Sample records for phenotype future studies

  1. Experience affects the outcome of agonistic contests without affecting the selective advantage of size.

    PubMed

    Kasumovic, Michael M; Elias, Damian O; Punzalan, David; Mason, Andrew C; Andrade, Maydianne C B

    2009-06-01

    In the field, phenotypic determinants of competitive success are not always absolute. For example, contest experience may alter future competitive performance. As future contests are not determined solely on phenotypic attributes, prior experience could also potentially alter phenotype-fitness associations. In this study, we examined the influence of single and multiple experiences on contest outcomes in the jumping spider Phidippus clarus. We also examined whether phenotype-fitness associations altered as individuals gained more experience. Using both size-matched contests and a tournament design, we found that both winning and losing experience affected future contest success; males with prior winning experience were more likely to win subsequent contests. Although experience was a significant determinant of success in future contests, male weight was approximately 1.3 times more important than experience in predicting contest outcomes. Despite the importance of experience in determining contest outcomes, patterns of selection did not change between rounds. Overall, our results show that experience can be an important determinant in contest outcomes, even in short-lived invertebrates, and that experience alone is unlikely to alter phenotype-fitness associations.

  2. The Value of Phenotypes in Knee Osteoarthritis Research.

    PubMed

    Nelson, Fred R T

    2018-01-01

    Over the past decade, phenotypes have been used to help categorize knee osteoarthritis patients relative to being subject to disease, disease progression, and treatment response. A review of potential phenotype selection is now appropriate. The appeal of using phenotypes is that they most rely on simple physical examination, clinically routine imaging, and demographics. The purpose of this review is to describe the panoply of phenotypes that can be potentially used in osteoarthritis research. A search of PubMed was used singularly to review the literature on knee osteoarthritis phenotypes. Four phenotype assembly groups were based on physical features and noninvasive imaging. Demographics included metabolic syndrome (dyslipidemia, hypertension, obesity, and diabetes). Mechanical characteristics included joint morphology, alignment, the effect of injury, and past and present history. Associated musculoskeletal disorder characteristics included multiple joint involvement, spine disorders, neuromuscular diseases, and osteoporosis. With the knee as an organ, tissue characteristics were used to focus on synovium, meniscus, articular cartilage, patella fat pad, bone sclerosis, bone cysts, and location of pain. Many of these phenotype clusters require further validation studies. There is special emphasis on knee osteoarthritis phenotypes due to its predominance in osteoarthritic disorders and the variety of tissues in that joint. More research will be required to determine the most productive phenotypes for future studies. The selection and assignment of phenotypes will take on an increasing role in osteoarthritis research in the future.

  3. Defining Phenotypes in Diabetic Nephropathy: a novel approach using a cross-sectional analysis of a single centre cohort.

    PubMed

    Montero, Rosa M; Herath, Athula; Qureshi, Ashfaq; Esfandiari, Ehsanollah; Pusey, Charles D; Frankel, Andrew H; Tam, Frederick W K

    2018-01-08

    The global increase in Diabetes Mellitus (DM) has led to an increase in DM-Chronic Kidney Disease (DM-CKD). In this cross-sectional observational study we aimed to define phenotypes for patients with DM-CKD that in future may be used to individualise treatment We report 4 DM-CKD phenotypes in 220 patients recruited from Imperial College NHS Trust clinics from 2004-2012. A robust principal component analysis (PCA) was used to statistically determine clusters with phenotypically different patients. 163 patients with complete data sets were analysed: 77 with CKD and 86 with DM-CKD. Four different clusters were identified. Phenotypes 1 and 2 are entirely composed of patients with DM-CKD and phenotypes 3 and 4 are predominantly CKD (non-DM-CKD). Phenotype 1 depicts a cardiovascular phenotype; phenotype 2: microvascular complications with advanced DM-CKD; phenotype 3: advanced CKD with less anaemia, lower weight and HbA1c; phenotype 4: hypercholesteraemic, younger, less severe CKD. We are the first group to describe different phenotypes in DM-CKD using a PCA approach. Identification of phenotypic groups illustrates the differences and similarities that occur under the umbrella term of DM-CKD providing an opportunity to study phenotypes within these groups thereby facilitating development of precision/personalised targeted medicine.

