Deng, Junlin; Xu, Zhou; Xiang, Chunrong; Liu, Jing; Zhou, Lijun; Li, Tian; Yang, Zeshen; Ding, Chunbang
2017-07-01
Ultrasonic-assisted extraction (UAE) and maceration extraction (ME) were optimized using response surface methodology (RSM) for total phenolic compounds (TPC) from fresh olives. The main phenolic compounds and antioxidant activity of TPC were also investigated. The optimized result for UAE was 22mL/g of liquid-solid ratio, 47°C of extraction temperature and 30min of extraction time, 7.01mg/g of yielding, and for ME was 24mL/g of liquid-solid ratio, 50°C of extraction temperature and 4.7h of extraction time, 5.18mg/g of yielding. The HPLC analysis revealed that the extracts by UAE and ME possessed 14 main phenolic compounds, and UAE exhibited more amounts of all phenols than ME. The most abundant phenolic compounds in olive extracts were hydroxytyrosol, oleuropein and rutin. Both extracts showed excellent antioxidant activity in a dose-dependent manner. Taken together, UAE could effectively increase the yield of phenolic compounds from olives. In addition these phenolic compounds could be used as a potential source of natural antioxidants. Copyright © 2017 Elsevier B.V. All rights reserved.
Weidner, Stanisław; Powałka, Anna; Karamać, Magdalena; Amarowicz, Ryszard
2012-01-01
Phenolic compounds were extracted from three wild grapevine species: Vitis californica, V. riparia and V. amurensis seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing the Folin-Ciocalteu’s phenol reagent while the content of tannins was assayed with the vanillin and BSA precipitation methods. Additionally, the DPPH free radical scavenging activity and the reduction power of the extracts were measured. The RP-HPLC method was applied to identify the phenolic compounds in the extracts, such as phenolic acids and catechins. The seeds contained large amounts of tannins, catechins and gallic acid and observable quantities of p-coumaric acid. The total content of phenolic compounds and tannins was similar in the extracts from V. californica and V. riparia seeds. However, the total content of total phenolic compounds and tannins in the extracts from V. californica and V. riperia seeds were about two-fold higher than that in the extracts from V. amurensis seeds. Extracts from seeds of the American species (V. californica and V. riparia) contained similarly high concentrations of tannins, whereas extracts from seeds of V. amurensis had approximately half that amount of these compounds. The content of catechin and epicatechin was similar in all extracts. The highest DPPH• anti-radical scavenging activity was observed in the acetonic and methanolic extracts of V. californica and V. riparia seeds— while the acetonic extract from the V. californica seeds was the strongest reducing agent. PMID:22489161
2014-01-01
Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the alkaline hydrolysis method. Conclusions The free and bound phenolic contents and profiles and antioxidant activities of the extracts were found to be dependent on the extraction solvent used. Litchi exhibited good cellular antioxidant activity and could be a potentially useful natural source of antioxidants. PMID:24405977
Fanali, Chiara; Tripodo, Giusy; Russo, Marina; Della Posta, Susanna; Pasqualetti, Valentina; De Gara, Laura
2018-03-22
Hazelnut kernel phenolic compounds were recovered applying two different extraction approaches, namely ultrasound-assisted solid/liquid extraction (UA-SLE) and solid-phase extraction (SPE). Different solvents were tested evaluating total phenolic compounds and total flavonoids contents together to antioxidant activity. The optimum extraction conditions, in terms of the highest value of total phenolic compounds extracted together to other parameters like simplicity and cost were selected for method validation and individual phenolic compounds analysis. The UA-SLE protocol performed using 0.1 g of defatted sample and 15 mL of extraction solvent (1 mL methanol/1 mL water/8 mL methanol 0.1% formic acid/5 mL acetonitrile) was selected. The analysis of hazelnut kernel individual phenolic compounds was obtained by HPLC coupled with DAD and MS detections. Quantitative analysis was performed using a mixture of six phenolic compounds belonging to phenolic classes' representative of hazelnut. Then, the method was fully validated and the resulting RSD% values for retention time repeatability were below 1%. A good linearity was obtained giving R 2 no lower than 0.997.The accuracy of the extraction method was also assessed. Finally, the method was applied to the analysis of phenolic compounds in three different hazelnut kernel varieties observing a similar qualitative profile with differences in the quantity of detected compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal
2018-02-13
This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.
Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan
2018-06-01
The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Delgado-Adámez, Jonathan; Baltasar, M Nieves Franco; Yuste, María Concepción Ayuso; Martín-Vertedor, Daniel
2014-01-01
The aim of this research was to evaluate strategies for the development of a virgin olive oil (VOO) enriched with aqueous extracts of olive leaf and cake to increase the necessary dose in the diet of phenolic compounds with a natural product, as phenolic compounds are involved on the healthy properties of olive oil. Different extraction procedures were evaluated with the aim of increasing the phenol content and antioxidant potential of extracts of olive leaf and cake. As leaves extract presented a higher total phenolic content, it was characterized in order to determine its phenolic profile, and was employed to enrich VOO. Diverse procedures were used to prepare enriched VOO with the leaves extract, and finally the effects of phenol enrichment were evaluated based on the antioxidant potential and oxidative stability of the prepared phenol-enriched virgin olive oils. These enriched VOOs increased significantly the content in phenolic compounds, antioxidant potential and oxidative stability 40, 4 and 1.5 fold more, respectively, than the Control oil. Furthermore, the addition of lecithin had a positive effect both on the phenolic compounds content, and on the antioxidant potential of the oils. Besides, the use of the olive leaves extract, with and without lecithin respectively, supposes a strategy potential for reducing the harmful effects that inflicts long-term preservation of VOOs and its possible deterioration.
Pérez-Ramírez, Iza F; Reynoso-Camacho, Rosalía; Saura-Calixto, Fulgencio; Pérez-Jiménez, Jara
2018-01-24
Grape and pomegranate are rich sources of phenolic compounds, and their derived products could be used as ingredients for the development of functional foods and dietary supplements. However, the profile of nonextractable or macromolecular phenolic compounds in these samples has not been evaluated. Here, we show a comprehensive characterization of extractable and nonextractable phenolic compounds of a grape/pomegranate pomace dietary supplement using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and matrix-assisted laser desorption/ionization (MALDI)-TOF techniques. The main extractable phenolic compounds were several anthocyanins (principally malvidin 3-O-glucoside) as well as gallotannins and gallagyl derivatives; some phenolic compounds were reported in grape or pomegranate for the first time. Additionally, there was a high proportion of nonextractable phenolic compounds, including vanillic acid, and dihydroxybenzoic acid. Unidentified polymeric structures were detected by MALDI-TOF MS analysis. This study shows that mixed grape and pomegranate pomaces are a source of different classes of phenolic compounds including a high proportion of nonextractable phenolic compounds.
Peiretti, Pier Giorgio; Meineri, Giorgia; Gai, Francesco; Longato, Erica; Amarowicz, Ryszard
2017-09-01
Phenolic compounds were extracted from pumpkin (Cucurbita pepo) seed and amaranth (Amaranthus caudatus) grain into 80% (v/v) methanol. The extracts obtained were characterised by the contents of total phenolic compounds (TPC), trolox equivalent antioxidant capacity (TEAC), ferric-reducing antioxidant power (FRAP) and antiradical activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH · ) radical. The content of individual phenolic compounds was determined by HPLC-DAD method. Pumpkin seeds showed the higher content of TPC than that from amaranth. The TEAC values of both extracts were similar each other. The lower value of FRAP was observed for pumpkin seed. Phenolic compound present in amaranth grain exhibited strongest antiradical properties against DPPH radical. Several peaks were present on the HPLC chromatograms of two extracts. The UV-DAD spectra confirmed the presence of vanillic acid derivatives in the amaranth grain. The three main phenolic compound present in pumpkin seed were characterised by UV-DAD spectra with maximum at 258, 266 and 278 nm.
Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco
2016-09-01
This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.
Dudonné, Stéphanie; Dal-Pan, Alexandre; Dubé, Pascal; Varin, Thibault V; Calon, Frédéric; Desjardins, Yves
2016-08-10
The low bioavailability of dietary phenolic compounds, resulting from poor absorption and high rates of metabolism and excretion, is a concern as it can limit their potential beneficial effects on health. Targeted metabolomic profiling in plasma and feces of mice supplemented for 15 days with a blueberry extract, a grape extract or their combination revealed significantly increased plasma concentrations (3-5 fold) of blueberry phenolic metabolites in the presence of a co-ingested grape extract, associated with an equivalent decrease in their appearance in feces. Additionally, the repeated daily administration of the blueberry-grape combination significantly increased plasma phenolic concentrations (2-3-fold) compared to animals receiving only a single acute dose, with no such increase being observed with individual extracts. These findings highlight a positive interaction between blueberry and grape constituents, in which the grape extract enhanced the absorption of blueberry phenolic compounds. This study provides for the first time in vivo evidence of such an interaction occurring between co-ingested phenolic compounds from fruit extracts leading to their improved bioavailability.
Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Quirantes-Piné, Rosa; Segura-Carretero, Antonio
2018-04-16
The aim of the present study was to optimize the extraction of phenolic compounds in avocado peel using pressurized liquid extraction (PLE) with GRAS solvents. Response surface methodology (RSM) based on Central Composite Design 2 2 model was used in order to optimize PLE conditions. Moreover, the effect of air drying temperature on the total polyphenol content (TPC) and individual phenolic compounds concentration were evaluated. The quantification of individual compounds was performed by HPLC-DAD-ESI-TOF-MS. The optimized extraction conditions were 200°C as extraction temperature and 1:1 v/v as ethanol/water ratio. Regarding to the effect of drying, the highest TPC was obtained with a drying temperature of 85°C. Forty seven phenolic compounds were quantified in the obtained extracts, showing that phenolic acids found to be the more stables compounds to drying process, while procyanidins were the more thermolabiles analytes. To our knowledge, this is the first available study in which phenolic compounds extraction was optimized using PLE and such amount of phenolic compounds was quantified in avocado peel. These results confirm that PLE represents a powerful tool to obtain avocado peel extracts with high concentration in bioactive compounds suitable for its use in the food, cosmetic or pharmaceutical sector. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Brnčić, Mladen; Dujmić, Filip; Rimac Brnčić, Suzana
2015-04-01
The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.
Yun, K W; Choi, S K
2002-02-01
The effects of an aqueous extract of Artemisia princeps var. orientalis and two phenolic compounds on mycorrhizal colonization and plant growth have been investigated. Greenhouse studies showed that the inhibitory effect of the extract on mycorrhizal colonization and plant growth increased in proportion to the concentration of the extract. When the mycorrhizal test plants were treated with an increasing concentration of phenolic compounds, the mycorrhizal colonization in roots of the test plant and the plant growth were decreased. There were strong indications that mycorrhizal fungi mitigated the inhibitory influence of shoot extract of A. princeps var. orientalis and phenolic compounds.
Tripodo, Giusy; Ibáñez, Elena; Cifuentes, Alejandro; Gilbert-López, Bienvenida; Fanali, Chiara
2018-01-03
Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yingngam, Bancha; Monschein, Marlene; Brantner, Adelheid
2014-09-01
To optimize the processing parameters for phenolic compounds extracted from Cratoxylum formosum ssp. formosum leaves using an ultrasound-assisted extraction and to evaluate its protective ability against H2O2-induced cell death. The influence of three independent variables including ethanol concentration (%), extraction temperature (°C) and extraction time (min) on the extraction yield of phenolic compounds were optimized using a central composite design-based response surface methodology. The obtained extract was assessed for its antioxidant activity by DPPH(•) and ABTS(•)(+) methods. Cellular protective ability against H2O2-induced cell death was evaluated on HEK293 cells using the MTT assay. The optimal conditions to achieve maximal yields of phenolic compounds were ethanol concentration of 50.33% (v/v), temperature of 65 °C, and extractiontion time of 15 min. The yield of phenolic compounds was (40.00±1.00) mg gallic acid equivalent/g dry powder which matched well with the values predicted from the proposed model. These conditions resulted in a higher efficiency concerning the extraction of phenolics compared to a conventional heat reflux extraction by providing shorter extraction time and reduced energy consumption. 5-O-caffeoylquinic acid identified by high performance liquid chromatography-diode array detector-electron spin ionization-mass spectrometry was the major compound in the obtained extract [(41.66±0.07) mg/g plant extract]. The obtained extract showed a strong ability to scavenge both DPPH(•) and ABTS(•)(+) free radicals and exhibited additionally good ability to protect HEK293 cells death against oxidative stress. These results indicate the suitability of ultrasound-assisted extraction for the extraction of phenolic compounds from Cratoxylum formosum ssp. formosum leaves. This phenolic-enriched extract can be used as valuable antioxidant source for health benefits. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Taamalli, Amani; Arráez-Román, David; Barrajón-Catalán, Enrique; Ruiz-Torres, Verónica; Pérez-Sánchez, Almudena; Herrero, Miguel; Ibañez, Elena; Micol, Vicente; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-06-01
A comparison among different advanced extraction techniques such as microwave-assisted extraction (MAE), supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE), together with traditional solid-liquid extraction, was performed to test their efficiency towards the extraction of phenolic compounds from leaves of six Tunisian olive varieties. Extractions were carried out at the best selected conditions for each technique; the obtained extracts were chemically characterized using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)). As expected, higher extraction yields were obtained for PLE while phenolic profiles were mainly influenced by the solvent used as optimum in the different extraction methods. A larger number of phenolic compounds, mostly of a polar character, were found in the extracts obtained by using MAE. Best extraction yields do not correlate with highest cytotoxic activity against breast cancer cells, indicating that cytotoxicity is highly dependent on the presence of certain compounds in the extracts, although not exclusively on a single compound. Therefore, a multifactorial behavior is proposed for the anticancer activity of olive leaf compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cittan, Mustafa; Çelik, Ali
2018-04-01
A simple method was validated for the analysis of 31 phenolic compounds using liquid chromatography-electrospray tandem mass spectrometry. Proposed method was successfully applied to the determination of phenolic compounds in an olive leaf extract and 24 compounds were analyzed quantitatively. Olive biophenols were extracted from olive leaves by using microwave-assisted extraction with acceptable recovery values between 78.1 and 108.7%. Good linearities were obtained with correlation coefficients over 0.9916 from calibration curves of the phenolic compounds. The limits of quantifications were from 0.14 to 3.2 μg g-1. Intra-day and inter-day precision studies indicated that the proposed method was repeatable. As a result, it was confirmed that the proposed method was highly reliable for determination of the phenolic species in olive leaf extracts.
Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan
2018-02-01
Volatile, aroma-active, and phenolic compounds of pistachio oil obtained from cv. Uzun were investigated in the current study. To obtain a representative aromatic extract, three of the most widely used extraction methods were compared using a representative test; the solvent-assisted flavour extraction (SAFE) aromatic extract from pistachio oil was found to be the most representative. A total of 50 aroma compounds were determined in pistachio oil and it was found that terpenes, aldehydes, and alcohols were the most abundant volatile compounds. Applying GC-MS-olfactometry and aroma extract dilution analysis (AEDA) resulted in a total of 14 aroma-active areas being detected in the extract of pistachio oil. In the phenolic fraction obtained by the LC-ESI-MS/MS method, a total of 12 phenolic compounds was found in the pistachio oil, of which seven compounds were reported for the first time. Eriodictyol-7-O-glucoside and protocatechuic acid were the most dominant phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rababah, Taha M; Banat, Fawzi; Rababah, Anfal; Ereifej, Khalil; Yang, Wade
2010-09-01
The purpose of this study was to evaluate the total phenolic extracts and antioxidant activity and anthocyanins of varieties of the investigated plants. These plants include oregano, thyme, terebinth, and pomegranate. The optimum extraction conditions including temperature and solvent of the extraction process itself were investigated. Total phenolic and anthocyanin extracts were examined according to Folin-Ciocalteu assay and Rabino and Mancinelli method, respectively. The effect of different extracting solvents and temperatures on extracts of phenolic compounds and anthocyanins were studied. Plant samples were evaluated for their antioxidant chemical activity by 2, 2-diphenyl-1-picrylhydrazl assay, to determine their potential as a source of natural antioxidant. Results showed that all tested plants exhibited appreciable amounts of phenolic compounds. The methanolic extract (60 °C) of sour pomegranate peel contained the highest phenolic extract (4952.4 mg/100 g of dry weight). Terebinth green seed had the lowest phenolic extract (599.4 mg/100 g of dry weight). Anthocyanins ranged between 3.5 (terebinth red seed) and 0.2 mg/100 g of dry material (thyme). Significant effect of different extracting solvents and temperatures on total phenolics and anthocyanin extracts were found. The methanol and 60 °C of extraction conditions found to be the best for extracting phenolic compounds. The distilled water and 60 °C extraction conditions found to be the best for extracting anthocyanin.
Chen, Shasha; Zeng, Zhi; Hu, Na; Bai, Bo; Wang, Honglun; Suo, Yourui
2018-03-01
Lycium ruthenicum Murr. (LR) is a functional food that plays an important role in anti-oxidation due to its high level of phenolic compounds. This study aims to optimize ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activities of obtained extracts from LR using response surface methodology (RSM). A four-factor-three-level Box-Behnken design (BBD) was employed to discuss the following extracting parameters: extraction time (X 1 ), ultrasonic power (X 2 ), solvent to sample ratio (X 3 ) and solvent concentration (X 4 ). The analysis of variance (ANOVA) results revealed that the solvent to sample ratio had a significant influence on all responses, while the extraction time had no statistically significant effect on phenolic compounds. The optimum values of the combination of phenolic compounds and antioxidant activities were obtained for X 1 =30min, X 2 =100W, X 3 =40mL/g, and X 4 =33% (v/v). Five phenolic acids, including chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid, were analyzed by HPLC. Our results indicated that optimization extraction is vital for the quantification of phenolic compounds and antioxidant activity in LR, which may be contributed to large-scale industrial applications and future pharmacological activities research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fang, Xinsheng; Wang, Jianhua; Hao, Jifu; Li, Xueke; Guo, Ning
2015-12-01
A simple and rapid method was developed using microwave-assisted extraction (MAE) combined with HPLC-DAD-ESI-MS/MS for the simultaneous extraction, identification, and quantification of phenolic compounds in Eclipta prostrata, a common herb and vegetable in China. The optimized parameters of MAE were: employing 50% ethanol as solvent, microwave power 400 W, temperature 70 °C, ratio of liquid/solid 30 mL/g and extraction time 2 min. Compared to conventional extraction methods, the optimized MAE can avoid the degradation of the phenolic compounds and simultaneously obtained the highest yields of all components faster with less consumption of solvent and energy. Six phenolic acids, six flavonoid glycosides and one coumarin were firstly identified. The phenolic compounds were quantified by HPLC-DAD with good linearity, precision, and accuracy. The extract obtained by MAE showed significant antioxidant activity. The proposed method provides a valuable and green analytical methodology for the investigation of phenolic components in natural plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sharma, Upendra Kumar; Sharma, Nandini; Gupta, Ajai Prakash; Kumar, Vinod; Sinha, Arun Kumar
2007-12-01
A simple, fast and sensitive RP-HPTLC method is developed for simultaneous quantitative determination of vanillin and related phenolic compounds in ethanolic extracts of Vanilla planifolia pods. In addition to this, the applicability of accelerated solvent extraction (ASE) as an alternative to microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and Soxhlet extraction was also explored for the rapid extraction of phenolic compounds in vanilla pods. Good separation was achieved on aluminium plates precoated with silica gel RP-18 F(254S) in the mobile phase of methanol/water/isopropanol/acetic acid (30:65:2:3, by volume). The method showed good linearity, high precision and good recovery of compounds of interest. ASE showed good extraction efficiency in less time as compared to other techniques for all the phenolic compounds. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.
Newbury, H. John; Possingham, John V.
1977-01-01
Using conventional methods it is impossible to extract RNA as uncomplexed intact molecules from the leaves of grapevines (Vitis vinifera L.) and from a number of woody perennial species that contain high levels of reactive phenolic compounds. A procedure involving the use of high concentrations of the chaotropic agent sodium perchlorate prevents the binding of phenolic compounds to RNA during extraction. Analyses of the phenolics present in plant tissues used in these experiments indicate that there is a poor correlation between the total phenolic content and the complexing of RNA. However, qualitative analyses suggest that proanthocyanidins are involved in the tanning of RNA during conventional extractions. PMID:16660134
Fromm, Matthias; Bayha, Sandra; Carle, Reinhold; Kammerer, Dietmar R
2012-02-08
The phenolic constituents of seeds of 12 different apple cultivars were fractionated by sequential extraction with aqueous acetone (30:70, v/v) and ethyl acetate after hexane extraction of the lipids. Low molecular weight phenolic compounds were individually quantitated by RP-HPLC-DAD. The contents of extractable and nonextractable procyanidins were determined by applying RP-HPLC following thiolysis and n-butanol/HCl hydrolysis, respectively. As expected, the results revealed marked differences of the ethyl acetate extracts, aqueous acetone extracts, and insoluble residues with regard to contents and mean degrees of polymerization of procyanidins. Total phenolic contents in the defatted apple seed residues ranged between 18.4 and 99.8 mg/g. Phloridzin was the most abundant phenolic compound, representing 79-92% of monomeric polyphenols. Yields of phenolic compounds significantly differed among the cultivars under study, with seeds of cider apples generally being richer in phloridzin and catechins than seeds of dessert apple cultivars. This is the first study presenting comprehensive data on the contents of phenolic compounds in apple seeds comprising extractable and nonextractable procyanidins. Furthermore, the present work points out a strategy for the sustainable and complete exploitation of apple seeds as valuable agro-industrial byproducts, in particular as a rich source of phloridzin and antioxidant flavanols.
Extraction of valuable compounds from mangosteen pericarps by hydrothermal assisted sonication
NASA Astrophysics Data System (ADS)
Machmudah, Siti; Lestari, Sarah Duta; Shiddiqi, Qifni Yasa'Ash; Widiyastuti, Winardi, Sugeng; Wahyudiono, Kanda, Hideki; Goto, Motonobu
2015-12-01
Valuable compounds, such as xanthone and phenolic compounds, from mangosteen pericarps was extracted by hydrothermal treatment at temperatures of 120-160 °C and pressures of 5 MPa using batch and semi-batch extractor. This method is a simple and environmentally friendly extraction method requiring no chemicals other than water. Under these conditions, there is possibility for the formation of phenolic compounds from mangosteen pericarps from decomposition of bounds between lignin, cellulose, and hemicellulose via autohydrolysis. In order to increase the amount of extracted valuable compounds, sonication pre-treament was performed prior to the hydrothermal extraction process. 30 min of sonication pre-treatment could increase significantly the amount of xanthone and phenolic compounds mangosteen pericarps extraction. In batch-system, the xanthone recovery approach to 100 % at 160 °C with 30 min sonication pre-treatment for 150 min extraction time. Under semi-batch process, the total phenolic compounds in the extract was 217 mg/g sample at 160 °C with 30 min sonication pre-treatment for 150 min total extraction time. The results revealed that hydrothermal extraction assisted sonication pre-treatment is applicable method for the isolation of polyphenolic compounds from other types of biomass and may lead to an advanced plant biomass components extraction technology.
Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H
2014-03-01
The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability.
Xi, Jun; He, Lang; Yan, Liang-Gong
2017-09-01
Pomegranate peel, a waste generated from fruit processing industry, is a potential source of phenolic compounds that are known for their anti-oxidative properties. In this study, a continuous high voltage electrical discharge (HVED) extraction system was for the first time designed and optimized for phenolic compounds from pomegranate peel. The optimal conditions for HVED were: flow rate of materials 12mL/min, electrodes gap distance 3.1mm (corresponding to 29kV/cm of electric field intensity) and liquid to solid ratio 35mL/g. Under these conditions, the experimental yield of phenolic compounds was 196.7±6.4mg/g, which closely agreed with the predicted value (199.83mg/g). Compared with the warm water maceration, HVED method possessed higher efficiency for the extraction of phenolic compounds. The results demonstrated that HVED technique could be a very effective method for continuous extraction of natural compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits
Oszmiański, Jan; Nowicka, Paulina; Teleszko, Mirosława; Wojdyło, Aneta; Cebulak, Tomasz; Oklejewicz, Krzysztof
2015-01-01
Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF) and antioxidant activity (ferric reducing ability of plasma (FRAP) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)) by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones). In samples, where pressurized liquid extraction (PLE) was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%), flavonols (max. 44%) and anthocyanins (max. 29%), than after extraction by the ultrasonic technique extraction (UAE) method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA) revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids. PMID:26132562
Rosa, Fernanda R; Arruda, Andréa F; Siqueira, Egle M A; Arruda, Sandra F
2016-02-23
This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit.
Rosa, Fernanda R.; Arruda, Andréa F.; Siqueira, Egle M. A.; Arruda, Sandra F.
2016-01-01
This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit. PMID:26907338
Lovrić, Vanja; Putnik, Predrag; Kovačević, Danijela Bursać; Jukić, Marijana; Dragović-Uzelac, Verica
2017-06-01
This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays). The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70% aqueous solutions of ethanol and methanol), extraction time (5, 15 and 25 min) and extraction temperature (40, 50 and 60 °C) controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA) was used to evaluate the differences at a 95% confidence level (p≤0.05). The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols) than aqueous solution of methanol. The amount of phenolic compounds was higher in 70% aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50% aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval) has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.
Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H
2014-01-01
The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability. PMID:24804076
Hilbig, Josiane; Alves, Victor Rodrigues; Müller, Carmen Maria Olivera; Micke, Gustavo Amadeu; Vitali, Luciano; Pedrosa, Rozangela Curi; Block, Jane Mara
2018-04-01
Ultrasonic-assisted extraction combined with statistical tools (factorial design, response surface methodology and kinetics) were used to evaluate the effects of the experimental conditions of temperature, solid-to-solvent ratio, ethanol concentration and time for the extraction of the total phenolic content from pecan nut shells. The optimal conditions for the aqueous and hydroalcoholic extract (with 20% v/v of ethanol) were 60 and 80 °C; solid to solvent ratio of 30 mL·g -1 (for both) and extraction time of 35 and 25 min, respectively. Using these optimize extraction conditions, 426 and 582 mg GAE·g -1 of phenolic compounds, from the aqueous and hydroalcoholic phases respectively, were obtained. In addition, the analysis of the phenolic compounds using the LC-ESI-MS/MS system allowed the identification of 29 phenolic compounds, 24 of which had not been reported in literature for this raw material yet. Copyright © 2018. Published by Elsevier Ltd.
Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.
1993-01-01
A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.
Złotek, Urszula; Mikulska, Sylwia; Nagajek, Małgorzata; Świeca, Michał
2016-09-01
The objectives of this study were to determine best conditions for the extraction of phenolic compounds from fresh, frozen and lyophilized basil leaves. The acetone mixtures with the highest addition of acetic acid extracted most of the phenolic compounds when fresh and freeze-dried material have been used. The three times procedure was more effective than once shaking procedure in most of the extracts obtained from fresh basil leaves - unlike the extracts derived from frozen material. Surprisingly, there were not any significant differences in the content of phenolics between the two used procedures in the case of lyophilized basil leaves used for extraction. Additionally, the positive correlation between the phenolic compounds content and antioxidant activity of the studied extracts has been noted. It is concluded that the acetone mixtures were more effective than the methanol ones for polyphenol extraction. The number of extraction steps in most of the cases was also a statistically significant factor affecting the yield of phenolic extraction as well as antioxidant potential of basil leaf extracts.
Extraction, evolution, and sensory impact of phenolic compounds during red wine maceration.
Casassa, L Federico; Harbertson, James F
2014-01-01
We review the extraction into wine and evolution of major phenolic classes of sensory relevance. We present a historical background to highlight that previously established aspects of phenolic extraction and retention into red wine are still subjects of much research. We argue that management of the maceration length is one of the most determining factors in defining the proportion and chemical fate of phenolic compounds in wine. The extraction of anthocyanins, flavonols, flavan-3-ols, and oligomeric and polymeric proanthocyanidins (PAs) is discussed in the context of their individual extraction patterns but also with regard to their interaction with other wine components. The same approach is followed to present the sensory implications of phenolic and phenolic-derived compounds in wine. Overall, we conclude that the chemical diversity of phenolic compounds in grapes is further enhanced as soon as vacuolar and pulp components are released upon crushing, adding a variety of new sensory dimensions to the already present chemical diversity. Polymeric pigments formed by the covalent reaction of anthocyanin and PAs are good candidates to explain some of the observed sensory changes in the color, taste, and mouthfeel attributes of red wines during maceration and aging.
Kim, Dong-Shin; Kim, Mi-Bo; Lim, Sang-Bin
2017-12-01
To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe 2+ /100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L * and b * decreased, and a * increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.
Venturi, Francesca; Sanmartin, Chiara; Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela
2017-08-22
While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil.
Tasioula-Margari, Maria; Tsabolatidou, Eleftheria
2015-01-01
The aim of this study was to evaluate the recovery of individual phenolic compounds extracted from virgin olive oil (VOO), from different Greek olive varieties. Sufficient recoveries (90%) of all individual phenolic compounds were obtained using methanol as an extraction solvent, acetonitrile for residue solubilization, and two washing steps with hexane. Moreover, in order to elucidate structural characteristics of phenolic compounds in VOO, high performance liquid chromatography with a diode array detector (HPLC-DAD) at 280 and 340 nm and HPLC coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) in the negative-ion mode were performed. The most abundant phenolic compounds were oleuropein derivatives with m/z 319 and 377 and ligstroside derivatives with m/z 303, 361. Lignans, such as 1-acetoxypinoresinol and pinoresinol were also present in substantial quantities in the phenolic fraction. However, pinoresinol was co-eluted with dialdehydic form of ligstroside aglycone (DAFLA) and it was not possible to be quantified separately. The phenolic extracts, obtained from different VOO samples, yielded similar HPLC profiles. Differences, however, were observed in the last part of the chromatogram, corresponding to isomers of the aldehydic form of ligstroside aglycone. Oxidized phenolic products, originating from secoiridoids, were also detected. PMID:26783843
Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela
2017-01-01
While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil. PMID:28829365
Chemical composition and antibacterial activities of lupin seeds extracts.
Lampart-Szczapa, Eleonora; Siger, Aleksander; Trojanowska, Krystyna; Nogala-Kalucka, Małgorzata; Malecka, Maria; Pacholek, Bogdan
2003-10-01
Determination of influence of lupin natural phenolic compounds on antibacterial properties of its seeds was carried out. Raw material were seeds of Lupinus albus, L. luteus, and L. angustifolius. The methods included the determination of the content of proteins, total phenolic compounds, free phenolic acids, and tannins as well as antibacterial properties with ethanol extracts. The content of total phenolic compounds was smaller in testas than in cotyledons and the highest levels are observed in bitter cultivars of Lupinus albus cv. Bac and L. angustifolius cv. Mirela. Lupin tannins mainly occurred in cotyledons of the white lupin, predominantly in the bitter cultivar Bac. Free phenolic acids were mainly found in testas. Only extracts from the testas displayed antibacterial properties, which excludes the possibility of alkaloid influence on the results. The results suggest that inhibition of test bacteria growth depended mainly upon the content of the total phenolic compounds.
Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad
2015-06-01
In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.
de Araújo, Keline Medeiros; de Lima, Alessandro; Silva, Jurandy do N.; Rodrigues, Larissa L.; Amorim, Adriany G. N.; Quelemes, Patrick V.; dos Santos, Raimunda C.; Rocha, Jefferson A.; de Andrades, Éryka O.; Leite, José Roberto S. A.; Mancini-Filho, Jorge; da Trindade, Reginaldo Almeida
2014-01-01
Bioactive compounds extracted from natural sources can benefit human health. The aim of this work was to determine total phenolic content and antioxidant activity in extracts of Euphorbia tirucalli L. followed by identification and quantification of the phenolic compounds, as well as their antibacterial activities. Antioxidant activities were determined by DPPH and ABTS•+ assay. Identification of phenolic compounds was performed using high-performance liquid chromatography (HPLC), and antimicrobial activities were verified by agar dilution methods and MIC values. Total phenolic content ranged from 7.73 to 30.54 mg/100 g gallic acid equivalent. Extracts from dry plants showed higher antioxidant activities than those from fresh ones. The DPPH EC50 values were approximately 12.15 μg/mL and 16.59 μg/mL, respectively. Antioxidant activity measured by the ABTS method yielded values higher than 718.99 μM trolox/g for dry plants, while by the Rancimat® system yielded protection factors exceeding 1 for all extracts, comparable to synthetic BHT. Ferulic acid was the principal phenolic compound identified and quantified through HPLC-UV in all extracts. The extracts proved effective inhibitory potential for Staphylococcus epidermidis and Staphylococcus aureus. These results showed that extracts of Euphorbia tirucalli L. have excellent antioxidant capacity and moderate antimicrobial activity. These can be attributed to the high concentration of ferulic acid. PMID:26784670
Spagnuolo, Carmela; Flores, Gema; Russo, Gian Luigi; Ruiz Del Castillo, Maria Luisa
2016-10-01
In the present study, we evaluated the effect of methyl jasmonate (MeJA) treatment on strawberry phenolic composition. Strawberry extracts contain a mixture of phenolic compounds possessing several biological properties. We demonstrated that these extracts were more effective in inducing apoptosis in HeLa cells compared to phenolic preparations derived from untreated strawberries. Treatment of strawberries with 0.5% MeJA resulted in increased polyphenols content (from 7.4 to 8.6 mM quercetin equivalents) and antioxidant properties (from 3.9 to 4.6 mM quercetin equivalents). The identification and quantification of phenolic compounds by liquid chromatography-mass spectrometry in the strawberry extracts showed that cyanidin glucoside, pelargonidin glucoside, and ellagic glucoside acid were significantly higher in strawberries treated with MeJA. Phenolic extracts from MeJA-treated strawberries significantly decreased the cell viability in HeLa cells, compared to extracts derived from untreated fruits. We hypothesized that the enhanced apoptotic activity of MeJA-treated strawberries was due to a synergistic or additive effect of different phenolic compounds present in the extract, rather than the activity of a single molecule.
Luís, Angelo; Domingues, Fernanda; Duarte, Ana Paula
2011-12-01
In the ecosystem of Serra Da Estrela, some plant species have the potential to be used as raw material for extraction of bioactive products. The goal of this work was to determine the phenolic, flavonoid, tannin and alkaloid contents of the methanolic extracts of some shrubs (Echinospartum ibericum, Pterospartum tridentatum, Juniperus communis, Ruscus aculeatus, Rubus ulmifolius, Hakea sericea, Cytisus multiflorus, Crataegus monogyna, Erica arborea and Ipomoea acuminata), and then to correlate the phenolic compounds and flavonoids with the antioxidant activity of each extract. The Folin-Ciocalteu's method was used for the determination of total phenols, and tannins were then precipitated with polyvinylpolypyrrolidone (PVPP); a colorimetric method with aluminum chloride was used for the determination of flavonoids, and a Dragendorff's reagent method was used for total alkaloid estimation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and beta-carotene bleaching tests were used to assess the antioxidant activity of extracts. The identification of phenolic compounds present in extracts was performed using RP-HPLC. A positive linear correlation between antioxidant activity index and total phenolic content of methanolic extracts was observed. The RP-HPLC procedure showed that the most common compounds were ferulic and ellagic acids and quercetin. Most of the studied shrubs have significant antioxidant properties that are probably due to the existence of phenolic compounds in the extracts. It is noteworthy to emphasize that for Echinospartum ibericum, Hakea sericea and Ipomoea acuminata, to the best of our knowledge, no phytochemical studies have been undertaken nor their use in traditional medicine been described.
Dopico-García, M S; Valentão, P; Guerra, L; Andrade, P B; Seabra, R M
2007-01-30
An experimental design was applied for the optimization of extraction and clean-up processes of phenolic compounds and organic acids from white "Vinho Verde" grapes. The developed analytical method consisted in two steps: first a solid-liquid extraction of both phenolic compounds and organic acids and then a clean-up step using solid-phase extraction (SPE). Afterwards, phenolic compounds and organic acids were determined by high-performance liquid chromatography (HPLC) coupled to a diode array detector (DAD) and HPLC-UV, respectively. Plackett-Burman design was carried out to select the significant experimental parameters affecting both the extraction and the clean-up steps. The identified and quantified phenolic compounds were: quercetin-3-O-glucoside, quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin, kaempferol and epicatechin. The determined organic acids were oxalic, citric, tartaric, malic, shikimic and fumaric acids. The obtained results showed that the most important variables were the temperature (40 degrees C) and the solvent (acid water at pH 2 with 5% methanol) for the extraction step and the type of sorbent (C18 non end-capped) for the clean-up step.
Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana
2014-01-01
The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249
Oludemi, Taofiq; Barros, Lillian; Prieto, M A; Heleno, Sandrina A; Barreiro, Maria F; Ferreira, Isabel C F R
2018-01-24
The extraction of triterpenoids and phenolic compounds from Ganoderma lucidum was optimized by using the response surface methodology (RSM), using heat and ultrasound assisted extraction techniques (HAE and UAE). The obtained results were compared with that of the standard Soxhlet procedure. RSM was applied using a circumscribed central composite design with three variables (time, ethanol content, and temperature or ultrasonic power) and five levels. The conditions that maximize the responses (extraction yield, triterpenoids and total phenolics) were: 78.9 min, 90.0 °C and 62.5% ethanol and 40 min, 100.0 W and 89.5% ethanol for HAE and UAE, respectively. The latter was the most effective, resulting in an extraction yield of 4.9 ± 0.6% comprising a content of 435.6 ± 21.1 mg g -1 of triterpenes and 106.6 ± 16.2 mg g -1 of total phenolics. The optimized extracts were fully characterized in terms of individual phenolic compounds and triterpenoids by HPLC-DAD-ESI/MS. The recovery of the above-mentioned bioactive compounds was markedly enhanced using the UAE technique.
Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake.
Mojerlou, Zohreh; Elhamirad, Amirhhossein
2018-03-01
The use of ultrasound in ultrasound-assisted extraction (UAE) is one of the main applications of this technology in food industry. This study aimed to optimize UAE conditions for olive cake extract (OCE) through response surface methodology (RSM). The optimal UAE conditions were obtained with extraction temperature of 56 °C, extraction time of 3 min, duty cycle of 0.6 s, and solid to solvent ratio of 3.6%. At the optimum conditions, the total phenolic compounds (TPC) content and antioxidant activity (AA) were measured 4.04 mg/g and 68.9%, respectively. The linear term of temperature had the most effect on TPC content and AA of OCE prepared by UAE. Protocatechuic acid and cinnamic acid were characterized as the highest (19.5%) and lowest (1.6%) phenolic compound measured in OCE extracted by UAE. This research revealed that UAE is an effective method to extract phenolic compounds from olive cake. RSM successfully optimized UAE conditions for OCE.
Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Henriques, Mariana; Silva, Sónia; Ferreira, Isabel C F R
2014-09-01
Bioactivity of oregano methanolic extracts and essential oils is well known. Nonetheless, reports using aqueous extracts are scarce, mainly decoction or infusion preparations used for therapeutic applications. Herein, the antioxidant and antibacterial activities, and phenolic compounds of the infusion, decoction and hydroalcoholic extract of oregano were evaluated and compared. The antioxidant activity is related with phenolic compounds, mostly flavonoids, since decoction presented the highest concentration of flavonoids and total phenolic compounds, followed by infusion and hydroalcoholic extract. The samples were effective against gram-negative and gram-positive bacteria. It is important to address that the hydroalcoholic extract showed the highest efficacy against Escherichia coli. This study demonstrates that the decoction could be used for antioxidant purposes, while the hydroalcoholic extract could be incorporated in formulations for antimicrobial features. Moreover, the use of infusion/decoction can avoid the toxic effects showed by oregano essential oil, widely reported for its antioxidant and antimicrobial properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quirantes-Piné, Rosa; Lozano-Sánchez, Jesús; Herrero, Miguel; Ibáñez, Elena; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2013-01-01
Olea europaea L. leaves may be considered a cheap, easily available natural source of phenolic compounds. In a previous study we evaluated the possibility of obtaining bioactive phenolic compounds from olive leaves by pressurised liquid extraction (PLE) for their use as natural anti-oxidants. The alimentary use of these kinds of extract makes comprehensive knowledge of their composition essential. To undertake a comprehensive characterisation of two olive-leaf extracts obtained by PLE using high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Olive leaves were extracted by PLE using ethanol and water as extraction solvents at 150°C and 200°C respectively. Separation was carried out in a HPLC system equipped with a C₁₈-column working in a gradient elution programme coupled to ESI-QTOF-MS operating in negative ion mode. This analytical platform was able to detect 48 compounds and tentatively identify 31 different phenolic compounds in these extracts, including secoiridoids, simple phenols, flavonoids, cinnamic-acid derivatives and benzoic acids. Lucidumoside C was also identified for the first time in olive leaves. The coupling of HPLC-ESI-QTOF-MS led to the in-depth characterisation of the olive-leaf extracts on the basis of mass accuracy, true isotopic pattern and tandem mass spectrometry (MS/MS) spectra. We may conclude therefore that this analytical tool is very valuable in the study of phenolic compounds in plant matrices. Copyright © 2012 John Wiley & Sons, Ltd.
Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves
NASA Astrophysics Data System (ADS)
Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Boričević, Ana; Borić, Nataša
2016-01-01
The aim of this study was to investigate the influence of conventional and ultrasound-assisted extraction (frequency, time, temperature) on the content of bioactive compounds as well as on the antioxidant activity of aqueous extracts from fresh lemon balm and peppermint leaves. Total phenols, flavonoids, non-flavonoids, total chlorophylls, total carotenoids, and radical scavenging capacity were determined. Moreover, the relationship between bioactive compounds and antioxidant capacity was studied by linear regression. A significant increase in all studied bioactive compounds during ultrasonic extraction for 5 to 20 min was found. With the classical extraction method, the highest amounts of total phenols, flavonoids, and antioxidant activity were determined, and the maximum amounts of total chlorophylls and carotenoids were determined during 20 min ultrasonic extraction. The correlation analysis revealed a strong, positive relationship between antioxidant activity and total phenolic compounds.
Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing
2017-04-22
An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r 2 ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemical composition and antioxidant activity of phenolic compounds from Dioscorea (Yam) leaves.
Zhou, Li; Shi, Xinmin; Ren, Xiangmei; Qin, Zhihong
2018-05-01
This study was aimed to assess the potential of Dioscorea (yam) leaves as a source of antioxidants. Microwave-assisted extraction (MAE) process was used to prepare the extracts. The phenolic compounds in Dioscorea leaves extracts were analyzed by HPLC-DAD-ESI-MS/MS method and the contents of major compounds were determined. Results indicated that a total of 17 phenolic compounds were separated identified by means of UV and mass spectra compared with authentic reference substances and/or reported values in the literature. The main phenolic compound was rosmarinic acid and its highest amount was found in Dioscorea glabra Roxb. leaves (22.31±1.33 mg/g DW). Rutin was the dominant flavonoid followed by quercetin which highest amount was found in Dioscorea alata leaves (8.66±0.29 mg/g DW). Antioxidant activity of the extracts was estimated by the use of DPPH and ABTS assays. Both kinds of leaves exhibited satisfied antioxidant capacity which was correlated with phenolic contents. In the cytoprotective effect on HUVECs viability assay, Dioscorea glabra Roxb. leaves extract was found to be more active than that of Dioscorea alata against H 2 O 2 -induced oxidative stress. Our findings support the promising role of Dioscorea leaves that can be used as an interesting source of phenolic antioxidants.
Bendini, Alessandra; Bonoli, Matteo; Cerretani, Lorenzo; Biguzzi, Barbara; Lercker, Giovanni; Toschi, Tullia Gallina
2003-01-24
The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.
Phenolic Composition and Antioxidant Activity of Malus domestica Leaves
Viškelis, Pranas; Uselis, Norbertas
2014-01-01
The aim of this study was to determine the composition and content of phenolic compounds in the ethanol extracts of apple leaves and to evaluate the antioxidant activity of these extracts. The total phenolic content was determined spectrophotometrically, as well as the total flavonoid content in the ethanol extracts of apple leaves and the antioxidant activity of these extracts, by the ABTS, DPPH, and FRAP assays. The highest amount of phenolic compounds and flavonoids as well as the highest antioxidant activity was determined in the ethanol extracts obtained from the apple leaves of the cv. Aldas. The analysis by the HPLC method revealed that phloridzin was a predominant component in the ethanol extracts of the apple leaves of all cultivars investigated. The following quercetin glycosides were identified and quantified in the ethanol extracts of apple leaves: hyperoside, isoquercitrin, avicularin, rutin, and quercitrin. Quercitrin was the major compound among quercetin glycosides. PMID:25302319
Phenolic composition and antioxidant activity of Malus domestica leaves.
Liaudanskas, Mindaugas; Viškelis, Pranas; Raudonis, Raimondas; Kviklys, Darius; Uselis, Norbertas; Janulis, Valdimaras
2014-01-01
The aim of this study was to determine the composition and content of phenolic compounds in the ethanol extracts of apple leaves and to evaluate the antioxidant activity of these extracts. The total phenolic content was determined spectrophotometrically, as well as the total flavonoid content in the ethanol extracts of apple leaves and the antioxidant activity of these extracts, by the ABTS, DPPH, and FRAP assays. The highest amount of phenolic compounds and flavonoids as well as the highest antioxidant activity was determined in the ethanol extracts obtained from the apple leaves of the cv. Aldas. The analysis by the HPLC method revealed that phloridzin was a predominant component in the ethanol extracts of the apple leaves of all cultivars investigated. The following quercetin glycosides were identified and quantified in the ethanol extracts of apple leaves: hyperoside, isoquercitrin, avicularin, rutin, and quercitrin. Quercitrin was the major compound among quercetin glycosides.
Profile and antioxidant activity of phenolic extracts from 10 crabapples (Malus wild species).
Li, Nan; Shi, Junling; Wang, Kun
2014-01-22
Phenolic products are highly demanded by the food and cosmetics industries and consumers due to their high antioxidant activities. To evaluate the potential of crabapples (Malus wild species) in preparing phenolic extracts, fruits of 10 crabapples grown in China were separately extracted with 80% (v/v) ethanol and ethyl acetate and the phenolic profiles, polyphenol (PC) and flavonoid contents (FC), and antioxidant activities of the extracts were analyzed. Chlorogenic acid, (-)-epicatechin, rutin, hyperin, and phlorizin appeared as the major phenolic compounds in all phenolic extracts. Ethanol extracts had PC of 302.83-1265.94 mg GAE/100g and FC of 352.45-2351.74 mg RE/100g, being 4.17 and 4.49 times those obtained in ethyl acetate extracts and much higher than those previously reported in apples. Malus wild species appeared as rich sources of phenolic compounds with high antioxidant activity, especially when high chlorogenic acid and rutin contents are emphasized.
Magalhães, Paulo J; Vieira, Joana S; Gonçalves, Luís M; Pacheco, João G; Guido, Luís F; Barros, Aquiles A
2010-05-07
The aim of the present work was the development of a suitable methodology for the separation and determination of phenolic compounds in the hop plant. The developed methodology was based on the sample purification by adsorption of phenolic compounds from the matrix to polyvinylpolypyrrolidone (PVPP) and subsequent desorption of the adsorbed polyphenols with acetone/water (70:30, v/v). At last, the extract was analyzed by HPLC-DAD and HPLC-ESI-MS/MS. The first phase of this work consisted of the study of the adsorption behavior of several classes of phenolic compounds (e.g. phenolic acids, flavonols, and flavanols) by PVPP in model solutions. It has been observed that the process of adsorption of the different phenolic compounds to PVPP (at low concentrations) is differentiated, depending on the structure of the compound (number of OH groups, aromatic rings, and stereochemistry hindrance). For example, within the phenolic acids class (benzoic, p-hydroxybenzoic, protocatechuic and gallic acids) the PVPP adsorption increases with the number of OH groups of the phenolic compound. On the other hand, the derivatization of OH groups (methylation and glycosylation) resulted in a greatly diminished binding. The use of PVPP revealed to be very efficient for adsorption of several phenolic compounds such as catechin, epicatechin, xanthohumol and quercetin, since high adsorption and recovery values were obtained. The methodology was further applied for the extraction and isolation of phenolic compounds from hops. With this methodology, it was possible to obtain high adsorption values (>or=80%) and recovery yield values (>or=70%) for the most important phenolic compounds from hops such as xanthohumol, catechin, epicatechin, quercetin and kaempferol glycosides, and in addition it allows the identification of about 30 phenolic compounds by HPLC-DAD and HPLC-ESI-MS/MS. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Alkaline extraction of phenolic compounds from intact sorghum kernels
USDA-ARS?s Scientific Manuscript database
An aqueous sodium hydroxide solution was employed to extract phenolic compounds from whole grain sorghum without decortication or grinding as determined by Oxygen Radical Absorbance Capacity (ORAC). The alkaline extract ORAC values were more stable over 32 days compared to neutralized and freeze dri...
Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.
García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana
2016-01-01
In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.
Taamalli, Amani; Arráez-Román, David; Ibañez, Elena; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-01-25
In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.
Espada-Bellido, Estrella; Ferreiro-González, Marta; Carrera, Ceferino; Palma, Miguel; Barroso, Carmelo G; Barbero, Gerardo F
2017-03-15
New ultrasound-assisted extraction methods for the determination of anthocyanins and total phenolic compounds present in mulberries have been developed. Several extraction variables, including methanol composition (50-100%), temperature (10-70°C), ultrasound amplitude (30-70%), cycle (0.2-0.7s), solvent pH (3-7) and solvent-solid ratio (10:1.5-20:1.5) were optimized. A Box-Behnken design in conjunction with a response surface methodology was employed to optimize the conditions for the maximum response based on 54 different experiments. Two response variables were considered: total anthocyanins and total phenolic compounds. Extraction temperature and solvent composition were found to be the most influential parameters for anthocyanins (48°C and 76%) and phenolic compounds (64°C and 61%). The developed methods showed high reproducibility and repeatability (RSD<5%). Finally, the new methods were successfully applied to real samples in order to investigate the presence of anthocyanins and total phenolic compounds in several mulberry jams. Copyright © 2016 Elsevier Ltd. All rights reserved.
Boutaoui, Nassima; Zaiter, Lahcene; Benayache, Fadila; Benayache, Samir; Carradori, Simone; Cesa, Stefania; Giusti, Anna Maria; Campestre, Cristina; Menghini, Luigi; Innosa, Denise; Locatelli, Marcello
2018-02-20
This study was performed to evaluate the metabolite recovery from different extraction methods applied to Thymus algeriensis aerial parts. A high-performance liquid chromatographic method using photodiode array detector with gradient elution has been developed and validated for the simultaneous estimation of different phenolic compounds in the extracts and in their corresponding purified fractions. The experimental results show that microwave-assisted aqueous extraction for 15 min at 100 °C gave the most phenolics-enriched extract, reducing extraction time without degradation effects on bioactives. Sixteen compounds were identified in this extract, 11 phenolic compounds and five flavonoids, all known for their biological activities. Color analysis and determination of chlorophylls and carotenoids implemented the knowledge of the chemical profile of this plant.
Deng, Ning; Li, Min; Zhao, Lijie; Lu, Chengfei; de Rooy, Sergio L.; Warner, Isiah M.
2011-01-01
A hydrophobic magnetic room temperature ionic liquid (MRTIL), trihexyltetradecylphosphonium tetrachloroferrate(III) ([3C6PC14][FeCl4]), was synthesized from trihexyltetradecylphosphonium chloride and FeCl3·6H2O. This MRTIL was investigated as a possible separation agent for solvent extraction of phenolic compounds from aqueous solution. Due to its strong paramagnetism, [3C6PC14][FeCl4] responds to an external neodymium magnet, which was employed in the design of a novel magnetic extraction technique. The conditions for extraction, including extraction time, volume ratio between MRTIL and aqueous phase, pH of aqueous solution, and structures of phenolic compounds were investigated and optimized. The magnetic extraction of phenols achieved equilibrium in 20 min and the phenolic compounds were found to have higher distribution ratios under acidic conditions. In addition, it was observed that phenols containing a greater number of chlorine or nitro substitutents exhibited higher distribution ratios. For example, the distribution ratio of phenol (DPh) was 107. In contrast, 3,5-dichlorophenol distribution ratio (D3,5-DCP) had a much higher value of 6372 under identical extraction conditions. When compared with four selected traditional non-magnetic room temperature ionic liquids, our [3C6PC14][FeCl4] exhibited significantly higher extraction efficiency under the same experimental conditions used in this work. Pentachlorophenol, a major component in the contaminated soil sample obtained from a superfund site, was successfully extracted and removed by use of [3C6PC14][FeCl4] with high extraction efficiency. Pentachlorophenol concentration was dramatically reduced from 7.8 μg.mL−1 to 0.2 μg.mL−1 after the magnetic extraction by use of [3C6PC14][FeCl4]. PMID:21783320
Rodrigues, Sueli; Pinto, Gustavo A S; Fernandes, Fabiano A N
2008-01-01
Coconut is a tropical fruit largely consumed in many countries. In some areas of the Brazilian coast, coconut shell represents more than 60% of the domestic waste volume. The coconut shell is composed mainly of lignin and cellulose, having a chemical composition very similar to wood and suitable for phenolic extraction. In this work, the use of ultrasound to extract phenolic compounds from coconut shell was evaluated. The effect of temperature, solution to solid ratio, pH and extraction time were evaluated through a 2(4) experimental planning. The extraction process was also optimized using surface response methodology. At the optimum operating condition (30 degrees C, solution to solid ratio of 50, 15 min of extraction and pH 6.5) the process yielded 22.44 mg of phenolic compounds per gram of coconut shell.
Borrás Linares, I; Arráez-Román, D; Herrero, M; Ibáñez, E; Segura-Carretero, A; Fernández-Gutiérrez, A
2011-10-21
In the present work, a comparative study between two environmentally friendly and selective extraction techniques, such as supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) have been carried out focusing in the bioactive phenolic compounds present in Rosmarinus officinalis. For the analysis of the SFE and PLE extracts, a new methodology for qualitative characterization has been developed, based on the use of reversed-phase high-performance liquid chromatography (RP-HPLC), equipped with two different detection systems coupled in series: diode array detector (DAD) and time of flight mass spectrometry (TOF-MS) detector connected via an electrospray ionization interface (ESI). The use of a small particle size C(18) column (1.8 μm) provided a great resolution and made possible the separation of several isomers. Moreover, UV-visible spectrophotometry is a valuable tool for identifying the class of phenolic compounds, whereas MS data enabled to structurally characterize the compounds present in the extracts. The applied methodology was useful for the determination of many well-known phenolic compounds present in R. officinalis, such as carnosol, carnosic acid, rosmadial, rosmanol, genkwanin, homoplantaginin, scutellarein, cirsimaritin and rosmarinic acid, as well as other phenolic compounds present in other species belonging to Lamiaceae family. Copyright © 2011 Elsevier B.V. All rights reserved.
Pereira, Carla; Barros, Lillian; Ferreira, Isabel C F R
2016-03-15
The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals. © 2015 Society of Chemical Industry.
Vamanu, Emanuel; Nita, Sultana
2013-01-01
Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7 ± 0.23 and 56 ± 0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds. PMID:23509707
Vamanu, Emanuel; Nita, Sultana
2013-01-01
Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7 ± 0.23 and 56 ± 0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds.
USDA-ARS?s Scientific Manuscript database
Phenolic and other compounds were extracted from micropropagated axillary shoots (microshoots) of the walnut (Juglans regia L.) cultivars ‘Chandler’, ‘Howard’, ‘Kerman’, ‘Sunland’, and ‘Z63’. Among cultivars, microshoots showed differences in phenolic compounds, phenolic acids, flavonoids and proant...
Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir
2018-05-24
Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.
Comparison of different strategies for soybean antioxidant extraction.
Chung, Hyun; Ji, Xiangming; Canning, Corene; Sun, Shi; Zhou, Kequan
2010-04-14
Three extraction strategies including Soxhlet extraction, conventional solid-liquid extraction, and ultrasonic-assisted extraction (UAE) were compared for their efficiency to extract phenolic antioxidants from Virginia-grown soybean seeds. Five extraction solvents were evaluated in UAE and the conventional extraction. The soybean extracts were compared for their total phenolic contents (TPC), oxygen radical absorbance capacity (ORAC), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) scavenging activities. The results showed that UAE improved the extraction of soybean phenolic compounds by >54% compared to the conventional and Soxhlet extractions. Among the tested solvents, 50% acetone was the most efficient for extracting soybean phenolic compounds. There was no significant correlation between the TPC and antioxidant activities of the soybean extracts. The extracts prepared by 70% ethanol had the highest ORAC values. Overall, UAE with 50% acetone or 70% ethanol is recommended for extracting soybean antioxidants on the basis of the TPC and ORAC results.
Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi
2015-01-01
Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.
Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; Ameddah, Souad; Severino, Lorella
2015-01-01
Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862
Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder
Su, Jing; Vielnascher, Robert; Silva, Carla; Cavaco-Paulo, Artur; Guebitz, Georg M.
2018-01-01
Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fibre powder was investigated. The effect of ultrasonic probe depth and power input parameters on the type and amount of products extracted was assessed. The results of input energy and radical formation correlated with the calculated values for the anti-nodal point (λ/4; 16.85 mm, maximum amplitude) of the ultrasonic wave in aqueous medium. Ultrasonic treatment at optimum probe depth of 15 mm improve 2.6-fold the extraction efficiencies of hemicellulose and phenolic lignin compounds from bamboo bast fibre powder. LC-Ms-Tof (liquid chromatography-mass spectrometry-time of flight) analysis indicated that ultrasound led to the extraction of coniferyl alcohol, sinapyl alcohol, vanillic acid, cellobiose, in contrast to boiling water extraction only. At optimized conditions, ultrasound caused the formation of radicals confirmed by the presence of (+)-pinoresinol which resulted from the radical coupling of coniferyl alcohol. Ultrasounds revealed to be an efficient methodology for the extraction of hemicellulosic and phenolic compounds from woody bamboo without the addition of harmful solvents. PMID:29856764
Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid
2015-04-15
Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina
2017-03-01
Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.
Kassim, Mustafa; Achoui, Mouna; Mustafa, Mohd Rais; Mohd, Mustafa Ali; Yusoff, Kamaruddin Mohd
2010-09-01
Natural honey has been used in traditional medicine of different cultures throughout the world. This study looked into the extraction of Malaysian honey and the evaluation of the anti-inflammatory activity of these extracts. It was hypothesized that honey extracts contain varying amounts of phenolic compounds and that they possess different in vitro anti-inflammatory activities. Honey extracts were analyzed using liquid chromatography-mass spectrometry to identify and compare phenolic compounds, whereas high-performance liquid chromatography was used for their quantification. Subsequently, honey methanol extract (HME) and honey ethyl acetate extract (HEAE) were tested in vitro for their effect on nitric oxide production in stimulated macrophages. The extracts were also tested for their effects on tumor necrosis factor-α (TNF) cytotoxicity in L929 cells. The major phenolics in the extracts were ellagic, gallic, and ferulic acids; myricetin; chlorogenic acid; and caffeic acid. Other compounds found in lower concentrations were hesperetin, p-coumaric acid, chrysin, quercetin, luteolin, and kaempferol. Ellagic acid was the most abundant of the phenolic compounds recorded, with mean concentrations of 3295.83 and 626.74 μg/100 g of honey in HME and HEAE, respectively. The median maximal effective concentrations for in vitro nitric oxide inhibition by HEAE and HME were calculated to be 37.5 and 271.7 μg/mL, respectively. The median maximal effective concentrations for protection from TNF cytotoxicity by HEAE and HME were 168.1 and 235.4 μg/mL, respectively. In conclusion, HEAE exhibited greater activity in vitro, whereas HME contained a higher concentration of phenolic compounds per 100 g of honey. Copyright © 2010 Elsevier Inc. All rights reserved.
