND), aniline hydroxylase (AH), the content of microsomal cytochrome P-450 and b5, on the activity of ethoxycumarine-0-deethylase (ECOD) and ethoxyresorufine-0-deethylase (EROD) after induction with beta naphthoflavone (beta-NF), as well as the activity of benzphetamine-N-demethylase and pentoxyresorufine-O-dealkylase (PROD) after induction with phenobarbital (PB), was studied in experiments on male Wistar rats. In rats with alloxan diabetes there was a significant prolongation of HB sleep (by 106%) and inhibition of the liver EMND (by 54%), while the AH activity increased by 131%, with a parallel rise in the content of microsomal cytochromes P-450 (by 67%) and b5 (by 113%). In rats with alloxan diabetes the enzyme-inducing effect of beta-NF with respect to the activities of EROD and ECOD is reduced, although diabetes by itself causes a rise in the ECOD activity in untreated animals. When induced with PB, the PROD and benzphetamine-N-demethylase activity in diabetic rats is lower than in the healthy animals. However, if the enzyme activity after the application of inducers is referred to the respective starting enzyme activities of the two groups of animals, it is found that the enzyme-inducing effect of PB is preserved and even slightly potentiated in the diabetic rats compared with the healthy ones: the increases in the benzphetamine-N-demethylase activity is by 60% in the diabetic rats, compared with a rise of 28% in the healthy animals, of the PROD activity 19 times for the diabetic compared with 16 times increase for the healthy rats.

  2. Chemoprevention of Diethylnitrosamine-Initiated and Phenobarbital-Promoted Hepatocarcinogenesis in Rats by Sulfated Polysaccharides and Aqueous Extract of Ulva lactuca.

    PubMed

    Hussein, Usama K; Mahmoud, Hamada M; Farrag, Asmaa G; Bishayee, Anupam

    2015-11-01

    Hepatocellular carcinoma (HCC) is one of the common cancers and lethal diseases worldwide. Both oxidative stress and chronic inflammation contribute to the pathogenesis of HCC. Because of limited treatment options and a grave prognosis of HCC, preventive management has been emphasized. The marine macroalgae Ulva lactuca (Ulvaceae) is consumed by humans and livestock because of its nutritional value. Recent studies showed that various extracts of U. lactuca possess antiviral, antiplasmodial, antinephrotoxic, antioxidant, and anti-inflammatory properties. However, very limited information is available on anticancer potential of U. lactuca with no reports on liver cancer chemopreventive efficacy of this marine algae. Accordingly, the present study was initiated to evaluate the possible antihepatocarcinogenic effects and antioxidant mechanisms of action of various U. lactuca extracts against a clinically relevant rodent model of HCC. Initiation of hepatocarcinogenesis was performed in Sprague-Dawley rats by a single injection of dietary carcinogen diethylnitrosamine (DENA, 200 mg/kg, intraperitoneally), followed by promotion with phenobarbital (0.05%) in drinking water. The rats were fed with daily oral dose (50 mg/kg) of polysaccharide sulfate or aqueous extract of U. lactuca for 2, 12, and 24 weeks. At these timepoints, blood samples were taken to measure hepatic injury markers, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transferase, and bilirubin. The liver tissue was harvested for measurement of hepatic oxidative indices, including lipid peroxidation, reduced glutathione, nitric oxide, catalase, superoxide dismutase, glutathione reductase, and glutathione S-transferase. Hepatic histopathology, immunohistochemical analysis of cell proliferation and apoptosis by DNA fragmentation assay were performed. Our results clearly indicate that sulfated polysaccharides of U. lactuca exert a marked chemoprevention of DENA-initiated hepatocarcinogenesis through inhibition of abnormal cell proliferation and induction of apoptosis. A modest inhibition rat liver carcinogenesis was observed with the aqueous extract. The sulfated polysaccharides altered serum parameters of hepatic damage and modulated various components of the hepatic enzymatic and nonenzymatic antioxidant defense systems. The sulfated polysaccharides from U. lactuca may have unique properties of providing protection against DENA-induced oxidative stress which could contribute to chemoprevention of experimental hepatocarcinogenesis. U. lactuca sulfated polysaccharides could be developed as chemopreventive and therapeutic drug against human HCC. © The Author(s) 2015.

  3. Effects of hepatic enzyme inducers on thyroxine (T4) catabolism in primary rat hepatocytes

    EPA Science Inventory

    Nuclear receptor agonists such as phenobarbital (PB), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and 3-methylcholantrene (3-MC) decrease circulating thyroxine (T4) concentrations in rats. It is suspected that this decrease occurs through the induction of hepatic metabolizing en...

  4. HEPATIC ENZYME INDUCERS INCREASE THYROXINE (T4) CATABOLISM IN HUMAN AND RAT HEPATOCYTES

    EPA Science Inventory

    Nuclear receptor agonists such as 3-methylcholantrene (3-MC), phenobarbital (PB), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and, pregnenolone-16a-carbonitrile (PCN) decrease serum thyroxine (T4) concentrations in rats. It appears that this decrease occurs through the induction...

  5. Gene expression pattern recognition algorithm inferences to classify samples exposed to chemical agents

    NASA Astrophysics Data System (ADS)

    Bushel, Pierre R.; Bennett, Lee; Hamadeh, Hisham; Green, James; Ableson, Alan; Misener, Steve; Paules, Richard; Afshari, Cynthia

    2002-06-01

    We present an analysis of pattern recognition procedures used to predict the classes of samples exposed to pharmacologic agents by comparing gene expression patterns from samples treated with two classes of compounds. Rat liver mRNA samples following exposure for 24 hours with phenobarbital or peroxisome proliferators were analyzed using a 1700 rat cDNA microarray platform. Sets of genes that were consistently differentially expressed in the rat liver samples following treatment were stored in the MicroArray Project System (MAPS) database. MAPS identified 238 genes in common that possessed a low probability (P < 0.01) of being randomly detected as differentially expressed at the 95% confidence level. Hierarchical cluster analysis on the 238 genes clustered specific gene expression profiles that separated samples based on exposure to a particular class of compound.

  6. Ursolic acid attenuates oxidative stress-mediated hepatocellular carcinoma induction by diethylnitrosamine in male Wistar rats.

    PubMed

    Gayathri, Renganathan; Priya, D Kalpana Deepa; Gunassekaran, G R; Sakthisekaran, Dhanapal

    2009-01-01

    Hepatocellular carcinoma is the most common primary cancer of the liver in Asian countries. For more than a decade natural dietary agents including fruits, vegetables and spices have drawn a great deal of attention in the prevention of diseases, preferably cancer. Ursolic acid is a natural triterpenoid widely found in food, medicinal herbs, apple peel and other products it has been extensively studied for its anticancer and antioxidant properties. The purpose of this study was to evaluate the effect of ursolic acid in diethylnitrosamine (DEN) induced and phenobarbital promoted hepatocarcinogenesis in male Wistar rats. Antioxidant status was assessed by alterations in level of lipid peroxides and protein carbonyls. Damage to plasma membranes was assessed by levels of membrane and tissue ATPases. Liver tissue was homogenized and utilized for estimation of lipid peroxides, protein carbonyls and glycoproteins. Anticoagulated blood was utilized for erythrocyte membrane isolation. Oral administration of UA 20 mg/kg bodyweight for 6 weeks decreased the levels of lipid peroxides and protein carbonyls at a significance of p< 0.05. Activities of membrane and tissue ATPases returned to normal after UA administration. Levels of glycoproteins were also restored after treatment. Histopathological observations were recorded. The findings from the above study suggest the effectiveness of UA in reducing the oxidative stress mediated changes in liver of rats. Since UA has been found to be a potent antioxidant, it can be suggested as an excellent chemopreventive agent in overcoming diseases like cancer which are mediated by free radicals.

  7. THYROXINE (T4) CATABOLISM IN HUMAN AND RAT HEPATOCYTES INCREASES FOLLOWING EXPOSURE TO PROTOTYPICAL HEPATIC ENZYME INDUCERS

    EPA Science Inventory

    Nuclear receptor agonists such as phenobarbital (PB), 3-methylcholantrene (3MC), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and, pregnenolone-16a-carbonitrile (PCN) decrease serum thyroxine (T4) concentrations in rats. This decrease is thought to occur through the induction of ...

  8. THYROXINE (T4) CATABOLISM IN HUMAN AND RAT HEPATOCYTES INCREASES FOLLOWING EXPOSURE TO HEPATIC ENZYME INDUCERS

    EPA Science Inventory

    Nuclear receptor agonists phenobarbital (PB), 3-methylcholanthrene (3MC), pregnenolone-16a-carbonitrile (PCN), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and 2,2' ,4,4'-tetrabromodiphenyl ether (BDE 47) decrease serum thyroxine (T4) in rats. This decrease is thought to occur th...

  9. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.

    PubMed

    Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi

    2015-10-23

    The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. Copyright © 2015. Published by Elsevier Inc.

  10. Melatonin potentiates the anticonvulsant action of phenobarbital in neonatal rats.

    PubMed

    Forcelli, Patrick A; Soper, Colin; Duckles, Anne; Gale, Karen; Kondratyev, Alexei

    2013-12-01

    Phenobarbital is the most commonly utilized drug for neonatal seizures. However, questions regarding safety and efficacy of this drug make it particularly compelling to identify adjunct therapies that could boost therapeutic benefit. One potential adjunct therapy is melatonin. Melatonin is used clinically in neonatal and pediatric populations, and moreover, it exerts anticonvulsant actions in adult rats. However, it has not been previously evaluated for anticonvulsant effects in neonatal rats. Here, we tested the hypothesis that melatonin would exert anticonvulsant effects, either alone, or in combination with phenobarbital. Postnatal day (P)7 rats were treated with phenobarbital (0-40mg/kg) and/or melatonin (0-80mg/kg) prior to chemoconvulsant challenge with pentylenetetrazole (100mg/kg). We found that melatonin significantly potentiated the anticonvulsant efficacy of phenobarbital, but did not exert anticonvulsant effects on its own. These data provide additional evidence for the further examination of melatonin as an adjunct therapy in neonatal/pediatric epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Melatonin potentiates the anticonvulsant action of phenobarbital in neonatal rats

    PubMed Central

    Forcelli, Patrick A.; Soper, Colin; Duckles, Anne; Gale, Karen; Kondratyev, Alexei

    2013-01-01

    Phenobarbital is the most commonly utilized drug for neonatal seizures. However, questions regarding safety and efficacy of this drug make it particularly compelling to identify adjunct therapies that could boost therapeutic benefit. One potential adjunct therapy is melatonin. Melatonin is used clinically in neonatal and pediatric populations, and moreover, it exerts anticonvulsant actions in adult rats. However, it has not been previously evaluated for anticonvulsant effects in neonatal rats. Here, we tested the hypothesis that melatonin would exert anticonvulsant effects, either alone, or in combination with phenobarbital, the most commonly utilized anticonvulsant in neonatal medicine. Postnatal day (P)7 rats were treated with phenobarbital (0–40 mg/kg) and/or melatonin (0–80 mg/kg) prior to chemoconvulsant challenge with pentylenetetrazole (100 mg/kg). We found that melatonin significantly potentiated the anticonvulsant efficacy of phenobarbital, but did not exert anticonvulsant effects on its own. These data provide additional evidence for the further examination of melatonin as an adjunct therapy in neonatal/pediatric epilepsy. PMID:24206906

  12. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  13. Evidence That the Capacity of Nongenotoxic Carcinogens to Induce Oxidative Stress Is Subject to Marked Variability

    PubMed Central

    Henderson, Colin J.; Cameron, Amy R.; Chatham, Lynsey; Stanley, Lesley A.; Wolf, Charles Roland

    2015-01-01

    Many drugs and environmental chemicals which are not directly mutagenic have the capacity to increase the incidence of tumors in the liver and other tissues. For this reason, such compounds are known as nongenotoxic carcinogens. The mechanisms underlying their effects remain unclear; however, their capacity to induce oxidative stress is considered to be a critical step in the carcinogenic process, although the evidence that this is actually the case remains equivocal and sparse. We have exploited a novel heme oxygenase-1 reporter mouse to evaluate the capacity of nongenotoxic carcinogens with different mechanisms of action to induce oxidative stress in the liver in vivo. When these compounds were administered at doses reported to cause liver tumors, marked differences in activation of the reporter were observed. 1,4-Dichlorobenzene and nafenopin were strong inducers of oxidative stress, whereas phenobarbital, piperonyl butoxide, cyproterone acetate, and WY14,643 were, at best, only very weak inducers. In the case of phenobarbital and thioacetamide, the number of LacZ-positive hepatocytes increased with time, and for the latter also with dose. The data obtained demonstrate that although some nongenotoxic carcinogens can induce oxidative stress, it is not a dominant feature of the response to these compounds. Therefore in contrast to the current models, these data suggest that oxidative stress is not a key determinant in the mechanism of nongenotoxic carcinogenesis but may contribute to the effects in a compound-specific manner. PMID:25690736

  14. Age-Related Inducibility of Carboxylesterases by the Antiepileptic Agent Phenobarbital and Implications in Drug Metabolism and Lipid Accumulation 1, 2

    PubMed Central

    Xiao, Da; Chen, Yi-Tzai; Yang, Dongfang; Yan, Bingfang

    2014-01-01

    Carboxylesterases (CES) constitute a class of hydrolytic enzymes that play critical roles in drug metabolism and lipid mobilization. Previous studies with a large number of human liver samples have suggested that the inducibility of carboxylesterases is inversely related with age. To directly test this possibility, neonatal (10 days of age) and adult mice were treated with the antiepileptic agent phenobarbital. The expression and hydrolytic activity were determined on six major carboxylesterases including ces1d, the ortholog of human CES1. Without exception, all carboxylesterases tested were induced to a greater extent in neonatal than adult mice. The induction was detected at mRNA, protein and catalytic levels. Ces1d was greatly induced and found to rapidly hydrolyze the antiplatelet agent clopidogrel and support the accumulation of neutral lipids. Phenobarbital represents a large number of therapeutic agents that induce drug metabolizing enzymes and transporters in a species-conserved manner. The higher inducibility of carboxylesterases in the developmental age likely represents a general phenomenon cross species including human. Consequently, individuals in the developmental age may experience greater drug-drug interactions. The greater induction of ces1d also provides a molecular explanation to the clinical observation that children on antiepileptic drugs increase plasma lipids. PMID:22513142

  15. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital.

    PubMed

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P

    2015-02-03

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. Copyright © 2014. Published by Elsevier Ireland Ltd.

  16. Metabolism of 2-chloro-1,1-difluoroethene to glyoxylic and glycolic acid in rat hepatic microsomes.

    PubMed

    Baker, M T; Vasquez, M T; Bates, J N; Chiang, C K

    1990-01-01

    The complete metabolic fate of the volatile anesthetic halothane is unclear since 2-chloro-1,1-diflurorethene (CDE), a reductive halothane metabolite, is known to readily release inorganic fluoride upon oxidation by cytochrome P-450. This study sought to clarify the metabolism of CDE by determining its metabolites and the roles of induce cytochrome P-450 forms in its metabolism. Upon incubation of [14C]CDE with rat hepatic microsomes, two major radioactive products were found which accounted for greater than 94% of the total metabolites. These compounds were determined to be the nonhalogenated compounds, glyoxylic and glycolic acids, which were formed in a ratio of approximately 1 to 2 of glyoxylic to glycolic acid. No other radioactive metabolites could be detected. Following incubation of CDE with hepatic microsomes isolated from rats treated with cytochrome P-450 inducers, measurement of fluoride release showed that phenobarbital induced CDE metabolism to the greatest degree at high CDE levels, isoniazid was the most effective inducer at low CDE concentrations, and beta-naphthoflavone was ineffective as an inducer. These results suggest that CDE biotransformation primarily involves the generation of an epoxide intermediate, which undergoes mechanisms of decay leading to total dehalogenation of the molecule, and that this metabolism is preferentially carried out by the phenobarbital- and ethanol-inducible forms of cytochrome P-450.

  17. Different structure of the complexes of two cytochrome P-450 isozymes with acetanilide by 1H-NMR relaxation and spectrophotometry.

    PubMed

    Woldman YaYu; Weiner, L M; Lyakhovich, V V

    1993-05-28

    The functional and spectral characteristics of the interaction of acetanilide with phenobarbital- and methylcholanthrene- induced rat liver microsomes, as well as with corresponding major isozymes (cytochromes P-450b and P-450c) have been compared. The magnitude of the reverse 1st type binding spectra proved to be negatively correlated with the acetanilide oxidation on isozymes under study. The data on paramagnetic relaxation of acetanilide protons in the presence of P-450 have shown the structure of the enzyme-substrate complex to be different for two isozymes, acetanilide molecule being closer to Fe ion in the active site in the case of P-450c, which is active towards acetanilide oxidation. For the P-450c-acetanilide complex the group oxidized (phenyl) is the closest to Fe ion.

  18. Maintenance of in vivo induced cytochrome P-450s in hepatocyte monolayers at non freezing temperatures.

    PubMed

    Evans, Peter J

    2015-04-01

    Cytochrome P450s (CYPs) induced in rats by 3-methylcholanthrene (3-MC), phenobarbital (PB) and dexamethasone (Dex) were investigated. The inducers had no effect on hepatocyte yield, viability, attachment or spreading on collagen. 3-MC induced ethoxyresorufin deethylase (EROD). Under normothermic conditions the activity fell in culture. However, it was maintained when cells were preserved at 10°C under a gelatin gel. Upon reactivation the activity mirrored that of freshly isolated cells at 37°C. Induced levels were stable for at least 6h , the time to form a confluent monolayer. The investigation was extended to other CYPs by looking at patterns of testosterone metabolism. Phenobarbital had the greatest influence in terms of the quantity and number of metabolites. Culture at 37°C decreased the peaks dramatically within 24 h. All 7 peaks were maintained in the preservation system. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Acute biotoxic effect of styrene on rat liver. Correlation with enzyme-mediated mutagenicity of benzpyrene and acrylonitrile.

    PubMed

    Roberfroid, M; Poncelet, F; Lambotte-Vandepaer, M; Duverger-Van Bogaert, M; de Meester, C; Mercier, M

    1978-01-01

    Styrene is commonly used in western Europe for the manufacture of plastics suitable for packaging foodstuffs. This report demonstrates that, injected intraperitoneally at a dose as low as 10 mg/kg, styrene modifies the catalytic properties of aryl hydrocarbon hydroxylase by reducing its KM value. A similar effect is reported for two potent chemical carcinogens, 3-methylcholanthrene and benzo(a)pyrene. Ethylbenzene and benzo(e)pyrene and phenobarbital do not produce the same effect. Pretreatments of the rats with chemicals which modify aryl hydrocarbon hydroxylase also increase the capacity of the liver enzymes to activate benzopyrene to a mutagenic intermediate in vitro, as measured by the Ames test for mutagenicity. Exposure to both styrene and the other modifiers of the xenobiotic-metabolizing enzymes could thus influence the carcinogenic and toxic effects of chemicals which are activated by these enzymes. This hypothesis needs further investigation.

  20. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice.

    PubMed

    Li, Lei; Bao, Xiaochen; Zhang, Qing-Yu; Negishi, Masahiko; Ding, Xinxin

    2017-08-01

    Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs -null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs -null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice. U.S. Government work not protected by U.S. copyright.

  1. Cell expression patterns of CD147 in N-diethylnitrosamine/phenobarbital-induced mouse hepatocellular carcinoma.

    PubMed

    Lu, Meng; Wu, Jiao; He, Feng; Wang, Xi-Long; Li, Can; Chen, Zhi-Nan; Bian, Huijie

    2015-02-01

    Overexpression of CD147/basigin in hepatic cells promotes the progression of hepatocellular carcinoma (HCC). Whether CD147 also expressed in liver non-parenchymal cells and associated with HCC development was unknown. The aim of the study was to explore time-dependent cell expression patterns of CD147 in a widely accepted N-diethylnitrosamine/phenobarbital (DEN/PB)-induced HCC mouse model. Liver samples collected at month 1-12 of post-DEN/PB administration were assessed the localization of CD147 in hepatocytes, endothelial cells, hepatic stellate cells, and macrophages. Immunohistochemistry analysis showed that CD147 was upregulated in liver tumors during month 1-8 of DEN/PB induction. Expression of CD147 was positively correlated with cytokeratin 18, a hepatocyte marker (r = 0.7857, P = 0.0279), CD31 (r = 0.9048, P = 0.0046), an endothelial cell marker, and CD68, a macrophage marker (r = 0.7619, P = 0.0368). A significant correlation was also observed between CD147 and alpha-smooth muscle actin (r = 0.8857, P = 0.0333) at DEN/PB initiation and early stage of tumor formation. Immunofluorescence and fluorescence in situ hybridization showed that CD147 co-expressed with cytokeratin 18, CD31, alpha-smooth muscle actin, and CD68. Moreover, there existed positive correlations between CD147 and microvessel density (r = 0.7857, P = 0.0279), CD147 and Ki-67 (r = 0.9341, P = 0.0022) in the development of DEN/PB-induced HCC. In conclusion, our results demonstrated that CD147 was upregulated in the liver parenchymal and mesenchymal cells and involved in angiogenesis and tumor cell proliferation in the development of DEN/PB-induced HCC.

  2. Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats.

    PubMed

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi-Chameh, Homeira; Ghafouri, Samireh; Sheibani, Vahid; Mirnajafi-Zadeh, Javad

    2016-08-25

    Low frequency stimulation (LFS) has been proposed as a new approach in the treatment of epilepsy. The anticonvulsant mechanism of LFS may be through its effect on GABAA receptors, which are the main target of phenobarbital anticonvulsant action. We supposed that co-application of LFS and phenobarbital may increase the efficacy of phenobarbital. Therefore, the interaction of LFS and phenobarbital on GABAergic inhibitory post-synaptic currents (IPSCs) in kindled and control rats was investigated. Animals were kindled by electrical stimulation of basolateral amygdala in a semi rapid manner (12 stimulations/day). The effect of phenobarbital, LFS and phenobarbital+LFS was investigated on GABAA-mediated evoked and miniature IPSCs in the hippocampal brain slices in control and fully kindled animals. Phenobarbital and LFS had positive interaction on GABAergic currents. In vitro co-application of an ineffective pattern of LFS (100 pulses at afterdischarge threshold intensity) and a sub-threshold dose of phenobarbital (100μM) which had no significant effect on GABAergic currents alone, increased the amplitude and area under curve of GABAergic currents in CA1 pyramidal neurons of hippocampal slices significantly. Interestingly, the sub-threshold dose of phenobarbital potentiated the GABAergic currents when applied on the hippocampal slices of kindled animals which received LFS in vivo. Post-synaptic mechanisms may be involved in observed interactions. Obtained results implied a positive interaction between LFS and phenobarbital through GABAA currents. It may be suggested that a combined therapy of phenobarbital and LFS may be a useful manner for reinforcing the anticonvulsant action of phenobarbital. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: Evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakehashi, Anna, E-mail: anna@med.osaka-cu.ac.jp; Hagiwara, Akihiro; Imai, Norio

    To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulationmore » of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.« less

  4. [Effect of inducers and inhibitors of mixed function oxidases on body resistance to endotoxins of gram-negative bacteria].

    PubMed

    Liniuchev, M N; Zubik, T M; Kovelenov, A Iu; Bulyko, V I; Sergeev, V V

    1989-06-01

    Experimental typhoid intoxication in white mice leads to the inhibition of microsomal oxidation in the liver, which is manifested by the prolongation of hexenal-induced sleep and a decrease in the toxic action of parathion. Phenobarbital, capable of inducing oxidases with mixed function (OMF), enhances the process of the detoxification of endotoxin injected into the animals, which is manifested by the increase of its LD50. Soluble levomycetin succinate, widely used for the treatment of typhoid-paratyphoid infections, is a powerful inhibitor of OMF (as shown by the hexenal test). Benzonal, the analog of phenobarbital, removes the inhibitory effect of the antibiotic. Experimental studies carried out in the course of this investigation make it possible to substantiate the clinical trial of these preparations (OMF inducers) used in the complex therapy of typhoid-paratyphoid infections for the stimulation of natural detoxification mechanisms of the body. Benzonal is the preparation of choice for use in clinical practice.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR{alpha} agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR{alpha} agonist could enhance the phenobarbital-dependentmore » acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR{alpha} agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR{alpha}-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR{alpha} ligands. The synergism of the PPAR{alpha} agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.« less

  6. Biological relevance of effects following chronic administration of octamethylcyclotetrasiloxane (D4) in Fischer 344 rats.

    PubMed

    Dekant, Wolfgang; Scialli, Anthony R; Plotzke, Kathy; Klaunig, James E

    2017-10-20

    Octamethylcyclotetrasiloxane (D4) is a cyclic siloxane primarily used as a monomer or intermediate in the production of silicone polymers resulting in potential exposure of workers, and potential low level inhalation or dermal exposure for consumers and the general public. Following a two-year inhalation toxicity study with D4 in rats, increases in uterine endometrial cystic hyperplasia and adenomas were observed at the highest concentration of D4 administered (700ppm). No other neoplasms were increased with D4 treatment. In addition, chronic inhalation exposure of rats to D4 induced changes in relative liver and kidney weights, and produced a chronic nephropathy. This manuscript examines the biological relevance and possible modes of action for the effects observed in the F344 rat following chronic inhalation exposure to D4. D4 is not genotoxic and appears to exert its effects through a nongenotoxic mode of action. An alteration in the estrous cycle in the aging F344 rat was the most likely mode of action for the observed uterine effects following chronic inhalation exposure. Data support the conclusion that D4 acts indirectly via a dopamine-like mechanism leading to alteration of the pituitary control of the estrous cycle in aging F344 rats with a decrease in progesterone and an increase in the estrogen/progesterone ratio most likely induced by a decrease in prolactin concentration. D4 also inhibited the pre-ovulatory LH surge causing a delay in ovulation, persistent follicles and thus a prolonged exposure to elevated estrogen in the adult Sprague Dawely rat. A lengthening of the estrous cycle in the F344 rat with an increase in endogenous estrogen was also induced by D4 inhalation. Although the mode of action responsible for induction of uterine adenomas in the female F344 rat has not been clearly confirmed, the subtlety of effects on the effects of D4 on cyclicity may prevent further assessment and definition of the mode of action. The occurrence of uterine endometrial adenoma in the rat is not relevant for human risk characterization because (1) there are differences in ovulatory cycle regulation in rats compared to humans, (2) cystic hyperplasia without atypia in women is not a cancer precursor, and (3) there is no endometrial lesion in women that is directly analogous to endometrial adenoma in the rat. The effects of D4 on liver are due to a phenobarbital-like mechanism that results in induction of cytochrome P450 and other enzymes of xenobiotic biotransformation. The liver effects are adaptive and not adverse. Kidney findings included chonic progressive nephropathy, a rat lesion that has no counterpart in the human and that should not be used in human risk assessment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice.

    PubMed

    Asaoka, Yoshiji; Togashi, Yuko; Mutsuga, Mayu; Imura, Naoko; Miyoshi, Tomoya; Miyamoto, Yohei

    2016-04-01

    Chemical-induced hepatocellular hypertrophy is frequently observed in rodents, and is mostly caused by the induction of phase I and phase II drug metabolic enzymes and peroxisomal lipid metabolic enzymes. Liver weight is a sensitive and commonly used marker for detecting hepatocellular hypertrophy, but is also increased by a number of other factors. Histopathological observations subjectively detect changes such as hepatocellular hypertrophy based on the size of a hepatocyte. Therefore, quantitative microscopic observations are required to evaluate histopathological alterations objectively. In the present study, we developed a novel quantitative method for an image analysis of hepatocellular hypertrophy using liver sections stained with hematoxylin and eosin, and demonstrated its usefulness for evaluating hepatocellular hypertrophy induced by phenobarbital (a phase I and phase II enzyme inducer) and clofibrate (a peroxisomal enzyme inducer) in mice. The algorithm of this imaging analysis was designed to recognize an individual hepatocyte through a combination of pixel-based and object-based analyses. Hepatocellular nuclei and the surrounding non-hepatocellular cells were recognized by the pixel-based analysis, while the areas of the recognized hepatocellular nuclei were then expanded until they ran against their expanding neighboring hepatocytes and surrounding non-hepatocellular cells by the object-based analysis. The expanded area of each hepatocellular nucleus was regarded as the size of an individual hepatocyte. The results of this imaging analysis showed that changes in the sizes of hepatocytes corresponded with histopathological observations in phenobarbital and clofibrate-treated mice, and revealed a correlation between hepatocyte size and liver weight. In conclusion, our novel image analysis method is very useful for quantitative evaluations of chemical-induced hepatocellular hypertrophy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Complexation of cytochrome P-450 isozymes in hepatic microsomes from SKF 525-A-induced rats.

    PubMed

    Murray, M

    1988-05-01

    Potassium ferricyanide-elicited reactivation of steroid hydroxylase activities, in hepatic microsomes from SKF 525-A-induced male rats, was used as an indicator of complex formation between individual cytochrome P-450 isozymes and the SKF 525-A metabolite. Induction of male rats with SKF 525-A (50 mg/kg for three days) led to apparent increases in androst-4-ene-3,17-dione 16 beta- and 6 beta-hydroxylation to 6.7- and 3-fold of control activities. Steroid 7 alpha-hydroxylase activity was decreased to 0.8-fold of control and 16 alpha-hydroxylation was unchanged. Ferricyanide-elicited dissociation of the SKF 525-A metabolite-P-450 complex revealed an even greater induction of 16 beta- and 6 beta-hydroxylase activities (to 1.8- and 1.6-fold of activities in the absence of ferricyanide). Androst-4-ene-3,17-dione 16 alpha-hydroxylase activity increased 2-fold after ferricyanide but 7 alpha-hydroxylase activity was unaltered. An antibody directed against the male-specific cytochrome P-450 UT-A decreased androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to 13% of control in hepatic microsomes from untreated rats. In contrast, 16 alpha-hydroxylase activity in microsomes from SKF 525-A-induced rats, before and after dissociation with ferricyanide, was reduced by anti UT-A IgG to 32 and 19% of the respective uninhibited controls. Considered together, these observations strongly suggest that the phenobarbital-inducible cytochrome P-450 isozymes PB-B and PCN-E are present in an inactive complexed state in microsomes from SKF 525-A-induced rat liver. Further, the increased susceptibility of androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to inhibition by an antibody to cytochrome P-450 UT-A, following ferricyanide treatment of microsomes, suggests that this male sexually differentiated enzyme is also complexed after in vivo SKF 525-A dosage. In contrast, the constitutive isozyme cytochrome P-450 UT-F, which is active in steroid 7 alpha-hydroxylation, does not appear to be complexed to any extent in microsomes from SKF 525-A-induced rats.

  9. Drug-induced liver injury due to antimicrobials, central nervous system agents, and nonsteroidal anti-inflammatory drugs.

    PubMed

    Devarbhavi, Harshad; Andrade, Raúl J

    2014-05-01

    Antimicrobial agents including antituberculosis (anti-TB) agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced liver failure across the world. Better molecular and genetic biomarkers are acutely needed to help identify those at risk of liver injury particularly for those needing antituberculosis therapy. Some antibiotics such as amoxicillin-clavulanate and isoniazid consistently top the lists of agents in retrospective and prospective DILI databases. Central nervous system agents, particularly antiepileptics, account for the second most common class of agents implicated in DILI registries. Hepatotoxicity from older antiepileptics such as carbamazepine, phenytoin, and phenobarbital are often associated with hypersensitivity features, whereas newer antiepileptic drugs have a more favorable safety profile. Antidepressants and nonsteroidal anti-inflammatory drugs carry very low risk of significant liver injury, but their prolific use make them important causes of DILI. Early diagnosis and withdrawal of the offending agent remain the mainstays of minimizing hepatotoxicity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Clinical Pharmacology of Phenobarbital in Neonates: Effects, Metabolism and Pharmacokinetics.

    PubMed

    Pacifici, Gian M

    2016-01-01

    Phenobarbital is an effective and safe anticonvulsant drug introduced in clinical use in 1904. Its mechanism of action is the synaptic inhibition through an action on GABAA. The loading dose of phenobarbital is 20 mg/kg intravenously and the maintenance dose is 3 to 4 mg/kg by mouth. The serum concentration of phenobarbital is up to 40 µg/ml. Nonresponders should receive additional doses of 5 to 10 mg/kg until seizures stop. Infants with refractory seizures may have a serum concentration of phenobarbital of 100 µg/ml. Phenobarbital is metabolized in the liver by CYP2C9 with minor metabolism by CYP2C19 and CYP2E1. A quarter of the dose of phenobarbital is excreted unchanged in the urine. In adults, the half-life of phenobarbital is 100 hours and in term and preterm infants is 103 and 141 hours, respectively. The half-life of phenobarbital decreases 4.6 hours per day and it is 67 hours in infants 4 week old.

  11. Combined sub-threshold dosages of phenobarbital and low-frequency stimulation effectively reduce seizures in amygdala-kindled rats.

    PubMed

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi, Homeira; Mirnajafi-Zadeh, Javad

    2014-08-01

    Low-frequency stimulation (LFS) is a potential therapy utilized in patients who do not achieve satisfactory control of seizures with pharmacological treatments. Here, we investigated the interaction between anticonvulsant effects of LFS and phenobarbital (a commonly used medicine) on amygdala-kindled seizures in rats. Animals were kindled by electrical stimulation of basolateral amygdala in a rapid manner (12 stimulations/day). Fully kindled animals randomly received one of the three treatment choices: phenobarbital (1, 2, 3, 4 and 8 mg/kg; i.p.; 30 min before kindling stimulation), LFS (one or 4 packages contained 100 or 200 monophasic square wave pulses, 0.1-ms pulse duration at 1 Hz, immediately before kindling stimulation) or a combination of both (phenobarbital at 3 mg/kg and LFS). Phenobarbital alone at the doses of 1, 2 and 3 mg/kg had no significant effect on the main seizure parameters. LFS application always produced anticonvulsant effects unless applied with the pattern of one package of 100 pulses, which is considered as non-effective. All the seizure parameters were significantly reduced when phenobarbital (3 mg/kg) was administered prior to the application of the non-effective pattern of LFS. Phenobarbital (3 mg/kg) also increased the anticonvulsant actions of the effective LFS pattern. Our results provide an evidence of a positive cumulative anticonvulsant effect of LFS and phenobarbital, suggesting a potential combination therapy at sub-threshold dosages of phenobarbital and LFS to achieve a satisfactory clinical effect.

  12. Differential effects of ethanol and other inducers of drug metabolism on the two forms of hamster liver microsomal aniline hydroxylase.

    PubMed

    McCoy, G D

    1980-03-01

    The aniline hydroxylase activity of microsomes isolated from hamster liver can be differentiated kinetically into high affinity (low K(m), form I) and low affinity (high K(m), form II) forms. Microsomes isolated from uninduced animals contain slightly more form I activity. The activity of the low affinity form (form II) is preferentially enhanced by Aroclor or 3-methylcholanthrene treatment, while phenobarbital treatment increases the activity of both forms. Chronic ethanol consumption results in enhancement of only the high affinity form (form I).

  13. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    PubMed Central

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  14. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    PubMed

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  15. Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute liver failure of rats.

    PubMed

    Li, Dongliang; Fan, Jingjing; He, Xiuhua; Zhang, Xia; Zhang, Zhiqiang; Zeng, Zhiyu; Ruan, Mei; Cai, Lirong

    2015-01-01

    To evaluate the therapeutic efficacy of rat bone marrow mesenchymal stem cells (BMSCs) induced into hepatocyte-like cells and of un-induced BMSCs in acute liver failure rats. BMSCs in highly homogenous passage 3 were cultured using the whole bone marrow adherent culture method. Hepatic-related characters were confirmed with morphology, RT-PCR analysis, glycogen staining and albumin (ALB) immunofluorescence assay. Carbon tetrachloride (CCl4) was injected intraperitoneally to establish an acute rat liver failure model. Hepatocyte-like cells or un-induced BMSCs were respectively injected into the models to examine rats' appearance, liver function assay and liver tissue pathology. Hepatocyte-like morphology, higher expression of cytokeratin 18 (CK18) mRNA and ALB protein, and glycogen accumulation were confirmed in the induced BMSCs. The transplanted DAPI-labeled BMSCs were localized in the liver tissue 3-14 days after transplantation. The levels of liver function indicators (AST, ALT, ALP, and TBIL) from transplanted rats were significant decreased and pathology was improved, indicating the recovery of liver function. However, the differences were statistically insignificant. Both hepatocyte-like cells and un-induced BMSCs had a similarly positively therapeutic efficacy on liver regeneration in rat liver failure model.

  16. A KCNQ channel opener for experimental neonatal seizures and status epilepticus

    PubMed Central

    Raol, YogendraSinh H.; Lapides, David A.; Keating, Jeffery; Brooks-Kayal, Amy R.; Cooper, Edward C.

    2009-01-01

    Objective Neonatal seizures occur frequently, are often refractory to anticonvulsants, and are associated with considerable morbidity and mortality. Genetic and electrophysiological evidence indicates that KCNQ voltage-gated potassium channels are critical regulators of neonatal brain excitability. This study tests the hypothesis that selective openers of KCNQ channels may be effective for treatment of neonatal seizures. Methods We induced seizures in postnatal day 10 rats with either kainic acid or flurothyl. We measured seizure activity using quantified behavioral rating and electrocorticography. We compared the efficacy of flupirtine, a selective KCNQ channel opener, with phenobarbital and diazepam, two drugs in current use for neonatal seizures. Results Unlike phenobarbital or diazepam, flupirtine prevented animals from developing status epilepticus (SE) when administered prior to kainate. In the flurothyl model, phenobarbital and diazepam increased latency to seizure onset, but flupirtine completely prevented seizures throughout the experiment. Flupirtine was also effective in arresting electrographic and behavioral seizures when administered after animals had developed continuous kainate-induced SE. Flupirtine caused dose-related sedation and suppressed EEG activity, but did not result in respiratory suppression or result in any mortality. Interpretation Flupirtine appears more effective than either of two commonly used anti-epileptic drugs, phenobarbital and diazepam, in preventing and suppressing seizures in both the kainic acid and flurothyl models of symptomatic neonatal seizures. KCNQ channel openers merit further study as potential treatments for seizures in infants and children. PMID:19334075

  17. Improvement of Liver Cell Therapy in Rats by Dietary Stearic Acid

    PubMed Central

    Goradel, Nasser Hashemi; Eghbal, Mohammad Ali; Darabi, Masoud; Roshangar, Leila; Asadi, Maryam; Zarghami, Nosratollah; Nouri, Mohammad

    2016-01-01

    Background: Stearic acid is known as a potent anti-inflammatory lipid. This fatty acid has profound and diverse effects on liver metabolism. The aim of this study was to investigate the effect of stearic acid on markers of hepatocyte transplantation in rats with acetaminophen (APAP)-induced liver damage. Methods: Wistar rats were randomly assigned to 10-day treatment. Stearic acid was administered to the rats with APAP-induced liver damage. The isolated liver cells were infused intraperitoneally into rats. Blood samples were obtained to evaluate the changes in the serum liver enzymes, including activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) and the level of serum albumin. To assess the engraftment of infused hepatocytes, rats were euthanized, and the liver DNA was used for PCR using sex-determining region Y (SRY) primers. Results: The levels of AST, ALT and ALP in the serum of rats with APAP-induced liver injury were significantly increased and returned to the levels in control group by day six. The APAP-induced decrease in albumin was significantly improved in rats through cell therapy, when compared with that in the APAP-alone treated rats. SRY PCR analysis showed the presence of the transplanted cells in the liver of transplanted rats. Conclusion: Stearic acid-rich diet in combination with cell therapy accelerates the recovering of hepatic dysfunction in a rat model of liver injury. PMID:27090202

  18. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp; Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806; Kojima, Hiroyuki

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOHmore » BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver microsomes. • Structural requirements for the activities of BP-3 derivatives were demonstrated.« less

  19. MicroRNA-122 Down-Regulation Is Involved in Phenobarbital-Mediated Activation of the Constitutive Androstane Receptor

    PubMed Central

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes. PMID:22815988

  20. Drug-Induced Liver Injury Associated with Noni (Morinda citrifolia) Juice and Phenobarbital.

    PubMed

    Mrzljak, Anna; Kosuta, Iva; Skrtic, Anita; Kanizaj, Tajana Filipec; Vrhovac, Radovan

    2013-01-01

    Noni (Morinda citrifolia) juice is a popular herbal dietary supplement globally used for preventive or therapeutic purposes in a variety of ailments, claiming to exhibit hepatoprotective properties as well. Herein we present the case of a 38-year-old woman who developed acute liver injury associated with noni juice consumption on a long-term (9 months) anticonvulsant therapy. Clinical presentation and liver biopsy were consistent with severe, predominantly hepatocellular type of injury. Both agents were stopped and corticosteroids were initiated. Five months later the patient had fully recovered. Although in the literature the hepatotoxicity of noni juice remains speculative, sporadic but emerging cases of noni juice-associated liver injury address the need to clarify and investigate potential harmful effects associated with this supplement.

  1. Time-course comparison of xenobiotic activators of CAR and PPAR{alpha} in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Pamela K.; Woods, Courtney G.; ExxonMobil Biomedical Sciences, Annandale, NJ

    Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR){alpha} are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPAR{alpha} will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver,more » microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR {alpha}. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPAR{alpha} in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens.« less

  2. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

    PubMed

    Luisier, Raphaëlle; Lempiäinen, Harri; Scherbichler, Nina; Braeuning, Albert; Geissler, Miriam; Dubost, Valerie; Müller, Arne; Scheer, Nico; Chibout, Salah-Dine; Hara, Hisanori; Picard, Frank; Theil, Diethilde; Couttet, Philippe; Vitobello, Antonio; Grenet, Olivier; Grasl-Kraupp, Bettina; Ellinger-Ziegelbauer, Heidrun; Thomson, John P; Meehan, Richard R; Elcombe, Clifford R; Henderson, Colin J; Wolf, C Roland; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G

    2014-06-01

    The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

  3. Oxidative stress/reactive metabolite gene expression signature in rat liver detects idiosyncratic hepatotoxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leone, Angelique; Nie, Alex; Brandon Parker, J.

    Previously we reported a gene expression signature in rat liver for detecting a specific type of oxidative stress (OS) related to reactive metabolites (RM). High doses of the drugs disulfiram, ethinyl estradiol and nimesulide were used with another dozen paradigm OS/RM compounds, and three other drugs flutamide, phenacetin and sulindac were identified by this signature. In a second study, antiepileptic drugs were compared for covalent binding and their effects on OS/RM; felbamate, carbamazepine, and phenobarbital produced robust OS/RM gene expression. In the present study, liver RNA samples from drug-treated rats from more recent experiments were examined for statistical fit tomore » the OS/RM signature. Of all 97 drugs examined, in addition to the nine drugs noted above, 19 more were identified as OS/RM-producing compounds—chlorpromazine, clozapine, cyproterone acetate, dantrolene, dipyridamole, glibenclamide, isoniazid, ketoconazole, methapyrilene, naltrexone, nifedipine, sulfamethoxazole, tamoxifen, coumarin, ritonavir, amitriptyline, valproic acid, enalapril, and chloramphenicol. Importantly, all of the OS/RM drugs listed above have been linked to idiosyncratic hepatotoxicity, excepting chloramphenicol, which does not have a package label for hepatotoxicity, but does have a black box warning for idiosyncratic bone marrow suppression. Most of these drugs are not acutely toxic in the rat. The OS/RM signature should be useful to avoid idiosyncratic hepatotoxicity of drug candidates. - Highlights: • 28 of 97 drugs gave a positive OS/RM gene expression signature in rat liver. • The specificity of the signature for human idiosyncratic hepatotoxicants was 98%. • The sensitivity of the signature for human idiosyncratic hepatotoxicants was 75%. • The signature can help eliminate hepatotoxicants from drug development.« less

  4. Protective effect of Trillium tschonoskii saponin on CCl4-induced acute liver injury of rats through apoptosis inhibition.

    PubMed

    Wu, Hao; Qiu, Yong; Shu, Ziyang; Zhang, Xu; Li, Renpeng; Liu, Su; Chen, Longquan; Liu, Hong; Chen, Ning

    2016-12-01

    To explore hepatoprotective role and underlying mechanisms of Trillium tschonoskii Maxim (TTM), 36 rats were randomly divided into control, CCl 4 -induced liver injury model, and biphenyl dimethyl dicarboxylate (DDB) and low-, moderate-, and high-dose TTM treatment groups. After CCl 4 -induced model establishment, the rats from DDB and TTM groups were administrated with DDB at 0.2 g/kg per day and TTM at 0.1, 0.5, and 1.0 g/kg per day, while the rats from control and model groups were administrated with saline. After 5 days of treatments, all rats were sacrificed for determining serum ALT and AST levels and liver index, examining histopathological changes in liver through HE and TUNEL staining, and evaluating TNF-α and IL-6 mRNA expression by real-time PCR, and caspase-3, Bcl-2, and Bax expression by Western blot. Results indicated that CCl 4 could induce acute liver injury and abnormal liver function in rats with obvious hepatomegaly, increased liver index, high ALT and AST levels, up-regulated TNF-α and IL-6, and overexpressed Bax and caspase-3. However, DDB and TTM could execute protective role in CCl 4 -induced liver injury in rats through reducing ALT and AST levels, rescuing hepatomegaly, down-regulating inflammatory factors and inhibiting hepatocyte apoptosis in a dose-dependent manner. Therefore, TTM has obvious protective role in CCl 4 -induced liver injury of rats through inhibiting hepatocyte apoptosis.

  5. Protective effect of aqueous extract of Feronia elephantum correa leaves on thioacetamide induced liver necrosis in diabetic rats

    PubMed Central

    Sharma, Prashant; Bodhankar, Subhash L; Thakurdesai, Prasad A

    2012-01-01

    Objective To evalueate hepatoprotective effects Feronia elephantum (F. elephantum) correa against thioacetamide (TA) induced liver necrosis in diabetic rats. Methods Male wistar rats were made diabetic with alloxan (160 mg/kg) on day 0 of the study. They were intoxicated with hepatotoxicant (thioacetamide, 300 mg/kg, ip) on day 9 of study to produce liver necrosis. Effects of 7 day daily once administration (day 2 to day 9) of EF (400 and 800 mg/kg, po) were evaluated on necorosis of liver in terms of mortality, liver volume, liver weight, serum aspartate aminotransferase (AST) and serum alanine transaminase (ALT), and histopathology of liver sections (for signs of necorosis and inflammation) on day-9 of the study. Separate groups of rats with treated only with alloxan (DA control), thioacetamide (TA control) and both (TA+DA control) were maintained. Results FE significantly lowered the mortality rate and showed improvement in liver function parameters in TA-induced diabetic rats without change in liver weight, volume and serum glucose levels. Conclusions FE showed promising activity against TA-induced liver necorsis in diabetic rats and so might be useful for prevention of liver complications in DM. PMID:23569996

  6. Different induction of LPA receptors by chemical liver carcinogens regulates cellular functions of liver epithelial WB-F344 cells.

    PubMed

    Hirane, Miku; Ishii, Shuhei; Tomimatsu, Ayaka; Fukushima, Kaori; Takahashi, Kaede; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2016-11-01

    Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA 1 to LPA 6 ) mediates a variety of cellular functions, including cell motility. In the present study, we investigated the effects of LPA receptors on cell motile activity during multi-stage hepatocarcinogenesis in rat liver epithelial WB-F344 cells treated with chemical liver carcinogens. Cells were treated with a initiator (N-nitrosodiethylamine (DEN)) and three promoters (phenobarbital (PB), okadaic acid (OA) and clofibrate) every 24 h for 2 days. Cell motile activity was elevated by DEN, correlating with Lpar3 expression. PB, OA, and clofibrate elevated Lpar1 expression and inhibited cell motile activity. To evaluate the effects of long-term treatment on cell motility, cells were treated with DEN and/or PB for at least 6 months. Lpar3 expression and cell motile activity were significantly elevated by the long-term DEN treatment with or without further PB treatment. In contrast, long-term PB treatment with or without further DEN elevated Lpar1 expression and inhibited cell motility. When the synthesis of extracellular LPA was blocked by a potent ATX inhibitor S32826 before cell motility assay, the cell motility induced by DEN and PB was markedly suppressed. These results suggest that activation of the different LPA receptors may regulate the biological functions of cells treated with chemical carcinogens. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Evidence that the capacity of nongenotoxic carcinogens to induce oxidative stress is subject to marked variability.

    PubMed

    Henderson, Colin J; Cameron, Amy R; Chatham, Lynsey; Stanley, Lesley A; Wolf, Charles Roland

    2015-05-01

    Many drugs and environmental chemicals which are not directly mutagenic have the capacity to increase the incidence of tumors in the liver and other tissues. For this reason, such compounds are known as nongenotoxic carcinogens. The mechanisms underlying their effects remain unclear; however, their capacity to induce oxidative stress is considered to be a critical step in the carcinogenic process, although the evidence that this is actually the case remains equivocal and sparse. We have exploited a novel heme oxygenase-1 reporter mouse to evaluate the capacity of nongenotoxic carcinogens with different mechanisms of action to induce oxidative stress in the liver in vivo. When these compounds were administered at doses reported to cause liver tumors, marked differences in activation of the reporter were observed. 1,4-Dichlorobenzene and nafenopin were strong inducers of oxidative stress, whereas phenobarbital, piperonyl butoxide, cyproterone acetate, and WY14,643 were, at best, only very weak inducers. In the case of phenobarbital and thioacetamide, the number of LacZ-positive hepatocytes increased with time, and for the latter also with dose. The data obtained demonstrate that although some nongenotoxic carcinogens can induce oxidative stress, it is not a dominant feature of the response to these compounds. Therefore in contrast to the current models, these data suggest that oxidative stress is not a key determinant in the mechanism of nongenotoxic carcinogenesis but may contribute to the effects in a compound-specific manner. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

  8. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis.

    PubMed

    Elgebaly, Hassan A; Mosa, Nermeen M; Allach, Mariam; El-Massry, Khaled F; El-Ghorab, Ahmed H; Al Hroob, Amir M; Mahmoud, Ayman M

    2018-02-01

    Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action

    PubMed Central

    Currie, Richard A.; Peffer, Richard C.; Goetz, Amber K.; Omiecinski, Curtis J.; Goodman, Jay I.

    2014-01-01

    Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA. PMID:24675475

  10. Influence of diabetes on liver injury induced by antitubercular drugs and on silymarin hepatoprotection in rats.

    PubMed

    Srivastava, R K; Sharma, S; Verma, S; Arora, B; Lal, H

    2008-12-01

    Isoniazid, rifampicin and pyrazinamide during short-course chemotherapy for tuberculosis can result in liver injury. The coexistence of tuberculosis and diabetes is common in patients who receive inadequate treatment. The risk of hepatotoxicity from many toxicants is increased in diabetic rats. Silymarin provides protection against liver injury caused by many hepatotoxicants, including antitubercular drugs (ATDs). In the wake of increased severity of ATD-induced hepatotoxicity in diabetes we report here the results of a study on the influence of diabetes on silymarin hepatoprotection in rats. Rats with diabetes induced via intraperitoneally injected streptozotocin (50 mg/kg), nondiabetic rats and insulin-treated diabetic rats received isoniazid (7.5 mg/kg/day), rifampicin (10 mg/kg/day) and pyrazinamide (35 mg/kg/day) orally (p.o.) with or without silymarin (100 mg/kg/day p.o.) treatment for 45 days. Compared to nondiabetic rats, liver function tests and histological changes of liver revealed exaggerated liver injury in diabetic rats caused by ATDs which was evident by 5- to 8-fold increases in serum levels of marker enzymes (aspartate and alanine aminotransferase, alkaline phosphatase and gamma-glutamyltranspeptidase) and 1- to 2-fold increases in bilirubin accompanied by a 2-fold decrease in total serum proteins, intense fatty and inflammatory infiltrations, necrosis and fibrosis. Coadministration of silymarin provided protection against ATD hepatotoxicity in all animals. However, insulin-treated diabetic animals showed greater silymarin-induced hepatoprotection against ATD-induced liver injury, which was characterized by near normal levels of marker enzymes, an increase in total proteins and normal hepatic structure. These results thus indicate that diabetes exaggerates ATD-induced liver injury and attenuates silymarin-induced hepatoprotection. However, insulin treatment for diabetes offers greater silymarin-induced hepatoprotection against ATD-induced liver injury. Copyright (c) 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  11. Ablation of capsaicin sensitive afferent nerves impairs defence but not rapid repair of rat gastric mucosa.

    PubMed

    Pabst, M A; Schöninkle, E; Holzer, P

    1993-07-01

    Capsaicin sensitive afferent neurones have previously been reported to play a part in gastric mucosal protection. The aim of this study was to investigate whether these nociceptive neurones strengthen mucosal defence against injury or promote rapid repair of the damaged mucosa, or both. This hypothesis was examined in anaesthetised rats whose stomachs were perfused with ethanol (25 or 50% in saline, wt/wt) for 30 minutes. The gastric mucosa was inspected 0 and 180 minutes after ethanol had been given at the macroscopic, light, and scanning electron microscopic level. Rapid repair of the ethanol injured gastric mucosa (reduction of deep injury, partial re-epithelialisation of the denuded surface) took place in rats anaesthetised with phenobarbital, but not in those anaesthetised with urethane. Afferent nerve ablation as a result of treating rats with a neurotoxic dose of capsaicin before the experiment significantly aggravated ethanol induced damage as shown by an increase in the area and depth of mucosal erosions. Rapid repair of the injured mucosa, however, as seen in rats anesthetised with phenobarbital 180 minutes after ethanol was given, was similar in capsaicin and vehicle pretreated animals. Ablation of capsaicin sensitive afferent neurones was verified by a depletion of calcitonin gene related peptide from the gastric corpus wall. These findings indicate that nociceptive neurones control mechanisms of defence against acute injury but are not required for rapid repair of injured mucosa.

  12. Competitive immunoassay of phenobarbital by microchip electrophoresis with laser induced fluorescence detection.

    PubMed

    Huang, Yong; Zhao, Shulin; Shi, Ming; Liu, Jinwen; Liang, Hong

    2011-05-23

    A microchip electrophoresis method with laser induced fluorescence detection was developed for the immunoassay of phenobarbital. The detection was based on the competitive immunoreaction between analyte phenobarbital and fluorescein isothiocyanate (FITC) labeled phenobarbital with a limited amount of antibody. The assay was developed by varying the borate concentration, buffer pH, separation voltage, and incubation time. A running buffer system containing 35 mM borate and 15 mM sodium dodecyl sulfate (pH 9.5), and 2800 V separation voltage provided analysis conditions for a high-resolution, sensitive, and repeatable assay of phenobarbital. Free FITC-labeled phenobarbital and immunocomplex were separated within 30s. The calibration curve for phenobarbital had a detection limit of 3.4 nM and a range of 8.6-860.0 nM. The assay could be used to determine the phenobarbital plasma concentration in clinical plasma sample. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Metabolism of 4,4'-methylene-bis-2-chloroaniline (MOCA) by rats in vivo and formation of N-hydroxy MOCA by rat and human liver microsomes.

    PubMed

    Morton, K C; Lee, M S; Siedlik, P; Chapman, R

    1988-05-01

    The metabolism of 4,4'-methylene-bis-2-chloroaniline (MOCA) was investigated because it is an animal carcinogen to which humans have been exposed. In CD rats, where MOCA is a hepatocarcinogen, less than or equal to 0.2% of an oral dose of [14C]MOCA was recovered unchanged in the urine; enzymatic hydrolysis and extraction of urinary radioactivity indicated the presence of glucuronide and sulfate conjugates. In rat bile, the predominant metabolite was N-glucuronyl MOCA. Liver microsomes from male CD rats or human males (surgical specimens) were incubated in vitro with [14C] MOCA. Metabolite formation, which was dependent upon reduced pyridine nucleotides and intact microsomes, was quantitated by TLC and HPLC using appropriate chemically synthesized standards. N-Hydroxylation of MOCA occurred at a rate of 335 +/- 119 pmol/min/mg rat microsomal protein (n = 3) versus 230 or 765 (n = 2) with microsomes from humans; the product was identified by isotopic dilution for both species. The rates of 5-hydroxy-MOCA (o-aminophenol) formation were 92 +/- 33 (rats) and 7, 35 (human); rates for the benzhydrol derivative were 82 +/- 12 (rats) and 60, 160 (human). In rats, all three rates were elevated 4- to 8-fold by pretreatment with phenobarbital, which also enhanced the formation of partially characterized polar derivatives that appeared to result from oxidation and cleavage at the methylene carbon. The latter pathway typically amounted to 50-100% of the 4,4'-diamino-3,3'-dichlorobenzhydrol value in control or pretreated animals. Thus, rats metabolize MOCA extensively and the pathways include N-hydroxlation, which is regarded as an obligatory step in metabolic activation of arylamines. The presence of MOCA N-hydroxylase in human liver supports the hypothesis that exposure of humans to MOCA entails a carcinogenic risk.

  14. Properties of glutathione release observed during reduction of organic hydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase.

    PubMed Central

    Oshino, N; Chance, B

    1977-01-01

    The enhanced reduction of t-butyl hydroperoxide by glutathione peroxidase is accompanied by a decrease in the cellular concentration of both glutathione and NADPH in isolated liver cells, resulting in the release of GSSG (oxidized glutathione) from the perfused rat liver. This phenomenon, first reported by H. Sies, C. Gerstenecker, H. Menzel & L. Flohé (1972) (FEBS Lett. 27, 171-175), can be observed under a variety of conditions, not only with the acceleration of the glutathione peroxidase reaction by organic peroxides, but also during the oxidation of glycollate and benzylamine, during demethylation of aminopyrine in the liver of the phenobarbital-pretreated rat and during oxidation of uric acid in the liver of the starved rat pretreated with 3-amino-1,2,4-triazole. The rate of release of GSSG is altered markedly by changes in the metabolic conditions which affect the rate of hepatic NADPH generation. Thus, regardless of whether achieved by enhanced oxidation of glutathione by glutathione peroxidase or by oxidation of NADPH through other metabolic pathways, an increase in the cellular concentration of GSSG appears to facilitate its release. It has been found that, in addition to the hexose monophosphate shunt, the mitochondrial NADH-NADP+ transhydrogenase reaction plays an important role in supplying reducing equivalents to the glutathione peroxidase reaction and in maintaining the cellular oxidation-reduction state of the nicotinamide nucleotides. Spectrophotometric analysis of the steady-state concentration of the catalase-H2O2 intermediate with simultaneous measurement of the rate of release of GSSG leads to the conclusion that intracellular compartmentation of catalase in the peroxisomes and glutathione peroxidase in the cytosol and mitochondria distinguishes the reactivities of these enzymes one from the other, and facilitates their effective cooperation in hydroperoxide metabolism in the liver. PMID:17386

  15. Protracted ethanol withdrawal in rats: Tolerance to the anxiolytic effects of diazepam and pentobarbital but not phenobarbital

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, H.; Prather, P.L.

    1990-02-26

    Anxiety is a common symptom during ethanol withdrawal contributing to its continuous abuse and alcoholism. Ethanol withdrawal in rats produces an interoceptive discriminative stimulus (IDS) similar to that produced by the anxiogenic drug pentylenetetrazol (PTZ). This stimulus peaks at 12 hours after last dose of ethanol and thereafter the IDS is detected for several days (protracted withdrawal) by sensitization to a probe drug. previously, the authors have shown that during the protracted withdrawal, the IDS is enhanced by GABA receptor antagonists suggesting alteration of brain GABA systems. This report provides further evidence that chronic ethanol alters GABAergic systems. Rats weremore » trained to discriminate PTZ (20 mg/kg, ip) from saline. Diazepam, pentobarbital and phenobarbital blocked the PTZ-IDS dose dependently. Ethanol, 4.5% w/v, was then given in a nutritionally complete diet for a week. On termination of the ethanol diet, rats exhibited signs and symptoms of withdrawal which returned to baseline within 3 days. During the protracted withdrawal period, the authors then redetermined the blockade of the PTZ-IDS. Significant tolerance was observed to the effectiveness of diazepam and pentobarbital, but not to phenobarbital. Since diazepam and pentobarbital produce significantly more enhancement of GABAergic activity than does phenobarbital, these data further suggest alteration of brain GABAergic systems during protracted withdrawal from ethanol.« less

  16. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity in liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, L.S.L.; Acebo, A.L.; Alworth, W.L.

    The preparation of 1-ethynylpyrene (EP) by incubation of EP with liver microsomes in the presence of NADPH yields fluorescent products briefly. Addition of microsomes restores the original rate. The metabolism of EP is initially more rapid in microsomes from 5,6-benzoflavone- (BF) pretreated rats than in those from phenobarbital (PB) pretreated rats or controls. Ep inhibits the hydroxylation of benzo(a)pyrene (BP) by liver microsomes. Ep more effectively inhibits the oxidation of BP in liver microsomes from BF rats than from PB rats or from controls. The inhibition of BP hydroxylation activity due to EP is dependent upon NADPH and is apparentlymore » irreversible. Kinetic analyses show that the inhibition of BP hydroxylation is due to loss of the activity by a process that is first order in EP and that reaches a limiting value at infinite EP concentrations. A self-catalyzed inhibition of the cytochrome P-450 dependent BP hydroxylation may occur in the presence of EP. Incubation with EP under conditions that result in loss of BP hydroxylase activity in microsomes from BF rats and 66% of the activity from PB rats causes the loss of 6 and 12% of the cytochrome P-450, respectively. Thus the loss of P-450 content is an insensitive measure of the effect of this inhibitor upon this cytochrome P-450 dependent enzyme activity. Selectivity of the loss of P-450 due to the incubation of the different microsomal preparations with EP is observed to be different than the selectivity for loss of BP hydroxylase activity. It is proposed that the inhibition of cytochrome P-450 dependent enzymes by alkynes need not involve heme alkylation and a resulting loss of P-450 content. In vivo EP does not cause a significant change in the cytochrome P-450 content in the microsomes isolated, or result in the change in BP hydroxylation.« less

  17. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage?

    PubMed

    D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela

    2013-05-01

    Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P < 0.001 in all cases). Circulating levels of pro-inflammatory cytokine TNF-α were significantly increased in rats with liver fibrosis as compared with normal rats, while symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.

  18. Transdifferentiated rat pancreatic progenitor cells (AR42J-B13/H) respond to phenobarbital in a rat hepatocyte-specific manner.

    PubMed

    Osborne, M; Haltalli, M; Currie, R; Wright, J; Gooderham, N J

    2016-07-01

    Phenobarbital (PB) is known to produce species-specific effects in the rat and mouse, being carcinogenic in certain mouse strains, but only in rats if treated after a DNA damaging event. PB treatment in the rat and mouse also produces disparate effects on cell signalling and miRNA expression profiles. These responses are induced by short term and prolonged PB exposure, respectively, with the latter treatments being difficult to examine mechanistically in primary hepatocytes due to rapid loss of the original hepatic phenotype and limited sustainability in culture. Here we explore the rat hepatocyte-like B13/H cell line as a model for hepatic response to PB exposure in both short-term and longer duration treatments. We demonstrate that PB with Egf treatment in the B13/H cells resulted in a significant increase in Erk activation, as determined by the ratio of phospho-Erk to total Erk, compared to Egf alone. We also show that an extended treatment with PB in the B13/H cells produces a miRNA response similar to that seen in the rat in vivo, via the time-dependent induction of miR-182/96. Additionally, we confirm that B13/H cells respond to Car activators in a typical rat-specific manner. These data suggest that the B13/H cells produce temporal responses to PB that are comparable to those reported in short-term primary rat hepatocyte cultures and in the longer term are similar to those in the rat in vivo. Finally, we also show that Car-associated miR-122 expression is decreased by PB treatment in B13/H cells, a PB-induced response that is common to the rat, mouse and human. We conclude that the B13/H cell system produces a qualitative response comparable to the rat, which is different to the response in the mouse, and that this model could be a useful tool for exploring the functional consequences of PB-sensitive miRNA changes and resistance to PB-mediated tumours in the rat. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    EPA Science Inventory

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  20. Amelioration of tamoxifen-induced liver injury in rats by grape seed extract, black seed extract and curcumin.

    PubMed

    El-Beshbishy, Hesham A; Mohamadin, Ahmed M; Nagy, Ayman A; Abdel-Naim, Ashraf B

    2010-03-01

    Liver injury was induced in female rats using tamoxifen (TAM). Grape seeds (Vitis vinifera) extract (GSE), black seed (Nigella sativa) extract (NSE), curcumin (CUR) or silymarin (SYL) were orally administered to TAM-intoxicated rats. Liver histopathology of TAM-intoxicated:rats showed pathological changes. TAM-intoxication elicited declines in liver antioxidant enzymes levels (glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase), reduced glutathione (GSH) and GSH/GSSG ratio plus the hepatic elevations in lipid peroxides, oxidized glutathione (GSSG), tumor necrosis factor-alpha (TNF-alpha) and serum liver enzymes; alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase and gamma glutamyl transferase levels. Oral intake of NSE, GSE, CUR or SYL to TAM-intoxicated rats, attenuated histopathological changes and corrected all parameters mentioned above. Improvements were prominent in case of NSE (similarly SYL) > CUR > GSE. Data indicated that NSE, GSE or CUR act as free radicals scavengers and protect TAM-induced liver injury in rats.