  4. Chronic inflammation as a determinant of future aging phenotypes.

    PubMed

    Akbaraly, Tasnime N; Hamer, Mark; Ferrie, Jane E; Lowe, Gordon; Batty, G David; Hagger-Johnson, Gareth; Singh-Manoux, Archana; Shipley, Martin J; Kivimäki, Mika

    2013-11-05

    The importance of chronic inflammation as a determinant of aging phenotypes may have been underestimated in previous studies that used a single measurement of inflammatory markers. We assessed inflammatory markers twice over a 5-year exposure period to examine the association between chronic inflammation and future aging phenotypes in a large population of men and women. We obtained data for 3044 middle-aged adults (28.2% women) who were participating in the Whitehall II study and had no history of stroke, myocardial infarction or cancer at our study's baseline (1997-1999). Interleukin-6 was measured at baseline and 5 years earlier. Cause-specific mortality, chronic disease and functioning were ascertained from hospital data, register linkage and clinical examinations. We used these data to create 4 aging phenotypes at the 10-year follow-up (2007-2009): successful aging (free of major chronic disease and with optimal physical, mental and cognitive functioning), incident fatal or nonfatal cardiovascular disease, death from noncardiovascular causes and normal aging (all other participants). Of the 3044 participants, 721 (23.7%) met the criteria for successful aging at the 10-year follow-up, 321 (10.6%) had cardiovascular disease events, 147 (4.8%) died from noncardiovascular causes, and the remaining 1855 (60.9%) were included in the normal aging phenotype. After adjustment for potential confounders, having a high interleukin-6 level (> 2.0 ng/L) twice over the 5-year exposure period nearly halved the odds of successful aging at the 10-year follow-up (odds ratio [OR] 0.53, 95% confidence interval [CI] 0.38-0.74) and increased the risk of future cardiovascular events (OR 1.64, 95% CI 1.15-2.33) and noncardiovascular death (OR 2.43, 95% CI 1.58-3.80). Chronic inflammation, as ascertained by repeat measurements, was associated with a range of unhealthy aging phenotypes and a decreased likelihood of successful aging. Our results suggest that assessing long-term chronic inflammation by repeat measurement of interleukin-6 has the potential to guide clinical practice.

  5. Advanced phenotyping and phenotype data analysis for the study of plant growth and development.

    PubMed

    Rahaman, Md Matiur; Chen, Dijun; Gillani, Zeeshan; Klukas, Christian; Chen, Ming

    2015-01-01

    Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis.

  6. Phenotypes of organ involvement in sarcoidosis.

    PubMed

    Schupp, Jonas Christian; Freitag-Wolf, Sandra; Bargagli, Elena; Mihailović-Vučinić, Violeta; Rottoli, Paola; Grubanovic, Aleksandar; Müller, Annegret; Jochens, Arne; Tittmann, Lukas; Schnerch, Jasmin; Olivieri, Carmela; Fischer, Annegret; Jovanovic, Dragana; Filipovic, Snežana; Videnovic-Ivanovic, Jelica; Bresser, Paul; Jonkers, René; O'Reilly, Kate; Ho, Ling-Pei; Gaede, Karoline I; Zabel, Peter; Dubaniewicz, Anna; Marshall, Ben; Kieszko, Robert; Milanowski, Janusz; Günther, Andreas; Weihrich, Anette; Petrek, Martin; Kolek, Vitezslav; Keane, Michael P; O'Beirne, Sarah; Donnelly, Seamas; Haraldsdottir, Sigridur Olina; Jorundsdottir, Kristin B; Costabel, Ulrich; Bonella, Francesco; Wallaert, Benoît; Grah, Christian; Peroš-Golubičić, Tatjana; Luisetti, Mauritio; Kadija, Zamir; Pabst, Stefan; Grohé, Christian; Strausz, János; Vašáková, Martina; Sterclova, Martina; Millar, Ann; Homolka, Jiří; Slováková, Alena; Kendrick, Yvonne; Crawshaw, Anjali; Wuyts, Wim; Spencer, Lisa; Pfeifer, Michael; Valeyre, Dominique; Poletti, Venerino; Wirtz, Hubertus; Prasse, Antje; Schreiber, Stefan; Krawczak, Michael; Müller-Quernheim, Joachim