Villalobos, María del Carmen; Serradilla, Manuel Joaquín; Martín, Alberto; Ordiales, Elena; Ruiz-Moyano, Santiago; Córdoba, María de Guía
2016-04-01
Fresh fruit is highly perishable during storage and transport, so there has been growing interest in finding safe and natural antimicrobial compounds as a control tool. Phenolic compounds are secondary metabolites naturally present in vegetable material and have been associated with antimicrobial and antioxidant properties. Therefore, the aim of this study was to investigate the antioxidant capacity and potential antimicrobial effect of phenolic extract obtained from defatted soybean flour against selected pathogenic bacteria and microorganisms responsible of fruit decay. Analysis of phenolic composition by HPLC-MS showed the presence of a wide range of compounds, with isoflavones and phenolic acids the main polyphenols identified. Furthermore, the phenolic extract had important antioxidant activity by two different assays. Related to antimicrobial activity, in vitro experiments demonstrated that phenolic extract displayed a high activity against the main foodborne pathogens, while a moderate inhibition was found against five spoilage yeasts and Monilia laxa and a scarce effect for Penicillium glabrum, Cladosporium uredinicola and Botrytis cinerea. Interestingly these compounds considerably inhibited the mycelial growth of Monilia laxa, in both in vitro and in vivo experiments. The results of the present study revealed that defatted soybean flour is an important source of phenolic compounds with remarkable antimicrobial and antioxidant activity, suggesting the possibility of using them as natural additives in postharvest treatments to extend the shelf life of fruit. © 2015 Society of Chemical Industry.
Melkadze, R G; Chichkovani, N Sh; Kakhniashvili, E Z
2008-01-01
The composition of Caucasian blackberry (Rubus caucasicus L.) six-leaf shoot was studied. The weight of the stem reached 50% of the total weight of the shoot. The content of moisture, extractive substances, and phenolic compounds was minimal at the beginning and end of the vegetation season. Phenolic compounds were represented by catechins, leukoanthocyanidins, and flavonols. The most abundant phenolic compounds in all parts of the blackberry shoot were leukoanthocyanidins, which accounted for approximately 50% of all compounds of this class. Phenolic compounds accumulated most actively in July and August. The average content of free amino acids in the blackberry leaf during the vegetation season was 26.68 mg/g. Among the total free amino acids, eleven have been identified, five of which proved to be essential (His, Arg, Met, Leu, Val) and accounted for 40% of the total amount of amino acids. The oxidability of acetone extract of the blackberry leaf was compared to the oxidability of total phenolic compounds and tea tannin. The tea product obtained from the blackberry leaf had good organoleptic parameters and a saturated extractive complex.
Taamalli, Amani; Abaza, Leila; Arráez Román, David; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto; Zarrouk, Mokhtar; Nabil, Ben Youssef
2013-01-01
Plant phenolics are secondary metabolites that constitute one of the most widely occurring groups of phytochemicals that play several important functions in plants. In olive (Olea europaea L), there is not enough information about the occurrence of these compounds in buds and flowers. To conduct a comprehensive characterisation of buds and open flowers from the olive cultivar 'Chemlali'. The polar fraction of buds and open flowers was extracted using solid-liquid extraction with hydro-alcoholic solvent. Then extracts were analysed using high performance liquid chromatography (HPLC) coupled to electrospray ionisation time-of-flight mass spectrometry (ESI/TOF/MS) and electrospray ionisation ion-trap tandem mass spectrometry (ESI/IT/MS²) operating in negative ion mode. Phenolic compounds from different classes including secoiridoids, flavonoids, simple phenols, cinnamic acid derivatives and lignans were tentatively identified in both extracts. Qualitatively, no significant difference was observed between flower buds and open flowers extracts. However, quantitatively the secoiridoids presented higher percentage of total phenols in open flowers (41.7%) than in flower buds (30.5%) in contrast to flavonoids, which decreased slightly from 38.1 to 26.7%. Cinnamic acid derivatives and simple phenols did not show any change. Lignans presented the lowest percentage in both extracts with an increase during the development of the flower bud to open flower. The HPLC-TOF/IT/MS allowed the characterisation, for the first time, of the phenolic profile of extracts of 'Chemlali' olive buds and open flowers, proving to be a very useful technique for the characterisation and structure elucidation of phenolic compounds. Copyright © 2013 John Wiley & Sons, Ltd.
Recovering Bioactive Compounds from Olive Oil Filter Cake by Advanced Extraction Techniques
Lozano-Sánchez, Jesús; Castro-Puyana, María; Mendiola, Jose A.; Segura-Carretero, Antonio; Cifuentes, Alejandro; Ibáñez, Elena
2014-01-01
The potential of by-products generated during extra-virgin olive oil (EVOO) filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals. PMID:25226536
Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation
García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana
2016-01-01
In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11–16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18–22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9–13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190
Guiné, Raquel P F; Barroca, Maria João; Gonçalves, Fernando J; Alves, Mariana; Oliveira, Solange; Mendes, Mateus
2015-02-01
Bananas (cv. Musa nana and Musa cavendishii) fresh and dried by hot air at 50 and 70°C and lyophilisation were analysed for phenolic contents and antioxidant activity. All samples were subject to six extractions (three with methanol followed by three with acetone/water solution). The experimental data served to train a neural network adequate to describe the experimental observations for both output variables studied: total phenols and antioxidant activity. The results show that both bananas are similar and air drying decreased total phenols and antioxidant activity for both temperatures, whereas lyophilisation decreased the phenolic content in a lesser extent. Neural network experiments showed that antioxidant activity and phenolic compounds can be predicted accurately from the input variables: banana variety, dryness state and type and order of extract. Drying state and extract order were found to have larger impact in the values of antioxidant activity and phenolic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rajha, Hiba N.; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G.; Maroun, Richard G.
2014-01-01
In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications. PMID:25322155
Rajha, Hiba N; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G; Maroun, Richard G
2014-10-15
In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications.
Russo, Marina; Fanali, Chiara; Tripodo, Giusy; Dugo, Paola; Muleo, Rosario; Dugo, Laura; De Gara, Laura; Mondello, Luigi
2018-06-01
The analysis of pomegranate phenolic compounds belonging to different classes in different fruit parts was performed by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detection. Two different separation methods were optimized for the analysis of anthocyanins and hydrolyzable tannins along with phenolic acids and flavonoids. Two C 18 columns, core-shell and fully porous particle stationary phases, were used. The parameters for separation of phenolic compounds were optimized considering chromatographic resolution and analysis time. Thirty-five phenolic compounds were found, and 28 of them were tentatively identified as belonging to four different phenolic compound classes; namely, anthocyanins, phenolic acids, hydrolyzable tannins, and flavonoids. Quantitative analysis was performed with a mixture of nine phenolic compounds belonging to phenolic compound classes representative of pomegranate. The method was then fully validated in terms of retention time precision, expressed as the relative standard deviation, limit of detection, limit of quantification, and linearity range. Phenolic compounds were analyzed directly in pomegranate juice, and after solvent extraction with a mixture of water and methanol with a small percentage of acid in peel and pulp samples. The accuracy of the extraction method was also assessed, and satisfactory values were obtained. Finally, the method was used to study identified analytes in pomegranate juice, peel, and pulp of six different Italian varieties and one international variety. Differences in phenolic compound profiles among the different pomegranate parts were observed. Pomegranate peel samples showed a high concentration of phenolic compounds, ellagitannins being the most abundant ones, with respect to pulp and juice samples for each variety. With the same samples, total phenols and antioxidant activity were evaluated through colorimetric assays, and the results were correlated among them.
Tian, Ye; Liimatainen, Jaana; Alanne, Aino-Liisa; Lindstedt, Anni; Liu, Pengzhan; Sinkkonen, Jari; Kallio, Heikki; Yang, Baoru
2017-04-01
Phenolic compounds of berries and leaves of thirteen various plant species were extracted with aqueous ethanol and analyzed with UPLC-DAD-ESI-MS, HPLC-DAD, and NMR. The total content of phenolics was consistently higher in leaves than in berries (25-7856 vs. 28-711mg/100g fresh weight). Sea buckthorn leaves were richest in phenolic compounds (7856mg/100g f.w.) with ellagitannins as the dominant compound class. Sea buckthorn berries contained mostly isorhamnetin glycosides, whereas quercetin glycosides were typically abundant in most samples investigated. Anthocyanins formed the dominating group of phenolics in most dark-colored berries but phenolic acid derivatives were equally abundant in saskatoon and chokeberry berries. Caffeoylquinic acids constituted 80% of the total phenolic content (1664mg/100g f.w.) in bilberry leaves. B-type procyanidins and caffeoylquinic acids were the major phenolic compounds in hawthorn and rowanberry, respectively. Use of leaves of some species with prunasin, tyramine and β-p-arbutin, may be limited in food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal
2013-06-01
To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries.
Santos, Sónia A O; Vilela, Carla; Freire, Carmen S R; Neto, Carlos Pascoal; Silvestre, Armando J D
2013-11-01
Ultra-high performance liquid chromatography (UHPLC) was applied for the first time in the analysis of wood extracts. The potential of this technique coupled to ion trap mass spectrometry in the rapid and effective detection and identification of bioactive components in complex vegetal samples was demonstrated. Several dozens of compounds were detected in less than 30min of analysis time, corresponding to more than 3-fold reduction in time, when compared to conventional HPLC analysis of similar extracts. The phenolic chemical composition of Eucalyptus grandis, Eucalyptus urograndis (E. grandis×E. urophylla) and Eucalyptus maidenii wood extracts was assessed for the first time, with the identification of 51 phenolic compounds in the three wood extracts. Twenty of these compounds are reported for the first time as Eucalyptus genus components. Ellagic acid and ellagic acid-pentoside are the major components in all extracts, followed by gallic and quinic acids in E. grandis and E. urograndis and ellagic acid-pentoside isomer, isorhamnetin-hexoside and gallic acid in E. maidenii. The antioxidant scavenging activity of the extracts was evaluated, with E. grandis wood extract showing the lowest IC50 value. Moreover, the antioxidant activity of these extracts was higher than that of the commercial antioxidant BHT and of those of the corresponding bark extracts. These results, together with the phenolic content values, open good perspectives for the exploitation of these renewable resources as a source of valuable phenolic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
Mocan, Andrei; Diuzheva, Alina; Carradori, Simone; Andruch, Vasil; Massafra, Chiara; Moldovan, Cadmiel; Sisea, Cristian; Petzer, Jacobus P; Petzer, Anél; Zara, Susi; Marconi, Guya Diletta; Zengin, Gokhan; Crișan, Gianina; Locatelli, Marcello
2018-04-21
In the present work, fourteen cultivars of Prunus domestica were analysed to investigate their phenolic pattern with the purpose of using the leaves as potential resources of bioactive compounds in the pharmaceutical and food industry. Microwave-assisted extraction (MAE), dispersive liquid-liquid microextraction and sugaring-out liquid-liquid extraction techniques were optimized in order to obtain an exhaustive multi-component panel of phenolic compounds. The best phenolic-enriched recovery was achieved using MAE in water:methanol (30:70), and this procedure was further applied for quantitative analysis of phenolic compounds in real samples. In order to prove the safeness of these extracts, the biological potential of the Prunus cultivars was tested by several in vitro antioxidant and enzyme inhibitory assays. Moreover, their cytotoxicity was evaluated on human gingival fibroblasts (HGFs), and in most of the cases the treatment with different concentrations of extracts didn't show cytotoxicity up to 500 μg/mL. Only 'Carpatin' and 'Minerva' cultivars, at 250 and 500 μg/mL, reduced partially cell viability of HGFs population. Noteworthy, Centenar cultivar was the most active for the α-glucosidase inhibition (6.77 mmolACAE/g extract), whereas Ialomița cultivar showed the best antityrosinase activity (23.07 mgKAE/g extract). Overall, leaves of P. domestica represent a rich alternative source of bioactive compounds. Copyright © 2018. Published by Elsevier Ltd.
Kadam, Shekhar U; Tiwari, Brijesh K; Smyth, Thomas J; O'Donnell, Colm P
2015-03-01
The objective of this study was to investigate the effect of key extraction parameters of extraction time (5-25 min), acid concentration (0-0.06 M HCl) and ultrasound amplitude (22.8-114 μm) on yields of bioactive compounds (total phenolics, fucose and uronic acid) from Ascophyllumnodosum. Response surface methodology was employed to optimize the extraction variables for bioactive compounds' yield. A second order polynomial model was fitted well to the extraction experimental data with (R(2)>0.79). Extraction yields of 143.12 mgGAE/gdb, 87.06 mg/gdb and 128.54 mg/gdb were obtained for total phenolics, fucose and uronic acid respectively at optimized extraction conditions of extraction time (25 min), acid concentration (0.03 M HCl) and ultrasonic amplitude (114 μm). Mass spectroscopy analysis of extracts show that ultrasound enhances the extraction of high molecular weight phenolic compounds from A. nodosum. This study demonstrates that ultrasound assisted extraction (UAE) can be employed to enhance extraction of bioactive compounds from seaweed. Copyright © 2014 Elsevier B.V. All rights reserved.
Kazemi, Milad; Karim, Roselina; Mirhosseini, Hamed; Abdul Hamid, Azizah
2016-09-01
Pomegranate peel is a rich source of phenolic compounds (such as punicalagin and hydroxybenzoic acids). However, the content of such bioactive compounds in the peel extract can be affected by extraction type and condition. It was hypothesized that the optimization of a pulsed ultrasound-assisted extraction (PUAE) technique could result in the pomegranate peel extract with higher yield and antioxidant activity. The main goal was to optimize PUAE condition resulting in the highest yield and antioxidant activity as well as the highest contents of punicalagin and hydroxybenzoic acids. The operation at the intensity level of 105W/cm(2) and duty cycle of 50% for a short time (10min) had a high efficiency for extraction of phenolics from pomegranate peel. The application of such short extraction can save the energy and cost of the production. Punicalagin and ellagic acid were the most predominant phenolic compounds quantified in the pomegranate peel extract (PPE) from Malas variety. PPE contained a minor content of gallic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jha, Pankaj; Das, Arup Jyoti; Deka, Sankar Chandra
2017-11-01
Phenolic compounds were extracted from the husk of milled black rice (cv. Poireton) by using a combination of ultrasound assisted extraction and microwave assisted extraction. Extraction parameters were optimized by response surface methodology according to a three levels, five variables Box-Behnken design. The appropriate process variables (extraction temperature and extraction time) to maximize the ethanolic extraction of total phenolic compounds, flavonoids, anthocyanins and antioxidant activity of the extracts were obtained. Extraction of functional components with varying ethanol concentration and microwave time were significantly affected by the process variables. The best possible conditions obtained by RSM for all the factors included 10.02 min sonication time, 49.46 °C sonication temperature, 1:40.79 (w/v) solute solvent ratio, 67.34% ethanol concentration, and 31.11 s microwave time. Under the given solutions, the maximum extraction of phenolics (1.65 mg/g GAE), flavonoids (3.04 mg/100 g), anthocyanins (3.39 mg/100 g) and antioxidants (100%) were predicted, while the experimental values included 1.72 mg/g GAE of total phenolics, 3.01 mg/100 g of flavonoids, 3.36 mg/100 g of anthocyanins and 100% antioxidant activity. The overall results indicated positive impact of co-application of microwave and ultrasound assisted extractions of phenolic compounds from black rice husk.
Rapid estimation of the oxidative activities of individual phenolics in crude plant extracts.
Vihakas, Matti; Pälijärvi, Maija; Karonen, Maarit; Roininen, Heikki; Salminen, Juha-Pekka
2014-07-01
Previous studies of purified phenolic compounds have revealed that some phenolics, especially ellagitannins, can autoxidise under alkaline conditions, which predominate in the midgut of lepidopteran larvae. To facilitate screening for the pro-oxidant activities of all types of phenolic compounds from crude plant extracts, we developed a method that combined our recent spectrophotometric bioactivity method with an additional chromatographic step via UPLC-DAD-MS. This method allowed us to estimate the total pro-oxidant capacities of crude extracts from 12 plant species and to identify the individual phenolic compounds that were responsible for the detected activities. It was found that the pro-oxidant capacities of the plant species (i.e., the concentrations of the easily-oxidised phenolics) varied from 0 to 57 mg/g dry wt, representing from 0% to 46% of the total phenolics from different species. UPLC-DAD-MS analysis revealed that most flavonol and flavone glycosides were only slightly affected by alkaline conditions, thus indicating their low pro-oxidant activity. Interestingly, myricetin-type compounds differed from the other flavonoids, as their concentrations decreased strongly due to alkaline incubation. The same effect was detected for hydrolysable tannins and prodelphinidins, suggesting that a pyrogallol sub-structure could be a key structural component that partially explains their easy oxidation at high pH. Other types of phenolic compounds, such as hydroxycinnamic acids, were relatively active, as well. These findings demonstrate that this method displays the potential to identify most of the active and inactive pro-oxidant phenolic compounds in various plant species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guimarães, Rafaela; Calhelha, Ricardo C; Froufe, Hugo J C; Abreu, Rui M V; Carvalho, Ana Maria; Queiroz, Maria João R P; Ferreira, Isabel C F R
2016-01-01
Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.
[Study of antioxidant activity of phenolic compounds from some species of Georgian flora].
Alaniia, M; Shalashvili, K; Sagareishvili, T; Kavtaradze, N; Sutiashvili, M
2013-09-01
The antioxidant activity of extracts obtained from different parts of Georgian flora species Hamamelis virginiana L., Astragalus caucasicus Pall., Astragalus microcephalus Willd., Vitis vinifera L., Rhododendron ponticum L., Rhododendron Ungernii Trautv., Ginkgo biloba L., Salvia officinalis L., Querqus iberica Stev., Maclura aurantiaca Nutt., Cotinus coggygria Ledeb., Fraxinus ornus L., Urtica dioica L., Rhododendron caucasicum Pall., Pueraria hirsuta Matsum., Geranium pusillum L., Astragalus Tanae Sosn., Pinus silvestris L. has been studied. Comparison with ethylentetraacetate and α-tocopherole revealed high efficacy of all extracts studied. 45 individual phenolic compounds were isolated and described by chemical examination of biologically active objects. Common sage (Salvia officinalis) extract turned out as the most active (200 %). The chemical study revealed the dominant content of condensed tannins and low molecular phenolic compounds, which may be attributed to the high antioxidant activity. Biologically active antiatherosclerotic food additive "Salbin" was developed on the basis of Common sage - Salvia officinalis L. phenolic compounds.
Oliveira, Fernanda Granja da Silva; de Lima-Saraiva, Sarah Raquel Gomes; Oliveira, Ana Paula; Rabêlo, Suzana Vieira; Rolim, Larissa Araújo; Almeida, Jackson Roberto Guedes da Silva
2016-01-01
Background: Popularly known as “jatobá,” Hymenaea martiana Hayne is a medicinal plant widely used in the Brazilian Northeast for the treatment of various diseases. Objective: The aim of this study was to evaluate the influence of different extractive methods in the production of phenolic compounds from different parts of H. martiana. Materials and Methods: The leaves, bark, fruits, and seeds were dried, pulverized, and submitted to maceration, ultrasound, and percolation extractive methods, which were evaluated for yield, visual aspects, qualitative phytochemical screening, phenolic compound content, and total flavonoids. Results: The highest results of yield were obtained from the maceration of the leaves, which may be related to the contact time between the plant drug and solvent. The visual aspects of the extracts presented some differences between the extractive methods. The phytochemical screening showed consistent data with other studies of the genus. Both the vegetal part as the different extractive methods influenced significantly the levels of phenolic compounds, and the highest content was found in the maceration of the barks, even more than the content found previously. No differences between the levels of total flavonoids were significant. The highest concentration of total flavonoids was found in the ultrasound of the barks, followed by maceration on this drug. According to the results, the barks of H. martiana presented the highest total flavonoid contents. Conclusion: The results demonstrate that both the vegetable and the different extractive methods influenced significantly various parameters obtained in the various extracts, demonstrating the importance of systematic comparative studies for the development of pharmaceuticals and cosmetics. SUMMARY The phytochemical screening showed consistent data with other studies of the genus HymenaeaBoth the vegetable part and the different extractive methods influenced significantly various parameters obtained in the various extracts, including the levels of phenolic compoundsThe barks of H. martiana presented the highest total phenolic and flavonoid contents. PMID:27695267
Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.
1993-06-29
A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3
Lackova, Zuzana; Buchtelova, Hana; Buchtova, Zaneta; Klejdus, Borivoj; Heger, Zbynek; Brtnicky, Martin; Kynicky, Jindrich; Zitka, Ondrej; Adam, Vojtech
2017-09-28
This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway seed extracts. The strongest inhibitory effect on prostatic cells was observed after the application of extracts of spices in concentration of 12.5 mg·mL -1 . An LC/MS analysis identified that the most abundant phenolic and flavonoid compounds in black pepper are 3,4-dihydroxybenzaldehyde and naringenin chalcone, while the most abundant phenolic and flavonoid compounds in caraway seeds are neochlorogenic acid and apigenin. Using an MTT assay for the phenolic and flavonoid compounds from spices, we identified the IC 50 value of ~1 mmol·L -1 PNT1A. The scratch test demonstrated that the most potent inhibitory effect on PNT1A, 22RV1 and PC3 cells is from the naringenin chalcone contained in black pepper. From the spectrum of compounds assessed, the naringenin chalcone contained in black pepper was identified as the most potent inhibitor of the growth of prostate cells.
Anwar, Farooq; Przybylski, Roman
2012-01-01
Plant origin food ingredients are the main source of very potent antioxidants. Tocopherols, the main oilseeds natural antioxidants are very potent and when implemented into cell membranes are able to scavenge large number of free radicals. Among plant antioxidants are mainly phenolics, large and diversified group of chemical compounds with different radical scavenging potential. Defatted flaxseed meals were extracted with pure alcohols and its mixture with water. Acquired extracts were analysed for the content of phenolics and flavonoids using colorimetric procedures. Antioxidative capacity was assessed by utilizing: DPPH stable free radicals; inhibition of linoleic acid oxidation and reducing power of components. Investigation was conducted on two different batches of flaxseed, assessing antioxidant capacity of compounds extracted with different polarity solvents and extracts were tested for antioxidant activity with different methods. The highest yield of extraction was achieved with 80% methanol but the extract did not contain the highest amount of phenolics and flavonoids. When 80% ethanol was used for extraction the highest amount of flavonoids was detected and also the best antioxidant capacity. The results clearly showed that utilization of polar solvent enable extraction of significant amounts of phenolics and flavonoids. Those components were the most potent antioxidants present in those extracts. Content of these compounds correlated well with results from applied methods for antioxidant assessment.
Ghimire, Bimal Kumar; Son, Na-Young; Kim, Seung-Hyun; Yu, Chang Yeon; Chung, Ill-Min
2017-07-01
The effect of water stress and herbicide treatment on the phenolic compound concentration and photosynthesis rate in transgenic Codonopsis lanceolata plants over-expressing the γ-tmt gene was investigated and compared to that in control non-transgenic C. lanceolata plants. The total phenolic compound content was investigated using high-performance liquid chromatography combined with diode array detection in C. lanceolata seedlings 3 weeks after water stress and treatment with glyphosate. Changes in the composition of phenolic compounds were observed in leaf and root extracts from transformed C. lanceolata plants following water stress and treatment with glyphosate. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after water stress ranged from 3455.13 ± 40.48 to 8695.00 ± 45.44 µg g -1 dry weight (DW), whereas the total concentration phenolic compound in the leaf extracts of non-transgenic control samples was 5630.83 ± 45.91 µg g -1 DW. The predominant phenolic compounds that increased after the water stress in the transgenic leaf were (+) catechin, benzoic acid, chlorogenic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veratric acid. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after glyphosate treatment ranged from 4744.37 ± 81.81 to 12,051.02 ± 75.00 µg g -1 DW, whereas the total concentration of the leaf extracts of non-transgenic control samples after glyphosate treatment was 3778.28 ± 59.73 µg g -1 DW. Major phenolic compounds that increased in the transgenic C. lanceolata plants after glyphosate treatment included kaempherol, gallic acid, myricetin, p-hydroxybenzjoic acid, quercetin, salicylic acid, t-cinnamic acid, catechin, benzoicacid, ferulic acid, protocatechuic acid, veratric acid, and vanillic acid. Among these, vanillic acid showed the greatest increase in both leaf and root extracts from transgenic plants relative to those from control C. lanceolata plants following treatment with glyphosate, which could affect the 5-enol-pyruvyl shikimate-3-phosphate (EPSP) synthase, an enzyme in the shikimate pathway. We observed enhanced stomatal conductance (gs) and photosynthesis rate (A) in the transgenic plants treated with water stress and glyphosate treatment. The results of this study demonstrated large variations in the functioning of secondary metabolites pathway in response glyphosate and water stress in transgenic C. lanceolata.
Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts
Altemimi, Ammar; Lakhssassi, Naoufal; Baharlouei, Azam; Watson, Dennis G.; Lightfoot, David A.
2017-01-01
There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed. PMID:28937585
Antioxidant Activity and Total Phenolic and Flavonoid Contents of Hieracium pilosella L. Extracts
Stanojević, Ljiljana; Stanković, Mihajlo; Nikolić, Vesna; Nikolić, Ljubiša; Ristić, Dušica; Čanadanovic-Brunet, Jasna; Tumbas, Vesna
2009-01-01
The antioxidant activity of water, ethanol and methanol Hieracium pilosella L. extracts is reported. The antioxidative activity was tested by spectrophotometrically measuring their ability to scavenge a stable DPPH• free radical and a reactive hydroxyl radical trapped by DMPO during the Fenton reaction, using the ESR spectroscopy. Total phenolic content and total flavonoid content were evaluated according to the Folin-Ciocalteu procedure, and a colorimetric method, respectively. A HPLC method was used for identification of some phenolic compounds (chlorogenic acid, apigenin-7-O-glucoside and umbelliferone). The antioxidant activity of the investigated extracts slightly differs depending on the solvent used. The concentration of 0.30 mg/mL of water, ethanol and methanol extract is less effective in scavenging hydroxyl radicals (56.35, 58.73 and 54.35%, respectively) in comparison with the DPPH• radical scavenging activity (around 95% for all extracts). The high contents of total phenolic compounds (239.59–244.16 mg GAE/g of dry extract) and total flavonoids (79.13–82.18 mg RE/g of dry extract) indicated that these compounds contribute to the antioxidative activity. PMID:22346723
Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey.
Estevinho, Letícia; Pereira, Ana Paula; Moreira, Leandro; Dias, Luís G; Pereira, Ermelinda
2008-12-01
Phenolic compounds of dark and clear honeys from Trás-os-Montes of Portugal were extracted with Amberlite XAD-2 and evaluated for their antioxidant and antimicrobial activities. The antioxidant effect was studied using the in vitro test capacity of scavenge the 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical and of reducing power of iron (III)/ferricyanide complex. The antimicrobial activity was screened using three Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Staphylococcus lentus) and three Gram-negative bacteria (Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli). The results obtained from the partial identification of honey phenolic compounds by high-performance liquid chromatography with a diode array detector showed that p-hydroxibenzoic acid, cinnamic acid, naringenin, pinocembrin and chrysin are the phenolic compounds present in most of the samples analyzed. Antioxidant potential was dependent of honey extract concentration and the results showed that dark honey phenolic compounds had higher activity than the obtained from clear honey. In the biological assays, results showed that S. aureus were the most sensitive microrganisms and B. subtilis, S. lentus, K. pneumoniae and E. coli were each moderately sensitive to the antimicrobial activity of honey extracts. Nevertheless, no antimicrobial activity was observed in the test with P. aeruginosa.
Olive Tree (Olea europeae L.) Leaves: Importance and Advances in the Analysis of Phenolic Compounds
Abaza, Leila; Taamalli, Amani; Nsir, Houda; Zarrouk, Mokhtar
2015-01-01
Phenolic compounds are becoming increasingly popular because of their potential role in contributing to human health. Experimental evidence obtained from human and animal studies demonstrate that phenolic compounds from Olea europaea leaves have biological activities which may be important in the reduction in risk and severity of certain chronic diseases. Therefore, an accurate profiling of phenolics is a crucial issue. In this article, we present a review work on current treatment and analytical methods used to extract, identify, and/or quantify phenolic compounds in olive leaves. PMID:26783953
Santos Felix, Antonio C; Novaes, Cleber G; Pires Rocha, Maísla; Barreto, George E; do Nascimento, Baraquizio B; Giraldez Alvarez, Lisandro D
2017-01-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC 50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity.
Ghafoor, Kashif; Choi, Yong Hee; Jeon, Ju Yeong; Jo, In Hee
2009-06-10
Important functional components from Campbell Early grape seed were extracted by ultrasound-assisted extraction (UAE) technology. The experiments were carried out according to a five level, three variable central composite rotatable design (CCRD). The best possible combinations of ethanol concentration, extraction temperature, and extraction time with the application of ultrasound were obtained for the maximum extraction of phenolic compounds, antioxidant activities, and anthocyanins from grape seed by using response surface methodology (RSM). Process variables had significant effect on the extraction of functional components with extraction time being highly significant for the extraction of phenolics and antioxidants. The optimal conditions obtained by RSM for UAE from grape seed include 53.15% ethanol, 56.03 degrees C temperature, and 29.03 min time for the maximum total phenolic compounds (5.44 mg GAE/100 mL); 53.06% ethanol, 60.65 degrees C temperature, and 30.58 min time for the maximum antioxidant activity (12.31 mg/mL); and 52.35% ethanol, 55.13 degrees C temperature, and 29.49 min time for the maximum total anthocyanins (2.28 mg/mL). Under the above-mentioned conditions, the experimental total phenolics were 5.41 mg GAE/100 mL, antioxidant activity was 12.28 mg/mL, and total anthocyanins were 2.29 mg/mL of the grape seed extract, which is well matched with the predicted values.
Green extraction of grape skin phenolics by using deep eutectic solvents.
Cvjetko Bubalo, Marina; Ćurko, Natka; Tomašević, Marina; Kovačević Ganić, Karin; Radojčić Redovniković, Ivana
2016-06-01
Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal
2013-01-01
Objective To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. Methods The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. Results It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. Conclusions It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries. PMID:23730555
Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.
Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M
2007-11-15
The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.
Kim, Y.-O.; Lee, E.J.
2011-01-01
One prediction of the novel weapons hypothesis (NWH) for the dominance of exotic invasive plant species is that the allelopathic effects of successful invaders will, in general, be more biochemically inhibitory to native species and microbes in invaded regions than the native plants themselves. However, no study has compared biochemical concentrations, compositions, or effects of large numbers of native species to those of large numbers of invasive species. In this context we tested the allelopathic and antimicrobial potentials of nine native plant species and nine invasive species in East Asia by comparing their broad phenolic contents and the effects of extracts made from each of the species on target plants and soil fungi. Three of the invasive species, including Eupatorium rugosum, had higher concentrations of total phenolic compounds than any of the native species, and the mean concentration of total phenolics for invasive species was 2.6 times greater than the mean for native species. Only scopoletin was novel to the invasive species, being found in all of nine invasive species, but not in the native species. More importantly, the effects of the total suites of phenolic compounds produced by invasive species differed from the effects of phenolics produced by natives. Extracts of invasive species reduced radicle growth of the three test plant species by 60-80%, but extracts of native species reduced radicle growth by only 30-50%. Extracts of invasive species reduced shoot growth of the three test species by 20-40%, but the overall effect of native species' extract was to stimulate shoot growth. The antimicrobial activity of invasive species was also significantly higher than that of native species. It should be noted that phenolics are just one component of a plant's potential allelopathic arsenal and non-phenolic compounds are likely to play a role in the total extract effect. For example, extracts of P. americana contained the lowest levels of phenolic compounds, but exhibited the strongest inhibition effect. We could not determine whether the greater inhibitory effects of the extracts from invasive species were due to novel combinations of chemicals or higher concentrations of chemicals, but our results are consistent with the predictions of the NWH. ?? 2010 The Ecological Society of Japan.
Antioxidant Activity of a Red Lentil Extract and Its Fractions
Amarowicz, Ryszard; Estrella, Isabell; Hernández, Teresa; Dueñas, Montserrat; Troszyńska, Agnieszka; Agnieszka, Kosińska; Pegg, Ronald B.
2009-01-01
Phenolic compounds were extracted from red lentil seeds using 80% (v/v) aqueous acetone. The crude extract was applied to a Sephadex LH-20 column. Fraction 1, consisting of sugars and low-molecular-weight phenolics, was eluted from the column by ethanol. Fraction 2, consisting of tannins, was obtained using acetone-water (1:1; v/v) as the mobile phase. Phenolic compounds present in the crude extract and its fractions demonstrated antioxidant and antiradical activities as revealed from studies using a β-carotene-linoleate model system, the total antioxidant activity (TAA) method, the DPPH radical-scavenging activity assay, and a reducing power evaluation. Results of these assays showed the highest values when tannins (fraction 2) were tested. For instance, the TAA of the tannin fraction was 5.85 μmol Trolox® eq./mg, whereas the crude extract and fraction 1 showed 0.68 and 0.33 μmol Trolox® eq./mg, respectively. The content of total phenolics in fraction 2 was the highest (290 mg/g); the tannin content, determined using the vanillin method and expressed as absorbance units at 500 nm per 1 g, was 129. There were 24 compounds identified in the crude extract using an HPLC-ESI-MS method: quercetin diglycoside, catechin, digallate procyanidin, and p-hydroxybenzoic were the dominant phenolics in the extract. PMID:20054484
Vallverdú-Queralt, Anna; Boix, Nuria; Piqué, Ester; Gómez-Catalan, Jesús; Medina-Remon, Alexander; Sasot, Gemma; Mercader-Martí, Mercè; Llobet, Juan M; Lamuela-Raventos, Rosa M
2015-08-15
The zebrafish embryo is a highly interesting biological model with applications in different scientific fields, such as biomedicine, pharmacology and toxicology. In this study, we used liquid chromatography/electrospray ionisation-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC/ESI-LTQ-Orbitrap-MS) to identify the polyphenol compounds in a red wine extract and zebrafish embryos. Phenolic compounds and anthocyanin metabolites were determined in zebrafish embryos previously exposed to the red wine extract. Compounds were identified by injection in a high-resolution system (LTQ-Orbitrap) using accurate mass measurements in MS, MS(2) and MS(3) modes. To our knowledge, this research constitutes the first comprehensive identification of phenolic compounds in zebrafish by HPLC coupled to high-resolution mass spectrometry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bashi, Davoud Salar; Dowom, Samaneh Attaran; Bazzaz, Bibi Sedigheh Fazly; Khanzadeh, Farhad; Soheili, Vahid; Mohammadpour, Ali
2016-05-01
To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L. extracts. Maceration and ultrasound-assisted extraction (UAE) (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1) methanol purity) were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay), MFCs (colony diameter), total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity) was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m.) UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1)) than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1)). Moreover, it (MGI: 2.32-100 %) revealed more anti-mold activity than maceration (MGI: <28.77 %). Explosive disruption of the cell walls, therefore, enhanced extraction yield by acoustic cavitation, was elucidated using SEM. Caffeic acid, tannic acid, quercetin, trans ferulic acid and rosmarinic acid were determined as the phenolic compounds in the optimized extract. RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds.
Bashi, Davoud Salar; Dowom, Samaneh Attaran; Bazzaz, Bibi Sedigheh Fazly; Khanzadeh, Farhad; Soheili, Vahid; Mohammadpour, Ali
2016-01-01
Objective(s): To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L. extracts. Materials and Methods: Maceration and ultrasound-assisted extraction (UAE) (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1) methanol purity) were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay), MFCs (colony diameter), total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. Results: A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity) was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m.) UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1)) than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1)). Moreover, it (MGI: 2.32-100 %) revealed more anti-mold activity than maceration (MGI: <28.77 %). Explosive disruption of the cell walls, therefore, enhanced extraction yield by acoustic cavitation, was elucidated using SEM. Caffeic acid, tannic acid, quercetin, trans ferulic acid and rosmarinic acid were determined as the phenolic compounds in the optimized extract. Conclusion: RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds. PMID:27403260
Kureck, Itamara; Policarpi, Priscila de Brito; Toaldo, Isabela Maia; Maciel, Matheus Vinícius de Oliveira Brisola; Bordignon-Luiz, Marilde T; Barreto, Pedro Luiz Manique; Block, Jane Mara
2018-05-03
The pecan nut [Carya illinoinensis (Wangenh) C. Koch] is a natural source of polyphenols with antioxidant properties. In this study, the encapsulation of aqueous and hydroalcoholic extracts of pecan nut shell were evaluated for the release of bioactive compounds and antioxidant potential in order to explore food applications using zein as encapsulating agent. The extracts showed high contents of total phenolics, condensed tannins and high antioxidant activity. Concentrations of proanthocyanidins were 9-fold higher in hydroalcoholic extracts. The LC-DAD analysis showed that catechins were the major phenolic compounds in samples, with epigallocatechin levels up to 138.62 mg mL -1 . Zein microparticles loaded with aqueous extract released 2.3 times more phenolic compounds than the hydroalcoholic extracts and the DSC thermograms showed that extracts of pecan nut shell remained thermally stable up to 240 °C. The zein microcapsules obtained in this study were efficiently encapsulated and represent an interesting additive due its high antioxidant capacity, physicochemical characteristics and morphology. The use of zein microparticles combined with natural extracts constitute a step forward in the improvement of current technology for delivering phenolic compounds with applications in functional foods and nutraceuticals.
Some phenolic compounds of extracts obtained from Origanum species growing in Turkey.
Ozkan, Gülcan; Ozcan, Mehmet Musa
2014-08-01
Caffeic acid, rosmarinic acid, rutin, apigenin 7-O-glucoside, apigenin, and acesetin were the main phenolic compounds of Origanum onites extracts in all applications. While acesetin contents ranged from 133.59 mg/100 g (U1) to 437.25 mg/100 g (S3), rosmarinic acid changed between 215.94 mg/100 g (U4) and 1120.56 mg/100 g (S2) in Origanum vulgare L. subsp. hirtum (Link) Ietsw. Both rosmarinic acid and acesetin were not found in U5 application. Only caffeic acid (19.39 mg/100 g) was found in U5 application. Rosmarinic acid contents of O. onites extract changed between 158.62 mg/100 g (U5) and 799.87 mg/100 g (S2). Generally, dominant phenolic compound of Origanum extracts was rosmarinic acid compared with other extracts. In addition, methanol:water:acetic acid mixture (S2) (95:4.5:0.5) was found as the best application. Phenolic contents of extracts obtained with U series mixtures were found low.
Gu, Fenglin; Huang, Feifei; Wu, Guiping; Zhu, Hongying
2018-02-09
Black pepper ( Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.
Huynh, Nguyen Thai; Smagghe, Guy; Gonzales, Gerard Bryan; Van Camp, John; Raes, Katleen
2014-07-30
Phenolic compounds are highly present in byproducts from the cauliflower (Brassica oleracea L. var. botrytis) harvest and are thus a valuable source for valorization toward phenolic-rich extracts. In this study, we aimed to optimize and characterize the release of individual phenolic compounds from outer leaves of cauliflower, using two commercially available polysaccharide-degrading enzymes, Viscozyme L and Rapidase. As major results, the optimal conditions for the enzyme treatment were: enzyme/substrate ratio of 0.2% for Viscozyme L and 0.5% for Rapidase, temperature 35 °C, and pH 4.0. Using a UPLC-HD-TOF-MS setup, the main phenolic compounds in the extracts were identified as kaempferol glycosides and their combinations with different hydroxycinnamic acids. The most abundant components were kaempferol-3-feruloyldiglucoside and kaempferol-3-glucoside (respectively, 37.8 and 58.4 mg rutin equiv/100 g dry weight). Incubation of the cauliflower outer leaves with the enzyme mixtures resulted in a significantly higher extraction yield of kaempferol-glucosides as compared to the control treatment.
Quorum Quenching and Microbial Control through Phenolic Extract of Eugenia Uniflora Fruits.
Rodrigues, Adeline Conceição; Zola, Flávia Guimarães; Ávila Oliveira, Brígida D'; Sacramento, Nayara Thais Barbosa; da Silva, Elis Regina; Bertoldi, Michele Corrêa; Taylor, Jason Guy; Pinto, Uelinton Manoel
2016-10-01
We describe the characterization of the centesimal composition, mineral and phenolic content of Eugenia uniflora fruit and the determination of the antioxidant, antimicrobial and quorum quenching activities of the pulp phenolic extract. Centesimal composition was determined according to standard methods; trace elements were measured by total reflection X-ray fluorescence spectroscopy. The phenolic compounds were extracted by solid-phase chromatography and quantified by spectrophotometry. Antioxidant activity was determined by using 3 different methods. Antimicrobial activity was evaluated against a panel of foodborne microorganisms and antiquorum sensing activity in Chromobacterium violaceum was performed by measuring inhibition of quorum sensing dependent violacein production. The centesimal composition (per 100 g of pulp) was as follows: protein 3.68 ± 0.21 g, lipids 0.02 ± 0.03 g, carbohydrates 10.31 g and fiber 2.06 g. Trace elements (mg/g of pulp) were determined as: K 0.90, Ca 3.36, Fe 0.60, Zn 0.17, Cl 0.56, Cr 0.06, Ni 0.04, and Cu 0.07. The pulp is a source of phenolic compounds and presents antioxidant activity similar to other berries. The fruit phenolic extract inhibited all tested bacteria. We also found that the fruit phenolic extract at low subinhibitory concentrations inhibited up to 96% of violacein production in C. violaceum, likely due to the fruit's phenolic content. This study shows the contribution of E. uniflora phenolic compounds to the antioxidant, antimicrobial and the newly discovered quorum quenching activity, all of which could be used by the food and pharmaceutical industries to develop new functional products. © 2016 Institute of Food Technologists®.
Retardation of quality changes in camel meat sausages by phenolic compounds and phenolic extracts.
Maqsood, Sajid; Manheem, Kusaimah; Abushelaibi, Aisha; Kadim, Isam Tawfik
2016-11-01
Impact of tannic acid (TA), date seed extract (DSE), catechin (CT) and green tea extract (GTE) on lipid oxidation, microbial load and textural properties of camel meat sausages during 12 days of refrigerated storage was investigated. TA and CT showed higher activities in all antioxidative assays compared to DSE and GTE. Lipid oxidation and microbial growth was higher for control sausages when compared to other samples. TA and CT at a level of 200 mg/kg were more effective in retarding lipid oxidation and lowering microbial count (P < 0.05). Sausages treated with TA and DSE were found to have higher hardness, gumminess and chewiness values compared to other treatments (P < 0.05). Addition of different phenolic compounds or extract did not influence the sensory color of sausages. Furthermore, sensory quality was also found to be superior in TA and CT treated sausages. Therefore, pure phenolic compounds (TA and CT) proved to be more effective in retaining microbial and sensorial qualities of camel meat sausages compared to phenolic extracts (GTE and DSE) over 12 days of storage at 4°C. © 2016 Japanese Society of Animal Science.
Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon
2016-08-31
Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.
NASA Astrophysics Data System (ADS)
Yusnawan, E.
2018-01-01
Soybean secondary metabolites particularly phenolic compounds act as chemical defence against biotic stress such as pathogen infection. Functional properties of these compounds have also been investigated. This study aimed to determine the effects of particle size and extraction methods on total flavonoid, phenolic contents as well as antioxidant activity in soybean seeds. This study also investigated the total phenolic contents and antioxidant activity of Indonesian soybean cultivars using the optimized extraction method. Soybean flour of ≤ 177 μm as many as 0.5 g was selected for extraction with 50% acetone for estimation of total phenolic and flavonoid contents and with 80% ethanol for antioxidant activity. Treatments of twice extraction either shaking followed by maceration or ultrasound-assisted extraction followed by maceration could be used to extract the secondary metabolite contents in soybean seeds. Flavonoid, phenolic contents and antioxidant activity of twenty soybean cultivars ranged from 0.23 to 0.44 mg CE/g, from 3.70 to 5.22 mg GAE/g, and from 4.97 to 9.04 µmol TE/g, respectively. A simple extraction with small amount of soybean flour such as investigated in this present study is effective to extract secondary metabolites especially when the availability of samples is limited such as breeding materials or soybean germplasm.
Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters
Tan, Shiau Pin; El-Abbassi, Abdelilah; Kiai, Hajar; Hafidi, Abdellatif; O’Donovan, Orla; McLoughlin, Peter
2017-01-01
Olive processing wastewaters (OPW), namely olive mill wastewater (OMW) and table-olive wastewaters (TOW) were evaluated for their antibacterial activity against five Gram-positive and two Gram-negative bacteria using the standard disc diffusion and thin layer chromatography (TLC)-bioautography assays. Disc diffusion screening and bioautography of OMW were compared to the phenolic extracts of table-olive brines. Positive activity against S. aureus was demonstrated. The optimization of chromatographic separation revealed that hexane/acetone in the ratio of 4:6 was the most effective for phenolic compounds separation. A HPLC-MS analysis was performed showing that only two compounds, hydroxytyrosol and tyrosol, were the predominant phenolic compounds in all OPW. The phenolic extract of OMW generated by a semi-modern process showed the highest free radical-scavenging activity (DPPH assay) compared to the other phenolic extracts. It is apparent from the present study that OPW are a rich source of antioxidants suitable for use in food, cosmetic or pharmaceutical applications. PMID:28873097
Perea-Domínguez, Xiomara Patricia; Espinosa-Alonso, Laura Gabriela; Hosseinian, Farah; HadiNezhad, Mehri; Valdez-Morales, Maribel; Medina-Godoy, Sergio
2017-03-01
Jatropha curcas seed shells are the by-product obtained during oil extraction process. Recently, its chemical composition has gained attention since its potential applications. The aim of this study was to identify phenolic compounds profile from a non-toxic J. curcas shell from Mexico, besides, evaluate J. curcas shell methanolic extract (JcSME) antioxidant activity. Free, conjugate and bound phenolics were fractionated and quantified (606.7, 193.32 and 909.59 μg/g shell, respectively) and 13 individual phenolic compounds were detected by HPLC. The radical-scavenging activity of JcSME was similar to Trolox and ascorbic acid by DPPH assay while by ABTS assay it was similar to BHT. Effective antioxidant capacity by ORAC was found (426.44 ± 53.39 μmol Trolox equivalents/g shell). The Mexican non-toxic J. curcas shell is rich in phenolic compounds with high antioxidant activity; hence, it could be considerate as a good source of natural antioxidants.
Robinson, Andrew L; Lee, Hyun Jung; Ryu, Dojin
2017-01-01
Ochratoxin A (OTA) is a fungal metabolite and putative carcinogen which can contaminate a variety of foods such as cereals, wine, and nuts. Commercial ELISA kits are known to give false-positive results for OTA concentrations when phenolic compounds are present. Pistachios represent a food matrix rich in phenolic compounds potentially contaminated with OTA, and were used to model OTA cross-reactivity. Polyvinylpolypyrrolidone (PVPP) was incorporated during extraction of OTA using a commercial ELISA protocol. HPLC methods were used to confirm that PVPP does not interact with OTA and levels of gallic acid and catechin remaining in pistachio extracts decreased with increasing PVPP application. Cross-reactivity of extracts also decreased with increasing PVPP application, and color loss was used as an indicator of anthocyanin removal. Incorporating PVPP into ELISA protocols allows for the continued use of rapid immunological methods in food matrices containing phenolic compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Serrano, Antonio; Fermoso, Fernando G; Alonso-Fariñas, Bernabé; Rodríguez-Gutierrez, Guillermo; Fernandez-Bolaños, Juan; Borja, Rafael
2017-11-01
A promising source of high added value compounds is the Olive Mill Solid Waste (OMSW). The aim of this research was to evaluate the viability of a biorefinery approach to valorize OMSW through the combination of steam explosion, phenols extraction, and anaerobic digestion. Steam explosion treatment increased the total phenol content in the steam exploited OMSW, which was twice than that the total phenol content in raw OMSW, although some undesirable compounds were also formed. Phenol extraction allowed the recovery of 2098mg hydroxytyrosol per kg of OMSW. Anaerobic digestion allowed the partial stabilization of the different substrates, although it was not improved by the steam explosion treatment. The economic suitability of the proposed biorefinery approach is favorable up to a phenol extract price 90.7% lower than the referenced actual price of 520€/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao
2018-04-11
In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20-237.60, 170.10-240.75 and 336.29-453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61-25.59, 14.91-22.38 and 37.91-47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH • free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS •+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH • and ABTS •+ free radical scavenging capacity in the free phenolic extract, while chlorogenic acid, vanillic acid, ferulic acid and quercetin were the main contributors to the free radical scavenging capacity in the bound phenol extract. The study results show that the blue highland barley grains have rich phenolic compounds and high antioxidant activity, as well as significant varietal differences. The free and bound phenolic extracts in the blue hulless barley grains have an equivalent proportion in the total phenol, and co-exist in two forms. They can be used as a potential valuable source of natural antioxidants, and can aid in enhancing the development and daily consumption of foods relating to blue highland barley.
Terpinc, Petra; Cigić, Blaž; Polak, Tomaž; Hribar, Janez; Požrl, Tomaž
2016-11-01
The impact of malting on the profile of the phenolic compounds and the antioxidant properties of two buckwheat varieties was investigated. The highest relative increases in phenolic compounds were observed for isoorientin, orientin, and isovitexin, which are consequently major inducible phenolic compounds during malting. Only a minor relative increase was observed for the most abundant phenolic compound, rutin. The radical-scavenging activity of buckwheat seeds was evaluated using ABTS and DPPH assays. A considerable increase in total phenolic compounds and higher antioxidant activity were observed after 64h of germination, whereas kilning resulted in decreased total phenolic compounds and antioxidant activity. Higher antioxidant activities for extracts were found for buffered solvents than for pure methanol and water. Changes in the composition of the phenolic compounds and increased antioxidant content were confirmed by several methods, indicating that buckwheat malt can be used as a food rich in antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fernández, María de Los Ángeles; Espino, Magdalena; Gomez, Federico J V; Silva, María Fernanda
2018-01-15
An environmentally friendly method for the phenolic compound extraction from agro-food industrial by-products was developed in order to contribute with their sustainable valorization. A Natural Deep Eutectic Solvent was chemometrically-designed for the first time and compared with traditional solvents in terms of analyte stabilization. The combination of lactic acid, glucose and 15% water (LGH-15) was selected as optimal. A high-efficiency ultrasound-assisted extraction mediated by LGH-15 prior to HPLC-DAD allows the determination of 14 phenols in onion, olive, tomato and pear industrial by-products. NADES synthesis as well as the extraction procedures were optimized by Response Surface Methodology. Thus, phenolic determination in these complex samples was achieved by a simple, non-expensive, eco-friendly and robust system. The application to different matrices demonstrated the versatility of the proposed method. NADES opens interesting perspectives for their potential use as vehicles of bioactive compounds as food additives or pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioavailability of Bioactive Molecules from Olive Leaf Extracts and its Functional Value.
Martín-Vertedor, Daniel; Garrido, María; Pariente, José Antonio; Espino, Javier; Delgado-Adámez, Jonathan
2016-07-01
Olive leaves are an important low-cost source of bioactive compounds. The present study aimed to examine the effect of in vitro digestibility of an olive leaf aqueous extract so as to prove the availability of its phenolic compounds as well as its antioxidant, antimicrobial, and anticancer activity after a simulated digestion process. The total phenolic content was significantly higher in the pure lyophilized extract. Phenolic compounds, however, decreased by 60% and 90% in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively. Regarding antioxidant activity, it was reduced by 10% and 50% after gastric and intestinal digestion, respectively; despite this fact, high antioxidant capacity was found in both SGF and SIF. Moreover, the olive leaf extract showed an unusual combined antimicrobial action at low concentration, which suggested their great potential as nutraceuticals, particularly as a source of phenolic compounds. Finally, olive leaf extracts produced a general dose-dependent cytotoxic effect against U937 cells. To sum up, these findings suggest that the olive leaf aqueous extract maintains its beneficial properties after a simulated digestion process, and therefore its regular consumption could be helpful in the management and the prevention of oxidative stress-related chronic disease, bacterial infection, or even cancer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects.
de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Rasera, Gabriela Boscariol; Canniatti-Brazaca, Solange Guidolin; do Prado-Silva, Leonardo; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Shahidi, Fereidoon
2017-12-15
Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MS n . Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds. Copyright © 2017. Published by Elsevier Ltd.
Gouveia, Sandra C; Castilho, Paula C
2009-12-01
A simple and rapid method has been used for the screening and identification of the main phenolic compounds from Helichrysum devium using high-performance liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection (LC-DAD/ESI-MS(n)). The total aerial parts and different morphological parts of the plant, namely leaves, flowers and stems, were analyzed separately. A total of 34 compounds present in the methanolic extract from Helichrysum devium were identified or tentatively characterized based on their UV and mass spectra and retention times. Three of these compounds were positively identified by comparison with reference standards. The phenolic compounds included derivatives of quinic acid, O-glycosylated flavonoids, a caffeic acid derivative and a protocatechuic acid derivative. The characteristic loss of 206 Da from malonylcaffeoyl quinic acid was used to confirm the malonyl linkage to the caffeoyl group. This contribution presents one of the first reports on the analysis of phenolic compounds from Helichrysum devium using LC-DAD/ESI-MS(n) and highlights the prominence of quinic acid derivatives as the main group of phenolic compounds present in these extracts. We also provide evidence that the methanolic extract from the flowers was significantly more complex when compared to that of other morphological parts. Copyright 2009 John Wiley & Sons, Ltd.
Kosińska, Agnieszka; Karamać, Magdalena; Estrella, Isabel; Hernández, Teresa; Bartolomé, Begoña; Dykes, Gary A
2012-05-09
Avocado processing by the food and cosmetic industries yields a considerable amount of phenolic-rich byproduct such as peels and seeds. Utilization of these byproducts would be favorable from an economic point of view. Methanolic (80%) extracts obtained from lyophilized ground peels and seeds of avocado (Persea americana Mill.) of the Hass and Shepard varieties were characterized for their phenolic compound profiles using the HPLC-PAD technique. The structures of the identified compounds were subsequently unambiguously confirmed by ESI-MS. Compositional analysis revealed that the extracts contained four polyphenolic classes: flavanol monomers, proanthocyanidins, hydroxycinnamic acids, and flavonol glycosides. The presence of 3-O-caffeoylquinic acid, 3-O-p-coumaroylquinic acid, and procyanidin A trimers was identified in seeds of both varieties. Intervarietal differences were apparent in the phenolic compound profiles of peels. Peels of the Shepard variety were devoid of (+)-catechin and procyanidin dimers, which were present in the peels of the Hass variety. Peels of both varieties contained 5-O-caffeoylquinic acid and quercetin derivatives. The differences in the phenolic profiles between varietals were also apparent in the different antioxidant activity of the extracts. The peel extracts had a higher total phenolic compound content and antioxidant activity when compared to the seed extracts. The highest TEAC and ORAC values were apparent in peels of the Haas variety in which they amounted to 0.16 and 0.47 mmol Trolox/g DW, respectively. No significant (p > 0.05) differences were apparent between the TEAC values of seeds of the two varieties but the ORAC values differed significantly (p < 0.05). Overall these findings indicate that both the seeds and peel of avocado can be utilized as a functional food ingredient or as an antioxidant additive.
NASA Astrophysics Data System (ADS)
Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.
2017-12-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues, preserving its antioxidant activity. The assessment with reference to the extraction of phenolic compounds, as well as their capacity to scavenge ABTS and the antioxidant capacity, determined by the modified DPPH method were investigated based on distinct combinations of time, temperature, velocity of rotation and solvents concentration. It was investigated that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%) and ethanol (8.85%) at 30 ºC during 20 min at 50 rpm. We have found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (µM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds preserving its antioxidant activity. This method does not require expensive reagents or high quantities of organic solvents.
Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.
2018-01-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity. PMID:29354632
Yang, Baoru; Liu, Pengzhan
2012-06-01
Epicatechin, aglycons and glycosides of B-type oligomeric procyanidins and flavonols, phenolic acids and C-glycosyl flavones are the major groups of phenolic compounds in hawthorn (Crataegus spp). The total content of phenolic compounds is higher in the leaves and flowers than in the fruits. Procyanidins dominate in the fruits, whereas flavonol glycosides and C-glycosyl flavones are most abundant in the leaves. Genotype and developmental/ripening stage have strong impacts. Procyanidin glycosides and C-glycosyl flavones may be chemotaxonomic markers differentiating species and varieties of hawthorn. Future research shall improve the separation, identification and quantification of procyanidins with degree of polymerisation (DP) ≥ 6, procyanidin glycosides, C-glycosyl flavones and some flavonol glycosides. In vitro and animal studies have shown cardioprotective, hypolipidaemic, hypotensive, antioxidant, radical-scavenging and anti-inflammatory potentials of hawthorn extracts, suggesting different phenolic compounds as the major bioactive components. However, the varying and insufficiently defined composition of the extracts investigated, as a result of different raw materials and extraction methods, makes comparison of the studies very difficult. Clinical evidence indicates that some hawthorn extracts may increase the exercise tolerance of patients with congestive heart failure. More clinical studies are needed to establish the effects of hawthorn, especially in healthy humans. Copyright © 2012 Society of Chemical Industry.
Antioxidative properties of defatted dabai pulp and peel prepared by solid phase extraction.
Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah
2012-08-14
Solid phase extraction (SPE) using Sep-Pak® cartridges is one of the techniques used for fractionation of antioxidant compounds in waste of dabai oil extraction (defatted dabai parts). The aim of this study was to determine the phenolic compounds and antioxidant capacity in crude extracts and several SPE fractions from methanolic extract of defatted dabai pulp and peel. Based on SPE, Sep-Pak® cyanopropyl and C₁₈ cartridges were used to fractionate the antioxidant-rich crude extracts into water and methanolic fractions. Analyzed using LC-MS, flavonoids, anthocyanins, saponin derivatives and other unknown antioxidative compounds were detected in the defatted dabai crude extracts and their SPE fractions. Anthocyanins were the major phenolic compounds identified in the defatted dabai peel and detected in most of the SPE fractions. Methanolic fractions of defatted dabai parts embraced higher total phenolics and antioxidant capacity than water fractions. This finding also revealed the crude extracts of defatted dabai peel have the most significant antioxidant properties compared to the methanolic and water fractions studied. The crude extract of defatted dabai parts remain as the most potent antioxidant as it contains mixture of flavonoids, anthocyanins and other potential antioxidants.
Ferreres, Federico; Oliveira, Andreia P; Gil-Izquierdo, Angel; Valentão, Patrícia; Andrade, Paula B
2014-01-01
Piper betle L. is a widely distributed plant in the tropical and subtropical regions, its leaves being largely consumed as a masticator and mouth freshener. The purposes of this work were to characterise the phenolic profile of this species and to improve knowledge of its anti-cholinesterase properties. The phenolic composition of P. betle leaf aqueous and ethanol extracts was characterised by HPLC coupled with a diode-array detector and combined with electrospray ionisation tandem MS, and in vitro cholinesterase inhibitory capacity of both extracts was assessed by spectrophotometric microassays. The effect on neuronal cells (SH-SY5Y) viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction and lactate dehydrogenase leakage. Twelve phenolic compounds, comprising a phenylpropanoid, five cinnamoyl and six flavonoids derivatives were identified in P. betle leaves. Hydroxychavicol was the major compound in both extracts; however, the aqueous extract presented a greater diversity of compounds. Both extracts showed strong activity against both acetyl- and butyrylcholinesterase, which can be due, at least partially, to the phenolic composition. Furthermore, the aqueous extract proved to be cytotoxic to human neuroblastoma cells at concentrations higher than 500 µg/mL. The results suggest that the consumption of P. betle leaves as an infusion can have a positive impact in the prevention and treatment of neurodegenerative diseases. Apigenin and luteolin derivatives are reported for the first time in this species. Copyright © 2014 John Wiley & Sons, Ltd.
Kumar, B Ramesh
2017-12-01
Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs) are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC-MS) has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC-MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects.
Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds.
USDA-ARS?s Scientific Manuscript database
Phenolic compounds are known to form soluble and insoluble complexes with proteins. The objective of this study was to determine if phenolics, such as, caffeic, chlorogenic, and ferulic acids form insoluble and irreversible complexes with major peanut allergens. We also tested whether such complexat...