  1. Age-related sensitivity to endotoxin-induced liver inflammation: Implication of inflammasome/IL-1β for steatohepatitis

    PubMed Central

    Chung, Ki Wung; Lee, Eun Kyeong; Kim, Dae Hyun; An, Hye Jin; Kim, Nam Deuk; Im, Dong Soon; Lee, Jaewon; Yu, Byung Pal; Chung, Hae Young

    2015-01-01

    Aging is associated with increased vulnerability to inflammatory challenge. However, the effects of altered inflammatory response on the metabolic status of tissues or organs are not well documented. In this study, we present evidence demonstrating that lipopolysaccharide (LPS)-induced upregulation of the inflammasome/IL-1β pathway is accompanied with an increased inflammatory response and abnormal lipid accumulation in livers of aged rats. To monitor the effects of aging on LPS-induced inflammation, we administered LPS (2 mg kg−1) to young (6-month old) and aged (24-month old) rats and found abnormal lipid metabolism in only aged rats with increased lipid accumulation in the liver. This lipid accumulation in the liver was due to the dysregulation of PPARα and SREBP1c. We also observed severe liver inflammation in aged rats as indicated by increased ALT levels in serum and increased Kupffer cells in the liver. Importantly, among many inflammation-associated factors, the aged rat liver showed chronically increased IL-1β production. Increased levels of IL-1β were caused by the upregulation of caspase-1 activity and inflammasome activation. In vitro studies with HepG2 cells demonstrated that treatment with IL-1β significantly induced lipid accumulation in hepatocytes through the regulation of PPARα and SREBP1c. In summary, we demonstrated that LPS-induced liver inflammation and lipid accumulation were associated with a chronically overactive inflammasome/IL-1β pathway in aged rat livers. Based on the present findings, we propose a mechanism of aging-associated progression of steatohepatitis induced by endotoxin, delineating a pathogenic role of the inflammasome/IL-1β pathway involved in lipid accumulation in the liver. PMID:25847140

  2. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    PubMed Central

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  3. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    PubMed

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  4. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation bymore » n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.« less

  5. Neutrophil-cytokine interactions in a rat model of sulindac-induced idiosyncratic liver injury.

    PubMed

    Zou, Wei; Roth, Robert A; Younis, Husam S; Malle, Ernst; Ganey, Patricia E

    2011-12-18

    Previous studies indicated that lipopolysaccharide (LPS) interacts with the nonsteroidal anti-inflammatory drug sulindac (SLD) to produce liver injury in rats. In the present study, the mechanism of SLD/LPS-induced liver injury was further investigated. Accumulation of polymorphonuclear neutrophils (PMNs) in the liver was greater in SLD/LPS-cotreated rats compared to those treated with SLD or LPS alone. In addition, PMN activation occurred specifically in livers of rats cotreated with SLD/LPS. The hypothesis that PMNs and proteases released from them play critical roles in the hepatotoxicity was tested. SLD/LPS-induced liver injury was attenuated by prior depletion of PMNs or by treatment with the PMN protease inhibitor, eglin C. Previous studies suggested that tumor necrosis factor-α (TNF) and the hemostatic system play critical roles in the pathogenesis of liver injury induced by SLD/LPS. TNF and plasminogen activator inhibitor-1 (PAI-1) can contribute to hepatotoxicity by affecting PMN activation and fibrin deposition. Therefore, the role of TNF and PAI-1 in PMN activation and fibrin deposition in the SLD/LPS-induced liver injury model was tested. Neutralization of TNF or inhibition of PAI-1 attenuated PMN activation. TNF had no effect on PAI-1 production or fibrin deposition. In contrast, PAI-1 contributed to fibrin deposition in livers of rats treated with SLD/LPS. In summary, PMNs, TNF and PAI-1 contribute to the liver injury induced by SLD/LPS cotreatment. TNF and PAI-1 independently contributed to PMN activation, which is critical to the pathogenesis of liver injury. Moreover, PAI-1 contributed to liver injury by promoting fibrin deposition. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Hypoglycemic and Hypolipidemic Effects of the Cracked-Cap Medicinal Mushroom Phellinus rimosus (Higher Basidiomycetes) in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Rony, Kuttikkadan A; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Phellinus rimosus is a parasitic host specific polypore mushroom with profound antioxidant, antihepatotoxic, anti-inflammatory, antitumor, and antimutagenic activities. This study investigated the hypoglycemic and hypolipidemic activities of the wood-inhabiting polypore mushroom Ph. Rimosus in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by single intraperitoneal injection of STZ (45 mg/kg) to Wistar rats. The effects of 30 days treatment with Ph. Rimosus (50 and 250 mg/ kg) and glibenclamide (0.65 mg/kg) on blood glucose level, serum insulin, serum lipid profile, liver glycogen, liver function enzymes, and non-enzymic and enzymic antioxidants activities in pancreas, liver, and kidney were evaluated in STZ-induced diabetic rats. Oral administration of Ph. Rimosus extract exhibited a significant reduction in blood glucose, triacylglycerol, total cholesterol, LDL-cholesterol, and liver function enzymes, and increased serum insulin, liver glycogen, and HDL-cholesterol levels in STZ-induced diabetic rats. Furthermore, Ph. Rimosus treatment increased antioxidant status in pancreas, liver, and kidney tissues with concomitant decreases in levels of thiobarbituric acid- reactive substances. Results of this study indicated that Ph. Rimosus possessed significant hypoglycemic and hypolipidemic activities and this effect may be related to its insulinogenic and antioxidant effect.

  7. Characteristics and significance of D-tagatose-induced liver enlargement in rats: An interpretative review.

    PubMed

    Bär, A

    1999-04-01

    This review addresses the issue of asymptomatic liver enlargement in rats. It was necessitated by the observation of significantly increased liver weights in rats fed diets with 10 to 20% D-tagatose, a potential new bulk sweetener, for between 28 and 90 days. Increases of liver size without accompanying histopathological changes or impairment of organ function have been observed in rats in response to the ingestion of various xenobiotic compounds (including some food additives), changes of dietary composition (e.g. , high doses of fructose and sucrose), metabolic aberrations (e.g., diabetes), as well as normal pregnancy and lactation. The underlying mechanism(s) are not yet understood in detail but peroxisome proliferation, microsomal enzyme induction, increased storage of glycogen or lipids, and hyperfunction due to an excessive workload are well-established causes of hepatomegaly in rats. In D-tagatose- and fructose-fed rats, a treatment-related increase of hepatic glycogen storage was identified as a likely cause of the liver enlargement. Dietary levels of 5% and about 15-20% were determined as no-effect levels (NOEL) for D-tagatose- and fructose-induced liver enlargement, respectively. At doses above the NOEL, D-tagatose is about four times more efficient than fructose in inducing liver enlargement. On the other hand, the estimated intake of D-tagatose from its intended uses in food is about four times lower than the actual fructose intake. Consequently, a similar safety margin would apply for both sugars. Considering the similarity of the liver effects in rats of fructose, a safe food ingredient, and D-tagatose, the absence of histopathological changes in rats fed a diet with 20% D-tagatose for 90 days, and the absence of adverse long-term consequences of glycogen-induced liver enlargement in rats, it is concluded that the observed liver enlargement in D-tagatose-fed rats has no relevance for the assessment of human safety of this substance. Copyright 1999 Academic Press.

  8. Effects of antiepileptic drugs on attention as assessed by a five-choice serial reaction time task in rats.

    PubMed

    Shannon, Harlan E; Love, Patrick L

    2005-12-01

    Patients with epilepsy can have impaired cognitive abilities. Antiepileptic drugs (AEDs) may contribute to the cognitive deficits observed in patients with epilepsy, and have been shown to induce cognitive impairments in healthy individuals. However, there are few systematic data on the effects of AEDs on specific cognitive domains. We have previously evaluated a number of AEDs with respect to their effects on working memory. The purpose of the present study was to evaluate the effects of AEDs on attention as measured by five-choice serial reaction time behavior in nonepileptic rats. The GABA-related AEDs triazolam, phenobarbital, and chlordiazepoxide significantly disrupted performance by increasing errors of omission, whereas tiagabine, valproate, and gabapentin did not. The sodium channel blocker carbamazepine increased errors of omission at relatively high doses, whereas the sodium channel blockers phenytoin, topiramate, and lamotrigine were without significant effect. Levetiracetam had no effect on attention. The disruptions produced by triazolam, phenobarbital, chlordiazepoxide, and carbamazepine were similar in magnitude to the effects of the muscarinic cholinergic receptor antagonist scopolamine. The present results indicate that AEDs can disrupt attention, but there are differences among AEDs in the magnitude of the disruption in nonepileptic rats, with drugs that enhance GABA receptor function producing the most consistent disruption of attention.

  9. Overexpression of glutamine synthetase is associated with beta-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital.

    PubMed

    Loeppen, Sandra; Schneider, Daniela; Gaunitz, Frank; Gebhardt, Rolf; Kurek, Raffael; Buchmann, Albrecht; Schwarz, Michael

    2002-10-15

    Phenobarbital (PB) is an antiepileptic drug that promotes hepatocarcinogenesis in rodents when administered subsequent to an initiating carcinogen like N-nitrosodiethylamine (DEN). In the mouse, the promotional effect of PB on liver tumor development results from a selective stimulation of clonal outgrowth of hepatocytes harboring activating mutations in the beta-catenin gene. Because glutamine synthetase (GS) has recently been shown to be a putative transcriptional target of beta-catenin, expression of GS during PB-mediated promotion of mouse hepatocarcinogenesis was investigated. Preneoplastic and neoplastic liver lesions were induced in 6-week-old male mice by a single injection of 90 micro g/g body weight of DEN, and groups of mice were subsequently kept on PB-containing (0.05%) or control diet for 39 weeks. In PB-treated mice, 46 of 51 lesions ( approximately 90%) were GS-positive in contrast to only 16 of 46 ( approximately 35%) in mice not treated with PB. Approximately 33% of liver was occupied by neoplastic tissue in PB-treated mice, of which >80% was GS positive. By contrast, only approximately 3.5% of liver consisted of neoplastic tissue in mice treated with DEN only, and approximately 25% of this was GS positive. We have previously shown that beta-catenin mutations are present in approximately 80% of liver tumors from PB-treated mice but are absent in liver tumors from mice treated with DEN only. By analyzing a panel of larger liver tumors, we now observed that tumors harboring beta-catenin mutations were GS positive, whereas tumors without beta-catenin mutations were GS negative. Similarly, tumors from an additional mouse carcinogenicity experiment where PB inhibited rather than promoted hepatocarcinogenesis were mostly GS negative. These data suggest that promotion of hepatocarcinogenesis by PB confers beta-catenin-mutated tumor cells with a selective advantage by up-regulation of GS expression.

  10. Abate Cytochrome C induced apoptosome to protect donor liver against ischemia reperfusion injury on rat liver transplantation model.

    PubMed

    Zhuang, Zhuonan; Lian, Peilong; Wu, Xiaojuan; Shi, Baoxu; Zhuang, Maoyou; Zhou, Ruiling; Zhao, Rui; Zhao, Zhen; Guo, Sen; Ji, Zhipeng; Xu, Kesen

    2016-01-01

    Aim of this study is to protect donor liver against ischemia-reperfusion injury by abating Cytochrome C induced apoptosome on rat model. A total of 25 clean SD inbred male rats were used in this research. The rats in ischemia-reperfusion injury group (I/R group, n=5) were under liver transplantation operation; rats in dichloroacetate diisopropylamine group (DADA group, n=5) were treated DADA before liver transplantation; control group (Ctrl group, n=5); other 10 rats were used to offer donor livers. In DADA therapy group, Cytochrome C expression in donor hepatocellular cytoplasm was detected lower than that in I/R group. And the Cytochrome C induced apoptosome was also decreased in according to the lower expressions of Apaf-1 and Caspase3. Low level of cleaved PARP expression revealed less apoptosis in liver tissue. The morphology of donor liver mitochondria in DADA group was observed to be slightly edema but less than I/R group after operation 12 h. The liver function indexes of ALT and AST in serum were tested, and the results in DADA group showed it is significantly lower than I/R group after operation 12 h. The inflammation indexes of IL-6 and TNF-α expressions in DADA group were significantly lower than that in I/R group after operation 24 h. The dichloroacetate diisopropylamine treatment could protect the hepatocellular mitochondria in case of the spillage of Cytochrome C induced apoptosome, and protect the liver against ischemia-reperfusion injury. Thus, it may be a method to promote the recovery of donor liver function after transplantation.

  11. Ischemia-reperfusion injury in rat fatty liver: role of nutritional status.

    PubMed

    Caraceni, P; Nardo, B; Domenicali, M; Turi, P; Vici, M; Simoncini, M; De Maria, N; Trevisani, F; Van Thiel, D H; Derenzini, M; Cavallari, A; Bernardi, M

    1999-04-01

    Fatty livers are more sensitive to the deleterious effects of ischemia-reperfusion than normal livers. Nutritional status greatly modulates this injury in normal livers, but its role in the specific setting of fatty liver is unknown. This study aimed to determine the effect of nutritional status on warm ischemia-reperfusion injury in rat fatty livers. Fed and fasted rats with normal or fatty liver induced by a choline deficient diet underwent 1 hour of lobar ischemia and reperfusion. Rat survival was determined for 7 days. Serum transaminases, liver histology and cell ultrastructure were assessed before and after ischemia, and at 30 minutes, 2 hours, 8 hours, and 24 hours after reperfusion. Survival was also determined in fatty fasted rats supplemented with glucose before surgery. The preischemic hepatic glycogen was measured in all groups. Whereas survival was similar in fasted and fed rats with normal liver (90% vs. 100%), fasting dramatically reduced survival in rats with fatty liver (14% vs. 64%, P <.01). Accordingly, fasting and fatty degeneration had a synergistic effect in exacerbating liver injury. Mitochondrial damage was a predominant feature of ultrastructural hepatocyte injury in fasted fatty livers. Glucose supplementation partially prevented the fasting-induced depletion of glycogen and improved the 7-day rat survival to 45%. These data indicate that rat fatty livers exposed to normothermic ischemia-reperfusion injury are much more sensitive to fasting than histologically normal livers. Because glucose supplementation improves both the hepatic glycogen stores and the rat survival, a nutritional repletion procedure may be part of a treatment strategy aimed to prevent ischemia-reperfusion injury in fatty livers.

  12. A patch test confirmed phenobarbital-induced fixed drug eruption in a child.

    PubMed

    Chadly, Zohra; Aouam, Karim; Chaabane, Amel; Belhadjali, Hichem; Abderrazzak Boughattas, Naceur; Zili, Jamel Eddine

    2014-06-01

    A-10-year-old girl was referred to our department for multiple hyperpigmented plaques. One week previously, she had been given one suppository of acetylsalicylic acid - phenobarbital for fever. Twelve hours after the drug intake the child developed pruritic red plaques on the left thigh. Six weeks after resolution of the acute reaction, patch tests were performed separately, with phenobarbital and acetylsalicylic acid. On 48-hour reading, only the phenobarbital patch test on residual pigmented lesion was positive. Because of possible cross-reactions between aromatic anticonvulsants, subsequent patch tests using carbamazepine and phenytoin on residual pigmented lesions were performed. They were all negative at 48-hour reading. To our knowledge, only two isolated pediatric cases of Phenobarbital-induced FDE have been reported in the literature. In this case report, as it was difficult to determine whether phenobarbital or acetylsalicylic acid was responsible for this reaction, subsequent patch tests allowed the identification of the culprit component since it was positive to phenobarbital.

  13. Paeoniflorin regulates macrophage activation in dimethylnitrosamine-induced liver fibrosis in rats

    PubMed Central

    2012-01-01

    Background Macrophages in other organs (e.g. kidneys, lungs, and spleen, et. al) have rarely been reported in the development of liver fibrosis. Therefore, it is important to investigate macrophage activation in the main organs in liver fibrosis. We investigated the potential antifibrogenic effects of paeoniflorin (PF) in a dimethylnitrosamine (DMN)-induced rat model with special focus on inhibiting macrophage activation in the main organs. Methods Rat hepatic fibrosis was induced by treatment with DMN three times weekly over a 4-week period. DMN rats were treated with water, PF, or gadolinium chloride (GdCl3) from the beginning of the 3rd week. The expression of CD68, marker of macrophage, was investigated using immunohistochemical, real-time PCR, and western blot analysis. Results Hepatic hydroxyproline content markedly decreased and histopathology improved in the DMN-PF rats. Expression of desmin and collagen 1 decreased notably in DMN-PF liver. CD68 expression in the liver, spleen and kidney increased markedly after 2 weeks but decreased in DMN-water rats. PF and GdCl3 decreased CD68 expression in the liver and spleen and there was no effect on kidney. CD68 expression in the lung increased gradually during the course of DMN-induced liver fibrosis, and PF inhibited CD68 expression in the lung significantly while GdCl3 increased CD68 markedly. Expression of tumor necrosis factor (TNF-α) was decreased significantly by GdCl3 in the liver, as revealed by real-time PCR analysis. However, GdCl3 could not decrease TNF-α level in the serum by enzyme linked immunosorbent assay (ELISA). Conclusions Macrophage activation was disrupted in the liver, spleen, lung and kidney during development of DMN-induced liver fibrosis. PF administration attenuated DMN-induced liver fibrosis at least in part by regulating macrophage disruption in the main organs. PMID:23237422

  14. Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice.

    PubMed

    Braeuning, Albert; Gavrilov, Alina; Geissler, Miriam; Wenz, Christine; Colnot, Sabine; Templin, Markus F; Metzger, Ute; Römer, Michael; Zell, Andreas; Schwarz, Michael

    2016-06-01

    Activation of Wnt/β-catenin signaling is important for human and rodent hepatocarcinogenesis. In mice, the tumor promoter phenobarbital (PB) selects for hepatocellular tumors with activating β-catenin mutations via constitutive androstane receptor activation. PB-dependent tumor promotion was studied in mice with genetic inactivation of Apc, a negative regulator of β-catenin, to circumvent the problem of randomly induced mutations by chemical initiators and to allow monitoring of PB- and Wnt/β-catenin-dependent tumorigenesis in the absence of unknown genomic alterations. Moreover, the study was designed to investigate PB-induced proliferation of liver cells with activated β-catenin. PB treatment provided Apc-deficient hepatocytes with only a minor proliferative advantage, and additional connexin 32 deficiency did not affect the proliferative response. PB significantly promoted the outgrowth of Apc-deficient hepatocellular adenoma (HCA), but simultaneously inhibited the formation of Apc-deficient hepatocellular carcinoma (HCC). The probability of tumor promotion by PB was calculated to be much lower for hepatocytes with loss of Apc, as compared to mutational β-catenin activation. Comprehensive transcriptomic and phosphoproteomic characterization of HCA and HCC revealed molecular details of the two tumor types. HCC were characterized by a loss of differentiated hepatocellular gene expression, enhanced proliferative signaling, and massive over-activation of Wnt/β-catenin signaling. In conclusion, PB exerts a dual role in liver tumor formation by promoting the growth of HCA but inhibiting the growth of HCC. Data demonstrate that one and the same compound can produce opposite effects on hepatocarcinogenesis, depending on context, highlighting the necessity to develop a more differentiated view on the tumorigenicity of this model compound.

  15. Synergistic hepatoprotective potential of ethanolic extract of Solanum xanthocarpum and Juniperus communis against paracetamol and azithromycin induced liver injury in rats.

    PubMed

    Singh, Hem; Prakash, Atish; Kalia, A N; Majeed, Abu Bakar Abdul

    2016-10-01

    Previously explored combination therapies mostly involved the use of bioactive molecules. It is believed that herbal compounds containing multiple plant products have synergistic hepatoprotective effects and could enhance the desired actions. To investigate the combination of ethanolic fruits extract of Solanum xanthocarpum (SX) and Juniperus communis (JC) against Paracetamol (PCM) and Azithromycin (AZM) induced liver toxicity in rats. Liver toxicity was induced by combine oral administration of PCM (250 mg/kg) and AZM (200 mg/kg) for 7 days in Wistar rats. Fruit extract of SX (200 and 400 mg/kg) and JC (200 and 400 mg/kg) were administered daily for 14 days. The hepatoprotective activity was assessed using liver functional test, oxidative parameters and histopathological examination. The results demonstrated that combine administration of AZM and PCM significantly produced liver toxicity by increasing the serum level of hepatic enzymes and oxidative parameters in liver of rats. Histopathological examination also indicated that AZM and PCM produced liver damage in rats. Chronic treatment of SX and JC extract significantly and dose-dependently attenuated the liver toxicity by normalizing the biochemical factors and no gross histopathological changes were observed in liver of rats. Furthermore, combine administration of lower dose of SX and JC significantly potentiated their hepatoprotective effect which was significant as compared to their effect per se. The results clearly indicated that SX and JC extract has hepatoprotective potential against AZM and PCM induced liver toxicity due to their synergistic anti-oxidant properties.

  16. Isoform-specific regulation of cytochrome P450 expression and activity by estradiol in female rats

    PubMed Central

    Choi, Su-Young; Fischer, Liam; Yang, Kyunghee; Chung, Hyejin; Jeong, Hyunyoung

    2011-01-01

    Estradiol (E2) is the major endogenous estrogen, and its plasma concentration increases up to 100-fold during pregnancy in humans. Accumulating evidence suggests that an elevated level of E2 may influence hepatic drug metabolism, potentially being responsible for altered drug metabolism during pregnancy. We characterized effects of E2 on expression and activities of cytochrome P450 enzymes (CYPs) in an in vivo system using rats. To this end, female rats were treated with estradiol benzoate (EB) or known CYP inducers. Liver tissues were obtained after 5 days of treatment, and mRNA and protein expression levels as well as activities of major hepatic CYPs were determined by qRT-PCR, immunoblot, and microsomal assay. E2 increased CYP1A2 expression and activity to a smaller extent than β-naphthoflavone did. E2 also enhanced CYP2C expression (CYP2C6, CYP2C7, and CYP2C12) to levels comparable to those observed by phenobarbital. E2 upregulated CYP3A9 expression, while expression of CYP3A1 was downregulated. Expression of hepatic nuclear receptors (PXR and CAR) and the obligate redox partner of CYPs (POR) was downregulated in EB-treated rats, suggesting their potential involvement in regulation of CYP expression and activity by E2. In summary, in female rats E2 regulates expression of hepatic CYPs in a CYP isoform-specific manner although the directional changes are different from those clinically observed during human pregnancy. Further study is warranted to determine whether the changes in drug metabolism during human pregnancy are attributable to involvement of hormones other than E2. PMID:21219883

  17. Grapefruit juice intake does not enhance but rather protects against aflatoxin B1-induced liver DNA damage through a reduction in hepatic CYP3A activity.

    PubMed

    Miyata, Masaaki; Takano, Hiroki; Guo, Lian Q; Nagata, Kiyoshi; Yamazoe, Yasushi

    2004-02-01

    Influence of grapefruit juice intake on aflatoxin B1 (AFB1)-induced liver DNA damage was examined using a Comet assay in F344 rats given 5 mg/kg AFB1 by gavage. Rats allowed free access to grapefruit juice for 5 days prior to AFB1 administration resulted in clearly reduced DNA damage in liver, to 65% of the level in rats that did not receive grapefruit juice. Furthermore, rats treated with grapefruit juice extract (100 mg/kg per os) for 5 days prior to AFB1 treatment also reduced the DNA damage to 74% of the level in rats that did not receive grapefruit juice. No significant differences in the portal blood and liver concentrations of AFB1 were observed between grapefruit juice intake rats and the controls. In an Ames assay with AFB1 using Salmonella typhimurium TA98, lower numbers of revertant colonies were detected with hepatic microsomes prepared from rats administered grapefruit juice, compared with those from control rats. Microsomal testosterone 6beta-hydroxylation was also lower with rats given grapefruit juice than with control rats. Immunoblot analyses showed a significant decrease in hepatic CYP3A content, but not CYP1A and CYP2C content, in microsomes of grapefruit juice-treated rats than in non-treated rats. No significant difference in hepatic glutathione S-transferase (GST) activity and glutathione content was observed in the two groups. GSTA5 protein was not detected in hepatic cytosol of the two groups. In microsomal systems, grapefruit juice extract inhibited AFB1-induced mutagenesis in the presence of a microsomal activation system from livers of humans as well as rats. These results suggest that grapefruit juice intake suppresses AFB1-induced liver DNA damage through inactivation of the metabolic activation potency for AFB1 in rat liver.

  18. Association of HLA genotypes with phenobarbital hypersensitivity in children.

    PubMed

    Manuyakorn, Wiparat; Mahasirimongkol, Surakameth; Likkasittipan, Plernpit; Kamchaisatian, Wasu; Wattanapokayakit, Sukanya; Inunchot, Wimala; Visudtibhan, Anannit; Wichukchinda, Nuanjun; Benjaponpitak, Suwat

    2016-10-01

    Phenobarbital hypersensitivity is one of the common drug hypersensitivity syndromes in children. Clinical symptoms of phenobarbital hypersensitivity vary from maculopapular rashes (MPs) to severe cutaneous adverse drug reactions (SCARs) including drug reactions with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). Drug hypersensitivity has been demonstrated to be associated with variations in the HLA genotypes. This study was to investigate the association between the variations of HLA genotypes and phenobarbital hypersensitivity in Thai children. The cases were Thai children, between 0 and 18 years of age, who were diagnosed with phenobarbital hypersensitivity, which included SCARs and MPs. The control patients were Thai children of a corresponding age who had taken phenobarbital for at least 12 weeks without any hypersensitivity reaction. Blood samples were collected for HLA genotyping by using a reverse-sequence-specific oligonucleotide (SSO) probes method. The carrier rates of HLA alleles were compared between 47 cases (27 SCARs and 20 MPs) and 54 controls. The carrier rates of HLA-A*01:01 and HLA-B*13:01 were significantly higher in the phenobarbital-induced SCARs than in the tolerant controls (18.5% vs. 1.85%, p = 0.01, odds ratio [OR] 11.66, 95% confidence interval [CI] 1.21-578.19; 37.04% vs. 11.11%, p = 0.009, OR 4.60, 95%CI 1.29-17.98). There was a trend of a higher carrier rate of HLA-C*06:02 in the phenobarbital-induced SCARs when compared with those in the tolerant controls (29.63% vs. 11.11%, p = 0.059, OR 3.31, 95% CI 0.88-13.31). In contrast to the phenobarbital-induced SCARs, only the HLA-A*01:01 carrier rate in the phenobarbital-induced MPs was significantly higher than those in the tolerant controls (20% vs. 1.85%, p = 0.017, OR 12.69, 95% CI 1.15-661.62). An association between phenobarbital hypersensitivity and HLA-A*01:01 and HLA-B*13:01 has been demonstrated in Thai children. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  19. In vivo genotoxicity of furan in F344 rats at cancer bioassay doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Wei, E-mail: Wei.Ding@fda.hhs.gov; Petibone, Dayton M.; Latendresse, John R.

    2012-06-01

    Furan, a potent rodent liver carcinogen, is found in many cooked food items and thus represents a human cancer risk. Mechanisms for furan carcinogenicity were investigated in male F344 rats using the in vivo Comet and micronucleus assays, combined with analysis of histopathological and gene expression changes. In addition, formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII)-sensitive DNA damage was monitored as a measure of oxidative DNA damage. Rats were treated by gavage on four consecutive days with 2, 4, and 8 mg/kg bw furan, doses that were tumorigenic in 2-year cancer bioassays, and with two higher doses, 12 andmore » 16 mg/kg. Rats were killed 3 h after the last dose, a time established as producing maximum levels of DNA damage in livers of furan-treated rats. Liver Comet assays indicated that both DNA strand breaks and oxidized purines and pyrimidines increased in a near-linear dose-responsive fashion, with statistically significant increases detected at cancer bioassay doses. No DNA damage was detected in bone marrow, a non-target tissue for cancer, and peripheral blood micronucleus assays were negative. Histopathological evaluation of liver from furan-exposed animals produced evidence of inflammation, single-cell necrosis, apoptosis, and cell proliferation. In addition, genes related to apoptosis, cell-cycle checkpoints, and DNA-repair were expressed at a slightly lower level in the furan-treated livers. Although a mixed mode of action involving direct DNA binding cannot be ruled out, the data suggest that furan induces cancer in rat livers mainly through a secondary genotoxic mechanism involving oxidative stress, accompanied by inflammation, cell proliferation, and toxicity. -- Highlights: ► Furan is a potent rodent liver carcinogen and represents a human cancer risk. ► Furan induces DNA damage in rat liver at cancer bioassay doses. ► Furan induces oxidative stress, inflammation and cell proliferation in rat liver. ► Expression of DNA damage repair-related genes is reduced in furan-treated rat livers. ► Furan induces rat liver cancer mainly through a secondary genotoxic mechanism.« less

  20. [Experimental study on the possibility of brain damage induced by chronic treatment with phenobarbital, clonazepam, valproic acid and topiramate in immature rats].

    PubMed

    Zhu, Hai-xia; Cai, Fang-cheng; Zhang, Xiao-ping

    2007-02-01

    To explore the possibility of brain damage induced by several anti-epileptic drugs (AEDs) at therapeutic level to immature brain of rat. Totally 160 healthy Spraque-Dawley (SD) rats selected for the study were divided into infant and adult groups. Each age group was treated with phenobarbital (PB), clonazepam (CZP), valproic acid (VPA), topiramate (TPM) or normal saline respectively for 2 or 5 weeks with 8 rats in each group. The steady-state plasma concentrations of AEDs at the experimental dosage were coincided with the range of clinical therapeutic concentrations. Drug levels in plasma were determined by fluorescence polarization. Body and brain weights were measured when the rats were sacrificed. Histological studies on the tissues of frontal lobes and hippocampus were performed by Nissl staining. And ultrastructural changes of brain were observed by the transmission electron microscopy. Plasma neuron-specific enolase (NSE) was determined by ELISA. Expression of apoptosis-related proteins Bcl-2 and Bax in neurons was detected by immunohistochemistry. Neuronal apoptosis was detected by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL). (1) There were no significant differences in brain weight among all adults groups. While remarkable reduction of brain weight was observed in immature rats exposed to CZP or PB (P < 0.01) for long term. (2) Significant neurodegeneration, neuronal necrosis and decrease in the number of neurons can be observed in the immature rats exposed to CZP or PB for long period. (3) For immature rats, concentration of plasma NSE was increased even after short-term treatment with PB [(8.84 +/- 2.10) nmol/L] compared with control group [(6.27 +/- 1.27) nmol/L] (P < 0.01). And it was increased in immature rats exposed to CZP [(8.15 +/- 1.67) nmol/L] or PB [(8.07 +/- 1.27) nmol/L] for long term compared with controls [(6.02 +/- 1.20) nmol/L] (P < 0.01). But there were no significant differences between AEDs-treated adult rats and control rats. (4) The expression of Bcl-2 and Bax protein in mature brain did not change at therapeutic level. In contrast, expression of Bax protein in the frontal lobe was increased significantly in immature rats receiving CZP and PB for long period compared with control. (5) The number of TUNEL positive cells in immature rats exposed to CZP or PB for long term was obviously increased. PB and CZP may result in remarkable histological abnormalities, neuronal apoptosis and necrosis in immature brain. The brain damage induced by PB was more serious and persistent than that induced by CZP.

  1. Hepatoprotective effects of setarud against carbon tetrachloride-induced liver injury in rats.

    PubMed

    Khorshid, Hamid Reza Khorram; Azonov, Jahan A; Novitsky, Yury A; Farzamfar, Bardia; Shahhosseiny, Mohammad Hassan

    2008-01-01

    To assess the hepatoprotective activity of a new herbal drug "setarud" in experimental liver fibrosis, 48 male Wistar rats were divided into four groups: controls, carbon tetrachloride (CCl4) group, and two treatment groups that received CCl4 and setarud at doses of 0.02 or 0.04 g/Kg/day for 30 days. Body weight gain, biochemical liver tests, bile flow rate and composition, and changes in liver morphology in the four groups were studied. CCl4 administration led to morphological and biochemical evidence of liver injury as compared to untreated controls. Setarud administration led to significant protection against CCl4-induced changes in body weight gain, liver morphology, bile flow and concentration. It was also associated with significantly lower serum liver enzyme levels (p<0.01), higher serum albumin level, and reduced increase in narcotic-induced sleeping time. Thus, setarud showed protective activity against CCl4-induced hepatotoxicity in rats. Further studies of its efficacy in liver disease are warranted.

  2. Clofibric acid induces hepatic CYP 2B1/2 via constitutive androstane receptor not via peroxisome proliferator activated receptor alpha in rat.

    PubMed

    Ibrahim, Zein Shaban; Ahmed, Mohamed Mohamed; El-Shazly, Samir Ahmed; Ishizuka, Mayumi; Fujita, Shoichi

    2014-01-01

    Peroxisome proliferator activated receptor α (PPARα) ligands, fibrates used to control hyperlipidemia. We demonstrated CYP2B induction by clofibric acid (CFA) however, the mechanism was not clear. In this study, HepG2 cells transfected with expression plasmid of mouse constitutive androstane receptor (CAR) or PPARα were treated with CFA, phenobarbital (PB) or TCPOBOP. Luciferase assays showed that CFA increased CYP2B1 transcription to the same level as PB, or TCPOBOP in HepG2 transfected with mouse CAR But failed to induce it in PPARα transfected cells. CYP2B expressions were increased with PB or CFA in Wistar female rats (having normal levels of CAR) but not in Wistar Kyoto female rats (having low levels of CAR). The induction of CYP2B by PB or CFA was comparable to nuclear CAR levels. CAR nuclear translocation was induced by CFA in both rat strains. This indicates that fibrates can activate CAR and that fibrates-insulin sensitization effect may occur through CAR, while hypolipidemic effect may operate through PPARα.

  3. Organ specific acute toxicity of the carcinogen trans-4-acetylaminostilbene is not correlated with macromolecular binding.

    PubMed

    Pfeifer, A; Neumann, H G

    1986-09-01

    trans-4-Acetylaminostilbene (trans-AAS) is acutely toxic in rats and lesions are produced specifically in the glandular stomach. Toxicity is slightly increased by pretreating the animals with phenobarbital (PB) and is completely prevented by pretreatment with methylcholanthrene (MC). The prostaglandin inhibitors, indomethacin and acetyl salicylic acid, do not reduce toxicity. The high efficiency of MC suggested that toxicity is caused by reactive metabolites. trans-[3H]-AAS was administered orally to untreated and to PB- or MC-pretreated female Wistar rats and target doses in different tissues were measured by means of covalent binding to proteins, RNA and DNA. Macromolecular binding in the target tissue of poisoned animals was significantly lower than in liver and kidney and comparable to other non-target tissues. Pretreatment with MC lowered macromolecular binding in all extrahepatic tissues but not in liver. These findings are not in line with tissue specific metabolic activation. The only unique property of the target tissue, glandular stomach, that we observed was a particular affinity for the systemically available parent compound. In the early phase of poisoning, tissue concentrations were exceedingly high and the stomach function was impaired.

  4. Betanin attenuates paraquat-induced liver toxicity through a mitochondrial pathway.

    PubMed

    Han, Junyan; Zhang, Zongju; Yang, Shaobin; Wang, Jun; Yang, Xuelian; Tan, Dehong

    2014-08-01

    We attempted to determine whether betanin (from natural pigments) that has anti-oxidant properties would be protective against paraquat-induced liver injury in Sprague-Dawley rats. Paraquat was injected intraperitoneally into rats to induce liver toxicity. The rats were randomly divided into four groups: a control group, a paraquat group, and two groups that received betanin at doses of 25 and 100mg/kg/day three days before and two days after they were administered paraquat. We evaluated liver histopathology, serum liver enzymatic activities, oxidative stress, cytochrome P450 (CYP) 3A2 mRNA expression, and mitochondrial damage. The rats that were injected with paraquat incurred liver injury, evidenced by histological changes and elevated serum aspartate aminotransferase and alanine aminotransferase levels; paraquat also led to oxidative stress, an increase of cytochrome P450 3A2 mRNA expression, and mitochondrial damage, indicated by mitochondrial membrane swelling, reduced mitochondrial cytochrome C, and apoptosis-inducing factor protein levels. Pathological damage and all of the above mentioned markers were lesser in the animals treated with betanin than in those who received paraquat alone. Betanin had a protective effect against paraquat-induced liver damage in rats. The mechanism of the protection appears to be the inhibition of CYP 3A2 expression and protection of mitochondria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on CCl4-Induced Liver Injury in Sprague-Dawley Rats.

    PubMed

    Byun, Jae-Hyuk; Kim, Jun; Choung, Se-Young

    2018-03-01

    The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride (CCl 4 )-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of CCl 4 (1.5 ml/kg, twice a week for 14 days). The administration of CCl 4 exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2'-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to CCl 4 induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in CCl 4 induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by CCl 4 via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.

  6. A standardized extract from Paeonia lactiflora and Astragalus membranaceus attenuates liver fibrosis induced by porcine serum in rats.

    PubMed

    Sun, Wu-Yi; Wang, Ling; Liu, Hao; Li, Xiang; Wei, Wei

    2012-03-01

    Paeonia lactiflora and Astragalus membranaceus are two popular traditional Chinese medicines, commonly used in Chinese herb prescription to treat liver disease. The extract prepared from the roots of Paeonia lactiflora and Astragalus membranaceus (PAE) demonstrated better hepatoprotective activity than the herbs used individually as shown in our previous studies. This study was carried out to investigate the effects of PAE on liver fibrosis induced by porcine serum (PS) in rats and to explore its possible mechanisms. Liver fibrosis was induced in male Wistar rats by injection with PS intraperitoneally. The rats were randomly divided into a normal control group, a liver fibrosis model group and a PAE (40, 80, 160 mg•kg-1) treated group. After a 16-week treatment, PAE-treated rats showed significantly reduced liver damage and symptoms of liver fibrosis upon pathological examination. Administration of PAE significantly decreased serum HA, PC III levels, and content of hydroxyproline in the liver tissue of fibrotic rats. It also restored the decrease in SOD and GSH-Px activities and inhibited the formation of lipid peroxidative products during PS treatment. In vitro, PAE also significantly decreased [3H]-thymidine incorporation in hepatic stellate cells (HSCs) stimulated with platelet-derived growth factor-B subunit homodimer (PDGF-BB). Moreover, PAE significantly decreased the expression of PDGF receptor beta (PDGFR-β) and p-ERK1/2, p-p38, p-JNK. The results showed that PAE displays antifibrotic effects in rats induced by PS, the mechanism by which might be associated with its ability to scavenge free radicals, decreasing the expression of PDGFR-β, inhibition of HSC proliferation and MAPK activation. These findings indicate that PAE is a potential agent for the prevention of liver fibrosis.

  7. The use of 99mTc-phytate for assessment the protective effect of vitamin E against hepatotoxicity induced by methotrexat in rat.

    PubMed

    Amirfakhrian, Hossein; Abedi, Seyed Mohammad; Sadeghi, Hossein; Azizi, Soheil; Hosseinimehr, Seyed Jalal

    2018-01-01

    In this study, we investigated the protective effect of vitamin E against methotrexate (MTX)-induced hepatotoxicity by quantitative liver 99mTc-phytate uptake and liver imaging and to compare its effect with histopathology in rat. Rats were divided into five groups as control, solvent, Vit E (100 mg/kg), MTX (20 mg/kg), Vit E + MTX and. Vit E was intraperitoneally administrated for 17 days before MTX injection and continued for 4 days. 99mTc-phytate was injected through the tail of rats after the drug administration. The percentage of the injected dose per gram of liver and spleen tissues (%ID/g) was calculated. Liver imaging was obtained with gamma camera. In other experiment, liver of treated rats were assessed for histopathology. 99mTc-phytate uptake per gram tissue of the livers as %ID/g in control, solvent, MTX, Vit E, Vit E + MTX and MTX groups were 8.99% ± 1.37, 8.53% ± 2.91, 8.65% ± 3.84, 3.22% ± 1.09 and 8.38% ± 2.68. Vit E administration with MTX resulted in a significant increasing in the level of %ID/g. Vit E treatment improved the shape of live in planner image. Histophatological examinations showed a protective effect of Vit E against MTX-induced hepatoxicity in rats. The results showed that Vit E significantly attenuates the MTX-induced hepatotoxicity in rats, and 99mTc-phytate uptake in liver as well as liver image to be acceptable techniques for assessment of liver and spleen damages and/or their tissues protective effects in animal model.

  8. Mesenchymal stem cells: In vivo therapeutic application ameliorates carbon tetrachloride induced liver fibrosis in rats.

    PubMed

    Raafat, Nermin; Abdel Aal, Sara M; Abdo, Fadia K; El Ghonaimy, Nabila M

    2015-11-01

    Egypt has the highest prevalence of hepatitis C virus in the world with infection rate up to 60%, for which liver fibrosis or hepatic carcinoma is the final outcome. Stem cell therapy provides a new hope for hepatic repair instead of traditional treatment, liver transplantation, as it is safer, gives long term engraftment and avoid expensive immunosuppressive drugs and unexpected hazardous effects. This work aimed at determining the therapeutic potential of mesenchymal stem cells (MSC) in hepatic repair as a new line of therapy for liver fibrosis. 33 female albino rats were divided into three groups: Group I: 10 rats injected subcutaneously with olive oil, Group II: 13 rats injected with carbon tetrachloride (CCl4) and Group III: 10 rats injected with CCl4 then bone marrow derived MSC from male rats. Blood and liver tissue samples were taken from all rats for biochemical and histological study. Liver functions for group II rats showed significant deterioration in response to CCl4 in addition to significant histological changes in liver lobules and portal areas. Those parameters tend to be normal in MSC-treated group. Group III rats revealed normalized liver function and histological picture. Meanwhile, most of the pathological lesions were still detected in rats of second group. Undifferentiated MSCs have the ability to ameliorate CCl4 induced liver injury in albino rats in terms of liver functions and histological features. So, stem cell therapy can be considered clinically to offer a hope for patients suffering from liver fibrosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    PubMed

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  10. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats.

    PubMed

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Parthasarathy, Chandrakesan

    2009-10-01

    N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.

  11. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis.

    PubMed

    Forsyth, Christopher B; Farhadi, Ashkan; Jakate, Shriram M; Tang, Yueming; Shaikh, Maliha; Keshavarzian, Ali

    2009-03-01

    Because only 30% of alcoholics develop alcoholic liver disease (ALD), a factor other than heavy alcohol consumption must be involved in the development of alcohol-induced liver injury. Animal and human studies suggest that bacterial products, such as endotoxins, are the second key co-factors, and oxidant-mediated gut leakiness is one of the sources of endotoxemia. Probiotics have been used to prevent and treat diseases associated with gut-derived bacterial products and disorders associated with gut leakiness. Indeed, "probiotic"Lactobacillus rhamnosus has been successfully used to treat alcohol-induced liver injury in rats. However, the mechanism of action involved in the potential beneficial effects of L. rhamnosus in alcohol liver injury is not known. We hypothesized that probiotics could preserve normal barrier function in an animal model of ALD by preventing alcohol-induced oxidative stress and thus prevent the development of hyperpermeability and subsequent alcoholic steatohepatitis (ASH). Male Sprague-Dawley rats were gavaged with alcohol twice daily (8 gm/kg) for 10 weeks. In addition, alcoholic rats were also treated with once daily gavage of either 2.5 x 10(7) live L. rhamnosus Gorbach-Goldin (LGG) or vehicle (V). Intestinal permeability (baseline and at 10 weeks) was determined using a sugar bolus and GC analysis of urinary sugars. Intestinal and liver tissues were analyzed for markers of oxidative stress and inflammation. In addition, livers were assessed histologically for severity of ASH and total fat (steatosis). Alcohol+LGG (ALC+LGG)-fed rats had significantly (P< or =.05) less severe ASH than ALC+V-fed rats. L. rhamnosus Gorbach-Goldin also reduced alcohol-induced gut leakiness and significantly blunted alcohol-induced oxidative stress and inflammation in both intestine and the liver. L. rhamnosus Gorbach-Goldin probiotic gavage significantly ameliorated ASH in rats. This improvement was associated with reduced markers of intestinal and liver oxidative stress and inflammation and preserved gut barrier function. Our study provides a scientific rationale to test probiotics for treatment and/or prevention of alcoholic liver disease in man.

  12. Isofuranodiene, the main volatile constituent of wild celery (Smyrnium olusatrum L.), protects d-galactosamin/lipopolysacchride-induced liver injury in rats.

    PubMed

    Li, Wenping; Shi, Jingshan; Papa, Fabrizio; Maggi, Filippo; Chen, Xiuping

    2016-01-01

    Isofuranodiene is a natural sesquiterpene rich occurring in Smyrnium olusatrum, a forgotten culinary herb which was marginalised after the domestication of the improved form of celery. Our recent data showed that isofuranodiene inhibited the proliferation and induced apoptosis in cancer cells. In this study, we investigated its protective effect on d-galactosamine/lipopolysacchride (GalN/LPS)-induced liver injury in SD rats. Oral administration of isofuranodiene (20 and 50 mg/kg) dramatically inhibited GalN/LPS-induced serum elevation of aspartate aminotransferase, alanine aminotransferase and malondialdehyde levels, and significantly ameliorated liver injury as evidenced by the histological improvement in H&E staining. Furthermore, isofuranodiene treatment significantly inhibited GalN/LPS-induced mRNA expression of IL-1β, IL-6 and inducible nitric oxide synthase in liver tissues. The results from this study showed that isofuranodiene protects GalN/LPS-induced liver injury in SD rats and suggested that it may be a potential functional food ingredient for the prevention and treatment of liver diseases.

  13. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity

    PubMed Central

    Massart, Julie; Begriche, Karima; Moreau, Caroline; Fromenty, Bernard

    2017-01-01

    Background Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. Aim The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. Relevance for patients Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening. PMID:28691103

  14. Association of reduction of AFB1-induced liver tumours by antioxidants with increased activity of microsomal enzymes.

    PubMed

    Nyandieka, H S; Wakhis, J; Kilonzo, M M

    1990-10-01

    The influence of nutritional factors on aflatoxin B1 (AFB1)-induced liver tumours was investigated in rats. When a dose of 500 micrograms AFB1/kg body weight was given to rats in the absence of any anticarcinogen, 80 per cent of the rats developed liver tumours as compared to 0 to 40 per cent in those which received anticarcinogens. While beta-carotene totally inhibited the development of liver tumours ascorbic acid, selenium, and uric acid reduced the percentages of tumour-bearing rats to 13 per cent each. GSH and vitamin E also reduced these percentages to 20 and 40 per cent respectively. The reduction of tumour incidence by each anticarcinogen was associated with induction of increased microsomal enzyme activity. Inhibition of AFB1-induced liver cancer development thus seems to occur through microsomal enzyme induction and AFB1 activation.

  15. Dysregulation of autophagy in rat liver with mitochondrial DNA depletion induced by the nucleoside analogue zidovudine.

    PubMed

    Santos-Llamas, Ana; Monte, Maria J; Marin, Jose J G; Perez, Maria J

    2018-03-28

    The nucleoside reverse transcriptase inhibitor zidovudine (AZT), used in HIV infection treatment, induces mitochondrial DNA (mtDNA) depletion. A cause-effect relationship between mtDNA status alterations and autophagy has been reported. Both events are common in several liver diseases, including hepatocellular carcinoma. Here, we have studied autophagy activation in rat liver with mtDNA depletion induced by AZT administration in drinking water for 35 days. AZT at a concentration of 1 mg/ml, but not 0.5 mg/ml in the drinking water, decreased mtDNA levels in rat liver and extrahepatic tissues. In liver, mtDNA-encoded cytochrome c oxidase 1 protein levels were decreased. Although serum biomarkers of liver and kidney toxicity remained unaltered, β-hydroxybutyrate levels were increased in liver of AZT-treated rats. Moreover, autophagy was dysregulated at two levels: (i) decreased induction signalling of this process as indicated by increases in autophagy inhibitors activity (AKT/mTOR), and absence of changes (Beclin-1, Atg5, Atg7) or decreases (AMPK/ULK1) in the expression/activity of pro-autophagy proteins; and (ii) reduced autophagosome degradation as indicated by decreases in the lysosome abundance (LAMP2 marker) and the transcription factor TFEB controlling lysosome biogenesis. This resulted in increased autophagosome abundance (LC3-II marker) and accumulation of the protein selectively degraded by autophagy p62, and the transcription factor Nrf2 in liver of AZT-treated rats. Nrf2 was activated as indicated by the up-regulation of antioxidant target genes Nqo1 and Hmox-1. In conclusion, rat liver with AZT-induced mtDNA depletion presented dysregulations in autophagosome formation and degradation balance, which results in accumulation of these structures in parenchymal liver cells, favouring hepatocarcinogenesis.

  16. RNA interference against stromal interacting molecule-1 (STIM1) ameliorates ethanol-induced hepatotoxicity.

    PubMed

    Cui, Ruibing; Li, Rong; Guo, Xiaolan; Jia, Xiaoqing; Yan, Ming

    2018-06-01

    Previously we have demonstrated that stromal interacting molecule-1 (STIM1) was involved in ethanol induced liver injury. However, the exact pathogenic mechanism of STIM1 in alcoholic liver disease (ALD) is still unknown. We constructed plasmid vectors encoding short-hairpin RNA against STIM1 to investigate its role in ALD in the rat liver cell line BRL and in Sprague-Dawley rats. The results showed that STIM1 targeted sh-RNA (Sh-STIM1) significantly ameliorated ethanol-induced BRL cells injury and liver injury in rats with 20 weeks-induced alcoholic liver disease. Inhibition of STIM1 also reduced intracellular calcium ion concentration, reactive oxygen species (ROS) production, lipid peroxidation, NF-kappa B activation and TNF-α production under ethanol exposure. STIM1 may play an important role in the pathogenesis of alcoholic liver disease. Silencing STIM1 may be effective in preventing alcoholic liver disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Vitamin K1 attenuates bile duct ligation-induced liver fibrosis in rats.

    PubMed

    Jiao, Kun; Sun, Quan; Chen, Baian; Li, Shengli; Lu, Jing

    2014-06-01

    Vitamin K1 is used as a liver protection drug for cholestasis-induced liver fibrosis in China, but the mechanism of vitamin K1's action in liver fibrosis is unclear. In this study, a model of liver fibrosis was achieved via bile duct ligation in rats. The rats were then injected with vitamin K1, and the levels of serum aspartate aminotransferase, alanine transaminase, total bilirubin and the fibrotic grade score, collagen content, the expressions of α-smooth muscle actin (SMA) and cytokeratin 19 (CK19) were measured on day 28 after ligation. The levels of the biochemical parameters, fibrotic score and collagen content were significantly reduced by treatment with vitamin K1 in bile duct-ligated rats. In addition, α-SMA and CK19 expression was significantly reduced by vitamin K1 treatment in bile duct-ligated rats. These results suggested that vitamin K1 may attenuate liver fibrosis by inhibiting hepatic stellate cell activation in bile duct-ligated rats.

  18. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale)

    PubMed Central

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-01-01

    Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. Conclusion The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis. PMID:17118137

  19. Protective effects of a natural herbal compound quercetin against snake venom-induced hepatic and renal toxicities in rats.

    PubMed

    Al-Asmari, Abdulrahman K; Khan, Haseeb A; Manthiri, Rajamohamed A; Al-Khlaiwi, Ahmad A; Al-Asmari, Bayan A; Ibrahim, Khalid E

    2018-05-08

    Echis pyramidum is a highly poisonous viper snake. Previous studies have shown acute phase hepatic and renal toxicities of Echis pyramidum venom (EPV) in rats. This study reports the protective effects of a natural herbal compound quercetin (QRC) on EPV-induced hepatic and renal toxicities in rats. A singly injection of EPV (4.76 mg/kg) caused significant increase in serum biomarkers of liver and kidney function. Pre-treatment of QRC (10 mg/kg) significantly reduced the toxic effects of EPV on functional impairment in liver and kidneys of rats. Administration of QRC also reversed EPV-induced increase in lipid peroxidation and decrease in total thiols. The histopathology of liver showed fat accumulation, focal degeneration and cytoplasmic vacuolation of hepatocytes in EPV treated rats. EPV also caused renal tubular dilation and focal atrophy of glomerular tufts in rat kidneys. Administration of QRC prevented EPV-induced structural tissue damage in liver and kidneys of rats. In conclusion, QRC significantly inhibited the acute phase toxic effects of EPV on liver and kidneys of rats by preventing the oxidative stress in these organs. QRC is also known for its anti-inflammatory, anti-edema, anti-hemorrhagic and PLA2-inhibitory properties and therefore may be regarded as a multi-action antidote against snake venom toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Aerobic capacity mediates susceptibility for the transition from steatosis to steatohepatitis.

    PubMed

    Morris, E Matthew; McCoin, Colin S; Allen, Julie A; Gastecki, Michelle L; Koch, Lauren G; Britton, Steven L; Fletcher, Justin A; Fu, Xiarong; Ding, Wen-Xing; Burgess, Shawn C; Rector, R Scott; Thyfault, John P

    2017-07-15

    Low intrinsic aerobic capacity is associated with increased all-cause and liver-related mortality in humans. Low intrinsic aerobic capacity in the low capacity runner (LCR) rat increases susceptibility to acute and chronic high-fat/high-sucrose diet-induced steatosis, without observed increases in liver inflammation. Addition of excess cholesterol to a high-fat/high-sucrose diet produced greater steatosis in LCR and high capacity runner (HCR) rats. However, the LCR rat demonstrated greater susceptibility to increased liver inflammatory and apoptotic markers compared to the HCR rat. The progressive non-alcoholic fatty liver disease observed in the LCR rats following western diet feeding was associated with further declines in liver fatty acid oxidation and mitochondrial respiratory capacity compared to HCR rats. Low aerobic capacity increases risk for non-alcoholic fatty liver disease and liver-related disease mortality, but mechanisms mediating these effects remain unknown. We recently reported that rats bred for low aerobic capacity (low capacity runner; LCR) displayed susceptibility to high fat diet-induced steatosis in association with reduced hepatic mitochondrial fatty acid oxidation (FAO) and respiratory capacity compared to high aerobic capacity (high capacity runner; HCR) rats. Here we tested the impact of aerobic capacity on susceptibility for progressive liver disease following a 16-week 'western diet' (WD) high in fat (45% kcal), cholesterol (1% w/w) and sucrose (15% kcal). Unlike previously with a diet high in fat and sucrose alone, the inclusion of cholesterol in the WD induced hepatomegaly and steatosis in both HCR and LCR rats, while producing greater cholesterol ester accumulation in LCR compared to HCR rats. Importantly, WD-fed low-fitness LCR rats displayed greater inflammatory cell infiltration, serum alanine transaminase, expression of hepatic inflammatory markers (F4/80, MCP-1, TLR4, TLR2 and IL-1β) and effector caspase (caspase 3 and 7) activation compared to HCR rats. Further, LCR rats had greater WD-induced decreases in complete FAO and mitochondrial respiratory capacity. Intrinsic aerobic capacity had no impact on WD-induced hepatic steatosis; however, rats bred for low aerobic capacity developed greater hepatic inflammation, which was associated with reduced hepatic mitochondrial FAO and respiratory capacity and increased accumulation of cholesterol esters. These results confirm epidemiological reports that aerobic capacity impacts progression of liver disease and suggest that these effects are mediated through alterations in hepatic mitochondrial function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. Enhanced iron removal from liver parenchymal cells in experimental iron overload: liposome encapsulation of HBED and phenobarbital administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Y.E.; Cerny, E.A.; Lau, E.H.

    1983-07-01

    The effectiveness of N,N'-bis(2-hydroxybenzyl)-ethylene-diamine-N,N'-diacetic acid (HBED) in removing radioiron introduced into the parenchymal cells of mouse liver as /sup 59/Fe-ferritin has been investigated. The effectiveness of HBED, an iron chelator of low water solubility, has also been compared with that of desferrioxamine (DF), an iron chelator of high water solubility and currently in clinical use for treatment of transfusional iron overload. Using the /sup 59/Fe excretion as the measure of effectiveness of chelation therapy and a standardized single chelator dose of 25 mg/kg, they have found that: (1) a saline suspension of HBED, prepared by sonication and given intraperitoneally tomore » mice, promotes a small but significant increase in excretion of radioiron compared to the untreated controls, whereas DF, in its free form, is ineffective; (2) HBED encapsulated in lipid bilayers of liposomes and given intravenously is superior to nonencapsulated HBED; (3) DF encapsulated in small unilamellar liposomes is ineffective in removing iron given in the form of ferritin; (4) administration of phenobarbital in drinking water, at a concentration of 1 g/liter, induces a 30%-55% increase of iron excretion from untreated control mice and also from mice given HBED either in liposome-encapsulated or nonencapsulated form. HBED is superior to DF for removal of storage iron from liver parenchymal cells and liposomes are useful carriers for iron chelators of low water solubility.« less

  2. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent.

    PubMed

    Binesh, Ambika; Devaraj, Sivasithamparam Niranjali; Halagowder, Devaraj

    2018-03-01

    Atherogenic Diet (AD) was given to rats to understand the key role of inflammatory mediators in atherosclerotic lesion formation, as a serendipitous study, the diet induced inflammatory mediators in liver and brain, whereas pancreas, kidney and spleen were not affected. The efficacy of diosgenin in ameliorating atherosclerotic progression in heart and suppression of inflammatory mediators in liver and brain of Wistar rat fed on AD diet was investigated. Atherogenic diet triggered inflammatory mediators in heart, liver and brain by upregulating TNF-α, COX-2 and NFkBp65 which are the inflammatory hub, played a key role in pathophysiologic conditions. Endothelial dysfunction, liver tissue with prominent steatosis and the stress evoked in the brain by the atherogenic diet triggered these inflammatory mediators. TNF-α and COX-2 expression was upregulated and its elevation was associated with NFkBp65 activation in heart, liver and brain of atherogenic diet induced rat. Diosgenin downregulated these inflammatory mediators, thereby prevented the atherosclerotic disease progression and concomitant suppression of inflammatory mediators in liver and brain. Copyright © 2018. Published by Elsevier Inc.

  3. AMELIORATIVE ROLE OF Vernonia cinerea IN CARBON TETRACHLORIDE INDUCED HEPATIC DYSFUNCTION IN RATS.

    PubMed

    Gokilaveni, C; Nishadh, A; Selvi, V

    2006-01-01

    The ameliorative activity of herbal powder prepared from Veronia cinerea leaves on CCl(4) (0.2ml/kg body wt. intraperitoneally (ip) and liquid paraffin (0.2 ml / kg body wt:ip) induced hepatotoxicity was studied in rats. The liver marker enzymes namely alanine transmainase (ALT), aspartate transaminase (AST), acid phosphatase and alkaline phosphatase (ALP) activities were decreased in 10% w/v liver homogenates of hepatotoxicity induced rats. The results of both post treated and pre treated groups suggest the hepatoprotective activity of Veronia cinerea in CCl(4) induced rats.

  4. Ca(2+)-dependent nonspecific permeability of the inner membrane of liver mitochondria in the guinea fowl (Numida meleagris).

    PubMed

    Vedernikov, Aleksander A; Dubinin, Mikhail V; Zabiakin, Vladimir A; Samartsev, Victor N

    2015-06-01

    This comparative study presents the results of the induction of Ca(2+)-dependent nonspecific permeability of the inner membrane (pore opening) of rat and guinea fowl liver mitochondria by mechanisms that are both sensitive and insensitive to cyclosporin A (CsA). It was established that energized rat and guinea fowl liver mitochondria incubated with 1 mM of inorganic phosphate (Pi) are capable of swelling upon addition of at least 125 and 875 nmol of CaCl2 per 1 mg protein, respectively. Under these conditions, the Ca(2+) release from the mitochondria of these animals and a drop in Δψ are observed. All of these processes are inhibited by 1 μM of CsA. FCCP, causing organelle de-energization, induces pore opening in rat and guinea fowl liver mitochondria upon addition of 45 и 625 nmol of CaCl2 per 1 mg protein, respectively. These results suggest the existence of a CsA-sensitive mechanism for the induction of Ca(2+)-dependent pores in guinea fowl liver mitochondria, which has been reported in rat liver mitochondria. However, guinea fowl liver mitochondria have a significantly greater resistance to Ca(2+) as a pore inducer compared to rat liver mitochondria. It was found that the addition of α,ω-hexadecanedioic acid (HDA) to rat and guinea fowl liver mitochondria incubated with CsA and loaded with Ca(2+) causes organelle swelling and Ca(2+) release from the matrix. It is assumed that in contrast to the CsA-sensitive pore, the CsA-insensitive pore induced by HDA in the inner membrane of guinea fowl liver mitochondria, as well as in rat liver mitochondria, is lipid in nature.

  5. Cardiolipin content is involved in liver mitochondrial energy wasting associated with cancer-induced cachexia without the involvement of adenine nucleotide translocase.

    PubMed

    Julienne, Cloé Mimsy; Tardieu, Marine; Chevalier, Stéphan; Pinault, Michelle; Bougnoux, Philippe; Labarthe, François; Couet, Charles; Servais, Stéphane; Dumas, Jean-François

    2014-05-01

    Cancer-induced cachexia describes the progressive skeletal muscle wasting associated with many cancers leading to shortened survival time in cancer patients. We previously reported that cardiolipin content and energy-wasting processes were both increased in liver mitochondria in a rat model of peritoneal carcinosis (PC)-induced cachexia. To increase the understanding of the cellular biology of cancer cachexia, we investigated the involvement of adenine nucleotide translocator (ANT) in mitochondrial energy-wasting processes in liver mitochondria of PC and pair-fed control rats and its interactions with cardiolipin in isolated liver mitochondria from healthy rats exposed to cardiolipin-enriched liposomes. We showed in this study that functional ANT content was decreased in liver mitochondria from PC rats but without any effects on the efficiency of ATP synthesis. Moreover, non-phosphorylating energy wasting was not affected by saturating concentrations of carboxyatractylate (CAT), a potent inhibitor of ANT, in liver mitochondria from PC rats. Decreased efficiency of ATP synthesis was found in normal liver mitochondria exposed to cardiolipin-enriched liposomes, with increased non-phosphorylating energy wasting, thus mimicking mitochondria from PC rats. However, the functional ANT content in these cardiolipin-enriched mitochondria was unchanged, although non-phosphorylating energy wasting was reduced by CAT-induced inhibition of ANT. Finally, non-phosphorylating energy wasting was increased in cardiolipin-enriched mitochondria with substrates for complexes 1 and 2, but not for complex 4. In conclusion, increased energy wasting measured in liver mitochondria from rats with cancer cachexia is dependent on cardiolipin but independent of ANT. Interactions between ANT and cardiolipin are modified when cancer cachexia occurs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Endogenous estrogen status, but not genistein supplementation, modulates 7,12-dimethylbenz[a]anthracene-induced mutation in the liver cII gene of transgenic big blue rats.

    PubMed

    Chen, Tao; Hutts, Robert C; Mei, Nan; Liu, Xiaoli; Bishop, Michelle E; Shelton, Sharon; Manjanatha, Mugimane G; Aidoo, Anane

    2005-06-01

    A growing number of studies suggest that isoflavones found in soybeans have estrogenic activity and may safely alleviate the symptoms of menopause. One of these isoflavones, genistein, is commonly used by postmenopausal women as an alternative to hormone replacement therapy. Although sex hormones have been implicated as an important risk factor for the development of hepatocellular carcinoma, there are limited data on the potential effects of the estrogens, including phytoestrogens, on chemical mutagenesis in liver. Because of the association between mutation induction and the carcinogenesis process, we investigated whether endogenous estrogen and supplemental genistein affect 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in rat liver. Intact and ovariectomized female Big Blue rats were treated with 80 mg DMBA/kg body weight. Some of the rats also received a supplement of 1,000 ppm genistein. Sixteen weeks after the carcinogen treatment, the rats were sacrificed, their livers were removed, and mutant frequencies (MFs) and types of mutations were determined in the liver cII gene. DMBA significantly increased the MFs in liver for both the intact and ovariectomized rats. While there was no significant difference in MF between the ovariectomized and intact control animals, the mutation induction by DMBA in the ovariectomized groups was significantly higher than that in the intact groups. Dietary genistein did not alter these responses. Molecular analysis of the mutants showed that DMBA induced chemical-specific types of mutations in the liver cII gene. These results suggest that endogenous ovarian hormones have an inhibitory effect on liver mutagenesis by DMBA, whereas dietary genistein does not modulate spontaneous or DMBA-induced mutagenesis in either intact or ovariectomized rats.

  7. Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acikgoez, Ali; Department of Surgery, Universitaet Leipzig, Liebig Str. 20, D-04103 Leipzig; Karim, Najibulla

    2009-01-15

    Drug biotransformation is one of the most important parameters of preclinical screening tests for the registration of new drug candidates. Conventional existing tests rely on nonhuman models which deliver an incomplete metabolic profile of drugs due to the lack of proper CYP450 expression as seen in human liver in vivo. In order to overcome this limitation, we used an organotypical model of human primary hepatocytes for the biotransformation of the drug diazepam with special reference to metabolites in both the cell matrix phase and supernatant and its interaction of three inducers (phenobarbital, dexamethasone, aroclor 1254) in different time responses (1,more » 2, 4, 8, 24 h). Phenobarbital showed the strongest inducing effect in generating desmethyldiazepam and induced up to a 150 fold increase in oxazepam-content which correlates with the increased availability of the precursor metabolites (temazepam and desmethyldiazepam). Aroclor 1254 and dexamethasone had the strongest inducing effect on temazepam and the second strongest on oxazepam. The strong and overlapping inductive role of phenobarbital strengthens the participation of CYP2B6 and CYP3A in diazepam N-demethylation and CYP3A in temazepam formation. Aroclor 1254 preferentially generated temazepam due to the interaction with CYP3A and potentially CYP2C19. In parallel we represented these data in the form of a mathematical model with two compartments explaining the dynamics of diazepam metabolism with the effect of these other inducers in human primary hepatocytes. The model consists of ten differential equations, with one for each concentration c{sub i,j} (i = diazepam, temazepam, desmethyldiazepam, oxazepam, other metabolites) and one for each compartment (j = cell matrix phase, supernatant), respectively. The parameters p{sub k} (k = 1, 2, 3, 4, 13) are rate constants describing the biotransformation of diazepam and its metabolites and the other parameters (k = 5, 6, 7, 8, 9, 10, 11, 12, 14, 15) explain the concentration changes in the two compartments.« less

  8. Inactivated Orf virus (Parapoxvirus ovis) elicits antifibrotic activity in models of liver fibrosis.

    PubMed

    Nowatzky, Janina; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Limmer, Andreas; Knolle, Percy; Weber, Olaf

    2013-05-01

    Inactivated Orf virus (ORFV, Parapoxvirus ovis) demonstrates strong antiviral activity in animal models including a human hepatitis B virus (HBV)-transgenic mouse. In addition, expression of interferon (IFN)-γ and interleukin-10 (IL-10) was induced after administration of inactivated ORFV in these mice. IFN-γ and IL-10 are known to elicit antifibrotic activity. We therefore aimed to study antifibrotic activity of inactivated ORFV in models of liver fibrosis. We characterized ORFV-induced hepatic cytokine expression in rats. We then studied ORFV in two models of liver fibrosis in rats, pig serum-induced liver fibrosis and carbon tetrachloride (CCL4 )-induced liver fibrosis. ORFV induced hepatic expression of IFN-γ and IL-10 in rats. ORFV mediated antifibrotic activity when administrated concomitantly with the fibrosis-inducing agents in both models of liver fibrosis. Importantly, when CCL4 -induced liver fibrosis was already established, ORFV application still showed significant antifibrotic activity. In addition, we were able to demonstrate a direct antifibrotic effect of ORFV on stellate cells. These results establish a potential novel antifibrotic therapeutic approach that not only prevents but also resolves established liver fibrosis. Further studies are required to unravel the details of the mechanisms involved. © 2012 The Japan Society of Hepatology.

  9. Changes in expression of cellular oncogenes and endogenous retrovirus-like sequences during hepatocarcinogenesis induced by a peroxisome proliferator.

    PubMed Central

    Hsieh, L. L.; Shinozuka, H.; Weinstein, I. B.