    2018-01-01

    Sarcoidosis is a highly variable, systemic granulomatous disease of hitherto unknown aetiology. The GenPhenReSa (Genotype-Phenotype Relationship in Sarcoidosis) project represents a European multicentre study to investigate the influence of genotype on disease phenotypes in sarcoidosis.The baseline phenotype module of GenPhenReSa comprised 2163 Caucasian patients with sarcoidosis who were phenotyped at 31 study centres according to a standardised protocol.From this module, we found that patients with acute onset were mainly female, young and of Scadding type I or II. Female patients showed a significantly higher frequency of eye and skin involvement, and complained more of fatigue. Based on multidimensional correspondence analysis and subsequent cluster analysis, patients could be clearly stratified into five distinct, yet undescribed, subgroups according to predominant organ involvement: 1) abdominal organ involvement, 2) ocular-cardiac-cutaneous-central nervous system disease involvement, 3) musculoskeletal-cutaneous involvement, 4) pulmonary and intrathoracic lymph node involvement, and 5) extrapulmonary involvement.These five new clinical phenotypes will be useful to recruit homogenous cohorts in future biomedical studies. Copyright ©ERS 2018.

  7. The effects of perceived phenotypic racial stereotypicality and social identity threat on racial minorities' attitudes about police.

    PubMed

    Kahn, Kimberly Barsamian; Lee, J Katherine; Renauer, Brian; Henning, Kris R; Stewart, Greg

    2017-01-01

    This study examines the role of perceived phenotypic racial stereotypicality and race-based social identity threat on racial minorities' trust and cooperation with police. We hypothesize that in police interactions, racial minorities' phenotypic racial stereotypicality may increase race-based social identity threat, which will lead to distrust and decreased participation with police. Racial minorities (Blacks, Latinos, Native Americans, and multi-racials) and Whites from a representative random sample of city residents were surveyed about policing attitudes. A serial multiple mediation model confirmed that racial minorities' self-rated phenotypic racial stereotypicality indirectly affected future cooperation through social identity threat and trust. Due to the lack of negative group stereotypes in policing, the model did not hold for Whites. This study provides evidence that phenotypic stereotypicality influences racial minorities' psychological experiences interacting with police.

  8. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies.

    PubMed

    Li, Dalin; Lewinger, Juan Pablo; Gauderman, William J; Murcray, Cassandra Elizabeth; Conti, David

    2011-12-01

    Variants identified in recent genome-wide association studies based on the common-disease common-variant hypothesis are far from fully explaining the hereditability of complex traits. Rare variants may, in part, explain some of the missing hereditability. Here, we explored the advantage of the extreme phenotype sampling in rare-variant analysis and refined this design framework for future large-scale association studies on quantitative traits. We first proposed a power calculation approach for a likelihood-based analysis method. We then used this approach to demonstrate the potential advantages of extreme phenotype sampling for rare variants. Next, we discussed how this design can influence future sequencing-based association studies from a cost-efficiency (with the phenotyping cost included) perspective. Moreover, we discussed the potential of a two-stage design with the extreme sample as the first stage and the remaining nonextreme subjects as the second stage. We demonstrated that this two-stage design is a cost-efficient alternative to the one-stage cross-sectional design or traditional two-stage design. We then discussed the analysis strategies for this extreme two-stage design and proposed a corresponding design optimization procedure. To address many practical concerns, for example measurement error or phenotypic heterogeneity at the very extremes, we examined an approach in which individuals with very extreme phenotypes are discarded. We demonstrated that even with a substantial proportion of these extreme individuals discarded, an extreme-based sampling can still be more efficient. Finally, we expanded the current analysis and design framework to accommodate the CMC approach where multiple rare-variants in the same gene region are analyzed jointly. © 2011 Wiley Periodicals, Inc.

  9. Using Extreme Phenotype Sampling to Identify the Rare Causal Variants of Quantitative Traits in Association Studies

    PubMed Central

    Li, Dalin; Lewinger, Juan Pablo; Gauderman, William J.; Murcray, Cassandra Elizabeth; Conti, David