Suluvoy, Jagadish Kumar; Berlin Grace, V M
2017-05-01
Averrhoa bilimbi L. belongs to family Oxalidaceae. Traditionally, people use this plant (root, bark, leaves and fruits) for treating several illnesses include itches, boils, syphilis, whooping cough, hypertension, fever and inflammation. The aim of the study was to evaluate the nitric oxide (NO) scavenging activity and GC-MS analysis of A. bilimbi L. fruit extract. Averrhoa bilimbi L. fruits were collected for the preliminary phytochemical analysis, antioxidant scavenging activity and biologically important compounds were identified by GC-MS analysis. The preliminary phytochemicals, GC-MS, total phenolic content and NO scavenging activity of the plant were analysed. In the present investigation, the A. bilimbi L. fruit extract has major phytochemicals. Among the 151 compounds identified in GC-MS, 15 compounds are found to have diverse biological activity. We also observed that the A. bilimbi L. fruit extract has high level of total phenolic compounds at a concentration of 209.25 GAE mg/g. Presence of phenolic compound apparently explains the antioxidant activity of the plant. Antioxidant activity of A. bilimbi L. fruit extract is proven from its high level of NO scavenging activity of potent IC50 value of 108.10. From the above study, it is apparent that the A. bilimbi L. fruit extract is a rich source of phytochemicals (natural products) with biological activity. The GC-MS report on this fruit proves that natural products have pharmacologically and biologically active compounds. A high phenolic content is observed in our study. A. bilimbi L. fruit extract is also found to have NO scavenging activity in our study.
Río Segade, Susana; Torchio, Fabrizio; Gerbi, Vincenzo; Quijada-Morín, Natalia; García-Estévez, Ignacio; Giacosa, Simone; Escribano-Bailón, M Teresa; Rolle, Luca
2016-05-15
This study represents the first time that the extraction of phenolic compounds from the seeds is assessed from instrumental texture properties for dehydrated grapes. Nebbiolo winegrapes were postharvest dehydrated at 20°C and 41% relative humidity. During the dehydration process, sampling was performed at 15%, 30%, 45% and 60% weight loss. The extractable fraction and extractability of phenolic compounds from the seeds were determined after simulated maceration. The evolution of mechanical and acoustic attributes of intact seeds was also determined during grape dehydration to evaluate how these changes affected the extraction of phenolic compounds. The extractable content and extractability of monomeric flavanols and proanthocyanidins, as well as the galloylation percentage of flavanols, might be predicted easily and quickly from the mechanical and acoustic properties of intact seeds. This would help in decision-making on the optimal dehydration level of winegrapes and the best management of winemaking of dehydrated grapes. Copyright © 2015 Elsevier Ltd. All rights reserved.
EL Khoury, Rachelle; Atoui, Ali; Mathieu, Florence; Kawtharani, Hiba; EL Khoury, Anthony; Maroun, Richard G.; EL Khoury, Andre
2017-01-01
This study is intended to prevent ochratoxin A (OTA) production by Aspergillus carbonarius S402 using essential oils (EOs) and total phenolic compounds extracted from plants and herbs. The EOs used in this study are the following: bay leaves, cumin, fenugreek, melissa, mint, and sage. As for the phenolic compounds, they were extracted from bay leaves, cumin, fenugreek, melissa, mint, sage, anise, chamomile, fennel, rosemary, and thyme. The experiments were conducted on Synthetic Grape Medium (SGM) medium at 28 °C for 4 days. OTA was extracted from the medium with methanol and quantified using HPLC (High Performance Liquid Chromatography). Results showed that EOs had a greater impact than the total phenolic extracts on the OTA production. Reduction levels ranged between 25% (sage) and 80% (melissa) for the EOs at 5 µL mL−1, and 13% (thyme) and 69% (mint) for the phenolic extracts. Although they did not affect the growth of A. carbonarius, total phenolic extracts and EOs were capable of partially reducing OTA production. Reduction levels depended on the nature of the plants and the concentration of the EOs. Reducing OTA with natural extracts could be a solution to prevent OTA production without altering the fungal growth, thus preserving the natural microbial balance. PMID:28698493
Auger, Cyril; Chaabi, Mehdi; Anselm, Eric; Lobstein, Annelise; Schini-Kerth, Valérie B
2010-07-01
Phenolic extracts from red wine (RWPs) have been shown to induce nitric oxide (NO)-mediated vasoprotective effects, mainly by causing the PI3-kinase/Akt-dependent activation of endothelial NO synthase (eNOS). RWPs contain several hundreds of phenolic compounds. The aim of the present study was to identify red wine phenolic compounds capable of activating eNOS in endothelial cells using multi-step fractionation. The red wine phenolic extract was fractionated using Sephadex LH-20 and preparative RP-HPLC approaches. The ability of a fraction to activate eNOS was assessed by determining the phosphorylation level of Akt and eNOS by Western blot analysis, and NO formation by electron spin resonance spectroscopy. Tentative identification of phenolic compounds in fractions was performed by MALDI-TOF and HPLC-MS techniques. Separation of RWPs by Sephadex LH-20 generated nine fractions (fractions A to I), of which fractions F, G, H and I caused significant eNOS activation. Fraction F was then subjected to semi-preparative RP-HPLC to generate ten subfractions (subfraction SF1 to SF10), all of which caused eNOS activation. The active fractions and subfractions contained mainly procyanidins and anthocyanins. Isolation of phenolic compounds from SF9 by semi-preparative RP-HLPC lead to the identification of petunidin-O-coumaroyl-glucoside as a potent activator of eNOS.
Godoy-Caballero, M P; Acedo-Valenzuela, M I; Galeano-Díaz, T
2012-11-15
This paper presents the results of the study on the extraction, identification and quantification of a group of important phenolic compounds in virgin olive oil (VOO) samples, obtained from olives of various varieties, by liquid chromatography coupled to UV-vis and fluorescence detection. Sixteen phenolic compounds belonging to different families have been identified and quantified spending a total time of 25 min. The linearity was examined by establishing the external standard calibration curves. Four order linear ranges and limits of detection ranging from 0.02 to 0.6 μg mL(-1) and 0.006 to 0.3 μg mL(-1) were achieved using UV-vis and fluorescence detection, respectively. Regarding the real samples, for the determination of the phenolic compounds in higher concentrations (hydroxytyrosol and tyrosol) a simple liquid-liquid extraction with ethanol was used to make the sample compatible with the mobile phase. Recovery values close to 100% were obtained. However, a previous solid phase extraction with Diol cartridges was necessary to concentrate and separate the minor phenolic compounds of the main interferences. The parameters affecting this step were carefully optimized and, after that, recoveries near 80-100% were obtained for the rest of the studied phenolic compounds. Also, the limits of detection were improved 15 times. Finally, the standard addition method was carried out for each of the analytes and no matrix effect was found, so the quantification of the 16 phenolic compounds from different monovarietal VOO was carried out by using the corresponding external standard calibration plot. Copyright © 2012 Elsevier B.V. All rights reserved.
Phenolic Profile and Antioxidant Activity of Centaurea choulettiana Pomel (Asteraceae) Extracts.
Azzouzi, Djihane; Bioud, Kenza; Demirtas, Ibrahim; Gul, Fatih; Sarri, Djamel; Benayache, Samir; Benayache, Fadila; Mekkiou, Ratiba
2016-01-01
This study aimed to quantify phenolic compounds in ethyl acetate and n-butanol extract of Centaurea choulettiana Pomel (Asteraceae) leaves and flowers; compare the antioxidant activity of their extracts, identification and quantification of their phenolic acids. Both organs extracts of Centaurea choulettiana Pomel were investigated and evaluated for their potential antioxidant properties using total phenolics and flavonoids content, DPPH radical scavenging and lipid peroxidation inhibition assays. HPLC-TOF/MS analyses were carried out to identify and quantify some phenolic acids. The amounts of phenolic and flavonoid content were higher in ethyl acetate extract of leaves (325.81 ± 0.038 mgGAE and 263.73 ± 0.004 mgQE /g of extract) respectively. Besides, this extract exhibited the most powerful effect on the DPPH radical scavenging activity with (96.54%), on lipid peroxydation inhibition (64.17%). Ethyl acetate extract of leaves and flowers were found to contain almost the same phenolic compounds, with the leaves having the highest values. Chlorogenic acid was detected in the n-butanol extract of flowers with the highest concentration 17.78 mg/kg plant. The ethyl acetate extract of leaves of Centaurea choulettiana possesses strong antioxidative properties in vitro. They are confirmed by high polyphenols and flavonoids content. The HPLC-TOF/MS analysis reveals the presence of 4-hydroxybenzoic acid, gentisic acid, chlorogenic acid, caffeic acid, vanillic acid, p-Coumaric acid, ferulic acid, salicylic acid and protocatechuic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs
2015-11-15
Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution accounted for only 20% of the reaction, and for one NOM extract (Pony Lake fulvic acid) it accounted for <10%. This shows that for natural organic matter samples, oxidation (ET) is far more important than bromine incorporation (EAS). Copyright © 2015 Elsevier Ltd. All rights reserved.
Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma. Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio
2018-01-01
Guava leaf (Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties. PMID:29495514
Camarena-Tello, Julio César; Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio
2018-02-27
Guava leaf ( Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.
Bustamante, Luis; Cárdenas, Diana; von Baer, Dietrich; Pastene, Edgar; Duran-Sandoval, Daniel; Vergara, Carola; Mardones, Claudia
2017-09-01
Miniaturized sample pretreatments for the analysis of phenolic metabolites in plasma, involving protein precipitation, enzymatic deconjugation, extraction procedures, and different derivatization reactions were systematically evaluated. The analyses were conducted by gas chromatography with mass spectrometry for the evaluation of 40 diet-derived phenolic compounds. Enzyme purification was necessary for the phenolic deconjugation before extraction. Trimethylsilanization reagent and two different tetrabutylammonium salts for derivatization reactions were compared. The optimum reaction conditions were 50 μL of trimethylsilanization reagent at 90°C for 30 min, while tetrabutylammonium salts were associated with loss of sensitivity due to rapid activation of the inert gas chromatograph liner. Phenolic acids extractions from plasma were optimized. Optimal microextraction by packed sorbent performance was achieved using an octadecylsilyl packed bed and better recoveries for less polar compounds, such as methoxylated derivatives, were observed. Despite the low recovery for many analytes, repeatability using an automated extraction procedure in the gas chromatograph inlet was 2.5%. Instead, using liquid-liquid microextraction, better recoveries (80-110%) for all analytes were observed at the expense of repeatability (3.8-18.4%). The phenolic compounds in gerbil plasma samples, collected before and 4 h after the administration of a calafate extract, were analyzed with the optimized methodology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Orčić, Dejan; Francišković, Marina; Bekvalac, Kristina; Svirčev, Emilija; Beara, Ivana; Lesjak, Marija; Mimica-Dukić, Neda
2014-01-15
A method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method. Twenty-one of the investigated compounds were present at levels above the reliable quantification limit, with 5-O-caffeoylquinic acid, rutin and isoquercitrin as the most abundant. The inflorescence extracts were by far the richest in phenolics, with the investigated compounds amounting 2.5-5.1% by weight. As opposed to this, the root extracts were poor in phenolics, with only several acids and derivatives being present in significant amounts. The results obtained by the developed method represent the most detailed U. dioica chemical profile so far. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Jing; Li, Dengwu; Wang, Dongmei; Liu, Yu; Song, Huiying
2017-08-01
The allelopathic effects of Juniperus rigida litter aqueous extract (LE) on wheat and Pinus tabuliformis were studied, as well as the physiological responses to the extract. High concentration LE (0.10 g Dw/ml) significantly inhibited the seed germination and seedling growth in receptor plants. The chlorophyll content and root activity in the wheat seedlings were reduced significantly across all treatments; however, those were more prominently reduced at high concentration (0.10 g Dw/ml) but received little stimulation at low concentration (0.025 g Dw/ml) in P. tabuliformis. The content of malonaldehyde (MDA) increased with increasing concentrations of LE, except at 0.025 g Dw/ml. Activities of antioxidant enzymes (POD, CAT and SOD) in receptor plants were all significantly inhibited at high concentrations but stimulated at low concentrations. These results demonstrate that the aqueous extract from J. rigida litter has allelopathic potential. Various phenolic compounds were identified in litter aqueous extract and litter ethanol extract by HPLC. The phenolic compound content in the aqueous extract was significantly lower than that in the ethanol extract. Chlorogenic acid and podophyllotoxin were the predominant phenolic compounds in both types of litter extracts. These findings suggest that the seed germination and seedling growth of P. tabuliformis and wheat would be inhibited when planted near large amounts J. rigida litter. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
2012-01-01
Background This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Methods Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. Results A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. Conclusion The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs. PMID:23176585
Diaz, Patricia; Jeong, Sang Chul; Lee, Samiuela; Khoo, Cheang; Koyyalamudi, Sundar Rao
2012-11-24
This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs.
Abu-Reidah, Ibrahim M; Arráez-Román, David; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2013-12-01
The aim of this work was to characterise the phenolic compounds in artichoke (hearts) by using HPLC coupled to DAD-ESI-QTOF-MS, which proved useful in characterising 61 phenolic and other polar compounds. Notably, of the 61 compounds characterised, 34 new phenolic compounds with their isomers have been tentatively characterised in artichoke for the first time, namely: 3 hydroxybenzoic acids, 17 hydroxycinnamic acids, 4 lignans, 7 flavones, 2 flavonols, and 1 phenol derivative. Moreover, a total of 28 isomers of previously described phenolics have also been detected. The data compiled from the qualitative polyphenol characterisation indicate that the artichoke extract analysed (Blanca de Tudela variety) could be regarded as a bioactive functional food and also as a promising source of antioxidant phenolic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Feng, Qin-Zhong; Zhao, Li-Xia; Yan, Wei; Lin, Jin-Ming; Zheng, Zhi-Xia
2009-08-15
The molecularly imprinted bulk polymer with 2,4,6-trichlorophenol (2,4,6-TCP) as the template molecule and methylacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA) as functional monomer and the crosslinker, respectively, has been prepared and applied to the molecularly imprinted solid-phase extraction (MISPE) procedure for selective preconcentration of phenolic compounds from environmental water samples. Various parameters affecting the extraction efficiency of the polymer have been evaluated to optimize the selective preconcentration of the phenolic compounds from aqueous samples. The characteristics of the MISPE method were validated by HPLC. The recoveries ranged between 90% and 98% (RSD: 0.9-2.3%, n=3) for tap water, between 85% and 105% (RSD: 2.6-4.9%, n=3) for river water, between 78% and 98% (RSD: 2.6-5.4%, n=3) for sewage water fortified with 0.4 mg L(-1) of phenol, 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), pentachlorophenol (PCP). It was demonstrated that this MISPE-HPLC method could be applied to direct preconcentration and determination of phenolic compounds in environmental water samples.
Phenolic Compounds in the Potato and Its Byproducts: An Overview
Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito
2016-01-01
The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato’s skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the “alternative” food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356
Athmouni, Khaled; Belghith, Taheni; Bellassouad, Khaled; Feki, Abdelfattah El; Ayadi, Habib
2015-01-01
Phenolic compounds were extracted and isolated from S. undulata roots. Sample of roots from E. hirta was tested for phenolic compounds, and in vitro antioxidant activity by diphenyl-1-picrylhydrazyl (DPPH) assay, ABTS, FRAP and reducing power was measured using cyano- ferrate method. The methanolic fraction exhibited the highest total phenol content (6.12 ±0.11 mg AGE/g DW). On the other hand, the highest flavonoids concentration was observed in ethyl acetate fraction (2.90 ±0.05 mg CE/g DW) in addition to anthocyanins (28.56 ±3.96 mg/l). Besides, the highest level of tannins content was measured in the polar aprotic solvent ethyl acetate extract (3.25 ±0.06 mg CE/g DW). The different extracts of S. undulata were evaluated for their radical scavenging activities by means of the DPPH assay. The strongest scavenging activity was observed in methanolic fraction scavenged radicals effectively with IC values of 0.14 ±0.02 mg/ml. Similarly, the potassium ferricyanide reduction (FRAP) and ABTS•+ of methanol extract. On the other hand, the total reducing power of ethyl acetate extract was found higher than of other extracts. This paper presents the application of the design-of experiment method for optimizing the extraction of phenolic content using methanol solvent. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95% certainty), while that of agitation speed is. The two main effects are contributed by the solvent concentration and the maceration period. Our results clearly showed that the extraction of phenolic compounds and their antioxidant capacity is significantly affected by solvent combinations. S. undulata presented the highest total phenolic content, total flavonoids content and antioxidant capacity values. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95% certainty), while that of agitation speed is.
Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.
Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain
2013-08-15
The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pérez, Concepción; Ruiz del Castillo, María Luisa; Gil, Carmen; Blanch, Gracia Patricia; Flores, Gema
2015-08-01
Grape by-products are a rich source of bioactive compounds having broad medicinal properties, but are usually wasted from juice/wine processing industries. The present study investigates the use of supercritical fluid extraction (SFE) for obtaining an extract rich in bioactive compounds. First, some variables involved in the extraction were applied. SFE conditions were selected based on the oil mass yield, fatty acid profile and total phenolic composition. As a result, 40 °C and 300 bar were selected as operational conditions. The phenolic composition of the grape seed oil was determined using LC-DAD. The antioxidant activity was determined by ABTS and DPPH assays. For the anti-inflammatory activity the inhibition of nitrite production was assessed. The grape seed oil extracted was rich in phenolic compounds and fatty acids with significant antioxidant and anti-inflammatory activities. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly techniques.
Kim, Yong Ok; Johnson, Jon D; Lee, Eun Ju
2005-05-01
We analyzed phenolic compounds and other elements in leaf extracts and compared morphology of three species of the Phytolaccaceae family found in South Korea. To test allelochemical effects of the three Phytolacca species, we also examined seed germination and dry weight of seedlings of Lactuca indica and Sonchus oleraceus treated with leaf extracts. The concentrations of total phenolic compounds were exotic Phytolacca esculenta (3.9 mg/l), native Phytolacca insularis (4.4 mg/l), and exotic Phytolacca americana (10.2 mg/l). There was no significant difference in concentrations between P. esculenta and P. insularis, but the concentration of total phenolics in P. americana was two times higher than either P. esculenta or P. insularis. Analysis of aqueous extracts by HPLC showed seven phenolic compounds (gallic acid, protocatechuic acid, chlorogenic acid, caffeic acid, m-hydroxybenzoic acid, p-coumaric acid, and cinnamic acid). Total phenolics in P. americana were eight to 16 times higher than either P. esculenta or P. insularis, respectively. P. americana inhibited seed germination and dry weight of the two assay species. The phytotoxic effects of the two Phytolacca species were different, despite the fact that P. esculenta and P. insularis had similar levels of total phenolic compounds. We also found that P. americana had invaded Ullung Island, which suggested that P. americana had excellent adaptability to the environment. The three species of Phytolaccaceae in South Korea can be distinguished by their different allelopathic potentials and morphologies.
Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew
2017-09-01
An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.
Ramirez-Lopez, L M; McGlynn, W; Goad, C L; Mireles Dewitt, C A
2014-04-15
Phenolic acids, flavanols, flavonols and stilbenes (PAFFS) were isolated from whole grapes, juice, or pomace and purified using enzymatic hydrolysis. Only anthocyanin mono-glucosides and a few of the oligomers from Cynthiana grape (Vitis aestivalis) were analysed. Flavonoid-anthocyanin mono-glucosides (FA) were isolated using methanol/0.1% hydrochloric acid extraction. In addition, crude extractions of phenolic compounds from Cynthiana grape using 50% methanol, 70% methanol, 50% acetone, 0.01% pectinase, or petroleum ether were also evaluated. Reverse phase high performance liquid chromatography (RP-HPLC) with photodiode array (PDA) detector was used to identify phenolic compounds. A method was developed for simultaneous separation, identification and quantification of both PAFFS and FA. Quantification was performed by the internal standard method using a five points regression graph of the UV-visible absorption data collected at the wavelength of maximum absorbance for each analyte. From whole grape samples nine phenolic compounds were tentatively identified and quantified. The individual phenolic compounds content varied from 3 to 875 mg kg⁻¹ dry weight. For juice, twelve phenolic compounds were identified and quantified. The content varied from 0.07 to 910 mg kg⁻¹ dry weight. For pomace, a total of fifteen phenolic compounds were tentatively identified and quantified. The content varied from 2 mg kg⁻¹ to 198 mg kg⁻¹ dry matter. Results from HPLC analysis of the samples showed that gallic acid and (+)-catechin hydrate were the major phenolic compounds in both whole grapes and pomace. Cyanidin and petunidin 3-O-glucoside were the major anthocyanin glucosides in the juice. Published by Elsevier Ltd.
Pellizzoni, Marco; Lucini, Luigi
2018-01-01
Natural by-products, especially phenolic compounds, are in great demand by the nutra-pharmaceutical and biomedical industries. An analytical study was performed to investigate, for the first time, the presence of antioxidant constituents and the corresponding in vitro antioxidant activity in the extract of cladodes from Ficodindia di San Cono (Opuntia ficus-indica) protected designation of origin (PDO). The cladode extracts were analysed for target determination of selected constituents, i.e., β-polysaccharides and total phenolic content. Moreover, the antioxidant activity of hydro-alcoholic extracts was assessed by means of two different methods: α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. An untargeted UHPLC-ESI-QTOF-MS profiling approach was used to depict the phenolic profile of hydro-alcoholic cladode extracts. Interestingly, over 2 g/kg of polyphenols were detected in this matrix, and these compounds were mainly responsible for the antioxidant properties, as shown by the strong correlation between phenolic classes and antioxidant scores. Finally, this study provides basic information on the presence of bioactive compounds and in vitro antioxidant activities in cladode extracts from cactus that might recommend their novel applications at the industrial level in the field of nutraceutical products. PMID:29463028
Rocchetti, Gabriele; Pellizzoni, Marco; Montesano, Domenico; Lucini, Luigi
2018-02-18
Natural by-products, especially phenolic compounds, are in great demand by the nutra-pharmaceutical and biomedical industries. An analytical study was performed to investigate, for the first time, the presence of antioxidant constituents and the corresponding in vitro antioxidant activity in the extract of cladodes from Ficodindia di San Cono ( Opuntia ficus-indica ) protected designation of origin (PDO). The cladode extracts were analysed for target determination of selected constituents, i.e. β-polysaccharides and total phenolic content. Moreover, the antioxidant activity of hydro-alcoholic extracts was assessed by means of two different methods: α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. An untargeted UHPLC-ESI-QTOF-MS profiling approach was used to depict the phenolic profile of hydro-alcoholic cladode extracts. Interestingly, over 2 g/kg of polyphenols were detected in this matrix, and these compounds were mainly responsible for the antioxidant properties, as shown by the strong correlation between phenolic classes and antioxidant scores. Finally, this study provides basic information on the presence of bioactive compounds and in vitro antioxidant activities in cladode extracts from cactus that might recommend their novel applications at the industrial level in the field of nutraceutical products.
Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio
2018-03-01
Avocado seed and seed coat are important by-products from avocado industrialization, with important functional properties. The aim of the present study was to determine the phenolic profile and other polar compounds of avocado seed and seed coat using accelerated solvent extraction (ASE) and liquid chromatography coupled to Ultra-High-Definition Accurate-Mass Q-TOF. In this research 84 compounds were identified, within eight subclass group, among these 45 phenolic compounds were identified for first time in avocado seed. Condensed tannins, phenolic acids and flavonoids were the most representative groups in both samples. As far as we are concerned, this is the first time that avocado seed coat has been studied regarding its phenolic compounds using such a powerful instrumental technique. In addition, the radical-scavenging activities were analysed in order to estimate the antioxidant potential of extracts. These results point out that avocado seed and seed coat constitute a source of bioactive ingredients for its use in the food, cosmetic or pharmaceutical sector. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rafiee, Zahra; Barzegar, Mohsen; Sahari, Mohammad Ali; Maherani, Behnoush
2017-04-01
In present study, nanoliposomes were prepared by thin hydration method with different concentrations of phenolic compounds (500, 750 and 1000ppm) of pure extract and lecithin (1, 2 and 3%w/w) and characterized by considering the particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE) and morphology. The results showed that nanoliposome (90.39-103.78nm) had negative surface charge varied from -51.5±0.9 to -40.2±0.2mV with a narrow size distribution (PDI≈0.069-0.123). Nanoliposomes composed of 1% lecithin with 1000ppm of phenolic compounds had the highest EE (52.93%). The FTIR analysis indicated the formation of hydrogen bonds between the polar zone of phospholipid and the OH groups of phenolic compounds. Phenolic compounds also increased phase transition temperature (Tc) of nanoliposomes (2.01-7.24°C). Moreover, nanoliposomes had considerable stability during storage. Consequently, liposome is an efficient carrier for protection and improving PGHE biofunctional actives in foodstuffs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ydjedd, Siham; Bouriche, Sihem; López-Nicolás, Rubén; Sánchez-Moya, Teresa; Frontela-Saseta, Carmen; Ros-Berruezo, Gaspar; Rezgui, Farouk; Louaileche, Hayette; Kati, Djamel-Edine
2017-02-01
To determine the effect of in vitro gastrointestinal digestion on the release and antioxidant capacity of encapsulated and nonencapsulated phenolics carob pulp extracts, unripe and ripe carob pulp extracts were microencapsulated with polycaprolactone via double emulsion/solvent evaporation technique. Microcapsules' characterization was performed using scanning electron microscopy and Fourier transform infrared spectrometry analysis. Total phenolics and flavonoids content and antioxidant activities (ORAC, DPPH, and FRAP) were evaluated after each digestion step. The release of phenolic acids and flavonoids was measured along the digestion process by HPLC-MS/MS analysis. The most important phenolics and flavonoids content as well as antioxidant activities were observed after gastric and intestinal phases for nonencapsulated and encapsulated extracts, respectively. The microencapsulation of carob polyphenols showed a protective effect against pH changes and enzymatic activities along digestion, thereby promoting a controlled release and targeted delivery of the encapsulated compound, which contributed to an increase in its bioaccessibility in the gut.
Pinelli, Patrizia; Ieri, Francesca; Vignolini, Pamela; Bacci, Laura; Baronti, Silvia; Romani, Annalisa
2008-10-08
In the present study the phenolic composition of leaves, stalks, and textile fiber extracts from Urtica dioica L. is described. Taking into account the increasing demand for textile products made from natural fibers and the necessity to create sustainable "local" processing chains, an Italian project was funded to evaluate the cultivation of nettle fibers in the region of Tuscany. The leaves of two nettle samples, cultivated and wild (C and W), contain large amounts of chlorogenic and 2- O-caffeoylmalic acid, which represent 71.5 and 76.5% of total phenolics, respectively. Flavonoids are the main class in the stalks: 54.4% of total phenolics in C and 31.2% in W samples. Anthocyanins are second in quantitative importance and are present only in nettle stalks: 28.6% of total phenolics in C and 24.4% in W extracts. Characterization of phenolic compounds in nettle extracts is an important result with regard to the biological properties (antioxidant and antiradical) of these metabolites for their possible applications in various industrial activities, such as food/feed, cosmetics, phytomedicine, and textiles.
Recovery of natural antioxidants from spent coffee grounds.
Panusa, Alessia; Zuorro, Antonio; Lavecchia, Roberto; Marrosu, Giancarlo; Petrucci, Rita
2013-05-01
Spent coffee grounds (SCG) were extracted with an environmentally friendly procedure and analyzed to evaluate the recovery of relevant natural antioxidants for use as nutritional supplements, foods, or cosmetic additives. SCG were characterized in terms of their total phenolic content by the Folin-Ciocalteu procedure and antioxidant activity by the DPPH scavenging assay. Flavonoid content was also determined by a colorimetric assay. The total phenolic content was strongly correlated with the DPPH scavenging activity, suggesting that phenolic compounds are mainly responsible for the antioxidant activity of SCG. An UHPLC-PDA-TOF-MS system was used to separate, identify, and quantify phenolic and nonphenolic compounds in the SCG extracts. Important amounts of chlorogenic acids (CGA) and related compounds as well as caffeine (CAF) evidenced the high potential of SCG, a waste material that is widely available in the world, as a source of natural phenolic antioxidants.
Dutra, Richard Pereira; Abreu, Bruno Vinicius de Barros; Cunha, Mayara Soares; Batista, Marisa Cristina Aranha; Torres, Luce Maria Brandão; Nascimento, Flavia Raquel Fernandes; Ribeiro, Maria Nilce Sousa; Guerra, Rosane Nassar Meireles
2014-03-26
Geopropolis is a mixture of plant resins, waxes, and soil produced by the stingless bee Melipona fasciculata Smith. This paper describes the antioxidant activity and chemical composition of geopropolis produced by M. fasciculata. The total phenolic content determined with the Folin-Ciocalteu reagent was highest in the ethyl acetate fraction and hydroalcoholic extract. Antioxidant activity was assayed by the in vitro DPPH, ABTS, and FRAP assays. The hydroalcoholic extract and fractions of geopropolis, except for the hexane fraction, exhibited antioxidant activity against DPPH, ABTS, and FRAP. The phenolic compounds were identified by HPLC-DAD-MS on the basis of the evaluation of their UV-vis absorption maxima (λmax) and mass spectral analysis. Eleven compounds belonging to the classes of phenolic acids and hydrolyzable tannins (gallotannins and ellagitannins) were tentatively identified. These compounds are responsible for the antioxidant activity and high phenolic content of geopropolis produced by M. fasciculata.
Setyaningsih, W; Saputro, I E; Palma, M; Barroso, C G
2015-02-15
A new microwave-assisted extraction (MAE) method has been investigated for the extraction of phenolic compounds from rice grains. The experimental conditions studied included temperature (125-175°C), microwave power (500-1000W), time (5-15min), solvent (10-90% EtOAc in MeOH) and solvent-to-sample ratio (10:1 to 20:1). The extraction variables were optimised by the response surface methodology. Extraction temperature and solvent were found to have a highly significant effect on the response value (p<0.0005) and the extraction time also had a significant effect (p<0.05). The optimised MAE conditions were as follows: extraction temperature 185°C, microwave power 1000W, extraction time 20min, solvent 100% MeOH, and solvent-to-sample ratio 10:1. The developed method had a high precision (in terms of CV: 5.3% for repeatability and 5.5% for intermediate precision). Finally, the new method was applied to real samples in order to investigate the presence of phenolic compounds in a wide variety of rice grains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enzymatic extraction of star gooseberry (Phyllanthus acidus) juice with high antioxidant level
NASA Astrophysics Data System (ADS)
Loan, Do Thi Thanh; Tra, Tran Thi Thu; Nguyet, Ton Nu Minh; Man, Le Van Viet
2017-09-01
Ascorbic acid and phenolic compounds are main antioxidants in star gooseberry (Phyllanthus acidus) fruit. In this study, Pectinex Ultra SP-L preparation with pectinase activity was used in the extraction of star gooseberry juice. The effects of pectinase concentration and biocatalytic time on the content of ascorbic acid, phenolic compounds and antioxidant activity of the fruit juice were firstly investigated. Response surface methodology was then used to optimize the conditions of enzymatic extraction for maximizing the antioxidant activity of the star gooseberry juice. The optimal pectinase concentration and biocatalytic time were 19 polygalacturonase units per 100g pulp dry weight and 67 min, respectively under which the maximal antioxidant activity achieved 5595±6 µmol Trolox equivalent per 100g juice dry weight. On the basis of kinetic model of second-order extraction, the extraction rate constant of ascorbic acid and phenolic compounds in the enzymatic extraction increased approximately 21% and 157%, respectively in comparison with that in the conventional extraction. Application of pectinase preparation to the fruit juice extraction was therefore potential for improvement in antioxidant level of the product.
Nováková, Lucie; Vildová, Anna; Mateus, Joana Patricia; Gonçalves, Tiago; Solich, Petr
2010-09-15
UHPLC-MS/MS method using BEH C18 analytical column was developed for the separation and quantitation of 12 phenolic compounds of Chamomile (Matricaria recutita L.). The separation was accomplished using gradient elution with mobile phase consisting of methanol and formic acid 0.1%. ESI in both positive and negative ion mode was optimized with the aim to reach high sensitivity and selectivity for quantitation using SRM experiment. ESI in negative ion mode was found to be more convenient for quantitative analysis of all phenolics except of chlorogenic acid and kaempherol, which demonstrated better results of linearity, accuracy and precision in ESI positive ion mode. The results of method validation confirmed, that developed UHPLC-MS/MS method was convenient and reliable for the determination of phenolic compounds in Chamomile extracts with linearity >0.9982, accuracy within 76.7-126.7% and precision within 2.2-12.7% at three spiked concentration levels. Method sensitivity expressed as LOQ was typically 5-20 nmol/l. Extracts of Chamomile flowers and Chamomile tea were subjected to UHPLC-MS/MS analysis. The most abundant phenolic compounds in both Chamomile flowers and Chamomile tea extracts were chlorogenic acid, umbelliferone, apigenin and apigenin-7-glucoside. In Chamomile tea extracts there was greater abundance of flavonoid glycosides such as rutin or quercitrin, while the aglycone apigenin and its glycoside were present in lower amount. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Apple juice inhibits human low density lipoprotein oxidation.
Pearson, D A; Tan, C H; German, J B; Davis, P A; Gershwin, M E
1999-01-01
Dietary phenolic compounds, ubiquitous in vegetables and fruits and their juices possess antioxidant activity that may have beneficial effects on human health. The phenolic composition of six commercial apple juices, and of the peel (RP), flesh (RF) and whole fresh Red Delicious apples (RW), was determined by high performance liquid chromatography (HPLC), and total phenols were determined by the Folin-Ciocalteau method. HPLC analysis identified and quantified several classes of phenolic compounds: cinnamates, anthocyanins, flavan-3-ols and flavonols. Phloridzin and hydroxy methyl furfural were also identified. The profile of phenolic compounds varied among the juices. The range of concentrations as a percentage of total phenolic concentration was: hydroxy methyl furfural, 4-30%; phloridzin, 22-36%; cinnamates, 25-36%; anthocyanins, n.d.; flavan-3-ols, 8-27%; flavonols, 2-10%. The phenolic profile of the Red Delicious apple extracts differed from those of the juices. The range of concentrations of phenolic classes in fresh apple extracts was: hydroxy methyl furfural, n.d.; phloridzin, 11-17%; cinnamates, 3-27%; anthocyanins, n.d.-42%; flavan-3-ols, 31-54%; flavonols, 1-10%. The ability of compounds in apple juices and extracts from fresh apple to protect LDL was assessed using an in vitro copper catalyzed human LDL oxidation system. The extent of LDL oxidation was determined as hexanal production using static headspace gas chromatography. The apple juices and extracts, tested at 5 microM gallic acid equivalents (GAE), all inhibited LDL oxidation. The inhibition by the juices ranged from 9 to 34%, and inhibition by RF, RW and RP was 21, 34 and 38%, respectively. Regression analyses revealed no significant correlation between antioxidant activity and either total phenolic concentration or any specific class of phenolics. Although the specific components in the apple juices and extracts that contributed to antioxidant activity have yet to be identified, this study found that both fresh apple and commercial apple juices inhibited copper-catalyzed LDL oxidation. The in vitro antioxidant activity of apples support the inclusion of this fruit and its juice in a healthy human diet.
NASA Astrophysics Data System (ADS)
Djioleu, Angele Mezindjou
The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus aureus growth and copper-induced peroxidation of human low-density lipoprotein, confirming antimicrobial and antioxidant activities of the extract. On the other hand, bark extract inhibited cellulase cocktail activity by reducing cellulose hydrolysis by 82.32% after 48 h of incubation. Overall, phenolic compounds generated from biomass fractionation are important players in cellulolytic enzyme inhibition; removal of biomass extractives prior to pretreatment could reduce inhibitory compounds in prehydrolyzate while generating phytochemicals with societal benefits.
Sun, Liping; Zhang, Huilin; Zhuang, Yongliang
2012-02-01
The soluble phenolic compounds of rambutan peels (RP) were extracted by microwave-assisted extraction (MAE) and the operating parameters were optimized. The optimal conditions obtained were ethanol concentration of 80.85%, extraction time of 58.39 s, and the ratio of liquid to solid of 24.51:1. The soluble phenolic content by MAE was 213.76 mg GAE/g DW. The free, soluble conjugate, and insoluble-boaund phenolic compounds were prepared by alkaline hydrolysis, and the contents of 3 fractions were 185.12, 27.98 and 9.37 mg GAE/g DW, respectively. The contents of syringic acid and p-coumaric acid were high in the free fraction, showing 16.86 and 19.44 mg/g DW, and the soluble conjugate and insoluble-bound phenolics were mainly composed of gallic acid and caffeic acid. Furthermore, the antioxidant activities of 3 fractions were evaluated in 5 model systems. Results indicated that the free fraction had high antioxidant activities, compared with the soluble conjugate and insoluble-bound fractions. © 2012 Institute of Food Technologists®
Sinha, Arun Kumar; Verma, Subash Chandra; Sharma, Upendra Kumar
2007-01-01
A simple and fast method was developed using RP-HPLC for separation and quantitative determination of vanillin and related phenolic compounds in ethanolic extract of pods of Vanilla planifolia. Ten phenolic compounds, namely 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and piperonal were quantitatively determined using ACN, methanol, and 0.2% acetic acid in water as a mobile phase with a gradient elution mode. The method showed good linearity, high precision, and good recovery of compounds of interest. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.
Sanhueza, Loreto; Melo, Ricardo; Montero, Ruth; Maisey, Kevin; Mendoza, Leonora; Wilkens, Marcela
2017-01-01
Synergy could be an effective strategy to potentiate and recover antibiotics nowadays useless in clinical treatments against multi-resistant bacteria. In this study, synergic interactions between antibiotics and grape pomace extract that contains high concentration of phenolic compounds were evaluated by the checkerboard method in clinical isolates of Staphylococcus aureus and Escherichia coli. To define which component of the extract is responsible for the synergic effect, phenolic compounds were identified by RP-HPLC and their relative abundance was determined. Combinations of extract with pure compounds identified there in were also evaluated. Results showed that the grape pomace extract combined with representatives of different classes of antibiotics as β-lactam, quinolone, fluoroquinolone, tetracycline and amphenicol act in synergy in all S. aureus and E. coli strains tested with FICI values varying from 0.031 to 0.155. The minimal inhibitory concentration (MIC) was reduced 4 to 75 times. The most abundant phenolic compounds identified in the extract were quercetin, gallic acid, protocatechuic acid and luteolin with relative abundance of 26.3, 24.4, 16.7 and 11.4%, respectively. All combinations of the extract with the components also showed synergy with FICI values varying from 0.031 to 0.5 and MIC reductions of 4 to 125 times with both bacteria strains. The relative abundance of phenolic compounds has no correlation with the obtained synergic effect, suggesting that the mechanism by which the synergic effect occurs is by a multi-objective action. It was also shown that combinations of grape pomace extract with antibiotics are not toxic for the HeLa cell line at concentrations in which the synergistic effect was observed (47 μg/mL of extract and 0.6-375 μg/mL antibiotics). Therefore, these combinations are good candidates for testing in animal models in order to enhance the effect of antibiotics of different classes and thus restore the currently unused clinical antibiotics due to the phenomenon of resistance. Moreover, the use of grape pomace is a good and low-cost alternative for this purpose being a waste residue of the wine industry.
Phenolic Compounds of Cereals and Their Antioxidant Capacity.
Van Hung, Pham
2016-01-01
Phenolic compounds play an important role in health benefits because of their highly antioxidant capacity. In this review, total phenolic contents (TPCs), phenolic acid profile and antioxidant capacity of the extracted from wheat, corn, rice, barley, sorghum, rye, oat, and millet, which have been recently reported, are summarized. The review shows clearly that cereals contain a number of phytochemicals including phenolics, flavonoids, anthocyanins, etc. The phytochemicals of cereals significantly exhibit antioxidant activity as measured by trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity (ORAC), inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol and DNA, Rancimat, inhibition of photochemilumenescence (PCL), and iron(II) chelation activity. Thus, the consumption of whole grains is considered to have significantly health benefits in prevention from chronic diseases such as cardiovascular disease, diabetes, and cancer because of the contribution of phenolic compounds existed. In addition, the extracts from cereal brans are considered to be used as a source of natural antioxidants.
Vieira, Gláucia S; Marques, Anna S F; Machado, Mariana T C; Silva, Vanessa M; Hubinger, Miriam D
2017-06-01
This work aimed to propose two analytical methods for the quantitative and qualitative analysis of major anthocyanins and non-anthocyanin phenolic compounds in jussara ( Euterpe edulis ) extracts, using ultra performance liquid chromatography-mass spectrometry. These methods were evaluated for selectivity, precision, linearity, detection and quantification limits. The complete separation of 5 anthocyanins and 22 non-anthocyanins polyphenols was achieved in 4.5 and 7 min, respectively. Limits of detection ranged from 0.55 to 9.24 µg/L, with relative standard deviation for concentration up to 7.0%. In jussara extract, 13 of the 27 analytes were characterized. The dominant compound was cyanidin-3-O-rutinoside, representing about 73% of the total phenolic compounds content (approximately 23 mg/g of extract in dry weight). Other phenolic compounds found in the extract were: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, quercetin, rutin, myricetin, kaempferol, kaempferol-3-O-rutinoside, luteolin, apigenin, catechin, ellagic acid and 4,5-dicaffeoylquinic acid.
Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B
2009-06-01
Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.
Silva-BeltrÁn, Norma Patricia; Chaidez-Quiroz, Cristóbal; López-Cuevas, Osvaldo; Ruiz-Cruz, Saul; López-Mata, Marco A; Del-Toro-SÁnchez, Carmen Lizette; Marquez-Rios, Enrique; Ornelas-Paz, José de Jesús
2017-02-28
Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and 3.9 log₁₀, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.
Denardi-Souza, Taiana; Luz, Carlos; Mañes, Jordi; Badiale-Furlong, Eliana; Meca, Giuseppe
2018-03-30
In this study the antifungal potential of a phenolic extract obtained from rice bran fermented with Rhizopus oryzae CECT 7560 and its application in the elaboration of bread was assessed. Eighteen compounds with antifungal potential were identified by LC-ESI-qTOF-MS in the extract: organic acids, gallates and gallotannins, flavonoids, ellagic acid and benzophenone derivatives. The extract was active against strains of Fusarium, Aspergillus and Penicillium, with minimum inhibitory concentration ranging from 390 to 3100 µg mL -1 and minimum fungicidal concentration variable from 780 to 6300 µg mL -1 . The strains that were most sensitive to the phenolic extract were F. graminearum, F. culmorum, F. poae, P. roqueforti, P. expansum and A. niger. The phenolic extract added at 5 and 1 g kg -1 concentrations in the preparation of bread loaves contaminated with P. expansum produced a reduction of 0.6 and 0.7 log CFU g -1 . The bread loaves treated with calcium propionate and 10 g kg -1 of the phenolic extract evidenced an improvement in their shelf lives of 3 days. The phenolic extract assessed in this study could be considered as an alternative for inhibiting toxigenic fungi and as a substitute for synthetic compounds in food preservation. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids.
Pereira, Carla; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R
2015-01-01
Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle) are two herbs well-known for their efficiency in the prevention/treatment of liver injuries, among other chronic diseases. Therefore, the aim of this work was to characterize specific bioactive components, phenolic compounds, in hydromethanolic extracts but also in infusions (the most commonly used preparations) obtained from the whole plant of milk thistle and artichoke. The phenolic profiles were accessed using HPLC-DAD-MS/ESI. Infusions of both species presented higher phenolic contents than the hydromethanolic extracts. Milk thistle presented a similar phenolic composition between the two preparations, revealing only differences in the quantities obtained. Nevertheless, artichoke revealed a slightly different profile considering infusion and hydromethanolic extracts. Apigenin-7-O-glucuronide was the major flavonoid found in milk thistle, while luteolin-7-O-glucuronide was the most abundant in artichoke. Therefore, infusions of both artichoke and milk thistle represent a good source of bioactive compounds, especially phenolic acids and flavonoids.
Effect of processing on phenolic acids composition and radical scavenging capacity of barley pasta.
De Paula, Rosanna; Rabalski, Iwona; Messia, Maria Cristina; Abdel-Aal, El-Sayed M; Marconi, Emanuele
2017-12-01
Phenolic acids, total phenolics content and DPPH radical scavenging capacity in raw ingredients, fresh and dried spaghetti, and in uncooked and cooked spaghetti were evaluated and compared with semolina spaghetti as a reference. Ferulic acid was the major phenolic acid found in the free and bound phenolic extracts in all the investigated pasta samples. The addition of barley flour into pasta at incorporation levels of 30, 50 and 100% increased phenolic acids and total phenolics content. Pasta processing did not significantly affect the total phenolics content and free radical scavenging capacity, but a significant reduction in total phenolic acids measured by HPLC was found. Drying process differently affected individual phenolic compounds in the free and bound fractions, and thus, the total phenolic acids content. Free vanillic, caffeic and p-coumaric acids did not significantly change, while p-hydroxybenzoic and ferulic acids of the free extracts showed higher values compared to the corresponding fresh pasta. Cooking did not greatly affect total phenolic acids, more leading to conserving free and bound phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jabri Karoui, Iness; Marzouk, Brahim
2013-01-01
Citrus aurantium peel and juice aroma compounds were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), whereas phenolic compounds analysis was performed by reversed-phase high-performance liquid chromatography (RP-HPLC). Limonene was the major volatile compound of bitter orange peel (90.25%) and juice (91.61%). HPLC analysis of bitter orange peel and juice methanolic extracts indicated that phenolic acids constitute their main phenolic class representing 73.80% and 71.25%, respectively, followed by flavonoids (23.02% and 23.13%, resp.). p-Coumaric and ferulic acids were the most abundant phenolic compounds representing 24.68% and 23.79%, respectively, in the peel, while the juice contained 18.02% and 19.04%, respectively. The antioxidant activities of bitter orange peel and juice methanolic extracts have been evaluated using four in vitro assays, and the results were compared with the standard antioxidants (BHT, BHA, and ascorbic acid). Our findings demonstrated that Citrus aurantium peel and juice possess antioxidant activities which were less effective than those of antioxidant standards. Both extracts may be suggested as a new potential source of natural antioxidant.
Jabri karoui, Iness; Marzouk, Brahim
2013-01-01
Citrus aurantium peel and juice aroma compounds were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), whereas phenolic compounds analysis was performed by reversed-phase high-performance liquid chromatography (RP-HPLC). Limonene was the major volatile compound of bitter orange peel (90.25%) and juice (91.61%). HPLC analysis of bitter orange peel and juice methanolic extracts indicated that phenolic acids constitute their main phenolic class representing 73.80% and 71.25%, respectively, followed by flavonoids (23.02% and 23.13%, resp.). p-Coumaric and ferulic acids were the most abundant phenolic compounds representing 24.68% and 23.79%, respectively, in the peel, while the juice contained 18.02% and 19.04%, respectively. The antioxidant activities of bitter orange peel and juice methanolic extracts have been evaluated using four in vitro assays, and the results were compared with the standard antioxidants (BHT, BHA, and ascorbic acid). Our findings demonstrated that Citrus aurantium peel and juice possess antioxidant activities which were less effective than those of antioxidant standards. Both extracts may be suggested as a new potential source of natural antioxidant. PMID:23841062
Influence of rice straw polyphenols on cellulase production by Trichoderma reesei.
Zheng, Wei; Zheng, Qin; Xue, Yiyun; Hu, Jiajun; Gao, Min-Tian
2017-06-01
In this study, we found that during cellulase production by Trichoderma reesei large amounts of polyphenols were released from rice straw when the latter was used as the carbon source. We identified and quantified the phenolic compounds in rice straw and investigated the effects of the phenolic compounds on cellulase production by T. reesei. The phenolic compounds of rice straw mainly consisted of phenolic acids and tannins. Coumaric acid (CA) and ferulic acid (FA) were the predominant phenolic acids, which inhibited cellulase production by T. reesei. When the concentrations of CA and FA in the broth increased to 0.06 g/L, cellulase activity decreased by 23% compared with that in the control culture. Even though the rice straw had a lower tannin than phenolic acid content, the tannins had a greater inhibitory effect than the phenolic acids on cellulase production by T. reesei. Tannin concentrations greater than 0.3 g/L completely inhibited cellulase production. Thus, phenolic compounds, especially tannins are the major inhibitors of cellulase production by T. reesei. Therefore, we studied the effects of pretreatments on the release of phenolic compounds. Ball milling played an important role in the release of FA and CA, and hot water extraction was highly efficient in removing tannins. By combining ball milling with extraction by water, the 2-fold higher cellulase activity than in the control culture was obtained. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Habermann, E; Imatomi, M; Pontes, F C; Gualtieri, S C J
2016-01-01
Phenolic compounds are a group of plant secondary metabolites known to have a variety of bioactivities, including the ability to function as antioxidants. Because of the side effects of the use of synthetic substances, the search for natural and less toxic compounds has increased significantly. This study was designed to evaluate the antioxidant activity and phenol content of hexane, ethyl acetate, and aqueous extracts of the bark (suber) and stems as well as the young and mature leaves of Blepharocalyx salicifolius. The extracts were obtained by extraction with organic solvents and subsequent fractionation by chromatographic partition coefficient. Preliminary tests for the presence of antioxidants were performed using bioautography in thin-layer chromatography. The antioxidant activity of the extracts was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, and the phenol content of the extracts was quantified using the Folin-Ciocalteu technique. The results showed that 9 of the 12 extracts evaluated displayed very strong antioxidant activity and three displayed moderate activity. Aqueous extracts of the young leaves and bark and the ethyl acetate extract of the young leaves showed the highest levels of antioxidant activity and total phenolic content (TPC). A correlation was observed between TPC and antioxidant activity index (AAI) with a correlation coefficient (r2) of 0.7999. Thus, the high phenol content of B. salicifolius extracts and its correlation with antioxidant activity provide substrates for further studies.
Karker, Manel; Falleh, Hanen; Msaada, Kamel; Smaoui, Abderrazak; Abdelly, Chedly; Legault, Jean; Ksouri, Riadh
2016-01-01
Reaumuria vermiculata is a xero-halophytic specie widely distributed in the south of Tunisia. In the current study, antioxidant, anti-inflammatory and anticancer activities of Reaumuria vermiculata shoot extracts as well as its phenolic compounds were investigated in different solvent extracts (hexane, dichloromethane, methanol and water). Results showed a strong antioxidant activity, using the ORAC method and a cell based-assay, in methanol extract as well as an important phenolic composition (117.12 mg GAE/g). Hexane and dichloromethane proved an interesting anticancer activity against A-549 lung carcinoma cells, with IC50 values of 17 and 23 µg/ml, respectively. Besides, dichloromethane extract displayed the utmost anti-inflammatory activity, inhibiting NO release over 100 % at 80 µg/ml in LPS-stimulated RAW 264.7. Taken together, these finding suggest that R. vermiculata exhibited an interesting biological activities which may be related to the phenolic composition of this plant. Moreover, the identification of phenolic compounds in R. vermiculata dichloromethane extract using RP-HPLC revealed that myricetin was the major molecule. These results allow us to propose R. vermiculata as a valuable source for bioactive and natural compounds exhibiting interesting biological capacities. PMID:27298615
Recovery of phenolic compounds from grape seeds: effect of extraction time and solid-liquid ratio.
Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia
2011-10-01
The aim of this research was to study the recovery of phenolic compounds from grape seeds, by-products from winemaking industries, using ethanolic solid-liquid extraction. For such a purpose, the combined effects of the extraction time (9, 19 and 29 h) and the solid-liquid ratio (0.10, 0.20 and 0.30 gdw mL(-1)), were investigated (where dw = dry waste). Results demonstrated that Pinot Noir seeds had high levels of both total polyphenols (73.66 mg(Gallic Acid Equivalent) gdw(-1)) and flavonoids (30.90 mg(Catechin Equivalent) gdw(-1)), being the optimum extraction time 19 h approximately. The main phenolic compounds analysed with high performance liquid chromatography were catechin and quercetin with a maximum extraction yield obtained at 29 h (362.23 and 339.35 mg/100 gdw, respectively). Concentration of the polyphenols and their antiradical powers are demonstrated to have a significant linear correlation.
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to evaluate the effectiveness of extracting phenolic compounds and antioxidant activity from buckwheat with water, 50% aqueous ethanol, or 100% ethanol using microwave irradiation or a water bath for 15 min at various temperatures (23 – 150 °C). The phenolic content of...
Young, Joshua E; Pan, Zhongli; Teh, Hui Ean; Menon, Veena; Modereger, Brent; Pesek, Joseph J; Matyska, Maria T; Dao, Lan; Takeoka, Gary
2017-04-01
The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride based stationary phases: phenyl and undecanoic acid columns. Quantitation was accomplished by developing a liquid chromatography with mass spectrometry approach for separating different phenolic analytes, initially in the form of reference standards and then with pomegranate extracts. The high-performance liquid chromatography columns used in the separations had the ability to retain a wide polarity range of phenolic analytes, as well as offering beneficial secondary selectivity mechanisms for resolving the isobaric compounds, catechin and epicatechin. The Vkunsyi peel extract had the highest concentration of phenolics (as determined by liquid chromatography with mass spectrometry) and was the only cultivar to contain the important compound punicalagin. The liquid chromatography with mass spectrometry data were compared to the standard total phenolics content as determined by using the Folin-Ciocalteu assay. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Widsten, Petri; Cruz, Cristina D; Fletcher, Graham C; Pajak, Marta A; McGhie, Tony K
2014-11-19
The shelf life of fresh fish and meat transported over long distances could be extended by using plant-based extracts to control spoilage bacteria. The goals of the present study were to identify plant-based extracts that effectively suppress the main spoilage bacteria of chilled fish and lamb and to assess their antioxidant capacity. The phenolic compounds in wood-based tannins and extracts isolated from byproducts of the fruit processing industry were identified and/or quantified. The total phenol content, but not the flavonoid to total phenol ratio, was strongly associated with higher antibacterial activity against several fish and lamb spoilage bacteria in zone of inhibition and minimum inhibitory concentration assays as well as greater antioxidant capacity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical assay. The most promising compounds in both cases, and thus good candidates for antibacterial packaging or antioxidant dietary supplements, were mango seed extract and tannic acid containing mostly polygalloyl glucose type phenols.
Ultrasonically assisted extraction of total phenols and flavonoids from Rhodiola rosea.
Staneva, Jordanka; Todorova, Milka; Neykov, Neyko; Evstatieva, Ljuba
2009-07-01
This work deals with ultrasonically assisted extraction (UAE) of biologically active compounds from rhizomes of Rhodiola rosea, a popular medicinal plant. The influence of temperature, type of solvent and solid/solvent ratio on the yield of total extracts, total phenols and flavonoids was established. The best extraction of total phenols and flavonoids was achieved by using 50% aqueous EtOH and MeOH, respectively. Five times increase of solid/solvent ratio (from 1:20 to 1:100 (w/v)) leads to slow increase of the yield of total phenols and flavonoids. The extraction effectiveness of conventional maceration with 50% EtOH and UAE performed for 1 h at 25 degrees C using the same solvent with respect of total phenols was comparable.
Grases, Felix; Prieto, Rafel M; Fernández-Cabot, Rafel A; Costa-Bauzá, Antonia; Sánchez, Ana M; Prodanov, Marin
2015-09-09
Diverse enzymatic and non-enzymatic antioxidants provide protection against reactive oxygen species in humans and other organisms. The nonenzymatic antioxidants include low molecular mass molecules such as plant-derived phenols. This study identified the major phenolic compounds of a grape seed extract by HPLC and analyzed the effect of consumption of biscuits enriched with this extract on the urinary oxidative status of healthy subjects by measurement of urine redox potential. The major phenolic compounds were characterized in a red grape seed extract separated by HPLC with detection by a photodiode array (PDA), fluorescence (FL) and quadrupole mass spectrometer (MS). A nutritional study in a healthy volunteers group was done. Each volunteer ate eight traditional biscuits with no red grape seed extract supplementation. The second day each volunteer ate eight traditional biscuits supplemented with 0.6% (wt/wt) of grape seed extract. An overnight urine sample was obtained for each treatment. The redox potential was measured at 25 °C using a potentiometer in each urine sample. Epicatechin, catechin, procyanidin dimers B1 to B4, and the procyanidin trimer C2 were the major phenolic components in the extract. Epicatechin gallate and procyanidin dimers B1-3-G and B2-3'-G were the major galloylated flavan-3-ols. The forty-six healthy volunteers each shown a reduction of the urine redox potential after the treatment by traditional biscuits supplemented with the grape seed extract. This simple dietary intervention significantly reduced (33%) the urine redox potential, reflecting an overall increase in antioxidant status. Incorporation of plant-derived phenols in the diet may increase anti-oxidative status.
Yazdizadeh Shotorbani, Narmin; Jamei, Rashid; Heidari, Reza
2013-01-01
Objectives: Sweet peppers Capsicum annuum L. (C. annuum) are an excellent source of vitamins A and C as well as phenolic compounds, which are important antioxidant components that may reduce the risk of diseases. The objective of this study was to evaluate their antioxidant activity under various temperatures. Materials and Methods: To compare the antioxidant activity in various temperatures (20, 35, 50, and 65 °C), two different types of colored (red and green) sweet bell peppers C annuum were selected. The red peppers were selected from those cultivated in Shahreza, Esfahan and the green peppers with the local name of Gijlar were selected from those cultivated in Urmia, West Azarbayjan. The experiments were carried out to measure the total phenolic and flavonoid content, ferric reducing antioxidant power (FRAP), chain-breaking activity, scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), and hydrogen peroxide radicals. Results: Total phenol and flavonoid contents of pepper extracts were enhanced with increasing temperature to 65 °C. Scavenging capacity of DPPH radical of red pepper extract was enhanced because of putting at 50 °C for 30 min and for Gijlar pepper extract scavenging capacity was increased at 65 °C. Scavenging capacity of hydrogen peroxide radical of extracts was the highest at 35 °C. Chain-breaking activity of red pepper extract was increased for 60 min at 35 °C. FRAP (C) of red pepper extract was significantly different (p<0.05) in compare with Gijlar pepper. Conclusion: An appropriate temperature maintained a high antioxidant activity of phenolic compound, which could be due to the combined effect of non enzymatic reaction and phenolic compound stability. PMID:25050256
Guo, Ruixue; Chang, Xiaoxiao; Guo, Xinbo; Brennan, Charles Stephen; Li, Tong; Fu, Xiong; Liu, Rui Hai
2017-11-15
Phenolics, antioxidant and antiproliferative properties of Sea buckthorn berries were evaluated using a simulated in vitro digestion and compared with a chemical extraction method. Digested samples were subjected to antiproliferation evaluation against human liver, breast and colon cancer cells. Furthermore, the bioaccessibility of digested berries was evaluated using a Caco-2 cell culture model. Results revealed that after enzymatic digestion the phenolic compounds were quite different from the chemical extracts, more flavonoid aglycones were released, whereas less total phenolics, phenolic acids and flavonoid glycosides were detected. Although the extracellular antioxidant activity of the digesta was lower than that of extracts, the cellular antioxidant activity (CAA) and antiproliferative effects of berries were significantly enhanced by digestion. This was attributed to their higher flavonoid aglycone content and could be verified by testing individual active compounds, suggesting that the cellular uptake of samples might be improved, which was also certified by the Caco-2 cell uptake model. The digested samples showed an almost 5-fold cellular accumulative amount of isorhamnetin than pure isorhamnetin, which was attributed to the significant down regulation of the mRNA expression level of efflux transporters MRP2 and P-gp. This finding indicated that the digestion enhanced the bioaccessibility of bioactive compounds of berries.
Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip
2018-01-01
Academic reports have confirmed Moringa oleifera leaves to possess significant antioxidant capacities; however, such studies are unavailable for its ripe seeds even though they are more desirous for consumption due to their sweet taste. In this study, we investigated antioxidant capacities of four polar extracts (crude water, ethanol, butanol, and aqueous residue) from the plant's ripe seeds. Phytochemicals were extracted from the ripe seeds of M. oleifera using ethanol and water solvents at initial stage. Butanol and aqueous residue were then subsequently fractioned out from the ethanol extract. Phenolic and flavonoid contents of the polar extracts were determined. Then, their antioxidant capacities were quantified by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Finally, gas chromatography-mass spectrometry (GC-MS) analyses of the extracts were performed. DPPH and ABTS tests showed that the polar extracts possess significant antioxidant capacities that ranged from 29 to 35.408 μM Trolox equivalence antioxidant capacity (TEAC)/mg sample and 7 to 29 μM TEAC/mg sample, respectively. The antioxidant capacities of the extracts corresponded to their phenolic and flavonoid contents that varied from 13.61 to 20.42 mg gallic acid equivalence/g sample and 0.58 to 9.81 mg quercetin equivalence/g sample, respectively. Finally, GC-MS analyses revealed antimicrobial phenolic compounds, 4-hydroxybenzaldehyde in crude water extract and 4-hydroxybenzene acetonitrile in the ethanol and butanol extracts, and aqueous residue. Our results established that M. oleifera ripe seeds have significant antioxidant activity which may be due to its phenolic and nonphenolic compounds content. In this study, polar phytochemicals from ripe seeds of Moringa oleifera were extracted by water and ethanol solvents, and butanol extract and aqueous residue were subsequently fractioned out of the ethanol extract. The four polar extracts were shown to have significant antioxidant capacities which correspond to their phenolic contents. Further, antimicrobial compounds 4-hydroxybenzaldehyde and 4-hydroxybenzene acetonitrile were identified in the extracts by gas chromatography-mass spectrometry analyses. Abbreviations used: ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DPPH: 2,2-diphenyl-1-picrylhydrazyl; TEAC: Trolox equivalence antioxidant capacity; QE: Quercetin equivalence; GAE: Gallic acid equivalence; GC-MS: Gas chromatography-mass spectrometry.
Jeong, Ji Yeon; Jo, Yang Hee; Kim, Seon Beom; Liu, Qing; Lee, Jin Woo; Mo, Eun Jin; Lee, Ki Yong; Hwang, Bang Yeon; Lee, Mi Kyeong
2015-06-01
The leaves of Morus alba (Moraceae) have been traditionally used for the treatment of metabolic diseases including diabetes and hyperlipidemia. Thus, inhibitory effect of M. alba leaves on pancreatic lipase and their active constituents were investigated in this study. Twenty phenolic compounds including ten flavonoids, eight benzofurans, one stilbene and one chalcones were isolated from the leaves of M. alba. Among the isolated compounds, morachalcone A (20) exerted strong pancreatic lipase inhibition with IC50 value of 6.2 μM. Other phenolic compounds containing a prenyl group showed moderate pancreatic lipase inhibition with IC50 value of <50 μM. Next, extraction conditions with maximum pancreatic lipase inhibition and phenolic content were optimized using response surface methodology with three-level-three-factor Box-Behnken design. Our results suggested the optimized extraction condition for maximum pancreatic lipase inhibition and phenolic content as ethanol concentration of 74.9%; temperature 57.4 °C and sample/solvent ratio, 1/10. The pancreatic lipase inhibition and total phenolic content under optimized condition were found to be 58.5% and 26.2 μg GAE (gallic acid equivalent)/mg extract, respectively, which were well matched with the predicted value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yoo, Yung J; Saliba, Anthony J; Prenzler, Paul D; Ryan, Danielle
2012-01-11
White and red wines spiked with catechin-rich green tea extract and grape seed extract were assessed for phenolic content, antioxidant activity, and cross-cultural consumer rejection thresholds in relation to wine as a functional food. Health functionality is an important factor in functional foods, and spiking pure compounds or plant extracts is an effective method to increase or control functionality. The total phenolic content and antioxidant activity were measured in wines spiked to different extract concentrations, namely, control and 50, 100, 200, 400, and 800 mg/L, to confirm the dose-response curves in both white and red wines. Consumer rejection thresholds (CRTs) were established for spiked wines in a Korean and in an Australian population. Our results showed that the green tea extract and grape seed extract increased the antioxidant activity dose dependently, and the CRTs varied considerably between the Korean and the Australian groups, with Koreans preferring wines spiked with green tea extract and Australians showing a preference for wines spiked with grape seed extract. These results have implications for producing wine products that are enhanced in phenolic compounds and targeted to different cultural groups.
Corbin, Cyrielle; Fidel, Thibaud; Leclerc, Emilie A; Barakzoy, Esmatullah; Sagot, Nadine; Falguiéres, Annie; Renouard, Sullivan; Blondeau, Jean-Philippe; Ferroud, Clotilde; Doussot, Joël; Lainé, Eric; Hano, Christophe
2015-09-01
Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2N of sodium hydroxide for alkaline hydrolysis of the SDG-HMG complex, an extraction time of 60 min at a temperature of 25°C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond
2004-12-01
A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.
Review of various treatment methods for the abatement of phenolic compounds from wastewater.
Girish, C R; Murty, V Ramachandra
2012-04-01
Phenol and its derivatives are considered among the most hazardous organic pollutants from industrial wastewater and they are toxic even at low concentrations. Besides the existence of phenol in natural water source it can lead to the formation of other toxic substituted compounds. So this has led to growing concern on setting up of rigid limits on the acceptable level of phenol in the environment. The various methods for the treatment of phenol from wastewater streams are briefly reviewed. The various technologies like distillation, liquid-liquid extraction with different solvents, adsorption over activated carbons and polymeric and inorganic adsorbents, membrane pervaporation and membrane-solvent extraction, have been elucidated. The advantages and disadvantages of the various methods are illustrated and their performances are compared.
Valente, Inês M; Maia, Margarida R G; Malushi, Nertila; Oliveira, Hugo M; Papa, Lumturi; Rodrigues, José A; Fonseca, António J M; Cabrita, Ana R J
2018-08-01
Vicia faba L. pods are a by-product generated from the industrial processing of beans for human and animal consumption. As phenolic compounds may play important roles in health, the present work envisaged the phenolic characterization of seven European varieties and cultivars of V. faba (major and minor) pods and the assessment of their antioxidant activity. The V. faba methanolic extracts were characterized by HPLC-DAD-MS/MS for identification of polyphenolic compounds. The total phenolic content and antioxidant capacity of the extracts were evaluated by colorimetric methods (Folin-Ciocalteu, DPPH scavenging capacity assay, and FRAP assay). Main compounds identified by HPLC-DAD-MS/MS were derivatives of caffeic acid, coumaric acid and kaempferol. The broad bean Jögeva variety presented the highest content of free and esterified phenolics (26.3 and 26.7 mg 100 g -1 dry weight, respectively), followed by the horse bean varieties Bauska and Lielplatones. These results were corroborated by the analysis of total phenolic content, DPPH scavenging capacity and FRAP. This study confirmed the rich phenolic content of V. faba pods suggesting to be an interesting novel source for animal nutrition, promoting product quality and consumers' health. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anti-Escherichia coli activity of extracts from Schinus terebinthifolius fruits and leaves.
da Silva, Jessica H S; Simas, Naomi K; Alviano, Celuta S; Alviano, Daniela S; Ventura, José A; de Lima, Eliandro J; Seabra, Sergio H; Kuster, Ricardo M
2018-06-01
Ethanol extracts obtained from Schinus terebinthifolius Raddi fruits and leaves were active against Escherichia coli with MIC of 78 μg mL -1 for both extracts. Phytochemical analyses revealed a major presence of phenolic acids, tannins, fatty acids and acid triterpenes in the leaves and phenolic acids, fatty acids, acid triterpenes and biflavonoids in the fruits. Major compounds isolated from the plant, such as the acid triterpene schinol, the phenolic acid derivative ethyl gallate and the biflavonoids agathisflavone and tetrahydroamentoflavone, showed very little activity against E. coli. Bioautography of the ethanol extracts on silica gel plate showed inhibition zones for E. coli. They were removed from the plate and the compounds identified as a mixture of myristic, pentadecanoic, palmitic, heptadecanoic, stearic, nonadecanoic, eicosanoic, heneicosanoic and behenic fatty acids.
Analysis of phenolic compounds extracted from peanut seed testa
USDA-ARS?s Scientific Manuscript database
Peanuts (Arachis hypogaea) contain numerous phenolic compounds with antimicrobial and antioxidant properties. These secondary metabolites may be isolated as co-products from peanut skins or testae during peanut processing and have potential use in functional food or feed formulations. Peanut skins w...
Gao, Jie; Ajala, Olusegun S; Wang, Chun-Ying; Xu, Hai-Yan; Yao, Jia-Huan; Zhang, Hai-Peng; Jukov, Azzaya; Ma, Chao-Mei
2016-06-05
The dried fruit of Terminalia chebula (fructus chebulae) is an important Traditional Medicine used for intestinal and hepatic detoxification. Gurigumu-7 which is made of fructus chebulae and 6 other traditional medicines is one of the most frequently used compound Mongolian and Tibet medicines for liver diseases. Terminalia phenolics are considered as the bioactive constituents of fructus chebulae and consequently of Gurigumu-7. To compare the pharmacokinetic profiles of Terminalia phenolics after intragastric administration of the aqueous extracts of fructus chebulae and Gurigumu-7 and to evaluate the possible influence of intestinal bacterial metabolism on these pharmacokinetic profiles. An ultra performance liquid chromatography with triple quadrupole mass spectrometry method was established and validated for simultaneously determining the pharmacokinetic profiles of seven Terminalia phenolics after intragastric administration of pure compounds, fructus chebulae extract, and Gurigumu-7 extract. In vitro rat fecal lysates experiments were carried out to explore the metabolic discrepancy between fructus chebulae and Gurigumu-7. Seven Terminalia phenolics were detected in rat plasma after intragastric administration of the aqueous extracts of fructus chebulae and Gurigumu-7. Administration of Gurigumu-7 could promote the absorption and increase the Cmax and AUC values of these phenolic constituents compared to fructus chebulae administration. The fecal lysates studies showed that the Terminalia phenolics in Gurigumu-7 were less rapidly bio-transformed than those in fructus chebulae. This may be a contributing factor to the pharmacokinetic discrepancy between the phenolics in fructus chebulae and Gurigumu-7. Administration of Gurigumu-7 could increase the absorption of Terminalia phenolics through slowing down the intestinal bacteria metabolism. These results provide, in part, an in vivo rationale for the formulation of the traditional Mongolia / Tibet medicine, Gurigumu-7. Copyright © 2016. Published by Elsevier Ireland Ltd.
Yang, Jiufang; Liu, Xuanjun; Zhang, Xiaoxu; Jin, Qing; Li, Jingming
2016-10-01
The present work investigated the phenolic profiles (including nonanthocyanin and anthocyanin phenolics), antioxidant activities, and neuroprotective potential of mulberry fruit (MF) (Morus atropurpurea Roxb.) grown in China at different ripening stages. High-performance liquid chromatography-tandem mass spectrometry method (HPLC-MS/MS) was used to identify and quantify the phenolic compounds. The antioxidant capacity, total phenolic content (TPC), total flavonoid content (TFC), and total monomeric anthocyanin content (TAC) were determined using spectrophotometric methods. The neuroprotective effects of MFs at different ripening stages were investigated using Aβ 25-35 -treated PC12 cells as the cellular model of Alzheimer's disease. Of the 19 phenolic compounds characterized from the MF extracts, the contents of rutin and anthocyanins increased and that of chlorogenic acid decreased significantly with maturity. At the fully ripened stage, MF extracts showed the highest amounts of TPC (11.23 mg gallic acid equivalents/g fresh weight), TFC (15.1 mg rutin equivalents/g fresh weight), and TAC (1177 mg cyanidin 3-O-glucoside equivalents/100 g fresh weight). Meanwhile, antioxidant activity of MF extracts at this stage was highest according to ABTS (an IC50 value of 4.11 μg/mL) and DPPH (an IC50 value of 10.08 μg/mL) assays. Cellular assays revealed increased cell viability in cells treated with the ripe MF extracts; compared with the control groups, the ripening fruits also increased the antioxidant enzyme levels in PC12 cells. Together, these results suggest that the antioxidant activities and neuroprotective properties of ripening MFs are related to the contents and types of phenolic compounds that are present in the fruits. © 2016 Institute of Food Technologists®.
Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina
2016-10-01
Context Walnut leaves are highly appreciated for their pharmacological effects and therapeutic properties which are mainly attributed to their high content of phenolic compounds. Objective This study optimizes ultrasound assisted hydroalcoholic extraction (UAE) of phenolic compounds from dried walnut leaves by the maximization of total phenolics content (TPC) and total flavanoids content (TFC) of the extracts. Materials and methods Optimal conditions with regard to ethanol concentration (X1: 12.17-95.83% v/v), extraction time (X2: 8.17-91.83 min) and liquid-to-solid ratio (X3: 4.96-25.04 v/w) were identified using central composite design combined with response surface methodology. A high-performance liquid chromatography method with diode-array detection was used to quantify phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salicylic, ellagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in the extracts. Results Liquid-to-solid ratio and ethanol concentration proved to be the primary factors affecting the extraction efficiency. The maximum predicted TPC, under the optimized conditions (61% ethanol concentration, 51.28 min extraction time and 4.96 v/w liquid-to-solid ratio) was 10125.4 mg gallic acid equivalents per liter while maximum TFC (2925 mg quercetin equivalents per liter) occurred at 67.83% ethanol concentration, 4.96 v/w liquid-to-solid ratio and 49.37 min extraction time. High significant correlations were found between antioxidant activity and both TPC (R(2 )=( )0.81) and TFC (R(2 )=( )0.78). Discussion and conclusion Extracts very rich in polyphenols could be obtained from walnut leaves by using UAE, aimed at preparing dietary supplements, nutraceuticals or functional food ingredients.
Alipieva, Kalina; Petreska, Jasmina; Gil-Izquierdo, Angel; Stefova, Marina; Evstatieva, Ljuba; Bankova, Vassya
2010-01-01
The influence of the extraction method on the yield and composition of extracts of Sideritis (Pirin mountain tea) has been studied. Maceration, ultrasound-assisted (USAE) and microwave assisted extraction (MAE) were applied. Total phenolics and total flavonoids were quantified spectrophotometrically, and individual compounds were analyzed by HPLC-DAD-MS(n). This preliminary study reveals that the traditional way of tea preparation from Sideritis is the most appropriate in order to extract the maximum of total flavonoids and total phenolics. In the case of methanol extraction, the optimal method is USAE.
Boeing, Joana Schuelter; Barizão, Erica Oliveira; E Silva, Beatriz Costa; Montanher, Paula Fernandes; de Cinque Almeida, Vitor; Visentainer, Jesuí Vergilio
2014-01-01
This study evaluated the effect of the solvent on the extraction of antioxidant compounds from black mulberry (Morus nigra), blackberry (Rubus ulmifolius) and strawberry (Fragaria x ananassa). Different extracts of each berry were evaluated from the determination of total phenolic content, anthocyanin content and antioxidant capacity, and data were applied to the principal component analysis (PCA) to gain an overview of the effect of the solvent in extraction method. For all the berries analyzed, acetone/water (70/30, v/v) solvent mixture was more efficient solvent in the extracting of phenolic compounds, and methanol/water/acetic acid (70/29.5/0.5, v/v/v) showed the best values for anthocyanin content. Mixtures of ethanol/water (50/50, v/v), acetone water/acetic acid (70/29.5/0.5, v/v/v) and acetone/water (50/50, v/v) presented the highest antioxidant capacities for black mulberries, blackberries and strawberries, respectively. Antioxidants extractions are extremely affected by the solvent combination used. In addition, the obtained extracts with the organic solvent-water mixtures were distinguished from the extracts obtained with pure organic solvents, through the PCA analysis.
Quintero-Soto, Maria F; Saracho-Peña, Ana G; Chavez-Ontiveros, Jeanett; Garzon-Tiznado, Jose A; Pineda-Hidalgo, Karen V; Delgado-Vargas, Francisco; Lopez-Valenzuela, Jose A
2018-06-01
Chickpea (Cicer arietinum L.) genotypes, nine kabuli from Mexico and 9 desi from other countries, were investigated for their phenolic profiles and antioxidant activity (AA). Phenolics in methanol extracts (ME) were analyzed by ultra-performance liquid chromatography coupled to diode array detection and mass spectrometry (UPLC-DAD-MS), whereas the AA was measured as Trolox equivalents (TE) by ABTS, DPPH and FRAP methods. Twenty phenolic compounds were identified in the ME and their levels showed a great variability among the chickpea genotypes. Phenolic acids and flavonoids were the most abundant compounds in kabuli and desi genotypes, respectively. The AA values (μmol TE/ 100 g dw) by ABTS (278-2417), DPPH (52-1650), and FRAP (41-1181) were mainly associated with the content of sinapic acid hexoside, gallic acid, myricetin, quercetin, catechin, and isorhamnetin, suggesting they are the main compounds responsible for the AA. The sum of the AA obtained for standards of these compounds evaluated at the concentration found in the extracts accounted for 34.3, 69.8, and 47.0% of the AA in the extract by ABTS, DPPH, and FRAP, respectively. In the AA by DPPH, most of the mixtures of these compounds resulted in synergistic interactions. Three desi genotypes with black seeds (ICC 4418, ICC 6306, and ICC 3761) showed the highest AA and flavonoids content, whereas the most promising kabuli genotypes were Surutato 77, Bco. Sin. 92, and Blanoro that showed the highest values of phenolic acids. These genotypes represent good sources of antioxidants for the improvement of nutraceutical properties in chickpea.
The effect of polarity of extractives on the durability of wood
Roderquita K. Moore; Jonathan Smaglick; Erick Arellano-ruiz; Michael Leitch; Doreen Mann
2015-01-01
Extractives are low molecular weight compounds and regarded as nonstructural wood constituents. These compounds are present in trees and can be extracted by organic solvents. Extractives consist of several classes of compounds that diversify the biological function of the tree. Fats are an energy source for the wood cells whereas terpenoids, resin acids, and phenolic...
Pandey, Arti; Negi, Pradeep Singh
2018-05-01
Aqueous extracts of Neolamarckia cadamba fruits prepared at different maturity stages were used for the analysis of various phytochemicals, and their antioxidant and antibacterial activities were determined. Ripe fruit extract had highest phenolics (3.14 mM GAE/ g fruit extract) with caffeic acid, tannic acid, syringic acid and quercetin as major phenolic compounds. The ripe fruit extract showed lowest IC 50 values in DPPH radical scavenging assay (231.33 μg fruit extract/ mL), and highest ABTS radical scavenging activity (111.18 μM TEAC/g). Immature fruit extract showed lowest minimum inhibitory concentration against tested bacteria, and the antibacterial activity was probably due to membrane permeation, as was evident by leakage of genetic material and reduction in propidium iodide uptake by bacterium; and by inhibition of sugar and amino acid uptake. The appreciable amount of phenolic compounds and biological activities in the aqueous extracts of N. cadamba fruits suggests it's potential application as natural preservative.
The Potential Protective Effects of Phenolic Compounds against Low-density Lipoprotein Oxidation.
Amarowicz, Ryszard; Pegg, Ronald B
2017-01-01
The exact mechanism(s) of atherosclerosis in humans remains elusive, but one theory hypothesizes that this deleterious process results from the oxidative modification of low-density lipoprotein (LDL). Research suggests that foods rich in dietary phenolic compounds with antioxidant activity can mitigate the extent of LDL oxidation in vivo. With regard to the different classes of flavonoids, there appears to be a structurefunction relationship between the various moieties/constituents attached to the flavonoids' three ring system and their impact at retarding LDL oxidation. This article summarizes the findings to date of both in vitro and in vivo studies using foods or phenolic extracts isolated from foodstuffs at inhibiting the incidence of LDL oxidation. Three bases: SCOPUS, Web Science, and PubMed were used for search. An often used method for the determination of antioxidant properties of natural phenolic compounds is the LDL oxidation assay. LDLs are isolated from human plasma and their oxidation is induced by Cu2+ ions or 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The sample is incubated with a phenolic extract or individual/isolated phenolic compounds. LDL oxidation is then monitored by various chemical methods (e.g., measurement of the generation of conjugated dienes and trienes). This technique confirmed the antioxidant properties of several extracts as obtained from plant material (e.g., grapes, berries, orange, grapefruit, coffee, tea, chocolate, olives, nuts) as well as the individual phenolic compounds (e.g., luteolinidin, apigenidin, caffeic acid, chlorogenic acid, catechin, quercetin, rutin). Several studies in vivo confirmed protective effects of phenolic compounds against LDL oxidation. They covered the healthy subjects with hyperlipidaemia, overweight, obesity, metabolic syndrome, heavy smokers, patients receiving haemodialysis, patients with peripheral vascular disease, and subjects at high cardiovascular risk. The studies comprise individuals of all ages, and the number of participants in the different experiments varied widely. Properly designed double-blind, placebo-controlled randomised clinical trials offer stronger evidence as to the impact of dietary phenolics consumption at retarding LDL oxidation. More such clinical trials are needed to strengthen the hypothesis that foods rich in dietary phenolic compounds with antioxidant activity can mitigate the extent of LDL oxidation in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz
2015-12-01
The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scafuri, Bernardina; Marabotti, Anna; Carbone, Virginia; Minasi, Paola; Dotolo, Serena; Facchiano, Angelo
2016-01-01
We investigated the potential role of apple phenolic compounds in human pathologies by integrating chemical characterization of phenolic compounds in three apple varieties, computational approaches to identify potential protein targets of the compounds, bioinformatics analyses on data from public archive of gene expression data, and functional analyses to hypothesize the effects of the selected compounds in molecular pathways. Starting by the analytic characterization of phenolic compounds in three apple varieties, i.e. Annurca, Red Delicious, and Golden Delicious, we used computational approaches to verify by reverse docking the potential protein targets of the identified compounds. Direct docking validation of the potential protein-ligand interactions has generated a short list of human proteins potentially bound by the apple phenolic compounds. By considering the known chemo-preventive role of apple antioxidants’ extracts against some human pathologies, we performed a functional analysis by comparison with experimental gene expression data and interaction networks, obtained from public repositories. The results suggest the hypothesis that chemo-preventive effects of apple extracts in human pathologies, in particular for colorectal cancer, may be the interference with the activity of nucleotide metabolism and methylation enzymes, similarly to some classes of anticancer drugs. PMID:27587238
Yang, Baoru; Kortesniemi, Maaria; Liu, Pengzhan; Karonen, Maarit; Salminen, Juha-Pekka
2012-09-05
Phenolic compounds were extracted from dried emblic leafflower (Phyllanthus emblica L.) fruits with methanol and separated by Sephadex LH-20 column chromatography. The raw extracts and fractions were analyzed with HPLC coupled with diode array UV spectroscopy, electrospray ionization mass spectrometry, and tandem mass spectrometry. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid were suggested to be the most abundant compounds in the crude methanol extracts of the fruits. In addition, 144 peaks were detected, of which 67 were tentatively identified mostly as ellagitannins, flavonoids, and simple gallic acid derivatives in the fractions. The results indicated the presence of neochebulagic acid, isomers of neochebuloyl galloylglucose, chebuloyl neochebuloyl galloylglucose, ellagic acid glycosides, quercetin glycosides, and eriodictyol coumaroyl glycosides in the fruits. The study provides a systematic report of the retention data and characteristics of UV, MS, and MS/MS spectra of the phenolic compounds in the fruits of emblic leafflower. The fruits of two varieties (Ping Dan No 1 and Fruity) from Guangxi Province differed from those of wild Tian Chuan emblic leafflower from Fujian Province in the content and profile of phenolic compounds.
NASA Astrophysics Data System (ADS)
Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.
2016-01-01
Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.
Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P
2009-07-01
To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.
Praveen, Prashant; Loh, Kai-Chee
2016-06-01
Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations (<800 mg/L). At higher phenols loadings though, Langmuir isotherm was better suited for equilibrium prediction (R(2) > 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alberti, Ágnes; Riethmüller, Eszter; Béni, Szabolcs; Kéry, Ágnes
2016-04-01
Semnpervivum tectorum L. and Corylus avellana L. are traditional herbal remedies exhibiting antioxidant activity and representing diverse phenolic composition. The aim of this study was to reveal the contribution of certain compounds to total radical scavenging activity by studying S. tectorum and C. avellana extracts prepared with solvents of different selectivity for diverse classes of phenolics. Antioxidant activity of S. tectorum and C. avellana samples was determined in the ABTS and DPPH radical scavenging assays, and phenolic composition was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Correlations between antioxidant activity and phenolic content of houseleek extracts have been revealed. Significant differences regarding antioxidant activity have been shown between S. tectorum 80% (v/v) methanol extract and its fractions. Additionally, synergism among the constituents present together in the whole extract was assumed. Significantly higher radical scavenging activity of hazel extracts has been attributed to the differences in phenolic composition compared with houseleek extracts.
Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.
Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto
2010-01-20
In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.
NASA Astrophysics Data System (ADS)
Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore
2016-10-01
There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.
Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore
2016-01-01
There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin–Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry. PMID:27786308
NASA Astrophysics Data System (ADS)
Rita, Wiwik Susanah; Swantara, I. Made Dira; Asih, I. A. Raka Astiti; Sinarsih, Ni Ketut; Suteja, I. Kadek Pater
2016-03-01
Total flavonoid and phenolic contents in some natural products was suspected of having a positive correlation to its activity in inhibiting the growth of bacteria. The aim of this study was to determine the total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf, and to evaluate the antibacterial activity towards Escherechia coli and Staphylococcus aureus. Extraction of compounds was done by ethanol 96%, followed by fractionation into n-hexane, ethyl acetate, and n-butanol. Determination of total flavonoid and phenolic contents was done by UV-Vis Spectrophotometer using standard of quersetin and galic acid respectively. In addition, antibacterial activity was evaluated by agar disc diffusion method. Extraction of 1000 g of Samanea saman leaf was obtained 80 g of ethanol extracts, fractionation of the extract was obtained 8.02 g of n-hexane extracts, 7.11 g of ethyl acetate extracts, 13.5 g of n-butanol extracts, and 14.16 g of aqueous extracts. Phytochemical screening of the n-butanol extracts revealed the presence of flavonoid and phenolic compounds. Total flavonoid and phenolic contents were successively 43.5798 mg QE/100g and 34.0180 mg GAE/100g. The butanol extracts inhibited the growth of S.aureus higher than the growth of E.coli. At the concentration of 2, 4, 6, 8 % (b/v), and positive control (meropenem μg/disc), inhibition zone towards S. aureus was successively 5.67, 9.33, 10.33, 12.00, and 32.33 mm, while the inhibition zone towards E. coli was1.33, 3.33, 4.33, 5.43, and 34.00 mm.
Daayf, F.; Schmitt, A.; Belanger, R. R.
1997-03-01
Phenolic compounds extracted from cucumber (Cucumis sativus L.) leaves were separated and analyzed for their differential presence and fungitoxicity in relation to a prophylactic treatment with Milsana (Compo, Munster, Germany) against powdery mildew (Sphaerotheca fuliginea). Based on our extraction and purification procedures, at least eight separate phenolic compounds with antifungal activity were identified as intrinsic components of cucumber plants. Of these compounds, six displayed a significant increase in concentration as a result of elicitation with Milsana, this being particularly evident when the plant was stressed by the pathogen. The combined amounts of these antifungal compounds in treated plants was nearly five times the level found in control plants. One week after Milsana application, some of the antifungal compounds obtained through hydrolysis of their glycosidic links were also detected in their free form, indicating that they are likely liberated from conjugated phenolics by enzymatic hydrolysis in planta. To our knowledge, these results provide the first direct evidence that cucumber plants produce elevated levels of phytoalexins in response to an eliciting treatment after infection.
Daayf, F.; Schmitt, A.; Belanger, R. R.
1997-01-01
Phenolic compounds extracted from cucumber (Cucumis sativus L.) leaves were separated and analyzed for their differential presence and fungitoxicity in relation to a prophylactic treatment with Milsana (Compo, Munster, Germany) against powdery mildew (Sphaerotheca fuliginea). Based on our extraction and purification procedures, at least eight separate phenolic compounds with antifungal activity were identified as intrinsic components of cucumber plants. Of these compounds, six displayed a significant increase in concentration as a result of elicitation with Milsana, this being particularly evident when the plant was stressed by the pathogen. The combined amounts of these antifungal compounds in treated plants was nearly five times the level found in control plants. One week after Milsana application, some of the antifungal compounds obtained through hydrolysis of their glycosidic links were also detected in their free form, indicating that they are likely liberated from conjugated phenolics by enzymatic hydrolysis in planta. To our knowledge, these results provide the first direct evidence that cucumber plants produce elevated levels of phytoalexins in response to an eliciting treatment after infection. PMID:12223638
Kalt, W; Ryan, D A; Duy, J C; Prior, R L; Ehlenfeldt, M K; Vander Kloet, S P
2001-10-01
Recent interest in the possible protective effects of dietary antioxidant compounds against human degenerative disease has prompted investigation of foods such as blueberries (Vaccinium sp.), which have a high antioxidant capacity. Fruit obtained from genotypes of highbush blueberries (Vaccinium corymbosum L.) and lowbush blueberries (Vaccinium angustifolium Aiton) were analyzed for their antioxidant capacity, their content of anthocyanins, and total phenolic compounds, to evaluate the intraspecific and interspecific variation in these parameters. The method of extraction influenced the composition of fruit extracts; the highest anthocyanin and total phenolic contents and antioxidant capacity were found in extracts obtained using a solvent of acidified aqueous methanol. Regardless of the method, lowbush blueberries were consistently higher in anthocyanins, total phenolics, and antioxidant capacity, compared with highbush blueberries. There was no relationship between fruit size and anthocyanin content in either species.
Correia Da Silva, Thiago B; Souza, Vivian Karoline T; Da Silva, Ana Paula F; Lyra Lemos, Rosangela P; Conserva, Lucia M
2010-01-01
In this work, the total phenolic content and antioxidant activity of extracts and four flavonoids isolated from leaves of two Boraginaceae species (Cordia multispicata Cham. and Tournefortia bicolor Sw.) were evaluated using Folin-Ciocalteu reagent, DPPH free radical scavenging and inhibition of peroxidation of linoleic acid by FTC method. For comparison, ascorbic acid, alpha-tocopherol and BHT were used. In general, extracts from T. bicolor (68.8 +/- 0.001 to > 1000 mg/g) showed higher phenolic content than C. multispicata (66.1 +/- 0.009 to 231 +/- 0.07 mg/g), and also scavenged radicals (IC(50) 12.8 +/- 2.5 to 437 +/- 3.5 mg/L) and inhibited lipid peroxide formation (IC(50) 51.2 +/- 2.29 to 89 +/- 0.59 mg/L). For these extracts a good correlation between the phenolic content and antioxidant activity was observed, suggesting that T. bicolor is richer in phenolic compounds and that it could serve as a new source of natural antioxidants or nutraceuticals with potential applications. Chromatographic procedures monitored by antioxidant assays afforded seven compounds, which were identified by spectral analyses (IR, MS and 1D and 2D NMR) and comparison with reported data as being trans-phytol (1), taraxerol (2), 3,7,4'-trimethoxyflavone (3), 5,3'-dihydroxy-3,7,4'-trimethoxyflavone (4), quercetin (5), tiliroside (6), and rutin (7). Compounds (4-7) were also evaluated and were effective as DPPH quenching (IC(50) 7.7 +/- 3.6 to 79.3 +/- 3.4 mg/L) and as inhibition of lipid peroxidation (IC(50) 80.1 +/- 0.98 to 88.7 +/- 3.62 mg/L). This is the first report on the total phenolic content, radical-scavenging and antioxidant activities of these species.
Phenolic content variability and its chromosome location in tritordeum
Navas-Lopez, José F.; Ostos-Garrido, Francisco J.; Castillo, Almudena; Martín, Antonio; Gimenez, Maria J.; Pistón, Fernando
2014-01-01
For humans, wheat is the most important source of calories, but it is also a source of antioxidant compounds that are involved in the prevention of chronic disease. Among the antioxidant compounds, phenolic acids have great potential to improve human health. In this paper we evaluate the effect of environmental and genetic factors on the phenolics content in the grain of a collection of tritordeums with different cytoplasm and chromosome substitutions. To this purpose, tritordeum flour was used for extraction of the free, conjugates and bound phenolic compounds. These phenolic compounds were identified and quantified by RP-HPLC and the results were analyzed by univariate and multivariate methods. This is the first study that describes the composition of phenolic acids of the amphiploid tritordeum. As in wheat, the predominant phenolic compound is ferulic acid. In tritordeum there is great variability for the content of phenolic compounds and the main factor which determines its content is the genotype followed by the environment, in this case included in the year factor. Phenolic acid content is associated with the substitution of chromosome DS1D(1Hch) and DS2D(2Hch), and the translocation 1RS/1BL in tritordeum. The results show that there is high potential for further improving the quality and quantity of phenolics in tritordeum because this amphiploid shows high variability for the content of phenolic compounds. PMID:24523725
Analysis of phenolic compounds from corn, oat, and wheat bran extracts by LC-MS-PDA
USDA-ARS?s Scientific Manuscript database
Phenolic compounds are among the most common secondary metabolites produced by plants and can exhibit a range of bioactive properties including antimicrobial, antioxidant, and antihypertensive. These natural products have applications in nutraceutical, pharmaceutical and functional food or animal fe...
Evaluation of antioxidant activity of three common potato (Solanum tuberosum) cultivars in Iran
Hesam, Faride; Balali, Gholam Reza; Tehrani, Reza Taheri
2012-01-01
Objectives: Potato (Solanum tuberosum L.), as a whole food, contains high levels of vitamins and important antioxidants including phenolic acids, carotenoids and flavonoids. The objective of this study was to determine the total phenolic content and antioxidant activities of three common potatoes (Solanum tuberosum) cultivars in Iran i.e., Savalan, Agria and Sante. Materials and Methods: Phenolic compound extraction of samples was done with methanol and total phenolic on the basis of folin-ciocalteu assay was estimated as 16.58 to 36.24 mg GAE/100g dry sample. The antioxidant activities of potato extracts on the basis of inhibition of linoleic acid peroxidation and DPPH assay were compared with a commercially available antioxidant, α -tocopherol. Results: Savalan had the highest phenolic content and the highest DPPH radical scavenging activity with EC50 value of 41.815±mg/ml (DB). Also Savalan had the best inhibitory action against linoleic acid oxidation at 94.10±1.89% at 50 mg/ml sample concentration. Methanolic potato extracts had better antioxidant activity than α-tocopherol. Significant (p<0.01) negative correlation was observed between total phenolic content and the EC50 for DPPH radical scavenging activity(R=-0.877), but there was no correlation between total phenolic content and total antioxidant activity. Conclusion: Metanolic extracts of three potato cultivars are able to inhibit the oxidation process. The correlation between total phenolic content and DPPH radical scavenging activity indicates that phenolic compounds are responsible for antiradical activity. PMID:25050234
D'Sousa' Costa, Cinara Oliveira; Ribeiro, Paulo Roberto; Loureiro, Marta Bruno; Simões, Rafael Conceição; de Castro, Renato Delmondez; Fernandez, Luzimar Gonzaga
2015-01-01
Schinus terebinthifolius is widely used in traditional medicine by Brazilian quilombola and indigenous communities for treatment of several diseases. Extracts from different tissues are being used to produce creams to treat cervicitis and cervicovaginitis. However, most studies are limited to the assessment of the essential oils and extracts obtained from the leaves. The aim was to evaluate antioxidant and antibacterial activities, to assess the phytochemical profile and to quantify total phenolic compounds of various extracts prepared from S. terebinthifolius grown in the coast of Bahia, Brazil. Extracts were obtained by hot continuous extraction (soxhlet) and by maceration. Quantification of phenolic compounds was performed using the Folin-Ciocalteu method and antioxidant properties were assessed by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Phytochemical screening was performed as described by in the literature and antibacterial activity against Enterococcus faecalis (ATCC 29212) was determined by the microdilution broth assay. Extraction method greatly affected the metabolite profile of the extracts. Antioxidant activity varied between 21.92% and 85.76%, while total phenols ranged between 5.44 and 309.03 mg EAG/g of extract. Leaf extract obtained with soxhlet showed minimum inhibitory concentration (MIC) of 15.62 μg/mL, while stem extract obtained by maceration was able to inhibit the growth of E. faecalis at 62.5 μg/mL. Stem bark extracts showed a MIC of 500 μg/mL for both extraction methods, while no inhibition was observed for fruit extracts. In general, total phenolic content, antioxidant and antibacterial activities were higher in samples obtained by soxhlet. Our results provide important clues in order to identify alternative sources of bioactive compounds that can be used to develop new drugs.
Mustafa, R A; Abdul Hamid, A; Mohamed, S; Bakar, F Abu
2010-01-01
Free radical scavenging activity of 21 tropical plant extracts was evaluated using 1,1-diphenyl-2-picrylhydrazyl assay (DPPH). Total phenolic compounds and flavonoids were determined using Folin-Ciocalteu and HPLC, respectively. Results of the study revealed that all the plants tested exhibited excellent antioxidant activity with IC(50) in the range of 21.3 to 89.6 microg/mL. The most potent activity was demonstrated by Cosmos caudatus (21.3 microg/mL) and Piper betle (23.0 microg/mL) that are not significantly different than that of -tocopherol or BHA. L. inermis extract was found to consist of the highest concentration of phenolics, catechin, epicatechin, and naringenin. High content of quercetin, myricetin, and kaempferol were identified in Vitex negundo, Centella asiatica, and Sesbania grandiflora extracts, respectively. Luteolin and apigenin, on the other hand, were found in Premna cordifolia and Kaempferia galanga extracts. Strong correlation (R = 0.8613) between total phenolic compounds and total flavonoids (R = 0.8430) and that of antioxidant activity of the extracts were observed. The study revealed that phenolic, in particular flavonoids, may be the main contributors to the antioxidant activity exhibited by the plants. Potent antioxidant from natural sources is of great interest to replace the use of synthetic antioxidants. In addition, some of the plants have great potential to be used in the development of functional ingredients/foods that are currently in demand for the health benefits associated with their use.
Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts.
Valdez-Morales, Maribel; Espinosa-Alonso, Laura Gabriela; Espinoza-Torres, Libia Citlali; Delgado-Vargas, Francisco; Medina-Godoy, Sergio
2014-06-11
The phenolic content and antioxidant and antimutagenic activities from the peel and seeds of different tomato types (grape, cherry, bola and saladette type), and simulated tomato industrial byproducts, were studied. Methanolic extracts were used to quantify total phenolic content, groups of phenolic compounds, antioxidant activities, and the profile of phenolic compounds (by HPLC-DAD). Antimutagenic activity was determined by Salmonella typhimurium assay. The total phenolic content and antioxidant activity of tomato and tomato byproducts were comparable or superior to those previously reported for whole fruit and tomato pomace. Phenolic compounds with important biological activities, such as caffeic acid, ferulic acid, chlorogenic acids, quercetin-3-β-O-glycoside, and quercetin, were quantified. Differences in all phenolic determinations due to tomato type and part of the fruit analyzed were observed, peel from grape type showing the best results. Positive antimutagenic results were observed in all samples. All evaluated materials could be used as a source of potential nutraceutical compounds.
Rahimi Khoigani, Soroush; Rajaei, Ahmad; Goli, Sayed Amir Hossein
2017-02-01
The aim of this study was to evaluate phenolics profile and antioxidant activity of Stachys lavandulifolia. Total phenolics (TP), total flavonoids (TF), DPPH• assay (IC50), ferric ion reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) of the methanolic extract were measured. The content of TP, TF, IC50, FRAP and TAC, were obtained as 16.59 gallic acid equiv./g dry matter (DM), 4.48 mg quercetin equiv./g DM, 2.07 (μg/mL), 0.014 (absorbance/mg phenolic) and 14.61 (mg BHT equiv./g DM), respectively. The results showed that S. lavandulifolia, compared to other species of Stachys, had moderate TP content with desirable antioxidant activity. Subsequently, 59 various phenolic compounds were identified and confirmed in the methanolic extract of S. lavandulifolia using high mass accuracy by MS2 experiments. The compounds consisted of 6 hydroxybenzoic acids and hydroxybenzoic aldehydes, 9 hydroxycinnamic acids, 1 coumarin, 32 flavonoids, 3 lignans, 2 stilbenes, 3 tannins and 3 other phenolics.
Peroxidase extraction from jicama skin peels for phenol removal
NASA Astrophysics Data System (ADS)
Chiong, T.; Lau, S. Y.; Khor, E. H.; Danquah, M. K.
2016-06-01
Phenol and its derivatives exist in various types of industrial effluents, and are known to be harmful to aquatic lives even at low concentrations. Conventional treatment technologies for phenol removal are challenged with long retention time, high energy consumption and process cost. Enzymatic treatment has emerged as an alternative technology for phenol removal from wastewater. These enzymes interact with aromatic compounds including phenols in the presence of hydrogen peroxide, forming free radicals which polymerize spontaneously to produce insoluble phenolic polymers. This work aims to extract peroxidase from agricultural wastes materials and establish its application for phenol removal. Peroxidase was extracted from jicama skin peels under varying extraction conditions of pH, sample-to-buffer ratio (w/v %) and temperature. Experimental results showed that extraction process conducted at pH 10, 40% w/v and 25oC demonstrated a peroxidase activity of 0.79 U/mL. Elevated temperatures slightly enhanced the peroxidase activities. Jicama peroxidase extracted at optimum extraction conditions demonstrated a phenol removal efficiency of 87.5% at pH 7. Phenol removal efficiency was ∼ 97% in the range of 30 - 40oC, and H2O2 dosage has to be kept below 100 mM for maximum removal under phenol concentration tested.
Jiménez, Paula; García, Paula; Bustamante, Andrés; Barriga, Andrés; Robert, Paz
2017-04-15
Effect of the addition of avocado (Persea americana cv. Hass) or olive (Olea europaea cv. Arbequina) hydroalcoholic leaf extracts (AHE and OHE, respectively) on thermal stability of canola oil (CO) and high oleic sunflower oil (HOSO) during French potatoes frying at 180°C was studied. The extracts were characterized by the total phenolic content, phenol chromatographic profiles and antioxidant activity. B-type trimer procyanidins were the major phenolic compounds identified in AHE. OHE showed higher phenol content, antioxidant activity regarding AHE. CO+OHE and HOSO+OHE decreased the formation of polar compounds and showed an anti-polymeric effect with respect to oils without extracts, whereas AHE extract showed a prooxidant effect on HOSO. Therefore, OHE showed an antioxidant effect on HOSO and CO under the studied conditions. In addition, all systems (CO+AHE, HOSO+AHE, CO+OHE and HOSO+OHE) increased the retention of tocopherols. These results demonstrate the potential utility of OHE as natural antioxidant for oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Al-Mahasneh, Majdi A; Almajwal, Ali; Gammoh, Sana; Ereifej, Khalil; Johargy, Ayman; Alli, Inteaz
2017-03-01
Over the last two decades, separation, identification and measurement of the total and individual content of phenolic compounds has been widely investigated. Recently, the presence of a wide range of phenolic compounds in oil-bearing plants has been shown to contribute to their therapeutic properties, including anti-cancer, anti-viral, anti-oxidant, hypoglycemic, hypo-lipidemic, and anti-inflammatory activities. Phenolics in oil-bearing plants are now recognized as important minor food components due to several organoleptic and health properties, and they are used as food or sources of food ingredients. Variations in the content of phenolics in oil-bearing plants have largely been attributed to several factors, including the cultivation, time of harvest and soil types. A number of authors have suggested that the presence phenolics in extracted proteins, carbohydrates and oils may contribute to objectionable off flavors The objective of this study was to review the distribution, identification and occurrence of free and bound phenolic compounds in oil-bearing plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dudonné, Stéphanie; Vitrac, Xavier; Coutière, Philippe; Woillez, Marion; Mérillon, Jean-Michel
2009-03-11
Aqueous extracts of 30 plants were investigated for their antioxidant properties using DPPH and ABTS radical scavenging capacity assay, oxygen radical absorbance capacity (ORAC) assay, superoxide dismutase (SOD) assay, and ferric reducing antioxidant potential (FRAP) assay. Total phenolic content was also determined by the Folin-Ciocalteu method. Antioxidant properties and total phenolic content differed significantly among selected plants. It was found that oak (Quercus robur), pine (Pinus maritima), and cinnamon (Cinnamomum zeylanicum) aqueous extracts possessed the highest antioxidant capacities in most of the methods used, and thus could be potential rich sources of natural antioxidants. These extracts presented the highest phenolic content (300-400 mg GAE/g). Mate (Ilex paraguariensis) and clove (Eugenia caryophyllus clovis) aqueous extracts also showed strong antioxidant properties and a high phenolic content (about 200 mg GAE/g). A significant relationship between antioxidant capacity and total phenolic content was found, indicating that phenolic compounds are the major contributors to the antioxidant properties of these plants.
Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico.
Ayala-Zavala, Jesús Fernando; Silva-Espinoza, Brenda Adriana; Cruz-Valenzuela, Manuel Reynaldo; Villegas-Ochoa, Mónica Alejandra; Esqueda, Martín; González-Aguilar, Gustavo Adolfo; Calderón-López, Yazaric
2012-01-01
Among the potential natural sources of bioactive compounds, those of the macroscopic fungi Phellinus spp. have been identified by previous researches. Phenolic compounds are among the major antioxidant and antimicrobial contributors due to their bioactive properties. The goal of this study was to determine the total phenolic and flavonoid contents, and its relation with the antioxidant and antifungal activity of methanolic extracts of Phellinus gilvus, Phellinus rimosus and Phellinus badius, respectively. The collected and identified organisms of Phellinus spp. were treated with methanol and the generated aqueous extract was analyzed to quantified total phenolic compounds, total flavonoids, radical scavenging activity against DPPH, trolox equivalent antioxidant capacity, and oxygen absorbance capacity. The antifungal property of the extracts was evaluated against Alternaria alternata. The content of phenolic compounds was of 49.31, 46.51 and 44.7 mg of gallic acid equivalents/g, for P. gilvus, P. rimosus and P. badius, respectively. The total flavonoid content followed the same pattern with values of 30.58, 28, and 26.48 mg of quercetin equivalents/g for P. gilvus, P. rimosus and P. badius, respectively. The variation on the content of phenolic components was reflected on the antioxidant activity of every organism. The antioxidant activity ranked as follows: P. gilvus>P. rimosus>P. badius. The antifungal effect of the different extracts against A. alternata showed a significant effect, all of them, inhibiting the growth of this pathogen. P. gilvus showed the best potential to inactivate free radicals, being all the tested fungi effective to inhibit A. alternata growth. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
de Beer, Dalene; Schulze, Alexandra E; Joubert, Elizabeth; de Villiers, André; Malherbe, Christiaan J; Stander, Maria A
2012-12-07
Cyclopia subternata plants are traditionally used for the production of the South African herbal tea, honeybush, and recently as aqueous extracts for the food industry. A C. subternata aqueous extract and mangiferin (a major constituent) are known to have anti-diabetic properties. Variation in phenolic composition and antioxidant capacity is expected due to cultivation largely from seedlings, having implications for extract standardization and quality control. Aqueous extracts from 64 seedlings of the same age, cultivated under the same environmental conditions, were analyzed for individual compound content, total polyphenol (TP) content and total antioxidant capacity (TAC) in a number of assays. An HPLC method was developed and validated to allow quantification of xanthones (mangiferin, isomangiferin), flavanones (hesperidin, eriocitrin), a flavone (scolymoside), a benzophenone (iriflophenone-3-C-β-glucoside) and dihydrochalcones (phloretin-3',5'-di-C-β-glucoside, 3-hydroxyphloretin-3',5'-di-C-hexoside). Additional compounds were tentatively identified using mass spectrometric detection, with the presence of the 3-hydroxyphloretin-glycoside, an iriflophenone-di-O,C-hexoside, an eriodictyol-di-C-hexoside and vicenin-2 being demonstrated for the first time. Variability of the individual phenolic compound contents was generally higher than that of the TP content and TAC values. Among the phenolic compounds, scolymoside, hesperidin and iriflophenone-3-C-β-glucoside contents were the most variable. A combination of the measured parameters could be useful in product standardization by providing a basis for specifying minimum levels.
Olennikov, Daniil N; Kashchenko, Nina I
2014-01-01
An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6'-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6''-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase.
Martorana, Maria; Arcoraci, Teresita; Rizza, Luisa; Cristani, Mariateresa; Bonina, Francesco Paolo; Saija, Antonina; Trombetta, Domenico; Tomaino, Antonio
2013-03-01
Pistachio (Pistacia vera L.) nuts are a rich source of phenolic compounds, known for their high antioxidant activity, and contained not only in the seeds but also in the skin. A pistachio cultivar of high quality is typical of Bronte, Sicily, Italy. The purpose of our study was to investigate the chemical composition and antioxidant properties of two polyphenol-rich extracts from skins (TP) and decorticated seeds (SP) of Bronte pistachios, and to verify the potential use of these extracts for topical photoprotective products. Chemical analysis showed that the TP and SP extracts contain high levels of phenolic compounds, but the TP extract is about ten times richer in phenols than the SP extract, being anthocyanins the most abundant compounds found in the TP extract. Both these extracts, and especially the TP extract, possess good radical scavenger/antioxidant properties, as shown in a series of in vitro assays carried out using homogenous and non-homogenous chemical environment. Furthermore both the TP extract and, although at a lower degree, the SP extract reduce, when topically applied, UV-B-induced skin erythema in human volunteers. These findings suggest that extracts from Bronte TP and SP could be successfully employed as photoprotective ingredients in topical cosmetic and pharmaceutical formulations. Copyright © 2013 Elsevier B.V. All rights reserved.
Achour, Mariem; Mateos, Raquel; Ben Fredj, Maha; Mtiraoui, Ali; Bravo, Laura; Saguem, Saad
2018-01-01
Rosemary (Rosmarinus officinalis L.) is an aromatic plant common in Tunisia and it is widely consumed as a tea in traditional cuisine and in folk medicine to treat various illnesses. Currently, most research efforts have been focused on rosemary essential oil, alcoholic and aqueous extracts, however, little is reported on rosemary infusion composition. To investigate compounds present in rosemary tea obtained from Rosmarinus officinalis L. collected in a sub-humid area of Tunisia in order to assess whether the traditional rosemary tea preparation method could be considered as a reference method for rosemary's compounds extraction. Qualitative characterisation of Rosmarinus officinalis tea obtained after rosemary infusion in boiled water was determined by high performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Quantitative analysis relies on high performance liquid chromatography with diode array detector (HPLC-DAD). Forty-nine compounds belonging to six families, namely flavonoids, phenolic acids, phenolic terpenes, jasmonate, phenolic glycosides, and lignans were identified. To the best of the authors' knowledge eucommin A is characterised for the first time in rosemary. Rosmarinic acid (158.13 μg/g dried rosemary) was the main compound followed then by feruloylnepitrin (100.87 μg/g) and luteolin-3'-O-(2″-O-acetyl)-β-d-glucuronide (44.04 μg/g). Among quantified compounds, luteolin-7-O-rutinoside was the compound with the lowest concentration. The infusion method allows several polyphenols present in rosemary tea to be extracted, therefore it could be a reference method for rosemary's compounds extraction. Moreover, traditional Tunisian Rosmarinus officinalis tea consumption is of interest for its rich phenolic content. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Oszmiański, Jan; Kalisz, Stanisław; Aneta, Wojdyło
2014-09-15
Normally, plant phenolics are secondary metabolites involved in the defense mechanisms of plants against fungal pathogens. Therefore, in this study we attempted to quantify and characterize phenolic compounds in leaves of white and red horse chestnut with leaf miner larvae before and after Cameraria ohridella attack. A total of 17 phenolic compounds belonging to the hydroxycinnamic acid, flavan-3-ols and flavonol groups were identified and quantified in white and red horse chestnut leaf extracts. Significantly decreased concentrations of some phenolic compounds, especially of flavan-3-ols, were observed in infected leaves compared to the non-infected ones. Additionally, a higher content of polyphenolic compounds especially (-)-epicatechin and procyanidins in leaves of red-flowering than in white-flowering horse chestnut may explain their greater resistance to C. ohridella insects.
NASA Astrophysics Data System (ADS)
Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.
2018-03-01
Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.
Kondo, Ryuichiro; Yamagami, Hikari; Sakai, Kokki
1993-01-01
When 4-methylguaiacol (MeG), a phenolic lignin model compound, was added to a culture that was inoculated with Coriolus versicolor, it was bioconverted into 2-methoxy-4-methylphenyl β-d-xyloside (MeG-Xyl). The phenolic hydroxyl group of vanillyl alcohol was much more extensively xylosylated than the alcoholic hydroxyl group. When a mixture of MeG and commercial UDP-xylose was incubated with cell extracts of mycelia, transformation of UDP-xylose into MeG-Xyl was observed. This result suggested that UDP-xylosyltransferase was involved in the xylosylation of phenolic hydroxyl groups of lignin model compounds. PMID:16348869
UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf.
Silinsin, Muzaffer; Bursal, Ercan
2018-06-01
Inula graveolens (L.) Desf. is an annual aromatic herb which has various uses on alternative medicine in many region of the world. In this study, antioxidant activities of ethanol and water extracts of the plant leaves were determined by in vitro DPPH method and phenolic composition of the plant sample was determined by LC-MS/MS analysis. The results showed that chlorogenic acid, quinic acid, hyperoside, protocatechuic acid and quercetin were the major phenolic compounds among the 27 standard compounds. The significant antioxidant capacity of the plant might be related with the high abundance of phenolic compounds.
Kenny, O; Smyth, T J; Walsh, D; Kelleher, C T; Hewage, C M; Brunton, N P
2014-10-15
Antimicrobial properties of ethanol and water extracts from eight Asteraceae species were investigated against three Gram positive (Staphylococcus aureus, MRSA and Bacillus cereus) and two Gram negative (Escherichia coli and Salmonella typhimurium) bacterial strains. Ethanol extracts from Centaurea scabiosa, Arctium minus, Taraxacum officinale, Centaurea nigra and Cirsium palustre demonstrated antimicrobial activity against strains of S. aureus, MRSA and B. cereus (MIC=187.5-365μg/ml). Ethanol extracts also had higher antioxidant activities and phenolic content demonstrating a link between these compounds and the bioactivity of these extracts. Further investigation into the phenolic content of ethanol extracts using UPLC-MS/MS lead to the identification and quantification of numerous phenolic compounds in all species including; 18 from Cirsium arvense, 16 from Cirsium vulgare, 19 from C. palustre, 15 from C. nigra, 17 from C. scabiosa, 14 from Sonchus asper, 17 from A. minus and 11 from T. officinale. Copyright © 2014 Elsevier Ltd. All rights reserved.
HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species.
Čulum, Dušan; Čopra-Janićijević, Amira; Vidic, Danijela; Klepo, Lejla; Tahirović, Azra; Bašić, Neđad; Maksimović, Milka
2018-04-24
The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species— Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW), chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea , and Crataegus x macrocarpa from Bosnia.
HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species
Čulum, Dušan; Vidic, Danijela; Klepo, Lejla; Tahirović, Azra; Bašić, Neđad; Maksimović, Milka
2018-01-01
The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species—Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW), chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea, and Crataegus x macrocarpa from Bosnia. PMID:29695058
The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders
Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna
2016-01-01
Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract. PMID:26901191
The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders.
Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna
2016-02-18
Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.
Webber, Daniel M; Hettiarachchy, Navam S; Li, Ruiqi; Horax, Ronny; Theivendran, Sivarooban
2014-11-01
Heat-stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a value-added application for HDRB. The objective of this study was to extract and quantify phenolics from HDRB using fermentation technology. Out of 8 organisms selected for rice bran fermentation, Bacillus subtilis subspecies subtilis had the maximum phenolic release of 26.8 mg ferulic acid equivalents (FAE) per gram HDRB. Response surface methodology was used to further optimize the release of rice bran phenolics. An optimum of 28.6 mg FAE/g rice bran was predicted at 168 h, 0.01% inoculation level, and 100 mg HDRB/mL. Fermentation of HDRB for 96 h with B. subtilis subspecies subtilis resulted in a significant increase in phenolic yield, phenolic concentration, and radical scavenging capacity. Fermented rice bran had 4.86 mg gentistic acid, 1.38 mg caffeic acid, 6.03 mg syringic acid, 19.02 mg (-)-epicatechin, 4.08 mg p-courmaric acid, 4.64 mg ferulic acid, 10.04 mg sinapic acid, and 17.59 mg benzoic acid per 100 g fermented extract compared to 0.65 mg p-courmaric acid and 0.36 mg ferulic acid per 100 g nonfermented extract. The high phenolic content and antioxidant activity of fermented HDRB extract indicates that rice bran fermentation under optimized condition is a potential means of meeting the demand for an effective and affordable antioxidant. © 2014 Institute of Food Technologists®
Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols.
Kammerer, Dietmar R; Carle, Reinhold; Stanley, Roger A; Saleh, Zaid S
2010-06-09
The purification and fractionation of phenolic compounds from crude plant extracts using a food-grade acrylic adsorbent were studied at pilot-plant scale. A diluted apple juice concentrate served as a model phenolic solution for column adsorption and desorption trials. Phenolic concentrations were evaluated photometrically using the Folin-Ciocalteu assay and by HPLC-DAD. Recovery rates were significantly affected by increasing phenolic concentrations of the feed solutions applied to the column. In contrast, the flow rate during column loading hardly influenced adsorption efficiency, whereas the temperature and pH value were shown to be crucial parameters determining both total phenolic recovery rates and the adsorption behavior of individual polyphenols. As expected, the eluent composition had the greatest impact on the desorption characteristics of both total and individual phenolic compounds. HPLC analyses revealed significantly different elution profiles of individual polyphenols depending on lipophilicity. This technique allows fractionation of crude plant phenolic extracts, thus providing the opportunity to design the functional properties of the resulting phenolic fractions selectively, and the present study delivers valuable information with regard to the adjustment of individual process parameters.
Hwang, Seok Joon; Yoon, Won Byong; Lee, Ok-Hwan; Cha, Seung Ju; Kim, Jong Dai
2014-03-01
The objective of this study was to investigate the radical-scavenging-linked antioxidant properties of the extracts from black chokeberry and blueberry cultivated in Korea. The 70% ethanol extracts were prepared from black chokeberry and blueberry, and evaluated for total phenolic content, total flavonoid content, total proanthocyanidin content, and antioxidative activities, using various in vitro assays, such as DPPH(2,2-diphenyl-1-picrylhydrazyl), ABTS(2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulphonic acid)) radical-scavenging activity, FRAP(ferric-reducing antioxidant power) and reducing power. The major phenolic compounds, including cyanidin-3-galactoside, cyanidin-3-arabinoside, neochlorogenic acid, procyanidin B1, were analysed by HPLC with a photodiode array detector. Results showed that total phenol, flavonoid and proanthocyanidin contents of black chokeberry extract were higher than those of blueberry extract. In addition, black chokeberry extract exhibited higher free radical-scavenging activity and reducing power than did blueberry extract. Cyanidin-3-galactoside was identified as a major phenolic compound, with considerable content in black chokeberry, that correlated with its higher antioxidant and radical-scavenging effects. These results suggest that black chokeberry extracts could be considered as a good source of natural antioxidants and functional food ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zakaria, Siti Maisurah; Kamal, Siti Mazlina Mustapa; Harun, Mohd Razif; Omar, Rozita; Siajam, Shamsul Izhar
2017-07-03
Chlorella sp . microalgae is a potential source of antioxidants and natural bioactive compounds used in the food and pharmaceutical industries. In this study, a subcritical water (SW) technology was applied to determine the phenolic content and antioxidant activity of Chlorella sp . This study focused on maximizing the recovery of Chlorella sp. phenolic content and antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay as a function of extraction temperature (100-250 °C), time (5-20 min) and microalgae concentration (5-20 wt. %) using response surface methodology. The optimal operating conditions for the extraction process were found to be 5 min at 163 °C with 20 wt. % microalgae concentration, which resulted in products with 58.73 mg gallic acid equivalent (GAE)/g phenolic content and 68.5% inhibition of the DPPH radical. Under optimized conditions, the experimental values were in close agreement with values predicted by the model. The phenolic content was highly correlated (R² = 0.935) with the antioxidant capacity. Results indicated that extraction by SW technology was effective and that Chlorella sp . could be a useful source of natural antioxidants.