    1991-01-01

    Previous studies have demonstrated that BR-931, a hepatic peroxisome proliferator, can induce liver tumours in mice and rats. Since alterations in gene expression may play a critical role in multistage hepatocarcinogenesis, the present studies examined the expression of the c-myc, c-H-ras, epidermal growth factor (EGF) receptor and ODC (ornithine decarboxylase) genes, as well as endogenous retrovirus-like sequences, in F344 rat liver during the first 8 weeks of feeding a 0.16% Br931 diet and in liver tumours induced by chronic feeding of this diet. Northern blot analysis of poly A + liver RNA samples showed an increase in the level of RNAs homologous to rat leukaemia virus (RaLV) but no significant change in the level of 30S-retrovirus related RNAs in the liver RNA samples obtained from rats during the first 8 weeks of feeding the diet containing BR931. An increase in the levels of c-myc, c-H-ras and ODC transcripts was also seen in the liver RNA samples from the treated rats. Of particular interest was a decrease in the abundance of EGF receptor transcripts in the liver RNA samples from rats fed the BR931 diet. Increased levels of RaLV, c-myc, and ODC RNAs were also seen in the tumours induced by BR931, but this was not the case for 30S and c-H-ras. The liver tumour samples also showed a decrease in EGF receptor RNA. These changes in cellular levels of specific RNAs resemble, in several respect, those we previously described in rodent liver during regeneration and tumour promotion, and also those seen in rodent hepatomas induced by other agents. Therefore, they may reflect a common profile of gene expression relevant to liver proliferation and carcinogenesis. Images Figure 1 Figure 2 PMID:1931600

  10. Measurement of the lowest dosage of phenobarbital that can produce drug discrimination in rats

    PubMed Central

    Overton, Donald A.; Stanwood, Gregg D.; Patel, Bhavesh N.; Pragada, Sreenivasa R.; Gordon, M. Kathleen

    2009-01-01

    Rationale Accurate measurement of the threshold dosage of phenobarbital that can produce drug discrimination (DD) may improve our understanding of the mechanisms and properties of such discrimination. Objectives Compare three methods for determining the threshold dosage for phenobarbital (D) versus no drug (N) DD. Methods Rats learned a D versus N DD in 2-lever operant training chambers. A titration scheme was employed to increase or decrease dosage at the end of each 18-day block of sessions depending on whether the rat had achieved criterion accuracy during the sessions just completed. Three criterion rules were employed, all based on average percent drug lever responses during initial links of the last 6 D and 6 N sessions of a block. The criteria were: D%>66 and N%<33; D%>50 and N%<50; (D%-N%)>33. Two squads of rats were trained, one immediately after the other. Results All rats discriminated drug versus no drug. In most rats, dosage decreased to low levels and then oscillated near the minimum level required to maintain criterion performance. The lowest discriminated dosage significantly differed under the three criterion rules. The squad that was trained 2nd may have benefited by partially duplicating the lever choices of the previous squad. Conclusions The lowest discriminated dosage is influenced by the criterion of discriminative control that is employed, and is higher than the absolute threshold at which discrimination entirely disappears. Threshold estimations closer to absolute threshold can be obtained when criteria are employed that are permissive, and that allow rats to maintain lever preferences. PMID:19082992

  11. Maize Purple Plant Pigment Protects Against Fluoride-Induced Oxidative Damage of Liver and Kidney in Rats

    PubMed Central

    Zhang, Zhuo; Zhou, Bo; Wang, Hiaohong; Wang, Fei; Song, Yingli; Liu, Shengnan; Xi, Shuhua

    2014-01-01

    Anthocyanins are polyphenols and well known for their biological antioxidative benefits. Maize purple plant pigment (MPPP) extracted and separated from maize purple plant is rich in anthocyanins. In the present study, MPPP was used to alleviate the adverse effects generated by fluoride on liver and kidney in rats. The results showed that the ultrastructure of the liver and kidney in fluoride treated rats displayed shrinkage of nuclear and cell volume, swollen mitochondria and endoplasmic reticulum and vacuols formation in the liver and kidney cells. MPPP significantly attenuated these fluoride-induced pathological changes. The MDA levels in serum and liver tissue of fluoride alone treated group were significantly higher than those of the control group (p < 0.05). The presence of 5 g/kg MPPP in the diet reduced the elevation of MDA levels in blood and liver, and increased the SOD and GSH-Px activities in kidney and GSH level in liver and kidney compared with the fluoride alone treated group (p < 0.05). In addition, MPPP alleviated the decrease of Bcl-2 protein expression and the increase of Bax protein expression induced by fluoride. This study demonstrated the protective role of MPPP against fluoride-induced oxidative stress in liver and kidney of rats. PMID:24419046

  12. Development of experimental fibrotic liver diseases animal model by Carbon Tetracholoride.

    PubMed

    Gitiara, Atoosa; Tokhanbigli, Samaneh; Mazhari, Sogol; Baghaei, Kaveh; Hatami, Behzad; Hashemi, Seyed Mahmoud; Asadi Rad, Ali; Moradi, Afshin; Nasiri, Meyam; Zarrabi Ahrabi, Nakisa; Zali, Mohammad Reza

    2017-01-01

    This study is presenting an effective method of inducing liver fibrosis by CCL4 as a toxin in two different breeds of rat models. Liver fibrosis is a result of inflammation and liver injury caused by wound healing responses which ultimately lead to liver failure. Consequently, after liver fibrosis, the progression will be continued to liver cirrhosis and at the end stage hepatocellular carcinoma (HCC). Many studies have demonstrated that one of the most important causes of liver fibrosis is Non-alcoholic steatohepatitis (NASH). Fibrotic Liver is affected by an excessive accumulation of extracellular matrix (ECM) proteins like collagen and α-SMA. In two different experiments, male Vistar, and Sprague Dawley Rat models ranging from 200±60, corresponding to an age of approximately 10 weeks were utilized in order to induce CCL4 treated liver fibrosis. After 6 weeks of CCL4 injection, different tests have been carried out to verify the liver fibrosis including serum markers such as Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT), molecular tests containing, laminin and α-SMA and also pathological observation by Hematoxylin and eosin staining in both fibrosis and control group. The results of Pathology and Real-time PCR showed that fibrosis was induced much more effectively in Sprague Dawley rat model compared with Wistar rats.

  13. Hepatoprotective effects of Vaccinium arctostaphylos against CCl4-induced acute liver injury in rats.

    PubMed

    Ravan, Alireza Pouyandeh; Bahmani, Mahdi; Ghasemi Basir, Hamid Reza; Salehi, Iraj; Oshaghi, Ebrahim Abbasi

    2017-09-26

    This study was carried out to evaluate the antioxidant and hepatoprotective effects of Vaccinium arctostaphylos (V.a) methanolic extract on carbon tetrachloride (CCl4)-induced acute liver injury in Wistar rats. Total phenolic and total flavonoid contents as well as antioxidant activity of V.a were determined. Extracts of V.a at doses of 200 and 400 mg/kg were administered by oral gavage to rats once per day for 7 days and then were given an intraperitoneal injection of 1 mL/kg CCl4 (1:1 in olive oil) for 3 consecutive days. Serum biochemical markers of liver injury, oxidative markers, as well as hydroxyproline (HP) content and histopathology of liver were evaluated. The obtained results showed that V.a had strong antioxidant activity. Treatment of rats with V.a blocked the CCl4-induced elevation of serum markers of liver function and enhanced albumin and total protein levels. The level of hepatic HP content was also reduced by the administration of V.a treatment. Histological examination of the liver section revealed that V.a prevented the occurrence of pathological changes in CCl4-treated rats. These findings suggested that V.a may be useful in the treatment and prevention of hepatic injury induced by CCl4.

  14. Fasting-induced apoptosis in rat liver is blocked by cycloheximide.

    PubMed

    Tessitore, L; Tomasi, C; Greco, M

    1999-08-01

    The effect of cycloheximide (CH) on the fasting-induced changes of rat liver cell and protein turnover has been investigated. Late starvation phase (3-4-day-fasting period) was characterised by a decrease in liver weight and protein and DNA content. The loss of DNA was not related to liver cell necrosis but due not only to depression of cell proliferation as shown by the drop in the labelling index but also induction of apoptosis. This type of apoptosis was documented by the increase in the apoptotic index (cells labelled by TUNEL) and transglutaminase activity as well as by DNA fragmentation. The liver cells of fasted rats appeared smaller as shown by the higher cell density and DNA/protein ratio than in controls. Females were more resistant to fasting-induced apoptosis than males. A single dose of CH, a drug primary known as inhibitor of protein synthesis, induced or enhanced apoptosis in fed and 2-days fasted male rats, respectively, without any sign of cell necrosis. On the contrary, the administration of repeated doses of CH blocked apoptosis induced by fasting. CH "froze" protein and DNA content as well as apoptotic process at the level of 2 days-fasted rats. While fasting-induced liver protein loss resulted from a marked reduction in protein synthesis with a slight decrease in degradation, repeated treatment with CH virtually blocked protein loss by abolishing protein catabolism. These data suggest a direct relationship between the catabolic side of protein turnover and the apoptotic process.

  15. Exaggerated Liver Injury Induced by Renal Ischemia Reperfusion in Diabetes: Effect of Exenatide

    PubMed Central

    Vaghasiya, Jitendra D.; Sheth, Navin R.; Bhalodia, Yagnik S.; Jivani, Nurudin P.

    2010-01-01

    Background/Aim: This study was designed to investigate the possible effect of exenatide (Glucagon like Peptide-1 receptor agonist) on liver injury (distant organ) induced by renal ischemia reperfusion (IR) in diabetic rats. Materials and Methods: In vivo renal IR was performed in both type 2 diabetic and normal rats. Each protocol comprised ischemia for 30 minutes followed by reperfusion for 24 hours and a treatment period of 14 days before induction of ischemia. Results: Lipid peroxidation, xanthine oxidase activity, myeloperoxidase activity and nitric oxide level in liver tissue were significantly increased (P < 0.01, P < 0.001, P < 0.001, P < 0.05, respectively), after IR in diabetic rats compared to normal rats. Antioxidant enzymes like glutathione, superoxide dismutase, catalase and glutathione peroxidase were significantly reduced (P < 0.05, P < 0.05, P < 0.01, P < 0.05, respectively), after IR in diabetic rats compared to normal rats. Exenatide treatment significantly normalized (P < 0.01), these biochemical parameters in treated rats compared to diabetic IR rats. Serum creatinine phosphokinase activity and liver function enzymes were also significantly normalized (P < 0.001, P < 0.001, respectively), after administration of exenatide. Conclusion: Exenatide exerted protective effect on exaggerated remote organ (liver) injury induced by renal IR in diabetes. PMID:20616412

  16. Protective Effect of Ethanolic Extract of Tabernaemontana divaricata (L.) R. Br. against DEN and Fe NTA Induced Liver Necrosis in Wistar Albino Rats

    PubMed Central

    2014-01-01

    This study is an attempt to evaluate the hepatoprotective activity of Tabernaemontana divaricata against DEN and Fe NTA induced liver necrosis in rats. Ethanolic extract of the whole plant of Tabernaemontana divaricata at doses of 200 and 400 mg/kg body weight and 5-fluorouracil (standard drug) was orally administered to male Wistar Albino rats once daily for 24 weeks, simultaneously treated with the carcinogen DEN and Fe NTA. In simultaneously treated animals, the plant extract significantly decreased the levels of uric acid, bilirubin, AST, ALT, and ALP in serum and increased the levels of liver marker enzymes in liver. Treatment with the extracts resulted in a significant increase in the levels of antioxidants accompanied by a marked reduction in the levels of malondialdehyde when compared to DEN and Fe NTA treated group. When compared with 200 mg/kg bw rats, 400 mg/kg bw rats and 5-fluorouracil treated rats showed better results in all the parameters. The histopathological studies confirmed the protective effects of extract against DEN and Fe NTA induced liver necrosis. Thus, it could be concluded that the use of Tabernaemontana divaricata extract in the treatment of carcinogen induced hepatic necrosis. PMID:25136566

  17. Protective effect of grape seed and skin extract against high-fat diet-induced liver steatosis and zinc depletion in rat.

    PubMed

    Charradi, Kamel; Elkahoui, Salem; Karkouch, Ines; Limam, Ferid; Ben Hassine, Fethy; El May, Michèle Veronique; Aouani, Ezzedine

    2014-08-01

    Obesity is a tremendous public health problem, characterized by ectopic deposition of fat into non-adipose tissues as liver generating an oxidative stress that could lead to steato-hepatitis. Grape seed and skin extract (GSSE) is a complex mixture of polyphenolics exhibiting robust antioxidative properties. We hypothesize that GSSE could protect the liver from fat-induced lipotoxicity and have a beneficial effect on liver function. Hepatoprotective effect of GSSE was measured by using an experimental model of fat-induced rat liver steatosis. Male rats were fed a standard diet or a high-fat diet (HFD) during 6 weeks and treated or not with 500 mg/kg bw GSSE. Lipid deposition into the liver was assessed by triglyceride, cholesterol and phospholipid measurements. Fat-induced lipoperoxidation, carbonylation, depletion of glutathione and of antioxidant enzyme activities were used as oxidative stress markers with a special emphasis on transition metal distribution. HFD induced liver hypertrophy and inflammation as assessed by high liver transaminases. HFD also induced an oxidative stress characterized by increased lipid and protein oxidation, a drop in glutathione and antioxidant enzyme activities as glutathione peroxidase and superoxide dismutase and a drastic depletion in liver zinc. Importantly, GSSE prevented all the deleterious effects of HFD treatment. Data suggest that GSSE could be used as a safe preventive agent against fat-induced liver lipotoxicity which could also have potential applications in other non-alcoholic liver diseases.

  18. The Natural History of Neoplasia

    PubMed Central

    Pitot, Henry C.

    1977-01-01

    The stages of initiation and promotion in the natural history of epidermal carcinogenesis have been known for many years. Recently, experimental systems other than skin have been shown to exhibit similar, if not completely analogous, stages in the natural history of neoplasia. In particular, the demonstration by Peraino and his associates that phenobarbital may enhance the production of hepatomas by a relatively subcarcinogenic dose of acetylaminofluorene was one of the first demonstrations of stages occurring in an extraepidermal neoplasm. Studies reported in this paper have demonstrated that administration of phenobarbital (0.05% in the diet) for 6 months following a single dose of diethylnitrosamine (5 to 10 mg/kg) given within 24 hours after partial hepatectomy resulted in a marked increase in the number of enzyme-altered foci in the liver as well as in the production of hepatocellular carcinomas. This was compared to animals receiving only a single dose of diethylnitrosamine following partial hepatectomy with no further treatment, in which only a relatively small number of foci were evident in the absence of phenobarbital feeding. Using three different enzyme markers, a distinct degree of phenotypic heterogeneity of the enzyme-altered foci in liver was demonstrated. These studies have shown that liver carcinogensis can be readily divided into two stages: a) initiation by a single dose of diethylnitrosamine following partial hepatectomy and b) promotion by the continuous feeding of phenobarbital. Furthermore, the immediate progeny of the initiated cells, the enzyme-altered focus, may be recognized by suitable microscopic means prior to the formation of gross lesions as required in the skin system. These initiated cell populations exhibit a degree of biochemical heterogeneity which reflects that seen in fully developed hepatic neoplasms, suggesting that promotion and progression in this system does not significantly alter the basic biochemical characteristics of the initiated cell. PMID:21565

  19. Bumetanide augments the neuroprotective efficacy of phenobarbital plus hypothermia in a neonatal hypoxia-ischemia model

    PubMed Central

    Liu, YiQing; Shangguan, Yu; Barks, John D.E.; Silverstein, Faye S.

    2014-01-01

    The NaKCl cotransporter NKCC1 facilitates intraneuronal chloride accumulation in the developing brain. Bumetanide, a clinically available diuretic, inhibits this chloride transporter, and augments the antiepileptic effects of phenobarbital in neonatal rodents. In a neonatal cerebral hypoxia-ischemia (HI) model, elicited by right carotid ligation, followed by 90 min 8% O2 exposure in 7-day-old(P7) rats, phenobarbital(PB) increases the neuroprotective efficacy of hypothermia. We evaluated whether bumetanide influenced the neuroprotective efficacy of combination treatment with PB and hypothermia(HT). P7 rats underwent HI lesioning; 15 min later, all received PB (30 mg/kg). 10 min later, half received bumetanide (10 mg/kg, PB-HT+BUM) and half received saline (PB-HT+SAL). One hour after HI, all were cooled (30°C, 3h). Contralateral forepaw sensorimotor function and brain damage were evaluated 1 to 4 weeks later. Forepaw functional measures were close to normal in the PB-HT+BUM group, while deficits persisted in PB-HT+SAL controls; there were corresponding reductions in right cerebral hemisphere damage (at P35, % damage: PB-HT+BUM, 21±16 versus 38±20 in controls). These results provide evidence that NKCC1 inhibition amplifies phenobarbital bioactivity in the immature brain, and suggest that co-administration of phenobarbital and bumetanide may represent a clinically feasible therapy to augment the neuroprotective efficacy of therapeutic hypothermia in asphyxiated neonates. PMID:22398701

  20. Protective effect of ethanolic extract of polyherbal formulation on carbon tetrachloride induced liver injury

    PubMed Central

    Gurusamy, K; Kokilavani, R; Arumugasamy, K; Sowmia, C

    2009-01-01

    Protective effect of ethanolic extract of polyherbalformulation (PHF) of three medicinalplants was studied on carbon tetrachloride induced liver damage in rats. Treatment with 250mg I kg b.w. of ethanolic extract of PHF protected rats against carbon tetrachloride liver injury by significantly lowering 5’NT, GGF, GDH and SDH and bilirubin levels compared to control group of rats. Normalising the effect of these parameters indicates strong hepatoprotective property of the PHF extract. PMID:22557313

  1. Effects of Fatty Liver Induced by Excess Orotic Acid on B-Group Vitamin Concentrations of Liver, Blood, and Urine in Rats.

    PubMed

    Shibata, Katsumi; Morita, Nobuya; Kawamura, Tomoyo; Tsuji, Ai; Fukuwatari, Tsutomu

    2015-01-01

    Fatty liver is caused when rats are given orotic acid of the pyrimidine base in large quantities. The lack of B-group vitamins suppresses the biosynthesis of fatty acids. We investigated how orotic acid-induced fatty liver affects the concentrations of liver, blood, and urine B-group vitamins in rats. The vitamin B6 and B12 concentrations of liver, blood, and urine were not affected by orotic acid-induced fatty liver. Vitamin B2 was measured only in the urine, but was unchanged. The liver, blood, and urine concentrations of niacin and its metabolites fell dramatically. Niacin and its metabolites in the liver, blood, and urine were affected as expected. Although the concentrations of vitamin B1, pantothenic acid, folate, and biotin in liver and blood were decreased by orotic acid-induced fatty liver, these urinary excretion amounts showed a specific pattern toward increase. Generally, as for the typical urinary excretion of B-group vitamins, these are excreted when the body is saturated. However, the ability to sustain vitamin B1, pantothenic acid, folate, and biotin decreased in fatty liver, which is hypothesized as a specific phenomenon. This metabolic response might occur to prevent an abnormally increased biosynthesis of fatty acids by orotic acid.

  2. Corn oil enhancing hepatic lipid peroxidation induced by CCl4 does not aggravate liver fibrosis in rats.

    PubMed

    Fang, Hsun-Lang; Lin, Wen-Chuan

    2008-06-01

    Lipid peroxidation (LPO) is known to be associated with liver fibrosis in chronic liver injury. However, direct effects of the products of LPO on liver fibrogenesis have not been demonstrated. In this study, we examined the LPO products of carbon tetrachloride (CCl4)+corn oil to evaluate the effect of LPO products on liver fibrosis. CCl4 was given twice a week for 8 weeks. Corn oil was given daily to rats at a dose of 2 or 10ml/kg via gastrogavage throughout the whole experiment period. CCl4 induced both cyclooxygenase (COX)-2 independent and COX-2 dependent LPO. COX-2 independent LPO was enhanced by corn oil treatment while no effect was reflected on COX-2 dependent LPO. CCl4-induced liver fibrosis in rats was not aggravated by corn oil treatment. In addition, the amount of fatty liver induced by CCl4 was increased by corn oil treatment. Though the inflammation-related UCP-2 mRNA expression was induced by CCl4, it was not aggravated by the enhancement of corn oil. corn oil enriches polyunsaturated fatty acids through COX-2 independent pathways to increase LPO products that do not enhance liver fibrosis induced by CCl4.

  3. Cinnamon extract ameliorates ionizing radiation-induced cellular injury in rats.

    PubMed

    Azab, Khaled Sh; Mostafa, Abdel-Halem A; Ali, Ehab M M; Abdel-Aziz, Mohamed A S

    2011-11-01

    The present study aimed to investigate the protective role of cinnamon extract against inflammatory and oxidative injuries in gamma irradiated rats. Rats were subjected to fractionated doses of gamma radiation. Cinnamon extract were daily administrated before starting irradiation and continued after radiation exposure. The results obtained revealed that the administration of cinnamon extract to irradiated rats significantly ameliorated the changes induced in liver antioxidant system; catalase, superoxide dismutase and glutathione peroxidase activities as well as reduced glutathione concentration. The liver's lipid peroxidation and protein oxidation indices were significantly decreased when compared with their equivalent values in irradiated rats. Furthermore, the changes induces in xanthine oxidoreductase system were significantly diminished. In addition, the changes in liver nitric oxide contents, serum tumor necrosis factor alpha and C-reactive protein levels were markedly improved. In conclusion, the administration of cinnamon extract might provide substantial protection against radiation-induced oxidative and inflammatory damages. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Phenobarbital Augments Hypothermic Neuroprotection

    PubMed Central

    Barks, John D.; Liu, Yi-Qing; Shangguan, Yu; Silverstein, Faye S.

    2010-01-01

    Seizures are associated with adverse outcome in infants with hypoxic-ischemic encephalopathy. We hypothesized that early administration of the anticonvulsant phenobarbital after cerebral hypoxia-ischemia could enhance the neuroprotective efficacy of delayed-onset hypothermia. We tested this hypothesis in a neonatal rodent model. Seven-day-old rats (n=104) underwent right carotid ligation, followed by 90 min 8%O2 exposure; 15 min later, they received injections of phenobarbital (40 mg/kg) or saline. One or 3h later, all were treated with hypothermia (30°C, 3h). Function and neuropathology were evaluated after 7 days (“early outcomes”) or 1 month (“late outcomes”). Early outcome assessment demonstrated better sensorimotor performance and less cortical damage in phenobarbital-treated groups; there were no differences between groups in which the hypothermia delay was shortened from 3h to 1h. Late outcome assessment confirmed sustained benefits of phenobarbital+hypothermia treatment; sensorimotor performance was better (persistent attenuation of contralateral forepaw placing deficits and absence of contralateral forepaw neglect); neuropathology scores were lower (medians, phenobarbital 2, saline 8.5, p<0.05), and less ipsilateral cerebral hemisphere %Damage (mean±SD, 11±17 vs. 28±22, p<0.05). These results suggest that early post-hypoxia-ischemia administration of phenobarbital may augment the neuroprotective efficacy of therapeutic hypothermia. PMID:20098339

  5. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet.

    PubMed

    Jin, Haiyan; Yamamoto, Naoki; Uchida, Koichi; Terai, Shuji; Sakaida, Isao

    2007-12-28

    Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor gamma activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions by down-regulating TGFbeta1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis.

  6. Treatment with geraniol ameliorates methionine-choline-deficient diet-induced non-alcoholic steatohepatitis in rats.

    PubMed

    Chen, Jun; Fan, Xiaoxia; Zhou, Lin; Gao, Xiaogang

    2016-07-01

    Non-alcoholic steatohepatitis (NASH) is one of the most common causes of chronic liver disease and is considered to be a causative factor of cryptogenic cirrhosis and hepatocellular carcinoma. The aim of this work was to investigate whether treatment with geraniol (a monoterpene) attenuated NASH induced by methionine-choline-deficient (MCD) diet in rats. Rats were fed with MCD diet to induce NASH and treated with geraniol (200 mg/kg/day) for 10 weeks. Treatment with geraniol reduced histological scores, fibrosis, and apoptosis in livers, lowered activities of alanine aminotransferase and aspartate aminotransferase in serum, and attenuated hepatic fat accumulation in rats fed with MCD diet. Treatment with geraniol preserved hepatic mitochondrial function, evidenced by reduced mitochondrial reactive oxygen species formation, enhanced adenosine triphosphate formation and membrane integrity, restored mitochondrial electron transport chain enzyme activity, and increased mitochondrial DNA content in rats fed with MCD diet. Treatment with geraniol reduced uncoupling protein 2 protein expression, and enhanced protein expression of prohibitin, mRNA expression of peroxisome proliferator-activated receptor α, and activity of mitochondrial carnitine palmitoyl transferase-I in livers of rats fed with MCD diet. Treatment with geraniol abated oxidative stress, evidenced by reduced malondialdehyde and 3-nitrotyrosine formation, enhanced activity of glutathione S-epoxide transferase, and down-regulated expression of inducible nitric oxide synthase and cytochrome P450 2E1 in livers of rats fed with MCD diet. Treatment with geraniol reduced myeloperoxidase activity and protein expression of tumor necrosis factor alpha and IL-6 in livers of rats fed with MCD diet. Treatment with geraniol attenuated MCD-induced NASH in rats. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  7. In vivo antioxidant effect of aqueous root bark, stem bark and leaves extracts of Vitex doniana in CCl4 induced liver damage rats.

    PubMed

    Adetoro, Kadejo Olubukola; Bolanle, James Dorcas; Abdullahi, Sallau Balarebe; Ahmed, Ozigi Abdulrahaman

    2013-05-01

    The antioxidant effects of aqueous root bark, stem bark and leaves of Vitex doniana (V. doniana) were evaluated in carbon tetrachloride (CCl4) induced liver damage and non induced liver damage albino rats. A total of 60 albino rats (36 induced liver damage and 24 non induced liver damage) were assigned into liver damage and non liver damage groups of 6 rats in a group. The animals in the CCl4 induced liver damage groups, were induced by intraperitoneal injection with a single dose of CCl4 (148 mg·ml(-1)·kg(-1) body weight) as a 1:1 (v/v) solution in olive oil and were fasted for 36 h before the subsequent treatment with aqueous root bark, stem bark and leaves extracts of V. doniana and vitamin E as standard drug (100 mg/kg body weighy per day) for 21 d, while the animals in the non induced groups were only treated with the daily oral administration of these extracts at the same dose. The administration of CCl4 was done once a week for a period of three weeks. The liver of CCl4 induced not treated group showed that the induction with CCl4, significantly (P<0.05) increased thiobarbituric acid reactive substance (TBARS) and significantly (P<0.05) decreased superoxide dismutase (SOD) and catalase (CAT). However there was no significant (P>0.05) difference between TBARS, SOD and CAT in the liver of the induced treated groups and normal control group. In the kidney, TBARS showed no significant (P>0.05) difference between the normal and the induced groups, SOD was significantly (P<0.05) reduced in the CCl4 group compared to standard drug and normal control groups, CAT was significantly (P<0.05) increased in root and vitamin E groups when compared to induced not treated group. The studies also showed that when the extracts were administered to normal animals, there was no significant (P>0.05) change in the liver and kidney level of TBARS, SOD and CAT compared with the normal control except in the kidney of animals treated with stem extract where TBARS was significantly (P<0.05) lowered compared to control group. The result of the present study suggests that application of V. doniana plant would play an important role in increasing the antioxidant effect and reducing the oxidative damage that formed both in liver and in kidney tissues. However stem bark has potential to improve renal function in normal rats.

  8. Beneficial effects of enalapril on chlorhexidine digluconate-induced liver peritoneal fibrosis in rats.

    PubMed

    Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Ke, Chen-Yen; Lin, Nien-Tsung; Hsu, Bang-Gee

    2011-08-31

    Peritoneal fibrosis (PF) is a recognized complication of long-term peritoneal dialysis (PD) and can lead to ultrafiltration failure. The present study was designed to investigate the protective effects of enalapril on chlorhexidine digluconate-induced liver PF by decreasing transforming growth factor-β1 (TGF-β1) production in rats. PF was induced in Sprague-Dawley rats by daily administration of 0.5 ml 0.1% chlorhexidine digluconate in normal saline via PD tube for one week. Rats received daily intravenous injections of low dose enalapril (1 mg/kg), or high dose enalapril (2.5 mg/kg), for one week. After 7 days, conventional 4.25% Dianeal (30 ml) was administered via a PD catheter with a dwell time of 4 h and assessment of peritoneal function. At the end of dialysis, the rats were sacrificed and liver peritoneum was harvested for microscopic examination and immunohistochemistry. There was no significant difference in mean arterial pressure and heart rate between groups. After 4 h of PD, the D₄/P₄(urea) level was reduced, the D₄/D₀ glucose level, serum and the dialysate TGF-β1 level was increased, the liver peritoneum was markedly thicker, and the expression of TGF-β1, alpha-smooth muscle actin (α-SMA), fibronectin, collagen and vascular endothelial growth factor (VEGF) were elevated in the PF group compared with the vehicle group. High dose of enalapril decreased the serum and dialysate TGF-β1 levels, decreased the thickness of the liver peritoneum, and decreased the expression of TGF-β1, α-SMA, fibronectin, collagen and VEGF-positive cells in the liver peritoneum. Low dose of enalapril did not protect against chlorhexidine digluconate-induced PF in the rat. Enalapril protected against chlorhexidine digluconate-induced PF in rats by decreasing TGF-β1 production.

  9. Studies on the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) in vitro

    PubMed Central

    Neal, R. A.

    1967-01-01

    1. The metabolism of the phosphorothionate parathion in vitro was examined by using [32P]parathion and microsomes isolated from the livers of various animal species. 2. The major metabolic products of parathion in this system in vitro were identified as diethyl 4-nitrophenyl phosphate (paraoxon), diethyl hydrogen phosphate, diethyl hydrogen phosphorothionate and p-nitrophenol. 3. The reaction leading to the formation of diethyl hydrogen phosphorothionate and p-nitrophenol requires the same cofactors (NADPH and oxygen) required for metabolism of parathion to its active anti-acetylcholinesterase paraoxon. 4. The enzyme activity towards parathion per unit weight of liver is increased some 65–130% by pretreatment of male rats with phenobarbital and 3,4-benzopyrene. 5. The metabolism of parathion is inhibited by incubation in a nitrogen atmosphere and in an atmosphere containing carbon monoxide. Pure oxygen is also inhibitory. These results are discussed in terms of a deficiency of oxygen for maximal activity as well as the lability of some component of the system to oxidation. PMID:4382289

  10. Memantine effects on liver and adrenal gland of rats exposed to cold stress

    PubMed Central

    2011-01-01

    Background Memantine attenuates heart stress due cold stress, however, no study focused its effects on liver and adrenal gland. We evaluated its effects on lipid depletion in adrenal gland and glycogen depletion in liver of rats exposed to cold stress. Methods Male rats divided into 4 groups: 1)Control (CON); 2)Memantine (MEM); 3)Induced cold stress (IH) and; 4)Induced cold stress memantine (IHF). Memantine were administrated by gavage (20 mg/kg/day) during eight days. Cold stress were performed during 4 hours once at - 8°C. Lipid and glycogen depletion were presented as its intensity levels. Results Rats exposed to cold stress presented the highest glycogen (p < 0.001) and lipid depletion (p < 0.001) in liver and adrenal gland, respectively. We noted that memantine significantly reduced lipid depletion in adrenal gland and glycogen depletion in liver. Conclusion Memantine prevented glycogen depletion in liver and lipid depletion in adrenal gland of rats under a cold stress condition. PMID:21255456

  11. AMELIORATIVE ROLE OF Vernonia cinerea IN CARBON TETRACHLORIDE INDUCED HEPATIC DYSFUNCTION IN RATS

    PubMed Central

    Gokilaveni, C.; Nishadh, A.; Selvi, V.

    2006-01-01

    The ameliorative activity of herbal powder prepared from Veronia cinerea leaves on CCl4 (0.2ml/kg body wt. intraperitoneally (ip) and liquid paraffin (0.2 ml / kg body wt:ip) induced hepatotoxicity was studied in rats. The liver marker enzymes namely alanine transmainase (ALT), aspartate transaminase (AST), acid phosphatase and alkaline phosphatase (ALP) activities were decreased in 10% w/v liver homogenates of hepatotoxicity induced rats. The results of both post treated and pre treated groups suggest the hepatoprotective activity of Veronia cinerea in CCl4 induced rats. PMID:22557198

  12. Phenobarbital-induced DRESS: a lichenoïd picture.

    PubMed

    Chaabane, Amel; Ben Fadhel, Najah; Chadli, Zohra; Ben Fredj, Nadia; Boughattas, Naceur A; Aouam, Karim

    2014-12-01

    We describe, the first case of phenobarbital-induced DRESS syndrome presenting as a lichenoïd eruption. A 49-year-old man had received phenobarbital for a cerebral metastasis. Twenty-five days later, he developed a purplish skin eruption, odynophagia, oral mucosal erosion and fever. Physical examination revealed a cervical lymphadenopathy and facial edema associated to a diffuse violaceous maculo-papular itchy rash. Laboratory findings showed a 1200/mm³ eosinophil's cell count. Alanine aminotransferase was 169 IU/l. Lactate dehydrogenase and creatinine phosphokinase were at 768 and 90 IU/l, respectively. All symptoms resolved completely five weeks after phenobarbital withdrawal. Few days later, the patient died because of a cardio-respiratory arrest.

  13. [The Correlation Between MicroRNAs in Serum and the Extent of Liver Injury].

    PubMed

    Zuo, Yi-Nan; He, Xue-Ling; Shi, Xue-Ni; Wei, Shi-Hang; Yin, Hai-Lin

    2017-05-01

    To investigate the correlation between the absolute quantification of the microRNAs (miR-122, miR-451, miR-92a, miR-192) in serum during acute liver injury and the extent of liver injury on rat models of CCl 4 induced acute liver injury and mice models of acetaminophen (APAP) induced acute liver injury. Furthermore, to investigate the correlation between the absolute quantification of microRNAs in serum and the drug induced liver injury pathological scoring system (DILI-PSS). The acute liver injury model in rat by CCl 4 (1.5 mL/kg), and the acute liver injury model in mice by APAP (160 mg/kg) were established. The serum at different time points on both models were collected respectively. The absolute quantification of microRNAs in serum were detected by using MiRbay TM SV miRNA Assay kit. Meanwhile, the pathological sections of liver tissue of the mice at each time point were collected to analyze the correlation between microRNAs and the degree of liver injury. In CCl 4 -induced rat acute liver injury model and APAP induced mouse acute liver injury, miR-122 and miR-192 appeared to be rising significantly, which remained the highest level at 24 h after treatment, and declined to the normal level after 72 h. In CCl 4 -induced rat acute liver injury model, the change of miR-92a was fluctuated and had no apparent rules, miR-451 declined gradually, but not obviously. In mice acute liver injury model induced by APAP, miR-92a and miR-451 in the progress of liver injury declined gradually, reached the lowest point at 48 h, and then recovered. The result of correlation analysis indicated that miR-122 and miR-192 presented a good positive correlation with the DILI-PSS ( r =0.741 3, P <0.05; r =0.788 3, P <0.01). The absolute quantification of miR-122 and miR-192 in serum has the highest level in 24 h, then decrease in 72 h, in both drug-induced and chemical liver injury. In addition, both the two microRNAs have good correlation with DILI-PSS in APAP-induced liver injury models.

  14. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  15. Alpha-lipoic acid treatment of acetaminophen-induced rat liver damage.

    PubMed

    Mahmoud, Y I; Mahmoud, A A; Nassar, G

    2015-01-01

    Acetaminophen (paracetamol) is a well-tolerated analgesic and antipyretic drug when used at therapeutic doses. Overdoses, however, cause oxidative stress, which leads to acute liver failure. Alpha lipoic acid is an antioxidant that has proven effective for ameliorating many pathological conditions caused by oxidative stress. We evaluated the effect of alpha lipoic acid on the histological and histochemical alterations of liver caused by an acute overdose of acetaminophen in rats. Livers of acetaminophen-intoxicated rats were congested and showed centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration. Necrotic hepatocytes lost most of their carbohydrates, lipids and structural proteins. Liver sections from rats pre-treated with lipoic acid showed fewer pathological changes; the hepatocytes appeared moderately vacuolated with moderate staining of carbohydrates and proteins. Nevertheless, alpha lipoic acid at the dose we used did not protect the liver fully from acetaminophen-induced acute toxicity.

  16. Evaluation of the 13C-octanoate breath test as a surrogate marker of liver damage in animal models.

    PubMed

    Shalev, Tamar; Aeed, Hussein; Sorin, Vladimir; Shahmurov, Mark; Didkovsky, Elena; Ilan, Yaron; Avni, Yona; Shirin, Haim

    2010-06-01

    Octanoate (also known as sodium octanoate), a medium-chain fatty acid metabolized in the liver, is a potential substrate for non-invasive breath testing of hepatic mitochondrial beta-oxidation. We evaluated the 13C-octanoate breath test (OBT) for assessing injury in acute hepatitis and two rat models of liver cirrhosis, first testing octanoate absorption (per os or intraperitoneally (i.p.)) in normal rats. We then induced acute hepatitis with thioacetamide (300 mg/kg/i.p., 24-h intervals). Liver injury end points were serum aminotransferase levels and 13C-OBT (24 and 48 h following initial injection). Thioacetamide (200 mg/kg/i.p., twice per week, 12 weeks) was used to induce liver cirrhosis. OBT and liver histological assessment were performed every 4 weeks. Bile duct ligation (BDL) was used to induce cholestatic liver injury. We completed breath tests with 13C-OBT and 13C-methacetin (MBID), liver biochemistry, and liver histology in BDL and sham-operated rats (baseline, 6, 14, 20 days post-BDL). Octanoate absorbs well by either route. Peak amplitudes and cumulative percentage dose recovered at 30 and 60 min (CPDR30/60), but not peak time, correlated with acute hepatitis. Fibrosis stage 3 at week 8 significantly correlated with each OBT parameter. Cholestatic liver injury (serum bilirubin, ALP, gamma-GT, liver histology) was associated with significant suppression of the maximal peak values and CPDR30/60, respectively (P<0.05),using MBID but not 13C-octanoate. OBT is sensitive for potentially evaluating liver function in rat models of acute hepatitis and thioacetamide-induced liver cirrhosis but not in cholestatic liver injury. The MBID test may be better for evaluation of cholestatic liver disease in this model.

  17. Protective effects of extracts from Pomegranate peels and seeds on liver fibrosis induced by carbon tetrachloride in rats.

    PubMed

    Wei, Xiang-Lan; Fang, Ru-Tang; Yang, Yong-Hua; Bi, Xue-Yuan; Ren, Guo-Xia; Luo, A-Li; Zhao, Ming; Zang, Wei-Jin

    2015-10-27

    Liver fibrosis is a feature in the majority of chronic liver diseases and oxidative stress is considered to be its main pathogenic mechanism. Antioxidants including vitamin E, are effective in preventing liver fibrogenesis. Several plant-drived antioxidants, such as silymarin, baicalin, beicalein, quercetin, apigenin, were shown to interfere with liver fibrogenesis. The antioxidans above are polyphenols, flavonoids or structurally related compounds which are the main chemical components of Pomegranate peels and seeds, and the antioxidant activity of Pomegranate peels and seeds have been verified. Here we investigated whether the extracts of pomegranate peels (EPP) and seeds (EPS) have preventive efficacy on liver fibrosis induced by carbon tetrachloride (CCl4) in rats and explored its possible mechanisms. The animal model was established by injection with 50 % CCl4 subcutaneously in male wistar rats twice a week for four weeks. Meanwhile, EPP and EPS were administered orally every day for 4 weeks, respectively. The protective effects of EPP and EPS on biochemical metabolic parameters, liver function, oxidative markers, activities of antioxidant enzymes and liver fibrosis were determined in CCl4-induced liver toxicity in rats. Compared with the sham group, the liver function was worse in CCl4 group, manifested as increased levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin. EPP and EPS treatment significantly ameliorated these effects of CCl4. EPP and EPS attenuated CCl4-induced increase in the levels of TGF-β1, hydroxyproline, hyaluronic acid laminin and procollagen type III. They also restored the decreased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and inhibited the formation of lipid peroxidized products in rats treated with CCl4. The EPP and EPS have protective effects against liver fibrosis induced by CCl4, and its mechanisms might be associated with their antioxidant activity, the ability of decreasing the level of TGF-β1 and inhibition of collagen synthesis.

  18. In vivo quantification of liver stiffness in a rat model of hepatic fibrosis with acoustic radiation force.

    PubMed

    Wang, Michael H; Palmeri, Mark L; Guy, Cynthia D; Yang, Liu; Hedlund, Laurence W; Diehl, Anna Mae; Nightingale, Kathryn R

    2009-10-01

    Liver fibrosis is currently staged using needle biopsy, a highly invasive procedure with a number of disadvantages. Measurement of liver stiffness changes that accompany progression of the disease may provide a quantitative and noninvasive method to assess the health of the liver. The purpose of this study is to investigate the correlation between liver stiffness measured by radiation force induced shear waves and disease related changes in the liver. An additional aim is to present initial findings on the effects of liver viscosity on radiation force induced shear wave morphology. Liver fibrosis was induced in 10 rats using carbon tetrachloride (CCl(4)), while five rats acted as controls. Liver stiffness was measured in vivo in all rats after a treatment period of 8 weeks using a modified Siemens SONOLINE Antares scanner (Siemens Medical Solutions USA, Ultrasound Division, Issaquah, WA, USA). The spatial coherence of radiation force induced shear waves propagating in the viscoelastic rat liver decreased significantly with propagation distance, compared with shear waves in an elastic phantom and a finite element model of a purely elastic medium. Animals were sacrificed after imaging and liver samples were taken for histopathologic analysis and collagen quantification using picrosirius red staining and hydroxyproline assay. At the end of the treatment period, five rats had healthy livers (stage F0), while six had severe fibrosis (F3) and the rest had light to moderate fibrosis (F1 and F2). The measured liver stiffness for the F0 group was 1.5+/-0.1 kPa (mean+/-95% confidence interval) and for F3 livers was 1.8+/-0.2 kPa. In this study, liver stiffness was found to be linearly correlated with the amount of collagen in the liver measured by picrosirius red staining (r(2)=0.43, p=0.008). In addition, stiffness spatial heterogeneity was also linearly correlated with liver collagen content (r(2)=0.58, p=0.001) by picrosirius red staining. These results are consistent with those obtained by Salameh et al. (2007) and Yin et al. (2007b) using animal models of liver fibrosis and MR elastography. This suggests that stiffness measurement using acoustic radiation force can provide a quantitative assessment of the extent of fibrosis in the liver and can be potentially used for the diagnosis, management and study of liver fibrosis.

  19. Prevention of alcoholic fatty liver and mitochondrial dysfunction in the rat by long-chain polyunsaturated fatty acids

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Olsson, Nils U.; Salem, Norman

    2008-01-01

    Background/Aims We reported that reduced dietary intake of polyunsaturated fatty acids (PUFA) such as arachidonic (AA,20:4n6, omega-6) and docosahexaenoic (DHA,22:6n3, omega-3) acids led to alcohol-induced fatty liver and fibrosis. This study was aimed at studying the mechanisms by which a DHA/AA-supplemented diet prevents alcohol-induced fatty liver. Methods Male Long-Evans rats were fed an ethanol or control liquid-diet with or without DHA/AA for 9 weeks. Plasma transaminase levels, liver histology, oxidative/nitrosative stress markers, and activities of oxidatively-modified mitochondrial proteins were evaluated. Results Chronic alcohol administration increased the degree of fatty liver but fatty liver decreased significantly in rats fed the alcohol-DHA/AA-supplemented diet. Alcohol exposure increased oxidative/nitrosative stress with elevated levels of ethanol-inducible CYP2E1, nitric oxide synthase, nitrite and mitochondrial hydrogen peroxide. However, these increments were normalized in rats fed the alcohol-DHA/AA-supplemented diet. The number of oxidatively-modified mitochondrial proteins was markedly increased following alcohol exposure but significantly reduced in rats fed the alcohol-DHA/AA-supplemented diet. The suppressed activities of mitochondrial aldehyde dehydrogenase, ATP synthase, and 3-ketoacyl-CoA thiolase in ethanol-exposed rats were also recovered in animals fed the ethanol-DHA/AA-supplemented diet. Conclusions Addition of DHA/AA prevents alcohol-induced fatty liver and mitochondrial dysfunction in an animal model by protecting various mitochondrial enzymes most likely through reducing oxidative/nitrosative stress. PMID:18571270

  20. Forsythia suspensa extract attenuates lipopolysaccharide-induced inflammatory liver injury in rats via promoting antioxidant defense mechanisms.

    PubMed

    Zhao, Panfeng; Piao, Xiangshu; Pan, Long; Zeng, Zhikai; Li, Qingyun; Xu, Xiao; Wang, Hongliang

    2017-06-01

    Reactive oxygen species (ROS) have been shown to have a role in inflammation. We investigated whether Forsythia suspensa extract (FSE) could exert its antioxidant potential against lipopolysaccharide (LPS)-induced inflammatory liver injury in rats. Rats were orally fed FSE once daily for 7 consecutive days prior to LPS (Escherichia coli, serotype O55:B5) injection. LPS treatment caused liver dysfunction as evidenced by massive histopathological changes and increased serum alanine aminotransferase and aspartate aminotransferase activities which were ameliorated by FSE pretreatment. FSE attenuated LPS-induced depletion of cytosolic nuclear factor-erythroid 2-related factor 2 (Nrf2) and suppression of Nrf2 nuclear translocation in liver, and the generation of ROS and malondialdehyde in serum and liver. FSE increased the Nrf2-mediated induction of heme oxygenase-1 in liver, as well as superoxide dismutase and glutathione peroxidase activities in serum and liver. Importantly, FSE attenuated LPS-induced nuclear factor-кB (NF-кB) nuclear translocation in liver, and subsequently decreased tumor necrosis factor-α, interleukin (IL)-1β and IL-6 levels in serum and liver, which were associated with FSE-induced activation of Nrf2 in liver. These results indicate that the protective mechanisms of FSE may be involved in the attenuation of oxidative stress and the inhibition of the NF-кB-mediated inflammatory response by modulating the Nrf2-mediated antioxidant response against LPS-induced inflammatory liver injury. © 2016 Japanese Society of Animal Science.

  1. Effect of fibrin glue occlusion of the hepatobiliary tract on thioacetamide-induced liver failure.

    PubMed

    Schmandra, T C; Bauer, H; Petrowsky, H; Herrmann, G; Encke, A; Hanisch, E

    2001-07-01

    Expression and activation of hepatocyte growth factor (HGF) is stimulated by a complex system of interacting proteins, with thrombin playing an initial role in this process. The impact of temporary occlusion of the hepatobiliary tract with fibrin glue (major component thrombin) on the HGF system in acute and chronic liver damage in a rat model was investigated. Chronic liver damage was induced in 40 rats by daily intraperitoneal application of thioacetamide (100 mg/kg) for 14 days. After 7 days half of them received an injection of 0.2 mL fibrin glue into the hepatobiliary system. Daily intraperitoneal administration of thioacetamide continued for 7 consecutive days. The rats were then sacrificed for blood and tissue analysis. Acute liver failure was induced in 12 rats by intraperitoneal administration of a lethal dose of thioacetamide (500 mg/kg per day for 3 days) after an injection with 0.2 mL fibrin glue into their hepatobiliary tract. Survival rates and histological outcome were investigated and compared with control animals. Fibrin glue occluded rats showed significantly lower liver enzyme activities and serum levels of bilirubin, creatinine and urea nitrogen. Immunohistochemistry revealed a significant increase in c-met-, HGFalpha- and especially HGFbeta-positive cells. Rats subjected to a lethal dose of thioacetamide survived when fibrin glue was applied 24 hours prior to the toxic challenge. These animals showed normal liver structure and no clinical abnormalities. Fibrin glue occlusion of the hepatobiliary tract induces therapeutic and prophylactic effects on chronic and acute liver failure by stimulating the HGF system. Therefore, fibrin glue occlusion might be useful in treating toxic liver failure.

  2. Preventive effects of the deleted form of hepatocyte growth factor against various liver injuries.

    PubMed

    Masunaga, H; Fujise, N; Shiota, A; Ogawa, H; Sato, Y; Imai, E; Yasuda, H; Higashio, K

    1998-01-26

    The effects of a naturally occurring deleted form of hepatocyte growth factor (HGF) on hepatic disorder were studied in various models of hepatic failure. The pretreatment of rats and mice with the deleted form of HGF prevented the liver injuries and coagulopathy induced by endotoxin, dimethylnitrosamine and acetaminophen and reduced the mortality due to hepatic dysfunction induced by these hepatotoxins. The concurrent administration of the deleted form of HGF also prevented the liver injury and hepatic fibrosis in mice treated with alpha-naphthylisothiocyanate and in rats treated with dimethylnitrosamine. Moreover, the deleted form of HGF normalized the results of the bromosulphalein-clearance test and ameliorated jaundice in rats with periportal cholangiolitic hepatopathy induced by alpha-naphthylisothiocyanate. The deleted form of HGF also reversed the coagulopathy in rats with hepatic disorder induced by dimethylnitrosamine or by 70% resection of cirrhotic liver (induced by carbon tetrachloride). In Long Evans cinnamon rats receiving vehicle, 20 out of 21 animals died within 4 days after the onset of jaundice. After infusion of the deleted form of HGF for 4 days, 7 out of 20 Long-Evans cinnamon rats survived. These results indicate that the deleted form of HGF could have therapeutic potency in patients with severe hepatic failure.

  3. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage.

    PubMed

    Adeyemi, David O; Ukwenya, Victor O; Obuotor, Efere M; Adewole, Stephen O

    2014-07-30

    Flavonoid-rich aqueous fraction of methanolic extract of Hibiscus sabdariffa calyx was evaluated for its anti-hepatotoxic activities in streptozotocin-induced diabetic Wistar rats. Diabetes Mellitus was induced in Wistar rats by a single i.p injection of 80 mg/kg b.w. streptozotocin (STZ) dissolved in 0.1 M citrate buffer (pH 6.3). The ameliorative effects of the extract on STZ-diabetes induced liver damage was evident from the histopathological analysis and the biochemical parameters evaluated in the serum and liver homogenates. Reduced levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (3.76 ± 0.38 μM, 0.42 ± 0.04 U/L, 41.08 ± 3.04 U/ml, 0.82 ± 0.04 U/L respectively) in the liver of diabetic rats were restored to a near normal level in the Hibiscus sabdariffa-treated rats (6.87 ± 0.51 μM, 0.72 ± 0.06 U/L, 87.92 ± 5.26 U/ml, 1.37 ± 0.06 U/L respectively). Elevated levels of aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) in the serum of diabetic rats were also restored in Hibiscus sabdariffa -treated rats. Examination of stained liver sections revealed hepatic fibrosis and excessive glycogen deposition in the diabetic rats. These pathological changes were ameliorated in the extract-treated rats. The anti-hepatotoxic activity of Hibiscus sabdariffa extract in STZ diabetic rats could be partly related to its antioxidant activity and the presence of flavonnoids.

  4. Drug rash with eosinophilia and systemic symptoms syndrome associated with use of phenytoin, divalproex sodium, and phenobarbital.

    PubMed

    Brizendine, Christina E; Naik, Paras J

    2013-03-15

    A probable case of drug reaction with eosinophilia and systemic symptoms (DRESS) associated with consecutive use of three medications for seizure control is reported. A 36-year-old woman was treated at a community hospital for a mild fever (37.9°C) and diffuse raised maculopapular rash with erythema. Three weeks previously, she had been diagnosed with a seizure disorder and initiated on phenytoin (dose unknown) at that time; about two weeks later, she developed a rash, prompting a switch from phenytoin to extended-release divalproex sodium 250 mg orally twice daily. During the week after discontinuation of phenytoin, the rash was improving, but about five days after the initiation of divalproex therapy, she had worsening rash and pruritus requiring urgent treatment; the divalproex was discontinued, and phenobarbital 30 mg three times daily was initiated for continued seizure control. Despite the discontinuation of phenytoin and divalproex, the patient's hepatic function worsened over five days, and phenobarbital therapy was discontinued. With continued deterioration of the patient's condition to fulminant hepatic failure, a transfer to a liver transplant facility was arranged. The use of the adverse reaction probability scale of Naranjo et al. in this case yielded a score of 8, indicating a probable relationship between DRESS and the serial use of phenytoin, divalproex, and phenobarbital. After receiving phenytoin for treatment of seizure disorder, a 36-year-old woman developed a fever and maculopapular rash with erythema. This reaction continued even after drug therapy was switched to extended-release divalproex and then phenobarbital. The patient's liver function deteriorated despite discontinuation of all seizure medications.

  5. Histological and histochemical studies of the liver of rats flown aboard Kosmos-690 biosatellite. [Prolonged space flight has no effect on the mmorphological changes induced by. gamma. rays in rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovleva, V.I.

    1978-10-26

    This work is part of a comprehensive study of the biological effects of long-term radiation on rats flown aboard Kosmos-690 for 20.5 days. The results of morphological studies of the rat liver irradiated aboard the biosatellite are discussed.

  6. Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad Targhi, Reza; Homayoun, Mansour; Mansouri, Somaieh; Soukhtanloo, Mohammad; Soleymanifard, Shokouhozaman; Seghatoleslam, Masoumeh

    2017-01-01

    Ionizing radiation by producing free radicals induces tissue oxidative stress and has clastogenic and cytotoxic effects. The radio protective effect of black mulberry extract (BME) has been investigated on liver tissue and bone marrow cells in the rat. Intraperitoneal (ip) administration of 200 mg/kg BME three days before and three days after 3 Gy and 6 Gy gamma irradiation significantly reduced the frequencies of micro nucleated polychromatic erythrocytes (MnPCEs) and micro nucleated norm chromatic erythrocyte (MnNCEs) and increased PCE/PCE+NCE ratio in rat bone marrow compared to the non-treated irradiated groups. Moreover, this concentration of BME extract decreased the level of malondialdehyde (MDA) and superoxide dismutase (SOD), as well as enhanced the total thiol content and catalase activity in rat's liver compared to the non-treated irradiated groups. It seems that BME extract with antioxidant activity reduced the genotoxicity and cytotoxicity induced by gamma irradiation in bone marrow cells and liver in the rat.

  7. Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats.

    PubMed

    Famurewa, Ademola C; Ufebe, Odomero G; Egedigwe, Chima A; Nwankwo, Onyebuchi E; Obaje, Godwin S

    2017-03-01

    The emerging health benefit of virgin coconut oil (VCO) has been associated with its potent natural antioxidants; however, the antioxidant and hepatoprotective effect of VCO against methotrexate-induced liver damage and oxidative stress remains unexplored. The study explored the antioxidant and hepatoprotective effects of VCO against oxidative stress and liver damage induced by anticancer drug methotrexate (MTX) in rats. Liver damage was induced in Wistar rats pretreated with dietary supplementation of VCO (5% and 15%) by intraperitoneal administration of MTX (20mg/kg bw) on day 10 only. After 12days of treatment, assays for serum liver biomarkers (aminotransferases), alkaline phosphatase, albumin and total protein as well as hepatic content of malondialdehyde, reduced glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) were carried out. Liver was used to examine histopathological changes. MTX administration induced significant increase in serum liver enzymes along with marked decrease in albumin and total protein compared to control group. Hepatic activities of antioxidant enzymes were significantly decreased, while malondialdehyde increased significantly. Treatment with VCO supplemented diet prior to MTX administration attenuated MTX-induced liver injury and oxidative stress evidenced by significant improvements in serum liver markers, hepatic antioxidant enzymes and malondialdehyde comparable to control group. Histopathological alterations were prevented and correlated well with the biochemical indices. The study suggests antioxidant and hepatoprotective effects of VCO supplementation against hepatotoxicity and oxidative damage via improving antioxidant defense system in rats. Our findings may have beneficial application in the management of hepatotoxicity associated with MTX cancer chemotherapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Effects of aspirin and enoxaparin in a rat model of liver fibrosis.

    PubMed

    Li, Chen-Jie; Yang, Zhi-Hui; Shi, Xiao-Liu; Liu, De-Liang

    2017-09-21

    To examine the effects of aspirin and enoxaparin on liver function, coagulation index and histopathology in a rat model of liver fibrosis. METHODS Forty-five male Sprague-Dawley rats were randomly divided into the control group (n = 5) and model group (n = 40). Thioacetamide (TAA) was used to induce liver fibrosis in the model group. TAA-induced fibrotic rats received TAA continuously (n = 9), TAA + low-dose aspirin (n = 9), TAA + high-dose aspirin (n = 9) or TAA + enoxaparin (n = 9) for 4 wk. All rats were euthanized after 4 wk, and both hematoxylin-eosin and Masson staining were performed to observe pathological changes in liver tissue. Liver fibrosis was assessed according to the METAVIR score. Compared with untreated cirrhotic controls, a significant improvement in fibrosis grade was observed in the low-dose aspirin, high-dose aspirin and enoxaparin treated groups, especially in the high-dose aspirin treated group. Alanine aminotransferase and total bilirubin were higher, albumin was lower and both prothrombin time and international normalized ratio were prolonged in the four treatment groups compared to controls. No significant differences among the four groups were observed. Aspirin and enoxaparin can alleviate liver fibrosis in this rat model.

  9. Nonselective inhibition of prostaglandin-endoperoxide synthase by naproxen ameliorates hepatic injury in animals with acute or chronic liver injury

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev

    2014-01-01

    The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of physiological cytoprotective factors in nonparenchymal liver cells. Such drug-induced release of endogenous cytoprotectants will advance therapeutic development for hepatic injury. PMID:24220607

  10. Development of experimental fibrotic liver diseases animal model by Carbon Tetracholoride

    PubMed Central

    Gitiara, Atoosa; Tokhanbigli, Samaneh; Mazhari, Sogol; Baghaei, Kaveh; Hatami, Behzad; Hashemi, Seyed Mahmoud; Asadi Rad, Ali; Moradi, Afshin; Nasiri, Meyam; Zarrabi Ahrabi, Nakisa; Zali, Mohammad Reza

    2017-01-01

    Aim: This study is presenting an effective method of inducing liver fibrosis by CCL4 as a toxin in two different breeds of rat models. Background: Liver fibrosis is a result of inflammation and liver injury caused by wound healing responses which ultimately lead to liver failure. Consequently, after liver fibrosis, the progression will be continued to liver cirrhosis and at the end stage hepatocellular carcinoma (HCC). Many studies have demonstrated that one of the most important causes of liver fibrosis is Non-alcoholic steatohepatitis (NASH). Fibrotic Liver is affected by an excessive accumulation of extracellular matrix (ECM) proteins like collagen and α-SMA. Methods: In two different experiments, male Vistar, and Sprague Dawley Rat models ranging from 200±60, corresponding to an age of approximately 10 weeks were utilized in order to induce CCL4 treated liver fibrosis. Results: After 6 weeks of CCL4 injection, different tests have been carried out to verify the liver fibrosis including serum markers such as Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT), molecular tests containing, laminin and α-SMA and also pathological observation by Hematoxylin and eosin staining in both fibrosis and control group. Conclusion: The results of Pathology and Real-time PCR showed that fibrosis was induced much more effectively in Sprague Dawley rat model compared with Wistar rats. PMID:29511482

  11. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5.

    PubMed

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  12. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5☆

    PubMed Central

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)–deficient (Nrf2−⧸−) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression. PMID:24494203

  13. Association analysis of CYP2C9*3 and phenytoin-induced severe cutaneous adverse reactions (SCARs) in Thai epilepsy children.

    PubMed

    Suvichapanich, Supharat; Jittikoon, Jiraphun; Wichukchinda, Nuanjun; Kamchaisatian, Wasu; Visudtibhan, Anannit; Benjapopitak, Suwat; Nakornchai, Somjai; Manuyakorn, Wiparat; Mahasirimongkol, Surakameth

    2015-08-01

    CYP2C9 is the key enzyme in aromatic antiepileptic drugs (AEDs) metabolism. CYP2C9*3 is a loss of function polymorphism. This study was designed to investigate genetic association between CYP2C9*3 and aromatic AED-induced severe cutaneous adverse reactions (SCARs) in Thai children. The 37 aromatic AED-induced SCARs patients (20 phenobarbital and 17 phenytoin) and 35 tolerances (19 phenobarbital and 16 phenytoin) were enrolled. CYP2C9*3 was genotyped by allele-specific PCRs. The association between CYP2C9*3 with phenytoin-induced SCARs and phenobarbital-induced SCARs were analyzed in comparison with tolerances and healthy samples. Significant association between phenytoin-induced SCARs and CYP2C9*3 was discovered (odds ratio=14.52; 95% confidence interval (CI)=1.18-∞, P-value=0.044). CYP2C9*3 was not associated with phenobarbital-induced SCARs. This study is the first report of CYP2C9*3 association to phenytoin-induced SCARs in Thai epileptic children. The CYP2C9*3 is a reasonable predictive genetic marker to anticipate SCARs from phenytoin.

  14. Cromoglycate, not ketotifen, ameliorated the injured effect of warm ischemia/reperfusion in rat liver: role of mast cell degranulation, oxidative stress, proinflammatory cytokine, and inducible nitric oxide synthase

    PubMed Central

    El-Shitany, Nagla A; El-Desoky, Karema

    2015-01-01

    Hepatic ischemia/reperfusion (ISCH/REP) is a major clinical problem that is considered to be the most common cause of postoperative liver failure. Recently, mast cells have been proposed to play an important role in the pathophysiology of ISCH/REP in many organs. In contrast, the role played by mast cells during ISCH/REP-induced liver damage has remained an issue of debate. This study aimed to investigate the protective role of mast cells in order to search for an effective therapeutic agent that could protect against fatal ISCH/REP-induced liver damage. A model of warm ISCH/REP was induced in the liver of rats. Four groups of rats were used in this study: Group I: SHAM (normal saline, intravenously [iv]); Group II: ISCH/REP; Group III: sodium cromoglycate + ISCH/REP (CROM + ISCH/REP), and Group IV: ketotifen (KET) + ISCH/REP (KET + ISCH/REP). Liver damage was assessed both histopathologically and biochemically. Mast cell degranulation was assessed histochemically. Lipid peroxidation (malondialdehyde [MDA]) as well as the levels of glutathione (GSH), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), the formation of nitric oxide (NO), and the expression of inducible NO synthase (iNOS) were determined. The results of this study revealed increased mast cell degranulation in the liver during the acute phase of ISCH/REP. Moreover, CROM, but not KET, decreased the activity of alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase and maintained normal liver tissue histology. Both CROM and KET protected against mast cell degranulation in the liver. In addition, both CROM and KET decreased IL-6 and TNF-α. However, CROM, but not KET, decreased MDA formation and increased GSH. Furthermore, KET, but not CROM, increased both NO formation and iNOS expression. In conclusion, this study clearly demonstrated mast cell degranulation in warm ISCH/REP in the liver of rats. More importantly, CROM, but not KET, ameliorated the effect of ISCH/REP-induced injury in rat liver. CROM may protect the liver through mast cell stabilization, inhibition of TNF-α, IL-6, MDA, and iNOS and increased GSH. KET may maintain ISCH/REP-induced liver injury through the NO/iNOS pathway. PMID:26396497

  15. [Establishment of a D-galactosamine/lipopolysaccharide induced acute-on-chronic liver failure model in rats].

    PubMed

    Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping

    2007-10-01

    To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.

  16. Western diet-induced hepatic steatosis and alterations in the liver transcriptome in adult Brown-Norway rats.

    PubMed

    Roberts, Michael D; Mobley, C Brooks; Toedebush, Ryan G; Heese, Alexander J; Zhu, Conan; Krieger, Anna E; Cruthirds, Clayton L; Lockwood, Christopher M; Hofheins, John C; Wiedmeyer, Charles E; Leidy, Heather J; Booth, Frank W; Rector, R Scott

    2015-10-30

    The purpose of this study was to investigate the effects of sub-chronic high fat, high sucrose diet (also termed 'Westernized diet' or WD) feeding on the liver transcriptome during early nonalcoholic fatty liver disease (NAFLD) development. Brown Norway male rats (9 months of age) were randomly assigned to receive ad libitum access to a control (CTL; 14 % kcal fat, 1.2 % sucrose by weight) diet or WD (42 % kcal from fat, 34 % sucrose by weight) for 6 weeks. Six weeks of WD feeding caused hepatic steatosis development as evidenced by the 2.25-fold increase in liver triacylglycerol content, but did not induce advanced liver disease (i.e., no overt inflammation or fibrosis) in adult Brown Norway rats. RNA deep sequencing (RNA-seq) revealed that 94 transcripts were altered in liver by WD feeding (46 up-, 48 down-regulated, FDR < 0.05). Specifically, the top differentially regulated gene network by WD feeding was 'Lipid metabolism, small molecular biochemistry, vitamin and mineral metabolism' (Ingenuity Pathway Analysis (IPA) score 61). The top-regulated canonical signaling pathway in WD-fed rats was the 'Superpathway of cholesterol biosynthesis' (10/29 genes regulated, p = 1.68E-17), which coincides with a tendency for serum cholesterol levels to increase in WD-fed rats (p = 0.09). Remarkably, liver stearoyl-CoA desaturase (Scd) mRNA expression was by far the most highly-induced transcript in WD-fed rats (approximately 30-fold, FDR = 0.01) which supports previous literature underscoring this gene as a crucial target during NAFLD development. In summary, sub-chronic WD feeding appears to increase hepatic steatosis development over a 6-week period but only induces select inflammation-related liver transcripts, mostly acute phase response genes. These findings continue to outline the early stages of NAFLD development prior to overt liver inflammation and advanced liver disease.

  17. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats.

    PubMed

    Menon, B Rajalakshmy; Rathi, M A; Thirumoorthi, L; Gopalakrishnan, V K

    2010-10-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observed in extract treated liver injured experimental rats. Histopathological examination of the liver tissues supported the hepatoprotection. It is concluded that the ethanolic extract of Bacopa monieri plant possess good hepatoprotective activity.

  18. Commiphora molmol Modulates Glutamate-Nitric Oxide-cGMP and Nrf2/ARE/HO-1 Pathways and Attenuates Oxidative Stress and Hematological Alterations in Hyperammonemic Rats

    PubMed Central

    Alqahtani, Sultan; Othman, Sarah I.; Germoush, Mousa O.; Hussein, Omnia E.; Al-Basher, Gadh; Khim, Jong Seong; Al-Qaraawi, Maha A.; Al-Harbi, Hanan M.; Fadel, Abdulmannan; Allam, Ahmed A.

    2017-01-01

    Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride- (NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia, liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats. C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase, and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia. Therefore, C. molmol might be a promising protective agent against hyperammonemia. PMID:28744340

  19. The protective effect of pomegranate extract against cisplatin toxicity in rat liver and kidney tissue.

    PubMed

    Bakır, Salih; Yazgan, Ümit Can; İbiloğlu, İbrahim; Elbey, Bilal; Kızıl, Murat; Kelle, Mustafa

    2015-01-01

    The purpose of this study was to perform a histopathological investigation, at the light microscopy level, of the protective effects of pomegranate extract in cisplatin-induced liver and kidney damage in rats. Twenty-eight adult male Wistar albino rats were randomly divided into four groups of seven animals: Group 1: Control; Group 2: Treated for 10 consecutive days by gavage with pomegranate juice (2 ml/kg/day); Group 3: Injected intraperitoneally with cisplatin (8 mg/kg body weight, single dose) onset of the day 5, and Group 4: Treated by gavage with pomegranate juice 10 days before and after a single injection of cisplatin onset of the day 5. After 10 days, the animals were sacrificed and their kidneys and liver tissue samples were removed from each animal after experimental procedures. Cisplatin-induced renal and hepatic toxicity and the effect of pomegranate juice were evaluated by histopatological examinations. In the kidney tissue, pomegranate juice significantly ameliorated cisplatin-induced structural alterations when compared with the cisplatin alone group. But in the liver tissue, although pomegranate juice attenuated the cisplatin-induced toxicity only in two rats, significant improvement was not observed. In conclusion, these results demonstrate that the anti-oxidant pomegranate juice might have a protective effect against cisplatin-induced toxicity in rat kidney, but not in liver. Pomegranate juice could be beneficial as a dietary supplement in patients receiving chemotherapy medications.

  20. Association of two single-isomer anionic CD in NACE for the chiral and achiral separation of fenbendazole, its sulphoxide and sulphone metabolites: application to their determination after in vitro metabolism.