    2014-01-01

    Variants identified in recent genome-wide association studies based on the common-disease common-variant hypothesis are far from fully explaining the hereditability of complex traits. Rare variants may, in part, explain some of the missing hereditability. Here, we explored the advantage of the extreme phenotype sampling in rare-variant analysis and refined this design framework for future large-scale association studies on quantitative traits. We first proposed a power calculation approach for a likelihood-based analysis method. We then used this approach to demonstrate the potential advantages of extreme phenotype sampling for rare variants. Next, we discussed how this design can influence future sequencing-based association studies from a cost-efficiency (with the phenotyping cost included) perspective. Moreover, we discussed the potential of a two-stage design with the extreme sample as the first stage and the remaining nonextreme subjects as the second stage. We demonstrated that this two-stage design is a cost-efficient alternative to the one-stage cross-sectional design or traditional two-stage design. We then discussed the analysis strategies for this extreme two-stage design and proposed a corresponding design optimization procedure. To address many practical concerns, for example measurement error or phenotypic heterogeneity at the very extremes, we examined an approach in which individuals with very extreme phenotypes are discarded. We demonstrated that even with a substantial proportion of these extreme individuals discarded, an extreme-based sampling can still be more efficient. Finally, we expanded the current analysis and design framework to accommodate the CMC approach where multiple rare-variants in the same gene region are analyzed jointly. PMID:21922541

  10. Psychometric Properties of the Spanish Version of the Broad Autism Phenotype Questionnaire: Strengths, Weaknesses, and Future Improvements

    ERIC Educational Resources Information Center

    Godoy-Giménez, Marta; González-Rodríguez, Antonio; Cañadas, Fernando; Estévez, Angeles F.; Sayans-Jiménez, Pablo

    2018-01-01

    The Broad autism phenotype (BAP) refers to a set of subclinical behavioural characteristics qualitatively similar to those presented in Autism spectrum disorders (ASDs). The BAP questionnaire (BAPQ) has been widely used to assess the BAP both in relatives of ASD people and within the general population. The current study presents the first Spanish…

  11. Advanced phenotyping and phenotype data analysis for the study of plant growth and development

    PubMed Central

    Rahaman, Md. Matiur; Chen, Dijun; Gillani, Zeeshan; Klukas, Christian; Chen, Ming

    2015-01-01

    Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis. PMID:26322060

  12. In Search of the Perfect Phenotype: An Analysis of Linkage and Association Studies of Reading and Reading-Related Processes

    PubMed Central

    Skiba, Thomas; Landi, Nicole; Wagner, Richard

    2011-01-01

    Reading ability and specific reading disability (SRD) are complex traits involving several cognitive processes and are shaped by a complex interplay of genetic and environmental forces. Linkage studies of these traits have identified several susceptibility loci. Association studies have gone further in detecting candidate genes that might underlie these signals. These results have been obtained in samples of mainly European ancestry, which vary in their languages, inclusion criteria, and phenotype assessments. Such phenotypic heterogeneity across samples makes understanding the relationship between reading (dis)ability and reading-related processes and the genetic factors difficult; in addition, it may negatively influence attempts at replication. In moving forward, the identification of preferable phenotypes for future sample collection may improve the replicability of findings. This review of all published linkage and association results from the past 15 years was conducted to determine if certain phenotypes produce more replicable and consistent results than others. PMID:21243420

  13. Mouse Models for Down Syndrome-Associated Developmental Cognitive Disabilities

    PubMed Central

    Liu, Chunhong; Belichenko, Pavel V.; Zhang, Li; Fu, Dawei; Kleschevnikov, Alexander M.; Baldini, Antonio; Antonarakis, Stylianos E.; Mobley, William C.; Yu, Y. Eugene

    2011-01-01

    Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels. Further mouse-based molecular genetic studies in the future may lead to the unraveling of the mechanisms underlying DS-associated developmental cognitive disabilities, which would lay the groundwork for developing effective treatments for this phenotypic manifestation. In this review, we will discuss recent progress and future challenges in modeling DS-associated developmental cognitive disability in mice with an emphasis on hippocampus-related phenotypes. PMID:21865664

  14. Identification of Multiple QTL Hotspots in Sockeye Salmon (Oncorhynchus nerka) Using Genotyping-by-Sequencing and a Dense Linkage Map.