Kylli, Petri; Nohynek, Liisa; Puupponen-Pimiä, Riitta; Westerlund-Wikström, Benita; Leppänen, Tiina; Welling, Jukka; Moilanen, Eeva; Heinonen, Marina
2011-04-13
European, small-fruited cranberries (Vaccinium microcarpon) and lingonberries (Vaccinium vitis-idaea) were characterized for their phenolic compounds and tested for antioxidant, antimicrobial, antiadhesive, and antiinflammatory effects. The main phenolic compounds in both lingonberries and cranberries were proanthocyanidins comprising 63-71% of the total phenolic content, but anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and flavonols were also found. Proanthocyanidins are polymeric phenolic compounds consisting mainly of catechin, epicatechin, gallocatechin, and epigallocatechin units. In the present study, proanthocyanidins were divided into three groups: dimers and trimers, oligomers (mDP 4-10), and polymers (mDP > 10). Catechin, epicatechin, A-type dimers and trimers were found to be the terminal units of isolated proanthocyanidin fractions. Inhibitions of lipid oxidation in liposomes were over 70% and in emulsions over 85%, and in most cases the oligomeric or polymeric fraction was the most effective. Polymeric proanthocyanidin extracts of lingonberries and cranberries were strongly antimicrobial against Staphylococcus aureus, whereas they had no effect on other bacterial strains such as Salmonella enterica sv. Typhimurium, Lactobacillus rhamnosus and Escherichia coli. Polymeric fraction of cranberries and oligomeric fractions of both lingonberries and cranberries showed an inhibitory effect on hemagglutination of E. coli, which expresses the M hemagglutin. Cranberry phenolic extract inhibited LPS-induced NO production in a dose-dependent manner, but it had no major effect on iNOS of COX-2 expression. At a concentration of 100 μg/mL cranberry phenolic extract inhibited LPS-induced IL-6, IL-1β and TNF-α production. Lingonberry phenolics had no significant effect on IL-1β production but inhibited IL-6 and TNF-α production at a concentration of 100 μg/mL similarly to cranberry phenolic extract. In conclusion the phenolics, notably proanthocyanidins (oligomers and polymers), in both lingonberries and cranberries exert multiple bioactivities that may be exploited in food development.
Melo, Priscilla Siqueira; Massarioli, Adna Prado; Denny, Carina; dos Santos, Luciana Ferracini; Franchin, Marcelo; Pereira, Giuliano Elias; Vieira, Thais Maria Ferreira de Souza; Rosalen, Pedro Luiz; de Alencar, Severino Matias
2015-08-15
Nearly 20 million tons of winery by-products, with many biological activities, are discarded each year in the world. The extraction of bioactive compounds from Chenin Blanc, Petit Verdot, and Syrah grape by-products, produced in the semi-arid region in Brazil, was optimized by a Central Composite Rotatable Design. The phenolic compounds profile, antioxidant capacity against synthetic free radicals (DPPH and ABTS), reactive oxygen species (ROS; peroxyl radical, superoxide radical, hypochlorous acid), cytotoxicity assay (MTT) and quantification of TNF-α production in RAW 264.7 cells were conducted. Gallic acid, syringic acid, procyanidins B1 and B2, catechin, epicatechin, epicatechin gallate, quercetin 3-β-d-glucoside, delfinidin 3-glucoside, peonidin 3-O-glucoside, and malvidin 3-glucoside were the main phenolic compounds identified. In general, rachis showed higher antioxidant capacity than pomace extract, especially for Chenin Blanc. All extracts showed low cytotoxicity against RAW 264.7 cells and Petit Verdot pomace suppressed TNF-α liberation in vitro. Therefore, these winery by-products can be considered good sources of bioactive compounds, with great potential for application in the food and pharmaceutical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lu, WenQing; Zhou, XiaoMin
2016-01-01
In our previous study, we have found that persimmon, guava, and sweetsop owned considerably high antioxidant activity and contained high total phenolic contents as well. In order to further supply information on the antibacterial and antioxidant activity of these three tropic fruits, they were extracted by 80% methanol. We then examined the extractions about their phenolic compounds and also studied the extractions and phenolic contents about their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against twelve targeted pathogens including 8 standard strains (Staphylococcus aureus, Bacillus cereus, Staphylococcus epidermidis, Monilia albican, Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Pseudomonas aeruginosa) and 4 multidrug-resistant strains (methicillin-resistant Staphylococcus aureus, ESBLs-producing Escherichia coli, carbapenems-resistant Pseudomonas aeruginosa, and multidrug-resistant Acinetobacter baumannii), which are common and comprehensive in clinic. We also employed two ways, that is, FRAP and TEAC, to evaluate their antioxidant activities, using ultraviolet and visible spectrophotometer. Our study indicated that the three tropical fruits possessed obvious antioxidant and antibacterial activity, which supported the possibility of developing the fruits into new natural resource food and functional food as well as new natural antimicrobial agent and food preservatives. Moreover, phenolic compounds detected in the fruits could be used as a potential natural antibacterial agent and antioxidant. PMID:27648444
Simão, Anderson A; Marques, Tamara R; Marcussi, Silvana; Corrêa, Angelita D
2017-01-01
Leaves of Psidium guajava L. (guava) have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI) on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated). In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.
Strategies for the extraction and analysis of non-extractable polyphenols from plants.
Domínguez-Rodríguez, Gloria; Marina, María Luisa; Plaza, Merichel
2017-09-08
The majority of studies based on phenolic compounds from plants are focused on the extractable fraction derived from an aqueous or aqueous-organic extraction. However, an important fraction of polyphenols is ignored due to the fact that they remain retained in the residue of extraction. They are the so-called non-extractable polyphenols (NEPs) which are high molecular weight polymeric polyphenols or individual low molecular weight phenolics associated to macromolecules. The scarce information available about NEPs shows that these compounds possess interesting biological activities. That is why the interest about the study of these compounds has been increasing in the last years. Furthermore, the extraction and characterization of NEPs are considered a challenge because the developed analytical methodologies present some limitations. Thus, the present literature review summarizes current knowledge of NEPs and the different methodologies for the extraction of these compounds, with a particular focus on hydrolysis treatments. Besides, this review provides information on the most recent developments in the purification, separation, identification and quantification of NEPs from plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Dongjie; Williams, Barbara A; Ferruzzi, Mario G; D'Arcy, Bruce R
2013-06-01
Grape seed phenolic extract (GSE) is predicted to have health benefits, even though its bioavailability, including digestibility, permeability and ultimate metabolism, are still poorly understood. In vitro gastric and pancreatic digestion and in vitro ileal and faecal fermentation were combined with Caco-2 cell permeability studies for GSE samples. Qualitatively, there was no change in type/number of GSE compounds following gastric and pancreatic digestion and LC-MS analysis. However, the monomers were significantly (P<0.05) increased after gastric digestion, along with a significant (P<0.05) decrease in polymers. In addition, all forms of phenolic compounds decreased following pancreatic digestion. However, none of the original GSE phenolic compounds passed the Caco-2 cell monolayer, since all were recovered in the apical compartment. In contrast, the two intestinal microbiota metabolites with deprotonated molecular weights of [M-H]-165/121 and 193/175, that were found both in the ileal and faecal fermented samples, passed the Caco-2 cell monolayer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Grosso, Clara; Ferreres, Federico; Gil-Izquierdo, Angel; Valentão, Patrícia; Sampaio, Maria; Lima, Júlio; Andrade, Paula B
2014-12-01
A Box-Behnken design (BBD) was developed to study the influence of four parameters (X1: % methanol; X2: extraction time; X3: extraction temperature; X4: solid/solvent ratio) on two responses, namely extraction yield and phenolics content of the aerial parts of Chelidonium majus L. The model presented a good fit to the experimental results for the extraction yield, being significantly influenced by X1 and X4. On the other hand a parameter reduction was necessary to run the model for phenolics content, showing that only X1 and X2 had great influence on the response. Two best extraction conditions were defined: X1=76.8% MeOH, X2=150.0 min, X3=60.0°C and X4=1:100 and X1=69.2%, X2=150 min, X3=42.5°C and X4=1:100. Moreover, the HPLC-DAD-ESI/MS(n) analysis conducted with the center point sample revealed the presence of 15 alkaloids and 15 phenolic compounds, from which the 9 flavonoids and 3 hydroxycinnamic acids are described for the first time. Only phenolic compounds were quantified by a validated HPLC-DAD method, the pair quercetin-3-O-rutinoside+quercetin-3-O-glucoside dominating all the 29 extracts. This study is of great importance for future works that seek to apply the phenolic profile to the quality control of C. majus samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Yuefei; Ying, Le; Sun, Da; Zhang, Shikang; Zhu, Yuejin; Xu, Ping
2011-01-01
Supercritical carbon dioxide (SC-CO2) extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34), and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and ferrous ion chelating (FIC) assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v), and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v). Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems. PMID:22072923
Comparative antioxidant activity of edible Japanese brown seaweeds.
Airanthi, M K Widjaja-Adhi; Hosokawa, Masashi; Miyashita, Kazuo
2011-01-01
Japanese edible brown seaweeds, Eisenia bicyclis (Arame), Kjellmaniella crassifolia (Gagome), Alaria crassifolia (Chigaiso), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) were assayed for total phenolic content (TPC), fucoxanthin content, radical scavenging activities (DPPH, peroxyl radical, ABTS, and nitric oxide), and antioxidant activity in a liposome system. Among the solvents used for extraction, methanol was the most effective to extract total phenolics (TPC) from brown seaweeds. Among 5 kinds of brown seaweeds analyzed, methanol extract from C. hakodatensis was the best source for antioxidants. The high antioxidant activity of the extract was based not only on the high content of phenolics, but on the presence of fucoxanthin. No significant correlation (P > 0.05) was observed between TPC per gram extract with DPPH radical scavenging activity of the methanol extracts. These observed discrepancy would be due to structural variations in the phenolic compounds, and different levels of fucoxanthin in the extracts. The present study also demonstrated the synergy in the antioxidant activity of the combination of brown seaweed phenolics and fucoxanthin.
Antunes, Rafael Souza; Ferraz, Denes; Garcia, Luane Ferreira; Thomaz, Douglas Vieira; Luque, Rafael; Lobón, Germán Sanz; Gil, Eric de Souza; Lopes, Flávio Marques
2018-05-15
In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo ( Genipa americana L.) fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry. The calibration curve presented a linear interval from 10 to 310 µM (r² = 0.9982) and a limit of detection of 7 µM. Biosensor stability was evaluated throughout 15 days, and it exhibited 88.22% of the initial response. The amount of catechol standard recovered post analysis varied between 87.50% and 96.00%. Moreover, the biosensor was able to detect phenolic compounds in a real sample, and the results were in accordance with standard spectrophotometric assays. Therefore, the innovatively-designed biosensor hereby proposed is a promising tool for phenolic compound detection and quantification when environmental contaminants are concerned.
Huang, Fangzhi; Berton, Paula; Lu, Chengfei; Siraj, Noureen; Wang, Chun; Magut, Paul K S; Warner, Isiah M
2014-09-01
A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lantto, Tiina A; Laakso, Into; Dorman, H J Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso
2016-07-13
Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds.
Green synthesis of silver nanoparticles using Stevia leaves extracts
NASA Astrophysics Data System (ADS)
Laguta, Iryna; Stavinskaya, Oksana; Kazakova, Olga; Fesenko, Tetiana; Brychka, Sergey
2018-02-01
Three extracts of Stevia rebaudiana (Bertoni) were prepared using different types of raw materials: leaves of plants grown ex situ, leaves of plants grown in vitro, callus culture formed on damaged leaves. Composition of the extracts was studied by means of high-performance liquid chromatography and laser desorption/ionization mass spectrometry; total phenol content was estimated using Folin-Ciocalteau method. Flavonoids and hydroxycinnamic acids were found to be the main groups of phenol antioxidants available in the Stevia leaves, with the amount of these compounds in the extract being dependent on the type of raw material. The reducing properties of phenol compounds identified in the extracts were characterized using quantum chemical method; flavonoids and hydroxycinnamic acids were found to have similar redox parameters. Silver nanoparticles (AgNPs) colloids were synthesized using three Stevia extracts; AgNPs size distribution were characterized by means of scanning electron microscopy. All the extracts revealed significant activity in AgNPs synthesis; the nanoparticles of predominantly spherical shape with the average sizes of 16-25 nm were formed. The reducing properties of the extracts were found to correlate with total phenol content; the activity of extracts from the leaves of plants grown ex situ and from callus culture in Ag+ ions reduction was similar to each other and exceeded the activity of extract from the leaves of plants grown in vitro.
Payet, Bertrand; Shum Cheong Sing, Alain; Smadja, Jacqueline
2005-12-28
Seven cane brown sugars (four from La Réunion, two from Mauritius, and one from France) were investigated for their polyphenol content and volatile composition in relation to their free radical scavenging capacity determined by ABTS and DPPH assays. The thin layer coated on the sugar crystal was extracted by Soxhlet extractor with dichloromethane. The volatile compounds of brown sugars were studied by GC-MS, and 43 compounds were identified. The total phenolic content of brown sugars was determined according to the Folin-Ciocalteu method. Phenolic compounds were quantified in the brown sugar extracts by LC-UV-ESI-MS. Brown sugar aqueous solutions exhibited weak free radical scavenging activity in the DPPH assay and higher antioxidant activity in the ABTS assay at relatively high concentration. The brown sugar extracts showed interesting free radical scavenging properties despite the low concentration of phenolic and volatile compounds. Sugar is a common foodstuff traditionally used for its sweetening properties, which might be accompanied by antioxidant properties arising from molecules (polyphenols, Maillard products) other than sucrose of the cane brown sugars.
Yu, Hui; Yang, Gangqiang; Sato, Minoru; Yamaguchi, Toshiyasu; Nakano, Toshiki; Xi, Yinci
2017-10-01
We investigated the potential for exploiting Stevia rebaudiana stem (SRS) waste as a source of edible plant-based antioxidants finding for the first time that the hot water extract of SRS had significantly higher antioxidant activity against fish oil oxidation than that of the leaf, despite SRS extract having lower total phenolic content, DPPH radical scavenging activity and ORAC values. To locate the major antioxidant ingredients, SRS extract was fractionated using liquid chromatography. Five phenolic compounds (primary antioxidant components in activity-containing fractions) were identified by NMR and HR-ESI-MS: vanillic acid 4-O-β-d-glucopyranoside (1), protocatechuic acid (2), caffeic acid (3), chlorogenic acid (4) and cryptochlorogenic acid (5). Further analysis showed that, among compounds 2-5, protocatechuic acid had the highest capacity to inhibit peroxides formation, but exhibited the lowest antioxidant activities in DPPH and ORAC assays. These results indicate that SRS waste can be used as strong natural antioxidant materials in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feuereisen, Michelle M; Gamero Barraza, Mariana; Zimmermann, Benno F; Schieber, Andreas; Schulze-Kaysers, Nadine
2017-01-01
Response surface methodology was employed to investigate the effects of pressurized liquid extraction (PLE) parameters on the recovery of phenolic compounds (anthocyanins, biflavonoids) from Brazilian pepper (Schinus terebinthifolius Raddi) fruits. The effects of temperature, static time, and ethanol as well as acid concentration on the polyphenol yield were described well by quadratic models (p<0.0001). A significant influence of the ethanol concentration (p<0.0001) and several interactions (p<0.05) were identified. Identification of the biflavonoid I3',II8-binaringenin in drupes of S. terebinthifolius was achieved by UHPLC-MS(2). Interestingly, at high extraction temperatures (>75°C), an artifact occurred and was tentatively identified as a diastereomer of I3',II8-binaringenin. Multivariate optimization led to high yields of phenolic compounds from the exocarp/drupes at 100/75°C, 10/10min, 54.5/54.2% ethanol, and 5/0.03% acetic acid. This study demonstrates that PLE is well suited for the extraction of phenolic compounds from S. terebinthifolius and can efficiently be optimized by response surface methodology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tedesco, Marília; Kuhn, Andrielle W; Frescura, Viviane Dal-Souto; Boligon, Aline A; Athayde, Margareth L; Tedesco, Solange B; Silva, Antonio C F DA
2017-01-01
The purpose of this study was to evaluate the antiproliferative and antigenotoxic activity of Sambucus australis Cham. & Schltdl. aqueous extracts on the cell cycle of Allium cepa L. as well as determine the phenolic compounds in such extracts. S. australis inflorescences and leaves of two accessions were used for aqueous extract preparation at concentrations: 0.003 g/ml and 0.012 g/ml. A. cepa bulbs were rooted in distilled water and, subsequently, placed in treatments for 24 hours. Rootlets were collected and fixed in modified Carnoy's solution for 24 hours and kept. The squash technique was performed for slide preparation. Root tips were smashed and stained with 2% acetic orcein, and a total of 4000 cells per treatment were analyzed. The phenolic compounds were determined using high-performance liquid chromatography and data was analyzed using the Scott-Knott test. The results show that S. australis aqueous extracts have antiproliferative potential. Besides, the extracts prepared from S. australis leaves of both accessions at a concentration of 0.012 g/ml have shown antigenotoxic activity. The phytochemical analysis allowed us to determine the presence of flavonoids and phenolic acids, of which kaempferol and chrologenic acid were the most predominant compounds in the extracts from the inflorescences and leaves, respectively.
Cipollini, Don; Stevenson, Randall; Enright, Stephanie; Eyles, Alieta; Bonello, Pierluigi
2008-02-01
Lonicera maackii is an invasive shrub in North America for which allelopathic effects toward other plants or herbivores have been suspected. We characterized the major phenolic metabolites present in methanol extracts of L. maackii leaves. In addition, we examined the effects of methanol-water extracts of L. maackii leaves on seed germination of a target plant species and on feeding preference and growth rate of a generalist insect herbivore. A total of 13 individual major and minor compounds were detected in crude leaf extracts by high-performance liquid chromatography coupled to electronspray ionization-tandem mass spectrometry (ESI-MS/MS). Extracts were dominated by two major flavones, apigenin and luteolin, and their glucoside derivatives, apigenin-7-glucoside and luteolin-7-glucoside. Quantities of these compounds, along with chlorogenic acid, varied between two sampling points. Leaf extracts that contained these compounds were inhibitory to seed germination of Arabidopsis thaliana. In addition, treatment of artificial diet with leaf extracts deterred feeding of the generalist herbivore, Spodoptera exigua, in choice experiments but had no effect on growth rate in short-term no-choice bioassays. Purified apigenin tended to deter feeding by S. exigua and inhibited seed germination of A. thaliana. We conclude that leaves of L. maackii contain phenolic compounds, including apigenin and chlorogenic acid, capable of having biological effects on other plants and insects.
Wheat bran particle size influence on phytochemical extractability and antioxidant properties
USDA-ARS?s Scientific Manuscript database
It is unknown if particle size plays a role in extracting health promoting compounds in wheat bran because the extraction of antioxidant and phenolic compounds with particle size reduction has not been well documented. In this study, unmilled whole bran (coarse treatment) was compared to whole bran ...
Cheaib, Dina; Rajha, Hiba N.; Maroun, Richard G.; Louka, Nicolas
2018-01-01
This work aims to study the impact of solvent mixture (between 0 and 50% ethanol/water mixture) and temperature (between 25°C and 75°C) levels on the solid-liquid extraction of phenolic compounds (quantity and bioactivity) from apricot pomace. Results show that the mean augmentation of 1% ethanol in the range [0–12%] enhances by three times the extraction of polyphenols compared to the same augmentation in the range [0–50%]. Similarly, the mean augmentation of 1°Celcius in the range [0–25°Celcius] enhances by two times the extraction of polyphenols compared to the same augmentation in the range [0–75°Celcius]. Moreover, 1% of ethanol exhibited a greater impact on the phenolic compound extraction than 1°Celsius. The response surface methodology showed that the optimal extraction condition was reached with 50% ethanol/water at 75°C giving a total phenolic content (TPC) of 9.8 mg GAE/g DM, a flavonoids content (FC) of 8.9 mg CE/g DM, a tannin content (TC) of 4.72 mg/L, and an antiradical activity (AA) of 44%. High-performance liquid chromatography (HPLC) analysis showed that polyphenols were influenced by the selectivity of the solvent as well as the properties of each phenolic compound. Apricot pomace extracts could therefore be used as natural bioactive molecules for many industrial applications. PMID:29618957
Using magnetic beads to reduce reanut allergens from peanut extracts.
USDA-ARS?s Scientific Manuscript database
Ferric irons (Fe3+) and phenolic compounds have been shown to bind to peanut allergens. An easy way to isolate peanut allergens is by use of magnetic beads attached with or without phenolics to capture peanut allergens or allergen-Fe3+ complexes, thus, achieving the goal of producing peanut extracts...
Gonzales, Gerard Bryan; Smagghe, Guy; Raes, Katleen; Van Camp, John
2014-04-16
Cauliflower waste contains high amounts phenolic compounds, but conventional solvent extraction misses high amounts of nonextractable phenolics (NEP), which may contribute more to the valorization of these waste streams. In this study, the NEP content and composition of cauliflower waste were investigated. The ability of alkaline hydrolysis, sonication, and their combination to release NEP was assessed. Alkaline hydrolysis with sonication was found to extract the highest NEP content (7.3 ± 0.17 mg gallic acid equivalents (GAE)/g dry waste), which was higher than the extractable fraction. The highest yield was obtained after treatment of 2 M NaOH at 60 °C for 30 min of sonication. Quantification and identification were done using U(H)PLC-DAD and U(H)PLC-ESI-MS(E). Kaempferol and quercetin glucosides along with several phenolic acids were found. The results of the study show that there are higher amounts of valuable health-promoting compounds from cauliflower waste than what is currently described in the literature.
Moschona, Alexandra; Liakopoulou-Kyriakides, Maria
2018-04-23
Grapes (Vitis vinifera) are produced in large amounts worldwide and mostly are used for winemaking. Their untreated wastes are rich in valuable secondary metabolites, such as phenolics. Thus, in this study, white and red wine wastes (Malagouzia and Syrah variety) were investigated for their added value phenolics, which were analysed by high performance liquid chromatography (HPLC) and electrospray ionisation-mass spectrometry (ESI/MS) and subsequently encapsulated in several polymers. Extracts from all wastes gave high amounts of total phenolics (13 ± 2.72-22 ± 2.69 mg g -1 ) and possessed high antioxidant activity (67-97%). In addition to their significant antibacterial activity against gram-negative and gram-positive bacteria, interesting results were also obtained from their anti-inflammatory and antiplatelet activity, in vitro. Encapsulation of the extracts was selective, leaving out most of sugars and other organic compounds when alginate-chitosan was used. Encapsulation efficiency recorded for all extracts ranged from 55% to 79%. Release studies were also performed in several solutions aiming in their commercial use in food and pharmaceutical industries.
Kumari, Disna; Madhujith, Terrence; Chandrasekara, Anoma
2017-05-01
Soluble and bound phenolic compounds were extracted from different varieties of millet types namely, finger millet, foxtail, and proso millet cultivated at dry and intermediate climatic zones in Sri Lanka. The extracts were examined for their total phenolic content (TPC), total flavonoid content (TFC), and proanthocyanidin content (PC). The antioxidant activities were meassured by reducing power (RP), trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferrous ion chelating ability (FICA), and using a β carotene linoleate model system. The ferulic acid content of extracts were determined using high-performance liquid chromatoghraphy (HPLC). Finger millet showed the highest phenolic content and antioxidant activities compared to proso and foxtail millets. The phenolic content as well as antioxidant activites of soluble and bound phenolic extracts of millets were affected by variety and cultivated location. The highest phenolic content and antioxidant activites were reported for millet samples cultivated in areas belonging to the dry zone in Sri Lanka.
Sempervivum davisii: phytochemical composition, antioxidant and lipase-inhibitory activities.
Uzun, Yusuf; Dalar, Abdullah; Konczak, Izabela
2017-12-01
Sempervivum davisii Muirhead (Crassulaceae) is a traditional medicinal herb from Eastern Anatolia. To date the composition of phytochemicals and physiological properties of this herb were not subjected to any research. This study identifies compounds in S. davisii hydrophilic extracts and evaluates their potential biological properties. Ethanol-based lyophilized extracts were obtained from aerial parts of plant (10 g of ground dry plant material in 200 mL of acidified aqueous ethanol, shaken for 2 h at 22 °C with supernatant collected and freeze-dried under vacuum). Phytochemical composition was investigated by liquid chromatography mass spectrometry (LC-MS/MS, phenolics) and gas chromatography mass spectrometry (GC-MS, volatiles). Phenolic compounds were quantified by high-performance liquid chromatography (HPLC) and the Folin-Ciocalteu assay. Subsequently, antioxidant capacity [ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) assays] and enzyme inhibitory properties (isolated porcine pancreatic lipase) of the extracts were determined. Polyphenolic compounds were the main constituents of lyophilized extracts, among which kaempferol glycosides and quercetin hexoside dominated. The extracts exhibited potent antioxidant (FRAP values of 1925.2-5973.3 μM Fe 2+ /g DW; ORAC values of 1858.5-4208.7 μM Trolox Eq./g DW) and moderate lipase inhibitory (IC 50 : 11.6-2.96 mg/mL) activities. Volatile compounds (nonanal, dehydroxylinalool oxide isomers, 2-decenal, 2-undecenal, 2,6-di-tetr-butylphenol) were also found. Phenolic compounds with the dominating kaempferol and quercetin derivatives are the sources of potent antioxidant properties of S. davisii hydrophilic extracts. The extracts exhibit moderate inhibitory properties towards isolated pancreatic lipase.
Chua, Lee Suan; Yap, Ken Choy; Jaganath, Indu Bala
2013-12-01
The total phenolic content and radical scavenging activity of Andrographis paniculata has been investigated to estimate the amount of phenolic compounds and diterpene lactones, respectively in the plant extracts. The stem extracts exhibited higher total phenolic content and scavenging activity than those of the leaf extracts from both young and mature plants. A range of 19.6-47.8 mg extract of A. paniculata from different parts of the plant is equivalent to the scavenging activity exhibited by one mg of standard Trolox. HPLC-ESI-MS/MS was also used to identify simultaneously the phytochemicals from the leaves and stems of both young and mature plant samples. Of the identified compounds, seven of the sixteen diterpene lactones, three of the six flavonoids, five of the six phenolic acids and two cyclic acids are reported here for the first time for this species. Multivariate statistical approaches such as Hierarchiral Component Analysis (HCA) and Principle Component Analysis (PCA) have clustered the plant extracts into the leaf and stem groups, regardless of plant age. Further classification based on the phytochemical profiles revealed that mostly phenolic acids and flavonoids were from the young leaf extracts, and diterpenoids and their glycosides from the mature leaf extracts. However, the phytochemical profiles for the stems of both young and mature plants were not significantly different as presented in the dendrogram of HCA and the score plot of PCA. The marker for mature plants might be the m/z 557 ion (dihydroxyl dimethyl 19-[(beta-D-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide), whereas the m/z 521 ion (propyl neoandrographolide) could be the marker for leaf extracts.
Olennikov, Daniil N.; Kashchenko, Nina I.
2014-01-01
An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6′-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6′′-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase. PMID:24683352
Bioaccessibility in vitro of nutraceuticals from bark of selected Salix species.
Gawlik-Dziki, Urszula; Sugier, Danuta; Dziki, Dariusz; Sugier, Piotr
2014-01-01
The aim of this study was to investigate and to compare the extractability, bioaccessibility, and bioavailability in vitro of antioxidative compounds from bark of selected Salix species: S. alba (SA), S. daphnoides (SD), S. purpurea (SP), and S. daphnoides x purpurea (SDP) hybrid willow clones originating from their natural habitats and cultivated on the sandy soil. The highest amount of phenolic glycosides was found in the bark of SDP and SD. The best source of phenolics was bark of SDP. The highest content of flavonoids were found in SD bark samples, whereas the highest concentration of bioaccessible and bioavailable phenolic acids was determined in SDP bark. Bark of all tested Salix species showed significant antiradical activity. This properties are strongly dependent on extraction system and genetic factors. Regardless of Salix genotypes, the lowest chelating power was found for chemically-extractable compounds. Bark of all Salix species contained ethanol-extractable compounds with reducing ability. Besides this, high bioaccessibility and bioavailability in vitro of Salix bark phytochemicals were found. Obtained results indicate that extracts from bark tested Salix genotypes can provide health promoting benefits to the consumers; however, this problem requires further study.
Bioaccessibility In Vitro of Nutraceuticals from Bark of Selected Salix Species
2014-01-01
The aim of this study was to investigate and to compare the extractability, bioaccessibility, and bioavailability in vitro of antioxidative compounds from bark of selected Salix species: S. alba (SA), S. daphnoides (SD), S. purpurea (SP), and S. daphnoides x purpurea (SDP) hybrid willow clones originating from their natural habitats and cultivated on the sandy soil. The highest amount of phenolic glycosides was found in the bark of SDP and SD. The best source of phenolics was bark of SDP. The highest content of flavonoids were found in SD bark samples, whereas the highest concentration of bioaccessible and bioavailable phenolic acids was determined in SDP bark. Bark of all tested Salix species showed significant antiradical activity. This properties are strongly dependent on extraction system and genetic factors. Regardless of Salix genotypes, the lowest chelating power was found for chemically-extractable compounds. Bark of all Salix species contained ethanol-extractable compounds with reducing ability. Besides this, high bioaccessibility and bioavailability in vitro of Salix bark phytochemicals were found. Obtained results indicate that extracts from bark tested Salix genotypes can provide health promoting benefits to the consumers; however, this problem requires further study. PMID:24696660
Antibacterial Constituents of Hainan Morinda citrifolia (Noni) Leaves.
Zhang, Wei-Min; Wang, Wei; Zhang, Jing-Jing; Wang, Zhi-Rong; Wang, Yu; Hao, Wang-Jun; Huang, Wu-Yang
2016-05-01
Noni (Morinda citrifolia L.) is an edible and medicinal plant distributed in Hainan, China. The antibacterial activities of the extracts of water (WE), petroleum ether (PEE), ethyl acetate (EAE), chloroform (CE), and n-butanol (BE) were assayed by the disk diffusion method. The results showed that the extracts from Noni leaves possessed antibacterial effects against Bacillus subtilis, Escherichia coli, Proteus vulgaris, and Staphylococcus aureus. Among 5 different extracts, the BE produced the best antibacterial activity. The samples were first extracted by ethanol, and the primary compounds in the BE fraction of ethanol extract was further isolated and identified. Six phenolic compounds, including 5, 15-dimethylmorindol, ferulic acid, p-hydroxycinamic acid, methyl 4-hydroxybenzoate, methyl ferulate, and methyl 4-hydroxycinnamate, were identifiedby NMR. The results indicated that the phenolic compounds might significantly contribute to antibacterial activities of Noni leaves. © 2016 Institute of Food Technologists®
[Phenolic compounds in leaves insertions of Mentha × villosa Huds. cv. Snežná].
Tekeľová, Daniela; Bittner Fialová, Silvia; Tóth, Jaroslav; Czigle, Szilvia
Lamiaceae plants mostly accumulate active ingredients in their leaves. The subfamily Nepetoideae, including the genus Mentha L., is characterized by the presence of essential oil and antioxidant phenolics, chiefly hydroxycinnamic acids with predominance of rosmarinic acid, and flavonoids. Mentha × piperita and M. spicata are the most broadly used mints in both medicine and industry, while M. x villosa is less known in our country. Herbal drugs in the form of leaves are usually analysed unpartitioned, while single leaves insertions have only been studied occasionally. Therefore, the aim of this work was the quantification of the active compounds content in the leaves pairs of Mentha × villosa Huds. cv. Snežná, using pharmacopoeial methods: total hydroxycinnamic derivatives expressed as rosmarinic acid (THD) and luteolin-type flavonoids. THD content ranged from 6.7% to 9.4% in the leaves pairs water extracts, and from 6.6% to 14.0% in methanol extracts. Flavonoids contents, expressed as luteolin-7-O-glucoside, ranged from 4.0% to 8.8% in water extracts, and from 4.0% to 10.5% in methanol extracts. Antioxidant activity (DPPH) expressed as SC50 ranged from 10.2 to 16.9 μg.ml-1 (drug dry weight) in water extracts, and from 10.7 to 21.6 μg.ml-1 in methanol extracts. The highest content of phenolic compounds as well as the highest antioxidant activity were found to be in the top sheet, while the lowest content of phenolic compounds and lowest antioxidant activity were detected in the leaves of the middle stem part.Key words: Mentha × villosa Huds cv. Snežná hydroxycinnamic derivatives rosmarinic acid luteolin-7-O-glucoside DPPH.
Valdés, Arantzazu; Vidal, Lorena; Beltrán, Ana; Canals, Antonio; Garrigós, María Carmen
2015-06-10
A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box-Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.
You, Qi; Chen, Feng; Wang, Xi; Sharp, Julia L; You, Yuru
2012-10-01
Phenolic compounds and anthocyanins in muscadines have attracted much attention due to their diverse biological activities. With bioassays of antioxidant activities in terms of total phenolic content (TPC), total anthocyanin content (TAC), total procyanidin content (TPA), oxygen radical absorbance capacity (ORAC), and ferric reducing antioxidant power (FRAP) of different parts of the Noble muscadine, the butanol (BuOH) extract of the muscadine skin showed the highest TPC (317.91 ± 1.83 mg GAE/100 g FW), which might be ascribed to its high TAC of 227.06 ± 1.29 mg/100 g fresh weight (FW). The ethyl acetate (EtOAc) extract of the muscadine seed contained the highest TPA (55.30 ± 0.63 mg CE/100 g FW). Correlation analyses demonstrated a significant linear relationship of TPC and TAC compared to their ORAC and FRAP values within the range of R(2) from 0.9283 to 0.9936, which suggested that phenolics and anthocyanins in the extracts contributed significantly to their antioxidant potential. Nineteen individual phenolics and 5 anthocyanins were identified by HPLC-MS, which indicated different chemical profiles of anthocyanins and other phenolics in the muscadine extracts. The paper has provided rich information of bioactive phytochemical profiles in different solvent extracts and their correlation with the antioxidant activity in the muscadine that is a very special regional fruit in U.S. Its high content of phenolic compounds demonstrates that muscadine could be beneficial to human health. © 2012 Institute of Food Technologists®
ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS.
Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad
2016-01-01
Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp . and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants' Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Eucalyptus spp . and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp . leaf extract. Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp . and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography, ELISA: Enzyme Linked Immune Sorbent Assay, EDTA: Ethylene Diamine Tetra Acetic acid, PBS: phosphate buffered saline, RPMI: Roswell Park Memorial Institute medium FBS: Fetal Bovine Serum.
ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS
Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad
2016-01-01
Background: Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp. and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Materials and Methods: Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants’ Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Results: Eucalyptus spp. and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp. leaf extract. Conclusion: Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp. and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography, ELISA: Enzyme Linked Immune Sorbent Assay, EDTA: Ethylene Diamine Tetra Acetic acid, PBS: phosphate buffered saline, RPMI: Roswell Park Memorial Institute medium FBS: Fetal Bovine Serum. PMID:28487887
Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS.
Duckstein, Sarina M; Stintzing, Florian C
2011-08-01
Aqueous and acetone/water extracts from Hamamelis virginiana leaves were investigated to obtain a thorough insight into their phenolic composition. To secure compound integrity, a gentle extraction method including the exclusion of light was used. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses yielded a fingerprint including 27 phenolic constituents. Quantification of the key compounds on an equivalent basis by high-performance liquid chromatography diode-array detection (HPLC-DAD) showed that gallotannins consisting of six to 11 galloyl units constitute the main fraction, whereas procyanidins and catechin represented only a minor part. Closer inspection revealed that both extracts possess virtually the same galloyl hexose distribution, and the octagalloyl hexose represents the major tannin constituent. Additionally, eight flavonol glycosides and their corresponding aglycones quercetin and kaempferol, as well as three chlorogenic acid isomers and other hydroxycinnamic acids, were identified. Moreover, stability studies on the aqueous extract (5 °C, dark; room temperature, dark; room temperature, light) revealed that the phenolic profile underwent changes when exposed to light. Especially the gallotannins proved to be considerably unstable which may result in phytochemically altered Hamamelis leaf extracts upon transport and storage.
Hossain, Mohammad Amzad; AL-Raqmi, Khulood Ahmed Salim; AL-Mijizy, Zawan Hamood; Weli, Afaf Mohammed; Al-Riyami, Qasim
2013-09-01
To prepare various crude extracts using different polarities of solvent and to quantitatively evaluate their total phenol, flavonoids contents and phytochemical screening of Thymus vulgaris collected from Al Jabal Al Akhdar, Nizwa, Sultanate of Oman. The leave sample was extracted with methanol and evaporated. Then it was defatted with water and extracted with different polarities organic solvents with increasing polarities. The prepare hexane, chloroform, ethyl acetate, butanol and methanol crude extracts were used for their evaluation of total phenol, flavonoids contents and phytochemical screening study. The established conventional methods were used for quantitative determination of total phenol, flavonoids contents and phytochemical screening. Phytochemical screening for various crude extracts were tested and shown positive result for flavonoids, saponins and steroids compounds. The result for total phenol content was the highest in butanol and the lowest in methanol crude extract whereas the total flavonoids contents was the highest in methanol and the lowest hexane crude extract. The crude extracts from locally grown Thymus vulgaris showed high concentration of flavonoids and it could be used as antibiotics for different curable and uncurable diseases.
The role of gamma irradiation on the extraction of phenolic compounds in onion (Allium cepa L.)
NASA Astrophysics Data System (ADS)
Yang, Eun In; Lee, Eun Mi; Kim, Young Soo; Chung, Byung Yeoup
2012-08-01
The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4'-glucoside (Q4'G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4'G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1-256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.
Alam, Nuhu; Yoon, Ki Nam; Lee, Kyung Rim; Kim, Hye Young; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Shim, Mi Ja; Lee, Min Woong
2011-01-01
Cellular damage caused by reactive oxygen species has been implicated in several diseases, thus establishing a significant role for antioxidants in maintaining human health. Acetone, methanol, and hot water extracts of Pleurotus citrinopileatus were evaluated for their antioxidant activities against β-carotene-linoleic acid and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power, ferrous ion-chelating abilities, and xanthine oxidase inhibitory activities. In addition, the tyrosinase inhibitory effects and phenolic compound contents of the extracts were also analyzed. Methanol and acetone extracts of P. citrinopileatus showed stronger inhibition of β-carotene-linoleic acid compared to the hot water extract. Methanol extract (8 mg/mL) showed a significantly high reducing power of 2.92 compared to the other extracts. The hot water extract was more effective than the acetone and methanole extracts for scavenging DPPH radicals. The strongest chelating effect (92.72%) was obtained with 1.0 mg/mL of acetone extract. High performance liquid chromatography analysis detected eight phenolic compounds, including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, naringenin, hesperetin, formononetin, and biochanin-A, in an acetonitrile and hydrochloric acid (5 : 1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of the acetone, methanol, and hot water extracts increased with increasing concentration. This study suggests that fruiting bodies of P. citrinopileatus can potentially be used as a readily accessible source of natural antioxidants. PMID:22783067
Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins
Altemimi, Ammar; Watson, Dennis G.; Choudhary, Ruplal; Dasari, Mallika R.; Lightfoot, David A.
2016-01-01
The ultrasound-assisted extraction (UAE) method was used to optimize the extraction of phenolic compounds from pumpkins and peaches. The response surface methodology (RSM) was used to study the effects of three independent variables each with three treatments. They included extraction temperatures (30, 40 and 50°C), ultrasonic power levels (30, 50 and 70%) and extraction times (10, 20 and 30 min). The optimal conditions for extractions of total phenolics from pumpkins were inferred to be a temperature of 41.45°C, a power of 44.60% and a time of 25.67 min. However, an extraction temperature of 40.99°C, power of 56.01% and time of 25.71 min was optimal for recovery of free radical scavenging activity (measured by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction). The optimal conditions for peach extracts were an extraction temperature of 41.53°C, power of 43.99% and time of 27.86 min for total phenolics. However, an extraction temperature of 41.60°C, power of 44.88% and time of 27.49 min was optimal for free radical scavenging activity (judged by from DPPH reduction). Further, the UAE processes were significantly better than solvent extractions without ultrasound. By electron microscopy it was concluded that ultrasonic processing caused damage in cells for all treated samples (pumpkin, peach). However, the FTIR spectra did not show any significant changes in chemical structures caused by either ultrasonic processing or solvent extraction. PMID:26885655
2012-01-01
Background and the purpose of the study The early stage of diabetes mellitus type 2 is associated with postprandial hyperglycemia. Hyperglycemia is believed to increase the production of free radicals and reactive oxygen species, leading to oxidative tissue damage. In an effort of identifying herbal drugs which may become useful in the prevention or mitigation of diabetes, biochemical activities of Polygonum hyrcanicum and its constituents were studied. Methods Hexane, ethylacetate and methanol extracts of P. hyrcanicum were tested for α-glucosidase inhibitory, antioxidant and radical scavenging properties. Active constituents were isolated and identified from the methanolic extract in an activity guided approach. Results A methanolic extract from flowering aerial parts of the plant showed notable α-glucosidase inhibitory activity (IC50 = 15 μg/ml). Thirteen phenolic compounds involving a cinnamoylphenethyl amide, two flavans, and ten flavonols and flavonol 3-O-glycosides were subsequently isolated from the extract. All constituents showed inhibitory activities while compounds 3, 8 and 11 (IC50 = 0.3, 1.0, and 0.6 μM, respectively) were the most potent ones. The methanol extract also showed antioxidant activities in DPPH (IC50 = 76 μg/ml) and FRAP assays (1.4 mmol ferrous ion equivalent/g extract). A total phenol content of 130 mg/g of the extract was determined by Folin-Ciocalteu reagent. Conclusion This study shows that P. hyrcanicum contains phenolic compounds with in vitro activity that can be useful in the context of preventing or mitigating cellular damages linked to diabetic conditions. PMID:23351720
Zou, Deng-lang; Chen, Tao; Li, Hong-mei; Chen, Chen; Zhao, Jing-yang; Li, Yu-lin
2016-04-01
This study presents an efficient strategy for separation of three phenolic compounds with high molecular weight from the crude extract of Terminalia chebula Retz. by ultrasound-assisted extraction and high-speed counter-current chromatography. The ultrasound-assisted extraction conditions were optimized by response surface methodology and the results showed the target compounds could be well enriched under the optimized extraction conditions. Then the crude extract was directly separated by high-speed counter-current chromatography without any pretreatment using n-hexane/ethyl acetate/methanol/water (1:7:0.5:3, v/v/v/v) as the solvent system. In 180 min, 13 mg of A, 18 mg of B, and 9 mg of C were obtained from 200 mg of crude sample. Their structures were identified as Chebulagic acid (A, 954 Da), Chebulinic acid (B, 956 Da), and Ellagic acid (C) by (1) H NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Setzer, William N
2011-08-01
Lignin-derived phenolic compounds can be extracted from oak barrels during the aging of red wine, and it is hypothesized that these compounds may contribute to the health benefits of red wine by their antioxidant, radical-scavenging, or chemopreventive activities. Density functional calculations (B3LYP/6-311++G) support the radical-scavenging abilities of the oak phenolics. Sinapaldehyde, syringaldehyde, syringol, and syringylacetone all have bond dissociation energies that are lower than resveratrol and comparable to the flavonoid catechin. Molecular docking studies of the oak phenolics with known resveratrol protein targets also show that these compounds dock favorably to the protein targets. Thus, lignin-derived oak phenolics, although found in small concentrations, may contribute to the beneficial antioxidant, chemopreventive, and cardioprotective effects of red wine.
Melguizo-Rodríguez, Lucía; Ramos-Torrecillas, Javier; Manzano-Moreno, Francisco Javier; Illescas-Montes, Rebeca; Rivas, Ana; Ruiz, Concepción; De Luna-Bertos, Elvira; García-Martínez, Olga
2018-01-01
The reported incidence of osteoporosis is lower in countries in which the Mediterranean diet predominates, and this apparent relationship may be mediated by the phenolic compounds present in olive oil. The objective of this study was to determine the effect of phenolic extracts from different varieties of extra-virgin olive oil (Picual, Arbequina, Picudo, and Hojiblanca) on the differentiation, antigenic expression, and phagocytic capacity of osteoblast-like MG-63 cells. At 24 h of treatment a significant increase in phosphatase alkaline activity and significant reductions in CD54, CD80, and HLA-DR expression and in phagocytic activity were observed in comparison to untreated controls. The in vitro study performed has demonstrated that phenolic compounds from different extra virgin olive oil varieties can modulate different parameters related to osteoblast differentiation and function.
Isolation and identification of phenolic antioxidants in black rice bran.
Jun, Hyun-Il; Shin, Jae-Wook; Song, Geun-Seoup; Kim, Young-Soo
2015-02-01
Black rice bran contains phenolic compounds of a high antioxidant activity. In this study, the 40% acetone extract of black rice bran was sequentially fractionated to obtain 5 fractions. Out of the 5 fractions, ethyl acetate fraction was subfractionated using the Sephadex LH-20 chromatography. The antioxidant activity of phenolic compounds in the extracts was investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulfonic acid) (ABTS) radical cation assay, reducing power. The subfraction 2 from ethyl acetate fraction had the highest total phenolic contents (TPC) (816.0 μg/mg) and the lowest EC50 values (47.8 μg/mL for DPPH radical assay, 112.8 μg/mL for ABTS radical cation assay, and 49.2 μg/mL for reducing power). These results were 3.1, 1.3, and 2.6 times lower than those of butylated hydroxytoluene (BHT), respectively. At a concentration of 100 μg/mL, the antioxidant activity and TPC of various extracts was closely correlated, with correlation coefficients (R(2) ) higher than 0.86. The major phenolic acid in subfraction 2 was identified as ferulic acid (178.3 μg/mg) by HPLC and LC-ESI/MS/MS analyses. Our finding identified ferulic acid as a major phenolic compound in black rice bran, and supports the potential use of black rice bran as a natural source of antioxidant. © 2015 Institute of Food Technologists®
Abu, Farahziela; Mohd Akhir, Sobri
2017-01-01
Antioxidant properties of crude extract, partition extract, and fermented medium from Dendrobium sabin (DS) flower were investigated. The oven-dried DS flower was extracted using 100% methanol (w/v), 100% ethanol (w/v), and 100% water (w/v). The 100% methanolic crude extract showed the highest total phenolic content (40.33 ± mg GAE/g extract) and the best antioxidant properties as shown by DPPH, ABTS, and FRAP assays. A correlation relationship between antioxidant activity and total phenolic content showed that phenolic compounds were the dominant antioxidant components in this flower extract. The microbial fermentation on DS flower medium showed a potential in increasing the phenolic content and DPPH scavenging activity. The TPC of final fermented medium showed approximately 18% increment, while the DPPH of fermented medium increased significantly to approximately 80% at the end of the fermentation. Dendrobium sabin (DS) flower showed very good potential properties of antioxidant in crude extract and partition extract as well as better antioxidant activity in the flower fermented medium. PMID:28761496
de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Biasoto, Aline Camarão Telles; Shahidi, Fereidoon
2016-12-01
Phenolics in food and agricultural processing by-products exist in the soluble and insoluble-bound forms. The ability of selected enzymes in improving the extraction of insoluble-bound phenolics from the starting material (experiment I) or the residues containing insoluble-bound phenolics (experiment II) were evaluated. Pronase and Viscozyme improved the extraction of insoluble-bound phenolics as evaluated by total phenolic content, antioxidant potential as determined by ABTS and DPPH assays, and hydroxyl radical scavenging capacity, reducing power as well as evaluation of inhibition of alpha-glucosidase and lipase activities. Viscozyme released higher amounts of gallic acid, catechin, and prodelphinidin dimer A compared to Pronase treatment. Furthermore, p-coumaric and caffeic acids, as well as procyanidin dimer B, were extracted with Viscozyme but not with Pronase treatment. Solubility plays an important role in the bioavailability of phenolic compounds, hence this study may assist in better exploitation of phenolics from winemaking by-products as functional food ingredients and/or supplements. Copyright © 2016. Published by Elsevier Ltd.
Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder
2016-05-23
In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon
2011-01-12
The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.
Thi, Nhuan Do; Hwang, Eun-Sun
2014-09-01
The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols.
Thi, Nhuan Do; Hwang, Eun-Sun
2014-01-01
The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718
Tamokou, Jean de Dieu; Simo Mpetga, Deke James; Keilah Lunga, Paul; Tene, Mathieu; Tane, Pierre; Kuiate, Jules Roger
2012-07-18
Albizia adianthifolia is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds isolated from the stem bark of this plant. The plant extract was prepared by maceration in ethyl acetate. Its fractionation was done by column chromatography and the structures of isolated compounds were elucidated using spectroscopic data in conjunction with literature data. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and trolox equivalent antioxidant capacity (TEAC) assays were used to detect the antioxidant activity. Broth micro-dilution method was used for antimicrobial test. Total phenol content was determined spectrophotometrically in the extracts by using Folin-Ciocalteu method. The fractionation of the extract afforded two known compounds: lupeol (1) and aurantiamide acetate (2) together with two mixtures of fatty acids: oleic acid and n-hexadecanoic acid (B₁); n-hexadecanoic acid, octadecanoic acid and docosanoic acid (B₂). Aurantiamide acetate was the most active compound. The total phenol concentration expressed as gallic acid equivalents (GAE) was found to vary from 1.50 to 13.49 μg/ml in the extracts. The antioxidant activities were well correlated with the total phenol content (R² = 0.946 for the TEAC method and R² = 0.980 for the DPPH free-radical scavenging assay). Our results clearly reveal that the ethyl acetate extract from the stem bark of A. adianthifolia possesses antioxidant and antimicrobial principles. The antioxidant activity of this extract as well as that of compound 2 are being reported herein for the first time. These results provide promising baseline information for the potential use of this plant as well as compound 2 in the treatment of oxidative damage and infections associated with the studied microorganisms.
Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review
Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen
2014-01-01
This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275
D’Sousa’ Costa, Cinara Oliveira; Ribeiro, Paulo Roberto; Loureiro, Marta Bruno; Simões, Rafael Conceição; de Castro, Renato Delmondez; Fernandez, Luzimar Gonzaga
2015-01-01
Background: Schinus terebinthifolius is widely used in traditional medicine by Brazilian quilombola and indigenous communities for treatment of several diseases. Extracts from different tissues are being used to produce creams to treat cervicitis and cervicovaginitis. However, most studies are limited to the assessment of the essential oils and extracts obtained from the leaves. Objective: The aim was to evaluate antioxidant and antibacterial activities, to assess the phytochemical profile and to quantify total phenolic compounds of various extracts prepared from S. terebinthifolius grown in the coast of Bahia, Brazil. Materials and Methods: Extracts were obtained by hot continuous extraction (soxhlet) and by maceration. Quantification of phenolic compounds was performed using the Folin-Ciocalteu method and antioxidant properties were assessed by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Phytochemical screening was performed as described by in the literature and antibacterial activity against Enterococcus faecalis (ATCC 29212) was determined by the microdilution broth assay. Results: Extraction method greatly affected the metabolite profile of the extracts. Antioxidant activity varied between 21.92% and 85.76%, while total phenols ranged between 5.44 and 309.03 mg EAG/g of extract. Leaf extract obtained with soxhlet showed minimum inhibitory concentration (MIC) of 15.62 μg/mL, while stem extract obtained by maceration was able to inhibit the growth of E. faecalis at 62.5 μg/mL. Stem bark extracts showed a MIC of 500 μg/mL for both extraction methods, while no inhibition was observed for fruit extracts. Conclusion: In general, total phenolic content, antioxidant and antibacterial activities were higher in samples obtained by soxhlet. Our results provide important clues in order to identify alternative sources of bioactive compounds that can be used to develop new drugs. PMID:26246739
2012-01-01
Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm. PMID:22540963
Antioxidant Activity of Mulberry Fruit Extracts
Arfan, Muhammad; Khan, Rasool; Rybarczyk, Anna; Amarowicz, Ryszard
2012-01-01
Phenolic compounds were extracted from the fruits of Morus nigra and Morus alba using methanol and acetone. The sugar-free extracts (SFEs) were prepared using Amberlite XAD-16 column chromatography. All of the SFEs exhibited antioxidant potential as determined by ABTS (0.75–1.25 mmol Trolox/g), DPPH (2,2-diphenyl-1-picrylhydrazyl) (EC50 from 48 μg/mL to 79 μg/mL), and reducing power assays. However, a stronger activity was noted for the SFEs obtained from Morus nigra fruits. These extracts also possessed the highest contents of total phenolics: 164 mg/g (methanolic SFE) and 173 mg/g (acetonic SFE). The presence of phenolic acids and flavonoids in the extracts was confirmed using HPLC method and chlorogenic acid and rutin were found as the dominant phenolic constituents in the SFEs. PMID:22408465
Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W
2015-01-01
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies.
Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W.
2015-01-01
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies. PMID:26465595
This SOP describes the procedures for homogenizing, extracting and concentrating solid food samples for persistent organic pollutants such as organochlorine compounds, organophosphate compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, substituted phenols, and...
This SOP describes the procedures for homogenizing, extracting, and concentrating liquid food samples for neutral persistent organic pollutants such as organochlorine compounds, organophosphate compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and phenols.
Kumar, Satyanshu; Singh, Raghuraj; Gajbhiye, Narendra; Dhanani, Tushar
2018-06-26
Background : Both the roots and leaves of Withania somnifera are products of commerce. They contain active compounds of therapeutic value and mostly different withanolides. Several pharmacological activities of W. somnifera have links to one or more withanolides. The presence of phenolic compounds in extracts could play a vital role in the reduction of blood glucose levels in diabetic subjects. Objective : The present study was carried out for the selection of a solvent to prepare extracts rich in phenolics, withaferin A (WA), 12-deoxywithastromonolide (12WD), and withanolide A (WDA). A simple, rapid HPLC method was also developed for the identification and quantification of WA, 12WD, and WDA. Methods : The extraction efficiency of aqueous alcoholic solvents including hexane, chloroform, ethyl acetate, and methanol were compared for three selected withanolides and total phenolic content. The contents of WA, 12WD, and WDA and total phenolics were determined in the extracts. The quality of nine formulations containing W. sominfera were also compared in terms of the content of WA, 12WD, and WDA and total phenolics. Results : The maximum extract yield and the total withanolide and phenolic content were obtained from aqueous alcoholic compositions at 50:50 (v/v), 70:30 (v/v), and 100:0 (v/v), respectively. In the case of organic solvents, chloroform and ethyl acetate yielded the highest concentrations of phenolics and three withanolides, respectively. The total phenolic content in formulations was in the range of 1.84-3.13%, and total withanolide content showed wide variability. Conclusions : The outcome of the present investigation could be utilized for the selection of extraction solvents to prepare W. somnifera -enriched extracts and their quality monitoring by using the developed and validated HPLC-Photodiode array detection method. Highlights : A process for preparation of phenolics and withanolides (withaferin A, 12-deoxywithastramonolide and withanolide A) enriched extracts of Withania somnifera . Simple and rapid HPLC method was also developed and validated as per the ICH guidelines for identification and quantification of three major withanolides. The developed HPLC method was applied to analyze the quality of extracts and marketed herbal products (mono, as well as poly constituents). Optimized extraction process could be utilized for upscaling process development in preparation of enriched extracts from Withania somnifera , crop improvement, bio-prospection studies and quality control.
Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV
Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M.
2014-01-01
Chamomile (Matricaria chamomilla L.) is a widely used medicinal plant possessing several pharmacological effects due to presence of active compounds. This study describes a method of using ultra performance liquid chromatography (UPLC) coupled with photodiode array (PDA) detector for the separation of phenolic compounds in M. chamomilla and its crude extracts. Separation was conducted on C18 column (150 mm × 2 mm, 1.8 μm) using a gradient elution with a mobile phase consisting of acetonitrile and 4% aqueous acetic acid at 25°C. The method proposed was validated for determination of free and total apigenin and apigenin 7-glucoside contents as bioactive compounds in the extracts by testing sensitivity, linearity, precision and recovery. In general, UPLC produced significant improvements in method sensitivity, speed and resolution. Extraction was performed with methanol, 70% aqueous ethanol and water solvents. Total phenolic and total flavonoid contents ranged from 1.77 to 50.75 gram (g) of gallic acid equivalent (GAE)/100 g and 0.82 to 36.75 g quercetin equivalent (QE)/100 g in dry material, respectively. There was a considerable difference from 40 to 740 mg/100 g for apigenin and 210 to 1110 mg/100 g for apigenin 7-glucoside in dry material. PMID:25598797
Stefanović, Olgica D; Tešić, Jelena D; Čomić, Ljiljana R
2015-09-01
Melilotus albus Medic. and Dorycnium herbaceum Vill. (Fabaceae) acetone, ethyl acetate, and ethanol extracts were investigated for their in vitro antimicrobial, antibiofilm, and antioxidant activity with quantification of phenolic compound contents. In general, D. herbaceum extracts showed better antibacterial and antioxidant activity than M. albus extracts. Bacteria Bacillus subtilis, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa, and Proteus mirabilis were the most susceptible with the minimum inhibitory concentrations (MICs), determined by microdilution method, between 1.25-10 mg/mL. Antifungal activity was lower with the detectable MICs at 10 mg/mL and 20 mg/mL. The plant extracts, using the crystal violet assay, inhibit P. aeruginosa biofilm formation in concentration range from 5 mg/mL to 20 mg/mL whereas the effect on mature bacterial biofilm was lower. The antioxidant activity was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging and reducing power model systems. The intensity of DPPH radicals scavenging activity, expressed as half maximal effective concentration (EC 50 ) values, was from 84.33 μg/mL to >1000 μg/mL. The extracts demonstrated reduced power in a concentration-dependent manner, with ethanol extract as the most active. The total phenols, flavonoids, and proanthocyanidins were determined spectrophotometrically while total extractable tannins were obtained by precipitation method. The phenolic compounds showed differences in their total contents depending on solvents polarities and plant species. Although the plants M. albus and D. herbaceum have not yet been fully explored, these results contribute better understanding of their biotic properties and potential application as antimicrobial and antioxidant agents. Copyright © 2015. Published by Elsevier B.V.
Wong, Yu Hua; Lau, Hwee Wen; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin
2014-01-01
The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry.
Lau, Hwee Wen; Nyam, Kar Lin
2014-01-01
The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β-carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry. PMID:24592184
Afifi, Hanan S; Hashim, Isameldin B; Altubji, Sabreen I
2017-12-01
The objective of this study was to optimize the extraction conditions of crude fiber, phenolic compounds, flavonoids, and antioxidant activity from date seeds powder, using Response Surface Methodology. A central composite design with four independent variables; concentration of ethanol (X 1 = 25, 50 and 75% v/v), solvent: sample ratio (X 2 = 40:1, 50:1 and 60:1 v/w), temperature (X 3 = 45, 55 and 65 °C), and extraction time (X 4 = 1, 2 and 3 h) and a three level face centered cube design were used. A total of twenty nine experimental runs with five replicates at the central point were used to study the response variables using two extraction cycles. Maximum phenolic compound content (71.6 mg GAE/100 g) was extracted using 50% ethanol solution with 40:1 solvent: sample ratio for 1 h at 55 °C. While the maximum antioxidant activity (55.02 µmol Fe(II)/g) was obtained using similar ethanol concentration and solvent: sample ratio except at lower temperature (45 °C) for 2 h. On other hand, the maximum flavonoids content (455.77 mg CEQ/100 g) was reached by using 50% concentration, 50:1 solvent: sample ratio at 65 °C for 3 h. In contrast, the content of fiber was not affected by the different extraction conditions. Results indicate that using combination of extracted conditions, have a great potential for extracting all depending compounds except crude fiber.