    PubMed

    Rousseau, Anne; Gillotin, Florian; Chiap, Patrice; Crommen, Jacques; Fillet, Marianne; Servais, Anne-Catherine

    2010-05-01

    A NACE method was developed for the separation of fenbendazole (FBZ), a prochiral drug giving rise to chiral (oxfendazole or OFZ) and nonchiral (FBZ sulphone or FBZSO(2)) metabolites. First, the effect of the nature and the concentration of CD as well as that of the acidic BGE on the enantiomeric separation of OFZ were studied. OFZ enantiomers were completely resolved using a BGE made up of 10 mM ammonium formate and 0.5 M TFA in methanol containing 10 mM heptakis(2,3-di-O-acetyl-6-O-sulfo)-beta-CD and 10 mM heptakis(2,3-di-O-methyl-6-O-sulfo)-beta-CD. Moreover, the NACE method was found to be particularly well suited to the simultaneous determination of FBZ, OFZ enantiomers, and FBZSO(2). Thiabendazole was selected as an internal standard. The CD-NACE potential was then evaluated for in vitro metabolism studies using FBZ as a model case. The OFZ enantiomers and FBZSO(2) could be detected after incubation of FBZ in the phenobarbital-induced male rat liver microsomes systems.

  1. The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease.

    PubMed

    King, Adrienne L; Mantena, Sudheer K; Andringa, Kelly K; Millender-Swain, Telisha; Dunham-Snary, Kimberly J; Oliva, Claudia R; Griguer, Corinne E; Bailey, Shannon M

    2016-10-01

    Mitochondrial dysfunction and bioenergetic stress play an important role in the etiology of alcoholic liver disease. Previous studies from our laboratory show that the primary methyl donor S-Adenosylmethionine (SAM) minimizes alcohol-induced disruptions in several mitochondrial functions in the liver. Herein, we expand on these earlier observations to determine whether the beneficial actions of SAM against alcohol toxicity extend to changes in the responsiveness of mitochondrial respiration to inhibition by nitric oxide (NO), induction of the mitochondrial permeability transition (MPT) pore, and the hypoxic state of the liver. For this, male Sprague-Dawley rats were pair-fed control and alcohol-containing liquid diets with and without SAM for 5 weeks and liver hypoxia, mitochondrial respiration, MPT pore induction, and NO-dependent control of respiration were examined. Chronic alcohol feeding significantly enhanced liver hypoxia, whereas SAM supplementation attenuated hypoxia in livers of alcohol-fed rats. SAM supplementation prevented alcohol-mediated decreases in mitochondrial state 3 respiration and cytochrome c oxidase activity. Mitochondria isolated from livers of alcohol-fed rats were more sensitive to calcium-mediated MPT pore induction (i.e., mitochondrial swelling) than mitochondria from pair-fed controls, whereas SAM treatment normalized sensitivity for calcium-induced swelling in mitochondria from alcohol-fed rats. Liver mitochondria from alcohol-fed rats showed increased sensitivity to NO-dependent inhibition of respiration compared with pair-fed controls. In contrast, mitochondria isolated from the livers of SAM treated alcohol-fed rats showed no change in the sensitivity to NO-mediated inhibition of respiration. Collectively, these findings indicate that the hepato-protective effects of SAM against alcohol toxicity are mediated, in part, through a mitochondrial mechanism involving preservation of key mitochondrial bioenergetic parameters and the attenuation of hypoxic stress. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Andrographis paniculata Leaf Extract Prevents Thioacetamide-Induced Liver Cirrhosis in Rats

    PubMed Central

    Bardi, Daleya Abdulaziz; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson’s Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells. PMID:25280007

  3. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    PubMed

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells.

  4. Antioxidant and antiapoptotic effects of green tea polyphenols against azathioprine-induced liver injury in rats.

    PubMed

    El-Beshbishy, Hesham A; Tork, Ola M; El-Bab, Mohamed F; Autifi, Mohamed A

    2011-04-01

    Green tea polyphenols (GTP) is considered to have protective effects against several diseases. The hepatotoxicity of azathioprine (AZA) has been reported and was found to be associated with oxidative damage. This study was conducted to evaluate the role of GTP to protect against AZA-induced liver injury in rats. AZA was administered i.p. in a single dose (50mgkg(-1)) to adult male rats. AZA-intoxicated rats were orally administered GTP (either 100mgkg(-1)day(-1) or 300mgkg(-1)day(-1), for 21 consecutive days, started 7 days prior AZA injection). AZA administration to rats resulted in significant elevation of serum transaminases (sALT and sAST), alkaline phosphatase (sALP), depletion of hepatic reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx), accumulation of oxidized glutathione (GSSG), elevation of lipid peroxides (LPO) expressed as malondialdehyde (MDA), reduction of the hepatic total antioxidant activity (TAA), decrease serum total proteins and elevation of liver protein carbonyl content. Significant rises in liver tumor necrosis factor-alpha (TNF-α) and caspase-3 levels were noticed in AZA-intoxicated rats. Treatment of the AZA-intoxicated rats with GTP significantly prevented the elevations of sALT, sAST and sALP, inhibited depletion of hepatic GSH, GPx, CAT and GSSG and inhibited MDA accumulation. Furthermore, GTP had normalized serum total proteins and hepatic TAA, CAT, TNF-α and caspase-3 levels of AZA-intoxicated rats. In addition, GTP prevented the AZA-induced apoptosis and liver injury as indicated by the liver histopathological analysis. The linear regression analysis showed significant correlation in either AZA-GTP100 or AZA-GTP300 groups between TNF-α and each of serum ALT, AST, ALP and total proteins and liver TAA, GPX, CAT, GSH, GSSG, MDA and caspase-3 levels. However, liver TNF-α produced non-significant correlation with the serum total proteins in both AZA-GTP100 and AZA-GTP300 groups. In conclusion, our data indicate that GTP protects against AZA-induced liver injury in rats through antioxidant, anti-inflammatory and antiapoptotic mechanisms. However, further merit investigations are needed to verify these results and to assess the efficacy of GTP therapy to counteract the liver injury and oxidative stress status. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Urinary excretion of water-soluble vitamins increases in streptozotocin-induced diabetic rats without decreases in liver or blood vitamin content.

    PubMed

    Imai, Eri; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2012-01-01

    It is thought that the contents of water-soluble vitamins in the body are generally low in diabetic patients because large amounts of vitamins are excreted into urine. However, this hypothesis has not been confirmed. To investigate this hypothesis, diabetes was induced in male Wistar rats (6 wk old) by streptozotocin treatment, and they were then given diets containing low, medium or sufficient vitamins for 70 d. The contents of 6 kinds of B-group vitamins, namely vitamin B₁, vitamin B₂, vitamin B₆, vitamin B₁₂, folate and biotin, were determined in the urine, blood and liver. No basic differences among the dietary vitamin contents were observed. The urinary excretion of vitamins was higher in diabetic rats than in control rats. The blood concentrations of vitamin B₁₂ and folate were lowered by diabetes, while, those of vitamin B₁, vitamin B₂, vitamin B₆, and biotin were not. All liver concentrations of vitamins were increased in diabetic rats above those in control rats. These results showed that streptozotocin-induced diabetes increased urinary excretion of water-soluble vitamins, though their blood and liver concentrations were essentially maintained in the rats.

  6. Can apricot kernels fatty acids delay the atrophied hepatocytes from progression to fibrosis in dimethylnitrosamine (DMN)-induced liver injury in rats?

    PubMed

    Abdel-Rahman, Manal K

    2011-07-07

    The present study was aimed to analyze the chemical composition of ground apricot kernel (GAK) and examine its effect on hepatic fibrosis in vivo induced by dimethylnitrosamine (DMN) in rats. Hepatic fibrosis was induced by intraperitoneal injections of 10 mg/kg DMN for 3 consecutive days each week over a period of 4 wk. The rats were randomly assigned to five groups of nine rats each: the negative control group (NC), the hepatic fibrosis group (PC), hepatic fibrosis supplemented with GAK (0.5 mg/kg/BW/rat), hepatic fibrosis supplemented with GAK (1 mg/kg/BW/rat) and hepatic fibrosis supplemented with GAK (1.5 mg/kg/BW/rat). Rats were killed, blood was collected and livers were excised for biochemical measurements and histological examination. Results indicate that the diet supplemented with GAK led to improving liver function, lipid peroxides, and liver CAT, SOD and GSH. These results were confirmed by liver histology. Hierarchically high levels f GAK (1.5 mg/kg/BW/rat) gave the best results compared to other tested levels. This study demonstrates that GAK administration specifically (1.5 mg/kg/BW/rat) can effectively improve liver fibrosis caused by DMN, and may be used as a therapeutic option and preventive measure against hepatic fibrosis. Furthermore, a human trial would be applied specially GAK is a part of Egyptian diet. The act of why high amounts of GAK was improved biochemical values compared to low or moderate levels tested in this study may be due to increase levels of oleic acid and other polyphenols in apricot kernels.

  7. Can apricot kernels fatty acids delay the atrophied hepatocytes from progression to fibrosis in dimethylnitrosamine (DMN)-induced liver injury in rats?

    PubMed Central

    2011-01-01

    Background and aims The present study was aimed to analyze the chemical composition of ground apricot kernel (GAK) and examine its effect on hepatic fibrosis in vivo induced by dimethylnitrosamine (DMN) in rats. Methods and results Hepatic fibrosis was induced by intraperitoneal injections of 10 mg/kg DMN for 3 consecutive days each week over a period of 4 wk. The rats were randomly assigned to five groups of nine rats each: the negative control group (NC), the hepatic fibrosis group (PC), hepatic fibrosis supplemented with GAK (0.5 mg/kg/BW/rat), hepatic fibrosis supplemented with GAK (1 mg/kg/BW/rat) and hepatic fibrosis supplemented with GAK (1.5 mg/kg/BW/rat). Rats were killed, blood was collected and livers were excised for biochemical measurements and histological examination. Results indicate that the diet supplemented with GAK led to improving liver function, lipid peroxides, and liver CAT, SOD and GSH. These results were confirmed by liver histology. Hierarchically high levels f GAK (1.5 mg/kg/BW/rat) gave the best results compared to other tested levels. Conclusion This study demonstrates that GAK administration specifically (1.5 mg/kg/BW/rat) can effectively improve liver fibrosis caused by DMN, and may be used as a therapeutic option and preventive measure against hepatic fibrosis. Furthermore, a human trial would be applied specially GAK is a part of Egyptian diet. The act of why high amounts of GAK was improved biochemical values compared to low or moderate levels tested in this study may be due to increase levels of oleic acid and other polyphenols in apricot kernels PMID:21736706

  8. Disturbance of DNA methylation patterns in the early phase of hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined diet in rats.

    PubMed

    Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Sokuza, Yui; Mori, Chiharu; Nishikawa, Tomoki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-09-01

    The authors investigated the DNA methylation patterns of the E-cadherin, Connexin 26 (Cx26), Rassf1a and c-fos genes in the early phase of rat hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined (CDAA) diet. Six-week-old F344 male rats were continuously fed with the CDAA diet, and three animals were then killed at each of 4 and 8 days and 3 weeks. Genomic DNA was extracted from livers for assessment of methylation status in the 5' upstream regions of E-cadherin, Cx26, Rassf1a and c-fos genes by bisulfite sequencing, compared with normal livers. The livers of rats fed the CDAA diet for 4 and 8 days and 3 weeks were methylated in E-cadherin, Cx26 and Rassf1a genes, while normal livers were all unmethylated. In contrast, normal livers were highly methylated in c-fos gene. Although the livers at 4 days were weakly methylated, those at 8 days and 3 weeks were markedly unmethylated. Methylation patterns of CpG sites in E-cadherin, Cx26 and Rassf1a were sparse and the methylation was not associated with gene repression. These results indicate that gene-specific DNA methylation patterns were found in livers of rats after short-term feeding of the CDAA diet, suggesting gene-specific hypermethylation might be involved in the early phase of rat hepatocarcinogenesis induced by the CDAA diet.

  9. Choline and betaine ameliorate liver lipid accumulation induced by vitamin B6 deficiency in rats.

    PubMed

    Kitagawa, Erina; Yamamoto, Tatsuya; Fujishita, Mayuko; Ota, Yuki; Yamamoto, Kohei; Nakagawa, Tomoyuki; Hayakawa, Takashi

    2017-02-01

    We investigated the efficacy of supplementing the diet with choline or betaine in ameliorating lipid accumulation induced by vitamin B 6 (B 6 ) deficiency in rat liver. Male Wistar rats were fed a control, B 6 -deficient, choline-supplemented (2, 4, or 6 g choline bitartrate/kg diet) B 6 -deficient diet or betaine-supplemented (1, 2, or 4 g betaine anhydrous/kg diet) B 6 -deficient diet for 35 d; all diets contained 9 g L-methionine (Met)/kg diet. Choline or betaine supplementation attenuated liver lipid deposition and restored plasma lipid profiles to control levels. These treatments restored the disruptions in Met metabolism and the phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio induced by B 6 deficiency in liver microsomes. These results suggest that choline and betaine ameliorated liver lipid accumulation induced by B 6 deficiency via recovery of Met metabolism and very low-density lipoprotein secretion by restoring the supply of PC derived from PE.

  10. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats.

    PubMed

    Wu, Guofeng; Wang, Likun; Hong, Zhen; Ren, Siying; Zhou, Feng

    2017-08-01

    The purpose of the present study was to observe the effects of hippocampal low-frequency stimulation (Hip-LFS) on amygdala afterdischarge and GABA (A) receptor expression in pharmacoresistant epileptic (PRE) rats. A total of 110 healthy adult male Wistar rats were used to generate a model of epilepsy by chronic stimulation of the amygdala. Sixteen PRE rats were selected from 70 amygdala-kindled rats by testing their response to Phenytoin and Phenobarbital, and they were randomly assigned to a pharmacoresistant stimulation group (PRS group, 8 rats) or a pharmacoresistant control group (PRC group, 8 rats). A stimulation electrode was implanted into the hippocampus of all of the rats. Hip-LFS was administered twice per day in the PRS group for two weeks. Simultaneously, amygdala stimulus-induced seizures and afterdischarge were recorded. After the hippocampal stimulation was terminated, the brain tissues were obtained to determine the GABA (A) receptors by a method of immumohistochemistry and a real-time polymerase chain reaction. The stages and duration of the amygdala stimulus-induced epileptic seizures were decreased in the PRS group. The afterdischarge threshold was increased and the duration as well as the afterdischarge frequency was decreased. Simultaneously, the GABA (A) expression was significantly increased in the PRS group. Hip-LFS may inhibit amygdala stimulus-induced epileptic seizures and up-regulate GABA (A) receptor expression in PRE rats. The antiepileptic effects of hippocampal stimulation may be partly achieved by increasing the GABA (A) receptor.

  11. Anti-fibrosis effects of Huisheng oral solution in CCl4-induced hepatic fibrosis in rat.

    PubMed

    Li, Wenting; Wu, Yuanbo; Zhu, Chuanlong; Wang, Zheng; Gao, Rentao; Wu, Quan

    2014-01-01

    Some gradient of Huisheng oral solution (HOS) has been reported to have anti-fibrosis activity. This study was designed to investigate whether HOS could inhibit liver fibrosis and to elucidate its molecular mechanism of action. Hepatic fibrosis model in rat was induced by subcutaneous injection of CCl4. Rats in the treatment group were administrated with HOS intragastrically. Hematoxylin and eosin (H and E) staining and Masson's trichrome staining were used to examine the changes in liver pathology. Levels of ALT, AST, LDH, hyaluronic acid (HA) and laminin (LN) in serum and hydroxyproline (Hyp) in liver were detected by biochemical examination and radioimmunoassay, respectively. The expression and distribution of Smad3, TGF-β1, α-SMA and TIMP-1 were observed and the active TGF-β1 was tested. Our data demonstrated that HOS alleviated CCl4-induced collagen deposition in liver tissue, improved liver condition and liver function in rats. HOS also significantly reduced the expression and distribution of Smad3, TGF-β1, α-SMA and TIMP-1 as well as decreased active TGF-β1. This study revealed that HOS attenuates the development of liver fibrosis through suppressing the TGF-β1 pathway. It provides us a new approach to treatment of liver fibrosis.

  12. Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat.

    PubMed

    Nada, Somaia A; Omara, Enayat A; Abdel-Salam, Omar M E; Zahran, Hanan G

    2010-11-01

    The aim of the present study was to investigate the effect of mushroom insoluble non-starch polysaccharides (MINSP) on the carbon tetrachloride (CCl(4))-induced hepatic damage in rat. MINSP (100 and 200 mg/kg) administered daily orally for 15 days before CCl(4) (1.5 ml/kg). The effect of MINSP treatment was also examined in normal rats. Normal groups treated with MINSP showed significant decrease in serum activities of the liver enzymes, lipid peroxides and nitric oxide (NO) in the liver. Reduced glutathione (GSH) and total proteins (TP) contents in liver homogenate also increased after treatment with only MINSP for 15 days. In CCl(4)-treated rats, significant elevation in serum liver enzymes, increased lipid peroxides and NO in the liver, and depletion of hepatic-GSH level were observed. Pre-treatment with MINSP significantly ameliorated the tested parameters when compared with CCl(4)-treated group. It improved the antioxidant activity of the liver in a dose-dependent manner. Histopathological examination of hepatic tissue revealed that MINSP administration alone protected hepatocytes from the damage induced by CCl(4). MINSP are safe; it could be used as fat replacer in processing low fat diet. MINSP represents a good functional food and liver supporter for patient suffering from various liver diseases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Effect of Tridax procumbens (Linn.) on bile duct ligation-induced liver fibrosis in rats.

    PubMed

    Joshi, P P; Patil, S D; Silawat, N; Deshmukh, P T

    2011-12-01

    The present study was undertaken to clarify whether methanolic extract of Tridax procumbens prevents liver fibrosis in rat. The hepatic fibrosis was induced by 28 days of bile duct ligation in rats. The 4-week treatment with Tridex procumbens reduced the serum aspartate aminotransferase (U L⁻¹), glutamate pyruvate transaminase (U L⁻¹), alkaline phosphatase (IU L⁻¹), lactate dehydrogenase (IU L⁻¹), total bilirubin (mg dL⁻¹), direct bilirubin (mg dL⁻¹) and hydroxyproline (mg gm⁻¹) content in liver and improved the histological appearance of liver section. The results of this study led us to conclude that T. procumbens can reduce the degree of hepatocellular damage and may become antifibrotic agent for liver fibrosis.

  14. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: influence on insulin resistance and energy expenditure.

    PubMed

    Zaitone, Sawsan A; Barakat, Bassant M; Bilasy, Shymaa E; Fawzy, Manal S; Abdelaziz, Eman Z; Farag, Noha E

    2015-06-01

    Non-alcoholic fatty liver disease (NAFLD) is closely linked to insulin resistance, oxidative stress, and cytokine imbalance. Boswellic acids, a series of pentacyclic triterpene molecules that are produced by plants in the genus Boswellia, has been traditionally used for the treatment of a variety of diseases. This study aimed at evaluating the protective effect of boswellic acids in a model of diet-induced NAFLD in rats in comparison to the standard insulin sensitizer, pioglitazone. Rats were fed with a high-fat diet (HFD) for 12 weeks to induce NAFLD. Starting from week 5, rats received boswellic acids (125 or 250 mg/kg) or pioglitazone parallel to the HFD. Feeding with HFD induced hepatic steatosis and inflammation in rats. In addition, liver index, insulin resistance index, activities of liver enzymes, and serum lipids deviated from normal. Further, serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and cyclooxygenase 2 were elevated; this was associated with an increase in hepatic expression of inducible nitric oxide synthase (iNOS) and formation of 4-hydroxy-2-nonenal (HNE). Rats treated with boswellic acids (125 or 250 mg/kg) or pioglitazone showed improved insulin sensitivity and a reduction in liver index, activities of liver enzymes, serum TNF-α and IL-6 as well as hepatic iNOS expression and HNE formation compared to HFD group. Furthermore, at the cellular level, boswellic acids (250 mg/kg) ameliorated the expression of thermogenesis-related mitochondrial uncoupling protein-1 and carnitine palmitoyl transferase-1 in white adipose tissues. Data from this study indicated that boswellic acids might be a promising therapy in the clinical management of NAFLD if appropriate safety and efficacy data are available.

  15. High regenerative capacity of the liver and irreversible injury of male reproductive system in carbon tetrachloride-induced liver fibrosis rat model.

    PubMed

    Bubnov, Rostyslav V; Drahulian, Maria V; Buchek, Polina V; Gulko, Tamara P

    2018-03-01

    Liver fibrosis (LF) is a chronic disease, associated with many collateral diseases including reproductive dysfunction. Although the normal liver has a large regenerative capacity the complications of LF could be severe and irreversible. Hormone and sex-related issues of LF development and interactions with male reproductive have not been finally studied. The aim was to study the reproductive function of male rats in experimental CCl 4 -induced liver fibrosis rat model, and the capability for restoration of both the liver and male reproduction system. Studies were conducted on 20 3-month old Wistar male rats. The experimental animals were injected with freshly prepared 50% olive oil solution of carbohydrate tetrachloride (CCl 4 ). On the 8th week after injection we noted the manifestations of liver fibrosis. The rats were left to self-healing of the liver for 8 weeks. All male rats underwent ultrasound and biopsy of the liver and testes on the 8th and 16th weeks. The male rats were mated with healthy females before CCl 4 injection, after modeling LF on the 8th week, and after self-healing of the liver. Pregnancy was monitored on ultrasound. On the 8th week of experiment we observed ultrasound manifestation of advanced liver fibrosis, including hepatosplenomegaly, portal hypertension. Ultrasound exam of the rat testes showed testicular degeneration, hydrocele, fibrosis, scarring, petrifications, size reduction, and restriction of testicular descent; testes size decreased from 1.24 ± 0.62 ml to 0.61 ± 0.13, p  < 0.01. Liver histology showed granular dystrophy of hepatocytes, necrotic areas, lipid inclusions in parenchyma. Rats with liver fibrosis demonstrated severe injury of the reproductive system and altering of fertility: the offspring of male rats with advanced LF was 4.71 ± 0.53 born alive vs 9.55 ± 0.47 born from mating with healthy males, p  < 0.001. Eight weeks after last CCl 4 injection, we revealed signs of liver regeneration, significant recovery of its structure. The ALT and AST levels significantly decreased and reached background measurements. As a result of the second interbreeding after liver self-healing no significant difference was found vs previous mating. Carbohydrate tetrachloride induces injury of liver parenchyma evoking fast and severe liver fibrosis, and is associated with irreversible structural and functional changes in testes, reducing fertility, decreasing potential pregnancy rate, and affecting its development. Liver showed high potential to regenerate, however the self-restoring after liver fibrosis was not accompanied with recovery of the reproductive system.

  16. Effects of thiol antioxidants on the atropselective oxidation of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) by rat liver microsomes.

    PubMed

    Wu, Xianai; Lehmler, Hans-Joachim

    2016-02-01

    Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0-10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol), 4-136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol), and 4,5-136 (2,2',3,3',6,6'-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136, and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo.

  17. EFFECTS OF THIOL ANTIOXIDANTS ON THE ATROPSELECTIVE OXIDATION OF 2,2′,3,3′,6,6′-HEXACHLOROBIPHENYL (PCB 136) BY RAT LIVER MICROSOMES

    PubMed Central

    Wu, Xianai; Lehmler, Hans-Joachim

    2015-01-01

    Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0–10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol), 4-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4-ol) and 4,5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136 and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo. PMID:26155892

  18. Xuebijing injection alleviates cytokine-induced inflammatory liver injury in CLP-induced septic rats through induction of suppressor of cytokine signaling 1

    PubMed Central

    Li, Ailin; Li, Jing; Bao, Yuhua; Yuan, Dingshan; Huang, Zhongwei

    2016-01-01

    Dysregulation of inflammatory cytokines and liver injury are associated with the pathogenesis of sepsis. Xuebijing injection, a Chinese herbal medicine, has been used in the treatment of sepsis and can contribute to the improvement of patients' health. However, the underlying molecular mechanisms are not yet clearly illuminated. In the present study, a septic rat model with liver injury was established by the cecal ligation and puncture (CLP) method. Histological alterations to the liver, activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), levels of inflammatory cytokine secretion and the expression of suppressors of cytokine signaling 1 (SOCS-1) in the CLP model rats with and without Xuebijing treatment were determined. The results showed that Xuebijing injection ameliorated the pathological changes in liver tissues caused by sepsis, and reduced the sepsis-induced elevation in serum ALT and AST levels. Furthermore, Xuebijing injection markedly downregulated the expression of tumor necrosis factor α and interleukin (IL)-6, and upregulated the expression of IL-10. More importantly, SOCS1 expression levels at the protein and mRNA levels were further increased by Xuebijing. These findings demonstrate that Xuebijing injection can significantly alleviate liver injury in CLP-induced septic rats via the regulation of inflammatory cytokine secretion and the promotion of SOCS1 expression. The protective effects of Xuebijing injection suggest its therapeutic potential in the treatment of CLP-induced liver injury. PMID:27602076

  19. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Alam, Md. Ashraful; Kauter, Kathleen; Brown, Lindsay

    2013-01-01

    Obesity, insulin resistance, hypertension and fatty liver, together termed metabolic syndrome, are key risk factors for cardiovascular disease. Chronic feeding of a diet high in saturated fats and simple sugars, such as fructose and glucose, induces these changes in rats. Naturally occurring compounds could be a cost-effective intervention to reverse these changes. Flavonoids are ubiquitous secondary plant metabolites; naringin gives the bitter taste to grapefruit. This study has evaluated the effect of naringin on diet-induced obesity and cardiovascular dysfunction in high carbohydrate, high fat-fed rats. These rats developed increased body weight, glucose intolerance, increased plasma lipid concentrations, hypertension, left ventricular hypertrophy and fibrosis, liver inflammation and steatosis with compromised mitochondrial respiratory chain activity. Dietary supplementation with naringin (approximately 100 mg/kg/day) improved glucose intolerance and liver mitochondrial dysfunction, lowered plasma lipid concentrations and improved the structure and function of the heart and liver without decreasing total body weight. Naringin normalised systolic blood pressure and improved vascular dysfunction and ventricular diastolic dysfunction in high carbohydrate, high fat-fed rats. These beneficial effects of naringin may be mediated by reduced inflammatory cell infiltration, reduced oxidative stress, lowered plasma lipid concentrations and improved liver mitochondrial function in rats. PMID:23446977

  20. 2.3.7.8-Tetrachlorodibenzo-p-Dioxin Induced Immunosuppression: Its Possible Alteration by In Vivo Administration of Specific Hepatic Enzyme Inducers.

    DTIC Science & Technology

    1987-06-27

    treatments with cvtochrome P-450 in- ducers ,such as phenobarbital , 3-Methylccholanthrene, beta-naplitofla’Jone and 2,3,7,8-tetra- chlorodibenZofur~an... phenobarbital has been shown to be ineffective on the parameters investigated and PNF was always less effective than 3MC , even if it has been shown (last...Interfere with in vitro TCDD binding have been chosen. The order of potency as inhibitor is as follows: TCDF > 3MC > PNF > PB ( phenobarbital ). it must be

  1. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Haiyan; Department of Gastroenterology and Hepatology, Yanbian University Hospital, Yanji, Jilin; Yamamoto, Naoki

    2007-12-28

    Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor {gamma} activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions bymore » down-regulating TGF{beta}1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis.« less

  2. The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats.

    PubMed

    Czechowska, G; Celinski, K; Korolczuk, A; Wojcicka, G; Dudka, J; Bojarska, A; Madro, A; Brzozowski, T

    2016-08-01

    It has been reported previously that the density of angiotensin II receptors is increased in the rat liver in experimentally-induced fibrosis. We hypothesized that pharmacological blockade of angiotensin receptors may produce beneficial effects in models of liver fibrosis. In this study, we used the widely used thioacetamide (TAA)-induced model of liver fibrosis (300 mg/L TAA ad libitum for 12 weeks). Rats received daily injections (i.p), lasting 4 weeks of the angiotensin II type 1 receptor antagonists, losartan 30 mg/kg (TAA + L) or telmisartan 10 mg/kg (TAA + T) and were compared to rat that received TAA alone. Chronic treatment with losartan and telmisartan was associated with a significant reduction in the activity of alkaline phosphatase, and decreased concentrations of tumor necrosis factor-alpha and transforming growth factor beta-1 compared to controls. We also found a significant reduction interleukin-6 in rats receiving telmisartan (P < 0.05) but not losartan. Both treatments increased the concentration of liver glutathione along with a concomitant decrease of GSSG compared to controls. In addition, increased paraoxonase 1 activity was observed in the serum of rats receiving telmisartan group compared to the TAA alone controls. Finally, histological evaluation of liver sections revealed losartan and telmisartan treatment was associated with reduced inflammation and liver fibrosis. Taken together, these results indicate that both telmisartan and losartan have anti-inflammatory and anti-oxidative properties in the TAA model of liver fibrosis. These finding add support to a growing body of literature indicating a potentially important role for the angiotensin system in liver fibrosis and indicate angiotensin antagonists may be useful agents for fibrosis treatment.

  3. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made itmore » more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.« less

  4. NMR-based metabonomic and quantitative real-time PCR in the profiling of metabolic changes in carbon tetrachloride-induced rat liver injury.

    PubMed

    Li, Xiaowei; Zhang, Fusheng; Wang, Dongqin; Li, Zhenyu; Qin, Xuemei; Du, Guanhua

    2014-02-01

    Carbon tetrachloride (CCl4) is commonly used as a model toxicant to induce chronic and acute liver injuries. In this study, metabolite profiling and gene expression analysis of liver tissues were performed by nuclear magnetic resonance and quantitative real-time polymerase chain reaction to understand the responses of acute liver injury system in rats to CCl4. Acute liver injury was successfully induced by CCl4 as revealed by histopathological results and significant increase in alanine aminotransferase and serum aspartate aminotransferase. We found that CCl4 caused a significant increase in lactate, succinate, citrate, dimethylgycine, choline and taurine. CCl4 also caused a decrease in some of the amino acids such as leucine/isoleucine, glutamine/glutathione and betaine. Gene function analysis revealed that 10 relevant enzyme genes exhibited changes in expressions in the acute liver injury model. In conclusion, the metabolic pathways, including tricarboxylic acid cycle, antioxidant defense systems, fatty acid β-oxidation, glycolysis and choline and mevalonate metabolisms were impaired in CCl4-treated rat livers. These findings provided an overview of the biochemical consequences of CCl4 exposure and comprehensive insights into the metabolic aspects of CCl4-induced hepatotoxicity in rats. These findings may also provide reference of the mechanisms of acute liver injury that could be used to study the changes in functional genes and metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation.

    PubMed

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Jung, Han-Wool; Kim, Young-Jun; Kwon, Ho-Jeong; Chae, Han-Jung

    2016-08-26

    Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.

  6. Protective effect of a coffee preparation (Nescafe pure) against carbon tetrachloride-induced liver fibrosis in rats.

    PubMed

    Shi, Hongyang; Dong, Lei; Zhang, Yong; Bai, Yanhua; Zhao, Juhui; Zhang, Li

    2010-06-01

    We examined the effects of a coffee preparation on liver fibrosis induced by carbon tetrachloride (CCl(4)) and explored the possible mechanisms. Rats were divided randomly into four groups: control, CCl(4), and two coffee preparation groups. Except for the control group, liver fibrosis was induced in male Sprague-Dawley (SD) rats by subcutaneous injection with 40% CCl(4) twice a week for 8 weeks. At the same time, a coffee preparation (300 mg/kg and 150 mg/kg) was administered to the two coffee preparation groups intragastrically once daily. Upon pathological examination, a coffee preparation treatment significantly reduced liver damage and symptoms of liver fibrosis. The mRNA expression of collagen I, collagen III, bcl-2, vascular endothelial growth factor (VEGF) and transforming growth factor-beta1 (TGF-beta1) were markedly increased by CCl(4) treatment but suppressed by a coffee preparation treatment. Whereas compared with the CCl(4) group, the mRNA expression of Bax was increased in the coffee preparation group. The protein expression of Bax and bcl-2 were confirmed by western blot. Intragastric administration of a coffee preparation reduced the protein expression of alpha-smooth muscle actin (alpha-SMA) and the glucose-regulated proteins (GRP) 78 and 94 in rats increased by CCl(4). Our data indicate that a coffee preparation can efficiently inhibit CCl(4)-induced liver fibrosis in rats. The coffee preparation may therefore be a potential functional food for preventing liver fibrosis. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Hepatoprotective effect of manganese chloride against CCl4-induced liver injury in rats.

    PubMed

    Eidi, Akram; Mortazavi, Pejman; Behzadi, Khodabakhsh; Rohani, Ali Haeri; Safi, Shahabeddin

    2013-11-01

    The aim of the present study is to evaluate the protective effect of manganese chloride against carbon tetrachloride (CCl4)-induced liver injury in rats. Manganese chloride (0.001, 0.01, 0.05 and 0.1 g/kg bw) was administered intragastrically for 28 consecutive days to male CCl4-treated rats. The hepatoprotective activity was assessed using various biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT) and superoxide dismutase (SOD). Histopathological changes in the liver of different groups were also studied. Administration of CCl4 increased the serum ALT, AST, ALP and GGT but decreased SOD levels in rats. Treatment with manganese chloride significantly attenuated these changes to nearly normal levels. The animals treated with manganese chloride have shown decreased necrotic zones and hepatocellular degeneration when compared to the liver exposed to CCl4 intoxication alone. Thus, the histopathological studies also supported the protective effect of manganese chloride. Therefore, the results of this study suggest that manganese chloride exerts hepatoprotection via promoting antioxidative properties against CCl4-induced oxidative liver damage.

  8. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina.

    PubMed

    Ismail, Mohamed F; Ali, Doaa A; Fernando, Augusta; Abdraboh, Mohamed E; Gaur, Rajiv L; Ibrahim, Wael M; Raj, Madhwa H G; Ouhtit, Allal

    2009-06-02

    Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phyto-antioxidant, anti-inflammatory and anti-cancerous properties. The present study aimed to investigate the chemopreventive effect of SP against rat liver toxicity and carcinogenesis induced by dibutyl nitrosamine (DBN) precursors, and further characterized its underlying mechanisms of action in HepG2 cell line. Investigation by light and electron microscopy showed that DBN treatment induced severe liver injury and histopathological abnormalities, which were prevented by SP supplementation. The incidence of liver tumors was significantly reduced from 80 to 20% by SP. Immunohistochemical results indicated that both PCNA and p53 were highly expressed in the liver of DBN-treated rats, but were significantly reduced by SP supplementation. Molecular analysis indicated that SP treatment inhibited cell proliferation, which was accompanied by increased p21 and decreased Rb expression levels at 48hrs post-treatment. In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48hrs. This is the first report of the in vivo chemopreventive effect of SP against DBN-induced rat liver cytotoxicity and carcinogenesis, suggesting its potential use in chemoprevention of cancer.

  9. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina

    PubMed Central

    Ismail, Mohamed F; Ali, Doaa A; Fernando, Augusta; Abdraboh, Mohamed E; Gaur, Rajiv L; Ibrahim, Wael M; Raj, Madhwa HG; Ouhtit, Allal

    2009-01-01

    Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phyto-antioxidant, anti-inflammatory and anti-cancerous properties. The present study aimed to investigate the chemopreventive effect of SP against rat liver toxicity and carcinogenesis induced by dibutyl nitrosamine (DBN) precursors, and further characterized its underlying mechanisms of action in HepG2 cell line. Investigation by light and electron microscopy showed that DBN treatment induced severe liver injury and histopathological abnormalities, which were prevented by SP supplementation. The incidence of liver tumors was significantly reduced from 80 to 20% by SP. Immunohistochemical results indicated that both PCNA and p53 were highly expressed in the liver of DBN-treated rats, but were significantly reduced by SP supplementation. Molecular analysis indicated that SP treatment inhibited cell proliferation, which was accompanied by increased p21 and decreased Rb expression levels at 48hrs post-treatment. In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48hrs. This is the first report of the in vivo chemopreventive effect of SP against DBN-induced rat liver cytotoxicity and carcinogenesis, suggesting its potential use in chemoprevention of cancer. PMID:19521547

  10. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats

    PubMed Central

    Menon, B. Rajalakshmy; Rathi, M. A.; Thirumoorthi, L.

    2010-01-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observed in extract treated liver injured experimental rats. Histopathological examination of the liver tissues supported the hepatoprotection. It is concluded that the ethanolic extract of Bacopa monieri plant possess good hepatoprotective activity. PMID:21966114

  11. 1-methylmalate from camu-camu (Myrciaria dubia) suppressed D-galactosamine-induced liver injury in rats.

    PubMed

    Akachi, Toshiyuki; Shiina, Yasuyuki; Kawaguchi, Takumi; Kawagishi, Hirokazu; Morita, Tatsuya; Sugiyama, Kimio

    2010-01-01

    To evaluate the protective effects of fruit juices against D-galactosamine (GalN)-induced liver injury, lyophilized fruit juices (total 12 kinds) were fed to rats for 7 d, and then we evoked liver injury by injecting GalN. The juice of camu-camu (Myrciaria dubia) significantly suppressed GalN-induced liver injury when the magnitude of liver injury was assessed by plasma alanine aminotransferase and aspartate aminotransferase activities, although some other juices (acerola, dragon fruit, shekwasha, and star fruit) also tended to have suppressive effects. An active compound was isolated from camu-camu juice by solvent fractionation and silica gel column chromatography. The structure was determined to be 1-methylmalate. On the other hand, malate, 1,4-dimethylmalate, citrate, and tartrate had no significant effect on GalN-induced liver injury. It is suggested that 1-methylmalate might be a rather specific compound among organic acids and their derivatives in fruit juices in suppressing GalN-induced liver injury.

  12. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation.

    PubMed

    Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin

    2016-09-01

    Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  13. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Effects of Azilsartan, Aliskiren or their Combination on High Fat Diet-induced Non-alcoholic Liver Disease Model in Rats.

    PubMed

    Hussain, Saad Abdulrahman; Utba, Rabab Mohammed; Assumaidaee, Ajwad Muhammad

    2017-08-01

    In addition to its role in regulation of blood pressure, fluid and electrolyte homeostasis, the renin-angiotensin system (RAS) components were expressed in many other tissues suggesting potential roles in their functions. The present study aims to evaluate the protective effect aliskiren, when used alone or in combination with azilsartan against high fat diet-induced liver disease in rats. Thirty-two Wistar male rats, weighing 150-200 gm were allocated evenly into four groups and treated as follow: group I, rats were fed a specially formulated high-fat diet for 8 weeks to induce non-alcoholic liver disease and considered as control group; groups II, III and IV, the rats were administered azilsartan (0.5 mg/kg), aliskiren (25 mg/kg) or their combination orally via gavage tube once daily, and maintained on high fat diet for 8 weeks. The possible treatment outcome was evaluated through measuring serum levels of glucose, insulin, lipid profile, TNF-α, IL-1β and liver enzymes. Additionally, the liver tissue contents of glycogen and lipids and histological changes were also evaluated. The results showed that azilsartan significantly improves the studied markers greater than aliskiren, and their combination o has no additive or synergistic effects on the activity of each one of them. Both azilsartan and aliskiren protects the rats against high-fat diet induced NAFLD with predominant effects for the former, and their combination showed no beneficial synergistic or additive effects.

  15. Orally administered lycopene attenuates diethylnitrosamine-induced hepatocarcinogenesis in rats by modulating Nrf-2/HO-1 and Akt/mTOR pathways.

    PubMed

    Sahin, Kazim; Orhan, Cemal; Tuzcu, Mehmet; Sahin, Nurhan; Ali, Shakir; Bahcecioglu, Ibrahim H; Guler, Osman; Ozercan, Ibrahim; Ilhan, Necip; Kucuk, Omer

    2014-01-01

    Hepatocarcinogenesis is one of the most prevalent and lethal cancers. We studied the mechanisms underlying the inhibition of diethylnitrosamine (DEN)-induced hepatocarcinogenesis by lycopene in rats. Hepatocarcinogenesis was induced by an intraperitoneal injection of DEN followed by promotion with phenobarbital for 24 successive wk. The rats were given lycopene (20 mg/kg body weight) 3 times a week orally for 4 wk prior to initiation, and the treatment was continued for 24 consecutive wk. Lycopene reduced incidence, number, size, and volume of hepatic nodules. Serum alanine transaminase, aspartate aminotransferase, total bilirubin, and malondialdehyde (MDA) considerably increased and hepatic antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase) and glutathione decreased in DEN-treated rats when compared with the control group. Lycopene significantly reversed these biochemical changes and increased the expression of NF-E-2-related factor-2)/heme oxygenase-1, and it decreased NF-κB/cyclooxygenase-2, inhibiting the inflammatory cascade and activating antioxidant signaling (P < 0.05). Lycopene also decreased DEN-induced increases in phosphorylated mammalian target of rapamycin (p-mTOR), phosphorylated p70 ribosomal protein S6 kinase 1, phosphorylated 4E-binding protein 1, and protein kinase B (P < 0.05). Lycopene is an active chemopreventive agent that offers protection against DEN-induced hepatocarcinogenesis by inhibiting NF-κB and mTOR pathways.

  16. Effects of lactulose and silymarin on liver enzymes in cirrhotic rats.

    PubMed

    Ghobadi Pour, Mozhgan; Mirazi, Naser; Alaei, Hojjatollah; Moradkhani, Shirin; Rajaei, Ziba; Monsef Esfahani, Alireza

    2017-05-01

    Silymarin, a mixture of antihepatotoxic flavonolignans used in the treatment of liver diseases, and lactulose, a nonabsorbable synthetic disaccharide, were investigated to analyze their probable synergic and healing effects in a hepatic cirrhotic rat model. Liver damage was induced by the administration and subsequent withdrawal of thioacetamide. The significant decrease in liver enzymes and malondialdehyde levels confirmed the curative effects of silymarin and lactulose. In the silymarin + lactulose group, liver enzyme and malondialdehyde levels were significantly reduced compared with those in the thioacetamide group. All treatments led to liver regeneration and triggered enhanced regeneration. Silymarin and lactulose alone or in combination have potent curative effects and reduce thioacetamide-induced liver damage.

  17. Fraxinus rhynchophylla ethanol extract attenuates carbon tetrachloride-induced liver fibrosis in rats via down-regulating the expressions of uPA, MMP-2, MMP-9 and TIMP-1.

    PubMed

    Peng, Wen-Huang; Tien, Yun-Chen; Huang, Chih-Yang; Huang, Tai-Hung; Liao, Jung-Chun; Kuo, Chao-Lin; Lin, Ying-Chih

    2010-02-17

    To investigate the effect of Fraxinus rhynchophylla ethanol extract (FR(EtOH)) on liver fibrosis induced by carbon tetrachloride (CCl(4)) in rats. Rat hepatic fibrosis was induced by oral administration of CCl(4). Sixty SD rats were divided randomly into 6 groups: control, CCl(4) group, silymarin group and three FR(EtOH)-treated groups. Except for the rats in control group, all rats were administered orally with CCl(4) (20%, 0.2 mL/100g body weight) twice a week for 8 weeks. Rats in FR(EtOH) groups were treated daily with FR(EtOH) (0.1, 0.5 and 1.0 g/kg, p.o.) throughout the whole experimental period. Liver function parameters (such as activities of serum GOT and GPT levels), activities of liver anti-oxidant enzymes (such as catalase, SOD, GPx) and expressions of uPA, tPA, MMP-2, MMP-9 and TIMP-1, -2, -3, -4 in the liver fibrosis pathway were detected. The results showed that FR(EtOH) (0.1, 0.5 and 1.0 g/kg BW) significantly reduced the elevated activities of sGOT and sGPT caused by CCl(4). FR(EtOH) (0.1 and 0.5 g/kg BW) and significantly increased the activities of GSH-Px. The histopathological study showed that FR(EtOH) (0.1 and 0.5 g/kg BW) reduced the incidence of liver lesions, including hepatic cells cloudy swelling, lymphocytes infiltration, cytoplasm vacuolization hepatic necrosis and fibrous connective tissue proliferated induced by CCl(4) in rats. In our study it was showed that CCl(4)-treated group significantly increased the protein levels of uPA, MMP-2, MMP-9 and TIMP-1. FR(EtOH) (0.1 and 0.5 g/kg BW) could inhibit the protein levels of uPA, MMP-2, MMP-9 and TIMP-1. Finally, the amount of esculetin in the FR(EtOH) was 33.54 mg/g extract. Oral administration of FR(EtOH) significantly reduces CCl(4)-induced hepatic fibrosis in rats, probably by exerting a protective effect against hepatocellular fibrosis by its free radical scavenging ability. FR(EtOH) down-regulated the expressions of uPA, MMP-2 and MMP-9 in CCl(4)-induced liver fibrosis in rats. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  18. The protective effects of Mucuna pruriens seed extract against histopathological changes induced by Malayan cobra (Naja sputatrix) venom in rats.

    PubMed

    Fung, S Y; Tan, N H; Liew, S H; Sim, S M; Aguiyi, J C

    2009-04-01

    Seed of Mucuna pruriens (Velvet beans) has been prescribed by traditional medicine practitioners in Nigeria as a prophylactic oral antisnake remedy. In the present studies, we investigated the protective effects of M. pruriens seed extract (MPE) against histopathological changes induced by intravenous injection of Naja sputatrix (Malayan cobra) venom in rats pretreated with the seed extract. Examination by light microscope revealed that the venom induced histopathological changes in heart and blood vessels in liver, but no effect on brain, lung, kidney and spleen. The induced changes were prevented by pretreatment of the rats with MPE. Our results suggest that MPE pretreatment protects rat heart and liver blood vessels against cobra venom-induced damages.

  19. Influence of alpha-lipoic acid on nicotine-induced lung and liver damage in experimental rats.

    PubMed

    Ateyya, Hayam; Nader, Manar A; Attia, Ghalia M; El-Sherbeeny, Nagla A

    2017-05-01

    Nicotine mediates some of the injurious effects caused by consuming tobacco products. This work aimed at investigating the defensive role of alpha-lipoic acid (ALA) with its known antioxidant and antiinflammatory effect in nicotine-induced lung and liver damage. Rats were arranged into 4 groups: control, nicotine, ALA, and ALA-nicotine groups. Oxidative stress and antioxidant status were determined by assessing thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and glutathione (GSH) levels in lung and liver. Liver enzymes and lipid profiles were measured and pulmonary and hepatic damage were assessed by histopathological examination. Also, serum levels of transforming growth factor beta 1 (TGF-β1) and vascular cell adhesion molecule 1 (VCAM-1) were determined. The results revealed an increase in TBARS in tissues and a reduction in both SOD and GSH activity in the nicotine-treated rats. Nicotine induced high levels of liver enzymes, TGF-β1, VCAM-1, and dyslipidemia with histopathological changes in the lung and liver. ALA administration along with nicotine attenuated oxidative stress and normalized the SOD and GSH levels, ameliorated dyslipidemia, and improved TGF-β1 and VCAM-1 with better histopathology of the lung and liver. The study data revealed that ALA may be beneficial in alleviating nicotine-induced oxidative stress, dyslipidemia, and both lung and liver damage.

  20. Antioxidant Properties of Proanthocyanidins Attenuate Carbon Tetrachloride (CCl4)–Induced Steatosis and Liver Injury in Rats via CYP2E1 Regulation

    PubMed Central

    Zou, Yuan; Zhu, Lei; Wang, Hui-Fang; Dai, Mu-Gen

    2014-01-01

    Abstract Liver steatosis is characterized by lipid dysregulation and fat accumulation in the liver and can lead to oxidative stress in liver. Since proanthocyanidins are present in plant-based foods and have powerful antioxidant properties, we investigated whether proanthocyanidins can prevent oxidative stress and subsequent liver injury. Carbon tetrachloride (CCl4) treatment can cause steatosis in rats that models both alcoholic and non-alcoholic fatty liver disease in humans. We pre-treated rats by oral administration of proanthocyanidins extracted from grape seeds 7 days prior to intragastrically administering CCl4. Proanthocyanidin treatment continued for an additional 2 weeks, after which time liver and serum were harvested, and mediators of liver injury, oxidative stress, and histological features were evaluated. CCl4-treated rats exhibited significant increases in the following parameters as compared to non-treated rats: fat droplets in the liver, liver injury (ALT, AST), and DNA damage (8-OHdG). Additionally, CCl4 treatment decreased antioxidant enzymes SOD, GSH, GPX, and CAT in the liver due to their rapid depletion after battling against oxidative stress. Compared to CCl4-treated rats, treatment with proanthocyanidins effectively suppressed lipid accumulation, liver injury, DNA damage, as well as restored antioxidant enzyme levels. Further investigation revealed that proanthocyanidins treatment also inhibited expression of CYP2E1 in liver, which prevented the initial step of generating free radicals from CCl4. The data presented here show that treatment with orally administered proanthocyanidins prevented liver injury in the CCl4-induced steatosis model, likely through exerting antioxidant actions to suppress oxidative stress and inhibiting the free radical–generating CYP2E1 enzyme. PMID:24712752

  1. Antioxidant properties of proanthocyanidins attenuate carbon tetrachloride (CCl4)-induced steatosis and liver injury in rats via CYP2E1 regulation.

    PubMed

    Dai, Ning; Zou, Yuan; Zhu, Lei; Wang, Hui-Fang; Dai, Mu-Gen

    2014-06-01

    Liver steatosis is characterized by lipid dysregulation and fat accumulation in the liver and can lead to oxidative stress in liver. Since proanthocyanidins are present in plant-based foods and have powerful antioxidant properties, we investigated whether proanthocyanidins can prevent oxidative stress and subsequent liver injury. Carbon tetrachloride (CCl4) treatment can cause steatosis in rats that models both alcoholic and non-alcoholic fatty liver disease in humans. We pre-treated rats by oral administration of proanthocyanidins extracted from grape seeds 7 days prior to intragastrically administering CCl4. Proanthocyanidin treatment continued for an additional 2 weeks, after which time liver and serum were harvested, and mediators of liver injury, oxidative stress, and histological features were evaluated. CCl4-treated rats exhibited significant increases in the following parameters as compared to non-treated rats: fat droplets in the liver, liver injury (ALT, AST), and DNA damage (8-OHdG). Additionally, CCl4 treatment decreased antioxidant enzymes SOD, GSH, GPX, and CAT in the liver due to their rapid depletion after battling against oxidative stress. Compared to CCl4-treated rats, treatment with proanthocyanidins effectively suppressed lipid accumulation, liver injury, DNA damage, as well as restored antioxidant enzyme levels. Further investigation revealed that proanthocyanidins treatment also inhibited expression of CYP2E1 in liver, which prevented the initial step of generating free radicals from CCl4. The data presented here show that treatment with orally administered proanthocyanidins prevented liver injury in the CCl4-induced steatosis model, likely through exerting antioxidant actions to suppress oxidative stress and inhibiting the free radical-generating CYP2E1 enzyme.

  2. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver

    PubMed Central

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2014-01-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car +/+ mice. After being fed the DDC diet, Car +/+, but not Car−/− mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car +/+, but not Car−/− mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car +/+ mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma. PMID:21826054

  3. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    PubMed

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  4. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected inmore » the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.« less

  5. Quercetin protects liver injury induced by bile duct ligation via attenuation of Rac1 and NADPH oxidase1 expression in rats.

    PubMed

    Kabirifar, Razieh; Ghoreshi, Zohreh-Al-Sadat; Safari, Fatemeh; Karimollah, Alireza; Moradi, Ali; Eskandari-Nasab, Ebrahim

    2017-02-01

    Bile duct ligation (BDL) and subsequent cholestasis are correlated with oxidative stress, hepatocellular injury and fibrosis. Quercetin is a flavonoid with antifibrotic, and hepatoprotective properties. However, the molecular mechanism underlying quercetin-mediated hepatoprotection is not fully understood. The current study was to evaluate mechanisms of hepatoprotective effect of quercetin in BDL rat model. We divided male Wistar rats into 4 groups (n=8 for each): sham, sham+quercetin (30 mg/kg per day), BDL, and BDL+quercetin (30 mg/kg per day). Four weeks later, the rats were sacrificed, the blood was collected for liver enzyme measurements and liver for the measurement of Rac1, Rac1-GTP and NOX1 mRNA and protein levels by quantitative PCR and Western blotting, respectively. Quercetin significantly alleviated liver injury in BDL rats as evidenced by histology and reduced liver enzymes. Furthermore, the mRNA and protein expression of Rac1, Rac1-GTP and NOX1 were significantly increased in BDL rats compared with those in the sham group (P<0.05); quercetin treatment reversed these variables back toward normal (P<0.05). Another interesting finding was that the antioxidant markers e.g. superoxide dismutase and catalase were elevated in quercetin-treated BDL rats compared to BDL rats (P<0.05). Quercetin demonstrated hepatoprotective activity against BDL-induced liver injury through increasing antioxidant capacity of the liver tissue, while preventing the production of Rac1, Rac1-GTP and NOX1 proteins.

  6. Mutagenicity of comfrey (Symphytum Officinale) in rat liver

    PubMed Central

    Mei, N; Guo, L; Fu, P P; Heflich, R H; Chen, T

    2005-01-01

    Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant. PMID:15726100

  7. Hepatoprotective effect of manual acupuncture at acupoint GB34 against CCl4-induced chronic liver damage in rats

    PubMed Central

    Yim, Yun-Kyoung; Lee, Hyun; Hong, Kwon-Eui; Kim, Young-Il; Lee, Byung-Ryul; Kim, Tae-Han; Yi, Ji-Young

    2006-01-01

    AIM: To investigate the hepatoprotective effect of manual acupuncture at Yanglingquan (GB34) on CCl4-induced chronic liver damage in rats. METHODS: Rats were injected intraperitoneally with CCl4 (1 mL/kg) and treated with manual acupuncture using reinforcing manipulation techniques at left GB34 (Yanglingquan) 3 times a week for 10 wk. A non-acupoint in left gluteal area was selected as a sham point. To estimate the hepatoprotective effect of manual acupuncture at GB34, measurement of liver index, biochemical assays including serum ALT, AST, ALP and total cholesterol, histological analysis and blood cell counts were conducted. RESULTS: Manual acupuncture at GB34 reduced the liver index, serum ALT, AST, ALP and total cholesterol levels as compared with the control group and the sham acupuncture group. It also increased and normalized the populations of WBC and lymphocytes. CONCLUSION: Manual acupuncture with reinforcing manipulation techniques at left GB34 reduces liver toxicity, protects liver function and liver tissue, and normalizes immune activity in CCl4-intoxicated rats. PMID:16610030

  8. Study on the effects of blueberry treatment on histone acetylation modification of CCl4-induced liver disease in rats.

    PubMed

    Zhan, W; Liao, X; Tian, T; Yu, L; Liu, X; Li, B; Liu, J; Han, B; Xie, R J; Ji, Q H; Yang, Q

    2017-02-16

    The objective of this study was to investigate the effects of blueberry treatment on histone acetylation modification of carbon tetrachloride (CCl 4 )-induced liver disease in rats. Laboratory rats were randomly divided into control, hepatic fibrosis, blueberry treatment, blueberry intervention, and natural recovery groups. Rats in the model groups were treated with CCl 4 administered subcutaneously at 4- and 8-week intervals, and then executed. Both the 4- and 8-week treatment groups were treated with blueberry juice for 8 weeks, and then executed after 12 and 16 weeks, respectively. Following the experiment, four liver function and hepatic fibrosis indices were measured. Liver index was calculated, hematoxylin-eosin staining was conducted, and H3K9, H3K14, and H3K18 expressions were evaluated among the nuclear proteins of the liver tissues. No differences in alanine transaminase were noted between the control and intervention groups, but significant differences were detected among the model, treatment, and natural recovery groups (P < 0.01). Significant differences were also observed in aspartate transaminase, hyaluronic acid, and collagen IV among the model, treatment, intervention, and natural recovery groups (P < 0.01, P < 0.01, P < 0.01). Liver index, and H3K9 and H3K14 expression were significantly different among the model groups (P < 0.05 and P < 0.01), whereas H3K18 expression was dramatically different among model, treatment, intervention, and natural recovery groups (P < 0.01). Following blueberry treatment, rat liver function and hepatic fibrosis improved, potentially indicating that blueberry components could regulate histone acetylation and improve liver pathologic changes in rats with CCl 4 -induced disease.

  9. Whey-hydrolyzed peptide-enriched immunomodulating diet prevents progression of liver cirrhosis in rats.

    PubMed

    Jobara, Kanta; Kaido, Toshimi; Hori, Tomohide; Iwaisako, Keiko; Endo, Kosuke; Uchida, Yoichiro; Uemoto, Shinji

    2014-10-01

    Liver fibrosis and subsequent cirrhosis is a major cause of death worldwide, but few effective antifibrotic therapies are reported. Whey-hydrolyzed peptide (WHP), a major peptide component of bovine milk, exerts anti-inflammatory effects in experimental models. A WHP-enriched diet is widely used for immunomodulating diets (IMD) in clinical fields. However, the effects of WHP on liver fibrosis remain unknown. The aim of this study was to investigate the antifibrotic effects of WHP in a rat cirrhosis model. Progressive liver fibrosis was induced by repeated intraperitoneal administration of dimethylnitrosamine (DMN) for 3 wk. Rats were fed either a WHP-enriched IMD (WHP group) or a control enteral diet (control group). The degree of liver fibrosis was compared between groups. Hepatocyte-protective effects were examined using hepatocytes isolated from rats fed a WHP diet. Reactive oxygen species and glutathione in liver tissue were investigated in the DMN cirrhosis model. Macroscopic and microscopic progression of liver fibrosis was remarkably suppressed in the WHP group. Elevated serum levels of liver enzymes and hyaluronic acid, and liver tissue hydroxyproline content were significantly attenuated in the WHP group. Necrotic hepatocyte rates with DMN challenge, isolated from rats fed a WHP-enriched IMD, were significantly lower. In the DMN cirrhosis model, reactive oxygen species were significantly lower, and glutathione was significantly higher in the WHP group's whole liver tissue. A WHP-enriched IMD effectively prevented progression of DMN-induced liver fibrosis in rats via a direct hepatocyte-protective effect and an antioxidant effect through glutathione synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The therapeutic effects of bone marrow-derived mesenchymal stem cells and simvastatin in a rat model of liver fibrosis.

    PubMed

    Motawi, Tarek M K; Atta, Hazem M; Sadik, Nermin A H; Azzam, May

    2014-01-01

    Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.

  11. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver.

    PubMed

    Chukijrungroat, Natsasi; Khamphaya, Tanaporn; Weerachayaphorn, Jittima; Songserm, Thaweesak; Saengsirisuwan, Vitoon

    2017-08-01

    The role of gender in the progression of fatty liver due to chronic high-fat high-fructose diet (HFFD) has not been studied. The present investigation assessed whether HFFD induced hepatic perturbations differently between the sexes and examined the potential mechanisms. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were fed either a control diet or HFFD for 12 wk. Indexes of liver damage and hepatic steatosis were analyzed biochemically and histologically together with monitoring changes in hepatic gene and protein expression. HFFD induced a higher degree of hepatic steatosis in females, with significant increases in proteins involved in hepatic lipogenesis, whereas HFFD significantly induced liver injury, inflammation, and oxidative stress only in males. Interestingly, a significant increase in hepatic fibroblast growth factor 21 (FGF21) protein expression was observed in HFFD-fed males but not in HFFD-fed females. Ovarian hormone deprivation by itself led to a significant reduction in FGF21 with hepatic steatosis, and HFFD further aggravated hepatic fat accumulation in OVX rats. Importantly, estrogen replacement restored hepatic FGF21 levels and reduced hepatic steatosis in HFFD-fed OVX rats. Collectively, our results indicate that male rats are more susceptible to HFFD-induced hepatic inflammation and that the mechanism underlying this sex dimorphism is mediated through hepatic FGF21 expression. Our findings reveal sex differences in the development of HFFD-induced fatty liver and indicate the protective role of estrogen against HFFD-induced hepatic steatosis. Copyright © 2017 the American Physiological Society.

  12. Cajanus cajan Linn. (Leguminosae) prevents alcohol-induced rat liver damage and augments cytoprotective function.

    PubMed

    Kundu, Rakesh; Dasgupta, Suman; Biswas, Anindita; Bhattacharya, Anirban; Pal, Bikas C; Bandyopadhyay, Debashis; Bhattacharya, Shelley; Bhattacharya, Samir

    2008-08-13

    Cajanus cajan Linn. (Leguminosae) is a nontoxic edible herb, widely used in Indian folk medicine for the prevention of various liver disorders. In the present study we have demonstrated that methanol-aqueous fraction (MAF2) of Cajanus cajan leaf extract could prevent the chronically treated alcohol induced rat liver damage. Chronic doses of alcohol (3.7 g/ kg) orally administered to rats for 28 days and liver function marker enzymes such as GPT, GOT, ALP and anti-oxidant enzyme activities were determined. Effect of MAF2 at a dose of 50mg/kg body weight on alcohol treated rats was noted. Alcohol effected significant increase in liver marker enzyme activities and reduced the activities of anti-oxidant enzymes. Co-administration of MAF2 reversed the liver damage due to alcohol; it decreased the activities of liver marker enzymes and augmented antioxidant enzyme activities. We also demonstrate significant decrease of the phase II detoxifying enzyme, UDP-glucuronosyl transferase (UGT) activity along with a three- and two-fold decrease of UGT2B gene and protein expression respectively. MAF2 co-administration normalized UGT activity and revived the expression of UGT2B with a concomitant expression and nuclear translocation of Nrf2, a transcription factor that regulates the expression of many cytoprotective genes. Cajanus cajan extract therefore shows a promise in therapeutic use in alcohol induced liver dysfunction.

  13. Protective effects of Centella asiatica leaf extract on dimethylnitrosamine-induced liver injury in rats

    PubMed Central

    Choi, Myung-Joo; Zheng, Hong-Mei; Kim, Jae Min; Lee, Kye Wan; Park, Yu Hwa; Lee, Don Haeng

    2016-01-01

    Oxidative stress in liver injury is a major pathogenetic factor in the progression of liver damage. Centella asiatica (L.) Urban, known in the United States as Gotu kola, is widely used as a traditional herbal medicine in Chinese or Indian Pennywort. The efficacy of Centella asiatica is comprehensive and is used as an anti-inflammatory agent, for memory improvement, for its antitumor activity and for treatment of gastric ulcers. The present study investigated the protective effects of Centella asiatica on dimethylnitrosamine (DMN)-induced liver injury in rats. The rats in the treatment groups were treated with Centella asiatica at either 100 or 200 mg/kg in distilled water (D.W) or with silymarin (200 mg/kg in D.W) by oral administration for 5 days daily following intraperitoneal injections of 30 mg/kg DMN. Centella asiatica significantly decreased the relative liver weights in the DMN-induced liver injury group, compared with the control. The assessment of liver histology showed that Centella asiatica significantly alleviated mass periportal ± bridging necrosis, intralobular degeneration and focal necrosis, with fibrosis of liver tissues. Additionally, Centella asiatica significantly decreased the level of malondialdehyde, significantly increased the levels of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase and catalase, and may have provided protection against the deleterious effects of reactive oxygen species. In addition, Centella asiatica significantly decreased inflammatory mediators, including interleukin (IL)-1β, IL-2, IL-6, IL-10, IL-12, tumor necrosis factor-α, interferon-γ and granulocyte/macrophage colony-stimulating factor. These results suggested that Centella asiatica had hepatoprotective effects through increasing the levels of antioxidant enzymes and reducing the levels of inflammatory mediators in rats with DMN-induced liver injury. Therefore, Centella asiatica may be useful in preventing liver damage. PMID:27748812

  14. Effect of Chinese traditional compound, Gan-fu-kang, on CCl(4)-induced liver fibrosis in rats and its probable molecular mechanisms.

    PubMed

    Xu, Ting-Ting; Jiang, Miao-Na; Li, Cong; Che, Ying; Jia, Yu-Jie

    2007-03-01

    To explore the antifibrotic effect of traditional Chinese medicine compound Gan-fu-kang (GFK) on CCl(4)-induced liver fibrosis in rats and its probable mechanisms. The effects of GFK on CCl(4)-induced liver fibrosis were tested in rats. The liver histopathology was examined by light microscope, polaring microscope and electron microscope. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed and the content of albumin (ALB) and hydroxyproline in the liver was measured. The expression of transforming growth factor-beta(1) (TGF-beta(1)) and laminin (LN) was determined by immunohistochemistry. Semi-quantitive computation of collagen types I and III and laminin was done. The expression of MMP-2 and TIMP-1 was assayed by reverse transcription polymerase chain reaction (RT-PCR). Upon pathological examination, GFK treatment had significantly reversed liver fibrosis. Hepatic extracellular matrix (ECM) deposition was significantly reduced, as evidenced by the reduction of the content of hydroxyproline, collagen types I and III, and laminin. Hepatic function was improved by GFK treatment, as evidenced by the increase of plasma ALB and A/G, and by the decrease of serum ALT and AST. TGF-beta(1) in liver was significantly reduced. A significant expression of MMP-2 and TIMP-1 mRNA in liver were downregulated after GFK treatment. The traditional Chinese medicine compound recipe GFK has an antifibrotic effect on CCl(4)-induced liver fibrosis in rats, which improves hepatic function and lessens the deposition of collagen in the liver. The probable antifibrotic mechanisms were: inhibiting the expression of TGF-beta(1) and decreasing expressions of MMP-2 and TIMP-1.

  15. Dai-kenchu-to attenuates rat sinusoidal obstruction syndrome by inhibiting the accumulation of neutrophils in the liver.

    PubMed

    Narita, Masato; Hatano, Etsuro; Tamaki, Nobuyuki; Yamanaka, Kenya; Yanagida, Atsuko; Nagata, Hiromitsu; Asechi, Hiroyuki; Takada, Yasutsugu; Ikai, Iwao; Uemoto, Shinji

    2009-06-01

    Sinusoidal obstruction syndrome (SOS) is drug-induced liver injury that occurs in patients who receive hematopoietic cell transplantation and oxaliplatin-contained chemotherapy. The aim of study was to investigate the pharmacological treatment of SOS using a traditional Japanese medicine, Dai-kenchu-to (DKT). Male Sprague-Dawley rats were treated with monocrotaline (MCT) to induce SOS. The rats were divided into three groups: control, MCT and MCT+DKT groups. In the MCT+DKT group, DKT was gavaged at 12 h after MCT treatment and given every 12 h until the end of the protocol. The rats of MCT group were treated with water instead of DKT. At 48 h after MCT treatment, blood and liver samples were collected. In the MCT+DKT group, the macroscopic and histological findings revealed liver congestion, sinusoidal alteration and the destruction of sinusoidal lining, which were comparable with those of the MCT group. However, the area of hepatic necrosis and serum AST levels significantly decreased in the MCT+DKT group compared with those of the MCT group. Treatment with DKT resulted in the reduction of neutrophil accumulation, myeloperoxidase activity and the expression of cytokine-induced neutrophil chemoattractant (CINC) and intracellular adhesion molecule-1 (ICAM-1) mRNA in the liver compared with those of the MCT group. Treatment with processed ginger, one of the ingredients in DKT, resulted in similar effects to those shown by DKT. Dai-kenchu-to attenuates MCT-induced liver injury by preventing neutrophil-induced liver injury through blockage of upregulation of CINC and ICAM-1 mRNA level.