Oh, Sumi; Kim, Mi-Ja; Park, Kye Won; Lee, Jae Hwan
2015-11-01
Antioxidant properties of the aqueous extracts of hulled barley (Hordeum vulgare L.) that had been roasted at 210 °C for 20 min were determined in bulk oil and oil-in-water (O/W) emulsions. Bulk oils were heated at 60, 100, and 180 °C, and O/W emulsions were oxidized under riboflavin photosensitization. The content of phenolic compounds was analyzed by high-performance liquid chromatography, and in vitro antioxidant assays were also conducted. The major phenolics contained in the aqueous extract of roasted hulled barley (AERB) were p-coumaric, ferulic, protocatechuic, chlorogenic, 4-hydroxybenzoic, and vanillic acids. Depending on the concentration and oxidation temperature, AERB had antioxidant or prooxidant properties in bulk oil. At 60 °C, AERB at a concentration of 0.5% acted as a prooxidant, whereas at 1.0% it acted as an antioxidant. At 100 °C, AERB acted as an antioxidant irrespective of concentration. In 180 °C conditions, 0.5% AERB acted as a prooxidant, whereas other concentrations of AERB acted as antioxidants. In the case of riboflavin photosensitized O/W emulsions, AERB showed antioxidant properties irrespective of concentration. Antioxidant abilities of AERB are affected by the food matrix, including bulk oil and O/W emulsions, and concentrations of AERB, even though diverse phenolic compounds may display high antioxidant properties in in vitro assays. Roasted barley has been widely used as a tea ingredient in East Asian countries such as Korea, China, and Japan. The highly antioxidative properties of the aqueous extracts of roasted barley have been confirmed in bulk oil and O/W emulsions as well as in vitro assays because of the presence of phenolic compounds. The results of this study can contribute to the development of antioxidant-rich beverages using roasted barley by aiding in the selection of proper food matrix-containing extracts of high phenolic compounds, as well as by expanding consumers’ choices for healthy beverages. © 2015 Institute of Food Technologists®
Neto, José Joaquim Lopes; de Almeida, Thiago Silva; de Medeiros, Jackeline Lima; Vieira, Leonardo Rogério; Moreira, Thaís Borges; Maia, Ana Isabel Vitorino; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Farias, Davi Felipe; Carvalho, Ana Fontenele Urano
2017-04-01
The most studied bioactive potential of phenolic compounds corresponds to antioxidant activity, which in turn, is associated with a reduction in the incidence of various human diseases. However, the total quantity of these bioactive substances in foods and medicinal preparations does not reflect the amount absorbed and metabolized by the body. The present study aimed to investigate the bioaccessibility of Triplaris gardneriana seeds ethanolic extract (EETg) by determination of phenolic composition and antioxidant activities before and after in vitro digestion as well as to estimate its bioavailability by chemical analysis of plasma and urine in animal models after oral administration. The bioaccessibility indexes of phenolic compounds in EETg were 48.65 and 69.28% in the presence and absence of enzymes, respectively. Among the identified phenolics classes, flavonoids, represented by galloylated procyanidins type B, proved to be more bioaccessible, 81.48 and 96.29% in the post-intestinal phase with and without enzymes, respectively. The oral administration in Wistar rats resulted in a significant decrease in plasma of the total antioxidant capacity, TAC, by FRAP assay 4h after beginning the experiment. For urine samples, an increase in TAC by DPPH and FRAP was observed from 1 and 4h after administration, respectively. UPLC-QTOF analysis of urine detected 2 metabolites originated from the degradation of phenolic compounds, i.e. hippuric acid and phenylacetil glycine. These results suggest that phenolic compounds in T. gardneriana are unstable under gastrointestinal conditions, being flavonoids the components with higher bioaccessibility; besides that, they showed limited bioavailability due to their rapid biotransformation and urinary elimination. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lantto, Tiina A.; Laakso, Into; Dorman, H. J. Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso
2016-01-01
Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds. PMID:27420050
Microdialysis as a New Technique for Extracting Phenolic Compounds from Extra Virgin Olive Oil.
Bazzu, Gianfranco; Molinu, Maria Giovanna; Dore, Antonio; Serra, Pier Andrea
2017-03-01
The amount and composition of the phenolic components play a major role in determining the quality of olive oil. The traditional liquid-liquid extraction (LLE) method requires a time-consuming sample preparation to obtain the "phenolic profile" of extra virgin olive oil (EVOO). This study aimed to develop a microdialysis extraction (MDE) as an alternative to the LLE method to evaluate the phenolic components of EVOO. To this purpose, a microdialysis device and dialysis procedure were developed. "Dynamic-oil" microdialysis was performed using an extracting solution (80:20 methanol/water) flow rate of 2 μL min -1 and a constant EVOO stream of 4 μL min -1 . The results indicated a strong positive correlation between MDE and the LLE method, providing a very similar phenolic profile obtained with traditional LLE. In conclusion, the MDE approach, easier and quicker in comparison to LLE, provided a reliable procedure to determine the phenolic components used as a marker of the quality and traceability of EVOO.
Yazdani, Darab; Mior Ahmad, Zainal Abidin; Yee How, Tan; Jaganath, Indu Bala; Shahnazi, Sahar
2013-12-01
Food contamination by aflatoxins is an important food safety concern for agricultural products. In order to identify and develop novel antifungal agents, several plant extracts and isolated compounds have been evaluated for their bioactivities. Anti-infectious activity of Piper betle used in traditional medicine of Malaysia has been reported previously. Crude methanol extract from P. betel powdered leaves was partitioned between chloroform and water. The fractions were tested against A. flavus UPMC 89, a strong aflatoxin producing strain. Inhibition of mycelial growth and aflatoxin biosynthesis were tested by disk diffusion and macrodillution techniques, respectively. The presence of aflatoxin was determined by thin-layer chromatography (TLC) and fluorescence spectroscopy techniques using AFB1 standard. The chloroform soluble compounds were identified using HPLC-Tandem mass spectrometry technique. The results, evaluated by measuring the mycelial growth and quantification of aflatoxin B1(AFLB1) production in broth medium revealed that chloroform soluble compounds extract from P. betle dried leaves was able to block the aflatoxin biosynthesis pathway at concentration of 500μg/ml without a significant effect on mycelium growth. In analyzing of this effective fractions using HPLC-MS(2) with ESI ionization technique, 11 phenolic compounds were identified. The results showed that the certain phenolic compounds are able to decline the aflatoxin production in A. flavus with no significant effect on the fungus mycelia growth. The result also suggested P. betle could be used as potential antitoxin product.
Angelis, Apostolis; Hamzaoui, Mahmoud; Aligiannis, Nektarios; Nikou, Theodora; Michailidis, Dimitris; Gerolimatos, Panagiotis; Termentzi, Aikaterini; Hubert, Jane; Halabalaki, Maria; Renault, Jean-Hugues; Skaltsounis, Alexios-Léandros
2017-03-31
An integrated extraction and purification process for the direct recovery of high added value compounds from extra virgin olive oil (EVOO) is proposed by using solid support free liquid-liquid extraction and chromatography techniques. Two different extraction methods were developed on a laboratory-scale Centrifugal Partition Extractor (CPE): a sequential strategy consisting of several "extraction-recovery" cycles and a continuous strategy based on stationary phase co-current elution. In both cases, EVOO was used as mobile phase diluted in food grade n-hexane (feed mobile phase) and the required biphasic system was obtained by adding ethanol and water as polar solvents. For the sequential process, 17.5L of feed EVOO containing organic phase (i.e. 7L of EVOO treated) were extracted yielding 9.5g of total phenolic fraction corresponding to a productivity of 5.8g/h/L of CPE column. Regarding the second approach, the co-current process, 2L of the feed oil phase (containing to 0.8L of EVOO) were treated at 100mL/min yielding 1.03g of total phenolic fraction corresponding to a productivity of 8.9g/h/L of CPE column. The total phenolic fraction was then fractionated by using stepwise gradient elution Centrifugal Partition Chromatography (CPC). The biphasic solvent systems were composed of n-hexane, ethyl acetate, ethanol and water in different proportions (X/Y/2/3, v/v). In a single run of 4h on a column with a capacity of 1L, 910mg of oleocanthal, 882mg of oleacein, 104mg of hydroxytyrosol were successfully recovered from 5g of phenolic extract with purities of 85%, 92% and 90%, respectively. CPC fractions were then submitted to orthogonal chromatographic steps (adsorption on silica gel or size exclusion chromatography) leading to the isolation of additional eleven compounds belonging to triterpens, phenolic compounds and secoiridoids. Among them, elenolic acid ethylester was found to be new compound. Thin Layer Chromatography (TLC), Nuclear magnetic Resonance (NMR) and High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD) were used for monitoring and evaluation purposes throughout the entire procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of Antioxidant Activity and Total Phenol Contents of some Date Seed Varieties from Iran.
Shams Ardekani, Mohammad Reza; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Jahangiri, Maryam; Hadjiakhoondi, Abbas
2010-01-01
The genus Phoenix is one of the most widely cultivated groups of palms around the world. The aim of this study was to determine the antioxidant activity and total phenolic compounds of 14 different varieties of date palm (Phoenix dactylifera L., Arecaceae) seed extracts with 5 solvents [water, methanol, methanol (50%), DMSO, and water: methanol: acetone: formic acid (20:40:40:0.1)]. Ferric reducing antioxidant power assay and Folin-Ciocalteu reagent was used for determination of the antioxidant effect and phenolic content of date seeds. DMSO extract of the "Zahedi" variety had the highest antioxidant effect (37.42 mmol/100 g dry plant) and total phenolic content (3541 mg /100 g dry plant) among these 14 varieties and 5 solvents. There was a significant correlation between the total phenolic content and antioxidant activity (R(2) = 0.791, P < 0.001) of the "Zahedi" variety DMSO extract, which can indicates that polyphenols are the main antioxidants. Iranian date palm seed has a relatively high antioxidant activity due to contribution of phenolic compounds. The present study showed that the Iranian date seeds are strong radical scavengers and can be considered as a good source of natural antioxidants for medicinal and commercial uses.
Liu, Liya; Zhao, Mengli; Liu, Xingxun; Zhong, Kui; Tong, Litao; Zhou, Xianrong; Zhou, Sumei
2016-08-01
The majority of phenolic acids in wheat bran are bound to the cell walls. Hence, a high proportion of phenolic acids cannot be extracted with conventional extraction methods. This study aimed to investigate the efficiency of steam explosion pre-treatment in increasing the extractability of phenolic compounds from wheat bran. Bound phenolic acids (BPA) can be released by steam explosion-assisted extraction. Within the experimental range, soluble free phenolic acids (FPA) and soluble conjugated phenolic acids (CPA) increased gradually with residence time and temperature. After steam explosion at 215 °C for 120 s, the total FPA and CPA reached 6671.8 and 2578.6 µg GAE g(-1) bran, respectively, which was about 39-fold and seven-fold higher than that of the untreated sample. Ferulic acid, the major individual phenolic acids in bran, increased from 55.7 to 586.3 µg g(-1) for FPA, and from 44.9 to 1108.4 µg g(-1) for CPA. The antioxidant properties of FPA and CPA extracts were significantly improved after treated. Correlation analysis indicated that the antioxidant capacity was in close relationship with phenolic content in FPA and CPA. Steam explosion pre-treatment could be effectively used to release of BPA and enhance the antioxidant capacity of wheat bran. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds
Borrás-Linares, Isabel; Stojanović, Zorica; Quirantes-Piné, Rosa; Arráez-Román, David; Švarc-Gajić, Jaroslava; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio
2014-01-01
In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis) samples, obtained by microwave-assisted extraction (MAE), was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC–ESI-QTOF-MS). The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina). PMID:25391044
Green coffee seed residue: A sustainable source of antioxidant compounds.
Castro, A C C M; Oda, F B; Almeida-Cincotto, M G J; Davanço, M G; Chiari-Andréo, B G; Cicarelli, R M B; Peccinini, R G; Zocolo, G J; Ribeiro, P R V; Corrêa, M A; Isaac, V L B; Santos, A G
2018-04-25
Oil extraction from green coffee seeds generates residual mass that is discarded by agribusiness and has not been previously studied. Bioactive secondary metabolites in coffee include antioxidant phenolic compounds, such as chlorogenic acids. Coffee seeds also contain caffeine, a pharmaceutically important methylxanthine. Here, we report the chemical profile, antioxidant activity, and cytotoxicity of hydroethanolic extracts of green Coffea arabica L. seed residue. The extracts of the green seeds and the residue have similar chemical profiles, containing the phenolic compounds chlorogenic acid and caffeine. Five monoacyl and three diacyl esters of trans-cinnamic acids and quinic acid were identified by ultra-performance liquid chromatography/electrospray ionization-quadruple time of flight mass spectrometry. The residue extract showed antioxidant potential in DPPH, ABTS, and pyranine assays and low cytotoxicity. Thus, coffee oil residue has great potential for use as a raw material in dietary supplements, cosmetic and pharmaceutical products, or as a source of bioactive compounds. Copyright © 2017. Published by Elsevier Ltd.
Michelin, Michele; Ximenes, Eduardo; de Lourdes Teixeira de Moraes Polizeli, Maria; Ladisch, Michael R
2016-01-01
This work shows both cellulases and hemicellulases are inhibited and deactivated by water-soluble and acetone extracted phenolics from sugarcane bagasse pretreated at 10% (w/v) for 30 min in liquid hot water at 180 or 200°C. The dissolved phenolics in vacuum filtrate increased from 1.4 to 2.4 g/L as temperature increased from 180 to 200°C. The suppression of cellulose and hemicellulose hydrolysis by phenolics is dominated by deactivation of the β-glucosidase or β-xylosidase components of cellulase and hemicellulase enzyme by acetone extract at 0.2-0.65 mg phenolics/mg enzyme protein and deactivation of cellulases and hemicellulases by the water soluble components in vacuum filtrate at 0.05-2mg/mg. Inhibition was a function of the type of enzyme and the manner in which the phenolics were extracted from the bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.
ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
FRYE JM; ANASTOS HL; GUTIERREZ FC
2012-06-07
While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%;more » and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.« less
Bianchi, Sauro; Kroslakova, Ivana; Janzon, Ron; Mayer, Ingo; Saake, Bodo; Pichelin, Frédéric
2015-12-01
Condensed tannins extracted from European softwood bark are recognized as alternatives to synthetic phenolics. The extraction is generally performed in hot water, leading to simultaneous extraction of other bark constituents such as carbohydrates, phenolic monomers and salts. Characterization of the extract's composition and identification of the extracted tannins' molecular structure are needed to better identify potential applications. Bark from Silver fir (Abies alba [Mill.]), European larch (Larix decidua [Mill.]), Norway spruce (Picea abies [Karst.]), Douglas fir (Pseudotsuga menziesii [Mirb.]) and Scots pine (Pinus sylvestris [L.]) were extracted in water at 60°C. The amounts of phenolic monomers, condensed tannins, carbohydrates, and inorganic compounds in the extract were determined. The molecular structures of condensed tannins and carbohydrates were also investigated (HPLC-UV combined with thiolysis, MALDI-TOF mass spectrometry, anion exchange chromatography). Distinct extract compositions and tannin structures were found in each of the analysed species. Procyanidins were the most ubiquitous tannins. The presence of phenolic glucosides in the tannin oligomers was suggested. Polysaccharides such as arabinans, arabinogalactans and glucans represented an important fraction of all extracts. Compared to traditionally used species (Mimosa and Quebracho) higher viscosities as well as faster chemical reactivities are expected in the analysed species. The most promising species for a bark tannin extraction was found to be larch, while the least encouraging results were detected in pine. A better knowledge of the interaction between the various extracted compounds is deemed an important matter for investigation in the context of industrial applications of such extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kamal, Rabie; Marmouzi, Ilias; Zerrouki, Asmae; Cherrah, Yahia; Alaoui, Katim
2016-01-01
Objective. The aim of this work is to study and compare the antioxidant properties and phenolic contents of aqueous leaf extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus Phoenicea, and Tetraclinis articulata from Morocco. Methods. Antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging ability, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) assays. Also the total phenolic and flavonoids contents of the extracts were determined spectrophotometrically. Results. All the extracts showed interesting antioxidant activities compared to the standard antioxidants (butylated hydroxytoluene (BHT), quercetin, and Trolox). The aqueous extract of Juniperus oxycedrus showed the highest antioxidant activity as measured by DPPH, TEAC, and FRAP assays with IC50 values of 17.91 ± 0.37 μg/mL, 19.80 ± 0.55 μg/mL, and 24.23 ± 0.07 μg/mL, respectively. The strong correlation observed between antioxidant capacities and their total phenolic contents indicated that phenolic compounds were a major contributor to antioxidant properties of these plants extracts. Conclusion. These results suggest that the aqueous extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus phoenicea, and Tetraclinis articulata can constitute a promising new source of natural compounds with antioxidants ability. PMID:27293428
Quirantes-Piné, R; Funes, L; Micol, V; Segura-Carretero, A; Fernández-Gutiérrez, A
2009-07-10
High-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection was used to carry out the comprehensive characterization of a lemon verbena extract with demonstrated antioxidant and antiinflammatory activity. Two different MS techniques have been coupled to HPLC: on one hand, time-of-flight mass spectrometry, and on the other hand, tandem mass spectrometry on an ion-trap. The use of a small particle size C18 column (1.8 microm) provided a great resolution and made possible the separation of several isomers. The UV-visible spectrophotometry was used to delimit the class of phenolic compound and the accurate mass measurements on time-of-flight spectrometer enabled to identify the compounds present in the extract. Finally, the fragmentation pattern obtained in MS-MS experiments confirmed the proposed structures. This procedure was able to determine many well-known phenolic compounds present in lemon verbena such as verbascoside and its derivatives, diglucuronide derivatives of apigenin and luteolin, and eukovoside. Also gardoside, verbasoside, cistanoside F, theveside, campneoside I, chrysoeriol-7-diglucuronide, forsythoside A and acacetin-7-diglucuronide were found for the first time in lemon verbena.
Ji, Mei; Li, Chen; Li, Qiang
2015-10-02
A rapid and efficient method was established for the simultaneous determination of structures and configurations for 45 phenolics isolated from crude red grape skin extracts without extensive sample preparation. Separation and compound assignments were achieved using high performance liquid chromatography coupled to diode array detection and tandem mass spectrometry (HPLC-DAD-MS(2)). A Poroshell 120 EC-C18 (100mm×3.0mm, 2.7μm) column was employed to separate the phenolics, which were eluted using a gradient of acetonitrile and water acidified with 0.2% formic acid. Phenolics were identified by comparison of their UV-vis spectra, mass spectra and MS(2) data with those in the literature. Using this procedure, five compounds were detected for the first time in Vitis amurensis. Good separation of most phenolics was achieved in 26min. The methods described here can be used for the characterization of phenolics in a variety of grapes and grape products. Copyright © 2015 Elsevier B.V. All rights reserved.
Zwetsloot, Marie J; Kessler, André; Bauerle, Taryn L
2018-04-01
Root-soil interactions fundamentally affect the terrestrial carbon (C) cycle and thereby ecosystem feedbacks to climate change. This study addressed the question of whether the secondary metabolism of different temperate forest tree species can affect soil microbial respiration. We hypothesized that phenolics can both increase and decrease respiration depending on their function as food source, mobilizer of other soil resources, signaling compound, or toxin. We analyzed the phenolic compounds from root exudates and root tissue extracts of six tree species grown in a glasshouse using high-performance liquid chromatography. We then tested the effect of individual phenolic compounds, representing the major identified phenylpropanoid compound classes, on microbial respiration through a 5-d soil incubation. Phenolic root profiles were highly species-specific. Of the eight classes identified, flavonoids were the most abundant, with flavanols being the predominating sub-class. Phenolic effects on microbial respiration ranged from a 26% decrease to a 46% increase, with reduced respiration occurring in the presence of compounds possessing a catechol ring. Tree species variation in root phenolic composition influences the magnitude and direction of root effects on microbial respiration. Our data support the hypothesis that functional group rather than biosynthetic class determines the root phenolic effect on soil C cycling. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
The content of phenolic compounds in leaf tissues of Aesculus glabra and Aesculus parviflora walt.
Oszmiański, Jan; Kolniak-Ostek, Joanna; Biernat, Agata
2015-01-28
In plants, flavonoids play an important role in biological processes. They are involved in UV-scavenging, fertility and disease resistance. Therefore, in this study, we attempted to quantify and characterize phenolic compounds in Aesculus parviflora Walt. leaves and Aesculus glabra leaves partly suffering from attack by a leaf mining insect (C. ohridella). A total of 28 phenolic compounds belonging to the hydroxycinnamic acid, flavan-3-ols and flavonol groups were identified and quantified in Aesculus parviflora and A. glabra leaf extracts. Significantly decreased concentrations of some phenolic compounds, especially of flavan-3-ols, were observed in infected leaves compared to the non-infected ones. Additionally, a higher content of polymeric procyanidins in leaves of Aesculus parviflora than in Aesculus glabra may explain their greater resistance to C. ohridella insects.
Phytochemicals and Antioxidant Capacity from Nypa fruticans Wurmb. Fruit
Prasad, Nagendra; Yang, Bao; Kong, Kin Weng; Khoo, Hock Eng; Sun, Jian; Azlan, Azrina; Ismail, Amin; Romli, Zulfiki Bin
2013-01-01
Nypa fruticans Wurmb. is one of the important underutilized fruit of Malaysia, which lacks scientific attention. Total phenolics, flavonoid content, and antioxidant capacities from endosperm extracts of Nypa fruticans (unripe and ripe fruits) were evaluated. Endosperm extract of unripe fruits (EEU) exhibited the highest phenolics (135.6 ± 4.5 mg GAE/g), flavonoid content (68.6 ± 3.1 RE/g), and antioxidant capacity. Free radical scavenging capacity of EEU as assessed by 2-2′-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radicals showed inhibitory activity of 78 ± 1.2% and 85 ± 2.6%, respectively. Beta carotene bleaching coefficient of EEU was higher (2550 ± 123), when compared to endosperm extract of ripe fruits (1729 ± 172). Additionally, EEU exhibited high antioxidant capacity by phosphomolybdenum method and ferric reducing antioxidant power values. Eight phenolic compounds from Nypa fruticans endosperm extracts were identified and quantified by ultra-high-performance liquid chromatography. Chlorogenic acid, protocatechuic acid, and kaempferol were the major phenolic compounds. Thus this fruit could be used as a potential source of natural antioxidant. PMID:23710209
Pieme, Constant Anatole; Ngoupayo, Joseph; Khou-Kouz Nkoulou, Claude Herve; Moukette Moukette, Bruno; Njinkio Nono, Borgia Legrand; Ama Moor, Vicky Jocelyne; Ze Minkande, Jacqueline; Yonkeu Ngogang, Jeanne
2014-01-01
The aim of this study was to determine the in vitro antioxidant activity, free radical scavenging property and the beneficial effects of extracts of various parts of Syzygium guineense in reducing oxidative stress damage in the liver. The effects of extracts on free radicals were determined on radicals DPPH, ABTS, NO and OH followed by the antioxidant properties using Ferric Reducing Antioxidant Power assay (FRAP) and hosphomolybdenum (PPMB). The phytochemical screening of these extracts was performed by determination of the phenolic content. The oxidative damage inhibition in the liver was determined by measuring malondialdehyde (MDA) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase. Overall, the bark extract of the ethanol/water or methanol showed the highest radical scavenging activities against DPPH, ABTS and OH radicals compared to the other extracts. This extract also contained the highest phenolic content implying the potential contribution of phenolic compounds towards the antioxidant activities. However, the methanol extract of the root demonstrated the highest protective effects of SOD and CAT against ferric chloride while the hydro-ethanol extract of the leaves exhibited the highest inhibitory effects on lipid peroxidation. These findings suggest that antioxidant properties of S. guineense extracts could be attributed to phenolic compounds revealed by phytochemical studies. Thus, the present results indicate clearly that the extracts of S. guineense possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants. The antioxidant properties of the bark extract may thus sustain its various biological activities. PMID:26785075
Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran.
Wang, Wei; Guo, Jia; Zhang, Junnan; Peng, Jie; Liu, Tianxing; Xin, Zhihong
2015-03-15
The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds, cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9) and para-hydroxy benzaldehyde (10). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5 and 7 exhibited strong DPPH and ABTS(+) radical scavenging activities, followed by compounds 4 and 6. Compound 1 and 2 showed potent DPPH and ABTS(+) radical scavenging activities, compound 8 displayed moderate antioxidant activity against ABTS(+) radical, whereas compound 9 and 10 showed weak antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ramírez-Godínez, Juan; Jaimez-Ordaz, Judith; Castañeda-Ovando, Araceli; Añorve-Morga, Javier; Salazar-Pereda, Verónica; González-Olivares, Luis Guillermo; Contreras-López, Elizabeth
2017-03-01
Since ancient times, ginger (Zingiber officinale) has been widely used for culinary and medicinal purposes. This rhizome possesses several chemical constituents; most of them present antioxidant capacity due mainly to the presence of phenolic compounds. Thus, the physical conditions for the optimal extraction of antioxidant components of ginger were investigated by applying a Box-Behnken experimental design. Extracts of ginger were prepared using water as solvent in a conventional solid-liquid extraction. The analyzed variables were time (5, 15 and 25 min), temperature (20, 55 and 90 °C) and sample concentration (2, 6 and 10 %). The antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl method and a modified ferric reducing antioxidant power assay while total phenolics were measured by Folin & Ciocalteu's method. The suggested experimental design allowed the acquisition of aqueous extracts of ginger with diverse antioxidant activity (100-555 mg Trolox/100 g, 147-1237 mg Fe 2+ /100 g and 50-332 mg gallic acid/100 g). Temperature was the determining factor in the extraction of components with antioxidant activity, regardless of time and sample quantity. The optimal physical conditions that allowed the highest antioxidant activity were: 90 °C, 15 min and 2 % of the sample. The correlation value between the antioxidant activity by ferric reducing antioxidant power assay and the content of total phenolics was R 2 = 0.83. The experimental design applied allowed the determination of the physical conditions under which ginger aqueous extracts liberate compounds with antioxidant activity. Most of them are of the phenolic type as it was demonstrated through the correlation established between different methods used to measure antioxidant capacity.
Chira, Kleopatra; Teissedre, Pierre-Louis
2013-09-01
In Merlot wines the evolution of volatile and non-volatile (ellagitannins) compounds extracted from winewoods while being macerated for 12 months was studied. Seven types of winewoods subjected to different toasting methods were used. Different rates of extraction, depending mainly on wood compounds origin (toasting or naturally present in wood) and on the watering process during toasting, were observed, which were reflected in sensory differences. Globally, volatile phenols together with aldehydes, phenols and lactones showed an increase with increasing maceration time. Ellagitannins were extracted faster during the first 3 months; after 6 months an important decrease was observed. Wines with winewoods subjected to watering during toasting were lower in ellagitannins concentrations and demonstrated the greatest decrease of these compounds during maceration. Astringency and bitterness intensified with increasing ellagitannins. Lactones induced positive sweetness sensations, whereas furanic and guaiacol compounds influenced bitterness and astringency. Spicy and vanilla descriptors were related to eugenol, vanillin and other odorous chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Tianpeng; He, Jinfeng; Zhang, Jianchun; Li, Xiaohui; Zhang, Hua; Hao, Jianxiong; Li, Lite
2012-09-15
Forty samples were extracted from defatted kernels and hulls of two varieties of hempseed (Bama and Yunma No. 1) using 10 different polar solvent systems. The radical scavenging capacity of the extracts was evaluated using 2,2-diphenyl-1-pikrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays and the total phenolic content was determined by Folin-Ciocalteu's phenol reagent. The correlation analysis indicated that the antioxidants in hempseed belonged to phenolic and DPPH() assay was suitable for evaluating the radical scavenging activity. Two compounds, with predominant antiradical activity, were isolated in 60% ethanol extract of hempseed hull using macroporous resin absorption, LH-20 gel chromatography, and high performance liquid chromatography methods, which were identified as N-trans-caffeoyltyramine and cannabisin B by high-resolution mass spectra, nuclear magnetic resonance spectra, and ultraviolet data. The two compounds exhibited significant high DPPH() scavenging activity and protective effect against in vitro oxidation of human low-density lipoprotein compared with extracts from flaxseed, grape seed, and soybean. This suggests that hempseed hull extract is a potential source of natural antioxidants, which could be added to dietary supplements to help prevent oxidative stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
Qadir, Abdul; Ali, Athar; Arif, Muhammad; Al-Rohaimi, Abdulmohsen H; Singh, Satya Prakash; Ahmad, Usama; Khalid, Mohd; Kumar, Arun
2018-06-01
The seed kernels of Sesamum indicum L. (family: Pedaliaceae) were extracted with ethanol and yield of components determined by Gas Chromatography/Mass Spectrometry (GC/MS). The free radical scavenging activities of ethanolic extract against1, 1-Diphenyl-2-picrylhydrazyl (DPPH) were determined by UV spectrophotometer at 517 nm. Phytochemical screening revealed the presence of numerous bioactive compounds including steroids, phenolic, terpenoids, fatty acids and different types of ester compounds. The ethanolic extract was purified and analyzed by GC MS.The prevailing compounds found in ethanolic extract were Carvacrol (0.04%),Sesamol (0.11%), 4-Allyl-2-methoxy-phenol(0.04%),Palmitic acid (1.08%), cis-9-Hexadecenal (85.40%), Lineoleoyl chloride (0.52%), Palmitic acid β-monoglyceride (0.40%), Dihydro-aplotaxene (0.61%), Oleoyl chloride (1.11%), (+)-Sesamin (4.73%), 1,3-Benzodioxole, 5-[4-(1,3-benzodioxol-5-yloxy)tetrahydro-1 H,3 H-furo [3,4-c]furan-1-yl], [1 S-(1,3,4,6α.), (2.01%)], 6-Nitrocholest-5-en-3-yl acetate (0.22%), Ergost-5-en-3β-ol (2.35%) and 24-Propylidenecholesterol (0.16%). The presence ofsaturated and unsaturated fatty acids in ethanolicextract justifies the use of this plant to treat many ailments in folk and traditional medicine. Ethanolic extract have shown significant antioxidant activity(IC 50 120.38±2.8 µg/ml). The presence of phenolic (Sesamol), lignin (Sesamin) compounds and unsaturated fatty acids are reported as possible contributor for antioxidantactivity of seed extract. © Georg Thieme Verlag KG Stuttgart · New York.
Guclu, Gamze; Sevindik, Onur; Kelebek, Hasim; Selli, Serkan
2016-01-01
Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik) were determined. The solvent-assisted flavor evaporation (SAFE) technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were identified in the olive oil. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil sample. Of these, six volatile components presented odor activity values (OAVs) greater than one, with (Z)-3-hexenal (green), hexanal (green-sweet) and nonanal (fatty-pungent) being those with the highest OAVs in olive oil. A total of 14 phenolic compounds were identified and quantified by liquid chromatography combined with a diode array detector and ion spray mass spectrometry. The major phenolic compounds were found as 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA. PMID:28231141
Milutinović, Violeta; Niketić, Marjan; Ušjak, Ljuboš; Nikolić, Dejan; Krunić, Aleksej; Zidorn, Christian; Petrović, Silvana
2018-01-01
Hieracium s. str. represents one of the largest and most complex genera of flowering plants. As molecular genetics seems unlikely to disentangle intricate relationships within this reticulate species complex, analysis of flavonoids and phenolic acids, known as good chemosystematic markers, promise to be more reliable. Data about pharmacological activity of Hieracium species are scarce. Evaluation of the chemosystematic significance of flavonoids and phenolic acids of methanol extracts of aerial flowering parts of 28 Hieracium species from the Balkans. Additionally, investigation of antioxidant potentials of the extracts. Comparative qualitative and quantitative analysis of flavonoids and phenolic acids was performed by LC-MS. Multivariate statistical data analysis included non-metric multidimensional scaling (nMDS), unweighted pair-group arithmetic averages (UPGMA) and principal component analysis (PCA). Antioxidant activity was evaluated using three colorimetric tests. Dominant phenolics in almost all species were luteolin type flavonoids, followed by phenolic acids. Although the investigated Hieracium species share many compounds, the current classification of the genus was supported by nMDS and UPGMA analyses with a good resolution to the group level. Hieracium naegelianum was clearly separated from the other investigated species. Spatial and ecological distances of the samples were likely to influence unexpected differentiation of some groups within H. sect. Pannosa. The vast majority of dominant compounds significantly contributed to differences between taxa. The antioxidant potential of the extracts was satisfactory and in accordance with their phenolics composition. Comparative LC-MS analysis demonstrated that flavonoids and phenolic acids are good indicators of chemosystematic relationships within Hieracium, particularly between non-hybrid species and groups from the same location. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Schelz, Zsuzsanna; Molnár, Joseph; Fogliano, Vincenzo; Ferracane, Rosalia; Pernice, Rita; Shirataki, Yoshiaki; Motohashi, Noboru
2006-01-01
In earlier experiments, the MDR (multidrug resistance)-reversal activities of Anastasia Black (Russian black sweet pepper) extracts had been analysed. Recently, the most effective MDR reversing extracts and fractions have been separated by HPLC (high-performance liquid chromatography, for carotenoids) and LC-MS-MS (HPLC combined with mass spectrometry, for phenolic compounds) methods. As a result of the analytical studies, the following flavonoids had been identified: feruloyl glucopyranoside, quercetin rhamnopyranoside glucopyranoside, luteolin glucopyranoside arabinopyranoside, apigenin glucopyranoside arabinopyranoside, quercetin rhamnopyranoside, luteolin arabinopyranoside diglucopy-ranoside, hesperidine and luteolin glucuronide. According to the literature, the aglycones of these phenolic compounds exhibit MDR-reversal activity in vitro, and the connection between the phenolic content of Anastasia Black and MDR-reversal action was therefore studied by different analytical methods. The results of this study revealed that the identified flavonoids of Anastasia Black may be only partially responsible for the modulation of the MDR of mouse lymphoma cells. Other lipophilic compounds, most probably carotenoids, present in Russian black sweet pepper may act as inhibitors of MDR reversal.
Zeng, Huawu; Locatelli, Monica; Bardelli, Claudio; Amoruso, Angela; Coisson, Jean Daniel; Travaglia, Fabiano; Arlorio, Marco; Brunelleschi, Sandra
2011-05-25
There is a great interest in the potential health benefits of biologically active phenolic compounds in cocoa (Theobroma cacao) and dark chocolate. We investigated the anti-inflammatory potential of clovamide (a N-phenylpropenoyl-L-amino acid amide present in cocoa beans) and two phenolic extracts from unroasted and roasted cocoa beans, by evaluating superoxide anion (O(2)(-)) production, cytokine release, and NF-κB activation in human monocytes stimulated by phorbol 12-myristate 13-acetate (PMA). The effects of rosmarinic acid are shown for comparison. Clovamide and rosmarinic acid inhibited PMA-induced O(2)(-) production and cytokine release (with a bell-shaped curve and maximal inhibition at 10-100 nM), as well as PMA-induced NF-κB activation; the two cocoa extracts were less effective. In all tests, clovamide was the most potent compound and also enhanced peroxisome proliferator-activated receptor-γ (PPARγ) activity, which may exert anti-inflammatory effects. These findings indicate clovamide as a possible bioactive compound with anti-inflammatory activity in human cells.
NASA Astrophysics Data System (ADS)
Abolhasani, Ali; Barzegar, Mohsen; Sahari, Mohammad Ali
2018-03-01
In this study, the antioxidant activity and tyrosinase inhibitory of non-irradiated and irradiated pistachio green hull (PGH) extracts were investigated. After irradiation of PGH by different doses of gamma ray (0, 10, 20, 30 and 40 kGy), their phenolic compounds were extracted by water. Antioxidant activities of extracts were examined by DPPH• and FRAP methods. The results showed that irradiation not only do not have negative effects on antioxidant activity but also it can increase the amount of total phenolic compounds of water extract in comparison with non-irradiated sample. Water extract of irradiated PGH at the dose of 30 kGy, showed the highest antioxidant activity in the DPPH° test with EC50 equal to 289.0 ± 1.2 μg/ml. Irradiated (30 kGy) and non-irradiated water extracts had the highest antityrosinase activities with IC50 of 10.8 ± 1.1 and 11.9 ± 1.2 μg phenolic/ml, respectively. In addition, it was found that the water extract of irradiated PGH can prevent enzymatic browning in sliced raw potatoes. According to the antityrosinase potential of PGH extract, it may be suggested as an antibrowning agent in some foodstuffs or cosmetic products.
NASA Astrophysics Data System (ADS)
Zhu, Jia; Wang, Ying; Zeng, Lin
2016-08-01
Phenolic compounds have become one kind of the important pollutants of the marine environment. Single-walled Carbon nanotubes, as one-dimensional nano materials, have light weight and perfect hexagonal structure of connections, with many unusual mechanical, chemical and electrical properties. In recent years, with the research of carbon nanotubes and other nano materials, the application prospect is also constantly discussed. In this paper, homemade single-walled carbon nanotubes (SWCNTs) coating was used for establishing an analytical approach to the determination of five kinds of phenolic compounds in seawater using SPME-GC-MS. Optimal conditions: After saturation was conducted with NaCl, and pH was adjusted to 2.0 with H2SO4, the extract was immersed in a water bath at 40°C for GC-MS determination through 40-min agitating extraction at 500 rmin-1 and 3-min desorption at 280°C. The liniearities ranged between 0.01-100 μg L-1, and the determination limits ranged between 1.5-10 ng L-1. The relative standard deviation (RSD, n = 5) was less than 6.5%. For the phenolic compounds obtained from the spiked recovery test for actual seawater samples, the rates of recovery were 87.5%-101.7%, and the RSDs were less than 8.8%, which met the requirements of determination. Due to its simplicity, high efficiency and low consumption, this approach is suitable for the analysis of trace amounts of phenolic compounds in marine waters.
Bystrom, Laura M; Lewis, Betty A; Brown, Dan L; Rodriguez, Eloy; Obendorf, Ralph L
2009-06-01
Edible fruits of the native South American tree Melicoccus bijugatus Jacq. are consumed fresh or in traditional food, drink and medicinal preparations. Some therapeutic effects of these fruits may be due to phenolics and sugars. Aqueous acetone, methanol or ethanol tissue extracts of different cultivars or collections of M. bijugatus fruits from the Dominican Republic and Florida were analyzed for total phenolics and free radical scavenging activity by UV-vis spectroscopy, sugars by gas chromatography, and antimicrobial activity by the disc diffusion assay. Total phenolics and free radical scavenging activities ranked: seed coat > embryo > pulp extracts. Montgomery cultivar fruits had the highest total phenolics. For sugars: pulp > embryo and highest in Punta Cana fruit pulp. In all extracts: sucrose > glucose and fructose. Glucose:fructose ratios were 1:1 (pulp) and 0.2:1 (embryo). Pulp extracts had dose-response antibacterial activity and pulp and embryo extracts had antifungal activity against one yeast species. Phenolics and sugars were confirmed with thin-layer chromatography and nuclear magnetic resonance. Sugar-free pulp fractions containing phenolics had slightly more antimicrobial activity than H2O-soluble pulp fractions with sugars. Results indicate M. bijugatus fruits contain phenolics, sugars and other H2O-soluble compounds consistent with therapeutic uses.
Effect of pecan phenolics on the release of nitric oxide from murine RAW 264.7 macrophage cells.
Robbins, Katherine S; Greenspan, Phillip; Pegg, Ronald B
2016-12-01
Inflammation is linked to numerous chronic disease states. Phenolic compounds have attracted attention because a number of these compounds possess anti-inflammatory properties. A phenolic crude extract was prepared from pecans and separated by Sephadex LH-20 column chromatography into low- and high-molecular-weight (LMW/HMW) fractions. Anti-inflammatory properties of these fractions were assessed in LPS-stimulated RAW 264.7 murine macrophage cells. NO and reactive oxygen species (ROS) production was monitored after 3 different experimental protocols: (1) pre-treatment with Escherichia coli O111:B4 lipopolysaccharide (LPS); (2) pre-treatment with a pecan crude extract and its fractions; and (3) co-incubation of LPS with a pecan crude extract and its fractions. The LMW fraction displayed a dose-dependent decrease in NO production and a significant decrease from the LPS control in ROS production when cells were either co-incubated with or pre-treated with LPS. The phenolics were characterized by HPLC to help identify those responsible for the observed effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie
2014-11-01
A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vázquez-Armenta, F J; Silva-Espinoza, B A; Cruz-Valenzuela, M R; González-Aguilar, G A; Nazzaro, F; Fratianni, F; Ayala-Zavala, J F
2017-09-01
In the present study total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity and antimicrobial properties of grape (Vitis vinifera var. Red Globe) stem extract is reported. Also, the identification of main phenolic compounds was carried out by UPLC-PAD analysis. TPC and TFC of extract were 37.25 g GAE kg -1 and 98.07 g QE kg -1 , respectively. Extract showed an antioxidant capacity of 132.60 and 317 g TE kg -1 for DPPH and ABTS radical scavenging capacity, respectively. The main phenolic compounds identified were rutin, gallic acid, chlorogenic acid, caffeic acid, catechin and ferulic acid. Extract inhibited the growth of Listeria monocytogenes , Staphylococcus aureus , Salmonella enterica subsp. enterica serovar Typhimurium, and Escherichia coli O157: H7 at MIC range 16-18 g L -1 . Extract affected the different phases of bacterial growth. In addition, application of Extract (25 g L -1 ) as a sanitizer was effective to reduce the populations of all bacteria inoculated in lettuce (0.859-1.884 log reduction) and spinach (0.843-2.605 log reduction). This study emphasizes the potential of grape processing byproducts as an emergent and attractive source of bioactive compounds with antioxidant properties and antimicrobial activity against important foodborne pathogens. The study demonstrated that stem extract could be used to control the presence of human pathogenic bacteria in fresh leafy vegetables.
Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu
2016-12-01
Turnip (Brassica rapa ssp. rapa) is an important vegetable crop producing glucosinolates (GSLs) and phenolic compounds. The GSLs, phenolic compound contents and transcript levels in hairy root cultures, as well as their antioxidant, antimicrobial and anticancer activity were studied in turnip. Transgenic hairy root lines were confirmed by polymerase chain reaction (PCR) and reverse transcription-PCR. GSLs levels (glucoallysin, glucobrassicanapin, gluconasturtiin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and 4-hydroxyglucobrassicin) and their gene expression levels (BrMYB28, BrMYB29, BrMYB34, BrMYB51, BrMYB122, CYP79 and CYP83) significantly increased in hairy roots compared with that in non-transformed roots. Furthermore, hairy roots efficiently produced several important individual phenolic compounds (flavonols, hydroxybenzoic and hydroxycinnamic acids). Colorimetric analysis revealed that the highest levels of total phenol, flavonoid contents, and their gene expression levels (PAL, CHI and FLS) in hairy roots than non-transformed roots. Our study provides beneficial information on the molecular and physiological active processes that are associated with the phytochemical content and biosynthetic gene expression in turnip. Moreover, antioxidant activity, as measured by DPPH scavenging activity, reducing potential, phosphomolybdenum and ferrous ion chelating ability assays was significantly higher in hairy roots. Hairy root extracts exhibited higher antimicrobial activity against bacterial and fungal species. The extract of hairy roots showed inhibition of human breast and colon cancer cell lines.
Perez-Ternero, Cristina; Macià, Alba; de Sotomayor, Maria Alvarez; Parrado, Juan; Motilva, Maria-Jose; Herrera, Maria-Dolores
2017-06-21
Rice bran is an exceptional source of such antioxidant molecules as γ-oryzanol and ferulic acid, but their bioavailability and metabolism within this matrix remain unknown. The aims of this work were to describe the oral bioavailability and metabolic pathways of the ferulic acid-derived phenolic compounds contained in a rice bran enzymatic extract (RBEE), and to determine its effect on NADPH oxidase activity. Wistar rats were administered with RBEE and sacrificed at different times over a period of 24 h to obtain plasma. An additional group was used for collection of urine and faeces over a period of 48 h. The phenolic metabolites were determined by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS), and plasma pharmacokinetic parameters were calculated. In parallel, aortic rings were incubated in the plasma of rats sacrificed 30 min after RBEE gavage, or in the presence of RBEE, ferulic acid or γ-oryzanol. Endothelin-1-induced superoxide production was recorded by lucigenin-enhanced luminescence. Twenty-five ferulic acid metabolites showing biphasic behaviour were found in the plasma, most of which were found in the urine as well, while in the faeces, colonic metabolism led to simpler phenolic compounds. Superoxide production was abrogated by phenolic compound-enriched plasma and by RBEE and ferulic acid, thus showing the biological potential of RBEE as a nutraceutical ingredient.
In vitro antioxidant potential of selected aphrodisiac medicinal plants.
Riaz, M; Shahid, M; Jamil, A; Saqib, M
2017-01-01
The present study aimed to evaluate the antioxidant activity of six selected aphrodisiac medicinal plants. Useful parts of the selected medicinal plants were collected and extracted in methanolic solvent. The antioxidant activity of selected plant extract was determined through different antioxidant assays, namely DPPH radical scavenging assay and ferric reducing antioxidant assay. Moreover, antioxidant compounds, like total phenolics and total flavonoids contents, were also determined. Results showed that Mucuna pruriens seed extract displayed high contents of phenolic compounds with total phenolic content of 683.15±4.28 mg GAE/g dry plant material while the least phenolic content was observed in Asparagus racemosus (195.5±3.02 mg GAE/g dry plant material). Highest total flavonoids content was found in Anacyclus pyrethrum roots (156.58±4.01 μg CE/g) and the least content was found in Asparagus racemosus roots. Among the studied plant extracts, the highest radical scavenging activity was shown by Mucuna pruriens seed extract (82.05±0.55%) and the least percent scavenging activity was observed in Tribulus terrestris extract (36.40±2.01%). Vitamin C was used as positive control for antioxidant assays showing 93.54±0.9% radical scavenging activity. The plant extract also exhibited a strong reducing potential against free radicals. Therefore, the present study concluded that all the studied medicinal plants possess varying concentrations of secondary active metabolites responsible for the antioxidant properties of the tested plant extracts.
Bae, Haejin; Jayaprakasha, G K; Jifon, John; Patil, Bhimanagouda S
2012-10-15
Peppers (Capsicum spp.) are a rich source of diverse bioactive compounds with potential health-promoting properties. This study investigated the extraction efficiency of five solvents on antioxidant activities from cayenne (CA408 and Mesilla), jalapeño (Ixtapa) and serrano (Tuxtlas) pepper cultivars. Freeze-dried peppers were extracted using a Soxhlet extractor with five solvents: hexane, ethyl acetate, acetone, methanol, and methanol:water (80:20). The levels of specific bioactive compounds (phenolics, capsaicinoids, carotenoids and flavonoids) were determined by HPLC and antioxidant activities were assayed by three methods. For all pepper cultivars tested, hexane extracts had the highest levels of capsaicinoids and carotenoids, but methanol extracts had the maximum levels of flavonoids. Hexane extracts showed higher 2,2-diphenyl-1-pricrylhydrozyl (DPPH) radical-scavenging activity and higher reducing power, and acetone extracts (from Mesilla pepper) had a high reducing power. All pepper extracts, except hexane, were effective in preventing deoxyribose degradation, and the inhibition was increased by high concentrations of extracts. The results of the present study indicated that, among the different measures of antioxidant activity, DPPH radical-scavenging activity was strongly correlated with total bioactive compounds (capsaicinoids, carotenoids, flavonoids and total phenolics) in pepper cultivars. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aminah, N. S.; Yulvia, A.; Tanjung, M.
2017-09-01
Two phenolic compounds namely: methyl-3,4-dihydroxybenzoate (1) and 9,10-dihydrophenanthrene-2,4,7-triol (2) had been isolated for the first time from the tuber of Dioscorea alata L. The extraction of two compounds were done by maceration method using methanol as solvent, followed by partition with n-hexane and ethyl acetate. The ethyl acetate extract was separated and purified using various chromatographic techniques yielded pure compounds. The structure of isolated compounds were determined based on spectroscopic data, including UV-Vis, 1D and 2D NMR spectra. Compounds (1), (2) and ascorbic acid as a comparator were evaluated for their antioxidant properties against DPPH, showing their IC50 were 9,41 ± 0,08; 23,52 ± 0,05; and 10,95 ± 0,08 ppm, respectively.
Effect of Steam Blanching and Drying on Phenolic Compounds of Litchi Pericarp.
Kessy, Honest N E; Hu, Zhuoyan; Zhao, Lei; Zhou, Molin
2016-06-03
The effects of different treatment methods on the stability and antioxidant capacity of the bioactive phenolic compounds of litchi pericarps were investigated. Fresh litchi pericarps were open air-dried, steam-blanched for 3 min in combination with hot air oven drying at 60 and 80 °C, and unblanched pericarps were dried in a hot air oven at 40, 60, 70 and 80 °C until equilibrium weight was reached. The total phenolic compounds, flavonoids, anthocyanins, proanthocyanidins and individual procyanidins, and antioxidant activity were analyzed. The combination of blanching and drying at 60 °C significantly (p < 0.05) improved the release of phenolic compounds, individual procyanidins, and the extracts' antioxidant capacity compared with the unblanched hot air oven-dried and open air-dried pericarps. Drying of fresh unblanched litchi pericarps in either open air or a hot air oven caused significant losses (p < 0.05) in phenolic compounds and individual procyanidins, leading to a reduction in the antioxidant activity. A similar increase, retention or reduction was reflected in flavonoids, proanthocyanidins and anthocyanins because they are sub-groups of phenolic compounds. Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryldydrazyl (DPPH) radical-scavenging capacity of the treated pericarps were significantly correlated (r ≥ 0.927, p < 0.01) with the total phenolic compounds. Thus, the combination of steam blanching and drying treatments of fresh litchi pericarps could produce a stable and dry litchi pericarp that maintains phenolic compounds and antioxidant capacity as a raw material for further recovery of the phytochemicals.
Jachna, Tiphaine J; Hermes, Vanessa S; Flôres, Simone H; Rios, Alessandro O
2016-03-15
Pindo palm (Butia capitata, Becc. 1916) is a tropical fruit native to South America and is relatively rich in bioactive compounds. It is often consumed as juice. The aim of this study was, first, to identify the degradation of these compounds by pasteurization and by cold storage (4 °C) of pindo palm juice. Physicochemical properties and concentrations of phenolic compounds, carotenoids and vitamin C have been evaluated on fresh and pasteurized juices. Moreover, another objective was to characterize the nutritional composition and the bioactive compounds of pindo palm pomace, the by-product of juice processing. The results demonstrated a degradation of carotenoids with pasteurization and a degradation of vitamin C with both pasteurization and cold storage of juices. Furthermore, the evaluation of pindo palm pomace showed that it is relatively rich in total phenols (20.06 g gallic acid equivalents kg(-1) dry matter) and in β-carotene (0.22 g kg(-1) dry matter). Thus, from the nutrition viewpoint, it does not seem interesting to pasteurize juice. On the other hand, extraction of carotenoids and phenolic compounds from the pomace appears to be a relevant process. © 2015 Society of Chemical Industry.
Pieroni, Laís Goyos; de Rezende, Fernanda Mendes; Ximenes, Valdecir Farias; Dokkedal, Anne Lígia
2011-11-10
Miconia is one of the largest genus of the Melastomataceae, with approximately 1,000 species. Studies aiming to describe the diverse biological activities of the Miconia species have shown promising results, such as analgesic, antimicrobial and trypanocidal properties. M. albicans leaves were dried, powdered and extracted to afford chloroformic and methanolic extracts. Total phenolic contents in the methanolic extract were determined according to modified Folin-Ciocalteu method. The antioxidant activity was measured using AAPH and DPPH radical assays. Chemical analysis was performed with the n-butanol fraction of the methanolic extract and the chloroformic extract, using different chromatographic techniques (CC, HPLC). The structural elucidation of compounds was performed using 500 MHz NMR and HPLC methods. The methanolic extract showed a high level of total phenolic contents; the results with antioxidant assays showed that the methanolic extract, the n-butanolic fraction and the isolated flavonoids from M. albicans had a significant scavenging capacity against AAPH and DPPH. Quercetin, quercetin-3-O-glucoside, rutin, 3-(E)-p-coumaroyl-α-amyrin was isolated from the n-butanolic fraction and α-amyrin, epi-betulinic acid, ursolic acid, epi-ursolic acid from the chloroformic extract. The results presented in this study demonstrate that M. albicans is a promising species in the search for biologically active compounds.
Liu, Yuping; Miao, Zhiwei; Guan, Wei; Sun, Baoguo
2012-03-26
The organic volatile flavor compounds in fermented stinky tofu (FST) were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs) of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.
Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; Khan, Gazala Afreen; Kardi, Karima
2016-09-01
The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia ( Shilajit ), Castanea sativa , and Ephedra sinica stapf , with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L . (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ± standard deviations. Quantitative analyses were performed using the paired t -test. The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa ( P < 0.05). Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure.
Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; Khan, Gazala Afreen; Kardi, Karima
2016-01-01
Objectives: The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. Methods: The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia (Shilajit), Castanea sativa, and Ephedra sinica stapf, with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L. (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ± standard deviations. Quantitative analyses were performed using the paired t-test. Results: The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa (P < 0.05). Conclusion: Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure. PMID:27695634
Abu-Gharbieh, Eman; Shehab, Naglaa Gamil
2017-04-18
Hyperglycemia is a complicated condition accompanied with high incidence of infection and dyslipidemia. This study aimed to explore the phyto-constituents of Crataegus azarolus var. eu- azarolus Maire leaves, and to evaluate the therapeutic potentials particularly antimicrobial, antihyperglycemic and antihyperlipidemic of the extract and the isolated compound (3β-O-acetyl ursolic acid). Total phenolics and flavonoidal contents were measured by RP-HPLC analysis. Free radicals scavenging activity of different extraction solvents was tested in-vitro on DPPH free radicals. The antimicrobial activity of the ethanolic extract and its fractions as well as the isolated compounds were evaluated in-vitro on variable microorganisms. Animal models were used to evaluate the antihyperglycemic and antihyperlipidemic activities of the ethanolic extract along with the isolated compound (3β-O acetyl ursolic acid). RP- HPLC analysis of the phenolics revealed high content of rutin, salicylic and ellagic acids. Six compounds belonging to triterpenes and phenolics were isolated from chloroform and n-butanol fractions namely: ursolic acid, 3β-O-acetyl ursolic acid, ellagic acid, quercetin 3-O-β methyl ether, rutin and apigenin7-O-rutinoside. Ethanolic extract showed the highest DPPH radical scavenger activity compared to other solvents. Ethanolic extract, hexane fraction, ursolic acid, 3β-O acetyl ursolic acid and quercetin 3-O-methyl ether showed variable antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Administration of the ethanolic extract or 3β-O acetyl ursolic acid orally to the mice reduced blood glucose significantly in a time- and dose-dependent manner. Ethanolic extract significantly reduced LDL-C, VLDL-C, TC and TG and increased HDL-C in rats. Ethanolic extract and 3β-O acetyl ursolic acid reduced in-vitro activity of pancreatic lipase. This study reveals that Crataegus azarolus var. eu- azarolus Maire has the efficiency to control hyperglycemia with its associated complications. This study is the first to evaluate antihyperglycemic and antihyperlipidemic potentials of 3β-O acetyl ursolic acid.
Gupta, Deepika; Gupta, Rajinder K
2011-02-17
Food preservation is basically done to preserve the natural characteristics and appearance of the food and to increase the shelf life of food. Food preservatives in use are natural, chemical and artificial. Keeping in mind the adverse effects of synthetic food preservatives, there is a need to identify natural food preservatives. The aims of this study were to evaluate in vitro antioxidant and antimicrobial activities of Dragon's blood resin obtained from Dracaena cinnabari Balf f., with a view to develop safer food preservatives. In this study, three solvents of varying polarity were used to extract and separate the medium and high polarity compounds from the non-polar compounds of the Dragon's blood resin. The extracts were evaluated for their antimicrobial activity against the food borne pathogens. The antioxidant activities of the extracts were assessed using DPPH and ABTS radical scavenging, FRAP, metal chelating and reducing power assays. Total phenolics, flavonoids and flavonols of extracts were also estimated using the standard methods. Phytochemical analysis of extracts revealed high phenolic content in CH(2)Cl(2) extract of resin. Free radical scavenging of CH(2)Cl(2) extract was found to be highest which is in good correlation with its total phenolic content. All test microorganisms were also inhibited by CH(2)Cl(2) extract. Our result provide evidence that CH(2)Cl(2) extract is a potential source of natural antioxidant compounds and exhibited good inhibitory activity against various food borne pathogens. Thus, CH(2)Cl(2) extract of Dragon's blood resin could be considered as possible source of food preservative.
Zhang, Ruifen; Su, Dongxiao; Hou, Fangli; Liu, Lei; Huang, Fei; Dong, Lihong; Deng, Yuanyuan; Zhang, Yan; Wei, Zhencheng; Zhang, Mingwei
2017-08-01
To establish optimal ultra-high-pressure (UHP)-assisted extraction conditions for procyanidins from lychee pericarp, a response surface analysis method with four factors and three levels was adopted. The optimum conditions were as follows: 295 MPa pressure, 13 min pressure holding time, 16.0 mL/g liquid-to-solid ratio, and 70% ethanol concentration. Compared with conventional ethanol extraction and ultrasonic-assisted extraction methods, the yields of the total procyanidins, flavonoids, and phenolics extracted using the UHP process were significantly increased; consequently, the oxygen radical absorbance capacity and cellular antioxidant activity of UHP-assisted lychee pericarp extracts were substantially enhanced. LC-MS/MS and high-performance liquid chromatography quantification results for individual phenolic compounds revealed that the yield of procyanidin compounds, including epicatechin, procyanidin A2, and procyanidin B2, from lychee pericarp could be significantly improved by the UHP-assisted extraction process. This UHP-assisted extraction process is thus a practical method for the extraction of procyanidins from lychee pericarp.
Tripathi, Arpita Mani; Tiwary, Bhupendra N
2013-08-01
A wild strain of Schizophyllum commune (MTCC 9670) isolated from Achanakmar-Amarkantak Biosphere Reserve of Central India was evaluated for the production of bioactive compounds. The chemical constituents of wild and in vitro grown cultures were compared. Under optimized conditions, different organic and aqueous extracts from mycelia and fruiting bodies were used to extract chemical components from the cultures grown in vitro. The gas chromatography combined wih mass spectrometry analysis of extracts identified two phenolic compounds, namely Phenyl benzoate (C13H10O2) and 4-(phenyl methoxy) phenol (C13H12O2) in the ethanolic extract of in vitro grown fruiting bodies and one antibacterial compound Pyrrolo (1, 2-a) piperazine-3, 6-dione (C7H10O2N2) in the methanolic extract of mycelia. High-performance liquid chromatography analysis revealed that the gallic acid and L-ascorbic acid were identifiable antioxidant components in the extracts possessing high free radical scavenging activity. The findings suggest that the wild strain of S. commune may serve as the source of novel bioactive compounds with effective antimicrobial and antioxidant activities.
Phenolic constituents of shea (Vitellaria paradoxa) kernels.
Maranz, Steven; Wiesman, Zeev; Garti, Nissim
2003-10-08
Analysis of the phenolic constituents of shea (Vitellaria paradoxa) kernels by LC-MS revealed eight catechin compounds-gallic acid, catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate-as well as quercetin and trans-cinnamic acid. The mean kernel content of the eight catechin compounds was 4000 ppm (0.4% of kernel dry weight), with a 2100-9500 ppm range. Comparison of the profiles of the six major catechins from 40 Vitellaria provenances from 10 African countries showed that the relative proportions of these compounds varied from region to region. Gallic acid was the major phenolic compound, comprising an average of 27% of the measured total phenols and exceeding 70% in some populations. Colorimetric analysis (101 samples) of total polyphenols extracted from shea butter into hexane gave an average of 97 ppm, with the values for different provenances varying between 62 and 135 ppm of total polyphenols.
Effect of variety on content of bioactive phenolic compounds in common elder (Sambucus nigra L.).