  16. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    PubMed

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  17. Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800 MHz)-induced oxidative stress in rats during pregnancy and the development of offspring.

    PubMed

    Çetin, Hasan; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Pastacı, Nural; Özkaya, Mehmet Okan

    2014-12-01

    The present study determined the effects of mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) exposure on oxidative stress in the brain and liver as well as the element levels in growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their offspring were equally divided into three different groups: the control, 900 MHz, and 1800 MHz groups. The 900 MHz and 1800 MHz groups were exposed to EMR for 60 min/d during pregnancy and neonatal development. At the 4th, 5th, and 6th weeks of the experiment, brain samples were obtained. Brain and liver glutathione peroxidase activities, as well as liver vitamin A and β-carotene concentrations decreased in the EMR groups, although brain iron, vitamin A, and β-carotene concentrations increased in the EMR groups. In the 6th week, selenium concentrations in the brain decreased in the EMR groups. There were no statistically significant differences in glutathione, vitamin E, chromium, copper, magnesium, manganese, and zinc concentrations between the three groups. EMR-induced oxidative stress in the brain and liver was reduced during the development of offspring. Mobile phone-induced EMR could be considered as a cause of oxidative brain and liver injury in growing rats.

  18. Hepatoprotective Effect of Low Doses of Caffeine on CCl4-Induced Liver Damage in Rats.

    PubMed

    Cachón, Andrés Uc; Quintal-Novelo, Carlos; Medina-Escobedo, Gilberto; Castro-Aguilar, Gaspar; Moo-Puc, Rosa E

    2017-03-04

    Several studies have shown the hepatoprotective effect of the consumption of coffee and tea, which is mainly attributed to caffeine. Many experimental studies have demonstrated this effect; however, these studies used high caffeine doses that are not related to human consumption. The aim of this study was to evaluate the hepatoprotective effect of low doses of caffeine on carbon tetrachloride (CCl 4 )-treated rats. Low doses of caffeine (CAFF) 5 and 10 mg/kg (CAFF5 and CAFF10) were evaluated in chronic liver damage induced by CCl 4 (0.75 mL/kg) in rats. CAFF treatment was administered once a day and CCl 4 administration was twice weekly for 10 weeks. Liver function tests (biochemical markers) and functional (sleeping time) and histological (hematoxylin-eosin and Masson trichrome stains) parameters were carried out at the end of damage treatment. Daily treatments of CAFF5 and CAFF10 exhibited a hepatoprotective effect supported by a decrease of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (AP) serum activities and bilirubin serum levels compared with control and also restored serum albumin levels and liver glutathione (GSH). Moreover, CAFF prevented CCl 4 -induced prolongation in pentobarbital sleeping time and a decrease of liver fibrosis and cell death. Our results demonstrated that low doses of CAFF exert a hepatoprotective effect against CCl 4 -induced liver damage in rats.

  19. Protective effects of saffron extract and crocin supplementation on fatty liver tissue of high-fat diet-induced obese rats.

    PubMed

    Mashmoul, Maryam; Azlan, Azrina; Mohtarrudin, Norhafizah; Mohd Yusof, Barakatun Nisak; Khaza'ai, Huzwah; Khoo, Hock Eng; Farzadnia, Mehdi; Boroushaki, Mohammad Taher

    2016-10-22

    Saffron is the dried stigma of Crocus sativus L. flower which commonly used as a natural remedy to enhance health and even fights disease in the Middle-East and Southeast Asian countries. This study was aimed to investigate protective effect of saffron extract and crocin in fatty liver tissue of high-fat diet induced obese rats. A total of 36 healthy male Sprague Dawley rats were divided into six groups. Two groups served as controls, a normal diet (ND) and a high-fat diet (HFD). The other four groups were each supplemented with saffron extract and crocin at concentrations of 40 and 80 mg/kg body weight/day for 8 weeks. All groups except ND were fed with HFD until end of the study. At baseline, blood sample was collected for determination of levels of hepatic marker enzymes, including aspartate aminotransferase, alanine aminotransferase, alkaline phosphatise and albumin. Liver sample was collected, weighed and stained with haematoxylin and eosin for further histopathological examination. Saffron extract and crocin at concentrations of 40 and 80 mg/kg had dose-dependently alleviated levels of liver enzymes and histopathological changes in diet-induced obese rat model compared to control (HFD group). This study suggested that saffron extract and crocin supplements have hepatoprotective effect against non-alcoholic fatty liver disease and HFD-induced liver damage.

  20. Vitamin B12 supplement alleviates N'-nitrosodimethylamine-induced hepatic fibrosis in rats.

    PubMed

    Ahmad, Areeba; Afroz, Nishat; Gupta, Umesh D; Ahmad, Riaz

    2014-01-10

    Abstract Context: Altered vitamin B 12 levels have been correlated with hepatotoxicity; however, further evidence is required to establish its protective role. Objective: To evaluate the effects of vitamin B 12 supplement in protecting N'-nitrosodimethylamine (NDMA)-induced hepatic fibrosis in Wistar rats. Materials and methods: Hepatic fibrosis was induced by administering NDMA in doses of 10 mg/kg body weight thrice a week for 21 days. Another group received equal doses (10 mg/kg body weight) of vitamin B 12 subsequent to NDMA treatment. Animals from either group were sacrificed weekly from the start of the treatment along with their respective controls. Progression of hepatic fibrosis, in addition to the effect of vitamin B 12 , was assessed biochemically for liver function biomarkers, liver glycogen, hydroxyproline (HP) and B 12 reserves along with histopathologically by hematoxylin and eosin (H & E) as well immunohistochemical staining for α-SMA expression. Results and discussion: Elevation in the levels of aminotransferases, SALP, total bilirubin and HP was observed in NDMA treated rats, which was concomitant with remarkable depletion in liver glycogen and B 12 reserves (p < 0.05). Liver biopsies also demonstrated disrupted lobular architecture, collagen amassing and intense fibrosis by NDMA treatment. Immunohistochemical staining showed the presence of activated stellate cells that was dramatically increased up to day 21 in fibrotic rats. Following vitamin B 12 treatment, liver function biomarkers, glycogen contents and hepatic vitamin B 12 reserves were restored in fibrotic rats, significantly. Vitamin B 12 administration also facilitated restoration of normal liver architecture. Conclusion: These findings provide interesting new evidence in favor of protective role for vitamin B 12 against NDMA-induced hepatic fibrosis in rats.

  1. PASS-Predicted Hepatoprotective Activity of Caesalpinia sappan in Thioacetamide-Induced Liver Fibrosis in Rats

    PubMed Central

    Kadir, Farkaad A.; Kassim, Normadiah M.; Abdulla, Mahmood Ameen; Ahmadipour, Fatemeh; Yehye, Wageeh A.

    2014-01-01

    The antifibrotic effects of traditional medicinal herb Caesalpinia sappan (CS) extract on liver fibrosis induced by thioacetamide (TAA) and the expression of transforming growth factor β1 (TGF-β1), α-smooth muscle actin (αSMA), and proliferating cell nuclear antigen (PCNA) in rats were studied. A computer-aided prediction of antioxidant and hepatoprotective activities was primarily performed with the Prediction Activity Spectra of the Substance (PASS) Program. Liver fibrosis was induced in male Sprague Dawley rats by TAA administration (0.03% w/v) in drinking water for a period of 12 weeks. Rats were divided into seven groups: control, TAA, Silymarin (SY), and CS 300 mg/kg body weight and 100 mg/kg groups. The effect of CS on liver fibrogenesis was determined by Masson's trichrome staining, immunohistochemical analysis, and western blotting. In vivo determination of hepatic antioxidant activities, cytochrome P450 2E1 (CYP2E1), and matrix metalloproteinases (MPPS) was employed. CS treatment had significantly increased hepatic antioxidant enzymes activity in the TAA-treated rats. Liver fibrosis was greatly alleviated in rats when treated with CS extract. CS treatment was noted to normalize the expression of TGF-β1, αSMA, PCNA, MMPs, and TIMP1 proteins. PASS-predicted plant activity could efficiently guide in selecting a promising pharmaceutical lead with high accuracy and required antioxidant and hepatoprotective properties. PMID:24701154

  2. Betaine reduces hepatic lipidosis induced by carbon tetrachloride in Sprague-Dawley rats.

    PubMed

    Junnila, M; Barak, A J; Beckenhauer, H C; Rahko, T

    1998-10-01

    Carbon tetrachloride-injected rats were given liquid diets with and without betaine for 7 d. Hepatic lipidosis was induced by 4 daily injections of carbon tetrachloride (CCl4). Animals were killed and their livers and blood taken for analysis of betaine, S-adenosylmethionine (SAM), betaine homocysteine methyltransferase (BHMT), triglyceride, alanine aminotransferase and aspartate aminotransferase. Liver samples were also processed and stained for histological examination. Supplemental betaine reduced triglyceride in the liver and centrilobular hepatic lipidosis induced by the CCl4 injections. In both the control and experimental groups receiving betaine, liver betaine, BHMT and SAM were significantly higher than in their respective groups not receiving betaine. This study provides evidence that betaine protects the liver against CCl4-induced lipidosis and may be a useful therapeutic and prophylactic agent in ameliorating the harmful effects of CCl4.

  3. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats.

    PubMed

    Ozsoy-Sacan, Ozlem; Yanardag, Refiye; Orak, Haci; Ozgey, Yasemin; Yarat, Aysen; Tunali, Tugba

    2006-03-08

    Parsley (Petroselinum crispum) is one of the medicinal herbs used by diabetics in Turkey. The aim of this study is to investigate the effects of parsley (2g/kg) and glibornuride (5mg/kg) on the liver tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into six groups: control; control+parsley; control+glibornuride; diabetic; diabetic+parsley; diabetic+glibornuride. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Parsley extract and glibornuride were given daily to both diabetic and control rats separately, until the end of the experiment, at day 42. The drugs were administered to one diabetic and one control group from days 14 to 42. On day 42, liver tissues were taken from each rat. In STZ-diabetic group, blood glucose levels, serum alkaline phosphatase activity, uric acid, sialic acid, sodium and potassium levels, liver lipid peroxidation (LPO), and non-enzymatic glycosylation (NEG) levels increased, while liver glutathione (GSH) levels and body weight decreased. In the diabetic group given parsley, blood glucose, serum alkaline phosphatase activity, sialic acid, uric acid, potassium and sodium levels, and liver LPO and NEG levels decreased, but GSH levels increased. The diabetic group, given glibornuride, blood glucose, serum alkaline phosphatase activity, serum sialic acid, uric acid, potassium, and liver NEG levels decreased, but liver LPO, GSH, serum sodium levels, and body weight increased. It was concluded that probably, due to its antioxidant property, parsley extract has a protective effect comparable to glibornuride against hepatotoxicity caused by diabetes.

  4. Antioxidant and Protective Effect of Ethyl Acetate Extract of Podophyllum Hexandrum Rhizome on Carbon Tetrachloride Induced Rat Liver Injury

    PubMed Central

    Ganie, Showkat Ahmad; Haq, Ehtishamul; Masood, Akbar; Hamid, Abid; Zargar, Mohmmad Afzal

    2011-01-01

    The antioxidant and hepatoprotective activities of ethyl acetate extract was carefully investigated by the methods of DPPH radical scavenging activity, Hydroxyl radical scavenging activity, Superoxide radical scavenging activity, Hydrogen peroxide radical scavenging activity and its Reducing power ability. All these in vitro antioxidant activities were concentration dependent which were compared with standard antioxidants such as BHT, α-tocopherol. The hepatoprotective potential of Podophyllum hexandrum extract was also evaluated in male Wistar rats against carbon tetrachloride (CCl4)-induced liver damage. Pre-treated rats were given ethyl acetate extract at 20, 30 and 50 mg/kg dose prior to CCl4 administration (1 ml/kg, 1:1 in olive oil). Rats pre-treated with Podophyllum hexandrum extract remarkably prevented the elevation of serum AST, ALT, LDH and liver lipid peroxides in CCl4-treated rats. Hepatic glutathione levels were significantly increased by the treatment with the extract in all the experimental groups. The extract at the tested doses also restored the levels of liver homogenate enzymes (glutathione peroxidase, glutathione reductase, superoxide dismutase and glutathione-S- transferase) significantly. This study suggests that ethyl acetate extract of P. hexandrum has a liver protective effect against CCl4-induced hepatotoxicity and possess in vitro antioxidant activities. PMID:21394192

  5. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals.

    PubMed

    Salah, Myriam Ben; Abdelmelek, Hafedh; Abderraba, Manef

    2013-11-01

    We investigated the effect of olive leaves extract administration on glucose metabolism and oxidative response in liver and kidneys of rats exposed to radio frequency (RF). The exposure of rats to RF (2.45 GHz, 1h/day during 21 consecutive days) induced a diabetes-like status. Moreover, RF decreased the activities of glutathione peroxidase (GPx, -33.33% and -49.40%) catalase (CAT, -43.39% and -39.62%) and the superoxide dismutase (SOD, -59.29% and -68.53%) and groups thiol amount (-62.68% and -34.85%), respectively in liver and kidneys. Indeed, exposure to RF increased the malondialdehyde (MDA, 29.69% and 51.35%) concentration respectively in liver and kidneys. Olive leaves extract administration (100 mg/kg, ip) in RF-exposed rats prevented glucose metabolism disruption and restored the activities of GPx, CAT and SOD and thiol group amount in liver and kidneys. Moreover, olive leave extract administration was able to bring down the elevated levels of MDA in liver but not in kidneys. Our investigations suggested that RF exposure induced a diabetes-like status through alteration of oxidative response. Olive leaves extract was able to correct glucose metabolism disorder by minimizing oxidative stress induced by RF in rat tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Inactivation of kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis.

    PubMed

    Du, Shi-Suo; Qiang, Min; Zeng, Zhao-Chong; Ke, Ai-Wu; Ji, Yuan; Zhang, Zheng-Yu; Zeng, Hai-Ying; Liu, Zhongshan

    2010-03-15

    To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity.

    PubMed

    Elferink, M G L; Olinga, P; Draaisma, A L; Merema, M T; Bauerschmidt, S; Polman, J; Schoonen, W G; Groothuis, G M M

    2008-06-15

    The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl(4), fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.

  8. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elferink, M.G.L.; Olinga, P.; Draaisma, A.L.

    2008-06-15

    The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such asmore » Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl{sub 4}, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.« less

  9. Improvement in Serum Biochemical Alterations and Oxidative Stress of Liver and Pancreas following Use of Royal Jelly in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Ghanbari, Elham; Nejati, Vahid; Khazaei, Mozafar

    2016-01-01

    Objective This study aimed to evaluate the effects of royal jelly (RJ) on serum biochemical alterations and oxidative stress status in liver and pancreas of streptozotocin (STZ)- induced diabetic rats. Materials and Methods In this experimental study, thirty two male Wistar rats were divided into the following four groups (n=8/group): i. Control (C), ii. Diabetic (D), iii. Royal jelly (R), and iv. Royal jelly-treated diabetic (D/R) groups. Diabetes was induced by single intraperitoneal (IP) injection of STZ (60 mg/kg). The RJ [100 mg/kg body weight (BW)] was administered orally for 42 days. Blood samples were used to determine serum levels of insulin, high density lipoprotein cholesterol (HDL-c), total protein (TP), albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and fasting blood glucose (FBG). Also, the antioxidant status was evaluated by determining the levels of malondialdehyde (MDA), catalase (CAT) and ferric reducing antioxidant power (FRAP) in liver and pancreas. Data were analyzed by one-way analysis of variance (ANOVA) with P<0.05 as the significant level. Results STZ-induced diabetic rats showed a significant elevation in the serum levels of AST, ALT, ALP and FBG, whereas there was a significant decrease in serum levels of insulin, albumin, HDL-c and TP (P<0.05). Treatment of the diabetic rats with RJ restored the changes of the above parameters to their normal levels (P<0.05). In addition, RJ significantly improved reduced levels of FRAP and CAT as well as high MDA level in liver and pancreas (P<0.05). Conclusion RJ improves oxidative damage induced by STZ in the liver and pancreas of rats; therefore, it can be considered as an effective and alternative treatment for diabetes. PMID:27602318

  10. Improvement in Serum Biochemical Alterations and Oxidative Stress of Liver and Pancreas following Use of Royal Jelly in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Ghanbari, Elham; Nejati, Vahid; Khazaei, Mozafar

    2016-01-01

    This study aimed to evaluate the effects of royal jelly (RJ) on serum biochemical alterations and oxidative stress status in liver and pancreas of streptozotocin (STZ)- induced diabetic rats. In this experimental study, thirty two male Wistar rats were divided into the following four groups (n=8/group): i. Control (C), ii. Diabetic (D), iii. Royal jelly (R), and iv. Royal jelly-treated diabetic (D/R) groups. Diabetes was induced by single intraperitoneal (IP) injection of STZ (60 mg/kg). The RJ [100 mg/kg body weight (BW)] was administered orally for 42 days. Blood samples were used to determine serum levels of insulin, high density lipoprotein cholesterol (HDL-c), total protein (TP), albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and fasting blood glucose (FBG). Also, the antioxidant status was evaluated by determining the levels of malondialdehyde (MDA), catalase (CAT) and ferric reducing antioxidant power (FRAP) in liver and pancreas. Data were analyzed by one-way analysis of variance (ANOVA) with P<0.05 as the significant level. STZ-induced diabetic rats showed a significant elevation in the serum levels of AST, ALT, ALP and FBG, whereas there was a significant decrease in serum levels of insulin, albumin, HDL-c and TP (P<0.05). Treatment of the diabetic rats with RJ restored the changes of the above parameters to their normal levels (P<0.05). In addition, RJ significantly improved reduced levels of FRAP and CAT as well as high MDA level in liver and pancreas (P<0.05). RJ improves oxidative damage induced by STZ in the liver and pancreas of rats; therefore, it can be considered as an effective and alternative treatment for diabetes.

  11. Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity.

    PubMed

    Awadalla, Eatemad A

    2012-07-01

    Paraquat has been demonstrated to be a highly toxic compound for humans and animals and many cases of acute poisoning and death have been reported over the past few decades. The current experiment aimed to examine if vitamin C (ascorbic acid) alleviates the morphological changes induced by paraquat (PQ) administration in the liver and kidney of male albino rats. Male adult rats received paraquat (PQ) (1.5 mg/kg body weight) daily for three weeks. Vitamin C (VC) at a dose of 20 mg/kg body weight was given concomitantly with PQ to rats. Animals were divided into three groups in this experiment (control, PQ and PQ+VC). The morphopathological manifestations were investigated in tissues from liver and kidney. As expected, PQ administration induced marked changes in the morphological structure of the liver and kidney in PQ demonstrated animals. Importantly, vitamin C administration restored PQ-induced changes in the studied organs. Vitamin C administration attenuated the morphological damages induced by PQ in the liver and kidney of experimental animals. Our results suggest an antitoxic effect of vitamin C against paraquat. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Protection effect of piper betel leaf extract against carbon tetrachloride-induced liver fibrosis in rats.

    PubMed

    Young, Shun-Chieh; Wang, Chau-Jong; Lin, Jing-Jing; Peng, Pei-Ling; Hsu, Jui-Ling; Chou, Fen-Pi

    2007-01-01

    Piper betel leaves (PBL) are used in Chinese folk medicine for the treatment of various disorders. PBL has the biological capabilities of detoxication, antioxidation, and antimutation. In this study, we evaluated the antihepatotoxic effect of PBL extract on the carbon tetrachloride (CCl(4))-induced liver injury in a rat model. Fibrosis and hepatic damage, as reveled by histology and the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were induced in rats by an administration of CCl(4) (8%, 1 ml/kg body weight) thrice a week for 4 weeks. PBL extract significantly inhibited the elevated AST and ALT activities caused by CCl(4) intoxication. It also attenuated total glutathione S-transferase (GST) activity and GST alpha isoform activity, and on the other hand, enhanced superoxide dismutase (SOD) and catalase (CAT) activities. The histological examination showed the PBL extract protected liver from the damage induced by CCl(4) by decreasing alpha-smooth muscle actin (alpha-sma) expression, inducing active matrix metalloproteinase-2 (MMP2) expression though Ras/Erk pathway, and inhibiting TIMP2 level that consequently attenuated the fibrosis of liver. The data of this study support a chemopreventive potential of PBL against liver fibrosis.

  13. Efficacy of grape seed and skin extract against doxorubicin-induced oxidative stress in rat liver.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safouen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2015-11-01

    Doxorubicin (Dox) is an anthracycline used in chemotherapy, although it causes toxicity and oxidative stress. Grape seed and skin extract (GSSE) is a mixture of polyphenolic compounds with antioxidant properties. To evaluate the hepato-toxicity of Dox on healthy rats as well as the protective effect of GSSE, rats were treated with GSSE (500mg/kg bw) during 8 days. At the 4th day of treatment, they received a single dose of Dox (20 mg/kg bw). After the treatment (9th day), livers were collected and processed for oxidative stress status. Dox increased MDA (+ 900%), decreased catalase (-60%) and increased peroxidase (+90%) and superoxide dismutase (+100%) activities. In this latter case Dox mainly increased the iron isoform. Furthermore Dox altered intracellular mediators as catalytic free iron (-75%), H₂O₂(-75%) and calcium (+30%). Dox also affected liver function by elevating plasma triacylglycerol and transaminases and liver morphology by altering its typical architecture. Importantly all Dox-induced liver disturbances were alleviated upon GSSE treatment. Dox induced liver toxicity and an oxidative stress mainly characterized by increased lipoperoxidation but not protein carbonylation. GSSE efficiently protected the liver from Dox-induced toxicity and appeared as a safe adjuvant that could be incorporated into chemotherapy protocols.

  14. Hepatoprotective effect of ethanolic extract of Curcuma longa on thioacetamide induced liver cirrhosis in rats

    PubMed Central

    2013-01-01

    Background Hepatology research has focused on developing traditional therapies as pharmacological medicines to treat liver cirrhosis. Thus, this study evaluated mechanisms of the hepatoprotective activity of Curcuma longa rhizome ethanolic extract (CLRE) on thioacetamide-induced liver cirrhosis in rats. Methods The hepatoprotective effect of CLRE was measured in a rat model of thioacetamide-induced liver cirrhosis over 8 weeks. Hepatic cytochrome P450 2E1 and serum levels of TGF-β1 and TNF-α were evaluated. Oxidative stress was measured by malondialdehyde, urinary 8-hydroxyguanosine and nitrotyrosine levels. The protective activity of CLRE free-radical scavenging mechanisms were evaluated through antioxidant enzymes. Protein expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins in animal blood sera was studied and confirmed by immunohistochemistry of Bax, Bcl2 proteins and proliferating cell nuclear antigen. Results Histopathology, immunohistochemistry and liver biochemistry were significantly lower in the Curcuma longa-treated groups compared with controls. CLRE induced apoptosis, inhibited hepatocytes proliferation but had no effect on hepatic CYP2E1 levels. Conclusion The progression of liver cirrhosis could be inhibited by the antioxidant and anti-inflammatory activities of CLRE and the normal status of the liver could be preserved. PMID:23496995

  15. Serum from CCl4-induced acute rat injury model induces differentiation of ADSCs towards hepatic cells and reduces liver fibrosis.

    PubMed

    Baig, Maria Tayyab; Ali, Gibran; Awan, Sana Javaid; Shehzad, Umara; Mehmood, Azra; Mohsin, Sadia; Khan, Shaheen N; Riazuddin, Sheikh

    2017-10-01

    Cellular therapies hold promise to alleviate liver diseases. This study explored the potential of allogenic serum isolated from rat with acute CCl 4 injury to differentiate adipose derived stem cells (ADSCs) towards hepatic lineage. Acute liver injury was induced by CCl 4 which caused significant increase in serum levels of VEGF, SDF1α and EGF. ADSCs were preconditioned with 3% serum isolated from normal and acute liver injury models. ADSCs showed enhanced expression of hepatic markers (AFP, albumin, CK8 and CK19). These differentiated ADSCs were transplanted intra-hepatically in CCl 4 -induced liver fibrosis model. After one month of transplantation, fibrosis and liver functions (alkaline phosphatase, ALAT and bilirubin) showed marked improvement in acute injury group. Elevated expression of hepatic (AFP, albumin, CK 18 and HNF4a) and pro survival markers (PCNA and VEGF) and improvement in liver architecture as deduced from results of alpha smooth muscle actin, Sirius red and Masson's trichome staining was observed.

  16. Hepatoprotective activity of dried- and fermented-processed virgin coconut oil.

    PubMed

    Zakaria, Z A; Rofiee, M S; Somchit, M N; Zuraini, A; Sulaiman, M R; Teh, L K; Salleh, M Z; Long, K

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.

  17. Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil

    PubMed Central

    Zakaria, Z. A.; Rofiee, M. S.; Somchit, M. N.; Zuraini, A.; Sulaiman, M. R.; Teh, L. K.; Salleh, M. Z.; Long, K.

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study. PMID:21318140

  18. Effects of dietary oat, barley, and guar gums on serum and liver lipid concentrations in diet-induced hypertriglyceridemic rats.

    PubMed

    Oda, T; Aoe, S; Imanishi, S; Kanazawa, Y; Sanada, H; Ayano, Y

    1994-04-01

    Effects of dietary oat, barley, and guar gums on serum and liver triglyceride or cholesterol concentrations were examined in diet-induced hypertriglyceridemic rats. Male Sprague-Dawley rats were fed a hypertriglyceridemic diet that contained 20% coconut oil, 17.5% fructose, 17.5% sucrose, and 5% cellulose at 4 weeks of age for 14 days. In the gum-supplemented diets, 2% cellulose was replaced by oat gum, barley gum, or guar gum. Hypertriglyceridemia was observed in the control group, whereas serum cholesterol concentration was not increased. All of the gums lowered serum and liver cholesterol concentrations except barley gum which had no significant effect on liver cholesterol. Both oat and barley gums suppressed the elevation of serum and liver triglyceride concentrations but guar gum had no effect.

  19. Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl(4)-induced liver injury in rats.

    PubMed

    Jayakumar, T; Ramesh, E; Geraldine, P

    2006-12-01

    This study was undertaken to investigate the putative antioxidant activity of the oyster mushroom Pleurotus ostreatus on CCl(4)-induced liver damage in male Wistar rats. Intraperitoneal administration of CCl(4) (2ml/kg) to rats for 4 days resulted in significantly elevated (p<0.05) serum levels of glutamic oxaloacetic transaminase (SGOT), glutamic pyruvate transaminase (SGPT) and alkaline phosphatase (SALP) compared to controls. In the liver, significantly elevated levels (p<0.05) of malondialdehyde (MDA) and lowered levels (p<0.05) of reduced glutathione (GSH) were observed following CCl(4) administration. Quantitative and qualitative analysis of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (Gpx) revealed lower activities of these antioxidant enzymes in the liver of CCl(4)-administered rats. An analysis of the isozyme pattern of these enzymes revealed variations in relative concentration presumably due to hepatotoxicity. When rats with CCl(4)-induced hepatotoxicity were treated with the extract of P. ostreatus, the serum SGOT, SGPT and SALP levels reverted to near normal, while the hepatic concentration of GSH, CAT, SOD and Gpx were significantly increased (p<0.05) and that of MDA significantly (p<0.05) lowered, when compared to CCl(4)-exposed untreated rats. Histopathological studies confirmed the hepatoprotective effect conferred by the extract of P. ostreatus. These results suggest that an extract of P. ostreatus is able to significantly alleviate the hepatotoxicity induced by CCl(4) in the rat.

  20. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    PubMed

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P < 0.05). The brain water content was significantly elevated in TAA-administrated rats compared with the control (P < 0.05). The expressions of AQP4 protein and mRNA in brain tissues significantly increased in TAA-administrated rats (P < 0.05). In addition, the expressions of AQP4 protein and mRNA were positively correlated with brain water content (r = 0.536, P < 0.01; r = 0.566, P = 0.01). The high expression of AQP4 in rats with TAA-induced acute liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  1. The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats

    PubMed Central

    2011-01-01

    Background Trans-fatty acids (TFA) are known as a risk factor for coronary artery diseases, insulin resistance and obesity accompanied by systemic inflammation, the features of metabolic syndrome. Little is known about the effects on the liver induced by lipids and also few studies are focused on the effect of foods rich in TFAs on hepatic functions and oxidative stress. This study investigates whether high-fat diets with different TFA levels induce oxidative stress and liver dysfunction in rats. Methods Male Wistar rats were divided randomly into four groups (n = 12/group): C receiving standard-chow; Experimental groups that were fed high-fat diet included 20% fresh soybean oil diet (FSO), 20% oxidized soybean oil diet (OSO) and 20% margarine diet (MG). Each group was kept on the treatment for 4 weeks. Results A liver damage was observed in rats fed with high-fat diet via increase of liver lipid peroxidation and decreased hepatic antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase). The intake of oxidized oil led to higher levels of lipid peroxidation and a lower concentration of plasma antioxidants in comparison to rats fed with FSO. The higher inflammatory response in the liver was induced by MG diet. Liver histopathology from OSO and MG groups showed respectively moderate to severe cytoplasm vacuolation, hypatocyte hypertrophy, hepatocyte ballooning, and necroinflammation. Conclusion It seems that a strong relationship exists between the consumption of TFA in the oxidized oils and lipid peroxidation and non alcoholic fatty liver disease (NAFLD). The extent of the peroxidative events in liver was also different depending on the fat source suggesting that feeding margarine with higher TFA levels may represent a direct source of oxidative stress for the organism. The present study provides evidence for a direct effect of TFA on NAFLD. PMID:21943357

  2. Clinical efficacy and safety of imepitoin in comparison with phenobarbital for the control of idiopathic epilepsy in dogs.

    PubMed

    Tipold, A; Keefe, T J; Löscher, W; Rundfeldt, C; de Vries, F

    2015-04-01

    The anticonvulsant activity and safety of imepitoin, a novel antiepileptic drug licensed in the European Union, were evaluated in a multicentre field efficacy study as well as in a safety study under laboratory conditions. Efficacy of imepitoin was compared with phenobarbital in 226 client-owned dogs in a blinded parallel group design. The administration of imepitoin twice daily in incremental doses of 10, 20 or 30 mg/kg demonstrated comparable efficacy to phenobarbital in controlling seizures in dogs. The frequency of adverse events including somnolence/sedation, polydipsia and increased appetite was significantly higher in the phenobarbital group. In phenobarbital-treated dogs, significantly increased levels of alkaline phosphatase, gamma-glutamyl-transferase and other liver enzymes occurred, while no such effect was observed in the imepitoin group. In a safety study under laboratory conditions, healthy beagle dogs were administered 0, 30, 90 or 150 mg/kg imepitoin twice daily for 26 weeks. A complete safety evaluation including histopathology was included in the study. A no-observed-adverse-event level of 90 mg/kg twice daily was determined. These results indicate that imepitoin is a potent and safe antiepileptic drug for dogs. © 2014 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  3. Effects of Azilsartan, Aliskiren or their Combination on High Fat Diet-induced Non-alcoholic Liver Disease Model in Rats

    PubMed Central

    Hussain, Saad Abdulrahman; Utba, Rabab Mohammed; Assumaidaee, Ajwad Muhammad

    2017-01-01

    Introduction: In addition to its role in regulation of blood pressure, fluid and electrolyte homeostasis, the renin-angiotensin system (RAS) components were expressed in many other tissues suggesting potential roles in their functions. Aim: The present study aims to evaluate the protective effect aliskiren, when used alone or in combination with azilsartan against high fat diet-induced liver disease in rats. Material and methods: Thirty-two Wistar male rats, weighing 150-200 gm were allocated evenly into four groups and treated as follow: group I, rats were fed a specially formulated high-fat diet for 8 weeks to induce non-alcoholic liver disease and considered as control group; groups II, III and IV, the rats were administered azilsartan (0.5 mg/kg), aliskiren (25 mg/kg) or their combination orally via gavage tube once daily, and maintained on high fat diet for 8 weeks. The possible treatment outcome was evaluated through measuring serum levels of glucose, insulin, lipid profile, TNF-α, IL-1β and liver enzymes. Additionally, the liver tissue contents of glycogen and lipids and histological changes were also evaluated. Result: The results showed that azilsartan significantly improves the studied markers greater than aliskiren, and their combination o has no additive or synergistic effects on the activity of each one of them. Conclusion: Both azilsartan and aliskiren protects the rats against high-fat diet induced NAFLD with predominant effects for the former, and their combination showed no beneficial synergistic or additive effects. PMID:28974844

  4. [Inhibition and acceleration of the metabolism of enflurane and methoxyflurane in rats (author's transl)].

    PubMed

    Siegers, C P; Mackenroth, T; Younes, M

    1981-02-01

    Rats exposed to enflurane (100 ppm) or methoxyflurane (300 ppm) in a closed all glass-system eliminated these anesthetics from the atmosphere of the system with a half-life of 6.84 h for enflurane and 0.64 h for methoxyflurane. 24 h-fasting had no influence on these elimination half-lives. An oral load of ethanol (4.8 g/kg p.o.) only prolonged the half-life for methoxyflurane. Pretreatment with diethyl maleate (1 ml/kg i.p.), dimethylsulfoxide (DMSO, 1 g/kg i.p.) or dithiocarb (100 mg/kg i.p.) prolonged the elimination half-life of both enflurane and methoxyflurane. An accelerated metabolic elimination was only observed in DDT-pretreated rats exposed to enflurane; other inducers of the microsomal mixed-function oxidase system like phenobarbital or rifampicine had no significant influence on the in vivo metabolism of both enflurane or methoxyflurane.

  5. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model.

    PubMed

    Sil, Rajarshi; Ray, Doel; Chakraborti, Abhay Sankar

    2015-11-01

    Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60%) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome.

  6. Species-Associated Differences in the Inhibition of Propofol Glucuronidation by Magnolol

    PubMed Central

    Yang, Lu; Zhu, Liangliang; Ge, Guangbo; Xiao, Ling; Wu, Yan; Liang, Sicheng; Cao, Yunfeng; Yang, Ling; Wang, Dong

    2014-01-01

    Magnolol, a major active constituent in herbal medicine, potently inhibits propofol glucuronidation in human liver microsomes, with inhibition constants in the nanomolar range. This study was conducted to investigate magnolol-induced inhibition of propofol glucuronidation in liver microsomes from Swiss–Hauschka mice, Sprague–Dawley rats, Chinese Bama pigs, and cynomolgus macaques. Results indicated that magnolol (10 μM) inhibited propofol glucuronidation in liver microsomes from Bama pigs and cynomolgus macaques but not in those from mice or rats. Data from liver microsomes from Bama pigs indicated a competitive inhibition mechanism, with a Ki of 1.7 μM. In contrast to that of pig liver microsomes, the inhibition of microsomes from cynomolgus macaques followed a noncompetitive mechanism, with a Ki of 3.4 μM. In summary, this study indicates that magnolol-induced inhibition of propofol glucuronidation varies substantially among species, and the Ki values determined by using liver microsomes from various experimental animal species far exceed that for human liver microsomes. The inhibition of propofol glucuronidation by magnolol in liver microsomes from all animal species tested was significantly lower than the inhibition previously demonstrated in human liver microsomes. Hepatic microsomes from Swiss–Hauschka mice, Sprague–Dawley rats, Chinese Bama pigs, and cynomolgus macaques are not effective models of the inhibition of glucuronidation induced by magnolol in humans. PMID:25199099

  7. Species-associated differences in the inhibition of propofol glucuronidation by magnolol.

    PubMed

    Yang, Lu; Zhu, Liangliang; Ge, Guangbo; Xiao, Ling; Wu, Yan; Liang, Sicheng; Cao, Yunfeng; Yang, Ling; Wang, Dong

    2014-07-01

    Magnolol, a major active constituent in herbal medicine, potently inhibits propofol glucuronidation in human liver microsomes, with inhibition constants in the nanomolar range. This study was conducted to investigate magnolol-induced inhibition of propofol glucuronidation in liver microsomes from Swiss-Hauschka mice, Sprague-Dawley rats, Chinese Bama pigs, and cynomolgus macaques. Results indicated that magnolol (10 μM) inhibited propofol glucuronidation in liver microsomes from Bama pigs and cynomolgus macaques but not in those from mice or rats. Data from liver microsomes from Bama pigs indicated a competitive inhibition mechanism, with a Ki of 1.7 μM. In contrast to that of pig liver microsomes, the inhibition of microsomes from cynomolgus macaques followed a noncompetitive mechanism, with a Ki of 3.4 μM. In summary, this study indicates that magnolol-induced inhibition of propofol glucuronidation varies substantially among species, and the Ki values determined by using liver microsomes from various experimental animal species far exceed that for human liver microsomes. The inhibition of propofol glucuronidation by magnolol in liver microsomes from all animal species tested was significantly lower than the inhibition previously demonstrated in human liver microsomes. Hepatic microsomes from Swiss-Hauschka mice, Sprague-Dawley rats, Chinese Bama pigs, and cynomolgus macaques are not effective models of the inhibition of glucuronidation induced by magnolol in humans.

  8. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats.

    PubMed

    Asgharzadeh, Fereshteh; Bargi, Rahimeh; Beheshti, Farimah; Hosseini, Mahmoud; Farzadnia, Mehdi; Khazaei, Majid

    2017-01-01

    Liver fibrosis is the primary sign of chronic liver injury induced by various causes. Thymoquinone (TQ) is the major ingredient of Nigella sativa with several beneficial effects on the body. In the present study, we aimed to investigate the effect of TQ on liver fibrosis in a lipopolysaccharide (LPS)-induced inflammation in male rats. Fifty male Wistar rats were randomly divided into five groups (n=10 in each group) as follow: (1) control; (2) LPS (1 mg/kg/day; i.p); (3) LPS+TQ 2 mg/kg/day (i.p) (LPs+TQ2); (4) LPS+TQ 5 mg/kg/day (LPS+TQ5); (5) LPS+ TQ 10 mg/kg/day (LPS+ TQ10). After three weeks, blood samples were taken for evaluation of liver function tests. Then, the livers were harvested for histological evaluation of fibrosis and collagen content and measurement of oxidative stress markers including malondialdehyde (MDA), total thiol groups, superoxide dismutase (SOD) and catalase activity in tissue homogenates. LPS group showed higher levels of fibrosis and collagen content stained by Masson's trichrome in liver tissue with impaired liver function test and increased oxidative stress markers (p<0.05). Treatment by TQ restored liver fibrosis, improved liver function tests and increased the levels of anti-oxidative enzymes (SOD and catalase), while reduced MDA concentration (p<0.05). Treatment by TQ restores inflammation-induced liver fibrosis possibly through affecting oxidative stress status. It seems that administration of TQ can be considered as a part of liver fibrosis management.

  9. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    PubMed

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  10. Dietary grape seed proanthocyanidin extract regulates metabolic disturbance in rat liver exposed to lead associated with PPARα signaling pathway.

    PubMed

    Yang, Daqian; Jiang, Huijie; Lu, Jingjing; Lv, Yueying; Baiyun, Ruiqi; Li, Siyu; Liu, Biying; Lv, Zhanjun; Zhang, Zhigang

    2018-06-01

    Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. [Protective effect of Tanreqing injection on acute hepatic injury induced by CCl4 in rats].

    PubMed

    Lei, Yang; Zhou, Ai-Min; Guo, Tao; Tan, Ye; Tao, Yan-Yan; Liu, Cheng-Hai

    2013-04-01

    To observe the protective effect of Tanreqing injection(TRQ) on carbon tetrachloride-induced acute hepatic injury in rats. Rats were randomly divided into the normal group and the model group, and injected subcutaneously with 100% CCl4 5 mL x kg(-1) to establish the single CCl4 infection model, in order to observe the changes in rat liver injury after 3 h and 6 h. Subsequently, the multiple CCl4 infection liver injury model was reproduced by subcutaneously injecting 100% CCl4 (5 mL x kg(-1)), 50% CCl4 olive oil solution (2 mL x kg(-1)) and then 20% CCl4 olive oil solution (2 mL x kg(-1)). At 6 h after the first CCl4 injection, the rats were divided into six groups: the model group, the control group, the diammonium glycyrrhizinate-treated group, and TRQ high, middle and low dose groups. They were injected through caudal veins, while a normal control group was set up. Their weight and liver-body ratio were observed. Hepatic inflammation was observed with HE staining. Assay kits were adopted to detect ALT, AST, T. Bil, D. Bil, CHE, TBA, gamma-GT and Alb. According to the single injection model, serum AST and T. Bil of model rats were obviously increased at 6 h after single subcutaneous injection of CCl4, with disordered lobular structure in liver tissues, notable swollen liver cells and remarkable liver injury. According to the results of the multiple injection pharmacological experiment, compared with the normal group, the model group had higher serum ALT, AST, and gamma-GT activities (P < 0. 05), TBA and T. Bil contents (P < 0.05) and lower CHE activity (P < 0.05). HE staining showed disorganized lobular structure in liver tissues and notable ballooning degeneration in liver cells. Compared with the model group, TRQ high and middle dose groups and the diammonium glycyrrhizinate-treated group showed significant charges in serum liver function and inflammation in liver cells. Specifically, TRQ high and middle dose groups were superior to the diammonium glycyrrhizinate-treated group. Tanreqing injection has significant protective effect on CCl4-induced acute hepatic injury in rats.

  12. Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression.

    PubMed

    Atta, Hussein; El-Rehany, Mahmoud; Hammam, Olfat; Abdel-Ghany, Hend; Ramzy, Maggie; Roderfeld, Martin; Roeb, Elke; Al-Hendy, Ayman; Raheim, Salama Abdel; Allam, Hatem; Marey, Heba

    2014-01-01

    Hepatocyte growth factor (HGF) gene transfer inhibits liver fibrosis by regulating aberrant cellular functions, while mutant matrix metalloproteinase-9 (mMMP-9) enhances matrix degradation by neutralizing the elevated tissue inhibitor of metalloproteinase-1 (TIMP-1). It was shown that ASH1 and EZH2 methyltransferases are involved in development of liver fibrosis; however, their role in the resolution phase of liver fibrosis has not been investigated. This study evaluated the role of ASH1 and EZH2 in two mechanistically different therapeutic modalities, HGF and mMMP-9 gene transfer in CCl4 induced rat liver fibrosis. Liver fibrosis was induced in rats with twice a week intraperitoneal injection of CCl4 for 8 weeks. Adenovirus vectors encoding mMMP-9 or HGF genes were injected through tail vein at weeks six and seven and were sacrificed one week after the second injection. A healthy animal group was likewise injected with saline to serve as a negative control. Rats treated with mMMP-9 showed significantly lower fibrosis score, less Sirius red stained collagen area, reduced hydroxyproline and ALT concentration, decreased transforming growth factor beta 1 (TGF-β1) mRNA and lower labeling indices of α smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) stained cells compared with HGF- or saline-treated rats. Furthermore, TIMP-1 protein expression in mMMP-9 group was markedly reduced compared with all fibrotic groups. ASH1 and EZH2 protein expression was significantly elevated in fibrotic liver and significantly decreased in mMMP-9- and HGF-treated compared to saline-treated fibrotic livers with further reduction in the mMMP-9 group. Gene transfer of mMMP-9 and HGF reduced liver fibrosis in rats. ASH1 and EZH2 methyltransferases are significantly reduced in mMMP-9 and HGF treated rats which underlines the central role of these enzymes during fibrogenesis. Future studies should evaluate the role of selective pharmacologic inhibitors of ASH1 and EZH2 in resolution of liver fibrosis.

  13. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats.

    PubMed

    Chiang, Wen-Dee; Huang, Chih Yang; Paul, Catherine Reena; Lee, Zong-Yan; Lin, Wan-Teng

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD)-fed aging rats. Twenty-four-month-old SD rats were randomly divided into six groups (n=8): aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day) APPH treatment, HFD with moderate (45 mg/kg/day) APPH treatment, HFD with high (75 mg/kg/day) APPH treatment, and HFD with probucol. APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day), moderate (45 mg/kg/day), and high (75 mg/kg/day) doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  14. Montelukast potentiates the anticonvulsant effect of phenobarbital in mice: an isobolographic analysis.

    PubMed

    Fleck, Juliana; Marafiga, Joseane Righes; Jesse, Ana Cláudia; Ribeiro, Leandro Rodrigo; Rambo, Leonardo Magno; Mello, Carlos Fernando

    2015-04-01

    Although leukotrienes have been implicated in seizures, no study has systematically investigated whether the blockade of CysLT1 receptors synergistically increases the anticonvulsant action of classic antiepileptics. In this study, behavioral and electroencephalographic methods, as well as isobolographic analysis, are used to show that the CysLT1 inverse agonist montelukast synergistically increases the anticonvulsant action of phenobarbital against pentylenetetrazole-induced seizures. Moreover, it is shown that LTD4 reverses the effect of montelukast. The experimentally derived ED50mix value for a fixed-ratio combination (1:1 proportion) of montelukast plus phenobarbital was 0.06±0.02 μmol, whereas the additively calculated ED50add value was 0.49±0.03 μmol. The calculated interaction index was 0.12, indicating a synergistic interaction. The association of montelukast significantly decreased the antiseizure ED50 for phenobarbital (0.74 and 0.04 μmol in the absence and presence of montelukast, respectively) and, consequently, phenobarbital-induced sedation at equieffective doses. The demonstration of a strong synergism between montelukast and phenobarbital is particularly relevant because both drugs are already used in the clinics, foreseeing an immediate translational application for epileptic patients who have drug-resistant seizures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hepatoprotective and antioxidant activity of aqueous extract of Hybanthus enneaspermus against CCl4-induced liver injury in rats.

    PubMed

    Vuda, Madhusudanarao; D'Souza, Roshan; Upadhya, Suhas; Kumar, Vijay; Rao, Namita; Kumar, Vasanth; Boillat, Colette; Mungli, Prakash

    2012-11-01

    The hepatoprotective, curative and anti-oxidant properties of aqueous extract of Hybanthus enneaspermus (Violaceae) used against CCl4-induced liver damage in rats were investigated in the present study. Liver damage was induced by CCl4 (1 ml/kg i.p.), and silymarin was used as a standard drug to compare hepatoprotective, curative and antioxidant effects of the extract. Rats were treated with aqueous extract of H. enneaspermus at a dose of either 200 or 400 mg/kg after division into pre-treatment (once daily for 14 days before CCl4 intoxication) and post-treatment (2, 6, 24 and 48 h after CCl4 intoxication) groups. Pre-treatment and post-treatment with aqueous extract of H. enneaspermus showed significant hepatoprotection by reducing the aspartate transaminase, alanine transaminase, and alkaline phosphatase enzymatic activities and total bilirubin levels which had been raised by CCl4 administration. Pre- and post-treatment with aqueous extract significantly decreased hepatic lipid peroxidation as well as producing a corresponding increase in tissue total thiols. Post-treatment with aqueous extract improved ceruloplasmin levels. The histopathological examination of rat liver sections treated with aqueous extract confirms the serum biochemical observations. The present study results demonstrate the protective, curative and anti-oxidant effects of H. enneaspermus aqueous extract used against CCl4-induced hepatotoxicity in rats, and suggest a potential therapeutic use of H. enneaspermus as an alternative for patients with acute liver diseases. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    PubMed Central

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  17. Omega-3 Fatty Acid Deficiency Augments Risperidone-Induced Hepatic Steatosis in Rats: Positive Association with Stearoyl-CoA Desaturase

    PubMed Central

    McNamara, Robert K.; Magrisso, I. Jack; Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Benoit, Stephen C.

    2012-01-01

    Psychiatric patients frequently exhibit long-chain n-3 (LCn-3) fatty acid deficits and elevated triglyceride (TAG) production following chronic exposure to second generation antipsychotics (SGA). Emerging evidence suggests that SGAs and LCn-3 fatty acids have opposing effects on stearoyl-CoA desaturase-1 (SCD1), which plays a pivotal role in TAG biosynthesis. Here we evaluated whether low LCn-3 fatty acid status would augment elevations in rat liver and plasma TAG concentrations following chronic treatment with the SGA risperidone (RSP), and evaluated relationships with hepatic SCD1 expression and activity indices. In rats maintained on the n-3 fatty acid-fortified (control) diet, chronic RSP treatment significantly increased liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios), and significantly increased liver, but not plasma, TAG concentrations. Rats maintained on the n-3 deficient diet exhibited significantly lower liver and erythrocyte LCn-3 fatty acid levels, and associated elevations in LCn-6/LCn-3 ratio. In n-3 deficient rats, RSP-induced elevations in liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios) and liver and plasma TAG concentrations were significantly greater than those observed in RSP-treated controls. Plasma glucose levels were not altered by diet or RSP, and body weight was lower in RSP- and VEH-treated n-3 deficient rats. These preclinical data support the hypothesis that low n-3 fatty acid status exacerbates RSP-induced hepatic steatosis by augmenting SCD1 expression and activity. PMID:22750665

  18. Hepatoprotective Effects of Chinese Medicine Herbs Decoction on Liver Cirrhosis in Rats

    PubMed Central

    Lim, Tong-Hye; Nor-Amdan, Nur-Asyura

    2017-01-01

    Hepatoprotective and curative activities of aqueous extract of decoction containing 10 Chinese medicinal herbs (HPE-XA-08) were evaluated in Sprague–Dawley albino rats with liver damage induced by thioacetamide (TAA). These activities were assessed by investigating the liver enzymes level and also histopathology investigation. Increases in alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) levels were observed in rats with cirrhotic liver. No significant alterations of the liver enzymes were observed following treatment with HPE-XA-08. Histopathology examination of rats treated with HPE-XA-08 at 250 mg/kg body weight, however, exhibited moderate liver protective effects. Reduced extracellular matrix (ECM) proteins within the hepatocytes were noted in comparison to the cirrhotic liver. The curative effects of HPE-XA-08 were observed with marked decrease in the level of ALP (more than 3x) and level of GGT (more than 2x) in cirrhotic rat treated with 600 mg/kg body weight HPE-XA-08 in comparison to cirrhotic rat treated with just water diluent. Reversion of cirrhotic liver to normal liver condition in rats treated with HPE-XA-08 was observed. Results from the present study suggest that HPE-XA-08 treatment assisted in the protection from liver cirrhosis and improved the recovery of cirrhotic liver. PMID:28280515

  19. Lycium barbarum polysaccharides improve CCl4-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in wistar rats.

    PubMed

    Gan, Fang; Liu, Qing; Liu, Yunhuan; Huang, Da; Pan, Cuiling; Song, Suquan; Huang, Kehe

    2018-01-01

    Lycium barbarum polysaccharides (LBPs) have multiple biological and pharmacological functions, including antioxidant, anti-inflammatory and anticancer activities. This research was conducted to evaluate whether LBPs could alleviate carbon tetrachloride (CCl 4 )-induced liver fibrosis and the underlying signaling pathway mechanism. Fifty male wistar rats were randomly allocated to five groups (n=10): control, CCl 4 and CCl 4 with 400, 800 or 1600mg/kg LBPs, respectively. Each wistar rat from each group was used for blood and tissue collections at the end of experiment. The results showed that CCl 4 induced liver fibrosis as demonstrated by increasing histopathological damage, α-smooth muscle actin expression, aspartate transaminase activities, alkaline phosphatase activities and alanine aminotransferase activities. LBPs supplementation alleviated CCl 4 -induced liver fibrosis as demonstrated by reversing the above parameters. In addition, CCl 4 treatment induced the oxidative injury, increased the mRNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-1β, and up-regulated the protein expressions of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation factor 88, nuclear factor-kappa B (NF-kB) and p-p65. LBPs supplementation alleviated CCl 4 -induced oxidative injury, inflammatory response and TLRs/NF-kB signaling pathway expression by reversing the above some parameters. These results suggest that the alleviating effects of LBPs on CCl 4 -induced liver fibrosis in wistar rats may be through inhibiting the TLRs/NF-kB signaling pathway expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    PubMed

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  1. [Effect of Xiaozheng Rongmu powder for the treatment of liver cirrhosis in rats].

    PubMed

    Mu, Yong-Ping; Chen, Xiao-Rong; Lu, Yun-Fei

    2010-10-01

    To observe the therapeutic effect of Xiaozheng Rongmu Powder (XRP) for the treatment of progressive CCl4-induced liver cirrhosis in rats. Rat liver cirrhosis model was established by subcutaneous injection of 50% CCl4-olive oil 2 mL/kg twice a week for 12 weeks. Experimental rats were divided into the control group treated by saline and the two treatment groups, treated with XRP and Xiaochaihu Decoction, respectively, with the treatment starting from the 9th week of modeling. Rats were sacrificed at the terminal of experiment, the death rate, character of ascites, liver histological changes, liver function, mRNA expression of hepatocyte mitosis and the liver fibrosis associated markers in rats were observed. At the end of the 8th week of modeling, serum levels of ALT, AST and TBil were increased, and Alb decreased significantly in rats (P < 0.01), cirrhosis formation with ascites could be seen in all rats. Meantime, levels of vascular smooth muscle alpha-actin, transforming growth factor-beta1, collagen I A2, tumor necrosis factor-alpha, tissue inhibitor of melalloproteinase-1 mRNA increased, while matrix melalloproteinase-13 mRNA were decreased significantly (P < 0.01), with visible liver proliferation to some extents. Further changes of above-mentioned abnormalities and clear suppression of hepatocytes mitosis were found in the modeled rats at the end of the 12th week. As compared to those occurred in the control group, changes in the XRP treated group were significantly milder at the corresponding duration, and clearly active hepatocytes mitosis was shown. XRP, a Chinese drug with the effect of dissolving phlegm, removing stasis and supplementing qi, could reverse the progress of cirrhosis formation induced by CCl4, and it brings potential new hope for the treatment of advanced cirrhosis by Chinese medicine.

  2. In vivo Studies on the Protective Effect of Propolis on Doxorubicin-Induced Toxicity in Liver of Male Rats.

    PubMed

    Singla, Shivani; Kumar, Neelima R; Kaur, Jaspreet

    2014-05-01

    Since anticancer drugs are to be administered for long durations of time and are associated with systemic toxicities, the present studies were conducted to evaluate the protective potential of honey bee propolis against a widely used anticancer drug, doxorubicin (DXR) induced toxicity and oxidative damage in liver tissues of rats. Sixteen male Sprague Dawley rats, weighing between 200-220 g, were used and were divided into four equal groups. Propolis was given orally to rats [250 mg/kg body weight (bw) for 14 consecutive days] and DXR [25 mg/kg bw; intraperitoneally (i.p) was administered on 12(th), 13(th) and 14(th) day of the experiment. All the animals were sacrificed on day 15(th) day by decapitation. Blood and tissue samples were collected for measurement of toxicity and oxidative damage parameters (enzymatic assays and biochemical estimations). Administration of DXR for 3 days at a cumulative dose of 25 mg/kg bw, induced toxicity and oxidative stress in rats as significantly decreased activity of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were observed in rat liver supernatants when compared to control group. Increased activity of serum glutamic pyruvic transaminase (SGPT) and serum glutamic oxaloacetic transaminase (SGOT) was obtained in DXR administered rats. Also there are significantly increased levels of lipid peroxides (measured as malondialdehyde formation) and significantly decreased level of glutathione (GSH) in doxorubicin treated rat liver supernatants as compared to healthy controls. On the other hand, administration of animals with propolis prior to DXR treatment led to significant modulation of the oxidative damage related parameters in liver and hepatotoxicity parameters in blood, when compared to doxorubicin treated group. However results were still not comparable to control group or only propolis group indicating partial protection by propolis at the concentration used against anticancer drug toxicity. Propolis extract was found to have a protective effect against doxorubicin-induced toxicity in rat liver though it was still not normalized. It can be concluded that propolis provides partial protection from toxicity of anticancer drug.

  3. Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichimura, Ryohei, E-mail: red0828@hotmail.co.j; Mizukami, Sayaka, E-mail: non_sugar_life@hotmail.co.j; Takahashi, Miwa, E-mail: mtakahashi@nihs.go.j

    2010-08-01

    To clarify the involvement of signaling of transforming growth factor (TGF)-{beta} during the hepatocarcinogenesis, the immunohistochemical distribution of related molecules was analyzed in relation with liver cell lesions expressing glutathione S-transferase placental form (GST-P) during liver tumor promotion by fenbendazole, phenobarbital, piperonyl butoxide, or thioacetamide, using rats. Our study focused on early-stage promotion (6 weeks after starting promotion) and late-stage promotion (57 weeks after starting promotion). With regard to Smad-dependent signaling, cytoplasmic accumulation of phosphorylated Smad (phospho-Smad)-2/3 - identified as Smad3 by later immunoblot analysis - increased in the subpopulation of GST-P{sup +} foci, while Smad4, a nuclear transporter ofmore » Smad2/3, decreased during early-stage promotion. By late-stage promotion, GST-P{sup +} lesions lacking phospho-Smad2/3 had increased in accordance with lesion development from foci to carcinomas, while Smad4 largely disappeared in most proliferative lesions. With regard to Smad-independent mitogen-activated protein kinases, GST-P{sup +} foci that co-expressed phospho-p38 mitogen-activated protein kinase increased during early-stage promotion; however, p38-downstream phospho-activating transcriptional factor (ATF)-2, ATF3, and phospho-c-Myc, were inversely downregulated without relation to promotion. By late-stage promotion, proliferative lesions downregulated phospho-ATF2 and phospho-c-Myc along with lesion development, as with downregulation of phospho-p38 in all lesions. These results suggest that from the early stages, carcinogenic processes were facilitated by disruption of tumor suppressor functions of Smad-dependent signaling, while Smad-independent activation of p38 was an early-stage phenomenon. GST-P{sup -} foci induced by promotion with agonists of peroxisome proliferator-activated receptor-{alpha} did not change Smad expression, suggesting an aberration in the Smad-dependent signaling prerequisites for induction of GST-P{sup +} proliferative lesions.« less

  4. Modulatory potentials of aqueous leaf and unripe fruit extracts of Carica papaya Linn. (Caricaceae) against carbon tetrachloride and acetaminophen-induced hepatotoxicity in rats.

    PubMed

    Awodele, Olufunsho; Yemitan, Omoniyi; Ise, Peter Uduak; Ikumawoyi, Victor Olabowale

    2016-01-01

    Carica papaya Linn is used in a traditional medicine for hepatobiliary disorders. This study investigated the hepatomodulatory effects of aqueous extracts of C. papaya leaf (CPL) and unripe fruit (CPF) at doses of 100 and 300 mg/kg on carbon tetrachloride (CCl4) and acetaminophen (ACM)-induced liver toxicities in rats. Rats were administered CCl4 (3 ml/kg in olive oil, i.p.) followed by oral administration of CPL and CPF at 2, 6 and 10 h intervals. The ACM model proceeded with the same method but inclusive of animals treated with N-acetyl cysteine (3 ml/kg i.p). At the end of the study, serum levels of liver biomarkers and antioxidant enzymes were assessed and histology of the liver tissues determined. There was a significant (P < 0.05) reduction in CCl4 and ACM-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and direct bilirubin at 100 and 300 mg/kg, respectively. The levels of catalase (CAT), superoxide dismutase and reduced GSH were decreased in both models with corresponding significantly (P < 0.05) elevated level of malondialdehyde. However, these antioxidant enzymes were significantly (P < 0.05) increased in CPL and CPF-treated rats. Histopathological assessment of the liver confirmed the protective effects of CPL and CPF on CCl4 and ACM-induced hepatic damage evidenced by the normal presentation of liver tissue architecture. These results indicate that aqueous extracts of C. papaya may be useful in preventing CCl4 and ACM-induced liver toxicities.

  5. Influence of olive and rosemary leaves extracts on chemically induced liver cirrhosis in male rats

    PubMed Central

    Al-Attar, Atef M.; Shawush, Nessreen A.

    2014-01-01

    The current study was undertaken to evaluate the protective activity of olive and rosemary leaves extracts on experimental liver cirrhosis induced by thioacetamide (TAA) in Wistar male rats. Highly significant decline in the values of body weight gain and highly statistically increase of liver/body weight ratio were noted in rats treated with TAA. Furthermore, the levels of serum alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, alkaline phosphatase and total bilirubin were statistically increased. Additionally, light microscopic examination of liver sections from rats treated with TAA showed a marked increase in the extracellular matrix collagen content and bridging fibrosis was prominent. There were bundles of collagen surrounding the lobules that resulted in large fibrous septa and distorted tissue architecture. Interestingly, the findings of this experimental study indicated that the extracts of olive and rosemary leaves and their combination possess hepatoprotective properties against TAA-induced hepatic cirrhosis by inhibiting the physiological and histopathological alterations. Moreover, these results suggest that the hepatoprotective effects of these extracts may be attributed to their antioxidant activities. PMID:25737646

  6. Açaí (Euterpe oleracea Mart.) attenuates alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response.

    PubMed

    Zhou, Jianyu; Zhang, Jianjun; Wang, Chun; Qu, Shengsheng; Zhu, Yingli; Yang, Zhihui; Wang, Linyuan

    2018-01-01

    The present study aimed to investigate the therapeutic effects of Euterpe oleracea Mart. (EO) on alcoholic liver diseases (ALD). A total of 30 Wistar rats were randomly divided into three groups (10 rats per group), including alcohol group (alcohol intake), EO group (alcohol + EO puree intake) and control group (distilled water intake). The activity of superoxide dismutase (SOD) and alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the levels of cholesterol (CHO), triglyceride (TG), malondialdehyde (MDA) and glutathione (GSH) in the serum as well as the liver tissue levels of interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) were measured. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining. Reverse-transcription quantitative PCR analysis was performed for detecting the expression of nuclear factor (NF)-κB and CD68. The results indicated that EO intake significantly decreased ALT, AST, ALP, TG and CHO as well as the hepatic index in alcohol-treated rats. In addition, EO treatment relieved alcohol-induced oxidative stress by decreasing the levels of MDA and TG, and increasing the activity of SOD and GSH levels. In addition, the expression of TNF-α, TGF-β, IL-8, NF-κB and CD-68 in the liver were decreased by EO treatment. Furthermore, EO intake alleviated the histopathological liver damage, including severe steatosis and abundant infiltrated inflammatory cells. In conclusion, EO alleviated alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response.

  7. Açaí (Euterpe oleracea Mart.) attenuates alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response

    PubMed Central

    Zhou, Jianyu; Zhang, Jianjun; Wang, Chun; Qu, Shengsheng; Zhu, Yingli; Yang, Zhihui; Wang, Linyuan

    2018-01-01

    The present study aimed to investigate the therapeutic effects of Euterpe oleracea Mart. (EO) on alcoholic liver diseases (ALD). A total of 30 Wistar rats were randomly divided into three groups (10 rats per group), including alcohol group (alcohol intake), EO group (alcohol + EO puree intake) and control group (distilled water intake). The activity of superoxide dismutase (SOD) and alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the levels of cholesterol (CHO), triglyceride (TG), malondialdehyde (MDA) and glutathione (GSH) in the serum as well as the liver tissue levels of interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) were measured. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining. Reverse-transcription quantitative PCR analysis was performed for detecting the expression of nuclear factor (NF)-κB and CD68. The results indicated that EO intake significantly decreased ALT, AST, ALP, TG and CHO as well as the hepatic index in alcohol-treated rats. In addition, EO treatment relieved alcohol-induced oxidative stress by decreasing the levels of MDA and TG, and increasing the activity of SOD and GSH levels. In addition, the expression of TNF-α, TGF-β, IL-8, NF-κB and CD-68 in the liver were decreased by EO treatment. Furthermore, EO intake alleviated the histopathological liver damage, including severe steatosis and abundant infiltrated inflammatory cells. In conclusion, EO alleviated alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response. PMID:29399060

  8. Prophylactic effect of four prescriptions of traditional Chinese medicine on alpha-naphthylisothiocyanate and carbon tetrachloride induced toxicity in rats.

    PubMed

    Lin, K J; Chen, J C; Tsauer, W; Lin, C C; Lin, J G; Tsai, C C

    2001-12-01

    To study the prophylactic effects of four Chinese traditional prescriptions against experimental liver injury. Liver toxins, alpha-naphthylisothiocyanate (ANIT), and carbon tetrachloride (CCl4) were used to induce acute liver injury. Simo Yin(SMY), Guizhi Fuling Wan (GFW), Xieqing Wan (XQW), and Sini San (SNS) were fed (500 mg/kg, in saline, po) to the rats before toxin administration. All the animals were killed 48 h after toxin insulted. Serum index of liver function and hepatic lipid peroxidation (LPO) were estimated. Histopathological observation was conducted simultaneously. The rats treated with ANIT exhibited elevations of serum total bilirubin (TBI), alkaline phosphatase (ALP), glutamate-oxalate- transaminase (GOT), glutamate-pyruvate-transaminase (GPT), as well as cholestasis and parenchyma necrosis. In rats, challenged with ANIT, receiving the pre-treatment of prescriptions of SMY, XQW, and SNS, the biochemical and morphological parameters of liver injury were significantly reduced. The increased LPO level in liver tissue, associated with the provoked serum GOT and GPT levels were the salient features observed in CCl4-insulting rats. Pre-treatment of four prescriptions showed a remarkable protective effect, and also was effective in counteracting the free radical toxicity by bringing about a significant decrease in peroxidative level. These recipes ameliorate liver damage induced by both ANIT and CCl4 despite the differences in their mechanisms of injury. Therefore they may be able to exert hepatoprotective effects through more than one mechanism of action because they contained a mixture of anti-hepatotoxic ingredients with mutual reinforcement and assistance.

  9. Severe Liver Cirrhosis Markedly Reduces AhR-Mediated Induction of Cytochrome P450 in Rats by Decreasing the Transcription of Target Genes

    PubMed Central

    Floreani, Maura; De Martin, Sara; Gabbia, Daniela; Barbierato, Massimo; Nassi, Alberto; Mescoli, Claudia; Orlando, Rocco; Bova, Sergio; Angeli, Paolo; Gola, Elisabetta; Sticca, Antonietta; Palatini, Pietro

    2013-01-01

    Although the induction of cytochrome P450 (CYP) has long been investigated in patients with cirrhosis, the question whether liver dysfunction impairs the response to CYP inducers still remains unresolved. Moreover, the mechanism underlying the possible effect of cirrhosis on induction has not been investigated. Since ethical constraints do not permit methodologically rigorous studies in humans, this question was addressed by investigating the effect of the prototypical inducer benzo[a]pyrene (BP) on CYP1A1 and CYP1A2 in cirrhotic rats stratified according to the severity of liver dysfunction. We simultaneously assessed mRNA level, protein expression and enzymatic activity of the CYP1A enzymes, as well as mRNA and protein expressions of the aryl hydrocarbon receptor (AhR), which mediates the BP effect. Basal mRNA and protein expressions of CYP1A1 were virtually absent in both healthy and cirrhotic rats. On the contrary, CYP1A2 mRNA, protein and enzyme activity were constitutively present in healthy rats and decreased significantly as liver function worsened. BP treatment markedly increased the concentrations of mRNA and immunodetectable protein, and the enzymatic activities of both CYP1A enzymes to similar levels in healthy and non-ascitic cirrhotic rats. Induced mRNA levels, protein expressions and enzymatic activities of both CYPs were much lower in ascitic rats and were proportionally reduced. Both constitutive and induced protein expressions of AhR were significantly lower in ascitic than in healthy rats. These results indicate that the inducibility of CYP1A enzymes is well preserved in compensated cirrhosis, whereas it is markedly reduced when liver dysfunction becomes severe. Induction appears to be impaired at the transcriptional level, due to the reduced expression of AhR, which controls the transcription of CYP1A genes. PMID:23626760

  10. Valsartan decreases TGF-β1 production and protects against chlorhexidine digluconate-induced liver peritoneal fibrosis in rats.

    PubMed

    Subeq, Yi-Maun; Ke, Chen-Yen; Lin, Nien-Tsung; Lee, Chung-Jen; Chiu, Yi-Han; Hsu, Bang-Gee

    2011-02-01

    Peritoneal fibrosis (PF) is a recognized complication of long-term peritoneal dialysis (PD) and can lead to ultrafiltration failure. The present study was designed to investigate the protective effects of valsartan on chlorhexidine digluconate-induced PF by decreasing TGF-β1 production in rats. PF was induced in Sprague-Dawley rats by daily administration of 0.5 ml 0.1% chlorhexidine digluconate in normal saline via peritoneal dialysis (PD) tube for 1 week. Rats received daily intravenous injections of low dose valsartan (1 mg/kg) or high dose valsartan (3 mg/kg) for 1 week. After 7 days, conventional 4.25% Dianeal (30 ml) was administered via a PD catheter with a dwell time of 4 h and assessed of peritoneal function. At the end of dialysis, rats were sacrificed and the liver peritoneum was harvested for microscopically and immunohistochemistry. There was no significant difference in mean arterial pressure and heart rate between groups. After 4 h of PD, the D₄/P(4Urea) level was reduced, the D₄/D₀ glucose level, serum and dialysate transforming growth factor-β1 (TGF-β1) level was increased, the liver peritoneum was markedly thicker, and the expression of TGF-β1, alpha-smooth muscle actin (α-SMA), fibronectin, collagen, and vascular endothelial growth factor (VEGF) were elevated in the PF group compared with the vehicle group. High dose of valsartan decreased the serum and dialysate TGF-β1 level, decreased the thickness of the liver peritoneum, and decreased the expression of TGF-β1, α-SMA, fibronectin, collagen, and VEGF-positive cells in liver peritoneum. The low dose of valsartan did not protect against chlorhexidine digluconate-induced PF in rat. Valsartan protected against chlorhexidine digluconate-induced PF in rats by decreasing TGF-β1 production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Antifibrotic effect of total flavonoids of Astmgali Radix on dimethylnitrosamine-induced liver cirrhosis in rats.

    PubMed

    Cheng, Yang; Mai, Jing-Yin; Wang, Mei-Feng; Chen, Gao-Feng; Ping, Jian

    2017-01-01

    To study the effect of total flavonoids of Astmgali Radix (TFA) on liver cirrhosis induced with dimethylnitrosamine (DMN) in rats, and the effect on peroxisome proliferator-activated receptor γ (PPARγ), uncoupling protein 2 (UCP2) and farnesoid X receptor (FXR). Fifty-three Sprague-Dawley rats were randomly divided into a control group (10 rats) and a DMN group (43 rats). Rats in the DMN group were given DMN for 4 weeks and divided randomly into a model group (14 rats), a low-dosage TFA group (14 rats) and a high-dosage TFA group (15 rats) in the 3rd week. Rats were given TFA for 4 weeks at the dosage of 15 and 30 mg/kg in the low- and high-TFA groups, respectively. At the end of the experiment blood and liver samples were collected. Serum liver function and liver tissue hydroxyproline content were determined. hematoxylin-eosin (HE), Sirus red and immunohistochemical stainings of collagen I, smooth muscle actin (α-SMA) was conducted in paraffinembedded liver tissue slices. Real time polymerase chain reaction (PCR) was adopted to determine PPARγ, UCP2 and FXR mRNA levels. Western blot was adopted to determine protein levels of collagen I, α-SMA, PPARγ, UCP2 and FXR. Compared with the model group, TFA increased the ratio of liver/body weight (low-TFA group P<0.05, high-TFA group P<0.01), improved liver biochemical indices (P<0.01 for ALT, AST, GGT in both groups, P<0.05 for albumin and TBil in the high-TFA group) and reduced liver tissue hydroxproline content (P<0.01 in both groups) in treatment groups significantly. HE staining showed that TFA alleviated liver pathological changes markedly and Sirus red staining showed that TFA reduced collagen deposition, alleviated formation and extent of liver pseudolobule. Collagen I and α-SMA immunohistochemical staining showed that staining area and extent markedly decreased in TFA groups compared with the model group. TFA could increase PPARγ, it regulated target UCP2, and FXR levels significantly compared with the model group (in the low-TFA group all P<0.05, in the high group all P<0.01). TFA could improve liver function, alleviate liver pathological changes, and reduce collagen deposition and formation of liver pseudolobule in rats with liver cirrhosis. The antifibrotic effect of TFA was through regulating PPARγ signal pathway and the interaction with FXR.

  12. Doxorubicin coupled to lactosaminated albumin: Effects on rats with liver fibrosis and cirrhosis.

    PubMed

    Di Stefano, G; Fiume, L; Domenicali, M; Busi, C; Chieco, P; Kratz, F; Lanza, M; Mattioli, A; Pariali, M; Bernardi, M

    2006-06-01

    The conjugate of doxorubicin with lactosaminated human albumin has the potential of increasing the doxorubicin efficacy in the treatment of hepatocellular carcinomas expressing the asialoglycoprotein receptor. However, coupled doxorubicin also accumulates in the liver, which might damage hepatocytes. To verify whether coupled doxorubicin impairs liver function in rats with liver fibrosis and cirrhosis. Coupled doxorubicin was administered using the same schedule which exerted an antineoplastic effect on rat hepatocellular carcinomas (4-weekly injections of doxorubicin at 1 microg/g). Liver fibrosis/cirrhosis was produced by carbon tetrachloride (CCl4) poisoning. Liver samples were studied histologically. Serum parameters of liver function and viability were determined. In normal rats, administration of coupled doxorubicin neither caused microscopic changes of hepatocytes nor modified serum liver parameters. In rats with fibrosis/cirrhosis, although a selective doxorubicin accumulation within the liver followed coupled doxorubicin administration, the drug did not have a detrimental effect on the histology of the liver and, among serum liver tests, only alanine aminotransferase and aspartate aminotransferase levels were moderately modified. Coupled doxorubicin can be administered to rats with liver fibrosis/cirrhosis without inducing a severe liver damage. If further studies will confirm the efficacy and safety of this compound, coupled doxorubicin therapy may open a new perspective in the treatment of hepatocellular carcinoma.

  13. Mechanism of salutary effects of melatonin-mediated liver protection after trauma-hemorrhage: p38 MAPK-dependent iNOS/HIF-1α pathway.

    PubMed

    Hsu, Jun-Te; Le, Puo-Hsien; Lin, Chun-Jung; Chen, Tsung-Hsing; Kuo, Chia-Jung; Chiang, Kun-Chun; Yeh, Ta-Sen

    2017-05-01

    Although melatonin attenuates the increases in inflammatory mediators and reduces organ injury during trauma-hemorrhage, the mechanisms remain unclear. This study explored whether melatonin prevents liver injury after trauma-hemorrhage through the p38 mitogen-activated protein kinase (MAPK)-dependent, inducible nitrite oxide (iNOS)/hypoxia-inducible factor (HIF)-1α pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ~40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), melatonin plus p38 MAPK inhibitor SB203580 (2 mg/kg), or melatonin plus the melatonin receptor antagonist luzindole (2.5 mg/kg). At 2 h after trauma-hemorrhage, histopathology score of liver injury, liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and asparate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the p38 MAPK activation compared with that in the sham-treated animals. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression and attenuated cleaved caspase 3 and receptor interacting protein kinase-1 levels. Coadministration of SB203580 or luzindole abolished the melatonin-mediated attenuation of the trauma-hemorrhage-induced increase of iNOS/HIF-1α protein expression and liver injury markers. Taken together, our results suggest that melatonin prevents trauma-hemorrhage-induced liver injury in rats, at least in part, through melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. NEW & NOTEWORTHY Trauma-hemorrhage resulted in a significant decrease in liver p38 MAPK activation and increase in nitrite oxide synthase (iNOS) and hypoxia-inducible factor (HIF)-1α expression. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression, which was abolished by coadministration of SB203580 or luzindole. Melatonin prevents trauma-hemorrhage-induced liver injury in rats via the melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. Copyright © 2017 the American Physiological Society.

  14. [Effect of American Ginseng Capsule on the liver oxidative injury and the Nrf2 protein expression in rats exposed by electromagnetic radiation of frequency of cell phone].

    PubMed

    Luo, Ya-ping; Ma, Hui-Rong; Chen, Jing-Wei; Li, Jing-Jing; Li, Chun-xiang

    2014-05-01

    To observe the effect of American Ginseng Capsule (AGC) on the liver oxidative injury and the Nrf2 protein expression in the liver tissue of rats exposed by 900 MHz cell phone electromagnetic radiation. Totally 40 male SD rats were randomly divided into the normal control group, the model group, the Shuifei Jibin Capsule (SJC) group, and the AGC group,10 in each group. Rats in the normal control group were not irradiated. Rats in the rest three groups were exposed by imitated 900 MHz cellular phone for 4 h in 12 consecutive days. Meanwhile, rats in the SJC group and the AGC group were intragastrically administrated with suspension of SJC and AGC (1 mL/200 g body weight) respectively. Normal saline was administered to rats in the normal control group and the model group. The histolomorphological changes of the liver tissue were observed by HE staining. Contents of malonic dialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX)were detected by colorimetry. The Nrf2 protein expression of hepatocytes was detected by immunohistochemical assay and Western blot. Compared with the normal control group, hepatocyte nucleus was atrophied or partially disappeared, the contents of liver MDA and Nrf2 protein obviously increased (P <0. 05, P <0. 01); contents of liver SOD and GSH decreased (P <0. 05) in the model group. Compared with the model group, karyopyknosis was obviously attenuated and approached to the normal level in the SJC group and the AGC group. The contents of liver MDA and Nrf2 protein expression decreased (P <0. 05), and the contents of liver SOD, GSH, and GSH-PX obviously increased (P < 0.05) in the SJC group. The contents of liver MDA and the Nrf2 protein expression decreased (P < 0.05), and contents of SOD and GSH obviously increased in the AGC group (P <0.01, P <0.05). The electromagnetic radiation induced by 900 MHz cell phone could affect the expression of Nrf2 protein, induce oxidative injury, and induce abnormal morphology of liver cells. SJC and AGC could promote the morphological recovery of the liver cells. Its mechanism might be related to affecting the expression of Nrf2 protein and attenuating oxidative damage of liver cells.

  15. Rating of CCl(4)-induced rat liver fibrosis by blood serum glycomics.

    PubMed

    Desmyter, Liesbeth; Fan, Ye-Dong; Praet, Marleen; Jaworski, Tomasz; Vervecken, Wouter; De Hemptinne, Bernard; Contreras, Roland; Chen, Cuiying

    2007-07-01

    Non-invasive staging of human liver fibrosis is a desirable objective that remains under extensive evaluation. Animal model systems are often used for studying human liver disease and screening antifibrotic compounds. The aim of the present study was to investigate the potential use of serum N-glycan profiles to evaluate liver fibrosis in a rat model. Liver fibrosis and cirrhosis were induced in rats by oral administration of CCl(4). Liver injury was assessed biochemically (alanine aminotransferase [ALT] activity, aspartate aminotransferase [AST] activity and total bilirubin) and histologically. The N-glycan profile (GlycoTest) was performed using DNA sequencer-assisted-fluorophore-assisted carbohydrate electrophoresis technology. In parallel, the effect of cotreatment with antifibrotic interferon-gamma (IFN-gamma) was studied. The biopsy scoring system showed that CCl(4) induced early fibrosis (F < 1-2) in rats after 3 weeks of treatment, and cirrhosis (F4) after 12 weeks. Significant increases in ALT activity, AST activity and total bilirubin levels were detected only after 12 weeks of CCl(4) treatment. GlycoTest showed three glycans were significantly altered in the CCl(4)-goup. Peak 3 started at week 6, at an early stage in fibrosis development (F < 1-2), whereas peaks 4 and 5 occurred at week 9, at which time mild liver fibrosis (F = 1-2) had developed. The changes in the CCl(4)-IFN-gamma group were intermediate between the CCl(4)- and the control groups. The GlycoTest is much more sensitive than biochemical tests for evaluating liver fibrosis/cirrhosis in the rat model. The test can also be used as a non-invasive marker for screening and monitoring the antifibrotic activity of potential therapeutic compounds.

  16. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model

    PubMed Central

    Elswefy, Sahar E; Rashed, Laila A; Younis, Nahla N; Shaheen, Mohamed A; Ghanim, Amal MH

    2016-01-01

    Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 106 cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P < 0.001), increases in HGF and MMP-2 mRNA and downregulating CK-19 mRNA. Sliymarin, however, induced similar but less prominent effects compared to BM-MSCs. In conclusion, liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA. PMID:26811102

  17. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model.

    PubMed

    Mohamed, Hoda E; Elswefy, Sahar E; Rashed, Laila A; Younis, Nahla N; Shaheen, Mohamed A; Ghanim, Amal M H

    2016-03-01

    Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 10(6) cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P < 0.001), increases in HGF and MMP-2 mRNA and downregulating CK-19 mRNA. Sliymarin, however, induced similar but less prominent effects compared to BM-MSCs. In conclusion, liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA. © 2016 by the Society for Experimental Biology and Medicine.

  18. [Effects of Anluohuaxianwan on transforming growth factor-β1 and related signaling pathways in rats with carbon tetrachloride-induced liver fibrosis].

    PubMed

    Lu, W; Gao, Y H; Wang, Z Z; Cai, Y S; Yang, Y Q; Miao, Y Q; Pei, F; Liu, X E; Zhuang, H

    2017-04-20

    Objective: The traditional Chinese medicine Anluohuaxianwan (ALHXW) has been used to treat liver fibrosis induced by chronic hepatitis B virus (HBV) infection. However, the anti-fibrosis mechanisms of ALHXW remain to be investigated. This study used a rat model of carbon tetrachloride (CCl(4))-induced liver fibrosis to explore the potential antifibrogenic mechanisms of ALHXW. Methods: Twenty-seven male Wistar rats were randomly assigned to control group, model group, and treatment group ( n = 9 per group). Rats in the model and treatment group were injected intraperitoneally with 40% CCl(4)(2 ml/kg), and rats in the control group were administered saline twice a week for 6 weeks. Starting at week 4 following model construction, rats in the treatment group received daily gavages with ALHXW solution (concentration 0.15 g/ml) daily, while rats in the control and model groups were given saline for a total of 6 weeks. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured from blood samples collected at the end of weeks 3, 6 and 9. Histopathological examination of liver tissue was performed to evaluate liver fibrosis at week 9. At the same time, the mRNA expression of TGF-β1 and Smads in liver tissues was quantified by real-time reverse transcription polymerase chain reaction (RT-PCR), and TGF-β1 protein level in the liver was measured by Western blot. Inter-group comparison was performed using analysis of variance (ANOVA) when the continuous data were normally distributed and satisfied the homogeneity of variance; otherwise, nonparametric tests were used. Categorical data were compared between groups using nonparametric tests. Results: ALHXW markedly alleviated liver injury in the treatment group after 3 weeks of therapy as indicated by a significantly reduced level of ALT compared with the model group [(162.98 ± 73.14)U/L vs (322.52 ± 131.76)U/L, P = 0.047], and a 39.8% reduction in AST level compared with the model group[ (537.56 ± 306.06)U/L vs (892.98 ± 358.19)U/L, P = 0.053]. Moreover, at the end of the 6-week therapy, histopathological diagnosis showed that liver fibrosis was significantly reduced in the ALHXW-treated group compared with that in the model group ( P = 0.002). The relative expression of TGF-β1 mRNA and protein in the liver were significantly lower in ALHXW-treated rats than that in model rats (1.34 ± 0.31 vs 1.78 ± 0.45, P = 0.025; 0.39 ± 0.02 vs 0.57 ± 0.04, P = 0.003). Conclusion: ALHXW treatment can reverse CCl(4)-induced liver fibrosis in rats. Its mechanisms of anti-fibrosis may occur through the inhibition of TGF-β1 synthesis and TGF-β1/Smads signaling pathway, which in turn suppress the activation of hepatic stellate cells and thereby reverses fibrosis.

  19. Effect of bone marrow mesenchymal stem cells transplantation on the serum and liver HMGB1 expression in rats with acute liver failure

    PubMed Central

    Zheng, Sheng; Yang, Juan; Tang, Yingmei; Yang, Jinhui; Shao, Qinghua; Guo, Ling; Liu, Qinghua

    2015-01-01

    Objective: This study aimed to investigate the effect of bone marrow mesenchymal stem cells (BMSCs) transplantation on the expression of high mobility group box 1 protein (HMGB1) in the serum and liver of rats with acute liver failure (ALF). Methods: Healthy male SD rats were randomly divided into control group, ALF group and BMSCs group. ALF was induced by intraperitoneal injection of 900 mg/kg D-GalN and 10 μg/kg LPS. In BMSCs group, rats received BMSCs (1.0×107) transplantation via the tail vein at 2 h after ALF induction. Results: Intraperitoneal injection of 900 mg/kg D-GalN and 10 μg/kg LPS was able to induce ALF in rats. In ALF group, serum ALT and AST increased gradually over time. At 72 h, the serum ALT and AST in BMSCs group were significantly different from those in ALF group. HMGB1 expression in the serum and liver remained at a low level at any time point in control group, but increased significantly in ALF group and BMSCs group. The serum and liver HMGB1 expression increased progressively in ALF group, but reduced gradually in BMSCs group. Significant difference in serum and liver HMGB1 expression was observed between ALF group and BMSCs group at 24 h and 72 h. In addition, there was marked difference in the survival rate among three groups at 24 h (χ2=21.098, P<0.01). Conclusion: BMSCs transplantation is able to improve the liver function and liver pathology in ALF rats and decrease the serum and liver HMGB1. PMID:26884873

  20. The effect of grape seed extract on radiation-induced oxidative stress in the rat liver.

    PubMed

    Cetin, Aysun; Kaynar, Leylagül; Koçyiğit, Ismail; Hacioğlu, Sibel Kabukçu; Saraymen, Recep; Oztürk, Ahmet; Orhan, Okan; Sağdiç, Osman

    2008-06-01

    The tolerance of the liver is considerably low when an effective radiation (RTx) dose needs to be delivered in patients in whom either their liver or whole body area has to be irradiated. The aim of this study was to evaluate the possible protective effect of grape seed extract on liver toxicity induced by RTx in the rat liver. We used four groups, each consisting of 12 healthy male Wistar rats. RTx-grape seed extract group: rats were given grape seed extract (100 mg/kg) orally for seven days, following 8 Gy whole body irradiation, and grape seed extract was maintained for four days. RTx group: the same protocol was applied in this group; however, they received distilled water instead of grape seed extract. Grape seed extract group: only grape seed extract solution was administered for 11 consecutive days in the same fashion. only distilled water (orally) was administered in a similar manner. The level of malondialdehyde, an end product of lipid peroxidation, and the activities of superoxide dismutase and catalase, two important endogenous antioxidants, were evaluated in tissue homogenates. Grape seed extract was seen to protect the cellular membrane from oxidative damage and consequently from protein and lipid oxidation. In the RTx group, malondialdehyde levels were extremely higher than those of the grape seed extract-RTx group (p<0.001). Grape seed extract administration moderately reserved the malondialdehyde levels. RTx therapy decreased superoxide dismutase and catalase activities in the liver homogenates (p<0.001), and these alterations were significantly reversed by grape seed extract treatment (p<0.001). There were no differences between the grape seed extract- RTx, grape seed extract and control groups with regard to antioxidant activity (p>0.05). The levels of antioxidant parameters on RTx-induced liver toxicity were restored to control values with grape seed extract therapy. Grape seed extract may be promising as a therapeutic option in RTx-induced oxidative stress in the rat liver.

  1. Effect of enzyme induction on nephrotoxicity of halothane-related compounds.

    PubMed Central

    Hitt, B A; Mazze, R I

    1977-01-01

    Nephrotoxicity following administration of methoxyflurane has been shown to be directly related to anesthetic metabolism to inorganic fluoride. Enzyme induction should increase metabolic rate and the amount of inorganic fluoride that is released. In vivo studies in Fischer 344 rats show that enzyme induction with phenobarbital or phenytoin increases defluorination following methoxyflurane anesthesia but not after enflurane or isoflurane. In vitro, methoxyflurane defluorinase activity was increased far more than that of any of the other anesthetics. These data suggest that treatment with enzyme inducing drugs increases the risk of nephrotoxocity only if methoxyflurane is the anesthetic agent. PMID:612443

  2. Submassive hepatic necrosis induced by dichloropropanol.

    PubMed

    Haratake, J; Furuta, A; Iwasa, T; Wakasugi, C; Imazu, K

    1993-06-01

    A hitherto undescribed industrial liver injury of fulminant form induced by dichloropropanol is reported. Two middle-aged men developed severe hepatic injury just after cleaning a dichloropropanol tank at a plant producing dichloropropanol. They died from hepatic failure 4 and 11 days respectively, after carrying out the work. Liver specimens taken at autopsy from one of the cases showed submassive hepatic necrosis. This accident prompted us to undertake an experimental study in rats of intraperitoneal one-shot injection of two isomeric substances of dichloropropanol, that is, 2,3-dichloro-1-propanol (DC1P) and 1,3-dichloro-2-propanol (DC2P). Saline was injected into the control rats. One, two, four, six, 24, 48, 72 h, and 1 week after the injection, rats in each group were sacrificed. Neither control nor DC1P-injected rats showed significant biochemical or histopathological abnormalities. DC2P-injected rats revealed elevations of transaminase from 6 h after the injections, and submassive necrosis of the liver was observed in many rats. It was concluded that the severe liver injuries in both the human cases and rats in our study were caused by DC2P.

  3. Stereoselective metabolism of tetrahydropalmatine enantiomers in rat liver microsomes.

    PubMed

    Zhao, Ming; Li, Li-Ping; Sun, Dong-Li; Sun, Si-Yuan; Huang, Shan-Ding; Zeng, Su; Jiang, Hui-Di

    2012-05-01

    Tetrahydropalmatine (THP), with one chiral center, is an active alkaloid ingredient in Rhizoma Corydalis. The aim of the present paper is to study whether THP enantiomers are metabolized stereoselectively in rat, mouse, dog, and monkey liver microsomes, and then, to elucidate which Cytochrome P450 (CYP) isoforms are predominately responsible for the stereoselective metabolism of THP enantiomers in rat liver microsomes (RLM). The results demonstrated that (+)-THP was preferentially metabolized by liver microsomes from rats, mice, dogs, and monkeys, and the intrinsic clearance (Cl(int)) ratios of (+)-THP to (-)-THP were 2.66, 2.85, 4.24, and 1.67, respectively. Compared with the metabolism in untreated RLM, the metabolism of (-)-THP and (+)-THP was significantly increased in dexamethasone (Dex)-induced and β-naphthoflavone (β-NF)-induced RLM; meanwhile, the Cl(int) ratios of (+)-THP to (-)-THP in Dex-induced and β-NF-induced RLM were 5.74 and 0.81, respectively. Ketoconazole had stronger inhibitory effect on (+)-THP than (-)-THP, whereas fluvoxamine had stronger effect on (-)-THP in untreated and Dex-induced or β-NF-induced RLM. The results suggested that THP enantiomers were predominately metabolized by CYP3A1/2 and CYP1A2 in RLM, and CYP3A1/2 preferred to metabolize (+)-THP, whereas CYP1A2 preferred (-)-THP. Copyright © 2012 Wiley Periodicals, Inc.

  4. Effects of isoquinoline alkaloid berberine on lipid peroxidation, antioxidant defense system, and liver damage induced by lead acetate in rats.

    PubMed

    Hasanein, Parisa; Ghafari-Vahed, Masumeh; Khodadadi, Iraj

    2017-01-01

    Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats. Animals received an aqueous solution of lead acetate (500 mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations. Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration. Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses. Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.

  5. The protective role of quercetin and arginine on gold nanoparticles induced hepatotoxicity in rats.

    PubMed

    Abdelhalim, Mohamed Anwar K; Moussa, Sherif A Abdelmottaleb; Qaid, Huda Abdo Yahya

    2018-01-01

    The aim of the study was to confirm the hepatotoxicity induced by small-sized gold nanoparticles (GNPs) and evaluate the role of quercetin (Qur) and arginine (Arg) against hepatotoxicity caused by GNPs. Twenty-five healthy male Wistar-Kyoto rats were used. GNPs were administered intraperitoneally to these rats at the dose of 50 μL for seven consecutive days. The role of Qur and Arg antioxidants against toxicity induced by GNPs was detected through the measurement of serum liver function and oxidative stress biomarkers in the liver tissues. Coadministration of Qur and Arg along with GNPs significantly induced dramatic alterations in the biochemical parameters. Levels of malondialdehyde, gamma-glutamyl transferase, alanine aminotransferase, alkaline phosphatase, and total protein increased significantly in the GNPs injected group than in the control group, while reduced glutathione was greatly reduced in the GNPs group than in the control group. It also significantly decreased liver enzymes and the oxidative stress, therefore improving the liver damage and hepatotoxicity induced by GNPs. This study demonstrated that Qur and Arg antioxidants effectively improved the hepatic oxidative damage induced by GNPs. It also substantiates the application of Qur and Arg as protecting stand-in against GNPs' hepatotoxicity.

  6. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheshchevik, V.T.; Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno; Lapshina, E.A.

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, pmore » < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage. Highlights: ► After 30-day chronic CCl{sub 4} intoxication mitochondria displayed considerable changes. ► The functional parameters of mitochondria were similar to the control values. ► Melatonin + succinate + flavonoids prevented mitochondrial ultrastructure damage. ► The above complex enhanced regenerative processes in the liver.« less

  7. Effect of hydroalcoholic fruit extract of Persea americana Mill. on high fat diet induced obesity: A dose response study in rats.

    PubMed

    Monika, Padmanabhan; Geetha, Arumugam

    2016-06-01

    The fruits of Persea Americana Mill., commonly known as Avocado, are traditionally consumed for various health benefits including weight reduction. Here, we studied the effect of hydroalcoholic fruit extract of Persea americana (HAEPA) on high fat diet (HFD) induced obesity in rats. Obesity was induced in male Sprague Dawley rats by feeding HFD for 14 wk. The hypolipidemic effect was evaluated by co-administering 25, 50, 100 and 200 mg/kg body wt. of HAEPA. There was a significant increase in weight gain, body mass index (BMI), blood lipids, low density lipoproteins (LDL), lipid peroxides (LPO) and serum transaminases in HFD fed rats. HFD+HAEPA fed rats showed a significant decrease in blood lipids, LPO, liver lipids and increase in antioxidant status when compared to HFD control rats. The activity of lipid metabolic key enzymes such as fatty acid synthase and HMG CoA reductase in liver were also found to be decreased significantly in HAEPA co-administered rats. Lipoprotein lipase activity was found increased in HFD+HAEPA rats. Among the 4 doses studied, 100 mg of HAEPA/kg body wt. exhibited optimum hypolipidemic activity. Histopathological observations in liver and visceral adipose tissue added more evidence for the lipid lowering effect of HAEPA. It can be concluded that avocado fruit extract can act as hypolipidemic agent probably by modulating the activities of HMG CoA reductase and fatty acid synthase in liver.

  8. Characterization of fat metabolism in the fatty liver caused by a high-fat, low-carbohydrate diet: A study under equal energy conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaka, Yuka; Shiroya, Yoko; Yamauchi, Hideki

    The pathology of fatty liver due to increased percentage of calories derived from fat without increased overall caloric intake is largely unclear. In this study, we aimed to characterize fat metabolism in rats with fatty liver resulting from consumption of a high-fat, low-carbohydrate (HFLC) diet without increased caloric intake. Four-week-old male Sprague-Dawley rats were randomly assigned to the control (Con) and HFLC groups, and rats were fed the corresponding diets ad libitum. Significant decreases in food intake per gram body weight were observed in the HFLC group compared with that in the Con group. Thus, there were no significant differencesmore » in body weights or caloric intake per gram body weight between the two groups. Marked progressive fat accumulation was observed in the livers of rats in the HFLC group, accompanied by suppression of de novo lipogenesis (DNL)-related proteins in the liver and increased leptin concentrations in the blood. In addition, electron microscopic observations revealed that many lipid droplets had accumulated within the hepatocytes, and mitochondrial numbers were reduced in the hepatocytes of rats in the HFLC group. Our findings confirmed that consumption of the HFLC diet induced fatty liver, even without increased caloric intake. Furthermore, DNL was not likely to be a crucial factor inducing fatty liver with standard energy intake. Instead, ultrastructural abnormalities found in mitochondria, which may cause a decline in β-oxidation, could contribute to the development of fatty liver. - Highlights: • The high-fat, low-carbohydrate diet did not affect body weight or caloric intake. • The high-fat, low-carbohydrate diet caused fatty liver in rats. • De novo lipogenesis was not a crucial factor in fatty liver. • Mitochondria were altered in fatty livers of rats consuming this diet.« less

  9. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P < 0.05) the fasting blood glucose compared to control groups. There was significant increase (P < 0.05) in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase) in the liver of the rats treated with it and significantly reduced (P < 0.05) the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians. PMID:24367390

  10. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P < 0.05) the fasting blood glucose compared to control groups. There was significant increase (P < 0.05) in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase) in the liver of the rats treated with it and significantly reduced (P < 0.05) the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians.

  11. Hepatoprotective and Antioxidant Activity of Dunaliella salina in Paracetamol-induced Acute Toxicity in Rats

    PubMed Central

    Madkour, Fedekar F.; Abdel-Daim, M. M.

    2013-01-01

    Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed liver damage and oxidative stress as indicated by significantly (P<0.05) increased serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide. At the same time, there were decreased activities of serum superoxide dismutase and total antioxidant capacity compared with the control group. Treatment with D. salina methanol extract at doses of 500 and 1000 mg/kg body weight or silymarin could significantly (P<0.05) decrease the liver damage marker enzymes, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide levels and increase the activities of superoxide dismutase and total antioxidant capacity in serum when compared with paracetamol intoxicated group. Liver histopathology also showed that D. salina reduced the centrilobular necrosis, congestion and inflammatory cell infiltration evoked by paracetamol overdose. These results suggest that D. salina exhibits a potent hepatoprotective effect on paracetamol-induced liver damage in rats, which may be due to both the increase of antioxidant enzymes activity and inhibition of lipid peroxidation. PMID:24591738

  12. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats.

    PubMed

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban

    2016-11-01

    The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases.

  13. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition.

    PubMed

    Li, Ming; Zhu, Lin; Xie, Ao; Yuan, Jieli

    2015-02-01

    To investigate the effects of orally administrated Saccharomyces boulardii (S. boulardii) on the progress of carbon tetrachloride (CCl4)-induced liver fibrosis, 34 male Wistar rats were randomly divided into four experimental groups including the control group (n = 8), the cirrhotic group (n = 10), the preventive group (n = 8), and the treatment group (n = 8). Results showed that the liver expression levels of collagen, type I, alpha 1 (Col1A1), alpha smooth muscle actin (αSMA), transforming growth factor beta (TGF-β) and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) increased significantly in cirrhotic rats compared with control and decreased by S. boulardii administration. Treatment of S. boulardii also attenuated the increased endotoxin levels and pro-inflammatory cytokines in CCl4-treated rats. And, these were associated with the changes of intestinal permeability and fecal microbial composition. Our study suggested that oral administration of S. boulardii can promote the liver function of CCl4-treated rats, and the preventive treatment of this probiotic yeast may decelerate the progress of liver fibrosis.

  14. ALLYLISOPROPYLACETAMIDE INDUCES RAT HEPATIC ORNITHINE DECARBOXYLASE

    EPA Science Inventory

    In rat liver, allylisopropylacetamide (AIA) treatment strongly induced (25-fold) the activity of rat hepatic ornithine decarboxylase (ODC). y either the oral or the subcutaneous routes, AIA produced a long-lasting induction (30 to 4O hours) of hepatic ODC activity. hree analogs o...

  15. Inappropriate expression of hepcidin by liver congestion contributes to anemia and relative iron deficiency.

    PubMed

    Suzuki, Tomoyasu; Hanawa, Haruo; Jiao, Shuang; Ohno, Yukako; Hayashi, Yuka; Yoshida, Kaori; Kashimura, Takeshi; Obata, Hiroaki; Minamino, Tohru

    2014-04-01

    Anemia and relative iron deficiency (RID) are prevalent in patients with heart failure (HF). The etiology of anemia and RID in HF patients is unclear. Hepcidin expression may be closely related to anemia and RID in HF patients. Although hepcidin is produced mainly by the liver, and the most frequent histologic appearance of liver in HF patients is congestion, the influence of liver congestion (LC) on hepcidin production has not yet been investigated. We investigated whether hepcidin contributed to anemia and RID in rats with LC. LC was induced in rats by ligating the inferior vena cava and compared with bleeding anemia (BA) model induced by phlebotomy and hemolytic anemia (HA) model induced by injection of phenylhydrazine. BA and HA strongly suppressed expression of hepcidin in liver and so did not cause decrease in serum iron and transferrin saturation. However, hepcidin expression did not decrease in LC rats, which resulted in anemia and lower transferrin saturation. In addition, many cells with hemosiderin deposits were observed in the liver and spleen and not in the bone marrow, and this appeared to be related to suppression of hepcidin expression. Iron accumulated in hepatocytes, and bone morphogenetic protein 6, which induces hepcidin, increased. Inflammation was observed in the congestive liver, and there was an increase in interleukin-6, which also induced hepcidin and was induced by free heme and hemoglobin via Toll-like receptor 4. We conclude that LC contributes to RID and anemia, and it does so via inappropriate expression of hepcidin. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Fractal and Fourier analysis of the hepatic sinusoidal network in normal and cirrhotic rat liver

    PubMed Central

    Gaudio, Eugenio; Chaberek, Slawomir; Montella, Andrea; Pannarale, Luigi; Morini, Sergio; Novelli, Gilnardo; Borghese, Federica; Conte, Davide; Ostrowski, Kazimierz

    2005-01-01

    The organization of the hepatic microvascular network has been widely studied in recent years, especially with regard to cirrhosis. This research has enabled us to recognize the distinctive vascular patterns in the cirrhotic liver, compared with the normal liver, which may explain the cause of liver dysfunction and failure. The aim of this study was to compare normal and cirrhotic rat livers by means of a quantitative mathematical approach based on fractal and Fourier analyses performed on photomicrographs and therefore on discriminant analysis. Vascular corrosion casts of livers belonging to the following three experimental groups were studied by scanning electron microscopy: normal rats, CCl4-induced cirrhotic rats and cirrhotic rats after ligation of the bile duct. Photomicrographs were taken at a standard magnification; these images were used for the mathematical analysis. Our experimental design found that use of these different analyses reaches an efficiency of over 94%. Our analyses demonstrated a higher complexity of the normal hepatic sinusoidal network in comparison with the cirrhotic network. In particular, the morphological changes were more marked in the animals with bile duct-ligation cirrhosis compared with animals with CCl4-induced cirrhosis. The present findings based on fractal and Fourier analysis could increase our understanding of the pathophysiological alterations of the liver, and may have a diagnostic value in future clinical research. PMID:16050897

  17. Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum.

    PubMed

    Li, Chunyu; Niu, Ming; Bai, Zhaofang; Zhang, Congen; Zhao, Yanling; Li, Ruiyu; Tu, Can; Li, Huifang; Jing, Jing; Meng, Yakun; Ma, Zhijie; Feng, Wuwen; Tang, Jinfa; Zhu, Yun; Li, Jinjie; Shang, Xiaoya; Zou, Zhengsheng; Xiao, Xiaohe; Wang, Jiabo

    2017-06-01

    The main constituents of a typical medicinal herb, Polygonum multiflorum (Heshouwu in Chinese), that induces idiosyncratic liver injury remain unclear. Our previous work has shown that cotreatment with a nontoxic dose of lipopolysaccharide (LPS) and therapeutic dose of Heshouwu can induce liver injury in rats, whereas the solo treatment cannot induce observable injury. In the present work, using the constituent "knock-out" and "knock-in" strategy, we found that the ethyl acetate (EA) extract of Heshouwu displayed comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Results indicated a significant elevation of plasma alanine aminotransferase, aspartate aminotransferase, and liver histologic changes, whereas other separated fractions failed to induce liver injury. The mixture of EA extract with other separated fractions induced comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Chemical analysis further revealed that 2,3,5,4'-tetrahydroxy trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer were the two major compounds in EA extract. Furthermore, the isolated cis-, and not its trans-isomer, displayed comparable idiosyncratic hepatotoxicity to EA extract in LPS-treated rats. Higher contents of cis-SG were detected in Heshouwu liquor or preparations from actual liver intoxication patients associated with Heshouwu compared with general collected samples. In addition, plasma metabolomics analysis showed that cis-SG-disturbing enriched pathways remarkably differed from trans-SG ones in LPS-treated rats. All these results suggested that cis-SG was closely associated with the idiosyncratic hepatotoxicity of Heshouwu. Considering that the cis-trans isomerization of trans-SG was mediated by ultraviolet light or sunlight, our findings serve as reference for controlling photoisomerization in drug discovery and for the clinical use of Heshouwu and stilbene-related medications.

  18. Silymarin suppresses hepatic stellate cell activation in a dietary rat model of non-alcoholic steatohepatitis: Analysis of isolated hepatic stellate cells

    PubMed Central

    KIM, MINA; YANG, SU-GEUN; KIM, JOON MI; LEE, JIN-WOO; KIM, YOUNG SOO; LEE, JUNG IL

    2012-01-01

    Non-alcoholic steatohepatitis (NASH) is characterized by hepatocellular injury and initial fibrosis severity has been suggested as an important prognostic factor of NASH. Silymarin was reported to improve carbon tetrachloride-induced liver fibrosis and reduce the activation of hepatic stellate cells (HSC). We investigated whether silymarin could suppress the activation of HSCs in NASH induced by methionine- and choline-deficient (MCD) diet fed to insulin-resistant rats. NASH was induced by feeding MCD diet to obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Non-diabetic Long-Evans Tokushima Otsuka (LETO) rats were fed with standard chow and served as the control. OLETF rats were fed on either standard laboratory chow, or MCD diet or MCD diet mixed with silymarin. Histological analysis of the liver showed improved non-alcoholic fatty liver disease (NAFLD) activity score in silymarin-fed MCD-induced NASH. Silymarin reduced the activation of HSCs, evaluated by counting α-smooth muscle actin (SMA)-positive cells and measuring α-SMA mRNA expression in the liver lysates as well as in HSCs isolated from the experimental animals. Although silymarin decreased α1-procollagen mRNA expression in isolated HSCs, the anti-fibrogenic effect of silymarin was not prominent so as to show significant difference under histological analysis. Silymarin increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased tumor necrosis factor (TNF)-α mRNA expression in the liver. Our study suggested that the possible protective effect of silymarin in diet induced NASH by suppressing the activation of HSCs and disturbing the role of the inflammatory cytokine TNF-α. PMID:22710359

  19. Amelioration of CCl4-induced liver injury in rats by selenizing Astragalus polysaccharides: Role of proinflammatory cytokines, oxidative stress and hepatic stellate cells.

    PubMed

    Hamid, Mohammed; Liu, Dandan; Abdulrahim, Yassin; Liu, Yunhuan; Qian, Gang; Khan, Alamzeb; Gan, Fang; Huang, Kehe

    2017-10-01

    Selenizing Astragalus polysaccharides (sAPS) were prepared by nitric acid-sodium selenite method. Effect of sAPS on carbon tetrachloride (CCl4)-induced liver injury and the underlying mechanisms were investigated in the rat. Forty male Wistar rats were divided into five equal groups as follows: control group; CCl 4 group; CCl 4 +Astragalus polysaccharides group; CCl 4 +sodium selenite group and CCl 4 +selenizing Astragalus polysaccharides group. The results showed that sAPS significantly decreased the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase in the serum, malondialdehyde and hydroxyproline content in liver (P<0.01), and increased the levels of total protein, total antioxidant capacity, glutathione peroxidase, and superoxide dismutase in liver of rats induced by CCl 4. In addition, expression levels of antioxidant-related genes (GPX1, SOD1, and Nrf2) were significantly increased following supplementation of the sAPS (P<0.01). Furthermore, sAPS effectively ameliorated CCl 4 induced hepatic necrosis and inflammation, and it also reduced the expression levels of proinflammatory cytokines including TNF-α, IL-6, COX-2 and NFκB (P<0.01) . Moreover, sAPS significantly decreased the expression levels of α-smooth muscle actin, collagen 1, TGF-β1, but increased the Bcl-2/Bax mRNA ratio in rats administered CCl 4 (P<0.01). Taken together, it could be concluded that sAPS could increase the activities of Astragalus polysaccharides and sodium selenite to protect the liver from damage by attenuating hepatic inflammation, oxidative stress, fibrogenesis, and induces apoptosis and cell cycle arrest in hepatic stellate cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction.

    PubMed

    La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G

    2013-03-01

    Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.

  1. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capacio, B.R.; Harris, L.W.; Anderson, D.R.

    The accelerating rotarod was used to assess motor performance decrement in rats after administration of candidate anticonvulsant compounds (acetazolamide, amitriptyline, chlordiazepoxide, diazepan, diazepam-lysine, lorazepam, loprazolam, midazolam, phenobarbital and scopolamine) against nerve agent poisoning. AH compounds were tested as the commercially available injectable preparation except for diazepam-lysine and loprazolam, which are not FDA approved. A peak effect time, as well as a dose to decrease performance time by 50% from control (PDD50), was determined. The calculated PDD50 (micrometer ol/kg) values and peak effect tunes were midazolam, 1.16 at 15 min; loprazolam, 1.17 at 15 min; diazepam-lysine, 4.17 at 30 min; lorazepwn,more » 4.98 at 15 min; diazepam, 5.27 at 15 min; phenobarbital, 101.49 at 45 min; chlordiazepoxide, 159.21 at 30 min; scopolamine, amitriptyline and acetazolamide did not demonstrate a performance decrement at any of the doses tested. The PDD50 values were compared with doses which have been utilized against nerve agent-induced convulsions or published ED50 values from standard anticonvulsant screening tests (maximal electroshock MES and subcutaneous pentylenetetrazol (scMET)). I serve agents, anticonvulsants, diazepam, accelerating rotarod, motor performance.« less

  3. Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats.

    PubMed

    Lu, Kuan-Hung; Weng, Ching-Yi; Chen, Wei-Cheng; Sheen, Lee-Yan

    2017-07-01

    Ginseng essence (GE) is a formulation comprising four medicinal and edible herbs including ginseng ( Panax ginseng ), American ginseng ( Panax quinquefolius ), lotus seed ( Nelumbo nucifera ), and lily bulb ( Lilium longiflorum ). This study was aimed at investigating the hepatoprotective effect of GE against carbon tetrachloride (CCl 4 )-induced liver injury in rats. We treated Wistar rats daily with low, medium, and high [0.625 g/kg body weight (bw), 1.25 g/kg bw, and 3.125 g/kg bw, respectively] doses of GE for 9 wk. After the 1 st wk of treatment, rats were administered 20% CCl 4 (1.5 mL/kg bw) two times a week to induce liver damage until the treatment ended. Serum biochemical analysis indicated that GE ameliorated the elevation of aspartate aminotransferase and alanine aminotransferase and albumin decline in CCl 4 -treated rats. Moreover, CCl 4 -induced accumulation of hepatic total cholesterol and triglyceride was inhibited. The hepatoprotective effects of GE involved enhancing the hepatic antioxidant defense system including glutathione, glutathione peroxidase, glutathione reductase, glutathione S -transferase, superoxide dismutase, and catalase. In addition, histological analysis using hematoxylin and eosin and Masson's trichrome staining showed that GE inhibited CCl 4 -induced hepatic inflammation and fibrosis. Furthermore, immunohistochemical staining of alpha-smooth muscle actin indicated that CCl 4 -triggered activation of hepatic stellate cells was reduced. These findings demonstrate that GE improves CCl 4 -induced liver inflammation and fibrosis by attenuating oxidative stress. Therefore, GE could be a promising hepatoprotective herbal formulation for future development of phytotherapy.

  4. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao

    2012-11-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites amore » reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The limited mitochondrial adducts in rats are insufficient to trigger cell necrosis.« less

  5. Protective effects of Centella asiatica leaf extract on dimethylnitrosamine‑induced liver injury in rats.

    PubMed

    Choi, Myung-Joo; Zheng, Hong-Mei; Kim, Jae Min; Lee, Kye Wan; Park, Yu Hwa; Lee, Don Haeng

    2016-11-01

    Oxidative stress in liver injury is a major pathogenetic factor in the progression of liver damage. Centella asiatica (L.) Urban, known in the United States as Gotu kola, is widely used as a traditional herbal medicine in Chinese or Indian Pennywort. The efficacy of Centella asiatica is comprehensive and is used as an anti‑inflammatory agent, for memory improvement, for its antitumor activity and for treatment of gastric ulcers. The present study investigated the protective effects of Centella asiatica on dimethylnitrosamine (DMN)‑induced liver injury in rats. The rats in the treatment groups were treated with Centella asiatica at either 100 or 200 mg/kg in distilled water (D.W) or with silymarin (200 mg/kg in D.W) by oral administration for 5 days daily following intraperitoneal injections of 30 mg/kg DMN. Centella asiatica significantly decreased the relative liver weights in the DMN‑induced liver injury group, compared with the control. The assessment of liver histology showed that Centella asiatica significantly alleviated mass periportal ± bridging necrosis, intralobular degeneration and focal necrosis, with fibrosis of liver tissues. Additionally, Centella asiatica significantly decreased the level of malondialdehyde, significantly increased the levels of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase and catalase, and may have provided protection against the deleterious effects of reactive oxygen species. In addition, Centella asiatica significantly decreased inflammatory mediators, including interleukin (IL)‑1β, IL‑2, IL‑6, IL‑10, IL‑12, tumor necrosis factor‑α, interferon‑γ and granulocyte/macrophage colony‑stimulating factor. These results suggested that Centella asiatica had hepatoprotective effects through increasing the levels of antioxidant enzymes and reducing the levels of inflammatory mediators in rats with DMN‑induced liver injury. Therefore, Centella asiatica may be useful in preventing liver damage.

  6. Antidiabetic effects of Artemisia sphaerocephala Krasch. gum, a novel food additive in China, on streptozotocin-induced type 2 diabetic rats.

    PubMed

    Xing, Xiao-Hui; Zhang, Zheng-Mao; Hu, Xin-Zhong; Wu, Rui-Qin; Xu, Chao

    2009-09-25

    Since ancient times, practicians of traditional Chinese medicine have discovered that Artemisia sphaerocephala Krasch. (Asteraceae) seed powder was useful for the treatment of diabetes. Artemisia sphaerocephala Krasch. gum (ASK gum), which is extracted from seed powder of the plant, is a novel food additive favored by the food industry in China. The objective of this study was to determine the antidiabetic function of ASK gum on type 2 diabetes. Type 2 diabetic rat model was induced with high fat diet and low dose of streptozotocin (STZ). The effects of ASK gum on hyperglycemia, hyperlipemia, insulin resistance, and liver fat accumulation in type 2 diabetic rats were evaluated. The results were compared to those of normal rats and diabetic rats treated with metformin. The addition of ASK gum to the rats' food supply significantly lowered fasting blood glucose, glycated serum protein, serum cholesterol, and serum triglyceride in type 2 diabetic rats, and significantly elevated liver glucokinase, liver glycogen, and serum high density protein cholesterol in the diabetic rats. ASK gum significantly reduced insulin resistance and liver fat accumulation of type 2 diabetes. Artemisia sphaerocephala Krasch. gum can alleviate hyperglycemia, hyperlipemia and insulin resistance of type 2 diabetes.

  7. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  8. Impacts of exposure to 900 MHz mobile phone radiation on liver function in rats.

    PubMed

    Ma, Hui-rong; Ma, Zhi-hong; Wang, Gui-ying; Song, Cui-miao; Ma, Xue-lian; Cao, Xiao-hui; Zhang, Guo-hong

    2015-11-01

    To study the impacts of exposure to electromagnetic radiation (EMR) on liver function in rats. Twenty adult male Sprague-Dawley rats were randomly divided into normal group and radiated group. The rats in normal group were not radiated, those in radiated group were exposed to EMR 4 h/ d for 18 consecutive days. Rats were sacrificed immediately after the end of the experiment. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and those of malondialdehyde (MDA) and glutathione (GSH) in liver tissue were evaluated by colorimetric method. The liver histopathological changes were observed by hematoxylin and eosin staining and the protein expression of bax and bcl- 2 in liver tissue were detected by immunohistochemical method. Terminal-deoxynucleotidyl transferase mediated nick and labelling (TUNEL) method was used for analysis of apoptosis in liver. Compared with the normal rats, the serum levels of ALT and AST in the radiated group had no obvious changes (P>0.05), while the contents of MDA increased (P < 0.01) and those of GSH decreased (P < 0.01) in liver tissues. The histopathology examination showed diffuse hepatocyte swelling and vacuolation, small pieces and focal necrosis. The immunohistochemical results displayed that the expression of the bax protein was higher and that of bcl-2 protein was lower in radiated group. The hepatocyte apoptosis rates in radiated group was higher than that in normal group (all P < 0.01). The exposure to 900 MHz mobile phone 4 h/d for 18 days could induce the liver histological changes, which may be partly due to the apoptosis and oxidative stress induced in liver tissue by electromagnetic radiation.

  9. Effect of 3-methylcholanthrene-induced increases in ascorbic acid levels on tissue. beta. -glucuronidase activity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.

    1988-01-01

    The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.

  10. Autologous bone marrow stem cell transplantation attenuates hepatocyte apoptosis in a rat model of ex vivo liver resection and liver autotransplantation.

    PubMed

    Xu, Tubing; Wang, Xiaojun; Chen, Geng; He, Yu; Bie, Ping

    2013-10-01

    To investigate the efficacy of autologous bone marrow stem cell (BMSC) transplantation in the treatment of hepatic injury in ex vivo liver resection and liver autotransplantation (ELRLA). Rat hepatic fibrosis was induced by intraperitoneal injection of 50% CCl4-olive oil solution at a dose of 2 mL/kg twice weekly for 4 wk. ELRLA was performed 3 d post the last injection of CCl4. Six rats in each group were killed 12, 24, 48, 72, and 168 h after the operation. Hepatocyte apoptosis was determined by TUNEL assay. The expression of Bcl-2, Bax, transforming growth factor (TGF) β1, TGFβ1 receptor1/2, and phosphorylated p38 MAPK were determined by Western blot. Autologous BMSC transplantation significantly inhibited the increase of alanine aminotransferease and aspartate aminotransferase at 12, 24, and 48 h post operation and attenuated ELRLA-induced hepatocyte apoptosis. In BMSC-treated rats, the expression of Bcl-2 was significantly upregulated, whereas there were no obvious changes in Bax level. The expression of TGFβ1 was significantly upregulated in the rat liver after the surgery. Autologous BMSC transplantation significantly downregulated the TGFβ1 levels at 48, 72, and 168 h post surgery. However, autologous BMSC transplantation showed little effect on the levels of TGFβ receptor 1/2 at all the time points observed. Furthermore, autologous BMSC transplantation significantly inhibited the activation of p38 MAPK. Autologous BMSC transplantation may reduce ELRLA-induced liver injury and improve survival rates in hepatic fibrosis rats. Autologous BMSC transplantation may be useful to improve the outcome of patients who undergo ELRLA. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats

    PubMed Central

    Zou, Mi; Arentson, Emily J.; Teegarden, Dorothy; Koser, Stephanie L.; Onyskow, Laurie; Donkin, Shawn S.

    2015-01-01

    Nutritional insults during pregnancy and lactation are health risks for mother and offspring. Both fructose and low protein diets are linked to hepatic steatosis and insulin resistance in non-pregnant animals. We hypothesized that dietary fructose or low protein intake during pregnancy may exacerbate the already compromised glucose homeostasis to induce gestational diabetes and fatty liver. Therefore, we investigated and compared the effects of low protein or fructose intake on hepatic steatosis and insulin resistance in unmated controls and pregnant and lactating rats. Sprague-Dawley rats were fed either a control (CT), a 63% fructose (FR) or an 8% protein (LP) diet. Glucose tolerance test at day 17 of the study revealed greater (P < 0.05) blood glucose at 10 (75.6 vs. 64.0 ± 4.8 mg/dl) and 20 (72.4 vs. 58.6 ± 4.0 mg/dl) min after glucose dose and greater area under the curve (4302.3 vs. 3763.4 ± 263.6 mg·dl−1·min−1) for FR-fed dams compared with CT-fed dams. The rats were euthanized at 21 days postpartum. Both the FR- and LP-fed dams had enlarged (P < 0.05) livers (9.3, 7.1 vs. 4.8 ± 0.2 % body weight) and elevated (P < 0.05) liver triacylglycerol (216.0, 130.0 vs. 19.9 ± 12.6 mg/g liver weight) compared with CT-fed dams. FR induced fatty liver and glucose intolerance in pregnant and lactating rats, but not unmated control rats. The data demonstrate a unique physiological status response to diet resulting in the development of gestational diabetes coupled with hepatic steatosis in FR-fed dams, which is more severe than a LP diet. PMID:22935342

  12. Similar compounds searching system by using the gene expression microarray database.

    PubMed

    Toyoshiba, Hiroyoshi; Sawada, Hiroshi; Naeshiro, Ichiro; Horinouchi, Akira

    2009-04-10

    Numbers of microarrays have been examined and several public and commercial databases have been developed. However, it is not easy to compare in-house microarray data with those in a database because of insufficient reproducibility due to differences in the experimental conditions. As one of the approach to use these databases, we developed the similar compounds searching system (SCSS) on a toxicogenomics database. The datasets of 55 compounds administered to rats in the Toxicogenomics Project (TGP) database in Japan were used in this study. Using the fold-change ranking method developed by Lamb et al. [Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.P., Subramanian, A., Ross, K.N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S.A., Haggarty, S.J., Clemons, P.A., Wei, R., Carr, S.A., Lander, E.S., Golub, T.R., 2006. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929-1935] and criteria called hit ratio, the system let us compare in-house microarray data and those in the database. In-house generated data for clofibrate, phenobarbital, and a proprietary compound were tested to evaluate the performance of the SCSS method. Phenobarbital and clofibrate, which were included in the TGP database, scored highest by the SCSS method. Other high scoring compounds had effects similar to either phenobarbital (a cytochrome P450s inducer) or clofibrate (a peroxisome proliferator). Some of high scoring compounds identified using the proprietary compound-administered rats have been known to cause similar toxicological changes in different species. Our results suggest that the SCSS method could be used in drug discovery and development. Moreover, this method may be a powerful tool to understand the mechanisms by which biological systems respond to various chemical compounds and may also predict adverse effects of new compounds.

  13. Effects of ebselen on radiocontrast media-induced hepatotoxicity in rats.

    PubMed

    Basarslan, Fatmagul; Yilmaz, Nigar; Davarci, Isil; Akin, Mustafa; Ozgur, Mustafa; Yilmaz, Cahide; Ulutas, Kemal Turker

    2013-09-01

    Oxidative stress is accepted as a potential responsible mechanism in the pathogenesis of radiocontrast media (RCM)-induced hepatotoxicity. Therefore, we aimed to investigate the protective effects of ebselen against RCM-induced hepatotoxicity by measuring tissue oxidant/antioxidant parameters and histological changes in rats. Wistar albino rats were randomly separated into four groups consisting of eight rats per group. Normal saline was given to the rats in control group (group 1). RCM was given to the rats in group 2, and both RCM and ebselen were given to the rats in group 3. Only ebselen was given to the rats in group 4. Liver sections of the killed animals were analyzed to measure the levels of malondialdehyde (MDA) and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as histopathological changes. In RCM group, SOD and CAT levels were found increased. In RCM-ebselen group, MDA, SOD and CAT levels were found decreased. In RCM-ebselen group, however, GSH-Px activities of liver tissue increased. All these results indicated that ebselen produced a protective mechanism against RCM-induced hepatotoxicity and took part in oxidative stress.

  14. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

    NASA Astrophysics Data System (ADS)

    Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge

    2013-05-01

    The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.

  15. Free Radical-Scavenging, Anti-Inflammatory/Anti-Fibrotic and Hepatoprotective Actions of Taurine and Silymarin against CCl4 Induced Rat Liver Damage.

    PubMed

    Abdel-Moneim, Ashraf M; Al-Kahtani, Mohammed A; El-Kersh, Mohamed A; Al-Omair, Mohammed A

    2015-01-01

    The present study aims to investigate the hepatoprotective effect of taurine (TAU) alone or in combination with silymarin (SIL) on CCl4-induced liver damage. Twenty five male rats were randomized into 5 groups: normal control (vehicle treated), toxin control (CCl4 treated), CCl4+TAU, CCl4+SIL and CCl4+TAU+SIL. CCl4 provoked significant increases in the levels of hepatic TBARS, NO and NOS compared to control group, but the levels of endogenous antioxidants such as SOD, GPx, GR, GST and GSH were significantly decreased. Serum pro-inflammatory and fibrogenic cytokines including TNF-α, TGF-β1, IL-6, leptin and resistin were increased while the anti-inflammatory (adiponectin) cytokine was decreased in all treated rats. Our results also showed that CCl4 induced an increase in liver injury parameters like serum ALT, AST, ALP, GGT and bilirubin. In addition, a significant increase in liver tissue hydroxyproline (a major component of collagen) was detected in rats exposed to CCl4. Moreover, the concentrations of serum TG, TC, HDL-C, LDL-C, VLDL-C and FFA were significantly increased by CCl4. Both TAU and SIL (i.e., antioxidants) post-treatments were effectively able to relieve most of the above mentioned imbalances. However, the combination therapy was more effective than single applications in reducing TBARS levels, NO production, hydroxyproline content in fibrotic liver and the activity of serum GGT. Combined treatment (but not TAU- or SIL-alone) was also able to effectively prevent CCl4-induced decrease in adiponectin serum levels. Of note, the combined post-treatment with TAU+SIL (but not monotherapy) normalized serum FFA in CCl4-treated rats. The biochemical results were confirmed by histological and ultrastructural changes as compared to CCl4-poisoned rats. Therefore, on the basis of our work, TAU may be used in combination with SIL as an additional adjunct therapy to cure liver diseases such as fibrosis, cirrhosis and viral hepatitis.

  16. Swimming Training Induces Liver Mitochondrial Adaptations to Oxidative Stress in Rats Submitted to Repeated Exhaustive Swimming Bouts

    PubMed Central

    Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme

    2013-01-01

    Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192

  17. Ameliorative effect of methanol extract of Rumex vesicarius on CCl4-induced liver damage in Wistar albino rats.

    PubMed

    Ganaie, Majid Ahmad; Khan, Tajdar Husain; Siddiqui, Nasir Ali; Ansari, Mohd Nazam

    2015-08-01

    Rumex vesicarius L. (Polygonaceae), an edible plant, is reported to have many bioactive phytochemicals, especially flavonoids and anthraquinones with antioxidant and detoxifying properties. This study evaluated the methanolic extract of R. vasicarius (MERV) for hepatoprotective activity in rats against CCl4-induced liver damage. The whole plant extract was prepared and investigated for its hepatoprotective activity. Rats were pretreated with MERV (100 and 200 mg/kg, p.o.) for 7 d prior to the induction of liver damage by CCl4. Animals were then sacrificed 24 h after CCl4 administration for the biochemical (AST, ALT, and ALP activity in serum; lipid peroxidation (LPO) and glutathione (GSH) levels in liver tissue) and histological analyses. CCl4-induced hepatotoxicity was confirmed by an increase (p < 0.05) in serum AST (4.55-fold), ALT (3.51-fold), and ALP (1.82-fold) activities. CCl4-induced hepatotoxicity was also manifested by an increase (p < 0.05) in LPO (3.88-fold) and depletion of reduced glutathione (3.14-fold) activity in liver tissue. The multiple dose MERV administration at 200 mg/kg showed promising hepatoprotective activity as evident from significant decrease levels of serum AST (230.01 ± 13.21), serum ALT (82.15 ± 5.01), serum ALP (504.75 ± 19.72), hepatic LPO (3.38 ± 0.33), and increased levels of hepatic glutathione (0.34 ± 0.04) towards near normal. Further, biochemical results were confirmed by histopathological changes as compared with CCl4-intoxicated rats. The results obtained from this study indicate hepatoprotective activity of Rumex plant against CCl4-induced liver toxicity; hence, it can be used as a hepatoprotective agent.

  18. Modulatory potentials of aqueous leaf and unripe fruit extracts of Carica papaya Linn. (Caricaceae) against carbon tetrachloride and acetaminophen-induced hepatotoxicity in rats

    PubMed Central

    Awodele, Olufunsho; Yemitan, Omoniyi; Ise, Peter Uduak; Ikumawoyi, Victor Olabowale

    2016-01-01

    Introduction: Carica papaya Linn is used in a traditional medicine for hepatobiliary disorders. This study investigated the hepatomodulatory effects of aqueous extracts of C. papaya leaf (CPL) and unripe fruit (CPF) at doses of 100 and 300 mg/kg on carbon tetrachloride (CCl4) and acetaminophen (ACM)-induced liver toxicities in rats. Materials and Methods: Rats were administered CCl4 (3 ml/kg in olive oil, i.p.) followed by oral administration of CPL and CPF at 2, 6 and 10 h intervals. The ACM model proceeded with the same method but inclusive of animals treated with N-acetyl cysteine (3 ml/kg i.p). At the end of the study, serum levels of liver biomarkers and antioxidant enzymes were assessed and histology of the liver tissues determined. Results: There was a significant (P < 0.05) reduction in CCl4 and ACM-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and direct bilirubin at 100 and 300 mg/kg, respectively. The levels of catalase (CAT), superoxide dismutase and reduced GSH were decreased in both models with corresponding significantly (P < 0.05) elevated level of malondialdehyde. However, these antioxidant enzymes were significantly (P < 0.05) increased in CPL and CPF-treated rats. Histopathological assessment of the liver confirmed the protective effects of CPL and CPF on CCl4 and ACM-induced hepatic damage evidenced by the normal presentation of liver tissue architecture. Conclusion: These results indicate that aqueous extracts of C. papaya may be useful in preventing CCl4 and ACM-induced liver toxicities. PMID:27069723

  19. Euterpe edulis Extract but Not Oil Enhances Antioxidant Defenses and Protects against Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet in Rats.

    PubMed

    Freitas, Rodrigo Barros; Novaes, Rômulo Dias; Gonçalves, Reggiani Vilela; Mendonça, Bianca Gazolla; Santos, Eliziária Cardoso; Ribeiro, Andréia Queiroz; Lima, Luciana Moreira; Fietto, Luciano Gomes; Peluzio, Maria do Carmo Gouveia; Leite, João Paulo Viana

    2016-01-01

    We investigated the effects of E. edulis bioproducts (lyophilized pulp [LEE], defatted lyophilized pulp [LDEE], and oil [EO]) on nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in rats. All products were chemically analyzed. In vivo, 42 rats were equally randomized into seven groups receiving standard diet, HFD alone or combined with EO, LEE, or LDEE. After NAFLD induction, LEE, LDEE, or EO was added to the animals' diet for 4 weeks. LEE was rich in polyunsaturated fatty acids. From LEE degreasing, LDEE presented higher levels of anthocyanins and antioxidant capacity in vitro. Dietary intake of LEE and especially LDEE, but not EO, attenuated diet-induced NAFLD, reducing inflammatory infiltrate, steatosis, and lipid peroxidation in liver tissue. Although both E. edulis bioproducts were not hepatotoxic, only LDEE presented sufficient benefits to treat NAFLD in rats, possibly by its low lipid content and high amount of phenols and anthocyanins.

  20. Euterpe edulis Extract but Not Oil Enhances Antioxidant Defenses and Protects against Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet in Rats

    PubMed Central

    Freitas, Rodrigo Barros; Novaes, Rômulo Dias; Gonçalves, Reggiani Vilela; Mendonça, Bianca Gazolla; Santos, Eliziária Cardoso; Ribeiro, Andréia Queiroz; Lima, Luciana Moreira; Fietto, Luciano Gomes; Peluzio, Maria do Carmo Gouveia

    2016-01-01

    We investigated the effects of E. edulis bioproducts (lyophilized pulp [LEE], defatted lyophilized pulp [LDEE], and oil [EO]) on nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in rats. All products were chemically analyzed. In vivo, 42 rats were equally randomized into seven groups receiving standard diet, HFD alone or combined with EO, LEE, or LDEE. After NAFLD induction, LEE, LDEE, or EO was added to the animals' diet for 4 weeks. LEE was rich in polyunsaturated fatty acids. From LEE degreasing, LDEE presented higher levels of anthocyanins and antioxidant capacity in vitro. Dietary intake of LEE and especially LDEE, but not EO, attenuated diet-induced NAFLD, reducing inflammatory infiltrate, steatosis, and lipid peroxidation in liver tissue. Although both E. edulis bioproducts were not hepatotoxic, only LDEE presented sufficient benefits to treat NAFLD in rats, possibly by its low lipid content and high amount of phenols and anthocyanins. PMID:27418954

  1. High dietary intake of sodium selenite does not affect gene mutation frequency in rat colon and liver.

    PubMed

    Zeng, Huawei; Uthus, Eric O; Ross, Sharon A; Davis, Cindy D

    2009-10-01

    Our previous studies have shown that selenium (Se) is protective against dimethylhydrazine (DMH)-induced preneoplastic colon cancer lesions, and protection against DNA damage has been hypothesized to be one mechanism for the anticancer effect of Se. The present study was designed to determine whether dietary selenite affects somatic mutation frequency in vivo. We used the Big Blue transgenic model to evaluate the in vivo mutation frequency of the cII gene in rats fed either a Se-deficient (0 microg Se/g diet) or Se-supplemented diet (0.2 or 2 microg Se/g diet; n = 3 rats/diet in experiment 1 and n = 5 rats/group in experiment 2) and injected with DMH (25 mg/kg body weight, i.p.). There were no significant differences in body weight between the Se-deficient and Se-supplemented (0.2 or 2 microg Se/g diet) rats, but the activities of liver glutathione peroxidase and thioredoxin reductase and concentration of liver Se were significantly lower (p < 0.0001) in Se-deficient rats compared to rats supplemented with Se. We found no effect of dietary Se on liver 8-hydroxy-2'-deoxyguanosine. Gene mutation frequency was significantly lower in liver (p < 0.001) than that of colon regardless of dietary Se. However, there were no differences in gene mutation frequency in DNA from colon mucosa or liver from rats fed the Se-deficient diet compared to those fed the Se-supplemented (0.2 or 2 microg Se/g diet) diet. Although gene mutations have been implicated in the etiology of cancer, our data suggest that decreasing gene mutation is not likely a key mechanism through which dietary selenite exerts its anticancer action against DMH-induced preneoplastic colon cancer lesions in a Big Blue transgenic rat model.

  2. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    PubMed

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats.