Vrchotová, Naděžda; Dadáková, Eva; Matějíček, Aleš; Tříska, Jan; Kaplan, Jiří
2017-03-01
The inflorescence of common elder (Sambucus nigra L., Adoxaceae) is known to be rich in phenolic compounds. The content of five selected phenolic compounds (rutin, chlorogenic acid, isoquercitrin, isorhamnetin-3-O- rutinoside and dicaffeoylquinic acid) was determined in methanolic extracts from flowers and floral stems by HPLC in samples obtained from 20 varieties of S. nigra cultivated in Czech Republic. In all samples, there were determined rutin (11-54 mg/g), chlorogenic acid (23-46 mg/g), isoquercitrin (0.6-18 mg/g), isorhamnetin-3-O-rutinoside (3-10 mg/g), calculated on air-dried material. The content of dicaffeoylquinic acid was 0-13 mg/g of air-dried material. The amount of the analysed compounds in floral stems was lower than the flowers. The results are a unique set of information on the content of main phenolics in the inflorescence of cultured elderberry varieties.
Immunosuppressive phenolic compounds from Hydnora abyssinica A. Braun.
Koko, Waleed S; Mesaik, Mohamed A; Ranjitt, Rosa; Galal, Mohamed; Choudhary, Muhammad I
2015-11-09
Hydnora abyssinica (HA) A. Braun is an endemic Sudanese medicinal plant traditionally used as anti-inflammatory and against many infectious diseases. However, it proved to be very rich in phenols and tannins, so the present study was undertaken to investigate the immunomodulatory potential of the whole plant ethanolic extract and its isolated compounds. Lymphocyte proliferation, chemiluminescence and superoxide reduction assays were used for immunomodulatory evaluation. While, MTT (3-(4, 5-dimethylthazol-2-yl)-2, 5-diphenyl tetrazonium bromide) test was performed on 3 T3 cell line clone in order to evaluate the cytoxicity effect of the extracts and isolated compounds of phenolic derivatives which were carried out by chromotographic techniques. Catechin, (1), tyrosol (2) and benzoic acid, 3, 4, dihydroxy-, ethyl ester (3) compounds were isolated from HA ethanolic extract which revealed potent immunosuppressive activity against reactive oxygen species from both polymorph nuclear cells (PMNs) (45-90 % inhibition) and mononuclear cells (MNCs) (30 -65 % inhibition), T lymphocyte proliferation assay (70-93 % inhibition) as well as potent inhibitory effect against superoxide production (42-71 % inhibition) at concentrations of 6.25-100 μg/mL. Catechin (1) was found the most potent immunosuppressive agent among all constituents examined. These results can support the traditional uses of H. abyssinica extracts as anti-inflammatory and immunosuppressive and further investigations of the mode of action and other pharmacological studies are highly desirable.
Carrasco-Pancorbo, Alegria; Gómez-Caravaca, Ana Maria; Cerretani, Lorenzo; Bendini, Alessandra; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2006-09-01
We have devised a simple and rapid capillary electrophoretic method which provides the analyst with a useful tool for the characterization of the polyphenolic fraction of extra-virgin olive oil. This method that uses a capillary with 50 microm id and a total length of 47 cm (40 cm to the detector) with a detection window of 100 x 200 microm, and a buffer solution containing 45 mM of sodium tetraborate pH 9.3 offers valuable information about all the families of compounds present in the polar fraction of the olive oil. The detection was carried out by UV absorption at 200, 240, 280, and 330 nm in order to facilitate the identification of the compounds. Concretely, the method permits the identification of simple phenols, lignans, complex phenols (isomeric forms of secoiridoids), phenolic acids, and flavonoids in the SPE-Diol extracts from extra-virgin olive oil in a short time (less than 10 min) and provides a satisfactory resolution. Peak identification was done by comparing both migration time and spectral data obtained from olive oil samples and standards (commercial or isolated (by HPLC-MS) standards), with spiked methanol-water extracts of olive oil with HPLC-collected compounds and commercially available standards at several concentration levels, studying the information of the electropherograms obtained at several wavelengths and also using the information previously reported.
Phenolic content and antioxidant activities of burr parsley (Caucalis platycarpos L.).
Plazonić, Ana; Mornar, Ana; Maleš, Željan; Kujundžić, Nikola
2013-07-22
Since C. platycarpos contains a wide variety of antioxidants, in the present study total flavonoid and phenolic acid content as well as antioxidative activity of various C. platycarpos extracts were investigated. The results obtained show a significant polyphenol content and antioxidant activity of the investigated plant. Moreover, a positive correlation between antioxidant activity and content of flavonoids and phenolic acids was found, indicating the responsibility of these compounds for the antioxidant effectiveness of C. platycarpos extracts and making C. platycarpos a good potential source of natural antioxidants.
Tang, Yao; Zhang, Bing; Li, Xihong; Chen, Peter X; Zhang, Hua; Liu, Ronghua; Tsao, Rong
2016-03-02
Unextractable phenolics from plant foods and their role in health benefits have become increasingly important. Meal residues of three quinoa seeds free of fat and extractable phenolics were subjected to acid, alkaline, and enzymatic hydrolyses. The total and individual phenolic compounds released were analyzed, and 19 phenolics, predominantly phenolic acids and several flavonoids, were identified. The concentration of bound phenolics was highest in black quinoa followed by red and white, regardless of the hydrolysis method. Higher phenolic contents also showed stronger antioxidant activities and inhibition of α-glucosidase and pancreatic lipase activities. Carbohydrases, that is, pectinase, xylanase and feruloyl esterase, which effectively liberated bound phenolics are known to be secreted by colonic bacteria, suggesting potential antioxidant and anti-inflammatory effects by these compounds in the large intestine during colonic fermentation. These results can also be applied to treat foods high in bound phenolics to enhance bioaccessibility.
Martins, Ana; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Fernandes, Isabel P; Barreiro, Filomena; Ferreira, Isabel C F R
2014-06-01
Rubus ulmifolius Schott (Rosaceae), known as wild blackberry, is a perennial shrub found in wild and cultivated habitats in Europe, Asia and North Africa. Traditionally, it is used for homemade remedies because of its medicinal properties, including antioxidant activity. In the present work, phenolic extracts of R. ulmifolius flower buds obtained by decoction and hydroalcoholic extraction were chemically and biologically characterized. Several phenolic compounds were identified in both decoction and hydroalcoholic extracts of flowers, ellagitannin derivatives being the most abundant ones, namely the sanguiin H-10 isomer and lambertianin. Additionally, comparing with the decoction form, the hydroalcoholic extract presented both higher phenolic content and antioxidant activity. The hydroalcoholic extract was thereafter microencapsulated in an alginate-based matrix and incorporated into a yogurt to achieve antioxidant benefits. In what concerns the performed incorporation tests, the obtained results pointed out that, among the tested samples, the yoghurt containing the microencapsulated extract presented a slightly higher antioxidant activity, and that both forms (free and microencapsulated extracts) gave rise to products with higher activity than the control. In conclusion, this study demonstrated the antioxidant potential of the R. ulmifolius hydroalcoholic extract and the effectiveness of the microencapsulation technique used for its preservation, thus opening new prospects for the exploitation of these natural phenolic extracts in food applications.
Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts.
Tadić, Vanja M; Jeremic, Ivica; Dobric, Silva; Isakovic, Aleksandra; Markovic, Ivanka; Trajkovic, Vladimir; Bojovic, Dragica; Arsic, Ivana
2012-03-01
Sideritis scardica Griseb. (ironwort, mountain tea), an endemic plant of the Balkan Peninsula, has been used in traditional medicine in the treatment of gastrointestinal complaints, inflammation, and rheumatic disorders. This study aimed to evaluate its gastroprotective and anti-inflammatory activities. Besides, continuously increasing interest in assessing the role of the plant active constituents preventing the risk of cancer was a reason to make a detailed examination of the investigated ethanol, diethyl ether, ethyl acetate, and N-butanol extracts regarding cytotoxicity. Oral administration of the investigated extracts caused a dose-dependent anti-inflammatory effect in a model of carrageenan-induced rat paw edema. Gastroprotective activity of the extracts was investigated using an ethanol-induced acute stress ulcer in rats. The cytotoxic activity of plant extracts was assessed on PBMC, B16, and HL-60 cells and compared to the cytotoxicity of phenolic compounds identified in extracts. Apoptotic and necrotic cell death were analyzed by double staining with fluoresceinisothiocyanate (FITC)-conjugated annexin V and PI. The developed HPLC method enabled qualitative fingerprint analysis of phenolic compounds in the investigated extracts. Compared to the effect of the positive control, the anti-inflammatory drug indomethacine (4 mg/kg), which produced a 50 % decrease in inflammation, diethyl ether and N-butanol extracts exhibited about the same effect in doses of 200 and 100 mg/kg (53.6 and 48.7 %; 48.4 and 49.9 %, respectively). All investigated extracts produced dose-dependent gastroprotective activity with the efficacy comparable to that of the reference drug ranitidine. The diethyl ether extract showed significant dose-dependent cytotoxicity on B16 cells and HL-60 cells, decreasing cell growth to 51.3 % and 77.5 % of control, respectively, when used at 100 µg/mL. It seems that phenolic compounds (apigenin, luteolin, and their corresponding glycosides) are responsible for the diethyl ether extract cytotoxic effect. It also appears that induction of oxidative stress might be involved in its cytotoxicity, since B16 and HL-60 cells increased their ROS production in response to treatment with diethyl ether extract. Neither of the tested extracts nor any phenolic compounds showed significant cytotoxic effect to human PBMC. These results demonstrated the potent anti-inflammatory and gastroprotective activities, as well as the promising cytotoxicity. © Georg Thieme Verlag KG Stuttgart · New York.
Hogan, Shelly; Zhang, Lei; Li, Jianrong; Sun, Shi; Canning, Corene; Zhou, Kequan
2010-08-27
Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. The extracts of red wine grape pomace (Cabernet Franc) and white wine grape pomace (Chardonnay) were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight) significantly suppressed the postprandial hyperglycemia by 35% in streptozocin-induced diabetic mice following starch challenge. This is the first report that the grape pomace extracts selectively and significantly inhibits intestinal α-glucosidase and suppresses postprandial hyperglycemia in diabetic mice. The antioxidant and anti-postprandial hyperglycemic activities demonstrated on the tested grape pomace extract therefore suggest a potential for utilizing grape pomace-derived bioactive compounds in management of diabetes.
2010-01-01
Background Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. Methods The extracts of red wine grape pomace (Cabernet Franc) and white wine grape pomace (Chardonnay) were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. Results The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight) significantly suppressed the postprandial hyperglycemia by 35% in streptozocin-induced diabetic mice following starch challenge. Conclusion This is the first report that the grape pomace extracts selectively and significantly inhibits intestinal α-glucosidase and suppresses postprandial hyperglycemia in diabetic mice. The antioxidant and anti-postprandial hyperglycemic activities demonstrated on the tested grape pomace extract therefore suggest a potential for utilizing grape pomace-derived bioactive compounds in management of diabetes. PMID:20799969
Simirgiotis, Mario J; Bórquez, Jorge; Schmeda-Hirschmann, Guillermo
2013-08-15
Native Myrtaceae fruits were gathered by South American Amerindians as a food source. At present, there is still some regional consume of the small berries from trees belonging to genus Luma that occurs in southern Chile and Argentina. The aerial parts and berries from Luma apiculata and Luma chequen were investigated for phenolic constituents and antioxidant capacity. A high performance electrospray ionisation mass spectrometry method was developed for the rapid identification of phenolics in polar extracts from both species. Thirty-one phenolic compounds were detected and 27 were identified or tentatively characterised based on photodiode array UV-vis spectra (DAD), ESI-MS-MS spectrometric data and spiking experiments with authentic standards. Twelve phenolic compounds were detected in L. apiculata fruits and 12 in the aerial parts while L. chequen yielded 10 compounds in fruits and 16 in aerial parts, respectively. From the compounds occurring in both Luma species, seven were identified as tannins or their monomers, 15 were flavonol derivatives and five were anthocyanins. The whole berry and aerial parts extracts presented high antioxidant capacity in the DPPH assay (IC50 of 10.41±0.02 and 2.44±0.03 μg/mL for L. apiculata, 12.89±0.05 and 3.22±0.05 for L. chequen, respectively), which can be related to the diverse range of phenolics detected. The antioxidant capacity together with the high polyphenolic contents and compounds identified can support at least in part, their use as botanical drugs. From the compounds identified in both species, 3-O-(6″-O-galloyl)-hexose derivatives of myricetin, quercetin, laricitrin and isorhamnetin are reported for the first time for the genus Luma. Copyright © 2013 Elsevier Ltd. All rights reserved.
Phenolic compounds participating in mulberry juice sediment formation during storage.
Zou, Bo; Xu, Yu-Juan; Wu, Ji-Jun; Yu, Yuan-Shan; Xiao, Geng-Sheng
The stability of clarified juice is of great importance in the beverage industry and to consumers. Phenolic compounds are considered to be one of the main factors responsible for sediment formation. The aim of this study is to investigate the changes in the phenolic content in clarified mulberry juice during storage. Hence, separation, identification, quantification, and analysis of the changes in the contents of phenolic compounds, both free and bound forms, in the supernatant and sediments of mulberry juice, were carried out using high performance liquid chromatographic system, equipped with a photo-diode array detector (HPLC-PDA) and HPLC coupled with quadrupole-time of flight mass spectrometric (HPLC-QTOF-MS/MS) techniques. There was an increase in the amount of sediment formed over the period of study. Total phenolic content of supernatant, as well as free phenolic content in the extracts of the precipitate decreased, whereas the bound phenolic content in the sediment increased. Quantitative estimation of individual phenolic compounds indicated high degradation of free anthocyanins in the supernatant and sediment from 938.60 to 2.30 mg/L and 235.60 to 1.74 mg/g, respectively. A decrease in flavonoids in the supernatant was also observed, whereas the contents of bound forms of gallic acid, protocatechuic acid, caffeic acid, and rutin in the sediment increased. Anthocyanins were the most abundant form of phenolics in the sediment, and accounted for 67.2% of total phenolics after 8 weeks of storage. These results revealed that phenolic compounds, particularly anthocyanins, were involved in the formation of sediments in mulberry juice during storage.
Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong
2012-04-01
Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stanisavljević, Nemanja S; Ilić, Marija D; Matić, Ivana Z; Jovanović, Živko S; Čupić, Tihomir; Dabić, Dragana Č; Natić, Maja M; Tešić, Živoslav Lj
2016-01-01
To date little has been done on identification of major phenolic compounds responsible for anticancer and antioxidant properties of pea (Pisum sativum L.) seed coat extracts. In the present study, phenolic profile of the seed coat extracts from 10 differently colored European varieties has been determined using ultrahigh-performance liquid chromatography-linear trap quadrupole orbitrap mass spectrometer technique. Extracts of dark colored varieties with high total phenolic content (up to 46.56 mg GAE/g) exhibited strong antioxidant activities (measured by 2,2-diphenyl-1-picrylhydrazyl or DPPH assay, and ferric ion reducing and ferrous ion chelating capacity assays) which could be attributed to presence of gallic acid, epigallocatechin, naringenin, and apigenin. The aqueous extracts of dark colored varieties exert concentration-dependent cytotoxic effects on all tested malignant cell lines (human colon adenocarcinoma LS174, human breast carcinoma MDA-MB-453, human lung carcinoma A594, and myelogenous leukemia K562). Correlation analysis revealed that intensities of cytotoxic activity of the extracts strongly correlated with contents of epigallocatechin and luteolin. Cell cycle analysis on LS174 cells in the presence of caspase-3 inhibitor points out that extracts may activate other cell death modalities besides caspase-3-dependent apoptosis. The study provides evidence that seed coat extracts of dark colored pea varieties might be used as potential cancer-chemopreventive and complementary agents in cancer therapy.
Zou, Yanping; Chang, Sam K.C.; Gu, Yan; Qian, Steven Y.
2011-01-01
Phenolic compounds were extracted from Morton lentils using acidified aqueous acetone. The crude Morton extract (CME) was applied onto a macroresin column and desorbed by aqueous methanol to obtain a semi-purified Morton extract (SPME). The SPME was further fractionated over Sephadex LH-20 column into five main fractions (Fr I – Fr V). The phytochemical contents such as total phenolic content (TPC), total flavonoid content (TFC), and condensed tannin content (CTC) of the CME, SPME, and its fractions were examined by colorimetric methods. Antioxidant activity of extracts and fractions were screened by DPPH scavenging activity, trolox equivalent antioxidant capacity (TEAC), ferric reduced antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC) methods. In addition, the compositions of active fractions were determined by HPLC-DAD and HPLC-MS methods. Results showed that fraction enriched in condensed tannins (Fr V) exhibited significantly higher value of TPC, CTC and higher antioxidant activity as compared to the crude extract, SPME and low-molecular-weight fractions (Fr I – IV). Eighteen compounds existed in those fractions, and seventeen were tentatively identified by UV and MS spectra. HPLC-MS analysis revealed Fr II contained mainly kaempferol glycoside, Fr III and Fr IV mainly contained flavonoid glycosides, and Fr V was composed of condensed tannins. The results suggested that extract of Morton lentils is a promising source of antioxidant phenolics, and may be used as a dietary supplement for health promotion. PMID:21332205
NASA Astrophysics Data System (ADS)
Loponen, Jyrki Mikael
Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV, 1H NMR, 13C NMR and MS) techniques proved to be suitable tools for the structure identification of plant phenolic compounds. More than 30 individual phenolic compounds were detected and quantified. Detailed information of the structures of individual compounds was determined after isolation from birch leaves. Ten flavonoid glycosides were identified. Two of them, myricetin-3-O-α-L-(acetyl)-rhamnopyranoside and quercetin-3-O-α-L-(4/prime'-O-acetyl)- rhamnopyranoside, have been rarely found in birch leaves. Further, some characterized major phenolics with non- flavonoid structures in our study were 1-O-galloyl- β-D-(2-O-acetyl)-glucopyranose, gallic, chlorogenic, neochlorogenic, cis- and trans-forms of 3- and 5-p-coumaroylquinic acids. The presence of gallotannin group was evidenced by strong positive correlations between concentrations of these gallotannins (preliminary identified by HPLC and UV spectra) and the protein precipitation capacity of extracts. Content of gallotannins decreased with leaf growth and maturation. It is known that concentrations of phenolic compounds regularly increase in slowly growing stressed plants and therefore, it is natural that they are also sensitive to different forms of air pollution. Total content and the contents of some individual phenolics correlated negatively with the distance from the pollution source in our study area. In addition to comparing absolute concentrations of compounds in question, the within-tree correlations or within-tree variations of the relevant compounds between polluted and control areas were an alternative approach. Differences in pairwise correlations between the investigated leaf phenolic compounds indicated the competition between some gallotannins and p-coumaroylquinic acids on the polluted but not on the control site. Air pollution seems to be a stress factor for birch trees associated with accumulation, variability, as well as between-compound correlations of individual phenolics in leaves. Effects of atmospheric stress factors on phenolics with different structures result from the activation of the shikimate pathway.
Rochín-Medina, Jesús J; Ramírez, Karina; Rangel-Peraza, Jesús G; Bustos-Terrones, Yaneth A
2018-03-01
Spent coffee grounds are waste material generated during coffee beverage preparation. This by-product disposal causes a negative environmental impact, in addition to the loss of a rich source of nutrients and bioactive compounds. A rotating central composition design was used to determine the optimal conditions for the bioactivity of phenolic compounds obtained after the solid state fermentation of spent coffee grounds by Bacillus clausii . To achieve this, temperature and fermentation time were varied according to the experimental design and the total phenolic and flavonoid content, antioxidant activity and antimicrobial activity were determined. Surface response methodology showed that optimum bioprocessing conditions were a temperature of 37 °C and a fermentation time of 39 h. Under these conditions, total phenolic and flavonoid contents increased by 36 and 13%, respectively, in fermented extracts as compared to non-fermented. In addition, the antioxidant activity was increased by 15% and higher antimicrobial activity was observed against Gram positive and negative bacteria. These data demonstrated that bioprocessing optimization of spent coffee grounds using the surface response methodology was an important tool to improve phenolic extraction, which could be used as an antioxidant and antimicrobial agents incorporated into different types of food products.
Karimi, Ehsan; Mehrabanjoubani, Pooyan; Keshavarzian, Maryam; Oskoueian, Ehsan; Jaafar, Hawa Z E; Abdolzadeh, Ahmad
2014-08-01
Plant foods are rich sources of bioactive compounds that can act as antioxidants to prevent heart disease, reduce inflammation, reduce the incidence of cancers and diabetes. This study aimed to determine the phenolics and flavonoids profiling in three varieties of rice straw and five varieties of the seed husk of Iranian rice using high-performance liquid chromatography (HPLC). Furthermore, the antioxidant activities of the extracts were evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and nitric oxide assays. HPLC analyses showed that the gallic acid, pyrogallol, apigenin and rutin were the main phenolic and flavonoid compounds in all varieties of rice. In addition, the methanolic extracts of Hashemi and Ali Kazemi varieties showed the highest amounts of phenolic and flavonoid contents, respectively. Rice straw and husk of Iranian varieties showed considerable antioxidant activity and Hashemi indicated significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to the other varieties. The present study revealed that rice straw and seed husk of Iranian varieties shows high antioxidant activities and they contain various types of phenolic and flavonoid compounds that could be use in food and medical industries. © 2014 Society of Chemical Industry.
Rizzo, Valeria; Clifford, Mike N; Brown, Jonathan E; Siracusa, Laura; Muratore, Giuseppe
2016-04-01
This study was performed to test the effects of pre-treating cherry tomatoes with a solution containing citric acid-NaCl-CaCl2 (10:10:24 g L(-1)), followed by one of three different drying regimes (40, 60, 80 °C) on the antioxidant capacity of their aqueous extracts and the extent of phenolic compound degradation. Chlorogenic acids, caffeic acid, ferulic acid, rutin and naringenin were all detected in the aqueous extracts. In fresh cherry tomatoes the predominant phenolic compound was rutin, followed by naringenin, which corresponded to 79% and 8% of the total phenolic compounds present, respectively. Pre-treatment was protective towards naringenin and had a modest protective effect on rutin and ferulic acid (0.1 > P > 0.05). Total phenolic content was similar in all samples, but there was a trend for the level of free polyphenols to be lower in treated tomatoes. The destruction of naringenin was confirmed by liquid chromatographic-mass spectrometric data. A significant effect of temperature on the antioxidant capacity was observed. After this treatment the industry might introduce some advances in the processing of tomatoes, preserving the main nutritive characteristics and saving the products as semi-dried. © 2015 Society of Chemical Industry.
Tian, Ye; Puganen, Anna; Alakomi, Hanna-Leena; Uusitupa, Aleksi; Saarela, Maria; Yang, Baoru
2018-04-01
Phenolic compounds were extracted with food grade solvent of acidified aqueous ethanol from leaves, berries, berry press cakes, and branches of Finnish berry plants and analyzed with HPLC-DAD, UPLC-DAD-ESI-MS and NMR. In addition, press cakes from two berry species and branches from one species were also extracted and analyzed with the same methods. The antioxidant activities of the extracts were evaluated using Folin-Ciocalteau, oxygen radical absorbance capacity (ORAC), DPPH free radical scavenging, and total radical trapping antioxidant parameter (TRAP) assays. The antibacterial activities were investigated against various Gram-negative and Gram-positive foodborne pathogens. The leaf extracts showed higher antioxidative activities (3-20 fold in ORAC assay, 10-20 fold in TRAP) than the berry extracts, in association with the higher contents of phenolic compounds in the leaf extracts; Strongest anti-bacterial effects was observed in the leaf extracts of lingonberry (Vaccinium vitis-idaea), sea buckthorn (Hippophaë rhamnoides ssp. rhamnoides) and saskatoon (Amelanchier alnifolia) on Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. However, the antibacterial efficacy varied with bacterial species and strains. The Folin-Ciocalteu, ORAC, and TRAP values was strongly correlated with the total content of flavonoids with less association shown with the content of total phenolics and flavonol glycosides. The results suggest a major contribution of pranthocyanidins and flavan-3-ols to the antioxidative activities of the extracts. The growth inhibition on Staphylococcus aureus and Bacillus cereus was clearly associated with the content of total phenolics and ellagitannins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Helichrysum monizii Lowe: phenolic composition and antioxidant potential.
Gouveia, Sandra; Castilho, Paula C
2012-01-01
In Madeira Archipelago there are four endemic Helichyrsum species and three of them are used in the traditional medicine. Helichrysum monizii is a rare endemism with very scarce information available concerning its uses in the local traditional medicine. The aim of this work was to study for the first time Helichrysum monizii in terms of its antioxidant capacity and the identification of the phenolic compounds to which that activity is due. Three different methods of extraction were performed and total phenolic and flavonoid contents of extracts were correlated to radical scavenging and antioxidant capacity by DPPH, ABTS, FRAP and β-carotene assays. An HPLC-DAD-ESI/MS(n) method was employed for the separation and identification of the phenolic and flavonoid components. The results revealed a high antioxidant potential mainly related to the phenolic profile of the plant. Polar components of methanol extracts of Helichrsyum monizii were detected by a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI/MS(n) ) method. Thirty-three compounds were identified and 19 of them were identified as quinic acid derivatives. The high antioxidant potential Helichrysum monizii was for the first time established. Dicaffeoylquinic acids are the main responsible for that activity. Copyright © 2011 John Wiley & Sons, Ltd.
Martinez-Avila, G C G; Aguilera, A F; Saucedo, S; Rojas, R; Rodriguez, R; Aguilar, C N
2014-01-01
Agro-industrial by-products are important sources of potent bioactive phenolic compounds. These compounds are of extreme relevance for food and pharmacological industries due to their great variety of biological activities. Fermentation represents an environmentally clean technology for production and extraction of these bioactive compounds, providing high quality and high activity extracts, which can be incorporated in foods using coatings/films wax-based in order to avoid alterations in their quality. In this document is presented an overview about importance and benefits of solid-state fermentation, pointing out this bioprocess as an alternative technology for use agro-industrial by-products as substrates to produce valuable secondary metabolites and their applications as food quality conservatives.
Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars
NASA Astrophysics Data System (ADS)
Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun
2014-03-01
Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.
Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants.
Sytar, Oksana; Hemmerich, Irene; Zivcak, Marek; Rauh, Cornelia; Brestic, Marian
2018-05-01
Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae , Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. ( Lamiaceae ), Calendula officinalis L. ( Asteraceae ) and for Potentilla recta L. ( Rosaceae ). The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae - in the range from 0.782 to 5.078 mg g -1 DW. The representative's family Rosaceae has a higher content of p-anisic acid in the range 0.334-3.442 mg g -1 DW compared to the leaf extracts of families Lamiaceae and Asteraceae . The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative's families Rosaceae , Asteraceae and Lamiaceae . We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae . It was supposed that some pharmacological effects can be connected with the analyzed data.
Wang, Lifeng; Chen, Chao; Su, Anxiang; Zhang, Yiyi; Yuan, Jian; Ju, Xingrong
2016-04-01
The current study aims to investigate the antioxidant activities of various extracts from defatted adlay seed meal (DASM) based on the oxygen radical absorbance capacity (ORAC) assay, peroxyl radical scavenging capacity (PSC) assay and cellular antioxidant activity (CAA) assay. Of all the fractions, the n-butanol fraction exhibited the highest antioxidant activity, followed by crude acetone extract and aqueous fractions. Of the three sub-fractions obtained by Sephadex LH-20 chromatography, sub-fraction 3 possessed the highest antioxidant activity and total phenolic content. There was a strong positive correlation between the total phenolic content and the antioxidant activity. Based on HPLC-DAD-ESI-MS/MS analysis, the most abundant phenolic acid in sub-fraction 3 of DASM was ferulic acid at 67.28 mg/g, whereas the predominant flavonoid was rutin at 41.11 mg/g. Of the major individual compounds in sub-fraction 3, p-coumaric acid exhibited the highest ORAC values, and quercetin exhibited the highest PSC values and CAA values. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rangel-Sánchez, Gerardo; Castro-Mercado, Elda; García-Pineda, Ernesto
2014-02-15
We demonstrated the ability of salicylic acid (SA) to induce a compound in avocado roots that strengthens their defense against Phytophthora cinnamomi. The SA content of avocado roots, before and after the application of exogenous SA, was determined by High-Performance Liquid Chromatography (HPLC). After 4h of SA feeding, the endogenous level in the roots increased to 223 μg g(-1) FW, which was 15 times the amount found in control roots. The methanolic extract obtained from SA-treated avocado roots inhibited the radial growth of P. cinnamomi. A thin layer chromatographic bioassay with the methanolic extract and spores of Aspergillus showed a distinct inhibition zone. The compound responsible for the inhibition was identified as phenol-2,4-bis (1,1-dimethylethyl) by gas chromatography and mass spectrometry. At a concentration of 100 μg/mL, the substance reduced germinative tube length in Aspergillus and radial growth of P. cinnamomi. A commercial preparation of phenol-2,4-bis (1,1-dimethylethyl) caused the same effects on mycelium morphology and radial growth as our isolate, confirming the presence of this compound in the root extracts. This is the first report of the induction of this compound in plants by SA, and the results suggest that it plays an important role in the defense response of avocado. Copyright © 2013 Elsevier GmbH. All rights reserved.
Selvaggini, Roberto; Servili, Maurizio; Urbani, Stefania; Esposto, Sonia; Taticchi, Agnese; Montedoro, GianFrancesco
2006-04-19
Hydrophilic phenols are the most abundant natural antioxidants of virgin olive oil (VOO), in which tocopherols and carotenes are also present. The prevalent classes of hydrophilic phenols found in VOO are phenyl alcohols, phenolic acids, secoiridoids such as the dialdehydic form of decarboxymethyl elenolic acid linked to (3,4-dihydroxyphenyl)ethanol or (p-hydroxypheny1)ethanol (3,4-DHPEA-EDA or p-HPEA-EDA) and an isomer of the oleuropein aglycon (3,4-DHPEA-EA), lignans such as (+)-1-acetoxypinoresinol and (+)-pinoresinol, and flavonoids. A new method for the analysis of VOO hydrophilic phenols by direct injection in high-performance liquid chromatography (HPLC) with the use of a fluorescence detector (FLD) has been proposed and compared with the traditional liquid-liquid extraction technique followed by the HPLC analysis utilizing a diode array detector (DAD) and a FLD. Results show that the most important classes of phenolic compounds occurring in VOO can be evaluated using HPLC direct injection. The efficiency of the new method, as compared to the liquid-liquid extraction, was higher to quantify phenyl alcohols, lignans, and 3,4-DHPEA-EA and lower for the evaluation of 3,4-DHPEA-EDA and p-HPEA-EDA.
Vieira, Manoela A; Maraschin, Marcelo; Pagliosa, Cristiane M; Podestá, Rossana; de Simas, Karina N; Rockenbach, Ismael Ivan; Amboni, Renata D de M C; Amante, Edna R
2010-04-01
Ilex paraguariensis is known to contain compounds with antioxidant properties, such as phenolic acids, and its stimulant properties are attributed to methylxanthines, such as caffeine. The aims of this study were to evaluate the phenolic, methylxanthinic, and tannin composition of a mate residue (mate powder), to compare the quali-quantitative phenolic composition and the antioxidant potential of extracts obtained from distinct solvent systems. Among the extracts prepared with different solvents, the 80% methanol extract showed the highest total polyphenol content (11.51 g/100 g) and antioxidant activity. HPLC analysis showed that 4,5 dicaffeoylquinic acid is the major component of the phenolic fraction of mate powder. The caffeine, theobromine, and tannin contents in mate powder were 1.01, 0.10, and 0.29 g/100 g, respectively. Consumption of mate powder would significantly contribute to antioxidant and stimulant intake, providing high amounts of phenolic acids, tannins, and methylxanthines with biological effects potentially beneficial for human health. This article contributes to the minimization of residues in yerba-mate processing.
Wu, Yanfang; Wang, Xinsheng; Xue, Jintao; Fan, Enguo
2017-11-01
Huaiju is one of the most famous and widely used Flos Chrysanthemi (FC) for medicinal purposes in China. Although various investigations aimed at phenolics extraction from other FC have been reported, a thorough optimization of the phenolics extraction conditions from Huaiju has not been achieved. This work applied the widely used response surface methodology (RSM) to investigate the effects of 3 independent variables including ethanol concentration (%), extraction time (min), and solvent-to-material ratio (mL/g) on the ultrasound-assisted extraction (UAE) of phenolics from FC. The data suggested the optimal UAE condition was an ethanol concentration of 75.3% and extraction time of 43.5 min, whereas the ratio of solvent to material has no significant effect. When the free radical scavenging ability was used as an indicator for a successful extraction, a similar optimal extraction was achieved with an ethanol concentration of 72.8%, extraction time of 44.3 min, and the ratio of solvent to material was 29.5 mL/g. Furthermore, a moderate correlation between the antioxidant activity of TP extract and the content of extracted phenolic compounds was observed. Moreover, a well consistent of the experimental values under optimal conditions with those predicted values suggests RSM successfully optimized the UAE conditions for phenolics extraction from FC. The work of the research investigated the plant phenolics in Flos Chrysanthemi and antioxidant capacities. These results of this study can support the development of antioxidant additive and relative food. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.
Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.
Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd
2014-01-01
Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.
Kulczyński, Bartosz; Kobus-Cisowska, Joanna; Kmiecik, Dominik; Gramza-Michałowska, Anna; Golczak, Dorota; Korczak, Józef
2016-01-01
Asparagus officinalis has a high nutritional value. Asparagus is rich in a number of bioactive compounds, mainly flavonoids (quercetin), glutathione, vitamin C, vitamin E, fructans (inulin and fructooligosaccharides) and phytosterols (b-sitosterol). These compounds may play an important role in human health. The purpose of this study was to examine the antioxidant potential and polyphenol composition of white, pale-colored and green asparagus spears of different cultivars. Investigations were conducted on different asparagus spear extracts. The study included three colors of asparagus (white, pale-colored and green) from five different cultivars subjected to the ethanol extraction procedure. Total phenolic content was also determined by the Folin-Ciocalteu method. Polyphenol (phenolic acids and flavonols) composition was estimated using the HPLC method. The antioxidant properties of extracts were examined using DPPH, ABTS and metal ion chelating assays. The highest contents of phenolic and flavonoids were observed in green asparagus from Grolim and the lowest in pale-colored asparagus from Gyjmlin. It was found that both the color of asparagus and the cultivar had a significant effect on the composition of phenolic acid and flavonols. Radical scavenging activity toward DPPH• and ABTS was highest for green asparagus cv. Grolim and Eposs. The greatest number of Fe ions was chelated by samples of green asparagus cv. Grolim and Huchel's Alpha and pale-colored asparagus cv. Huchel's Alpha. It was shown that the antioxidant activity of asparagus spears measured by antiradical and chelating activity test depends on variety and color. The highest activity was found in green asparagus and the lowest was identified in white asparagus extracts. It has also been clarified that changes in flavonol and phenolic acid composition and increases in their diversity depends on growing with sunlight and variety. Asparagus can provide a valuable source of phenolic compounds in the human diet.
Bayer, C; Follmann, M; Melin, T; Wintgens, T; Larsson, K; Almemark, M
2010-01-01
Many phenolic compounds show high boiling points, low molecular weights, moderate polarities or high toxicities. Therefore, conventional wastewater treatment is limited or expensive. Recycling of the separated compounds is often not possible. But, if liquid-liquid reactive extraction is linked to a non-porous membrane, some or all of the above mentioned limitations may be overcome. The key element is a composite membrane with a dense, hydrophobic top layer which avoids the mixing of the two aqueous fluid streams. The dilute phenol stream is one of them, the other is caustic soda as stripping solvent. Since the basics of this technology have been discussed before, the scope of this study is to facilitate process implementation and integration. To this end, a life cycle assessment framework is used to identify the optimal equipment size for the treatment of wastewater that may, for example, originate from the production of polycarbonate. Limiting for this application is not the environmental performance though, but most likely process economics.
Polyphenols benefits of olive leaf (Olea europaea L) to human health.
Vogel, Patrícia; Kasper Machado, Isabel; Garavaglia, Juliano; Zani, Valdeni Terezinha; de Souza, Daiana; Morelo Dal Bosco, Simone
2014-12-17
The phenolic compounds present in olive leaves (Olea europaea L.) confer benefits to the human health. To review the scientific literature about the benefits of the polyphenols of olive leaves to human health. Literature review in the LILACS-BIREME, SciELO and MEDLINE databases for publications in English, Portuguese and Spanish with the descriptors "Olea europaea", "olive leaves", "olive leaf", "olive leaves extracts", "olive leaf extracts", "phenolic compounds", "polyphenols", "oleuropein", "chemical composition", and "health". There were identified 92 articles, but only 38 related to the objectives of the study and 9 articles cited in the works were included due to their relevance. The phenolic compounds present in olive leaves, especially the oleuropein, are associated to antioxidant, antihypertensive, hypoglycemic, hypocholesterolemic and cardioprotective activity. Furthermore, studies associate the oleuropein to an anti-inflammatory effect in trauma of the bone marrow and as a support in the treatment of obesity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Sukhonthara, Sukhontha; Kaewka, Kunwadee; Theerakulkait, Chockchai
2016-01-01
Full-fatted and commercially defatted rice bran extracts (RBE and CDRBE) were evaluated for their ability to inhibit enzymatic browning in potato and apple. RBE showed more effective inhibition of polyphenol oxidase (PPO) activity and browning in potato and apple as compared to CDRBE. Five phenolic compounds in RBE and CDRBE (protocatechuic acid, vanillic acid, p-coumaric acid, ferulic acid and sinapic acid) were identified by HPLC. They were then evaluated for their important role in the inhibition using a model system which found that ferulic acid in RBE and p-coumaric acid in CDRBE were active in enzymatic browning inhibition of potato and apple. p-Coumaric acid exhibited the highest inhibitory effect on potato and apple PPO (p ⩽ 0.05). Almost all phenolic compounds showed higher inhibitory effect on potato and apple PPO than 100 ppm citric acid. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds.
Jorge, Neuza; Silva, Ana Carolina da; Aranha, Caroline P M
2016-05-31
Due to the increasing production of food in the world with consequent increase of the production of waste, the importance of developing researches for its use is noticed. Thus, the interest in vegetable oils with bioactive compounds, such as the ones extracted from fruit seeds, is growing. Therefore, the present study aims to characterize the oils extracted from seeds of Hamlin, Natal, Pera-rio and Valencia orange varieties (Citrus sinensis), as to the levels of total carotenoids, total phenolic compounds, tocopherols and phytosterols, as well as to determine their antioxidant activity. The orange seed oils presented important content of total carotenoids (19.01 mg/kg), total phenolic compounds (4.43 g/kg), α-tocopherol (135.65 mg/kg) and phytosterols (1304.2 mg/kg). The antioxidant activity ranged from 56.0% (Natal) to 70.2% (Pera-rio). According to the results it is possible to conclude that the orange seed oils can be used as specialty oils in diet, since they contain considerable amounts of bioactive compounds and antioxidants.
Savran, Ahmet; Zengin, Gokhan; Aktumsek, Abdurrahman; Mocan, Andrei; Glamoćlija, Jasmina; Ćirić, Ana; Soković, Marina
2016-07-13
The present study outlines a chemical characterization and further effects beneficial to health of edible Rumex scutatus and Pseudosempervivum sempervivum, in addition to presenting the antioxidant, enzyme inhibitory effects and antimicrobial properties of different extracts. The phenolic compounds composition of the extracts was assessed by RP-HPLC-DAD, outlining benzoic acid and rutin as major constituents in P. sempervivum and rutin and hesperidin in R. scutatus. Moreover, further biological effects were tested on key enzymes involved in diabetes mellitus, Alzheimer's disease and skin melanogenesis revealing an important tyrosinase inhibitory effect of Pseudosempervivum water extract. Moreover, both species possessed antimicrobial properties towards bacteria and fungi relevant to public health. Accordingly, we find that R. scutatus and P. sempervivum can be considered as novel functional foods because they are rich sources of biologically active compounds that provide health benefits.
Mosele, Juana I; Macià, Alba; Motilva, Maria-José
2015-09-18
Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health.
Gomathi, Duraisamy; Kalaiselvi, Manokaran; Ravikumar, Ganesan; Sophia, Dominic; Gopalakrishnan, Velliyur Kanniappan; Uma, Chandrasekar
2012-01-01
Plants and plant-based products are the bases of many modern pharmaceuticals that are current in use today for various diseases. The aim of the study was to investigate the biochemical constituents and high performance thin layer chromatography (HPTLC) finger printing of the ethanolic extract of Evolvulus alsinoides. Phytochemical screening was done by standard procedures and HPTLC method was also established to analyze alkaloids, flavonoids and phenolic compounds from the ethanolic extract of Evolvulus alsinoides. Preliminary phytochemical screening showed that ethanol extracted more secondary metabolites than other solvents. HPTLC fingerprinting analysis showed the presence of various alkaloids, flavonoids and phenols (quercetin) in the ethanolic extract. It can be concluded that Evolvulus alsinoides may serve as a source of potent antioxidants that may be used in the prevention of various diseases such as cancer, diabetes and cardiovascular diseases due to the presence of phenolic compounds. HPTLC finger print of Evolvulus alsinoides may be useful in the differentiation of the species from adulterants and act as a biochemical marker for this medicinally important plant in the pharmaceutical industry and plant systematic studies. PMID:23554763
On-site GC/MS analysis of Chapman gasification separator liquor. Final report Jul 80-Mar 81
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thielen, C.J.; Magee, R.A.; Collins, R.V.
1981-08-01
The report gives results of a characterization of a wastewater stream from a coal gasification plant, using on-site extraction and GC/MS analysis. Extractable material in the wastewater was primarily phenols and alkylphenols, accounting for about 99% of the total mass identified. Several polynuclear aromatic compounds were also identified. The composition of the sample deteriorated even though the water was held in amber bottles at 4C: this was most evident in the concentration of dimethylphenols which dropped about 75% during 2 weeks of refrigerated storage. Ambient sample storage produced a greater decrease in the concentration of phenol, but did not appearmore » to affect the alkylphenols or the base/neutral compounds as much. The observed changes in composition should hamper any off-site wastewater treatbility studies with waters of this type. Diisopropyl ether (DIPE) extraction confirmed the 99-plus % removal efficiency of phenol which had been demonstrated in previous studies. Wet oxidation removed organics almost as efficiently as DIPE extraction, but may have limited use because of its high operating cost.« less
Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids
Minh, Truong Ngoc; Khang, Do Tan; Tuyen, Phung Thi; Minh, Luong The; Anh, La Hoang; Quan, Nguyen Van; Ha, Pham Thi Thu; Quan, Nguyen Thanh; Toan, Nguyen Phu; Elzaawely, Abdelnaser Abdelghany; Xuan, Tran Dang
2016-01-01
Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight). The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes. PMID:27649250
Rezaie, Mitra; Farhoosh, Reza; Pham, Ngoc; Quinn, Ronald J; Iranshahi, Mehrdad
2016-01-05
Bene is an edible fruit from the tree Pistacia atlantica subsp. mutica, and is of steadily growing interest in recent years due to its significant antioxidant properties and potential health benefits. An antioxidant activity-guided fractionation of the methanol extract from Bene hull together with an integrated approach of HPLC-DAD, LC-MS and (1)H NMR techniques led to the identification of main antioxidant phenolic compounds for the first time. Radical scavenging activity of each fraction/compound was tested using DPPH and FRAP assays. The phenolic content of the fractions was also determined by Folin-Ciocalteu's method. The main identified antioxidant compounds were luteolin (46.53% w/w of total extract), gallic acid (9.84% w/w), 2″-O-galloylisoquercitrin (0.53% w/w), quercetin 3-rutinoside (0.34% w/w) and 2″-O-cis-caffeoylquercitrin (0.26% w/w). The minor antioxidant compounds were also identified by liquid chromatography-positive/negative electrospray ionization tandem mass spectrometry. The structure-antioxidant activity relationship of identified phenolics are also discussed in this paper. Copyright © 2015 Elsevier B.V. All rights reserved.
Yin, Jun; Heo, Jun Hyeok; Hwang, Yoon Jeong; Le, Thi Tam; Lee, Min Won
2016-07-07
Adina rubella Hance (AR), a plant native to Korea, has been used as traditional medicine for dysentery, eczema, intoxication, and external hemorrhages. Previous phytochemical studies of AR have reported several components, including terpenoids, phenolics, and alkaloids. The current study evaluated the anti-oxidative and anti-inflammatory activities and 5α-reductase inhibition of isolated compounds of AR leaves to find a potential therapeutic agent for benign prostatic hypertrophy (BPH). Repeated chromatographic isolation of an 80% acetone extract of AR leaves yielded seven phenolic compounds: caffeic acid (1), chlorogenic acid (2), methyl chlorogenate (3), quercetin-3-rutinoside (4), kaempferol-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (5), hyperoside (6), and grandifloroside (7). Compound 7 is a novel compound in AR. Caffeoyl derivatives 1-3 and 7 showed good anti-oxidative activities. In particular, caffeic acid (1) and grandifloroside (7) showed potent anti-inflammatory activities, and 7 also exhibited potent inhibitory activity against TNF-α and 5α-reductase. Our results show that the extract and grandifloroside (7) from leaves of AR might be developed as a source of potent anti-oxidative and anti-inflammatory agents and therapeutic agent for BPH.
Conventional and unconventional extraction methods applied to the plant, Thymus serpyllum L
NASA Astrophysics Data System (ADS)
Đukić, D.; Mašković, P.; Vesković Moračanin, S.; Kurćubić, V.; Milijašević, M.; Babić, J.
2017-09-01
This study deals with the application of two conventional and three non-conventional extraction approaches for isolation of bioactive compounds from the plant Thymus serpyllum L. The extracts obtained were tested regarding their chemical profile (content of phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins) and antioxidant activities. Subcritical water extract of Thymus serpyllum L. generally had the highest concentrations of the chemical bioactive compounds examined and the best antioxidant properties.
The potential of papaya leaf extract in controlling Ganoderma boninense
NASA Astrophysics Data System (ADS)
Tay, Z. H.; Chong, K. P.
2016-06-01
Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.
Tóth, Gergő; Barabás, Csenge; Tóth, Anita; Kéry, Ágnes; Béni, Szabolcs; Boldizsár, Imre; Varga, Erzsébet; Noszál, Béla
2016-06-01
In this study the polyphenolic composition of lilac flowers and fruits was determined for the first time. For the identification of compounds, accurate molecular masses and formulas, acquired by LC and ESI-TOF-MS and fragmentation pattern given by LC-ESI/MS/MS analyses, were used. Our chromatographic system in conjunction with tandem MS was found to be valuable in the rapid separation and determination of the multiple constituents in methanolic extracts of lilac flowers and fruits. Altogether 34 phenolics, comprising 18 secoiridoids, seven phenylpropanoids, four flavonoids and five low-molecular-weight phenols, were identified. As marker compounds two secoiridoids (oleuropein and nuzhenide), two phenylpropanoids (acteoside and echinacoside) and rutin were quantified by validated methods. As a result of quantitative analysis, it was confirmed that flowers contain significant amounts of phenylpropanoids (acteoside, 2.48%; echinacoside, 0.75%) and oleuropein (0.95%), while in fruits secoiridoid oleuropein (1.09%) and nuzhenide (0.42%) are the major secondary metabolites. The radical scavenging activities of the extracts and the constituents were investigated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] assays. Both extracts show remarkable antioxidant activities. Our results clearly show that lilac flowers and fruits are inexpensive, readily available natural sources of phenolic compounds with pharmacological and cosmetic applications. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Koldaş, Serkan; Demirtas, Ibrahim; Ozen, Tevfik; Demirci, Mehmet Ali; Behçet, Lütfi
2015-03-15
A detailed phytochemical analysis of Origanum vulgare L. ssp. viride (Boiss.) Hayek was carried out and the antioxidant activities of five different crude extracts were determined. The antiproliferative activities of the extracts were determined using the xCELLigence system (Real Time Cell Analyzer). Differences between the essential oil and volatile organic compound profiles of the plant were shown. The main component of the essential oil was caryophyllene oxide, while the main volatile organic compounds were sabinene and eucalyptol as determined by HS-GC/MS. Phenolic contents of the extracts were determined qualitatively and quantitatively by HPLC/TOF-MS. Ten phenolic compounds were found in the extracts from O. vulgare and Origanum acutidens: rosmarinic acid (in highest abundance), chicoric acid, caffeic acid, p-coumaric acid, gallic acid, quercetin, apigenin-7-glucoside, kaempferol, naringenin and 4-hydroxybenzaldehyde. This study provides first results on the antiproliferative and antioxidant properties and detailed phytochemical screening of O. vulgare ssp. viride (Boiss.) Hayek. © 2014 Society of Chemical Industry.
Phenolic Components and Antioxidant Activity of Wood Extracts from 10 Main Spanish Olive Cultivars.
Salido, Sofía; Pérez-Bonilla, Mercedes; Adams, Robert P; Altarejos, Joaquín
2015-07-29
The chemical composition and radical-scavenging activity of wood samples from 10 main Spanish olive cultivars were studied. The wood samples were collected during the pruning works from trees growing under the same agronomical and environmental conditions. The 10 ethyl acetate extracts were submitted to HPLC-DAD/ESI-MS analysis to determine the phenolic constituents. Seventeen compounds were identified (10 secoiridoids, 3 lignans, 2 phenol alcohols, 1 iridoid, and 1 flavonoid) by comparison with authentic samples. Significant quantitative and qualitative differences were found among olive cultivars. The lignan (+)-1-hydroxypinoresinol 1-O-β-d-glucopyranoside was the major compound in all olive cultivars, except in cultivars 'Farga' and 'Picual'. The multivariate analysis of all data revealed three sets of cultivars with similar compositions. Cultivars 'Gordal sevillana' and 'Picual' had the most distinct chemical profiles. With regard to the radical-scavenging activity, cultivar 'Picual', with oleuropein as the major phenolic, showed the highest activity (91.4 versus 18.6-32.7%).
MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.
Quoc, Le Pham Tan; Muoi, Nguyen Van
2016-01-01
The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.
Extraction of phenol in wastewater with annular centrifugal contactors.
Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen
2006-04-17
Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.
Taghizadeh, Seyedeh Faezeh; Davarynejad, Gholamhossein; Asili, Javad; Nemati, Seyed Hossein; Karimi, Gholamreza
2018-01-01
In this study, the levels and antioxidant activities of some secondary metabolites isolated from five pistachio ( Pistacia vera ) cultivars collected from four different geographical regions of Iran, were studied. Total phenolic compounds levels were determined by Folin-Ciocalteu method. Total flavonoid content was determined as AlCl 3 complex and expressed as mg of quercetin equivalents (QE)/g dry extract and total proantocyanidins content was expressed as mg of catechin equivalents (CA)/g dry extract. In order to evaluated the antioxidant activity of the compounds, DPPH and FRAP assays were used. The highest level of total phenols (156.42 mg GA/g DE), total flavonoids (130.94 mg QE/g DE) and total proantocyanidins (152.816 mg CA/g DE) were obtained in Akbari cultivar from Rafsanjan, followed by Badami-e-sefid and Ahmad aghaei. The lowest amount of total phenolic content (TPC), total flavonoid content (TFC) and total proanthocyanidin content (TPrAC) were found in Badami-e-sefid from Feizabad (128.140 mg GA/g DE, 93.176 mg QE/g DE and 118.870 mg CA/g DE, respectively). Also, a positive correlation (r 2 =0.9834) was found between antioxidant activity and total phenolic compounds. Pistachio increased their phytochemical compounds to contrast with abiotic stress. Our data could be useful for introducing special characteristics to the plants, and can be considered when planning a new breeding program or choosing a specific cultivar for a particular use.
Anti-inflammatory and antioxidant activities of extracts from Musa sapientum peel.
Phuaklee, Pathompong; Ruangnoo, Srisopa; Itharat, Arunporn
2012-01-01
Many parts of Musa sapientum Linn. (Musaceae) are used in Thai traditional medicine as drugs, food supplements and cosmetics. The banana peel is used as an astringent in foot care, the unripe fruit is used to treat diarrhea and, the ripe fruit is used as tonic. To evaluate anti-inflammatory and antioxidant activities of banana peel extracts obtained from different extraction methods and to determine their total phenolic content. Four extraction methods were used to extract unripe and ripe peels. Nitric oxide inhibitory and DPPH scavenging assays were used to evaluate anti-inflammatory and antioxidant activities, respectively. Folin-Ciocalteu's reagent was used to determine total phenolic content. The water extract of fresh ripe peel exhibited the most potent NO inhibitory activity (IC50 = 6.68 +/- 0.34 microg/ml), but apparently exhibited no antioxidant activity. The decoction extract of fresh unripe peel exhibited strong antioxidant activity as well as had the highest total phenolic compound. The antioxidant activity exhibited a correlation with the total phenolic content. This study supports the use of Musa sapientum peel in Thai Traditional Medicine for treatment of inflammatory-related diseases.
Lin, Lianzhu; Yang, Qingyun; Zhao, Kun; Zhao, Mouming
2018-07-01
Adlay bran free phenolic extract has been previously demonstrated to possess potent xanthine oxidase (XOD) inhibitory activity. The aims of this study were to characterize the free phenolic profile of adlay bran and investigate the structure-activity relationship, underlying mechanism and interaction of phenolic acids as XOD inhibitors. A total of twenty phenolics including ten phenolic acids, two coumarins, two phenolic aldedhyes and six flavonoids were identified in a phenolic compound-guided separation by UPLC-QTOF-MS/MS. Adlay bran free phenolic extract possessed strong XOD inhibitory activity related to hydroxycinnamic acids with methoxyl groups. The hydrogen bonding and hydrophobic interactions were the main forces in the binding of adlay phenolics to XOD. Sinapic acid, identified in adlay bran for the first time, possessed strong XOD inhibitory activity in a mixed non-competitive manner, and synergistic effects with other adlay phenolic acids at low concentrations, and would be a promising agent for preventing and treating hyperuricemia. Copyright © 2018. Published by Elsevier Ltd.
Benayad, Zakia; Gómez-Cordovés, Carmen; Es-Safi, Nour Eddine
2014-01-01
Fenugreek (Trigonella foenum-graecum) is a medicinal plant which is widely used for its pharmacological properties. In this study the phenolic composition of fenugreek crude seeds originating from Morocco has been investigated. Extraction was performed from defatted seeds by a hydromethanolic solution using an Accelerated Solvent Extractor. HPLC technique coupled to negative ion electrospray ionization mass spectrometry and diode array detection was employed to identify the polyphenol in the obtained extract. The obtained results allowed the detection of 32 phenolic compounds among which various flavonoid glycosides and phenolic acids have been tentatively identified on the basis of their UV and MS spectra, and comparisons with standards when available, as well as with literature data. A systematic study of the obtained MS spectra and the observed fragmentation showed that most of the identified compounds were acylated and non-acylated flavonoids with apigenin, luteolin and kaempferol as aglycons. Hydroxycinnamic acids mostly dominated by caffeic acid derivatives were also detected. The quantitative analysis of the identified compounds showed that the phenolic composition of the studied crude fenugreek seeds was predominantly acylated and non-acylated flavone derivatives with apigenin as the main aglycon. PMID:25393509
Gong, Xingchu; Li, Yao; Qu, Haibin
2014-11-14
The alkaline ethanol precipitation process is investigated as an example of a technique for the removal of tannins extracted from Salviae miltiorrhizae Radix et Rhizoma for the manufacture of Danshen injection. More than 90% of the tannins can be removed. However, the recoveries of danshensu, rosmarinic acid, and salvianolic acid B were less than 60%. Total tannin removal increased as the refrigeration temperature decreased or the amount of NaOH solution added increased. Phenolic compound recoveries increased as refrigeration temperature increased or the amount of NaOH solution added decreased. When operated at a low refrigeration temperature, a relative high separation selectivity can be realized. Phenolic compound losses and tannin removal were mainly caused by precipitation. The formation of phenol salts, whose solubility is small in the mixture of ethanol and water used, is probably the reason for the precipitation. A model considering dissociation equilibrium and dissolution equilibrium was established. Satisfactory correlation results were obtained for phenolic compound recoveries and total tannin removal. Two important parameters in the model, which are the water content and pH value of alkaline supernatant, are suggested to be monitored and controlled to obtain high batch-to-batch consistency.
Benayad, Zakia; Gómez-Cordovés, Carmen; Es-Safi, Nour Eddine
2014-11-11
Fenugreek (Trigonella foenum-graecum) is a medicinal plant which is widely used for its pharmacological properties. In this study the phenolic composition of fenugreek crude seeds originating from Morocco has been investigated. Extraction was performed from defatted seeds by a hydromethanolic solution using an Accelerated Solvent Extractor. HPLC technique coupled to negative ion electrospray ionization mass spectrometry and diode array detection was employed to identify the polyphenol in the obtained extract. The obtained results allowed the detection of 32 phenolic compounds among which various flavonoid glycosides and phenolic acids have been tentatively identified on the basis of their UV and MS spectra, and comparisons with standards when available, as well as with literature data. A systematic study of the obtained MS spectra and the observed fragmentation showed that most of the identified compounds were acylated and non-acylated flavonoids with apigenin, luteolin and kaempferol as aglycons. Hydroxycinnamic acids mostly dominated by caffeic acid derivatives were also detected. The quantitative analysis of the identified compounds showed that the phenolic composition of the studied crude fenugreek seeds was predominantly acylated and non-acylated flavone derivatives with apigenin as the main aglycon.
Poontawee, Warut; Natakankitkul, Surapol; Wongmekiat, Orawan
2015-01-01
Supercritical fluid extraction (SFE) has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae), or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae) were extracted using supercritical carbon dioxide (SC-CO2) and conventional solvents (ethanol, water). The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP) assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD) revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae), with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant. PMID:25977832
Inhibition of protein glycation by extracts of culinary herbs and spices.
Dearlove, Rebecca P; Greenspan, Phillip; Hartle, Diane K; Swanson, Ruthann B; Hargrove, James L
2008-06-01
We tested whether polyphenolic substances in extracts of commercial culinary herbs and spices would inhibit fructose-mediated protein glycation. Extracts of 24 herbs and spices from a local supermarket were tested for the ability to inhibit glycation of albumin. Dry samples were ground and extracted with 10 volumes of 50% ethanol, and total phenolic content and ferric reducing antioxidant potential (FRAP) were measured. Aliquots were incubated in triplicate at pH 7.4 with 0.25 M fructose and 10 mg/mL fatty acid-free bovine albumin. Fluorescence at 370 nm/440 nm was used as an index of albumin glycation. In general, spice extracts inhibited glycation more than herb extracts, but inhibition was correlated with total phenolic content (R(2) = 0.89). The most potent inhibitors included extracts of cloves, ground Jamaican allspice, and cinnamon. Potent herbs tested included sage, marjoram, tarragon, and rosemary. Total phenolics were highly correlated with FRAP values (R(2) = 0.93). The concentration of phenolics that inhibited glycation by 50% was typically 4-12 microg/mL. Relative to total phenolic concentration, extracts of powdered ginger and bay leaf were less effective than expected, and black pepper was more effective. Prevention of protein glycation is an example of the antidiabetic potential for bioactive compounds in culinary herbs and spices.
Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts.
Bigović, Dubravka; Savikin, Katarina; Janković, Teodora; Menković, Nebojsa; Zdunić, Gordana; Stanojković, Tatjana; Djurić, Zorica
2011-06-01
Flowers of Helichrysum plicatum were extracted under different experimental conditions, and their antioxidant activity was determined by DPPH radical scavenging assay. Extracts obtained with higher concentration of ethyl acetate (90% or 100%) were found to contain the greatest amount of total phenolics (> 250 mg gallic acid equivalents/g of dried extract), and high correlation between total phenolic content and antiradical activity was observed (r = -0.79). Based on the total phenolic content and antiradical activity, some extracts were selected for investigation of cytotoxic activity toward PC3, HeLa and K562 human cancer cell lines in vitro. All tested extracts exhibited moderate activity against HeLa cells (41.9-42.1 microg/mL), whereas the extract obtained with 100% ethyl acetate was the most active against K562 and PC3 cell lines (25.9 and 39.2 microg/mL, respectively). Statistical analysis revealed significant correlation between total phenolic content and cytotoxic activity against PC3 and K562 cells. HPLC identification of phenolic compounds from the extracts indicated the presence of apigenin, naringenin and kaempferol as free aglycones, and glycosides of apigenin, naringenin, quercetin and kaempferol. Among aglycones, kaempferol displayed moderate cytostatic activity against all cell lines (24.8-64.7 microM).