    PubMed

    Sathiavelu, Jayanthi; Senapathy, Giftson Jebakkan; Devaraj, Rajkumar; Namasivayam, Nalini

    2009-06-01

    To evaluate the effect of chrysin, a natural, biologically active compound extracted from many plants, honey and propolis, on the tissue and circulatory antioxidant status, and lipid peroxidation in ethanol-induced hepatotoxicity in rats. Rats were divided into four groups. Groups 1 and 2 received isocaloric glucose. Groups 3 and 4 received 20% ethanol, equivalent to 5 g/kg bodyweight every day. Groups 2 and 4 received chrysin (20 mg/kg bodyweight) dissolved in 0.5% dimethylsulfoxide. The results showed significantly elevated levels of tissue and circulatory thiobarbituric acid reactive substances, conjugated dienes and lipid hydroperoxides, and significantly lowered enzymic and non-enzymic antioxidant activity of superoxide dismutase, catalase and glutathione-related enzymes such as glutathione peroxidase, glutathione reductase, glutathione-S-transferase, reduced glutathione, vitamin C and vitamin E in ethanol-treated rats compared with the control. Chrysin administration to rats with ethanol-induced liver injury significantly decreased the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes, and significantly elevated the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and the levels of reduced glutathione, vitamin C and vitamin E in the tissues and circulation compared with those of the unsupplemented ethanol-treated rats. The histological changes observed in the liver and kidney correlated with the biochemical findings. Chrysin offers protection against free radical-mediated oxidative stress in rats with ethanol-induced liver injury.

  4. Therapeutic effect of aqueous extracts of three dietary spices and their mixture on lipid metabolism and oxidative stress in a rat model of chronic alcohol consumption.

    PubMed

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide

    2016-07-01

    The protective effect of aqueous extracts of three dietary spices, garlic, (Allium sativum), ginger (Zingiber officinale) and pepper (Capsicum frutescens) singly and combined was investigated using a rat model of chronic alcohol intake. Rats were given 30% ethanol, with or without aqueous extracts of garlic, ginger, pepper or mixture of the three administered at 200mg/kg body weight by oral gavage for 28 days. Lipid profile, lipid peroxidation, oxidative and antioxidative profiles of serum, faecal, liver, kidney, heart and brain tissues of the rats were analyzed. Alcohol treatment significantly elevated liver enzymes, lipid peroxidation, depleted antioxidant system and induced histopathological changes in the liver. These alterations were markedly ameliorated by treatment with aqueous extracts of the three spices singly or mixed at 200mg/kg body weight. These results suggest that aqueous extracts of garlic, ginger, pepper or a blend of the three protects against alcohol- induced hypercholesterolemia, lipid peroxidation, oxidative stress and liver damage.

  5. Effect of Vernonia amygdalina Del. Leaf Ethanolic Extract on Intoxicated Male Wistar Rats Liver

    PubMed Central

    Iwo, Maria Immaculata; Sjahlim, Sergia Louisa; Rahmawati, Siti Farah

    2017-01-01

    Vernonia amygdalina has been shown to have antioxidant activity, and is also expected to have hepatoprotective activity. This study was conducted to study the effect of V. amygdalina ethanol extracts on intoxicated rat livers. Fresh leaves were extracted in ethanol, and the hepatoprotective activity was tested on male Wistar rats induced with a combination of isoniazid (INH) and rifampicin. Parameters observed were the activity of the enzyme alanine transferase (ALT), serum albumin levels, liver index, and histopathological of the rat liver. The results showed that 50 and 100 mg/kg rat body weight of V. amygdalina ethanol extracts could prevent liver intoxication, starting on day 14. Based on serum albumin concentrations and ALT activity, the high dose extract (100 mg/kg) was more potent as a hepatoprotective agent compared to the extract at a low dose (50 mg/kg). The group of rats treated with a high dose extract showed normal liver index compared to the positive control. Through histology examination, the liver of rats treated with a high dose extract (100 mg/kg) showed minimal liver cell structure damage, and showed similar patterns to the normal rat. Based on these results, it can be concluded that V. amygdalina ethanol extracts can be used to protect the liver in a combination of INH and rifampicin as antituberculosis treatment. PMID:28333116

  6. Effect of Vernonia amygdalina Del. Leaf Ethanolic Extract on Intoxicated Male Wistar Rats Liver.

    PubMed

    Iwo, Maria Immaculata; Sjahlim, Sergia Louisa; Rahmawati, Siti Farah

    2017-03-23

    Vernonia amygdalina has been shown to have antioxidant activity, and is also expected to have hepatoprotective activity. This study was conducted to study the effect of V. amygdalina ethanol extracts on intoxicated rat livers. Fresh leaves were extracted in ethanol, and the hepatoprotective activity was tested on male Wistar rats induced with a combination of isoniazid (INH) and rifampicin. Parameters observed were the activity of the enzyme alanine transferase (ALT), serum albumin levels, liver index, and histopathological of the rat liver. The results showed that 50 and 100 mg/kg rat body weight of V. amygdalina ethanol extracts could prevent liver intoxication, starting on day 14. Based on serum albumin concentrations and ALT activity, the high dose extract (100 mg/kg) was more potent as a hepatoprotective agent compared to the extract at a low dose (50 mg/kg). The group of rats treated with a high dose extract showed normal liver index compared to the positive control. Through histology examination, the liver of rats treated with a high dose extract (100 mg/kg) showed minimal liver cell structure damage, and showed similar patterns to the normal rat. Based on these results, it can be concluded that V. amygdalina ethanol extracts can be used to protect the liver in a combination of INH and rifampicin as antituberculosis treatment.

  7. Toxicity and mechanism of action of bromethalin: a new single-feeding rodenticide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Lier, R.B.; Cherry, L.D.

    1988-11-01

    Bromethalin is a new rodenticide for the control of commensal rodents. Doses in excess of the LD50 (2 mg/kg in rats) will cause death within 8-12 hr and it is preceded by one to three episodes of clonic convulsions with death usually due to respiratory arrest. Multiple low doses or sublethal intoxication yields hind leg weakness and loss of tactile sensation in rodents. Histopathology of the brain and spinal cord of these animals revealed a spongy degeneration of the white matter which was shown upon ultramicroscopic examination to be intramyelenic edema. No inflammation or cellular destruction of neuronal tissue wasmore » noted. LD50 values ranged from 1.8 mg/kg in the cat to approximately 13 mg/kg in rabbits. The only apparent nonsusceptible species was the guinea pig which could tolerate doses in excess of 1000 mg/kg without effect. Identification of the desmethyl metabolite was demonstrated in the blood and liver of treated animals by comparison of chromatographic retention times to that of a reference standard, but direct mass spectral identification was unsuccessful in part due to the low dose which could be administered. Therefore, the metabolism of bromethalin was studied by indirect means. Animals were pretreated with three inducers of microsomal drug metabolism: phenobarbital, 3-methylcholanthrene (3MC), and Aroclor 1254 (Aroclor) and one inhibitor, SKF-525A. Pretreated mice or rats were given an LD50 dose of bromethalin or the desmethyl analog and the percentage of surviving animals was determined.« less

  8. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    PubMed

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016. © 2014 Wiley Periodicals, Inc.

  9. The Chinese Herb Jianpijiedu Contributes to the Regulation of OATP1B2 and ABCC2 in a Rat Model of Orthotopic Transplantation Liver Cancer Pretreated with Food Restriction and Diarrhea

    PubMed Central

    Sun, Baoguo; Chen, Yan; Xiang, Ting; Zhang, Lei; Chen, Zexiong; Zhang, Shijun; Zhou, Houming; Chen, Shuqing

    2015-01-01

    Traditional Chinese Medicine Jianpijiedu decoction (JPJD) could improve the general status of liver cancer patients in clinics, especially the symptoms of decreased food intake and diarrhea. In this study, our results showed that the survival rate of the liver cancer with food restriction and diarrhea (FRD-LC) rats was lower than the liver cancer (LC) rats, and the tumor volume of the FRD-LC rats was higher than the LC rats. It was also shown that the high dose of JPJD significantly improved the survival rate, weight, and organ weight when compared with FRD-LC-induced rats. Moreover, JPJD administration upregulated the mRNA and protein levels of ABCC2 and downregulated the mRNA and protein levels of OATP1B2 in liver tissues. However, opposite results were observed in the cancer tissues. In conclusion, the study indicated that the Chinese Medicine JPJD could contribute to the rats with liver cancer which were pretreated with food restriction and diarrhea by regulating the expression of ABCC2 and OATP1B2 in liver tissues and cancer tissues. PMID:26665149

  10. Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study.

    PubMed

    Zlatković, Jelena; Todorović, Nevena; Tomanović, Nada; Bošković, Maja; Djordjević, Snežana; Lazarević-Pašti, Tamara; Bernardi, Rick E; Djurdjević, Aleksandra; Filipović, Dragana

    2014-08-01

    Chronic exposure to stress contributes to the etiology of mood disorders, and the liver as a target organ of antidepressant and antipsychotic drug metabolism is vulnerable to drug-induced toxicity. We investigated the effects of chronic administration of fluoxetine (15mg/kg/day) or clozapine (20mg/kg/day) on liver injury via the measurement of liver enzymes, oxidative stress and histopathology in rats exposed to chronic social isolation (21days), an animal model of depression, and controls. The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the liver content of carbonyl groups, malonyldialdehyde (MDA), reduced glutathione (GSH), cytosolic glutathione S-transferase (GST) and nitric oxide (NO) metabolites were determined. We also characterized nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and CuZn-superoxide dismutase (CuZnSOD) protein expression as well as histopathological changes. Increased serum ALT activity in chronically-isolated and control animals treated with both drugs was found while increased AST activity was observed only in fluoxetine-treated rats (chronically-isolated and controls). Increased carbonyl content, MDA, GST activity and decreased GSH levels in drug-treated controls/chronically-isolated animals suggest a link between drugs and hepatic oxidative stress. Increased NO levels associated with NF-κB activation and the concomitant increased COX-2 expression together with compromised CuZnSOD expression in clozapine-treated chronically-isolated rats likely reinforce oxidative stress, observed by increased lipid peroxidation and GSH depletion. In contrast, fluoxetine reduced NO levels in chronically-isolated rats. Isolation induced oxidative stress but histological changes were similar to those observed in vehicle-treated controls. Chronic administration of fluoxetine in both chronically-isolated and control animals resulted in more or less normal hepatic architecture, while clozapine in both groups resulted in liver injury. These data suggest that clozapine appears to have a higher potential to induce liver toxicity than fluoxetine. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Oxidative stress of brain and liver is increased by Wi-Fi (2.45GHz) exposure of rats during pregnancy and the development of newborns.

    PubMed

    Çelik, Ömer; Kahya, Mehmet Cemal; Nazıroğlu, Mustafa

    2016-09-01

    An excessive production of reactive oxygen substances (ROS) and reduced antioxidant defence systems resulting from electromagnetic radiation (EMR) exposure may lead to oxidative brain and liver damage and degradation of membranes during pregnancy and development of rat pups. We aimed to investigate the effects of Wi-Fi-induced EMR on the brain and liver antioxidant redox systems in the rat during pregnancy and development. Sixteen pregnant rats and their 48 newborns were equally divided into control and EMR groups. The EMR groups were exposed to 2.45GHz EMR (1h/day for 5 days/week) from pregnancy to 3 weeks of age. Brain cortex and liver samples were taken from the newborns between the first and third weeks. In the EMR groups, lipid peroxidation levels in the brain and liver were increased following EMR exposure; however, the glutathione peroxidase (GSH-Px) activity, and vitamin A, vitamin E and β-carotene concentrations were decreased in the brain and liver. Glutathione (GSH) and vitamin C concentrations in the brain were also lower in the EMR groups than in the controls; however, their concentrations did not change in the liver. In conclusion, Wi-Fi-induced oxidative stress in the brain and liver of developing rats was the result of reduced GSH-Px, GSH and antioxidant vitamin concentrations. Moreover, the brain seemed to be more sensitive to oxidative injury compared to the liver in the development of newborns. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Portal hypertension and liver cirrhosis in rats: effect of the β3-adrenoceptor agonist SR58611A

    PubMed Central

    Vasina, Valentina; Giannone, Ferdinando; Domenicali, Marco; Latorre, Rocco; Berzigotti, Annalisa; Caraceni, Paolo; Zoli, Marco; De Ponti, Fabrizio; Bernardi, Mauro

    2012-01-01

    BACKGROUND AND PURPOSE β3-Adrenoceptors participate in the regulation of vascular tone in physiological and pathological conditions. We aimed to assess the effect of pharmacological modulation of β3-adrenoceptors on portal pressure (PP) and systemic haemodynamics and their expression in the liver and mesenteric vessels of cirrhotic rats. EXPERIMENTAL APPROACH PP, central venous pressure (CVP) and systemic haemodynamics were invasively assessed in control and CCl4-treated cirrhotic rats before and during infusion of the selective β3-adrenoceptor agonist, SR58611A. Tissue samples were also collected from liver, heart, portal vein and mesenteric artery for immunohistochemistry and molecular biology analysis. The effect of SR58611A on isolated portal vein was assessed. KEY RESULTS At baseline, cirrhotic rats showed portal hypertension, reduced CVP and hyperdynamic circulation. SR58611A induced a significant, dose-dependent decrease in PP in cirrhotic rats, but not in controls. Although both groups manifested a dose-dependent reduction in mean arterial pressure, this effect was associated with decreased cardiac index (CI) and unchanged indicized peripheral vascular resistance (PVRI) in cirrhotic rats and increased CI and decreased PVRI in control animals. Pretreatment with the selective β3-adrenoceptor antagonist SR59230 prevented all SR58611A-induced changes in cirrhotic rats. SR58611A concentration-dependently relaxed portal vein in cirrhotic rats to a significantly greater extent than in healthy rats; pretreatment with SR59230A completely prevented SR58611A-induced cirrhotic portal vein relaxation. Finally, β3-adrenoceptors were identified in the liver, heart and portal vein of cirrhotic and control animals; their expression was increased in cirrhotic rats. CONCLUSIONS AND IMPLICATIONS β3-Adrenoceptors are altered in portal hypertension of experimental cirrhosis and may represent a novel therapeutic target. PMID:22708587

  13. Pharmacological and antioxidant actions of garlic and.or onion in non-alcoholic fatty liver disease (NAFLD) in rats.

    PubMed

    El-Din, Sayed H Seif; Sabra, Abdel-Nasser A; Hammam, Olfat A; Ebeid, Fatma A; El-Lakkany, Naglaa M

    2014-08-01

    Non-alcoholic fatty liver disease (NAFLD) includes a broad spectrum of fat-induced liver injury, ranging from mild steatosis to cirrhosis and liver failure. This study investigates the hepatoprotective properties of garlic and onion in NAFLD rat model. Ninety male Sprague-Dawley rats were randomly divided into 9 groups; normal (I), NAFLD induced with high fat diet (HFD; II), NAFLD switched to regular diet (RD; III), NAFLD-HFD or NAFLD-RD treated with garlic (IV, V), onion (VI, VII) or the combined garlic+onion (VIII, IX) respectively. A NAFLD rat model was established by feeding the animals with a high-fat diet for 12 wk. These animals were then treated with garlic or/and onion or vehicle for 8 wk (weeks 13-20) and then killed to obtain serum samples and liver tissues. Liver histology, lipids, parameters of oxidative stress, TNF-α and TGF-β were measured. The liver in NAFLD-HFD showed typical steatosis, accompanied with mild to moderate lobular inflammatory cell infiltration. Serum levels of ALT, AST, ALP, leptin, cholesterol, triglycerides, TNF-α, TGF-β and hepatic MDA' were significantly increased (P < 0.05) compared with normal group. This was accompanied with reduction of hepatic GSH, GR, GPx, GST, SOD and serum adiponectin. These changes were to a less degree in NAFLD-RD group. Combined administration of garlic+onion produced a better and significant decrease in liver steatosis, serum liver enzymes, oxidative markers and lipid peroxidation versus each one alone. In the same time, NAFLD-induced inflammation was also mitigated via reduction of TNF-α and TGF-β. In addition, these results were better in the group IX versus group VIII.

  14. Experimental study of osthole on treatment of hyperlipidemic and alcoholic fatty liver in animals

    PubMed Central

    Song, Fang; Xie, Mei-Lin; Zhu, Lu-Jia; Zhang, Ke-Ping; Xue, Jie; Gu, Zhen-Lun

    2006-01-01

    AIM: To evaluate the effects of osthole on fatty liver, and investigate the possible mechanism. METHODS: A quail model with hyperlipidemic fatty liver and rat model with alcoholic fatty liver were set up by feeding high fat diet and alcohol, respectively. These experimental animals were then treated with osthole 5-20 mg/kg for 6 wk, respectively. Whereafter, the lipid in serum and hepatic tissue, and coefficient of hepatic weight were measured. RESULTS: After treatment with osthole the levels of serum total cholesterol (TC), triglyceride (TG), lower density lipoprotein-cholesterol (LDL-C), coefficient of hepatic weight, and the hepatic tissue contents of TC and TG were significantly decreased. The activity of superoxide dismutase (SOD) in liver was improved. In alcohol-induced fatty liver rats, the level of malondialdehyde (MDA) in liver was decreased. In high fat-induced fatty liver quails, glutathione peroxidase (GSH-PX) in liver was significantly improved. The histological evaluation of liver specimens demonstrated that the osthole dramatically decreased lipid accumulation. CONCLUSION: These results suggested that osthole had therapeutic effects on both alcohol and high fat-induced fatty liver. The mechanism might be associated with its antioxidation. PMID:16865778

  15. Positive Foci of Glutathione S‐Transferase Placental Form in the Liver of Rats Given Furfural by Oral Administration

    PubMed Central

    Shimizu, Akio; Nakamura, Yoshiyasu; Harada, Masaoki; Ono, Tetsuo; Sato, Kiyomi; Inoue, Tohru; Kanisawa, Masayoshi

    1989-01-01

    We observed GST‐P‐positive liver foci in rats during the course of developing liver cirrhosis by oral administration of furfural, an organic solvent. Male Wistar rats were given furfural‐containing diet (20–30 rag/kg diet) for 15–150 days, and killed 14 days after terminating furfural feeding. Immuno‐histochemical investigation of GST‐P‐positive liver foci which appeared in rats fed furfural for more than 30 days revealed an increase in number and size of the foci in proportion to the duration of furfural administration. Since furfural is known not to be carcinogenic in rats, this finding will be helpful to understand the enhancing effect of furfural‐induced cirrhosis on chemical hepatocarcino‐genesis. PMID:2507483

  16. Genoprotective and hepatoprotective effects of Guarana (Paullinia cupana Mart. var. sorbilis) on CCl4-induced liver damage in rats.

    PubMed

    Kober, Helena; Tatsch, Etiane; Torbitz, Vanessa Dorneles; Cargnin, Lara Peruzzolo; Sangoi, Manuela Borges; Bochi, Guilherme Vargas; da Silva, Andreia Regina Haas; Barbisan, Fernanda; Ribeiro, Euler Esteves; da Cruz, Ivana Beatrice Mânica; Moresco, Rafael Noal

    2016-01-01

    Several biological effects of Paullinia cupana (guarana) have been demonstrated, but little information is available on its effects on the liver. The current study was designed to evaluate the hepatoprotective and genoprotective effects of powder seeds from guarana on CCl4-induced liver injury in rats. Male Wistar rats were pretreated with guarana powder (100, 300 and 600 mg/kg) or silymarin 100 mg/kg daily for 14 days before treatment with a single dose of CCl4 (50% CCl4, 1 mL/kg, intraperitoneally). The treatment with CCl4 significantly increased the serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In addition, CCl4 increased the DNA damage index in hepatocytes. Guarana in all concentrations was effective in decreasing the ALT and AST activities when compared with the CCl4-treated group. The treatment with guarana decreased DNA damage index when compared with the CCl4-treated group. In addition, the DNA damage index showed a significant positive correlation with AST and ALT. These results indicate that the guarana has hepatoprotective activity and prevents the DNA strand breakage in the CCl4-induced liver damage in rats.

  17. Babao Dan attenuates hepatic fibrosis by inhibiting hepatic stellate cells activation and proliferation via TLR4 signaling pathway.

    PubMed

    Liang, Lei; Yang, Xue; Yu, Yang; Li, Xiaoyong; Wu, Yechen; Shi, Rongyu; Jiang, Jinghua; Gao, Lu; Ye, Fei; Zhao, Qiudong; Li, Rong; Wei, Lixin; Han, Zhipeng

    2016-12-13

    Babao Dan (BBD), a traditional Chinese medicine, has been widely used as a complementary and alternative medicine to treat chronic liver diseases. In this study, we aimed to observe the protective effect of BBD on rat hepatic fibrosis induced by diethylnitrosamine (DEN) and explore it possible mechanism. BBD was administrated while DEN was given. After eight weeks, values of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) indicated that BBD significantly protected liver from damaging by DEN and had no obvious side effect on normal rat livers. Meanwhile, BBD attenuated hepatic inflammation and fibrosis in DEN-induced rat livers through histopathological examination and hepatic hydroxyproline content. Furthermore, we found that BBD inhibited hepatic stellate cells activation and proliferation without altering the concentration of lipopolysaccharide (LPS) in portal vein. In vitro study, serum from BBD treated rats (BBD-serum) could also significantly suppress LPS-induced HSCs activation through TLR4/NF-κB pathway. In addition, BBD-serum also inhibited the proliferation of HSCs by regulating TLR4/ERK pathway. Our study demonstrated that BBD may provide a new therapy strategy of hepatic injury and hepatic fibrosis.

  18. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage.

    PubMed

    Chen, Jiaqin; Song, Meiyan; Li, Yansen; Zhang, Yonghui; Taya, Kazuyoshi; Li, ChunMei

    2016-01-01

    We investigated the effect of phytosterol (PS) in regard to liver damage induced by 4-nitrophenol (PNP). Twenty rats were randomly divided into four groups (Control, PS, PNP, and PNP+PS). The PS and PNP+PS groups were pretreated with PS for one week. The PNP and PNP+PS groups were injected subcutaneously with PNP for 28 days. The control group received a basal diet and was injected with vehicle alone. Treatment with PS prevented the elevation of the total bilirubin levels, as well as an increase in serum alkaline transaminase and aspartate transaminase, which are typically caused by PNP-induced liver damage. Histopathologically showed that liver damage was significantly mitigated by PS treatment. However, there was no significant change in antioxidant enzyme activities, and the Nrf2-antioxidant system was not activated after treatment with PS. These results suggest that PS could mitigate liver damage induced by PNP, but does not enhance antioxidant capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Polyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipemia in rats.

    PubMed

    Navder, K P; Baraona, E; Lieber, C S

    1997-09-01

    Chronic administration of a soybean-derived polyenylphosphatidylcholine (PPC) extract prevents the development of cirrhosis in alcohol-fed baboons. To assess whether this phospholipid also affects earlier changes induced by alcohol consumption (such as fatty liver and hyperlipemia), 28 male rat littermates were pair-fed liquid diets containing 36% of energy either as ethanol or as additional carbohydrate for 21 d, and killed 90 min after intragastric administration of the corresponding diets. Half of the rats were given PPC (3 g/l), whereas the other half received the same amount of linoleate (as safflower oil) and choline (as bitartrate salt). PPC did not affect diet or alcohol consumption [15.4 +/- 0.5 G/(kg.d)], but the ethanol-induced hepatomegaly and the hepatic accumulation of lipids (principally triglycerides and cholesterol esters) and proteins were about half those in rats not given PPC. The ethanol-induced postprandial hyperlipemia was lower with PPC than without, despite an enhanced fat absorption and no difference in the level of plasma free fatty acids. The attenuation of fatty liver and hyperlipemia was associated with correction of the ethanol-induced inhibition of mitochondrial oxidation of palmitoyl-1-carnitine and the depression of cytochrome oxidase activity, as well as the increases in activity of serum glutamate dehydrogenase and aminotransferases. Thus, PPC attenuates early manifestations of alcohol toxicity, at least in part, by improving mitochondrial injury. These beneficial effects of PPC at the initial stages of alcoholic liver injury may prevent or delay the progression to more advanced forms of alcoholic liver disease.

  20. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation.

    PubMed

    Wongchitrat, Prapimpun; Klosen, Paul; Pannengpetch, Supitcha; Kitidee, Kuntida; Govitrapong, Piyarat; Isarankura-Na-Ayudhya, Chartchalerm

    2017-06-01

    Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The influence of hepatic steatosis on the evaluation of fibrosis with non-alcoholic fatty liver disease by acoustic radiation force impulse.

    PubMed

    Yanrong Guo; Haoming Lin; Xinyu Zhang; Huiying Wen; Siping Chen; Xin Chen

    2017-07-01

    Acoustic radiation force impulse (ARFI) elastography is a non-invasive method for the assessment of liver by measuring liver stiffness. The aim of this study is to evaluate the accuracy of ARFI for the diagnosis of liver fibrosis and to assess impact of steatosis on liver fibrosis stiffness measurement, in rats model of non-alcoholic fatty liver disease (NAFLD). The rat models were conducted in 59 rats. The right liver lobe was processed and embedded in a fabricated gelatin solution. Liver mechanics were measured using shear wave velocity (SWV) induced by acoustic radiation force. In rats with NAFLD, the diagnostic performance of ARFI elastography in predicting severe fibrosis (F ≥ 3) and cirrhosis (F ≥ 4) had the areas under the receiver operating characteristic curves (AUROC) of 0.993 and 0.985. Among rats mean SWV values were significantly higher in rats with severe steatosis by histology compared to those mild or without steatosis for F0-F2 fibrosis stages (3.07 versus 2.51 m/s, P = 0.01). ARFI elastography is a promising method for staging hepatic fibrosis with NAFLD in rat models. The presence of severe steatosis is a significant factor for assessing the lower stage of fibrosis.

  2. Oxidative metabolism of 1-nitropyrene by rabbit liver microsomes and purified microsomal cytochrome P-450 isozymes.

    PubMed

    Howard, P C; Reed, K A; Koop, D R

    1988-08-01

    Rabbit liver (male) microsomal metabolism of 10 microM [4,5,9,10-3H]-1-nitropyrene (1NP) was investigated. The total metabolism was not appreciably different with rates of 4.44 +/- 0.45, 3.98 +/- 0.19, 3.90 +/- 0.16, and 3.75 +/- 0.27 nmol/min/mg protein, respectively, for microsomes from phenobarbital, Aroclor-1254, ethanol-treated, and untreated rabbits. However, a more noticeable difference was found in the formation of specific metabolites. Phenobarbital treatment induced changes which favored 1-nitropyrene-3-ol formation, and Aroclor-1254 and ethanol-induced changes which favored 1-nitropyren-6-ol and 1-nitropyren-8-ol formation. 1NP was incubated with untreated microsomes and alpha-naphthoflavone, an inhibitor of rabbit cytochrome P-450 form 6 at low concentrations (less than 1 microM), and an activator of form 3c at high concentrations. The presence of alpha-naphthoflavone changed the profile of metabolites while not affecting the total metabolism. Using purified isozymes of rabbit P-450, we found the constitutive form 3b metabolized 1NP at the highest rate with a catalytic activity of 26.8 nmol/min/nmol P-450. Forms 2 and 6 exhibited rates of 2 and 2.2 nmol/min/nmol P-450. Forms 3a, 3c, and 4 had rates about 50- to 300-fold lower than form 3b. High performance liquid chromatography was used to identify the metabolites when the incubations were carried out in the presence of purified rabbit epoxide hydrolase. With form 6, 54% of the metabolites were accounted for as 1-nitropyren-3-ol, while with form 3b, 73% of the metabolites were 1-nitropyren-6-ol and 1-nitropyren-8-ol. The K-region dihydrodiols were formed by forms 2 and 3b, but not by forms 3c or 6. These results demonstrate that 1NP is a preferential substrate for form 3b, and that a preponderance of the metabolism with untreated rabbit liver microsomes can be attributed to this isozyme.

  3. Preventive effects of dexmedetomidine on the liver in a rat model of acid-induced acute lung injury.

    PubMed

    Sen, Velat; Güzel, Abdulmenap; Şen, Hadice Selimoğlu; Ece, Aydın; Uluca, Unal; Söker, Sevda; Doğan, Erdal; Kaplan, İbrahim; Deveci, Engin

    2014-01-01

    The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300-350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI.

  4. Prevention of CCl4-induced liver damage by ginger, garlic and vitamin E.

    PubMed

    Patrick-Iwuanyanwu, K C; Wegwu, M O; Ayalogu, E O

    2007-02-15

    The hepatoprotective effects of garlic (Allium sativum), ginger (Zingiber officinale) and vitamin E pre-treatment against carbon tetrachloride (CCl4)-induced liver damage in male wistar albino rats were investigated. Carbon tetrachloride (0.5 mL kg(-1) body weight) was administered after 28 days of feeding animals with diets containing ginger, garlic, vitamin E and various mixtures of ginger and garlic. Serum alanine amino transferase, aspartate amino transferase and alkaline phosphatase levels, 24 h after CCl4 administration, decreased significantly (p < or = 0.05) in rats pre-treated with garlic, ginger, vitamin E and various mixtures of garlic and ginger than in CCl4-treated rats only. Lipid peroxidation expressed by serum malondialdehyde (MDA) concentration was assayed to assess the extent of liver damage by CCl4; including the extent of hepatoprotection by garlic, ginger and vitamin E. MDA concentration was significantly decreased (p < or = 0.05) in rats pretreated with garlic, ginger, vitamin E and various mixtures of garlic and ginger than in rats administered CCl4-alone. Histological examination of the liver revealed severe infiltration of inflammatory cells in rats treated with CCl4 alone. However, the observed alteration in the normal architecture of the hepatic cells decreased remarkably in pre-treated rats.

  5. Aliskiren ameliorates chlorhexidine digluconate-induced peritoneal fibrosis in rats.

    PubMed

    Ke, Chun-Yen; Lee, Chia-Chi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2010-04-01

    Peritoneal fibrosis (PF) is a recognized complication of long-term peritoneal dialysis (PD) and can lead to ultrafiltration failure. The present study was designed to investigate the protective effects of aliskiren on chlorhexidine digluconate-induced PF in rats. The PF was induced in Sprague-Dawley rats by daily administration of 0.5 mL 0.1% chlorhexidine digluconate in normal saline via PD tube for 1 week. Rats received daily intravenous injections of low-dose aliskiren (1 mg kg(-1)) or high-dose aliskiren (10 mg kg(-1)) for 1 week. After 7 days, conventional 4.25% Dianeal (30 mL) was administered via a PD catheter with a dwell time of 4 h and assessed of peritoneal function. At the end of dialysis, rats were sacrificed and the liver peritoneum was harvested for microscopically and immunohistochemistry. There was no significant difference in mean arterial pressure and heart rate between groups. After 4 h of PD, the D(4)/P(4) urea level was reduced, the D(4)/D(0) glucose level, serum and dialysate transforming growth factor-beta1 (TGF-beta1) level was increased, the liver peritoneum was markedly thicker, and the expression of TGF-beta1, alpha-smooth muscle actin (alpha-SMA), fibronectin, collagen, and vascular endothelial growth factor (VEGF) were elevated in the PS group compared with the vehicle group. Aliskiren decreased the serum and dialysate TGF-beta1 level, decreased the thickness of the liver peritoneum, and decreased the expression of TGF-beta1, alpha-SMA, fibronectin, collagen, and VEGF-positive cells in liver peritoneum. Moreover, high-dose aliskiren had better protective effects against PF than low dose in rats. Aliskiren protected against chlorhexidine digluconate-induced PF in rats by decreasing TGF-beta1 production.

  6. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats

    PubMed Central

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban

    2016-01-01

    The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases. PMID:27882225

  7. PHENOBARBITAL AFFECTS THYROID HISTOLOGY AND LARVAL DEVELOPMENT IN THE AFRICAN CLAWED FROG XENOPUS LAEVIS

    EPA Science Inventory

    The abstract highlights our recent study to explore endocrine disrupting effects of phenobarbital in the African clawed frog, Xenopus laevis. In mammals, this chemical is known to induce the biotransforming enzyme UDP-glucuronosyltransferase (UDPGT) resulting in increased thyroid...

  8. Origanum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes

    PubMed Central

    Soliman, Mohamed Mohamed; Abdo Nassan, Mohamed; Ismail, Tamer Ahmed

    2016-01-01

    The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally for 3 weeks. Changes in lipid profiles, glucose, insulin, expression of some genes related to glucose metabolism and histopathological changes in liver and kidney were examined. Administration of OME improved and normalized dyslipidemia recorded in type 2 diabetic rats together with reduction in glucose and insulin levels. OME induced up-regulation in gene expression of glucose [adiponectin and glucose transporter-2 (GLUT-2)] and lipid metabolism [lipoprotein lipase (LPL)]. Moreover, OME normalized histopathological changes occurred in liver and kidney of diabetic rats. OME decreased lipids accumulation in liver and kidney and increased regeneration of hepatic parenchyma and restored normal renal architecture with disappearance of fat droplets. In conclusion, OME improved dyslipidemia associated with type 2 diabetes through regulation of genes related to glucose and lipid metabolism. PMID:28228803

  9. Ameliorative effect of Ganoderma lucidum on carbon tetrachloride-induced liver fibrosis in rats

    PubMed Central

    Lin, Wen-Chuan; Lin, Wei-Lii

    2006-01-01

    AIM: To investigate the effects of Reishi mushroom, Ganoderma lucidum extract (GLE), on liver fibrosis induced by carbon tetrachloride (CCl4) in rats. METHODS: Rat hepatic fibrosis was induced by CCl4. Forty Wistar rats were divided randomly into 4 groups: control, CCl4, and two GLE groups. Except for rats in control group, all rats were administered orally with CCl4 (20%, 0.2 mL/100 g body weight) twice a week for 8 weeks. Rats in GLE groups were treated daily with GLE (1 600 or 600 mg/kg) via gastrogavage throughout the whole experimental period. Liver function parameters, such as ALT, AST, albumin, and albumin/globulin (A/G) ratio, spleen weight and hepatic amounts of protein, malondiladehyde (MDA) and hydroxyproline (HP) were determined. Histochemical staining of Sirius red was performed. Expression of transforming growth factor β1 (TGF-β1), methionine adenosyltransferase (MAT1) 1A and MAT2A mRNA were detected by using RT-PCR. RESULTS: CCl4 caused liver fibrosis, featuring increase in plasma transaminases, hepatic MDA and HP contents, and spleen weight; and decrease in plasma albumin, A/G ratio and hepatic protein level. Compared with CCl4 group, GLE (600, 1 600 mg/kg) treatment significantly increased plasma albumin level and A/G ratio (P  < 0.05) and reduced the hepatic HP content (P < 0.01). GLE (1 600 mg/kg) treatment markedly decreased the activities of transaminases (P  < 0.05), spleen weight (P  < 0.05) and hepatic MDA content (P  < 0.05); but increased hepatic protein level (P  < 0.05). Liver histology in the GLE (1 600 mg/kg)-treated rats was also improved (P  < 0.01). RT-PCR analysis showed that GLE treatment decreased the expression of TGF-β1 (P  < 0.05-0.001) and changed the expression of MAT1A (P  < 0.05-0.01) and MAT2A (P  < 0.05-0.001). CONCLUSION: Oral administration of GLE significantly reduces CCl4-induced hepatic fibrosis in rats, probably by exerting a protective effect against hepatocellular necrosis by its free-radical scavenging ability. PMID:16482628

  10. Apocynin prevented inflammation and oxidative stress in carbon tetra chloride induced hepatic dysfunction in rats.

    PubMed

    Rahman, Md Mizanur; Muse, Awale Yousuf; Khan, D M Isha Olive; Ahmed, Ismaile Hussein; Subhan, Nusrat; Reza, Hasan Mahmud; Alam, Md Ashraful; Nahar, Lutfun; Sarker, Satyajit Dey

    2017-08-01

    Liver fibrosis is a leading pathway to cirrhosis and a global clinical issue. Oxidative stress mediated tissue damage is one of the prime causes of hepatic dysfunction and fibrosis. Apocynin is one of many strong antioxidants. To evaluate the effect of apocynin in the CCl 4 administered hepatic dysfunction in rats. Female Long Evans rats were administered with CCl 4 orally (1mL/kg) twice a week for 2 weeks and were treated with apocynin (100mg/kg). Both plasma and liver tissues were analyzed for alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase activities. Oxidative stress parameters were also measured by determining malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), advanced protein oxidation product (APOP). In addition, antioxidant enzyme activities such as superoxide dismutase (SOD) and catalase activities in plasma and liver tissues were analyzed. Moreover, inflammation and tissue fibrosis were confirmed by histological staining of liver tissue sections. Apocynin significantly reduced serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. It also exhibited a considerable reduction of the oxidative stress markers (MDA, MPO, NO, and APOP level) which was elevated due to CCl 4 administration in rats. Apocynin treatment also restored the catalase and superoxide dismutase activity in CCl 4 treated rats. Histological analysis of liver sections revealed that apocynin prevented inflammatory cells infiltration and fibrosis in CCl 4 administered rats. These results suggest that apocynin protects liver damage induced by CCl 4 by inhibiting lipid peroxidation and stimulating the cellular antioxidant system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats.

    PubMed

    Nwozo, Sarah Onyenibe; Osunmadewa, Damilola Adeola; Oyinloye, Babatunji Emmanuel

    2014-01-01

    The present study is aimed at evaluating the protective effects of oils from Zingiber officinale (ginger) and Curcuma longa (turmeric) on acute ethanol-induced fatty liver in male Wistar rats. Ferric reducing antioxidant power activity and oxygen radical absorbance capacity of the oils were evaluated ex vivo. Rats were pretreated for 28 d with standard drug (Livolin Forte) and oils from Z. officinale and C. longa before they were exposed to 45% ethanol (4.8 g/kg) to induce acute fatty liver. Histological changes were observed and the degree of protection was measured by using biochemical parameters such as alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities. Serum triglyceride (TG) level, total cholesterol (TC) level and the effects of both oils on reduced gluthatione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) levels were estimated. Oils from Z. officinale and C. longa at a dose of 200 mg/kg showed hepatoprotection by decreasing the activities of serum enzymes, serum TG, serum TC and hepatic MDA, while they significantly restored the level of GSH as well as GST and SOD activities. Histological examination of rats tissues was related to the obtained results. From the results it may be concluded that oils from Z. officinale and C. longa (200 mg/kg) exhibited hepatoprotective activity in acute ethanol-induced fatty liver and Z. officinale oil was identified to have better effects than C. longa oil.

  12. A human relevance investigation of PPARα-mediated key events in the hepatocarcinogenic mode of action of propaquizafop in rats.

    PubMed

    Strupp, Christian; Bomann, Werner H; Spézia, François; Gervais, Frédéric; Forster, Roy; Richert, Lysiane; Singh, Pramila

    2018-06-01

    Propaquizafop is an herbicide with demonstrated hepatocarcinogenic activity in rodents. A rodent-specific mode of action (MOA) in the liver via activation of peroxisome proliferator-activated receptor α (PPARα) has been postulated based on existing data. Experience with PPARα-inducing pharmaceuticals indicates a lack of human relevance of this MOA. The objective of the present investigation was to evaluate the dependency of early key events leading to liver tumors on PPARα activation in wildtype (WT) compared to PPARα-knockout (KO) rats following 2 weeks exposure to 75, 500 and 1000 ppm propaquizafop in the diet. In WT rats, both WY-14643 (50 mg/kg bw/day) and propaquizafop (dose-dependently) induced marked increases in liver weights, correlating with liver enlargement and hepatocellular hypertrophy, along with increased CYP4A and acyl-CoA oxidase mRNA expression and enzyme activities versus controls, while in KO rats liver weight was mildly increased only at the high dose with minimal microscopic correlates and without any changes in liver peroxisomal or CYP4A activities. In addition, BrdU labeling resulted in higher numbers and density of positive hepatocytes versus controls in WT but not in KO rats, indicating increased mitotic activity and cell proliferation only in WT rats, thus confirming the PPARα-dependency of the biochemical and histological changes in the liver. Based on an assessment of the results of this investigation, together with existing propaquizafop data according to the MOA-Human Relevance Framework, we conclude that liver tumors observed in rodents after dietary administration of propaquizafop do not pose a relevant health risk to humans. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Curcumin Protects Against Intestinal Origin Endotoxemia in Rat Liver Cirrhosis by Targeting PCSK9.

    PubMed

    Cai, Yu; Lu, Di; Zou, Yanting; Zhou, Chaohui; Liu, Hongchun; Tu, Chuantao; Li, Feng; Liu, Lili; Zhang, Shuncai

    2017-03-01

    Intestinal origin endotoxemia always occurs in severe liver injury. The aim of the current study was to test antiendotoxemia effect of curcumin on tetrachloride (CCl 4 )-induced liver cirrhosis rats, and to elucidate the underlying molecular mechanism. Rat cirrhosis models were constructed with CCl 4 subcutaneous injections with curcumin (200 mg/kg/d) administered via gavages for 12 wk until the rats were sacrificed. We found that the administration of curcumin improved the physiological condition pertaining to activity index and temperature, and ameliorated the liver injury in CCl 4 -induced cirrhosis rats. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qRT-PCR) showed that curcumin could reduce c-reaction protein levels and inflammatory cytokine (TNF-α, IL-1β, IL-6, and CINC-1/IL-8) concentrations in peripheral serum and liver tissue. Furthermore, curcumin treatment decreased lipopolysaccharide (LPS) levels in peripheral vein, but not in portal vein. As low-density lipoprotein receptor (LDLR) is the important receptor on the surface of hepatocyte during LPS detoxification process, we used qRT-PCR, western blot, and immunohistochemistry (IHC), finding that curcumin significantly increased LDLR protein levels, but not gene levels in the liver tissues. We also tested proprotein convertase subtilisin/kexin type 9 (PCSK9), one negative regulator of LDLR, by qRT-PCR, western blot, and IHC. The results showed that PCSK9 significantly decreased both gene and protein levels in the rat liver tissues of curcumin treatment. Thus, we concluded that curcumin could function to protect against intestinal origin endotoxemia by inhibiting PCSK9 to promote LDLR expression, thereby enhancing LPS detoxification as one pathogen lipid through LDLR in the liver. © 2017 Institute of Food Technologists®.

  14. Structural and numerical chromosome aberration inducers in liver micronucleus test in rats with partial hepatectomy.

    PubMed

    Itoh, Satoru; Hattori, Chiharu; Nagata, Mayumi; Sanbuissho, Atsushi

    2012-08-30

    The liver micronucleus test is an important method to detect pro-mutagens such as active metabolites not reaching bone marrow due to their short lifespan. We have already reported that dosing of the test compound after partial hepatectomy (PH) is essential to detect genotoxicity of numerical chromosome aberration inducers in mice [Mutat. Res. 632 (2007) 89-98]. In naive animals, the proportion of binucleated cells in rats is less than half of that in mice, which suggests a species difference in the response to chromosome aberration inducers. In the present study, we investigated the responses to structural and numerical chromosome aberration inducers in the rat liver micronucleus test. Two structural chromosome aberretion inducers (diethylnitrosamine and 1,2-dimethylhydrazine) and two numerical chromosome aberration inducers (colchicine and carbendazim) were used in the present study. PH was performed a day before or after the dosing of the test compound in 8-week old male F344 rats and hepatocytes were isolated 4 days after the PH. As a result, diethylnitrosamine and 1,2-dimethylhydrazine, structural chromosome aberration inducers, exhibited significant increase in the incidence of micronucleated hepatocyte (MNH) when given either before and after PH. Colchicine and carbendazim, numerical chromosome aberration inducers, did not result in any toxicologically significant increase in MNH frequency when given before PH, while they exhibited MNH induction when given after PH. It is confirmed that dosing after PH is essential in order to detect genotoxicity of numerical chromosome aberration inducers in rats as well as in mice. Regarding the species difference, a different temporal response to colchicine was identified. Colchicine increased the incidence of MNH 4 days after PH in rats, although such induction in mice was observed 8-10 days after PH. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Coffee and caffeine protect against liver injury induced by thioacetamide in male Wistar rats.

    PubMed

    Furtado, Kelly S; Prado, Monize G; Aguiar E Silva, Marco A; Dias, Marcos C; Rivelli, Diogo P; Rodrigues, Maria A M; Barbisan, Luis F

    2012-11-01

    Coffee intake has been inversely related to the incidence of liver diseases, although there are controversies on whether these beneficial effects on human health are because of caffeine or other specific components in this popular beverage. Thus, this study evaluated the protective effects of coffee or caffeine intake on liver injury induced by repeated thioacetamide (TAA) administration in male Wistar rats. Rats were randomized into five groups: one untreated group (G1) and four groups (G2-G5) treated with the hepatotoxicant TAA (200 mg/kg b.w., i.p.) twice a week for 8 weeks. Concomitantly, rats received tap water (G1 and G2), conventional coffee (G3), decaffeinated coffee (G4) or 0.1% caffeine (G5). After 8 weeks of treatment, rats were killed and blood and liver samples were collected. Conventional and decaffeinated coffee and caffeine intake significantly reduced serum levels of alanine aminotransferase (ALT) (p < 0.001) and oxidized glutathione (p < 0.05), fibrosis/inflammation scores (p < 0.001), collagen volume fraction (p < 0.01) and transforming growth factor β-1 (TGF-β1) protein expression (p ≤ 0.001) in the liver from TAA-treated groups. In addition, conventional coffee and caffeine intake significantly reduced proliferating cellular nuclear antigen (PCNA) S-phase indexes (p < 0.001), but only conventional coffee reduced cleaved caspase-3 indexes (p < 0.001), active metalloproteinase 2 (p ≤ 0.004) and the number of glutathione S-transferase placental form (GST-P)-positive preneoplastic lesions (p < 0.05) in the liver from TAA-treated groups. In conclusion, conventional coffee and 0.1% caffeine intake presented better beneficial effects than decaffeinated coffee against liver injury induced by TAA in male Wistar rats. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  16. Protective effect of gastrodin on bile duct ligation-induced hepatic fibrosis in rats.

    PubMed

    Zhao, Shuangshuang; Li, Naren; Zhen, Yongzhan; Ge, Maoxu; Li, Yi; Yu, Bin; He, Hongwei; Shao, Rong-Guang

    2015-12-01

    Gastrodin has been showed to possess many beneficial physiological functions, including protection against inflammation and oxidation and apoptosis. Studies showed inflammation and oxidation play important roles in producing liver damage and initiating hepatic fibrogenesis. However, it has not been reported whether gastrodin has a protective effect against hepatic fibrosis or not. This is first ever made attempts to test gastrodin against liver fibrosis in bile duct ligation (BDL) rats. The aim of the present study is to evaluate the effect of gastrodin on BDL-induced hepatic fibrosis in rats. BDL rats were divided into two groups, BDL alone group, and BDL-gastrodin group treated with gastrodin (5 mg/ml in drinking water). The effects of gastrodin on BDL-induced hepatic injury and fibrosis in rats were estimated by assessing serum, urine, bile and liver tissue biochemistry followed by liver histopathology (using hematoxylin & eosin and sirius red stain) and hydroxyproline content measurement. The results showed that gastrodin treatment significantly reduced collagen content, bile duct proliferation and parenchymal necrosis after BDL. The serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST) decreased with gastrodin treatment by 15.1 and 23.6 percent respectively in comparison to BDL group did not receive gastrodin. Gastrodin also significantly increased the level of serum high density lipoprotein (HDL) by 62.5 percent and down-regulated the elevated urine total bilirubin (TBIL) by 56.5 percent, but had no effect on total bile acid (TBA) in serum, bile and liver tissues. The immunohistochemical assay showed gastrodin remarkably reduced the expressions of CD68 and NF-κB in BDL rats. Hepatic SOD levels, depressed by BDL, were also increased by gastrodin by 8.4 percent. In addition, the increases of hepatic MDA and NO levels in BDL rats were attenuated by gastrodin by 31.3 and 38.7 percent separately. Our results indicate that gastrodin significantly attenuated the severity of BDL-induced hepatic injury and fibrosis by attenuating oxidative stress and inflammation. Taken together, these findings suggest that gastrodin might be an effective antifibrotic drug in cholestatic liver disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Studies on induction of lamotrigine metabolism in transgenic UGT1 mice

    PubMed Central

    Argikar, U. A.; Senekeo-Effenberger, K.; Larson, E. E.; Tukey, R. H.; Remmel, R. P.

    2010-01-01

    A transgenic ‘knock-in’ mouse model expressing a human UGT1 locus (Tg-UGT1) was recently developed and validated. Although these animals express mouse UGT1A proteins, UGT1A4 is a pseudo-gene in mice. Therefore, Tg-UGT1 mice serve as a ‘humanized’ UGT1A4 animal model.Lamotrigine (LTG) is primarily metabolized to its N-glucuronide (LTGG) by hUGT1A4. This investigation aimed at examining the impact of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPAR) activators on LTG glucuronidation in vivo and in vitro. Tg-UGT1 mice were administered the inducers phenobarbital (CAR), pregnenolone-16α-carbonitrile (PXR), WY-14643 (PPAR-α), ciglitazone (PPAR-γ), or L-165041 (PPAR-β), once daily for 3 or 4 days. Thereafter, LTG was administered orally and blood samples were collected over 24 h. LTG was measured in blood and formation of LTGG was measured in pooled microsomes made from the livers of treated animals.A three-fold increase in in vivo LTG clearance was seen after phenobarbital administration. In microsomes prepared from phenobarbital-treated Tg-UGT1 animals, 13-fold higher CLint (Vmax/Km) value was observed as compared with the untreated transgenic mice. A trend toward induction of catalytic activity in vitro and in vivo was also observed following pregnenolone-16α-carbonitrile and WY-14643 treatment. This study demonstrates the successful application of Tg-UGT1 mice as a novel tool to study the impact of induction and regulation on metabolism of UGT1A4 substrates. PMID:19845433

  18. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    PubMed Central

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. PMID:22915786

  19. 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid attenuates heptatocellular carcinoma in rats with NMR-based metabolic perturbations.

    PubMed

    Kumar, Pranesh; Singh, Ashok K; Raj, Vinit; Rai, Amit; Maity, Siddhartha; Rawat, Atul; Kumar, Umesh; Kumar, Dinesh; Prakash, Anand; Guleria, Anupam; Saha, Sudipta

    2017-08-01

    6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (M1) was synthesized and evaluated for in-vivo antiproliferative action in diethylnitrosamine-induced hepatocarcinogenic rats. The antiproliferative effect of M1 was assessed by various biochemical parameters, histopathology of liver and HPLC analysis. Proton nuclear magnetic resonance-based serum metabolic study was implemented on rat sera to explore the effects of M1 on hepatocellular carcinoma-induced metabolic alterations. M1 showed protective action on liver and restored the arrangement of liver tissues in normal proportion. HPLC analysis displayed a good plasma drug concentration after its oral administration. Score plots of partial least squares discriminate analysis models exhibited that M1 therapy ameliorated hepatocellular carcinoma-induced metabolic alterations which signified its antiproliferative potential. M1 manifested notable antiproliferative profile, and warrants further investigation for future anticancer therapy.

  20. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    PubMed

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by cardamom powder supplementation in HCHF diet fed rats. HCHF diet feeding in rats also increased the ALT, AST and ALP enzyme activities in plasma which were also normalized by cardamom powder supplementation in HCHF diet fed rats. Moreover, cardamom powder supplementation ameliorated the fibrosis in liver of HCHF diet fed rats. This study suggests that, cardamom powder supplementation can prevent dyslipidemia, oxidative stress and hepatic damage in HCHF diet fed rats.

  1. Lipoic acid prevents suppression of connective tissue proliferation in the rat liver induced by n-3 PUFAs. A pilot study.

    PubMed

    Arend, A; Zilmer, M; Vihalemm, T; Selstam, G; Sepp, E

    2000-01-01

    As previously shown, dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) suppress connective tissue proliferation in the rat liver wound concurrent with an elevated level of lipid peroxidation. The present study was undertaken to investigate the influence of alpha-lipoic acid (LA), a natural anti-oxidant, on these effects of n-3 PUFAs. Rats were fed with a commercial pellet diet (control group) or with diets enriched with 10% of sunflower oil (n-6 group) or 10% of fish oil (n-3 group) for 8 weeks followed by addition of LA to the same diets for 10 days. Then a liver thermic wound was induced and the administration of LA was continued for 6 days. The proliferation of the connective tissue, the level of lipid peroxidation and their peroxidizability and the content of prostaglandins E2 and F2alpha were measured in the liver wounds. LA prevented the suppression of connective tissue proliferation in the healing wound induced by n-3 PUFAs, avoided the increase in peroxidation of lipids, reduced peroxidizability of lipids and modulated the decrease in PGE2 and PGF2alpha. The results indicate that dietary LA may prevent the suppression of liver wound healing induced by n-3 PUFAs.

  2. Hyperandrogenism and insulin resistance contribute to hepatic steatosis and inflammation in female rat liver

    PubMed Central

    Zhang, Yuehui; Meng, Fanci; Sun, Xiaoyan; Sun, Xue; Hu, Min; Cui, Peng; Vestin, Edvin; Li, Xin; Li, Wei; Wu, Xiao-Ke; Jansson, John-Olov; Shao, Linus R.; Billig, Håkan

    2018-01-01

    Women with polycystic ovary syndrome (PCOS) are at high risk for nonalcoholic fatty liver disease (NAFLD). While insulin resistance is a common trait for both PCOS and NAFLD, hyperandrogenism is also considered to be a key factor contributing to PCOS, and the molecular mechanisms behind the interactions between insulin resistance and hyperandrogenism in the female liver remain largely unexplored. Using chronic treatment with insulin and/or human chorionic gonadotropin (hCG), we showed that all female rats with different treatments induced imbalance between de novo lipogenesis and mitochondrial β-oxidation via the Pparα/β–Srebp1/2–Acc1 axis, resulting in varying degrees of hepatic steatosis. Given the fact that hepatic lipid metabolism and inflammation are tightly linked processes, we found that hCG-induced hyperandrogenic rats had strongly aggravated hepatic inflammation. Further mechanistic investigations revealed that dysregulation of the IRS–PI3K–Akt signaling axis that integrated aberrant inflammatory, apoptotic and autophagic responses in the liver was strongly associated with hyperandrogenism itself or combined with insulin resistance. Additionally, we found that hCG-treated and insulin+hCG-induced rats developed visceral adipose tissue inflammation characterized by the presence of “crown like” structure and increased inflammatory gene expression. Because a more pronounced hepatic steatosis, inflammatory responses, and hepatocyte cell damage were observed in insulin+hCG-induced PCOS-like rats, our finding suggest that NAFLD seen in PCOS patients is dependent of hyperandrogenism and insulin resistance. PMID:29719598

  3. High-fructose corn syrup-induced hepatic dysfunction in rats: improving effect of resveratrol.

    PubMed

    Sadi, Gokhan; Ergin, Volkan; Yilmaz, Guldal; Pektas, M Bilgehan; Yildirim, O Gokhan; Menevse, Adnan; Akar, Fatma

    2015-09-01

    The increased consumption of high-fructose corn syrup (HFCS) may contribute to the worldwide epidemic of fatty liver. In this study, we have investigated whether HFCS intake (20% beverages) influences lipid synthesis and accumulation in conjunction with insulin receptor substrate-1/2 (IRS-1; IRS-2), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1) and inducible NOS (iNOS) expressions in liver of rats. Resveratrol was tested for its potential efficacy on changes induced by HFCS. Animals were randomly divided into four groups as control, resveratrol, HFCS and resveratrol plus HFCS (resveratrol + HFCS). HFCS was given as 20% solutions in drinking water. Feeding of all rats was maintained by a standard diet that enriched with or without resveratrol for 12 weeks. Dietary HFCS increased triglyceride content and caused mild microvesicular steatosis in association with up-regulation of fatty acid synthase and sterol regulatory element binding protein (SREBP)-1c in liver of rats. Moreover, HFCS feeding impaired hepatic expression levels of IRS-1, eNOS and SIRT1 mRNA/proteins, but did not change iNOS level. Resveratrol promoted IRS, eNOS and SIRT1, whereas suppressed SREBP-1c expression in rats fed with HFCS. Resveratrol supplementation considerably restored hepatic changes induced by HFCS. The improvement of hepatic insulin signaling and activation of SIRT1 by resveratrol may be associated with decreased triglyceride content and expression levels of the lipogenic genes of the liver.

  4. Bile duct ligation in developing rats: temporal progression of liver, kidney, and brain damage.

    PubMed

    Sheen, Jiunn-Ming; Huang, Li-Tung; Hsieh, Chih-Sung; Chen, Chih-Cheng; Wang, Jia-Yi; Tain, You-Lin

    2010-08-01

    Cholestatic liver disease may result in progressive end-stage liver disease and other extrahepatic complications. We explored the temporal progression of bile duct ligation (BDL)-induced cholestasis in developing rats, focusing on brain cognition and liver and kidney pathology, to elucidate whether these findings were associated with asymmetric dimethylarginine and oxidative stress alterations. Three groups of young male Sprague-Dawley rats were studied: one group underwent laparotomy (sham), another group underwent laparotomy and BDL for 2 weeks (BDL2), and a third group underwent laparotomy and BDL for 4 weeks (BDL4). The effect of BDL on liver was represented by transforming growth factor beta1 levels and histology activity index scores, which were worse in the BDL4 rats than in the BDL2 rats. BDL4 rats also exhibited more severe spatial memory deficits than BDL2 rats. In addition, renal injury was more progressive in BDL4 rats than in BDL2 rats because BDL4 rats displayed higher Cr levels, elevated tubulointerstitial injury scores, neutrophil gelatinase-associated lipocalin, and symmetric dimethylarginine levels. Our findings highlight the fact that young BDL rats exhibit similar trends of progression of liver, kidney, and brain damage. Further studies are needed to better delineate the nature of progression of organ damage in young cholestatic rats. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats.

    PubMed

    Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G

    2006-01-01

    Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.

  6. [The curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning].

    PubMed

    Liu, Jing; Wang, Qiu-ying; Wang, Bei; Xuan, Xiao-qiang; Chen, Qiong; Xu, Dong-wei; Cheng, Ning

    2011-02-01

    To assess the curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning. In present study 220 SD rats were divided into control group (10 rats), carbonyl nickel group (10 rats), 20 mg/kg methylprednisolone group (40 rats), 100 mg/kg DDC group (40 rats), 10 µmol/kg sodium selenite group (40 rats), 0.25 ml shenfuhuiyangtang group (40 rats) and 20 mg/kg methylprednisolone with 100 mg/kg DDC group (40 rats). All rats except for control group inhaled passively 250 mg/m(3) carbonyl nickel for 30 minutes. At 4h and 30h after exposure, the drugs were given intraperitoneally to the rats. On the 3rd and 7th days after exposure, the liver samples were taken from 10 rats each group. The DNA damage of liver cells was detected using comet assay, the ultrastructure changes in liver cells were examined under an electronmicroscope. Compared to carbonyl nickel group, the tail lengths of liver cells in 5 groups administrated at 4 h or 30 h and tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05). Compared to the control group, the tail lengths of liver cells in sodium selenite and shenfuhuiyangtang groups administrated at 4h after exposure or sodium selenite, shenfuhuiyangtang and methylprednisolone with DDC groups administrated at 30h after exposure increased significantly (P < 0.05 or P < 0.01), when tested on the 3rd day after exposure. Except from methylprednisolone sub-group administrated at 4h and tested on the 7th day after exposure, the tail lengths of liver cells in other groups administrated at 4 h or 30 h and tested on the 7th day after exposure increased significantly (P < 0.05). Compared to carbonyl nickel group, the Olive moment of liver cells in 5 groups administrated at 4 h or 30 h tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05 or P < 0.01). Compared to the control group, the Olive moment of liver cells in following groups (selenite and shenfuhuiyangtang groups administrated at 4 h or 30 h and tested on the 3rd or 7th day after exposure, DDC group administrated at 4 h or 30 h and tested on the 7th day after exposure, DDC group administrated at 30h and tested on the 3rd day after exposure, and methylprednisolone with DDC group administrated at 30 h and tested on the 7th day after exposure) increased significantly (P < 0.05 or P < 0.01). As compared with carbonyl nickel group, the ultrastructure observation indicated that the nucleus and other organelles of liver cells in methylprednisolone, DDC and methylprednisolone with DDC groups administrated at 4h and tested on the 3rd day were access to normal levels. The results of present study showed that methylprednisolone, DDC and methylprednisolone with DDC could improve obviously the repair of rat liver cell damage induced by acute carbonyl nickel poisoning, and the curative effects of early treatment were better than those of later treatment.

  7. The effects of dexpanthenol in streptozotocin-induced diabetic rats: histological, histochemical and immunological evidences.

    PubMed

    Gulle, K; Ceri, N G; Akpolat, M; Arasli, M; Demirci, B

    2014-10-01

    This study was designed to investigate the effects of Dexpanthenol (Dxp) on liver and pancreas histology and cytokine levels in streptozotocine (STZ)-induced diabetic rats. Twenty-four Wistar albino male rats were divided into four groups: control, Dxp, STZ-induced diabetic (STZ) and diabetic treatment with Dexpanthenol (STZ-Dxp) groups. Experimental diabetes was induced by single dose STZ (50 mg/kg) intraperitoneally (i.p.). After administration of STZ, the STZ-Dxp group began to receive a 300 mg/kg/day i.p. dose of Dxp for 6 weeks. Liver and pancreas tissues of the control group were in normal morphology. Liver tissue of STZ group showed vacuolisation of hepatocytes in the liver parenchyma with enlargement of sinusoidal spaces and increasing amounts of connective tissue in the portal area. Pancreatic section of STZ group displayed β-cells with of cytoplasmic mass, reduction of islet size, and atrophy. The STZ-Dxp group that received Dxp treatment exhibit partially normal hepatic parenchyma. Histochemical examinations revealed that the diabetes-induced glycogen depletion markedly improved with the Dxp treatment (p⟨0.001). The severity of degenerative alteration was lessened by Dxp supplementation in the STZ-Dxp group. Induction of STZ presented a significant increase both in interleukin-1α (IL-1α) (p=0.033) and monocyte chemotactic protein-1 (MCP-1) (p=0.011) levels, when compared with the control rats. DXP-treated diabetic rats' IL-1α and MCP-1 levels were similar to control value. This evidence suggests that Dxp is effective in reducing STZ-induced, diabetic-related complications and may be beneficial for the treatment of diabetic patients.

  8. Closure of mitochondrial potassium channels favors opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey M; Brailovskaya, Irina V; Shumakov, Anton R; Emelyanova, Larisa V

    2015-06-01

    It is known that a closure of ATP sensitive (mitoKATP) or BK-type Ca(2+) activated (mitoKCa) potassium channels triggers opening of the mitochondrial permeability transition pore (MPTP) in cells and isolated mitochondria. We found earlier that the Tl(+)-induced MPTP opening in Ca(2+)-loaded rat liver mitochondria was accompanied by a decrease of 2,4-dinitrophenol-uncoupled respiration and increase of mitochondrial swelling and ΔΨmito dissipation in the medium containing TlNO3 and KNO3. On the other hand, our study showed that the mitoKATP inhibitor, 5-hydroxydecanoate favored the Tl(+)-induced MPTP opening in the inner membrane of Ca(2+)-loaded rat heart mitochondria (Korotkov et al. 2013). Here we showed that 5-hydroxydecanoate increased the Tl(+)-induced MPTP opening in the membrane of rat liver mitochondria regardless of the presence of mitoKATP modulators (diazoxide and pinacidil). This manifested in more pronounced decrease in the uncoupled respiration and acceleration of both the swelling and the ΔΨmito dissipation in isolated rat liver mitochondria, incubated in the medium containing TlNO3, KNO3, and Ca(2+). A slight delay in Ca(2+)-induced swelling of the mitochondria exposed to diazoxide could be result of an inhibition of succinate oxidation by the mitoKATP modulator. Mitochondrial calcium retention capacity (CRC) was markedly decreased in the presence of the mitoKATP inhibitor (5-hydroxydecanoate) or the mitoKCa inhibitor (paxilline). We suggest that the closure of mitoKATP or mitoKCa in calcium loaded mitochondria favors opening of the Tl(+)-induced MPTP in the inner mitochondrial membrane.

  9. Protective effects of a by-product of the pecan nut industry (Carya illinoensis) on the toxicity induced by cyclophosphamide in rats Carya illinoensis protects against cyclophosphamide-induced toxicity.

    PubMed

    Benvegnú, D; Barcelos, R C S; Boufleur, N; Reckziegel, P; Pase, C S; Müller, L G; Martins, N M B; Vareli, C; Bürger, M E

    2010-01-01

    This study investigated the antioxidant effects of pecan nut (Carya illinoensis) shell aqueous extract (AE) on toxicity induced by cyclophosphamide (CP) in the heart, kidney, liver, bladder, plasma and erythrocytes of rats. Rats were treated with water or pecan shell AE (5%) ad libitum, replacing drinking water for 37 days up to the end of the experiment. On day 30, half of each group received a single administration of vehicle or CP 200 mg/kg-ip. After 7 days, the organs were removed. Rats treated with CP showed an increase in lipid peroxidation (LP) and decrease in reduced glutathione (GSH) levels in all structures. Catalase (CAT) activity was increased in the heart and decreased in liver and kidney. Besides, CP treatment decreased plasmatic vitamin C (VIT C) levels and induced bladder macroscopical and microscopical damages. In contrast, co-treatment with pecan shell AE prevented the LP development and the GSH depletion in all structures, except in the heart and plasma, respectively. CAT activity in the heart and liver as well as the plasmatic VIT C levels remained unchanged. Finally, AE prevented CP-induced bladder injury. These findings revealed the protective role of pecan shell AE in CP-induced multiple organ toxicity.

  10. Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats.

    PubMed

    Germoush, Mousa O; Othman, Sarah I; Al-Qaraawi, Maha A; Al-Harbi, Hanan M; Hussein, Omnia E; Al-Basher, Gadh; Alotaibi, Mohammed F; Elgebaly, Hassan A; Sandhu, Mansur A; Allam, Ahmed A; Mahmoud, Ayman M

    2018-06-01

    Hepatic encephalopathy (HE) is a serious neuropsychiatric complication that occurs as a result of liver failure. Umbelliferone (UMB; 7-hydroxycoumarin) is a natural product with proven hepatoprotective activity; however, nothing has yet been reported on its protective effect against hyperammonemia, the main culprit behind the symptoms of HE. Here, we evaluated the effect of UMB against ammonium chloride (NH 4 Cl)-induced hyperammonemia, oxidative stress, inflammation and hematological alterations in rats. We demonstrated the modulatory role of UMB on the glutamate-nitric oxide (NO)-cGMP pathways in the cerebrum of rats. Rats received intraperitoneal injections of NH 4 Cl (3 times/week) for 8 weeks and concomitantly received 50 mg/kg UMB. NH 4 Cl-induced rats showed significantly elevated blood ammonia and liver function markers. Lipid peroxidation and NO were increased in the liver and cerebrum of rats while the antioxidant defenses were declined. UMB significantly reduced blood ammonia, liver function markers, lipid peroxidation and NO, and enhanced the antioxidant defenses in NH 4 Cl-induced rats. UMB significantly prevented anemia, leukocytosis, thrombocytopenia and prolongation of PT and aPTT. Hyperammonemic rats showed elevated levels of cerebral TNF-α, IL-1β and glutamine as well as increased activity and expression of Na + /K + -ATPase, effects that were significantly reversed by UMB. In addition, UMB down-regulated nitric oxide synthase and soluble guanylate cyclase in the cerebrum of hyperammonemic rats. In conclusion, this study provides evidence that UMB protects against hyperammonemia via attenuation of oxidative stress and inflammation. UMB prevents hyperammonemia associated hematological alterations and therefore represents a promising protective agent against the deleterious effects of excess ammonia. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Ameliorative efficacy of quercetin against cisplatin‑induced mitochondrial dysfunction: Study on isolated rat liver mitochondria.

    PubMed

    Waseem, Mohammad; Tabassum, Heena; Bhardwaj, Monica; Parvez, Suhel

    2017-09-01

    The present study aimed to investigate the hepatoprotective effects of the bioflavonoid quercetin (QR) on cisplatin (CP)‑induced mitochondrial oxidative stress in the livers of rats, to elucidate the role of mitochondria in CP‑induced hepatotoxicity, and its underlying mechanism. Isolated liver mitochondria were incubated with 100 µg/ml CP and/or 50 µM QR in vitro. CP treatment triggered a significant increase in membrane lipid peroxidation (LPO) levels, protein carbonyl (PC) contents, and a decrease in reduced glutathione (GSH) and non‑protein thiol (NP‑SH) levels. In addition, CP caused a marked decline in the activities of enzymatic antioxidants and mitochondrial complexes (I, II, III and V) in liver mitochondria. QR pre‑treatment significantly modulated the activities of enzymatic antioxidants and mitochondrial complex enzymes. Furthermore, QR reversed the alterations in LPO and PC levels, and GSH and NP‑SH contents in liver mitochondria. The results of the present study suggested that QR supplementation may suppress CP‑induced mitochondrial toxicity during chemotherapy, and provides a potential prophylactic and defensive candidate for anticancer agent‑induced oxidative stress.

  12. Inhibition by curcumin of multiple sites of the transforming growth factor-beta1 signalling pathway ameliorates the progression of liver fibrosis induced by carbon tetrachloride in rats

    PubMed Central

    2012-01-01

    Background At present there is no effective and accepted therapy for hepatic fibrosis. Transforming growth factor (TGF)-β1 signaling pathway contributes greatly to hepatic fibrosis. Reducing TGF-β synthesis or inhibiting components of its complex signaling pathway represent important therapeutic targets. The aim of the study was to investigate the effect of curcumin on liver fibrosis and whether curcumin attenuates the TGF-β1 signaling pathway. Methods Sprague–Dawley rat was induced liver fibrosis by carbon tetrachloride (CCl4) for six weeks together with or without curcumin, and hepatic histopathology and collagen content were employed to quantify liver necro-inflammation and fibrosis. Moreover, the mRNA and protein expression levels of TGF-β1, Smad2, phosphorylated Smad2, Smad3, Smad7 and connective tissue growth factor (CTGF) were determined by quantitative real time-PCR, Western blot, or immunohistochemistry. Results Rats treated with curcumin improved liver necro-inflammation, and reduced liver fibrosis in association with decreased α-smooth muscle actin expression, and decreased collagen deposition. Furthermore, curcumin significantly attenuated expressions of TGFβ1, Smad2, phosphorylated Smad2, Smad3, and CTGF and induced expression of the Smad7. Conclusions Curcumin significantly attenuated the severity of CCl4-induced liver inflammation and fibrosis through inhibition of TGF-β1/Smad signalling pathway and CTGF expression. These data suggest that curcumin might be an effective antifibrotic drug in the prevention of liver disease progression. PMID:22978413

  13. Protective effect of bicyclol against bile duct ligation-induced hepatic fibrosis in rats.

    PubMed

    Zhen, Yong-Zhan; Li, Na-Ren; He, Hong-Wei; Zhao, Shuang-Shuang; Zhang, Guang-Ling; Hao, Xiao-Fang; Shao, Rong-Guang

    2015-06-21

    To evaluate the protective effect of bicyclol against bile duct ligation (BDL)-induced hepatic fibrosis in rats. Sprague-Dawley male rats underwent BDL and sham-operated animals were used as healthy controls. The BDL rats were divided into two groups which received sterilized PBS or bicyclol (100 mg/kg per day) orally for two consecutive weeks. Serum, urine and bile were collected for biochemical determinations. Liver tissues were collected for histological analysis and a whole genome oligonucleotide microarray assay. Reverse transcription-polymerase chain reaction and Western blotting were used to verify the expression of liver fibrosis-related genes. Treatment with bicyclol significantly reduced liver fibrosis and bile duct proliferation after BDL. The levels of alanine aminotransferase (127.7 ± 72.3 vs 230.4 ± 69.6, P < 0.05) and aspartate aminotransferase (696.8 ± 232.6 vs 1032.6 ± 165.8, P < 0.05) were also decreased by treatment with bicyclol in comparison to PBS. The expression changes of 45 fibrogenic genes and several fibrogenesis-related pathways were reversed by bicyclol in the microarray assay. Bicyclol significantly reduced liver mRNA and/or protein expression levels of collagen 1a1, matrix metalloproteinase 2, tumor necrosis factor, tissue inhibitors of metalloproteinases 2, transforming growth factor-β1 and α-smooth muscle actin. Bicyclol significantly attenuates BDL-induced liver fibrosis by reversing fibrogenic gene expression. These findings suggest that bicyclol might be an effective anti-fibrotic drug for the treatment of cholestatic liver disease.

  14. Liver metabolomics study reveals protective function of Phyllanthus urinaria against CCl4-induced liver injury.

    PubMed

    Guo, Qing; Zhang, Qian-Qian; Chen, Jia-Qing; Zhang, Wei; Qiu, Hong-Cong; Zhang, Zun-Jian; Liu, Bu-Ming; Xu, Feng-Guo

    2017-07-01

    Phyllanthus Urinaria L. (PUL) is a traditional Chinese medicine used to treat hepatic and renal disorders. However, the mechanism of its hepatoprotective action is not fully understood. In the present study, blood biochemical indexes and liver histopathological changes were used to estimate the extent of hepatic injury. GC/MS and LC/MS-based untargeted metabolomics were used in combination to characterize the potential biomarkers associated with the protective activity of PUL against CCl 4 -induced liver injury in rats. PUL treatment could reverse the increase in ALT, AST and ALP induced by CCl 4 and attenuate the pathological changes in rat liver. Significant changes in liver metabolic profiling were observed in PUL-treated group compared with liver injury model group. Seventeen biomarkers related to the hepatoprotective effects of PUL against CCl 4 -induced liver injury were screened out using nonparametric test and Pearson's correlation analysis (OPLS-DA). The results suggested that the potential hepatoprotective effects of PUL in attenuating CCl 4 -induced hepatotoxicity could be partially attributed to regulating L-carnitine, taurocholic acid, and amino acids metabolism, which may become promising targets for treatment of liver toxicity. In conclusion, this study provides new insights into the mechanism of the hepatoprotection of Phyllanthus Urinaria. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  15. Effects of probiotics on methionine choline deficient diet-induced steatohepatitis in rats.

    PubMed

    Karahan, Nermin; Işler, Mehmet; Koyu, Ahmet; Karahan, Aynur G; Başyığıt Kiliç, Gülden; Cırış, Ibrahim Metin; Sütçü, Recep; Onaran, Ibrahim; Cam, Hakan; Keskın, Muharrem

    2012-04-01

    Intestinal bacteria induce endogenous signals that play a pathogenic role in hepatic insulin resistance and non-alcoholic fatty liver disease. Probiotics could modulate the gut flora and could influence the gut-liver axis. We aimed to investigate the preventive effect of two probiotic mixtures on the methionine choline-deficient diet-induced non-alcoholic steatohepatitis model in rats. Two studies, short-term (2 weeks) and long-term (6 weeks), were carried out using 60 male Wistar rats. The 2-week study included six groups. Rats were fed with methionine choline-deficient diet or pair-fed control diet and were given a placebo or one of two probiotic mixtures (Pro-1 and Pro-2) by orogastric gavage. In the 6-week study, rats were allocated into four groups and were fed with methionine choline-deficient diet or pair-fed control diet and given a placebo or Pro-2. At the end of the 2- and 6-week periods, blood samples were obtained, the animals were sacrificed, and liver tissues were removed. Serum alanine aminotransferase activity was determined; histologic and immunohistochemical analysis was performed for steatosis, inflammation, protein expression of tumor necrosis factor-α, and apoptosis markers. In both studies, methionine choline-deficient diet caused an elevation of serum alanine aminotransferase activity, which was slightly reduced by Pro-1 and Pro-2. In the 2- and 6-week studies, feeding with methionine choline-deficient diet resulted in steatosis and inflammation, but not fibrosis, in all rats. In the 2-week study, in rats fed with methionine choline-deficient diet and given Pro-1, steatosis and inflammation were present in 2 of 6 rats. In rats fed with methionine choline-deficient diet and given Pro-2, steatosis was detected in 3 of 6 rats, while inflammation was present in 2 of 6 rats. In the 6-week study, in rats fed with methionine choline-deficient diet and given Pro-2, steatosis and inflammation were present in 3 of 6 rat livers. In both the 2- and 6-week studies, methionine choline-deficient diet resulted in tumor necrosis factor-α, proapoptotic Bax, caspase 3, caspase 8, and anti-apoptotic Bcl-2 expression in all rat livers. Pro-1 and Pro-2 treatment influenced protein expression involved in apoptosis and tumor necrosis factor-α in varying degrees. Pro-1 and Pro-2 decrease methionine choline-deficient diet-induced steatohepatitis in rats. The preventive effect of probiotics may be due, in part, to modulation of apoptosis and their anti-inflammatory activity.

  16. Immunohistochemical study of temporal variations in cytochrome P-450 isozymes in rat testis and their modifications by the inductive effects of cadinenes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhito; Motohashi, Yutaka; Miyazaki, Yoshifumi; Yatagai, Mitsuyoshi; Takano, Takehito

    1991-12-01

    Temporal variations in cytochrome P-450 isozymes of rat testis, PB-P-450 (forms of cytochrome P-450 strongly induced by phenobarbital) and MC-P-448 (forms of cytochrome P-450 strongly induced by 3-methylcholanthrene), were investigated immunohistochemically by the avidin-biotin-complex method using specific antibodies against PB-P-450 and MC-P-448 isozymes. Immunoreactivity to both PB-P-450 and MC-P-448 isozymes was observed in Leydig cells. The number of PB-P-450 positive Leydig cells was found to undergo significant time-of-day variation with a peak time of 0000 hours (light phase from 0800 to 2000 hours). Injection of cadinenes (300 mg/kg per day intraperitoneally at 48 and 96 h before sacrifice) induced PB-P-450 isozyme but did not induce MC-P-448 isozyme. The induction of PB-P-450 isozyme by cadinenes was time dependent, and the early dark phase (2000 and 0000 hours) was most sensitive. These results suggest that temporal variation of cytochrome P-450 isozymes is one of the important physiological variations in detoxification and activation of various xenobiotics and chemicals in the testis.

  17. Different response to choline deficiency of the serum ornithine carbamoyltransferase activity in four strains of rats.

    PubMed

    Nocianitri, K A; Aoyama, Y

    2001-04-01

    Rats of the Donryu, Wistar, Fischer, and Sprague-Dawley strains were examined for the effects of choline deficiency on liver lipids, serum lipids, and serum ornithine carbamoyltransferase. The liver total lipid, triacylglycerol, cholesterol and phospholipid contents in the choline-deficient rats were significantly higher than those in choline-sufficient rats. The contents of total lipids and phospholipids in the liver of the Wistar and Fischer rats fed on a choline-deficient diet were significantly higher than those of the Donryu and Sprague-Dawley rats. The levels of triacylglycerol, cholesterol and phospholipids in the serum were significantly decreased by feeding with the choline-deficient diet. The serum ornithine carbamoyltransferase activity was increased in the Wistar and Fischer strains by feeding with the choline-deficient diet. The Wistar and Fischer strains were consequently the most sensitive to both lipid accumulation and liver lesions induced by the choline deficiency.

  18. [Influence of bear bile on rat hepatocarcinoma induced by diethylnitrosamine].

    PubMed

    Zhou, Jian-Yin; Yin, Zhen-Yu; Wang, Sheng-Yu; Yan, Jiang-Hua; Zhao, Yi-Lin; Wu, Duan; Liu, Zheng-Jin; Zhang, Sheng; Wang, Xiao-Min

    2012-11-01

    To investigate the influence of bear bile on rat hepatocarcinoma induced by diethylnitrosamine (DEN), a total of 40 rats were randomly divided into 4 groups: normal control group, model group, and two bear bile treatment groups. The rat liver cancer model was induced by breeding with water containing 100 mg x L(-1) DEN for 14 weeks. The rats of the bear bile groups received bear bile powder (200 or 400 mg x kg(-1)) orally 5 times per week for 18 weeks. The general condition and the body weight of rats were examined every day. After 18 weeks the activities of serum alanine transaminase (ALT), aspartate transaminase (AST) and total bilirubin (TBIL) were detected. Meanwhile, the pathological changes of liver tissues were observed after H&E staining. The expression of proliferative cell nuclear antigen (PCNA) and a-smooth muscle actin (alpha-SMA) in liver tissue were detected by immunohistochemical method. After 4 weeks the body weights of rats in normal group were significantly more than that in other groups (P < 0.05); and that in the two bile groups was significantly more than that in the model group. Compared with normal group, the level of serum glutamic-pyruvic transaminase and total bilirubin increased significantly in other groups; compared with model group, these two indexes decreased significantly in two bile groups. Hepatocellular carcinoma occurred in all rats except for normal group; there were classic cirrhosis and cancer in model group while there were mild cirrhosis and high differentiation in two bile groups. There were almost no expressions of PCNA and alpha-SMA in normal group while there were high expressions in model group; the two bile groups had some expressions but were inferior to the model group, and alpha-SMA reduced markedly. It indicated that bear bile restrained the development of liver cancer during DEN inducing rat hepatocarcinoma, which may be related to its depressing hepatic stellate cell activation and relieving hepatic lesion and cirrhosis.

  19. Mixed microencapsulation of rat primary hepatocytes and Sertoli cells improves the metabolic function in a D-galactosamine and lipopolysaccharide-induced rat model of acute liver failure.

    PubMed

    Zheng, Ming-Hua; Lin, Hai-Long; Qiu, Li-Xin; Cui, Yao-Li; Sun, Qing-Feng; Chen, Yong-Ping

    2009-01-01

    Hepatocyte transplantation is an alternative to transplantation of the whole liver. Compared with xenogeneic hepatocytes, primary hepatocytes have some advantages, such as a more powerful function and a smaller frequency of rejection caused by the host. Cell microencapsulation prevents direct access of host cells to the graft but cannot impede transfer of transplant-derived peptides, which can cross the physical barrier. Sertoli cells are central to the immune privilege demonstrated in the testis, and their actions have been utilized to protect cell transplants. Co-microencapsulating Sertoli cells with HepG2 cells has proved to be a valuable strategy in hepatocyte transplantation. Thus mixed microcapsules of primary rat hepatocytes and primary Sertoli cells may improve metabolic function in a d-galactosamine and lipopolysaccharide-induced rat model of acute liver failure.

  20. Parboiled Germinated Brown Rice Protects Against CCl4-Induced Oxidative Stress and Liver Injury in Rats.

    PubMed

    Wunjuntuk, Kansuda; Kettawan, Aikkarach; Charoenkiatkul, Somsri; Rungruang, Thanaporn

    2016-01-01

    Parboiled germinated brown rice (PGBR) of Khao Dawk Mali 105 variety was produced by steaming germinated paddy rice, which is well-known for its nutrients and bioactive compounds. In this study we determined the in vivo antioxidant and hepatoprotective effects of PGBR in carbon tetrachloride (CCl(4))-induced oxidative stress in rats. Male Sprague-Dawley rats, (weight 200-250 g) were randomly divided into (1) control, (2) CCl(4), (3) white rice (WR)+CCl(4), (4) brown rice (BR)+CCl(4), and (5) PGBR+CCl(4) groups. PGBR, BR, and WR diets were produced by replacing corn starch in the AIN76A diet with cooked PGBR, BR, and WR powders, respectively. All rats except the control group were gavaged with 50% CCl4 in olive oil (v/v, 1 mL/kg) twice a week for 8 weeks. CCl(4)-treated rats exhibited significant liver injury, lipid peroxidation, protein oxidation, and DNA damage, as well as obvious changes to liver histopathology compared to control. In addition, CCl(4) treatment decreased the activities of CYP2E1 and antioxidant enzymes: glutathione S-transferase, glutathione peroxidase, superoxide dismutase and catalase, and glutathione (GSH) content. However, the PGBR+CCl(4) group exhibited less liver injury, lipid peroxidation, protein oxidation, and DNA damage, as well as better antioxidant enzyme activities and GSH content. Furthermore, PGBR inhibited degradation of CYP2E1 in CCl(4)-induced decrease of CYP2E1 activity. These data suggest that PGBR may prevent CCl(4)-induced liver oxidative stress and injury through enhancement of the antioxidant capacities, which may be due to complex actions of various bioactive compounds, including phenolic acids, γ-oryzanol, tocotrienol, and GABA.

  1. Characterization of fat metabolism in the fatty liver caused by a high-fat, low-carbohydrate diet: A study under equal energy conditions.

    PubMed

    Kurosaka, Yuka; Shiroya, Yoko; Yamauchi, Hideki; Kitamura, Hiromi; Minato, Kumiko

    2017-05-20

    The pathology of fatty liver due to increased percentage of calories derived from fat without increased overall caloric intake is largely unclear. In this study, we aimed to characterize fat metabolism in rats with fatty liver resulting from consumption of a high-fat, low-carbohydrate (HFLC) diet without increased caloric intake. Four-week-old male Sprague-Dawley rats were randomly assigned to the control (Con) and HFLC groups, and rats were fed the corresponding diets ad libitum. Significant decreases in food intake per gram body weight were observed in the HFLC group compared with that in the Con group. Thus, there were no significant differences in body weights or caloric intake per gram body weight between the two groups. Marked progressive fat accumulation was observed in the livers of rats in the HFLC group, accompanied by suppression of de novo lipogenesis (DNL)-related proteins in the liver and increased leptin concentrations in the blood. In addition, electron microscopic observations revealed that many lipid droplets had accumulated within the hepatocytes, and mitochondrial numbers were reduced in the hepatocytes of rats in the HFLC group. Our findings confirmed that consumption of the HFLC diet induced fatty liver, even without increased caloric intake. Furthermore, DNL was not likely to be a crucial factor inducing fatty liver with standard energy intake. Instead, ultrastructural abnormalities found in mitochondria, which may cause a decline in β-oxidation, could contribute to the development of fatty liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Regulation of N-nitrosodimethylamine demethylase in rat liver and kidney.

    PubMed

    Hong, J Y; Pan, J M; Dong, Z G; Ning, S M; Yang, C S

    1987-11-15

    In previous work, the low Km form of N-nitrosodimethylamine (NDMA) demethylase has been demonstrated to be due to a specific form of cytochrome P-450 (designated as P-450ac) and to be the enzyme required for the metabolic activation of NDMA. The present work deals with the regulation of P-450ac in rat liver during development as well as the mechanism of induction of P-450ac in rat liver and kidney by inducers. NDMA demethylase activity was almost undetectable in the liver of newborn rats, increased after day 4, and remained elevated throughout the first 17 days of the neonatal period. The enhancement of NDMA demethylase activity during development was accompanied by corresponding increases of P-450ac content and P-450ac mRNA levels as determined by Western and slot blot analyses, respectively. No sex differences with respect to this enzyme were observed in the developing rats. Acetone treatment on late-term pregnant rats for 2 days resulted in transplacental inductions of P-450ac and P-450ac mRNA in the newborn rats. Pretreatment of young male rats and adult female rats with acetone or isopropyl alcohol caused increases of NDMA demethylase activity and P-450ac content in the liver but no significant change in the P-450ac mRNA level. These facts suggest the possible existence of a posttranscription regulatory mechanism under these induction conditions. The presence of P-450ac in rat kidney was demonstrated by Western and Northern blot analyses. The renal form of P-450ac seemed to be regulated in a fashion similar to the hepatic P-450ac regarding its response to inducing factors such as fasting and acetone treatment.

  3. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats.

    PubMed

    Bhaswant, Maharshi; Shafie, Siti Raihanah; Mathai, Michael L; Mouatt, Peter; Brown, Lindsay

    2017-09-01

    Increased consumption of fruits and vegetables as functional foods leads to the reduction of signs of metabolic syndrome. The aim of this study was to measure and compare cardiovascular, liver, and metabolic parameters following chronic administration of the same dose of anthocyanins either from chokeberry (CB) or purple maize (PM) in rats with diet-induced metabolic syndrome. Male Wistar rats were fed a maize starch (C) or high-carbohydrate, high-fat diet (H) and divided into six groups for 16 wk. The rats were fed C, C with CB or PM for the last 8 wk (CCB or CPM), H, H with CB or PM for the last 8 wk (HCB or HPM); CB and PM rats received ∼8 mg anthocyanins/kg daily. The rats were monitored for changes in blood pressure, cardiovascular and hepatic structure and function, glucose tolerance, and adipose tissue mass. HCB and HPM rats showed reduced visceral adiposity index, total body fat mass, and systolic blood pressure; improved glucose tolerance, liver, and cardiovascular structure and function; decreased plasma triacylglycerols and total cholesterol compared with H rats. Inflammatory cell infiltration was reduced in heart and liver. CB and PM interventions gave similar responses, suggesting that anthocyanins are the bioactive molecules in the attenuation or reversal of metabolic syndrome by prevention of inflammation-induced damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats.

    PubMed

    Medhat, Amina; Mansour, Somaya; El-Sonbaty, Sawsan; Kandil, Eman; Mahmoud, Mustafa

    2017-07-01

    This study aimed to evaluate the antitumor activity of platinum nanoparticles compared with cis-platin both in vitro and in vivo in the treatment of hepatocellular carcinoma induced in rats. The treatment efficacy of platinum nanoparticles was evaluated by measuring antioxidant activities against oxidative stress caused by diethylnitrosamine in liver tissue. The measurements included reduced glutathione content and superoxide dismutase activity, as well as malondialdehyde level. Liver function tests were also determined, in addition to the evaluation of serum alpha-fetoprotein, caspase-3, and cytochrome c in liver tissue. Total RNA extraction from liver tissue samples was also done for the relative quantification of B-cell lymphoma 2, matrix metallopeptidase 9, and tumor protein p53 genes. Histopathological examination was also performed for liver tissue. Results showed that platinum nanoparticles are more potent than cis-platin in treatment of hepatocellular carcinoma induced by diethylnitrosamine in rats as it ameliorated the investigated parameters toward normal control animals. These findings were well appreciated with histopathological studies of diethylnitrosamine group treated with platinum nanoparticles, suggesting that platinum nanoparticles can serve as a good therapeutic agent for the treatment of hepatocellular carcinoma which should attract further studies.

  5. Angiotensin II or epinephrine hemodynamic and metabolic responses in the liver of L-NAME induced hypertension and spontaneous hypertensive rats

    PubMed Central

    Kimura, Debora Conte; Nagaoka, Marcia Regina; Borges, Durval Rosa; Kouyoumdjian, Maria

    2017-01-01

    AIM To study hepatic vasoconstriction and glucose release induced by angiotensin (Ang)II or Epi in rats with pharmacological hypertension and spontaneously hypertensive rat (SHR). METHODS Isolated liver perfusion was performed following portal vein and vena cava cannulation; AngII or epinephrine (Epi) was injected in bolus and portal pressure monitored; glucose release was measured in perfusate aliquots. RESULTS The portal hypertensive response (PHR) and the glucose release induced by AngII of L-NAME were similar to normal rats (WIS). On the other hand, the PHR induced by Epi in L-NAME was higher whereas the glucose release was lower compared to WIS. Despite the similar glycogen content, glucose release induced by AngII was lower in SHR compared to Wistar-Kyoto rats although both PHR and glucose release induced by Epi in were similar. CONCLUSION AngII and Epi responses are altered in different ways in these hypertension models. Our results suggest that inhibition of NO production seems to be involved in the hepatic effects induced by Epi but not by AngII; the diminished glucose release induced by AngII in SHR is not related to glycogen content. PMID:28660012

  6. Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet.

    PubMed

    Auberval, Nathalie; Dal, Stéphanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Valérie; Sigrist, Séverine

    2014-01-01

    Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.

  7. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei

    2011-11-01

    We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.

  8. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique.

    PubMed

    Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei

    2011-11-01

    We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.

  9. Toxicologic study of carboxyatractyloside (active principle in cocklebur--Xanthium strumarium) in rats treated with enzyme inducers and inhibitors and glutathione precursor and depletor.

    PubMed

    Hatch, R C; Jain, A V; Weiss, R; Clark, J D

    1982-01-01

    Male rats (10 rats/group) were treated with phenobarbital (PB), phenylbutazone (PBZ), stanozolol (3 inducers of cytochrome P450-dependent enzymes), piperonyl butoxide (PBO; a P450 inhibitor), cobaltous chloride (CoCl2; an inhibitor of hemoprotein synthesis), 5,6-benzoflavone (BNF; an inducer of cytochrome P448 dependent enzymes), cysteine [CYS; a glutathione (GSH) precursor], or ethyl maleate (EM; a GSH depletor). The rats were then given a calculated LD50 dosage (13.5 mg/kg of body weight) of carboxyatractyloside (CAT) intraperitoneally. Clinical signs of toxicosis, duration of illness, lethality, gross lesions, and hepatic and renal histopathologic lesions were recorded. Seemingly, (i) CAT toxicosis has independent lethal and cytotoxic components (PBZ decreased lethality and cytotoxicity; CoCl2 decreased cytotoxicity but not lethality; BNF decreased duration of illness, and perhaps lethality, but not cytotoxicity); (ii) CAT cytotoxicity could be partly due to an active metabolite formed by de novo-synthesized, P450-/P448-independent hemoprotein (PBZ and CoCl2 had anticytotoxic effects, but PB, stanozolol, PBO, and BNF did not); (iii) CAT detoxification may occur partly through a hemoprotein-independent, PBZ-inducible enzyme, and partly through a P448-dependent (BNF-inducible) enzyme; and (iv) CAT detoxification apparently is not P450 or GSH-dependent because PB, stanozolol, and CYS had no beneficial effects, and PBO, CoCl2, and EM did not enhance toxicosis. Metabolism of CAT may have a role in its cytotoxic and lethal effects.

  10. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-05

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  12. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats.

    PubMed

    Mushtaq, Nadia; Schmatz, Roberta; Ahmed, Mushtaq; Pereira, Luciane Belmonte; da Costa, Pauline; Reichert, Karine Paula; Dalenogare, Diéssica; Pelinson, Luana Paula; Vieira, Juliano Marchi; Stefanello, Naiara; de Oliveira, Lizielle Souza; Mulinacci, Nadia; Bellumori, Maria; Morsch, Vera Maria; Schetinger, Maria Rosa

    2015-12-01

    In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models.

  13. 3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model.

    PubMed

    Farrar, Christian T; DePeralta, Danielle K; Day, Helen; Rietz, Tyson A; Wei, Lan; Lauwers, Gregory Y; Keil, Boris; Subramaniam, Arun; Sinskey, Anthony J; Tanabe, Kenneth K; Fuchs, Bryan C; Caravan, Peter

    2015-09-01

    Liver biopsy, the gold standard for assessing liver fibrosis, suffers from limitations due to sampling error and invasiveness. There is therefore a critical need for methods to non-invasively quantify fibrosis throughout the entire liver. The goal of this study was to use molecular Magnetic Resonance Imaging (MRI) of Type I collagen to non-invasively image liver fibrosis and assess response to rapamycin therapy. Liver fibrosis was induced in rats by bile duct ligation (BDL). MRI was performed 4, 10, or 18 days following BDL. Some BDL rats were treated daily with rapamycin starting on day 4 and imaged on day 18. A three-dimensional (3D) inversion recovery MRI sequence was used to quantify the change in liver longitudinal relaxation rate (ΔR1) induced by the collagen-targeted probe EP-3533. Liver tissue was subjected to pathologic scoring of fibrosis and analyzed for Sirius Red staining and hydroxyproline content. ΔR1 increased significantly with time following BDL compared to controls in agreement with ex vivo measures of increasing fibrosis. Receiver operating characteristic curve analysis demonstrated the ability of ΔR1 to detect liver fibrosis and distinguish intermediate and late stages of fibrosis. EP-3533 MRI correctly characterized the response to rapamycin in 11 out of 12 treated rats compared to the standard of collagen proportional area (CPA). 3D MRI enabled characterization of disease heterogeneity throughout the whole liver. EP-3533 allowed for staging of liver fibrosis, assessment of response to rapamycin therapy, and demonstrated the ability to detect heterogeneity in liver fibrosis. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.

    PubMed

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Diab, Marwa M S; Othman, Mohamed S; Aref, Ahmed M; Abdel Moneim, Ahmed E

    2014-12-01

    This study aimed to investigate the potential protective role of Physalis peruviana L. (family Solanaceae) against cadmium-induced hepatorenal toxicity in Wistar rats. Herein, cadmium chloride (CdCl2) (6.5 mg/kg bwt/day) was intraperitoneally injected for 5 days, and methanolic extract of physalis (MEPh) was pre-administered to a group of Cd-treated rats by an oral administration at a daily dose of 200 mg/kg bwt for 5 days. The findings revealed that CdCl2 injection induced significant decreases in kidney weight and kidney index. Cadmium intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of uric acid, urea and creatinine were increased in the serum. The pre-administration of MEPh alleviated hepatorenal toxicity in Cd-treated rats. Physalis was noted to play a good hepatorenal protective role, reducing lipid peroxidation, nitric oxide, and enhancing enzymatic activities and non-enzymatic antioxidant molecule, glutathione, in hepatic and renal tissues of Cd-treated rats. Moreover, physalis treatment was able to reverse the histopathological changes in liver and kidney tissues and also increased the expression of Bcl-2 protein in liver and kidney of rats. Overall, the results showed that MEPh can induce antioxidant and anti-apoptotic effects and also exerts beneficial effects for the treatment of Cd-induced hepatorenal toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways.

    PubMed

    El-Sherbeeny, Nagla A; Nader, Manar A; Attia, Ghalia M; Ateyya, Hayam

    2016-12-01

    Tobacco smoking with its various forms is a global problem with proved hazardous effects to human health. The present work was planned to study the defending role of agmatine (AGM) on hepatic oxidative stress and damage induced by nicotine in rats. Thirty-two rats divided into four groups were employed: control group, nicotine-only group, AGM group, and AGM-nicotine group. Measurements of serum hepatic biochemical markers, lipid profile, and vascular cell adhesion molecule-1 were done. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) activity, and nitrate/nitrite (NOx) levels were estimated in the liver homogenates. Immunohistochemistry for Bax and transforming growth factor beta (TGF-β1) and histopathology of the liver were also included. Data of the study demonstrated that nicotine administration exhibited marked liver deterioration, an increase in liver enzymes, changes in lipid profile, and an elevation in MDA with a decline in levels of SOD, GSH, and NOx (nitrate/nitrite). Also, levels of proapoptotic Bax and profibrotic TGF-β1 showed marked elevation in the liver. AGM treatment to rats in nicotine-only group ameliorated all the previous changes. These findings indicate that AGM could successfully overcome the nicotine-evoked hepatic oxidative stress and tissue injury, apoptosis, and fibrosis.

  16. Hepatoprotective activity of Sonchus asper against carbon tetrachloride-induced injuries in male rats: a randomized controlled trial

    PubMed Central

    2012-01-01

    Abstract Background Sonchus asper (SAME) is used as a folk medicine in hepatic disorders. In this study, the hepatoprotective effects of the methanol extract of SAME was evaluated against carbon tetrachloride (CCl4)-induced liver injuries in rats. Methods To evaluate the hepatoprotective effects of SAME, 36 male Sprague–Dawley rats were equally divided into 6 groups. Rats of Group I (control) were given free access to approved feed and water. Rats of Group II were injected intraperitoneally with CCl4 (3 ml/kg) as a 30% solution in olive oil (v/v) twice a week for 4 weeks. Animals of Groups III (100 mg/kg) and IV (200 mg/kg) received SAME, whereas those of Group V were given silymarin via gavage (100 mg/kg) after 48 h of CCl4 treatment. Group VI received SAME (200 mg/kg) twice a week for 4 weeks without CCl4 treatment. Various parameters, such as the serum enzyme levels, serum biochemical marker levels, antioxidant enzyme activities, and liver histopathology were used to estimate the hepatoprotective efficacy of SAME. Results The administration of SAME and silymarin significantly lowered the CCl4-induced serum levels of hepatic marker enzymes (aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase), cholesterol, low-density lipoprotein, and triglycerides while elevating high-density lipoprotein levels. The hepatic contents of glutathione and activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione reductase were reduced. The levels of thiobarbituric acid-reactive substances that were increased by CCl4 were brought back to control levels by the administration of SAME and silymarin. Liver histopathology showed that SAME reduced the incidence of hepatic lesions induced by CCl4 in rats. Conclusion SAME may protect the liver against CCl4-induced oxidative damage in rats. PMID:22776436

  17. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats.

    PubMed

    El-Demerdash, F M; Yousef, M I; El-Naga, N I Abou

    2005-01-01

    The present study was carried out to investigate the effects of onion (Allium cepa Linn) and garlic (Allium sativum Linn) juices on biochemical parameters, enzyme activities and lipid peroxidation in alloxan-induced diabetic rats. Alloxan was administered as a single dose (120 mg/kg BW) to induce diabetes. A dose of 1 ml of either onion or garlic juices/100 g body weight (equivalent to 0.4 g/100 g BW) was orally administered daily to alloxan-diabetic rats for four weeks. The levels of glucose, urea, creatinine and bilirubin were significantly (p<0.05) increased in plasma of alloxan-diabetic rats compared to the control group. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and alkaline and acid phosphatases (AlP, AcP) activities were significantly (p<0.05) increased in plasma and testes of alloxan-diabetic rats, while these activities were decreased in liver compared with the control group. Brain LDH was significantly (p<0.05) increased. The concentration of thiobarbituric acid reactive substances and the activity of glutathione S-transferase in plasma, liver, testes, brain, and kidney were increased in alloxan-diabetic rats. Treatment of the diabetic rats with repeated doses of either garlic or onion juices could restore the changes of the above parameters to their normal levels. The present results showed that garlic and onion juices exerted antioxidant and antihyperglycemic effects and consequently may alleviate liver and renal damage caused by alloxan-induced diabetes.

  18. Effects of OPC-6535 on lipopolysaccharide-induced acute liver injury in the rat: involvement of superoxide and tumor necrosis factor-alpha from hepatic macrophages.

    PubMed

    Hasegawa, Tadashi; Sakurai, Kazushi; Kambayashi, Yasuhiro; Saniabadi, Abby R; Nagamoto, Hisashi; Tsukada, Katsuhiko; Takahashi, Atsushi; Kuwano, Hiroyuki; Nakano, Minoru

    2003-11-01

    The objective of this study was to investigate the effects of OPC-6535 on Propionibacterium acnes-primed and lipopolysaccharide-induced liver injury in the rat. P. acnes was administered intravenously to the rat at 16 mg/kg 7 days before the experiments. In liver perfusion experiments, lipopolysaccharide was mixed in perfusion buffer at 2.5 microg/mL. The chemiluminescence method and histochemical reduction of nitro blue tetrazolium were used for detecting superoxide. Release of cytokines into the perfusate was examined. In in vivo experiments, lipopolysaccharide was administered intravenously to the rat at 200 microg/kg. Concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and cytokines were determined in the plasma, and myeloperoxidase activity was measured in the liver tissue. OPC-6535 was given intravenously at 1 mg/kg 30 minutes before lipopolysaccharide challenge, and was then, in perfusion experiments, added to the buffer at 10 micromol/L. In perfusion experiments, P. acnes and lipopolysaccharide caused dramatic production of superoxide, tumor necrosis factor-alpha (TNF-alpha) and growth-related oncogene/cytokine-induced neutrophil chemoattractant-1 (GRO/CINC-1). Superoxide was mainly from hepatic macrophages. Treatment with OPC-6535 suppressed superoxide and TNF-alpha but did not affect GRO/CINC-1. In in vivo experiments, P. acnes and lipopolysaccharide increased the level of TNF-alpha, GRO/CINC-1, AST and ALT in the plasma, and myeloperoxidase activity in the liver. OPC-6535 reduced TNF-alpha, AST, and ALT, but did not affect GRO/CINC-1 or myeloperoxidase. Attenuation of liver injury by OPC-6535 is believed to be due to its inhibitory effects on superoxide and TNF-alpha production by hepatic macrophages in P. acnes- and lipopolysaccharide-treated rats.

  19. Antioxidant role of heme oxygenase-1 in prehepatic portal hypertensive rats

    PubMed Central

    Gonzales, Soledad; Pérez, María Julia; Perazzo, Juan C; Tomaro, María Luján

    2006-01-01

    AIM: To study the effect of bilirubin on the oxidative liver status and the activity and expression of heme oxygenase-1 (HO-1) in rat liver injury induced by prehepatic portal hypertension. METHODS: Wistar male rats, weighing 200-250 g, were divided at random into two groups: one group with prehepatic portal hypertension (PH) induced by regulated prehepatic portal vein ligation (PPVL) and the other group corresponded to sham operated rats. Portal pressure, oxidative stress parameters, antioxidant enzymes, HO-1 activity and expression and hepatic sinusoidal vasodilatation were measured. RESULTS: In PPVL rats oxidative stress was evidenced by a marked increase in thiobarbituric acid reactive substances (TBARS) content and a decrease in reduced glutathione (GSH) levels. The activities of liver antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were also diminished while activity and expression of HO-1 were enhanced. Administration of bilirubin (5 μmol/kg body weight) 24 h before the end of the experiment entirely prevented all these effects. Pretreatment with Sn-protoporphyrin IX (Sn-PPIX) (100 μg/kg body weight, i.p.), a potent inhibitor of HO, completely abolished the oxidative stress and provoked a slight decrease in liver GSH levels as well as an increase in lipid peroxidation. Besides, carbon monoxide, another heme catabolic product, induced a significant increase in sinusoidal hepatic areas in PPVL group. Pretreatment of PPVL rats with Sn-PPIX totally prevented this effect. CONCLUSION: These results suggest a beneficial role of HO-1 overexpression in prehepatic portal hypertensive rats. PMID:16830363

  20. Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats.

    PubMed

    Ahmed, Osama M; Hassan, Mohamed A; Abdel-Twab, Sanaa M; Abdel Azeem, Manal N

    2017-10-01

    The therapy of Type 2 Diabetes Mellitus (T2DM) stays a challenging issue. During the last decade, there has been an interest in the expansion of anti-diabetic drugs especially those of natural sources. Thus, the aim of this study was to assess the anti-hyperglycemic and the anti-hyperlipidemic effects as well as the anti-oxidant activities of navel orange hydroethanolic extract and its constituting flavonoids naringin and naringenin on nicotineamide (NA)/streptozotocin (STZ)-induced type 2 diabetic rats. To induce T2DM, 16h-fasted rats were intraperitoneally injected with STZ at dose of 50mg/kg body weight (b. w.), 15min after the intraperitoneal administration of NA (120mg/kg b. w.). The NA/STZ-induced type 2 diabetic rats were orally treated with navel orange peel hydroethanolic extract, naringin and narengenin at dose level of 100mg/kg b. w./day for 4 weeks. The treatments with navel orange peel hydroethanolic extract, naringin and narengenin potentially alleviated the lowered serum insulin and C-peptide levels, the depleted liver glycogen content, the elevated liver glucose-6-phosphatase and glycogen phosphorylase activities, the deteriorated serum lipid profile, and the suppressed liver antioxidant defense system of NA/STZ-induced type 2 diabetic rats. The treatments also enhanced the mRNA expression of insulin receptor β-subunit, GLUT4 and adiponectin in adipose tissue of STZ/NA-induced type 2 diabetic rats. In conclusion, the navel orange peel hydroethanolic extract, naringin and naringenin have potent anti-diabetic effects in NA/STZ-induced type 2 diabetic rats via their insulinotropic effects and insulin improving action which in turn may be mediated through enhancing insulin receptor, GLUT4 and adiponectin expression in adipose tissue. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Genistein modifies liver fibrosis and improves liver function by inducing uPA expression and proteolytic activity in CCl4-treated rats.

    PubMed

    Salas, Alfonso Leija; Montezuma, Tania Díaz; Fariña, German Garrido; Reyes-Esparza, Jorge; Rodríguez-Fragoso, Lourdes

    2008-01-01

    To evaluate the effect of genistein on the fibrosis and matrix degradation caused by experimentally induced fibrosis in rats. Hepatic fibrosis was brought about by chronic administration of carbon tetrachloride to rats. To evaluate the effect of genistein on liver fibrosis and function, total collagen content and proteolytic activity in the liver were quantified. Urokinase-type plasminogen activator (uPA) expression during experimental fibrosis was localized by immunohistochemistry. Histopathological changes were evaluated using light and electron microscopy. Animals with fibrosis and treated with genistein showed an important reduction (73%) in hepatic collagen content as well as an improvement in liver function (p < 0.001). Genistein increased the capacity of the liver to degrade type I collagen and Matrigel (3.1- and 3.7-fold, respectively; p < 0.001) in animals with liver fibrosis. Genistein increased the number of uPA-immunoreactive cells. The increase in the uPA expression correlated with an increase in proteolytic activity. Histological analysis revealed a reduction in the number of fiber septa in pericentral and perisinusoidal areas. Transmission electron micrographs of livers from animals with fibrosis and treated with genistein showed a reduction in the number of hepatic stellate cells activated and a smaller number of collagen fibers. Genistein is able to improve the liver after injury and fibrosis induced by chronic administration of carbon tetrachloride. This finding suggests that genistein has antifibrogenic potential and could therefore be useful for treating chronic liver disease. (c) 2008 S. Karger AG, Basel.

  2. Curcumin Attenuates Iron Accumulation and Oxidative Stress in the Liver and Spleen of Chronic Iron-Overloaded Rats

    PubMed Central

    Badria, Farid A.; Ibrahim, Ahmed S.; Badria, Adel F.; Elmarakby, Ahmed A.

    2015-01-01

    Objectives Iron overload is now recognized as a health problem in industrialized countries, as excessive iron is highly toxic for liver and spleen. The potential use of curcumin as an iron chelator has not been clearly identified experimentally in iron overload condition. Here, we evaluate the efficacy of curcumin to alleviate iron overload-induced hepatic and splenic abnormalities and to gain insight into the underlying mechanisms. Design and Methods Three groups of male adult rats were treated as follows: control rats, rats treated with iron in a drinking water for 2 months followed by either vehicle or curcumin treatment for 2 more months. Thereafter, we studied the effects of curcumin on iron overload-induced lipid peroxidation and anti-oxidant depletion. Results Treatment of iron-overloaded rats with curcumin resulted in marked decreases in iron accumulation within liver and spleen. Iron-overloaded rats had significant increases in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver and spleen when compared to control group. The effects of iron overload on lipid peroxidation and NO levels were significantly reduced by the intervention treatment with curcumin (P<0.05). Furthermore, the endogenous anti-oxidant activities/levels in liver and spleen were also significantly decreased in chronic iron overload and administration of curcumin restored the decrease in the hepatic and splenic antioxidant activities/levels. Conclusion Our study suggests that curcumin may represent a new horizon in managing iron overload-induced toxicity as well as in pathological diseases characterized by hepatic iron accumulation such as thalassemia, sickle cell anemia, and myelodysplastic syndromes possibly via iron chelation, reduced oxidative stress derived lipid peroxidation and improving the body endogenous antioxidant defense mechanism. PMID:26230491

  3. Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats.

    PubMed

    Jayakumar, Subramaniyan; Madankumar, Arumugam; Asokkumar, Selvamani; Raghunandhakumar, Subramanian; Gokula dhas, Krishnan; Kamaraj, Sattu; Divya, Michael Georget Josephine; Devaki, Thiruvengadam

    2012-01-01

    Antioxidants are one of the key players in tumorigenesis, several natural and synthetic antioxidants were shown to have anticancer effects. The aim of the present study is to divulge the chemopreventive nature of carvacrol during diethylnitrosamine (DEN)-induced liver cancer in male wistar albino rats. Administration of DEN to rats resulted in increased relative liver weight and serum marker enzymes aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma glutamyl transpeptidase (γGT). The levels of lipid peroxides elevated (in both serum and tissue) with subsequent decrease in the final body weight and tissue antioxidants like superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR). Carvacrol supplementation (15 mg/kg body weight) significantly attenuated these alterations, thereby showing potent anticancer effect in liver cancer. Histological observations and transmission electron microscopy studies were also carried out, which added supports to the chemopreventive action of the carvacrol against DEN-induction during liver cancer progression. These findings suggest that carvacrol prevents lipid peroxidation, hepatic cell damage, and protects the antioxidant system in DEN-induced hepatocellular carcinogenesis.

  4. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats.

    PubMed

    Farias Santos, Juliana; Suruagy Amaral, Monique; Lima Oliveira, Suzana; Porto Barbosa, Júnia; Rego Cabral, Cyro; Sofia Melo, Ingrid; Bezerra Bueno, Nassib; Duarte Freitas, Johnatan; Goulart Sant'ana, Antônio; Rocha Ataíde, Terezinha

    2015-05-01

    There are several standard diets for animals used in scientific research, usually conceived by scientific institutions. The AIN-93 diet is widely used, but there are some reports of fatty liver in Wistar rats fed this diet. We aimed to evaluate the hepatic repercussions of the AIN-93 diet intake in Wistar rats. Forty newly-weaned 21-day-old male Wistar rats were fed either the AIN-93 diet or a commercial diet for either 1 month or 4 months. Weight gain, serum biochemistry, hepatic histology, and hepatic fatty acid profile were analyzed. Hepatic steatosis was observed, especially in the group fed the AIN-93 diet. Serum blood glucose, absolute and relative liver weight and hepatic levels of oleic, palmitoleic, stearic, and palmitic fatty acids were related to the observed steatosis, while lipidogram and serum markers of liver function and injury were not. AIN-93 diet induced acute hepatic steatosis in Wistar rats, which may compromise its use as a standard diet for experimental studies with rodents. The hepatic fatty acid profile was associated with steatosis, with possible implications for disease prognosis. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Hepatoprotective effect of Ginkgoselect Phytosome in rifampicin induced liver injury in rats: evidence of antioxidant activity.

    PubMed

    Naik, Suresh R; Panda, Vandana S

    2008-09-01

    The protective effects of Ginkgoselect Phytosome (GBP) on Rifampicin (RMP) induced hepatotoxicity and the probable mechanism(s) involved in this protection were investigated in rats. Liver damage was induced in Wistar rats by administering rifampicin (500 mg/kg, p.o.) daily for 30 days. Simultaneously, GBP at 25 mg/kg and 50 mg/kg, and the reference drug silymarin (100 mg/kg) were administered orally for 30 days/daily to RMP treated rats. Levels of marker enzymes (SGOT, SGPT and SALP), albaumin (Alb) and total proteins (TP) were assessed in serum. The effects of GBP on lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR) were assayed in liver homogenates to evaluate antioxidant activity. GBP (25 and 50 mg/kg) and silymarin elicited a significant hepatoprotective activity by lowering the levels of serum marker enzymes and lipid peroxidation and elevated the levels of GSH, SOD, CAT, GPX, GR, Alb and TP in a dose dependant manner. The present findings suggest that the hepatoprotective effect of GBP in RMP induced oxidative damage may be related to its antioxidant and free radical scavenging activity.

  6. Enhanced hepatic insulin signaling in the livers of high altitude native rats under basal conditions and in the livers of low altitude native rats under insulin stimulation: a mechanistic study.

    PubMed

    Al Dera, Hussain; Eleawa, Samy M; Al-Hashem, Fahaid H; Mahzari, Moeber M; Hoja, Ibrahim; Al Khateeb, Mahmoud

    2017-07-01

    This study was designed to investigate the role of the liver in lowering fasting blood glucose levels (FBG) in rats native to high (HA) and low altitude (LA) areas. As compared with LA natives, besides the improved insulin and glucose tolerance, HA native rats had lower FBG, at least mediated by inhibition of hepatic gluconeogenesis and activation of glycogen synthesis. An effect that is mediated by the enhancement of hepatic insulin signaling mediated by the decreased phosphorylation of TSC induced inhibition of mTOR function. Such effect was independent of activation of AMPK nor stabilization of HIF1α, but most probably due to oxidative stress induced REDD1 expression. However, under insulin stimulation, and in spite of the less activated mTOR function in HA native rats, LA native rats had higher glycogen content and reduced levels of gluconeogenic enzymes with a more enhanced insulin signaling, mainly due to higher levels of p-IRS1 (tyr612).

  7. Protective and Curative Effects of the Sea Cucumber Holothuria atra Extract against DMBA-Induced Hepatorenal Diseases in Rats

    PubMed Central

    Dakrory, Ahmed I.; Fahmy, Sohair R.; Soliman, Amel M.; Mohamed, Ayman S.; Amer, Sayed A. M.

    2015-01-01

    Oxidative stress is a common mechanism contributing to the initiation and progression of hepatic damage. Hence there is a great demand for the development of agents with potent antioxidant effect. The aim of the present study is to evaluate the efficacy of Holothuria atra extract (HaE) as an antioxidant against 7,12-dimethylbenz[a]anthracene- (DMBA-) induced hepatorenal dysfunction. Experimental animals were divided into two main groups: protective and curative. Each group was then divided into five subgroups pre- or posttreated either with distilled water (DMBA subgroups) or with HaE (200 mg/kg body weight) for seven and fourteen days. Single oral administration of DMBA (15 mg/kg body weight) to Wistar rats resulted in a significant increase in the serum liver enzymes and kidney function's parameters. DMBA increased level of liver malondialdehyde (MDA), decreased levels of reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) in the liver tissue, and induced liver histopathological alterations. Pre- or posttreatment with HaE orally for 14 days significantly reversed the hepatorenal alterations induced following DMBA administration. In conclusion, HaE exhibits good hepatoprotective, curative, and antioxidant potential against DMBA-induced hepatorenal dysfunction in rats that might be due to decreased free radical generation. PMID:25821811

  8. Protective effects of sodium selenite on lead nitrate-induced hepatotoxicity in diabetic and non-diabetic rats.

    PubMed

    Kalender, Suna; Apaydin, Fatma Gökçe; Baş, Hatice; Kalender, Yusuf

    2015-09-01

    In the present study, the effect of sodium selenite on lead induced toxicity was studied in Wistar rats. Sodium selenite and lead nitrate were administered orally for 28 days to streptozotocin induced diabetic and non-diabetic rats. Eight groups of rats were used in the study: control, sodium selenite, lead nitrate, lead nitrate+sodium selenite, streptozotocin-induced diabetic-control, diabetic-sodium selenite, diabetic-lead nitrate, diabetic-lead nitrate+sodium selenite groups. Serum biochemical parameters, lipid peroxidation, antioxidant enzymes and histopathological changes in liver tissues were investigated in all groups. There were statistically significant changes in liver function tests, antioxidant enzyme activities and lipid peroxidation levels in lead nitrate and sodium selenite+lead nitrate treated groups, also in diabetic and non-diabetic groups. Furthermore, histopathological alterations were demonstrated in same groups. In the present study we found that sodium selenite treatment did not show completely protective effect on diabetes mellitus caused damages, but diabetic rats are more susceptible to lead toxicity than non-diabetic rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dimebon Inhibits Calcium-Induced Swelling of Rat Brain Mitochondria But Does Not Alter Calcium Retention or Cytochrome C Release

    PubMed Central

    Naga, Kranthi Kumari

    2012-01-01

    Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria. PMID:20625939

  10. Dimebon inhibits calcium-induced swelling of rat brain mitochondria but does not alter calcium retention or cytochrome C release.

    PubMed

    Naga, Kranthi Kumari; Geddes, James W

    2011-03-01

    Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria.

  11. Different mutation patterns of mitochondrial DNA displacement-loop in hepatocellular carcinomas induced by N-nitrosodiethylamine and a choline-deficient l-amino acid-defined diet in rats.

    PubMed

    Onishi, Mariko; Sokuza, Yui; Nishikawa, Tomoki; Mori, Chiharu; Uwataki, Kimiko; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-10-12

    Mutations of the mitochondria DNA (mtDNA) displacement loop (D-loop) were investigated to clarify different changes of exogenous and endogenous liver carcinogenesis in rats. We induced hepatocellular carcinomas (HCCs) in rats with N-nitrosodiethylamine (DEN) and a choline-deficient l-amino acid-defined (CDAA) diet. DNAs were extracted from 10 HCCs induced by DEN and 10 HCCs induced by the CDAA diet. To identify mutations in mtDNA D-loop, polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis, followed by nucleotide sequencing, was performed. Mutations were detected in 5 out of 10 HCCs (50%) induced by DEN. Four out of 5 mutations were G/C to A/T transitions at positions 15707, 15717, 15930, and 16087, and one T/A to C/G transition at position 15559. By contrast, no mutations were found in 10 HCCs induced by the CDAA diet. These results demonstrated that mutations in mtDNA D-loop occur in rat HCCs induced by DEN but not by the CDAA diet, suggesting that mtDNA D-loop is a target of exogenous liver carcinogenesis in rats.

  12. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster (CHO) Cells With and Without Metabolic Activation, Test Acticle: Ethylenediamine Dinitrate (EDDN)

    DTIC Science & Technology

    2010-02-25

    The metabolic activation mixture was prepared by SITEK Research Laboratories and it consisted of phenobarbital -S,6-Benzotlavone (phenobarbitaVB...Years I June 19,2011 38.5 mg/mL in 0.15 KCI Inducing agents: Phenobarbital (75 mg/kg body weight); b- naph.lhoflavone (80 mg/kg body weight...intraperitoneal injection once per day from days I to 4 ( phenobarbital ), and from day 3 to day 4 (b- naphthoflavone). Organs harvested for S9 preparation on

  13. Protective Effect of Zingiber Officinale against CCl4-Induced Liver Fibrosis Is Mediated through Downregulating the TGF-β1/Smad3 and NF-ĸB/IĸB Pathways.

    PubMed

    Hasan, Iman H; El-Desouky, M A; Hozayen, Walaa G; Abd el Aziz, Ghada M

    2016-01-01

    No ideal hepatoprotective agents are available in modern medicine to effectively prevent liver disorders. In this study, we aimed at evaluating the potential of Zingiber officinale in the regression of liver fibrosis and its underlining mechanism of action. To induce liver fibrosis, male Wistar rats received CCl4 (2 ml/kg/2 times/week; i.p.), with and without 300 or 600 mg/kg Z. officinale extract daily through oral gavage. To assess the protective effect of Z. officinale, liver function parameters, histopathology, inflammatory markers and gene expression of transforming growth factor-beta 1 (TGF-β1)/Smad3 and nuclear factor-kappa B (NF-ĸB)/IĸB pathways were analyzed. Results demonstrate that Z. officinale extract markedly prevented liver injury as evident by the decreased liver marker enzymes. Concurrent administration of Z. officinale significantly protected against the CCl4-induced inflammation as showed by the decreased pro-inflammatory cytokine levels as well as the downregulation of the NF-ĸB)/IĸB and TGF-β1/Smad3 pathways in CCl4-administered rats. In conclusion, our study provides evidence that the protective effect of Z. officinale against rat liver fibrosis could be explained through its ability to modulate the TGF-β1/Smad3 and NF-ĸB)/IĸB signaling pathways. © 2015 S. Karger AG, Basel.

  14. Protective Effects of Pinus halepensis L. Essential Oil on Aspirin-induced Acute Liver and Kidney Damage in Female Wistar Albino Rats.

    PubMed

    Bouzenna, Hafsia; Samout, Noura; Amani, Etaya; Mbarki, Sakhria; Tlili, Zied; Rjeibi, Ilhem; Elfeki, Abdelfattah; Talarmin, Hélène; Hfaiedh, Najla

    2016-08-01

    Aromatic and medicinal plants are sources of natural antioxidants thanks to their secondary metabolites. Administration of Pinus halepensis L. (Pinaceae family) in previous studies was found to alleviate deleterious effects of aspirin-induced damage on liver and kidney. The present study, carried out on female rats, evaluates the effects of P. halepensis L. essential oil (EOP) on aspirin (A)-induced damage to liver and kidney. The animals used in this study were rats (n=28) divided into 4 groups of 7 each: (1) a control group (C); (2) a group given NaCl for 56 days then treated with (A) (600 mg/kg) for 4 days (A); (3) a group fed with (EOP) for 56 days then (A) for 4 days; and a group fed with only (EOP) for 56 days and given NaCl for 4 days. Estimations of biochemical parameters in blood were determined using kit methods (Spinreact). Lipid peroxidation levels (TBARS), superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) activities were determined. Histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin embeddeding and hematoxylin-eosin staining. Under our experimental conditions, Aspirin at dose 600 mg/kg body weight induced an increase of serum biochemical parameters as well as an oxidative stress in both organs. An increase occurred in TBARS by 108% and 55%, a decrease in SOD by 78% and 53%, CAT by 53% and 78%, and GPx by 78% and 51% in liver and kidney, respectively, compared to control. Administration of EOP given to rats enabled correction in these parameters. It could be concluded that the treatment with P. halepensis L. essential oil inhibited aspirin-induced liver and kidney damage.

  15. Protective effect of Urtica dioica on liver damage induced by biliary obstruction in rats.

    PubMed

    Oguz, Serhat; Kanter, Mehmet; Erboga, Mustafa; Ibis, Cem

    2013-10-01

    The aim of this study was to evaluate the possible protective effects of Urtica dioica (UD) against liver damage in the common bile duct-ligated rats. A total of 24 male Sprague Dawley rats were divided into three groups, namely, control, bile duct ligation (BDL) and BDL + received UD groups, containing eight animals in each group. The rats in UD-treated groups were given UD oils (2 ml/kg) once a day intraperitoneally for 2 weeks starting 3 days prior to BDL operation. The change demonstrating the bile duct proliferation and fibrosis in expanded portal tracts includes the extension of proliferated bile ducts into the lobules; inflammatory cell infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with UD attenuated alterations in liver histology. The α-smooth muscle actin, cytokeratin-positive ductular proliferation and the activity of terminal deoxynucleotidyl transferase dUTP nick end labeling in the BDL were observed to be reduced with the UD treatment. The data indicate that UD attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis.

  16. Free phenolic acids from the seaweed Halimeda monile with antioxidant effect protecting against liver injury.

    PubMed

    Mancini-Filho, Jorge; Novoa, Alexis Vidal; González, Ana Elsa Batista; de Andrade-Wartha, Elma Regina S; de O e Silva, Ana Mara; Pinto, José Ricardo; Mancini, Dalva Assunção Portari

    2009-01-01

    Phenolic compounds are found in seaweed species together with other substances presenting antioxidant activity. The objective of this work was to evaluate the antioxidant activity of the free phenolic acids (FPA) fraction from the seaweed Halimeda monile, and its activity to protect the expression of hepatic enzymes in rats, under experimental CCl4 injury. The antioxidant activity was measured by the DPPH method. The FPA fraction (80 mg/kg, p.o.) was administered during 20 consecutive days to rats. The peroxidation was performed by thiobarbituric acid reactive substances (TBARS). The SOD and CAT enzymatic expressions were measured by RT/PCR. The histology technique was used to evaluate liver injuries. The expression of both, CAT and SOD genes, was more preserved by FPA. Only partial injury could be observed by histology in the liver of rats receiving FPA as compared with the control group; and CCl4 administration induced 60% more peroxidation as compared with the rats receiving FPA. These data suggest that FPA could modulate the antioxidant enzymes and oxidative status in the liver through protection against adverse effects induced by chemical agents.

  17. The protective effect of 1alpha, 25-dihydroxyvitamin d3 and metformin on liver in type 2 diabetic rats.

    PubMed

    Elattar, Samah; Estaphan, Suzanne; Mohamed, Enas A; Elzainy, Ahmed; Naguib, Mary

    2017-10-01

    There is an accumulating evidence suggesting an immunomodulatory role of 1α,25(OH) 2 D3. Altered 1α,25(OH) 2 D3 level may play a role in the development of T2DM and contribute to the pathogenesis of liver diseases. Our study was designed to study and compare the effect of metformin and 1α,25(OH) 2 D3 supplementation on liver injury in type 2 diabetic rat. Sixty male Albino rats were divided into 5 groups; group 1: control rats. the remaining rats were fed high fat diet for 2 weeks and injected with streptozotocin (35mg/kg BW, i.p.) to induce T2DM and were divided into: group 2: untreated diabetic rats, group 3: diabetic rats treated by metformin (100mg/kgBW/d, orally), group 4: diabetic rats supplemented by 1α,25(OH) 2 D3 (0.5μg/kg BW, i.p.) 3 times weekly and group 5: supplemented by both 1α,25(OH) 2 D3 and metformin. Eight weeks later, serum glucose and insulin levels were measured, HOMA IR was calculated, lipid profile, Ca2+, ALT and AST were estimated. Liver specimens were taken to investigate PPAR-α (regulator of lipid metabolism), NF-κB p65, caspase 3 and PCNA (proliferating cell nuclear antigen) and for histological examination. The liver enzymes were elevated in the diabetic rats and the histological results revealed an injurious effect of diabetes on the liver. 1α,25(OH) 2 D3, metformin and both drugs treatment significantly improved liver enzymes as compared to the untreated rats. The improvement was associated with a significant improvement in the glycemic control, lipid profile and serum Ca2+ with a significant reduction in NF-κB p65 and caspase 3 and increased PPAR-α, and PCNA expression as compared to the untreated group. 1α,25(OH) 2 D3 induced a slightly better effect as compared to metformin. Both agents together had a synergistic action and almost completely protected the liver. Histological results confirmed the biochemical findings. Our results showed a protective effect of 1α,25(OH) 2 D3 and metformin on liver in diabetic rats as indicated by an improvement of the level of the liver enzymes, decreased apoptosis and increased proliferation and this was confirmed histologically, with modulating NFkB and PPAR-α. Both agents together had a synergistic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Neutrophil elastase contributes to the development of ischemia/reperfusion-induced liver injury by decreasing the production of insulin-like growth factor-I in rats.

    PubMed

    Kawai, Miho; Harada, Naoaki; Takeyama, Hiromitsu; Okajima, Kenji

    2010-06-01

    Neutrophil elastase (NE) decreases the endothelial production of prostacyclin (PGI(2)) through the inhibition of endothelial nitric oxide synthase (NOS) activation and thereby contributes to the development of ischemia/reperfusion (I/R)-induced liver injury. We previously demonstrated that calcitonin gene-related peptide (CGRP) released from sensory neurons increases the insulin-like growth factor- I (IGF-I) production and thereby reduces I/R-induced liver injury. Because PGI(2) is capable of stimulating sensory neurons, we hypothesized that NE contributes to the development of I/R-induced liver injury by decreasing IGF-I production. In the present study, we examined this hypothesis in rats subjected to hepatic I/R. Ischemia/reperfusion-induced decreases of hepatic tissue levels of CGRP and IGF-I were prevented significantly by NE inhibitors, sivelestat, and L-658, 758, and these effects of NE inhibitors were reversed completely by the nonselective cyclooxygenase inhibitor indomethacin (IM) and the nonselective NOS inhibitor L-NAME but not by the selective inducible NOS inhibitor 1400W. I/R-induced increases of hepatic tissue levels of caspase-3, myeloperoxidase and the number of apoptotic cells were inhibited by NE inhibitors, and these effects of NE inhibitors were reversed by IM and L-NAME but not by 1400W. Administration of iloprost, a stable PGI(2) analog, produced effects similar to those induced by NE inhibitors. Taken together, these observations strongly suggest that NE may play a critical role in the development of I/R-induced liver injury by decreasing the IGF-I production through the inhibition of sensory neuron stimulation, which may lead to an increase of neutrophil accumulation and hepatic apoptosis through activation of caspase-3 in rats.

  19. Effects of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) on hyperglycemia in streptozotocin-induced diabetic rats.

    PubMed

    Hirotani, Yoshihiko; Ikeda, Takuya; Yamamoto, Kaoru; Kurokawa, Nobuo

    2007-05-01

    The present study investigated the effects of Hachimi-jio-gan (HJ) on diabetic hyperglycemia in streptozotocin (STZ)-induced diabetic rats. After STZ administration, rats had free access to pellets containing 1% HJ extract powder for four weeks. HJ markedly suppressed hyperglycemia in STZ-induced diabetic rats at three and four weeks after the start of administration. There were also significant increases in serum and pancreatic immunoreactive insulin levels in STZ and HJ co-administering rats. However, in the present study, the number of beta cells in the pancreatic Langerhans' islets did not increase. Next, in order to investigate the action mechanism besides the glycemic control action of insulin, the expression of glucose transporter 2 (GLUT2) protein, which is involved in glucose uptake and release in the liver, was investigated. GLUT2 protein expression was increased by STZ administration but was normalized after four weeks of HJ administration. Therefore, irrespective of the structural changes in pancreatic beta-cells due to STZ, HJ increased insulin production and secretion by the pancreas and significantly suppressed GLUT2 synthesis in the liver. Amylase secretion from the pancreas was measured to assess pancreatic secretion. Amylase activity was decreased by STZ but was increased by HJ. Therefore, the effects of HJ on STZ-induced hyperglycemia in rats could be summarized as follows: besides increasing insulin synthesis and release, HJ normalizes GLUT2 protein expression in the liver to suppress hyperglycemia. Hence, the results of the present study suggest for the first time that HJ affects not only the production and secretion of insulin, but also the release of glucose from the liver.

  20. Effect of Daisaikoto on Expressions of SIRT1 and NF-kappaB of Diabetic Fatty Liver Rats Induced by High-Fat Diet and Streptozotocin

    PubMed Central

    Qian, Weibin; Cai, Xinrui; Zhang, Xinying; Wang, Yingying; Qian, Qiuhai; Hasegawa, Junichi

    2016-01-01

    Background Daisaikoto (DSKT), a classical traditional Chinese herbal formula, has been used for treating digestive diseases for 1800 years in China. Therefore, in this study, we are going to investigate the effect of DSKT on diabetic fatty liver rats induced by a high-fat diet and streptozotocin (STZ), and the effects of DSKT on silent mating type information regulation 2 homolog 1 (SIRT1) and nuclear factor kappa B (NF-kappaB). Methods Diabetic fatty liver rat model was selected to establish a high-fat diet and STZ. Sixty Wistar rats were divided into six groups (n = 10): control group, high-fat diet + STZ group, simvastatin treatment group, DSKT low dose, medial dose and high dose treatment groups. After 8 weeks of drug intervention, body and liver weights, blood chemistry, blood glucose and insulin were examined. The expressions of sirtuin 1 and NF-kappaB in the liver were observed by RT-PCR and immunohistochemistry, respectively. Results A high-fat diet increased body, liver weights, and serum cholesterol concentrations. Intraperitoneal injection of STZ increased blood glucose and decreased body weights. DSKT improved them. Homeostasis model assessment-estimated insulin resistance (HOMA-IR) indices were increased in the high-fat diet groups. DSKT improved them too. In histological examinations of the liver, we observed a significant improvement after treatment. Immunostaining expression of NF-kappaB in the liver was improved by DSKT and simvastatin. The mRNA expressions of SIRT1 in the liver were increased by DSKT and simvastatin. Conclusion We have demonstrated that DSKT is capable of reversing dyslipidemia and insulin resistance induced by a high-fat diet and STZ. High dose DSKT reveals a stronger effect than simvastatin on the expressions of SIRT1 and NF-kappaB. Furthermore, DSKT has shown a strong dose-depended protective effect on diabetic fatty liver. PMID:27493486

Top