Spice phenolics inhibit human PMNL 5-lipoxygenase.
Prasad, N Satya; Raghavendra, R; Lokesh, B R; Naidu, K Akhilender
2004-06-01
A wide variety of phenolic compounds and flavonoids present in spices possess potent antioxidant, antimutagenic and anticarcinogenic activities. We examined whether 5-lipoxygenase (5-LO), the key enzyme involved in biosynthesis of leukotrienes is a possible target for the spices. Effect of aqueous extracts of turmeric, cloves, pepper, chili, cinnamon, onion and also their respective active principles viz., curcumin, eugenol, piperine, capsaicin, cinnamaldehyde, quercetin, and allyl sulfide were tested on human PMNL 5-LO activity by spectrophotomeric and HPLC methods. The formation of 5-LO product 5-HETE was significantly inhibited in a concentration-dependent manner with IC(50) values of 0.122-1.44 mg for aqueous extracts of spices and 25-83 microM for active principles, respectively. The order of inhibitory activity was of quercetin>eugenol>curcumin>cinnamaldehyde>piperine>capsaicin>allyl sulfide. Quercetin, eugenol and curcumin with one or more phenolic ring and methoxy groups in their structure showed high inhibitory effect, while the non-phenolic spice principle allyl sulfide showed least inhibitory effect on 5-LO. The inhibitory effect of quercetin, curcumin and eugenol was similar to that of synthetic 5-LO inhibitors-phenidone and NDGA. Moreover, the inhibitory potency of aqueous extracts of spice correlated with the active principles of their respective spices. The synergistic or antagonistic effect of mixtures of spice active principles and spice extracts were investigated and all the combinations of spice active principles/extracts exerted synergistic effect in inhibiting 5-LO activity. These findings clearly suggest that phenolic compounds present in spices might have physiological role in modulating 5-LO pathway.
Intestinal absorption of hawthorn flavonoids--in vitro, in situ and in vivo correlations.
Zuo, Zhong; Zhang, Li; Zhou, Limin; Chang, Qi; Chow, Moses
2006-11-25
Our previous studies identified hyperoside (HP), isoquercitrin (IQ) and epicatechin (EC) to be the major active flavonoid components of the hawthorn phenolic extract from hawthorn fruits demonstrating inhibitory effect on in vitro Cu(+2)-mediated low density lipoproteins oxidation. Among these three hawthorn flavonoids, EC was the only one detectable in plasma after the oral administration of hawthorn phenolic extract to rats. The present study aims to investigate the intestinal absorption mechanisms of these three hawthorn flavonoids by in vitro Caco-2 monolayer model, rat in situ intestinal perfusion model and in vivo pharmacokinetics studies in rats. In addition, in order to investigate the effect of the co-occurring components in hawthorn phenolic extract on the intestinal absorption of these three major hawthorn flavonoids, intestinal absorption transport profiles of HP, IQ and EC in forms of individual pure compound, mixture of pure compounds and hawthorn phenolic extract were studied and compared. The observations from in vitro Caco-2 monolayer model and in situ intestinal perfusion model indicated that all three studied hawthorn flavonoids have quite limited permeabilities. EC and IQ demonstrated more extensive metabolism in the rat in situ intestinal perfusion model and in vivo study than in Caco-2 monolayer model. Moreover, results from the Caco-2 monolayer model, rat in situ intestinal perfusion model as well as the in vivo pharmacokinetics studies in rats consistently showed that the co-occurring components in hawthorn phenolic extract might not have significant effect on the intestinal absorption of the three major hawthorn flavonoids studied.
Jagtap, Umesh B; Panaskar, Shrimant N; Bapat, V A
2010-06-01
The antioxidant capacity of jackfruit (Artocarpus heterophyllus Lam. Fam. Moracae) fruit pulp (JFP) obtained from Western Ghats India was determined by evaluating the scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing power assays and N, N-dimethyl-p-phenylendiamine (DMPD) radical cation decolorization assay. JFP was analyzed for total phenolic content (TPC) and total flavonoids content (TFC). The ethanol and water are the best solvents for the extracting phenols and flavonoids from the JFP. The antioxidant activities of JFP extracts were correlated with the total phenolic and flavonoids content. The results indicated that the jackfruit pulp is one natural source of antioxidant compounds.
NASA Astrophysics Data System (ADS)
Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester
2017-11-01
Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid at a temperature of 40 °C is Hexanal (6.04%), Butan-2-one, 4-(3-hydroxy-2-methoxyphenyl) (27.95%), [6]-Paradol (0.73%), Gingerol (8.22%), Bis (2-ethylhexyl) phthalate (1.62%), α-Citral (12.14%) and α-zingiberene (2.90%). The main component extracts of Zingiber officinale Roscoe by maceration is Hexanal (10.71%), Decanal (3.74%), Butan-2-one, 4-(3-hydroxy-2-methoxyphenyl) (38.33%), Gingerol (4.56%) and Zingiberene (0.99).
Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit.
Romero, Concepción; Medina, Eduardo; Mateo, Mª Antonia; Brenes, Manuel
2017-04-01
Olive leaves and fruit possess bioactive substances such as phenolic compounds and triterpenic acids that can be obtained from olive by-products generated during olive oil extraction. The aim of the present study was the characterization and quantification of these compounds in Picual and Arbequina cultivars from different locations and throughout two seasons in both olive leaves and fruit. The major phenolic compound identified in the leaves was oleuropein, and the total content of phenolic compounds in this material reached 70 g kg -1 fresh weight. The leaves were also rich in triterpenic acids (20 g kg -1 fresh weight), with oleanolic acid being the most concentrated among them. With regard to olives, oleuropein and demethyloleuropein were the main phenolic compounds in the pulp of Picual and Arbequina cultivars, and the total concentration of these phenolic compounds reached 3.5% fresh weight. Olives can also be an important source of triterpenic acids, although this is mainly the skin part, where the maslinic and oleanolic acids are concentrated. Olive leaves can contain up to 70 g kg -1 phenolic compounds and 20 g kg -1 triterpenic acids, and olive fruit can contain up to 35 g kg -1 of the former and 3 g kg -1 of the latter. It must also be noted that this level was constant both between seasons and orchard locations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Inhibition of foodborne bacteria by antibacterial coatings printed onto food packaging films.
Widsten, P; Mesic, B B; Cruz, C D; Fletcher, G C; Chycka, M A
2017-07-01
Films containing antibacterial compounds could be used for packaging perishable foods such as fresh fish and meat for sea freighting over long distances. However, existing commercialised options (films with nanosilver zeolites or wasabi extract) are only permitted for food contact in certain regions and films containing alternative antibacterial ingredients are required e.g. for exports to Europe. Certain non-volatile phenolic plant extracts have shown promising antibacterial activity against a wide range of foodborne bacteria in in vitro assays and when integrated in coatings for perishable foods such as fish and meat. Extracts rich in gallotannins tend to show stronger antibacterial effects than other phenols such as flavonoids. Such extracts could be coated onto commercial barrier films by means of flexographic printing-a more industrially feasible option than rod coating or solvent casting typically used in antibacterial coating research. The goal of the present work was to investigate the antibacterial effect of printed latex coatings containing extracts rich in gallotannins and other types of phenolic compounds against 16 common spoilage and pathogenic bacteria of fish and meat. The largest zones of inhibition in disk diffusion assays were obtained with plastic films with coatings containing tannic acid alone, followed by tannic acid with phenolic-rich extracts of feijoa skin or mango seed. Significant inhibition was seen for all bacteria. This study shows that coatings with gallotannins as the main active ingredient can be printed onto commercial barrier films to control the bacteria that limit the shelf-life of fresh fish and meat.
2011-01-01
Background Food preservation is basically done to preserve the natural characteristics and appearance of the food and to increase the shelf life of food. Food preservatives in use are natural, chemical and artificial. Keeping in mind the adverse effects of synthetic food preservatives, there is a need to identify natural food preservatives. The aims of this study were to evaluate in vitro antioxidant and antimicrobial activities of Dragon's blood resin obtained from Dracaena cinnabari Balf f., with a view to develop safer food preservatives. Methods In this study, three solvents of varying polarity were used to extract and separate the medium and high polarity compounds from the non-polar compounds of the Dragon's blood resin. The extracts were evaluated for their antimicrobial activity against the food borne pathogens. The antioxidant activities of the extracts were assessed using DPPH and ABTS radical scavenging, FRAP, metal chelating and reducing power assays. Total phenolics, flavonoids and flavonols of extracts were also estimated using the standard methods. Results Phytochemical analysis of extracts revealed high phenolic content in CH2Cl2 extract of resin. Free radical scavenging of CH2Cl2 extract was found to be highest which is in good correlation with its total phenolic content. All test microorganisms were also inhibited by CH2Cl2 extract. Conclusions Our result provide evidence that CH2Cl2 extract is a potential source of natural antioxidant compounds and exhibited good inhibitory activity against various food borne pathogens. Thus, CH2Cl2 extract of Dragon's blood resin could be considered as possible source of food preservative. PMID:21329518
Khemakhem, Ibtihel; Ahmad-Qasem, Margarita Hussam; Catalán, Enrique Barrajón; Micol, Vicente; García-Pérez, Jose Vicente; Ayadi, Mohamed Ali; Bouaziz, Mohamed
2017-01-01
In this study, the effect of temperature and ultrasonic application on extraction kinetics of polyphenols from dried olive leaf was investigated. Conventional (CVE) and ultrasonic-assisted extraction (UAE) were performed at 10, 20, 30, 50 and 70°C using water as solvent. Extracts were characterized by measuring the total phenolic content, the antioxidant capacity and the oleuropein content (HPLC-DAD/MS-MS). Moreover, Naik's model was used to mathematically describe the extraction kinetics. The experimental results showed that phenolic extraction was faster in UAE (ultrasonic-assisted extraction) than in CVE (conventional extraction), being extraction kinetics satisfactorily described using Naik model (include VAR>98%). Besides, the total phenolic content, the antioxidant capacity and the oleuropein content were significantly (p<0.05) improved by increasing the temperature in both CVE and UAE. Oleuropein content reached 6.57±0.18 being extracted approximately 88% in the first minute for UAE experiments. Copyright © 2016 Elsevier B.V. All rights reserved.
Hakeem Said, Inamullah; Gencer, Selin; Ullrich, Matthias S; Kuhnert, Nikolai
2018-06-01
Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modulate their biological activities. Many fundamental questions still need to be addressed to understand how the gut microbiota-diet interactions affect human health. Herein, a UHPLC-QTOF mass spectrometry-based method for the quantification of uptake and determination of intracellular bacterial concentrations of dietary phenolics from coffee and tea was developed. Quantitative uptake data for selected single purified phenolics were determined. The specific uptake from mixtures containing up to four dietary relevant compounds was investigated to assess changes of uptake parameters in a mixture model system. Indeed, perturbation of bacteria by several compounds alters uptake parameter in particular t max . Finally, model bacteria were dosed with complex dietary mixtures such as diluted tea or coffee extracts. The uptake kinetics of the twenty most abundant phenolics was quantified and the findings are discussed. For the first time, quantitative data on in-vitro uptake of dietary phenolics from food matrices were obtained indicating a time-dependent differential uptake of nutritional compounds. Copyright © 2018. Published by Elsevier Ltd.
Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves.
Shang, Ya Fang; Kim, Sang Min; Um, Byung-Hun
2014-07-01
To develop an efficient green extraction approach for recovering bioactive compounds from natural plants, the potential of using pressurised liquid extraction (PLE) was examined on black bamboo (Phyllostachys nigra) leaves, with ethanol/water as solvents. The superheated PLE process showed a higher recovery of most constituents and antioxidative activity, compared to reflux extraction, with a significantly improved recovery of the total phenolic (TP) and flavonoid (TF) content and DPPH radical scavenging ability. For a broad range of ethanol aqueous solutions and temperatures, 50% EtOH and 200°C (static time: 25min) gave the best performance, in terms of the TP and TF (75% EtOH) content yield and DPPH scavenging ability (25% EtOH). Under the optimised extraction conditions, eight main antioxidative compounds were isolated and identified with HPLC-ABTS(+) assay guidance and assessed for radical scavenging activity. The superheated extraction process for black bamboo leaves enhanced the antioxidant properties by increasing the extraction of the phenolic components. Copyright © 2013 Elsevier Ltd. All rights reserved.
Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun
2017-02-01
Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song
2015-05-01
A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vithana, Mekhala Dk; Singh, Zora; Johnson, Stuart K
2018-03-01
Mango fruit (Mangifera indica L.) is renowned for its pleasant taste and as a rich source of health beneficial compounds. The aim of this study was to investigate the changes in concentrations of health-promoting compounds, namely ascorbic acid, carotenoids, antioxidants, lupeol, mangiferin, total phenols and individual phenolic acids, as well as ethylene production and respiration rates during climacteric ripening in 'Kensington Pride' and 'R2E2' mango fruit. The climacteric ethylene and respiration peaks were noted on the third day of the fruit ripening period. The concentrations of total carotenoids in the pulp, total antioxidants in both pulp and peel, and total phenols of the peel, lupeol and mangiferin were significantly elevated, whereas the concentration of ascorbic acid declined during post-climacteric ripening. Gallic, chlorogenic and vanillic acids were identified as the major phenolic acids in both pulp and peel of 'Kensington Pride' and 'R2E2' mangoes. The concentrations of phenolic acids (gallic, chlorogenic, vanillic, ferulic and caffeic acids) also increased during the post-climacteric phase. The concentrations of all phenolic compounds were several-fold higher in the peel than pulp. Mangoes at post-climacteric ripening phase offer the highest concentrations of health-promoting compounds. Peel, at this stage of fruit ripening, could be exploited as a good source for extraction of these compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel
2002-05-08
The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.
Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte
2015-12-11
This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source.
Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte
2015-01-01
This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source. PMID:26690454
Ramos-Escudero, Fernando; Muñoz, Ana María; Alvarado-Ortíz, Carlos; Alvarado, Ángel
2012-01-01
Abstract This study was designed to determine the contents of total polyphenols, flavonoids, flavonols, flavanols, and anthocyanins of purple corn (Zea mays L.) extracts obtained with different methanol:water concentrations, acidified with 1% HCl (1 N). Another objective was to determine the antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and deoxyribose assay, individual phenolic compounds by high-performance liquid chromatography (HPLC), and endogenous antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and total peroxidase [TPX]) activity and lipid peroxidation activity (thiobarbituric acid–reactive substances [TBARS] assay) in isolated mouse organs. Overall, the highest total content of polyphenols, anthocyanins, flavonoids, flavonols, and flavanols was obtained with the 80:20 methanol:water extract, acidified with 1% HCl (1 N). The 50% inhibitory concentration values obtained by the DPPH and ABTS assays with this extract were 66.3 μg/mL and 250 μg/mL, respectively. The antioxidant activity by the FRAP assay was 26.1 μM Trolox equivalents/g, whereas the deoxyribose assay presented 93.6% inhibition. Because of these results, the 80:20 methanol:water extract, acidified with 1% HCl (1 N), was used for the remaining tests. Eight phenolic compounds were identified by HPLC: chlorogenic acid, caffeic acid, rutin, ferulic acid, morin, quercetin, naringenin, and kaempferol. Furthermore, it was observed that the purple corn extract was capable of significantly reducing lipid peroxidation (lower malondialdehyde [MDA] concentrations by the TBARS assay) and at the same time increasing endogenous antioxidant enzyme (CAT, TPX, and SOD) activities in isolated mouse kidney, liver, and brain. On the basis of the results, it was concluded that the purple corn extract contained various bioactive phenolic compounds that exhibited considerable in vitro antioxidant activity, which correlated well with the decreased MDA formation and increase in activity of endogenous antioxidant enzymes observed in the isolated mouse organs. This warrants further in vivo studies with purple corn extracts to assess its antioxidant activity and other bioactivities. PMID:22082063
Ramos-Escudero, Fernando; Muñoz, Ana María; Alvarado-Ortíz, Carlos; Alvarado, Ángel; Yáñez, Jaime A
2012-02-01
This study was designed to determine the contents of total polyphenols, flavonoids, flavonols, flavanols, and anthocyanins of purple corn (Zea mays L.) extracts obtained with different methanol:water concentrations, acidified with 1% HCl (1 N). Another objective was to determine the antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and deoxyribose assay, individual phenolic compounds by high-performance liquid chromatography (HPLC), and endogenous antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and total peroxidase [TPX]) activity and lipid peroxidation activity (thiobarbituric acid-reactive substances [TBARS] assay) in isolated mouse organs. Overall, the highest total content of polyphenols, anthocyanins, flavonoids, flavonols, and flavanols was obtained with the 80:20 methanol:water extract, acidified with 1% HCl (1 N). The 50% inhibitory concentration values obtained by the DPPH and ABTS assays with this extract were 66.3 μg/mL and 250 μg/mL, respectively. The antioxidant activity by the FRAP assay was 26.1 μM Trolox equivalents/g, whereas the deoxyribose assay presented 93.6% inhibition. Because of these results, the 80:20 methanol:water extract, acidified with 1% HCl (1 N), was used for the remaining tests. Eight phenolic compounds were identified by HPLC: chlorogenic acid, caffeic acid, rutin, ferulic acid, morin, quercetin, naringenin, and kaempferol. Furthermore, it was observed that the purple corn extract was capable of significantly reducing lipid peroxidation (lower malondialdehyde [MDA] concentrations by the TBARS assay) and at the same time increasing endogenous antioxidant enzyme (CAT, TPX, and SOD) activities in isolated mouse kidney, liver, and brain. On the basis of the results, it was concluded that the purple corn extract contained various bioactive phenolic compounds that exhibited considerable in vitro antioxidant activity, which correlated well with the decreased MDA formation and increase in activity of endogenous antioxidant enzymes observed in the isolated mouse organs. This warrants further in vivo studies with purple corn extracts to assess its antioxidant activity and other bioactivities.
Carrasco-Pancorbo, Alegría; Arráez-Román, David; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2006-06-01
We describe the first analytical method involving SPE and CZE coupled to ESI-IT MS (CZE-ESI-MS) used to identify and characterize phenolic compounds in olive oil samples. The SPE, CZE and ESI-MS parameters were optimized in order to maximize the number of phenolic compounds detected and the sensitivity of their determination. To this end we have devised a detailed method to find the best conditions for CE separation and the detection by MS of the phenolic compounds present in olive oil using a methanol-water extract of Picual extra-virgin olive oil (VOO). Electrophoretic separation was carried out using an aqueous CE buffer system consisting of 60 mM NH(4)OAc at pH 9.5 with 5% of 2-propanol, a sheath liquid containing 2-propanol/water 60:40 v/v and 0.1% v/v triethylamine. This method offers to the analyst the chance to study important phenolic compounds such as phenolic alcohols (tyrosol (TY), hydroxytyrosol (HYTY) and 2-(4-hydroxyphenyl)ethyl acetate), lignans ((+)-pinoresinol and (+)-1-acetoxypinoresinol), complex phenols (ligstroside aglycon (Lig Agl), oleuropein aglycon, their respective decarboxylated derivatives and several isomeric forms of these (dialdehydic form of oleuropein aglycon, dialdehydic form of ligstroside aglycon, dialdehydic form of decarboxymethyl elenolic acid linked to HYTY, dialdehydic form of decarboxymethyl elenolic acid linked to TY) and 10-hydroxy-oleuropein aglycon) and one other phenolic compound (elenolic acid) in extra-VOO by using a simple SPE before CE-ESI-MS analysis.
Pérez-Prieto, Luis J; López-Roca, Jose M; Martínez-Cutillas, Adrián; Pardo-Mínguez, Francisco; Gómez-Plaza, Encarna
2003-08-27
The extraction rate of furfuryl aldehydes, guaiacol, and 4-methylguaiacol, cis- and trans-oak lactone, and vanillin and the formation rate of furfuryl alcohol and the volatile phenols 4-ethylguaiacol and 4-ethylphenol have been studied in wines matured in different capacity oak barrels (220, 500, and 1000 L). Also, the behavior of these compounds during 1 year of wine bottle storage was followed. The lactones were extracted at a linear rate with large differences that depended on barrel volume. Those compounds related to oak toasting (guaiacol, 4-methylguaiacol, furfuryl aldehydes, and vanillin) seemed to be extracted faster during the first days of oak maturation except for vanillin, which required at least 3 months to accumulate in the wine. The volatile phenols, 4-ethylphenol and 4-ethylguaiacol, were formed in large quantities after the first 90 days of oak maturation, coinciding with the end of spring and beginning of summer. Wines matured in 1000-L oak barrels resulted in the lowest levels of volatile compound accumulation. During bottle storage, some compounds decreased in their concentration (5-methylfurfural, vanillin), others experienced increases in their levels (lactones, furfural, 4-ethylguaiacol, 4-ethylphenol), and the concentration of other compounds hardly changed (guaiacol, furfuryl alcohol).
Saleh, Rashad M; Kabli, Saleh A; Al-Garni, Saleh M; Al-Ghamdi, Maryam A; Abdel-Aty, Azza M; Mohamed, Saleh A
2018-05-04
The phenolic content of methanolic and water extracts of ginger fermented by Trichoderma spp. during solid state fermentation (SSF) was detected as compared with unfermented ginger. The total phenolic content of fermented ginger increased several times. The highest phenolic content of ginger was detected after SSF by T. viride. The optimal physiological conditions for the maximum production of the phenolic content and β-glucosidase activity of fermented ginger by T. viride were detected at day 7 incubation, pH 6.0, 30°C and 30% moisture. There are consistent between the maximum production of β-glucosidase and phenolic content. The SSF of ginger by T. viride greatly enhanced the antioxidant potency of phenolic compounds by using DPPH and ABTS assays. Potent antibacterial activity was appeared by phenolic compounds of fermented ginger against all the tested human-pathogenic bacteria. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Olorundare, O F; Msagati, T A M; Krause, R W M; Okonkwo, J O; Mamba, B B
2015-04-01
The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84-98.49%, 80.75-97.11%, and 78.27-97.08% for BPA, o-NTP, and PCP, respectively). The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes.
Frontela, Carmen; Ros, Gaspar; Martínez, Carmen; Sánchez-Siles, Luis M; Canali, Raffaella; Virgili, Fabio
2011-01-30
The enrichment of fruit juices with concentrated polyphenolic extracts is an expedient strategy to compensate possible phenolic loss through gastrointestinal processing. Pycnogenol, a standardised procyanidin-rich extract from pine bark, has been proposed as a potential candidate for polyphenol enrichment of foods. In this study the effects of in vitro digestion on the phenolic profile of fruit juices enriched with Pycnogenol were investigated. After in vitro digestion the level of detectable total phenolic compounds (expressed as gallic acid equivalent) was higher in both pineapple and red fruit juices enriched with Pycnogenol than in non-enriched commercial juices. Five phenolic monomeric compounds were identified by high-performance liquid chromatography, namely chlorogenic acid, caffeic acid, ferulic acid, gallic acid and taxifolin, the last two being predominant. In vitro digestion of both Pycnogenol-enriched pineapple and red fruit juices led to a significant (P < 0.05) increase in detectable chlorogenic and ferulic acids, indicating that hydrolysis of more complex molecules occurs. On the other hand, in vitro digestion of non-enriched juices was associated with a decrease in gallic and caffeic acids in pineapple juice and with a decrease in ferulic acid in red fruit juice. In no case did in vitro digestion increase the amount of detectable phenolic compounds in non-enriched juices. The stability of Pycnogenol after in vitro gastrointestinal digestion makes it a good choice for phenolic enrichment of fruit juices. 2010 Society of Chemical Industry.
Bioactive compounds and antioxidant activities of some cereal milling by-products.
Smuda, Sayed Saad; Mohsen, Sobhy Mohamed; Olsen, Karsten; Aly, Mohamed Hassan
2018-03-01
The present study was performed to evaluate the phytochemicals profiles of some cereal milling by-products such as wheat (bran, germ and shorts), rice (bran, germ and husk) and corn (bran, germ and germ meal) to assess their potentiality as bioactive compounds sources. Distilled water, ethanol, methanol, and acetone separately were used as solvents for the extraction of phytochemicals compounds. The antioxidant activity (AOA), total phenolics content (TPC), and total flavonoids content (TFC) of the extracts were investigated using various in vitro assays. The results showed that tannins content was ranged from 113.4 to 389.5 (mg/100 g sample).The study revealed that TPC and TFC of cereal by-products extracts were significantly different for various solvents. TPC content varied from 366.1 to 1924.9 mg/100 g and TFC content varied from 139.3 to 681.6 mg/100 g. High carotenoids content was observed for corn germ meal and minimum for wheat bran. Distilled water, ethanol and methanol extracts showed significantly different antioxidant activity. Significant variations were observed with regard to AOA of different cereal by-products by using various solvents. The ethanol and methanol were observed to be the best solvents to extract phenolic compounds and antioxidant activity, while acetone extract showed less efficiency. Also, the cereal milling by-products were rich in bioactive compounds and could be used as a value added products.
2013-01-01
Background The global resurgence of tuberculosis is a significant threat. Lamiaceae members have been used in folk remedies for centuries. This study was designed to assess the in-vitro antimycobacterial activity of eighteen crude extracts from six plants (Lamiaceae) and to characterize their phenolic and flavonoid compounds. Methods Six Turkish medicinal plants of the family Lamiaceae (Stachys tmolea Boiss., Stachys thirkei C. Koch, Ballota acetabulosa (L.) Benth., Thymus sipthorpii Benth., Satureja aintabensis P.H. Davis, and Micromeria juliana (L.) Benth. ex Reich.) were collected in 2009 – 2010. Dried and crushed plant samples were subjected to sequential extraction with petroleum ether, ethyl acetate, and methanol in order of increasing polarity. A broth microdilution method was employed to screen extracts against four mycobacterial strains of Mycobacterium tuberculosis. Phenolic and flavonoid compounds were characterized by liquid chromatography–mass spectrometry. Results S. aintabensis, T. sibthorpii, and M. juliana were found to develop considerable activity against the four strains of M. tuberculosis with the minimal inhibitory concentrations value of 12.5-100 μg/ml. S. aintabensis and T. sibthorpii extracts killed M. tuberculosis with the minimum bactericidal concentration value of 50–800 μg/ml. On the basis of these prominent antimycobacterial activity, we suggest that they could be a source of natural anti-tuberculosis agents. Conclusion S. aintabensis and T. sibthorpii showed activity by killing Mycobacteria strains. The major phenolic compound was rosmarinic for T. sibthorpii and S. aintabensis. Flavonoids might be “a modal” for the drug design. PMID:24359458
Moukette Moukette, Bruno; Constant Anatole, Pieme; Nya Biapa, Cabral Prosper; Njimou, Jacques Romain; Ngogang, Jeanne Yonkeu
2015-01-01
Considerations on antioxidants derived from plants have continuously increased during this decade because of their beneficial effects on human health. In the present study we investigated the free radical scavenging properties of extracts from Piper guineense ( P. guineense ) and their inhibitory potentials against oxidative mediated ion toxicity. The free radical quenching properties of the extracts against [1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS•), hydroxyl radical (HO•), nitric oxide (NO•)] radical and their antioxidant potentials by FRAP and phosphomolybdenum were determined as well as their protective properties on liver enzymes. The phenolic profile was also investigated by HPLC. The results obtained, revealed that the extracts significantly inhibited the DPPH, NO, HO and ABTS radicals in a concentration depending manner. They also showed a significant ferrous ion chelating ability through FRAP and phosphomolybdenum antioxidant potential. Their polyphenol contents varied depending on the type of extracts and the solvent used. The hydroethanolic extracts (FFH) and the ethanolic extracts (FFE) of P. guineense leaves showed the higher level of phenolic compounds respectively of 21.62 ± 0.06 mg caffeic acid/g dried extract (CAE/g DE) and 19.01 ± 0.03 CAE/g DE. The HPLC phenolic compounds profile revealed a higher quantity of Eugenol, quercetin, rutin and catechin in the stem than in the leaves. The presence of these molecules could be responsible of the protective potentials of P. guineense extracts against lipid peroxidation and SOD, catalase and peroxidase. In conclusion, P. guineense extracts demonstrated significant antioxidant property and may be used as a prospective protector against metal related toxicity.
Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D
2015-06-01
Sustainable agriculture has a pending goal in the revalorization of agrofood residues. Wine lees are an abundant residue in the oenological industry. This residue, so far, has been used to obtain tartaric acid or pigments but not for being qualitatively characterized as a source of polar and mid-polar compounds such as flavonoids, phenols and essential amino acids. Lees extracts from 11 Spanish wineries have been analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in high resolution mode. The high-resolution power of LC-MS/MS has led to the tentative identification of the most representative compounds present in wine lees, comprising primary amino acids, anthocyans, flavanols, flavonols, flavones and non-flavonoid phenolic compounds, among others. Attending to the profile and content of polar and mid-polar compounds in wine lees, this study underlines the potential of wine lees as an exploitable source to isolate interesting compounds. Copyright © 2015 John Wiley & Sons, Ltd.
Tian, Huan; Yang, Fei-Fei; Liu, Chun-Yu; Liu, Xin-Min; Pan, Rui-Le; Chang, Qi; Zhang, Ze-Sheng; Liao, Yong-Hong
2017-01-21
Daylily flowers, the flower and bud parts of Hemerocallis citrina or H. fulva, are well known as Wang-You-Cao in Chinese, meaning forget-one's sadness plant. However, the major types of active constituents responsible for the neurological effects remain unclear. This study was to examine the protective effects of hydroalcoholic extract and fractions and to identify the active fractions. The extract of daylily flowers was separated with AB-8 resin into different fractions containing non-phenolic compounds, phenolic acid derivatives and flavonoids as determined using UPLC-DAD chromatograms. The neuroprotective activity was measured by evaluating the cell viability and lactate dehydrogenase release using PC12 cell damage models induced by corticosterone and glutamate. The neurological mechanisms were explored by determining their effect on the levels of dopamine (DA), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), noradrenaline (NE) and acetylcholine (ACh) in the cell culture medium measured using an LC-MS/MS method. Pretreatment of PC12 cells with the extract and phenolic fractions of daylily flowers at concentrations ranging from 0.63 to 5 mg raw material/mL significantly reversed corticosterone- and glutamate-induced neurotoxicity in a dose-dependent manner. The fractions containing phenolic acid derivatives (0.59% w/w in the flowers) and/or flavonoids (0.60% w/w) exerted similar dose-dependent neuroprotective effect whereas the fractions with non-phenolic compounds exhibited no activity. The presence of phenolic acid derivatives in the corticosterone- and glutamate-treated PC12 cells elevated the DA level in the cell culture medium whereas flavonoids resulted in increased ACH and 5-HT levels. Phenolic acid derivatives and flavonoids were likely the active constituents of daylily flowers and they conferred a similar extent of neuroprotection, but affected the release of neurotransmitters in a different manner.
da Silva, Isnandia Andréa Almeida; da Silva, Tania Maria Sarmento; Camara, Celso Amorim; Queiroz, Neide; Magnani, Marciane; de Novais, Jaílson Santos; Soledade, Luiz Edmundo Bastos; Lima, Edeltrudes de Oliveira; de Souza, Antonia Lucia; de Souza, Antonio Gouveia
2013-12-15
In this study honey samples produced by Melipona (Michmelia) seminigra merrillae, collected in seven counties distributed in the central and southern region of Amazonas state in Brazil, were analysed for their botanical origin, content and profile of phenolic compounds, and antioxidant and antimicrobial activities. Twenty-two pollen types were identified. The total phenolic content ranged from 17 to 66 mg GAE/g of extract; the highest contents were found in honeys produced from pollen types such as Clidemia and Myrcia. The antioxidant activity was higher in the samples that contained higher quantities of phenolic compounds. In relation to the antibacterial activity, samples CAD3, CAD4 and SAD3 presented the best results. Fourteen phenolic compounds were determined. Among them, we identified the flavonoid taxifolin, which has not previously been described in honeys from stingless bees, and we report the identification of catechol in Brazilian honey samples for the first time. Copyright © 2013 Elsevier Ltd. All rights reserved.
Phenolic content, antibacterial and antioxidant activities of Erica herbacea L.
Vucić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R
2013-01-01
Antibacterial and antioxidant activity, total phenolic and flavonoid concentrations of aqueous, ethanol and ethyl acetate extracts from the leaves and flowers of Erica herbacea L. were studied. In vitro antibacterial activity of the extracts was determined by macrodilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been determined. Testing was performed on 30 clinical isolates, including different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris. The values for MIC were in the range from 2.5 mg/mL to 40 mg/mL. The most sensitive bacterial strains were Proteus vulgaris strains. The aqueous extract from E. herbacea was found the most active. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 14.98 and 119.88 mg GA/g. The concentration of flavonoids in extracts was determined using spectrophotometric method with aluminium chloride and obtained results varied from 16.19 to 26.90 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent. The highest capacity to neutralize DPPH radicals was found in the aqueous extract from E. herbacea. The results of the total phenolic content determination of the examined extracts indicate that E. herbacea extracts are a rich source of phenolic compounds and also possess a significant antioxidant activity and moderate antibacterial activity.
Maldini, Mariateresa; Montoro, Paola; Pizza, Cosimo
2011-08-25
Phytochemical investigation of the methanolic extract of Byrsonima crassifolia's bark led to the isolation of 8 known phenolic compounds 5-O-galloylquinic acid, 3-O-galloylquinic acid, 3,4-di-O-galloylquinic acid, 3,5-di-O-galloylquinic acid, 3,4,5-tri-O-galloylquinic acid, (+)-epicatechin-3-gallate along with (+)-catechin and (+)-epicatechin. Due to their biological value, in the present study, a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, working in multiple reaction monitoring (MRM) mode, has been developed to quantify these compounds. B. crassifolia bark resulted in a rich source of phenolic compounds and particularly of galloyl derivates. The proposed analytical method is promising to be applied to other galloyl derivatives to quantify these bioactive compounds in raw material and final products. Copyright © 2011 Elsevier B.V. All rights reserved.
Tabarki, Sonia; Aouadhi, Chedia; Mechergui, Kaouther; Hammi, Khaoula Mkadmini; Ksouri, Riadh; Raies, Aly; Toumi, Lamjed
2017-01-01
In the current study, the phenolic composition, antioxidant and antimicrobial activities of extracts from Rubus ulmifolius Schott leaves harvested in four localities (Sejnen, Tabarka, Faija and Ain drahem) in Tunisia were investigated for the first time. Great differences were found for the chemical composition, total phenol contents and biological activities among the evaluated extracts. HPLC analysis of methanolic extracts showed that the dominant compounds were kaempferol 3-O-rutinoside and naringenine. In addition, significant correlations were observed between antioxidant activities and phenolic contents. In fact, leaves collected from Sejnen presented higher total phenol content (53.32 mg GAE/g DW) and antioxidant activities (IC 50 = 39.40 mg/l) than the others samples. All extracts showed significant antimicrobial activity against six used bacteria with the inhibition zones diameters and minimal inhibitory concentration values were in the range of 8 - 16 mm and 6.25 - 25 mg/ml, respectively. The highest antimicrobial activities were recorded in Sejnen extract against Gram-positive bacteria. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Brazilian Capsicum peppers: capsaicinoid content and antioxidant activity.
Bogusz, Stanislau; Libardi, Silvia H; Dias, Fernanda Fg; Coutinho, Janclei P; Bochi, Vivian C; Rodrigues, Daniele; Melo, Arlete Mt; Godoy, Helena T
2018-01-01
Capsicum peppers are known as a source of capsaicinoids, phenolic compounds and antioxidants. Brazilian Capsicum peppers are important spices used in foods worldwide. However, little information is available on the chemical composition and antioxidant activity of these peppers. Capsaicin, dihydrocapsaicin, total phenolic compounds and antioxidant activity were investigated in extracts of three Brazilian peppers: Capsicum frutescens, C. chinense and C. baccatum var. pendulum, in two different harvest years and at two ripening stages. The bioactive compound content was dependent on harvest year, and changes in the concentration profiles were found for capsaicin. Mature fruits of C. chinense harvested in the first year had the highest capsaicin concentration (2.04 mg g -1 fresh pepper), and mature fruits of C. frutescens harvested in the same first year had the highest dihydrocapsaicin content (0.95 mg g -1 fresh pepper). Mature fruits of C. frutescens harvested in the first year showed the major total phenolic compound content (2.46 mg g -1 fresh pepper). The total phenolic compound content was directly related to antioxidant activity. Our results suggest that phenolic compounds significantly contribute to the antioxidant activity of the investigated peppers. Also, these data add valued novel information that enhances current knowledge of Brazilian pepper fruits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Li, Chunting; Seeram, Navindra P
2018-03-07
The red maple (Acer rubrum) species is economically important to North America because of its sap, which is used to produce maple syrup. In addition, various other red maple plant parts, including leaves, were used as a traditional medicine by the Native Americans. Currently, red maple leaves are being used for nutraceutical and cosmetic applications but there are no published analytical methods for comprehensive phytochemical characterization of this material. Herein, a rapid and sensitive method using liquid chromatography with electrospray ionization time-of-flight tandem mass spectrometry was developed to characterize the phenolics in a methanol extract of red maple leaves and a proprietary phenolic-enriched red maple leaves extract (Maplifa™). Time-of-flight mass spectrometry and tandem mass spectrometry experiments led to the identification of 106 phenolic compounds in red maples leaves with the vast majority of these compounds also detected in Maplifa™. The compounds included 68 gallotannins, 25 flavonoids, gallic acid, quinic acid, catechin, epicatechin, and nine other gallic acid derivatives among which 11 are potentially new and 75 are being reported from red maple for the first time. The developed method to characterize red maple leaves phenolics is rapid and highly sensitive and could aid in future standardization and quality control of this botanical ingredient. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu
2010-08-31
Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3) and 3-O-methylquercetin (4). Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC). The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3) and 3-O-methylquercetin (4) (26.43% and 71.89%, respectively) in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5) at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1) at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2) at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.
Zrnzevic, Ivana; Stankovic, Miroslava; Stankov Jovanovic, Vesna; Mitic, Violeta; Dordevic, Aleksandra; Zlatanovic, Ivana; Stojanovic, Gordana
2017-01-01
In the present investigation, effects of Ramalina capitata acetone extract on micronucleus distribution on human lymphocytes, on cholinesterase activity and antioxidant activity (by the CUPRAC method) were examined, for the first time as well as its HPLC profile. Additionally, total phenolic compounds (TPC), antioxidant properties (estimated via DPPH, ABTS and TRP assays) and antibacterial activity were determined. The predominant phenolic compounds in this extract were evernic, everninic and obtusatic acids. Acetone extract of R. capitata at concentration of 2 μg mL -1 decreased a frequency of micronuclei (MN) for 14.8 %. The extract reduces the concentration of DPPH and ABTS radicals for 21.2 and 36.1 % (respectively). Values for total reducing power (TRP) and cupric reducing capacity (CUPRAC) were 0.4624 ± 0.1064 μg ascorbic acid equivalents (AAE) per mg of dry extract, and 6.1176 ± 0.2964 μg Trolox equivalents (TE) per mg of dry extract, respectively. The total phenol content was 670.6376 ± 66.554 μg galic acid equivalents (GAE) per mg of dry extract. Tested extract at concentration of 2 mg mL -1 exhibited inhibition effect (5.2 %) on pooled human serum cholinesterase. The antimicrobial assay showed that acetone extract had inhibition effect towards Gram-positive strains. The results of manifested antioxidant activity, reducing the number of micronuclei in human lymphocytes, and antibacterial activity recommends R. capitata extract for further in vivo studies.
Rodriguez, Kenneth R; Jones, Anthony E; Belmont, Barbara
2014-01-01
The goal of this project was to characterize the antioxidant powers of lyophilized Aloe Vera ( Aloe barbadensis ) and Nopal Cactus (Opuntia ficus-indica) by quantifying the phenolics content and radical scavenging abilities of preparations derived from these plants. Extracts of these lyophylized succulents were assayed for phenolic compounds by the Folin Ciocalteau method and compared for free radical scavenging capability by the DPPH method. We found that even though the Aloe lyophilizate extract contained more phenolic content, the Nopal lyophilizate exhibited better free radical scavenging ability. Aloe Vera extract contained 0.278 g/L of phenolic content and exhibited 11.1% free radical inhibition, with a free radical scavenging rate constant of 0.177±0.015 min -1 . Nopal Cactus extract contained 0.174 g/L of phenolic content and exhibited 13.2% free radical inhibition, with a free radical scavenging rate constant of 0.155±0.009 min -1 . These results showed Nopal to have greater antioxidant potency than Aloe.
Jones, Anthony E.; Belmont, Barbara
2016-01-01
The goal of this project was to characterize the antioxidant powers of lyophilized Aloe Vera (Aloe barbadensis) and Nopal Cactus (Opuntia ficus-indica) by quantifying the phenolics content and radical scavenging abilities of preparations derived from these plants. Extracts of these lyophylized succulents were assayed for phenolic compounds by the Folin Ciocalteau method and compared for free radical scavenging capability by the DPPH method. We found that even though the Aloe lyophilizate extract contained more phenolic content, the Nopal lyophilizate exhibited better free radical scavenging ability. Aloe Vera extract contained 0.278 g/L of phenolic content and exhibited 11.1% free radical inhibition, with a free radical scavenging rate constant of 0.177±0.015 min−1. Nopal Cactus extract contained 0.174 g/L of phenolic content and exhibited 13.2% free radical inhibition, with a free radical scavenging rate constant of 0.155±0.009 min−1. These results showed Nopal to have greater antioxidant potency than Aloe. PMID:27284273
Code of Federal Regulations, 2010 CFR
2010-07-01
...,2-trichloroethane Trichloroethylene Vinyl chloride Acid-extractable compounds P-chloro-m-creso 2...-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Base-neutral compounds Acenaphthene Acenaphthylene...
Code of Federal Regulations, 2013 CFR
2013-07-01
...,2-trichloroethane Trichloroethylene Vinyl chloride Acid-extractable compounds P-chloro-m-creso 2...-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Base-neutral compounds Acenaphthene Acenaphthylene...
Code of Federal Regulations, 2014 CFR
2014-07-01
...,2-trichloroethane Trichloroethylene Vinyl chloride Acid-extractable compounds P-chloro-m-creso 2...-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Base-neutral compounds Acenaphthene Acenaphthylene...
Code of Federal Regulations, 2011 CFR
2011-07-01
...,2-trichloroethane Trichloroethylene Vinyl chloride Acid-extractable compounds P-chloro-m-creso 2...-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Base-neutral compounds Acenaphthene Acenaphthylene...
Storage stability of sterilized liquid extracts from pomegranate peel
USDA-ARS?s Scientific Manuscript database
Pomegranate marc, a byproduct of commercial juice production, has shown promise as a starting material for the recovery of health promoting phenolic compounds. The stability of aqueous extracts prepared from pomegranate marc was evaluated in preparation to directly using these extracts as nutraceuti...
Yangui, Asma; Abderrabba, Manef
2018-10-01
Activated carbon coated with milk proteins was used for the removal and recovery of phenolic compounds from actual olive mill wastewater (OMW). The extraction of polyphenols using the new adsorbent based on natural coating agent has significant potential compared with traditional extraction methods, as it significantly increases the extraction yield (80%) and overall efficiencies of the process for total phenols (75.4%) and hydroxytyrosol (90.6%) which is the most valuable compound. Complete discussions on the adsorption isotherms, kinetic and thermodynamic were performed and the optimum adsorption variables were investigated using the response surface methodology and the central composite experimental design. The extracted polyphenols exhibited a high antioxidant activity and a fast scavenging effect on DPPH free radical. The strategy devised in this work for polyphenol extraction using modified activated carbon with biological coating agent is of simple design, very effective and ensure the recovery of highly antioxidant extract. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ferreira, Joana P A; Miranda, Isabel; Sousa, Vicelina B; Pereira, Helena
2018-01-01
The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine.
2018-01-01
The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine. PMID:29763441
Bio-screening of a few green seaweeds from India for their cytotoxic and antioxidant potential.
Vinayak, Rashmi C; Sudha, Sabu Appukuttan; Chatterji, Anil
2011-10-01
It has been evidenced in several epidemiological studies that seaweeds when consumed as diet protect against several chronic oxidative stress-related diseases. Seaweeds, raw, cooked, or dried, are used as food in many cultures, although not very popularly in India. Globally, several studies have indicated that seaweeds are a rich source of phenolic compounds and have antioxidant properties. In the present study, we screened methanolic extracts (MEs) of five species of green seaweeds commonly found in India for their cytotoxic activity by brine shrimp lethality assay and antioxidant properties using various in vitro assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power and metal ion chelating assays. A markedly variable, dose-dependent activity was observed in all the seaweed extracts relative to their total phenolic content. Statistical analysis indicated a significantly strong correlation between the DPPH radical scavenging activity and total phenolic content (R(2) = 0.88, P < 0.05) as well as reducing power and total phenolic content (R(2) = 0.99, P < 0.01) of the dry MEs. Also, a very poor correlation between total phenolic content and metal chelating activity (R(2) = 0.13, P > 0.05) was noted. None of the seaweed extracts were potently cytotoxic. The underlying results endorse seaweeds as a rich, novel source of antioxidant compounds needing systemic exploration. Copyright © 2011 Society of Chemical Industry.
Shaheen, Nusrat; Lu, Yanzhen; Geng, Ping; Shao, Qian; Wei, Yun
2017-03-01
Two-step high speed countercurrent chromatography method, following normal phase and elution-extrusion mode of operation by using selected solvent systems, was introduced for phenolic compounds separation. Phenolic compounds including gallic acid, ethyl gallate, ethyl digallate and ellagic acid were separated from the ethanol extract of mango (Mangifera indica L.) flowers for the first time. In the first step, gallic acid of 3.7mg and ethyl gallate of 3.9mg with the purities of 98.87% and 99.55%, respectively, were isolated by using hexane-ethylacetate-methanol-water (4:6:4:6, v/v) in normal phase high speed countercurrent chromatography from 200mg of crude extract, while ethyl digallate and ellagic acid were collected in the form of mixture fraction. In the second step, further purification of the mixture was carried out with the help of another selected solvent system of dichloromethane-methanol-water (4:3:2, v/v) following elusion-extrusion mode of operation. Ethyl digallate of 3.8mg and ellagic acid of 5.7mg were separated well with high purities of 98.68% and 99.71%, respectively. The separated phenolic compounds were identified and confirmed by HPLC, UPLC-QTOF/ESI-MS, 1 H and 13 C NMR spectrometric analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Yihai; Xiang, Limin; Wang, Chunhua; Tang, Chao; He, Xiangjiu
2013-01-01
The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE) of mulberry fruit (Morus alba L.) were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG) and glycosylated serum protein (GSP), and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px) in streptozotocin (STZ)-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit. PMID:23936259
Maity, Soumya; Chatterjee, Suchandra; Variyar, Prasad Shekhar; Sharma, Arun; Adhikari, Soumyakanti; Mazumder, Santasree
2013-04-10
The antioxidant property of the 70% aqueous ethanol extract of Phyllanthus amarus roots and its ether-soluble, ethyl acetate-soluble, and aqueous fractions were investigated by various in vitro assays. The root extracts showed higher DPPH, hydroxyl, superoxide, and nitric oxide radical scavenging and reducing power activity. Among all the samples, the ethyl acetate-soluble fraction demonstrated highest radical scavenging activity and total phenolics content. Twenty-eight different phenolic compounds were identified by LCMS/MS analysis of the ethyl acetate-soluble fraction. The majority of the compounds were found to exist as their glycosides, and many of these were gallic acid derivatives. Free epicatechin and gallic acid were also identified in the ethyl acetate-soluble fraction. The present investigation suggested that P. amarus root is a potent antioxidant and can be used for the prevention of diseases related to oxidative stress.
Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar
2015-12-01
In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.
Wang, Yihai; Xiang, Limin; Wang, Chunhua; Tang, Chao; He, Xiangjiu
2013-01-01
The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE) of mulberry fruit (Morus alba L.) were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG) and glycosylated serum protein (GSP), and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px) in streptozotocin (STZ)-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit.
Domínguez-Perles, R; Teixeira, A I; Rosa, E; Barros, A I
2014-12-01
A Box-Behnken design of Response Surface Methodology (RSM) was conducted to analyse the effect of time (10-30 min), temperature (25-95°C), and solvents concentration (5-90%) on the extraction of total phenolics, flavonoids, ortho-diphenols, and anthocyanins as well as to assess the ABTS(+) scavenging capacity, which were considered as response variables. Values coefficients of determination (R(2)), ranging from 0.903 to 0.996, fitted for describing efficient extraction of bioactive (poly)phenols and antioxidant activity. The recorded data allowed to establish the optimal extraction conditions at 23.0 min, 95.0°C, and 57.9% of food-quality ethanol/water for Vitis vinifera L. var. 'Viosinho' (white variety), and 23.4 min, 84.2°C, and 63.8% for var. 'Touriga Nacional' (red variety). The achievement of optimal extraction conditions of phenolics from grape stems using solvents compatible with further uses in food/pharma industries demonstrated that RSM constitutes a powerful tool for deriving optimal conditions for extraction of antioxidant phenolic compounds from grape stems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Greeshma, Panavalappil; Ravikumar, Korattuvalappil S; Neethu, Mangalathmelathil N; Pandey, Meera; Zuhara, Karattuthodi Fathimathu; Janardhanan, Kainoor K
2016-01-01
Ethanoic extracts from the fruiting bodies and mycelia of the elm oyster mushroom, Hypsizygus ulmarius, were evaluated for their antioxidant, anti-inflammatory, and antitumor properties. Ethnolic extracts of fruiting body and mycelia showed 88%, 85%, 71%, and 85%, 65%, 70% 2,2-diphenyl-1-picrylhydrazyl, hydroxyl (DPPH) and 2,2'-azinobis (3-ethyl benzothiazolin-6-sulfonic acid) (ABTS) radical-scavenging activities, respectively, at a concentration of 1000 µg/mL. The anti-inflammatory activity was determined using carrageenan- and formalin- induced paw edema models. Diclofenac was used as the standard drug. In both models, the mycelia extract showed higher activity than the fruiting body extract. The antitumor effect of the extracts against Dalton's Lymphoma Ascites cell-line-induced tumors showed significant antitumor activity. Mycochemical analysis confirmed the presence of many pharmacologically active compounds such as phenol, alkaloids, proteins, tannins, and polysaccharides. Among these, polysaccharides and phenolic compounds were present at a higher concentration in both extracts. These compounds might be largely responsible for the mushroom's medicinal properties. The results of this study indicate that H. ulmarius possesses significant antioxidant, anti-inflammatory, and antitumor properties.
Determination of trace endocrine active phenolic compounds by GC/MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gang Sun; Geno, P.W.
1997-12-31
4-Nonylphenol ethoxylates (NPEOs) and 4-octylphenol ethoxylates (OPEOs) are widely used as nonionic surfactants, Due to the potential estrogenic properties of these compounds and their biodegradation products, there is increasing concern about their presence in ground and drinking water. To assess their prevalence in drinking and ground water, a simple, highly sensitive and accurate analytical method for determination of trace amounts of 4-nonylphenol, 4-nonylphenol monoethoxylate (NP1EO), 4-nonylphenol diethoxylate (NP2EO), 4-nonylphenol monoethoxycarboxylate (NP1EC), 4-octylphenol, 4-octylphenol monoethoxylate (OP1EO), 4-octylphenol diethoxylate (OP2EO), and other 15 phenolic compounds has been developed and validated. One liter of drinking water sample was extracted and concentrated into dichloromethane.more » The analytes in the extracts were converted to their trimethylsilyl derivatives by reacting with N,O-bis(trimethylsilyl) trifluoroacetamine (BSTFA) and 10 % trimethylchlorosilane (TMCS) at 90{degrees}C. The derivatized extracts were then directly analyzed by gas chromatography-mass spectrometry operating in a selected-ion monitoring mode (GUMS-SIM). Method detection limits (MDLs) were 0.01 to 0.02 {mu}g/L for 4-nonylphenol, NP1EO, 2PNEO; 0.064 {mu}g/L for NP1EC; 0.005 to 0.02 {mu}g/L for 4-octylphenol, OP1EO, OP2EO; and 0.001 to 0.003 {mu}g/L, for other 15 phenolic compounds.« less
Vázquez, Cecilia Velázquez; Rojas, María Guadalupe Villa; Ramírez, Carolina Alvarez; Chávez-Servín, Jorge L; García-Gasca, Teresa; Ferriz Martínez, Roberto A; García, Olga P; Rosado, Jorge L; López-Sabater, Carmen M; Castellote, Ana Isabel; Montemayor, Héctor Mario Andrade; de la Torre Carbot, Karina
2015-06-01
Milk protects the health of newborns because it contains essential compounds that perform metabolic activities. Despite these benefits, the study of phenolic compounds in milk has been poorly explored. The objective of this study was to develop and validate a technique for extracting total phenolic compounds (TPCs) from a milk matrix and then analyzing them using the Folin-Ciocalteu method. The extraction technique was applied to goat milk and involved the addition of methanol, acetonitrile, and Carrez I and II reagents, after which protein was separated from fat through centrifugation. Subsequently, the technique was applied to goat (69.03±6.23mg GAE/L), cow (49.00±10.77mg GAE/L), sheep (167.6±58.77mg GAE/L) and human milk (82.45±12.3mg GAE/L). The technique showed an acceptable linearity (R(2)=0.9998), limit of detection (6.03mg GAE/L) and quantification (16.2mg GAE/L), repeatability (RSD=4%), reproducibility (RSD=6.8%) and recovery (>85.41%); it is thus effective and can be used in the routine analysis of milk. TPCs obtained from each type of milk indicate a high variability among species and among members of the same species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kueseng, Pamornrat; Pawliszyn, Janusz
2013-11-22
A new thin-film, carboxylated multiwalled carbon nanotubes/polydimethylsiloxane (MWCNTs-COOH/PDMS) coating was developed for 96-blade solid-phase microextraction (SPME) system followed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). The method provided good extraction efficiency (64-90%) for three spiked levels, with relative standard deviations (RSD)≤6%, and detection limits between 1 and 2 μg/L for three phenolic compounds. The MWCNTs-COOH/PDMS 96-blade SPME system presents advantages over traditional methods due to its simplicity of use, easy coating preparation, low cost and high sample throughput (2.1 min per sample). The developed coating is reusable for a minimum of 110 extractions with good extraction efficiency. The coating provided higher extraction efficiency (3-8 times greater) than pure PDMS coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Phenolic compounds and antioxidant properties of arabinoxylan hydrolysates from defatted rice bran.
Yuwang, Prachit; Sulaeva, Irina; Hell, Johannes; Henniges, Ute; Böhmdorfer, Stefan; Rosenau, Thomas; Chitsomboon, Benjamart; Tongta, Sunanta
2018-01-01
The water unextractable arabinoxylans (WUAX) contain beneficial phenolic compounds that can be used for food rather than for animal feed. The antioxidant activities of defatted rice bran obtained by xylanase-aided extraction is reported herein. The chemical and molecular characteristics of extracted fractions were investigated. The WUAX hydrolysate precipitated by 0-60% ethanol (F60), 60-90% ethanol (F6090), and more than 90% ethanol (F90) had decreased molar masses with increasing ethanol concentration. The fractions of interest, F60 and F6090, contained 75% arabinoxylans with ferulic acid as the major bound phenolic acid, followed by p-coumaric acid. According to chemical-based antioxidant assays F60 and F6090 exhibited higher diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric iron reducing ability than F90 which contained minor contents of small sugars and free phenolic acids. In cell-based antioxidant assays, using the fluorescent 2',7'-dichlorofluorescein diacetate probe, all three fractions were potent intracellular scavengers. The high molar mass of WUAX hydrolysates with high amount of bound phenolics contributes to the chemical-based antioxidant activity. All fractions of WUAX hydrolysates showed high potent intracellular scavenging activity regardless of molar mass, content and the component of bound phenolics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Phenolic compounds from Citrus leaves: antioxidant activity and enzymatic browning inhibition.
Khettal, Bachra; Kadri, Nabil; Tighilet, Karim; Adjebli, Ahmed; Dahmoune, Farid; Maiza-Benabdeslam, Fadila
2017-03-01
Background Phenolic compounds from Citrus are known to be a topic of many studies due to their biological properties including antioxidant activity. Methods Methanolic and aqueous extracts were isolated from Citrus leaves of different species (C. clementina, C. limon, C. hamlin, C. navel, C. aurantifolia, C. aurantium and C. grandis) harvested in Algeria. Results The results showed that aqueous extracts of all species are rich in total phenolic compounds and flavonoids (from 68.23 to 125.28 mg GAE/g DM) and (from 11.99 to 46.25 mg QE/g DM) respectively. The methanolic and aqueous extracts were examined for in vitro antioxidant properties using various antioxidant assays. For aqueous extracts, C. limon showed an important DPPH radical scavenging activity (IC50 35.35 µg/mL), and C. clementina exerted the highest ABTS radical scavenging activity (1,174.43 µM ET/g DM) and a significant ferric reducing potential (30.60 mg BHAE/g DM). For methanolic extracts, C. clementina showed the highest antioxidant activity for all the realized assays (IC50 41.85 µg/mL, 378.63 µM ET/g DM and 13.85 mg BHAE/g DM) for DPPH, ABTS radicals scavenging activities and ferric reducing potential respectively. Antiperoxidase and antipolyphenol oxidase activities of these samples were also evaluated. Conclusions In this investigation, the assessment of antiperoxidase activity proved that the leaves extracts of different species were able to inhibit peroxidase activity. However, this inhibition varied with the species and the source of these enzymes. On the other hand, the aqueous extracts of different species showed moderate inhibition of polyphenol oxidase, while no effect on these enzymes was obtained with methanolic extracts.
Ying, Le; Kong, De-dong; Gao, Yuan-yuan; Yan, Feng; Wang, Yue-fei; Xu, Ping
2018-01-01
Phenolics, as the main bioactive compounds in tea, have been suggested to have potential in the prevention of various human diseases. However, little is known about phenolics and their bioactivity in Zhangping Narcissue tea cake which is considered the most special kind of oolong tea. To unveil its bioactivity, three phenolic-enriched extracts were obtained from Zhangping Narcissue tea cake using ethyl acetate, n-butanol, and water. Their main chemical compositions and in vitro bioactivity were analyzed by high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The ethyl acetate fraction (ZEF) consisted of higher content of phenolics, flavonoids, procyanidins, and catechin monomers (including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), and gallocatechin gallate (GCG)) than n-butanol fraction (ZBF) and water fraction (ZWF). ZEF exhibited the strongest antioxidant capacity in vitro due to its abundant bioactive compounds. This was validated by Pearson correlation and hierarchical clustering analyses. ZEF also showed a remarkable inhibition on the growth, migration, and invasion of 4T1 murine breast cancer cells. PMID:29504313
Duckstein, Sarina M; Lotter, Eva M; Meyer, Ulrich; Lindequist, Ulrike; Stintzing, Florian C
2012-01-01
Acetone/water extracts from the leaves, including stalks, of Alchemilla vulgaris L. and A. mollis (Buser) Rothm. were investigated for their phenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 24 and 27 compounds were detected for A. vulgaris and A. mollis, respectively. Pedunculagin and agrimoniin, as described in earlier reports for A. vulgaris, as well as other monomeric and oligomeric ellagitannins such as sanguiin H-10, castalagin/vescalagin, and galloyl-bis-hexahydroxydiphenoyl (HHDP) hexose constituted the major phenolic fraction of both plant species. Also, gallic and chlorogenic acids were found in both extracts. Interestingly, catechin and a procyanidin trimer were detected only in A. mollis. The flavonoid fraction comprised quercetin glucuronide as major compound in addition to several other quercetin glycosides. Most interestingly, a tentatively identified kaempferol glucuronide and a methylated quercetin glucuronide were exclusively found in A. mollis. Finally, the overall phenolic fingerprints of both Alchemilla species, harvested in May and August, i.e. at the beginning and the end of the flowering period, were compared. A general accumulation of phenolic constituents was observed later in the year, especially with regard to the ellagitannins.