    PubMed

    Larson, Wesley A; McKinney, Garrett J; Limborg, Morten T; Everett, Meredith V; Seeb, Lisa W; Seeb, James E

    2016-03-01

    Understanding the genetic architecture of phenotypic traits can provide important information about the mechanisms and genomic regions involved in local adaptation and speciation. Here, we used genotyping-by-sequencing and a combination of previously published and newly generated data to construct sex-specific linkage maps for sockeye salmon (Oncorhynchus nerka). We then used the denser female linkage map to conduct quantitative trait locus (QTL) analysis for 4 phenotypic traits in 3 families. The female linkage map consisted of 6322 loci distributed across 29 linkage groups and was 4082 cM long, and the male map contained 2179 loci found on 28 linkage groups and was 2291 cM long. We found 26 QTL: 6 for thermotolerance, 5 for length, 9 for weight, and 6 for condition factor. QTL were distributed nonrandomly across the genome and were often found in hotspots containing multiple QTL for a variety of phenotypic traits. These hotspots may represent adaptively important regions and are excellent candidates for future research. Comparing our results with studies in other salmonids revealed several regions with overlapping QTL for the same phenotypic trait, indicating these regions may be adaptively important across multiple species. Altogether, our study demonstrates the utility of genomic data for investigating the genetic basis of important phenotypic traits. Additionally, the linkage map created here will enable future research on the genetic basis of phenotypic traits in salmon. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Bioinformatic analyses to select phenotype affecting polymorphisms in HTR2C gene.

    PubMed

    Piva, Francesco; Giulietti, Matteo; Baldelli, Luisa; Nardi, Bernardo; Bellantuono, Cesario; Armeni, Tatiana; Saccucci, Franca; Principato, Giovanni

    2011-08-01

    Single nucleotide polymorphisms (SNPs) in serotonin related genes influence mental disorders, responses to pharmacological and psychotherapeutic treatments. In planning association studies, researchers that want to investigate new SNPs have to select some among a large number of candidates. Our aim is to guide researchers in the selection of the most likely phenotype affecting polymorphisms. Here, we studied serotonin receptor 2C (HTR2C) SNPs because, till now, only relatively few of about 2000 are investigated. We used the most updated and assessed bioinformatic tools to predict which variations can give rise to biological effects among 2450 HTR2C SNPs. We suggest 48 SNPs that are worth considering in future association studies in the field of psychiatry, psychology and pharmacogenomics. Moreover, our analyses point out the biological level probably affected, such as transcription, splicing, miRNA regulation and protein structure, thus allowing to suggest future molecular investigations. Although few association studies are available in literature, their results are in agreement with our predictions, showing that our selection methods can help to guide future association studies. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Ethanol Consumption: How Should We Measure It? Achieving Consilience between Human and Animal Phenotypes

    PubMed Central

    Leeman, Robert F.; Heilig, Markus; Cunningham, Christopher L.; Stephens, David N.; Duka, Taheodora; O’Malley, Stephanie S.

    2010-01-01

    There is only modest overlap in the most common alcohol consumption phenotypes measured in animal studies and those typically studied in humans. To address this issue, we identified a number of alcohol consumption phenotypes of importance to the field that have potential for consilience between human and animal models. These phenotypes can be broken down into three categories: 1) abstinence/the decision to drink or abstain; 2) the actual amount of alcohol consumed and 3) heavy drinking. A number of suggestions for human and animal researchers are made in order to address these phenotypes and enhance consilience. Laboratory studies of the decision to drink or abstain are needed in both human and animal research. In human laboratory studies, heavy or binge drinking that meets cut-offs used in epidemiological and clinical trials should be reported. Greater attention to patterns of drinking over time is needed in both animal and human studies. Individual differences pertaining to all consumption phenotypes should be addressed in animal research. Lastly, improved biomarkers need to be developed in future research for use with both humans and animals. Greater precision in estimating blood alcohol levels in the field together with consistent measurement of breath/blood alcohol levels in human laboratory and animal studies provides one means of achieving greater consilience of alcohol consumption phenotypes. PMID:20148775

  17. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof-of-concept and roadmap for future studies

    PubMed Central

    Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne YW; Martin, Nicholas G; Wright, Margaret J

    2016-01-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between schizophrenia cases and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. The current study provides proof-of-concept (albeit based on a limited set of structural brain measures), and defines a roadmap for future studies investigating the genetic covariance between structural/functional brain phenotypes and risk for psychiatric disorders. PMID:26854805

  18. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    PubMed

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  19. The Brisbane Longitudinal Twin Study Pathways to Cannabis Use, Abuse and Dependence Project: Current status, preliminary results and future directions

    PubMed Central

    Gillespie, NA; Henders, AK; Davenport, TA; Hermens, DF; Wright, MJ; Martin, NG; Hickie, IB

    2013-01-01

    We describe the data being collected from the Brisbane Longitudinal Twin Study (BLTS) in Australia as part of the US National Institute on Drug Abuse (NIDA) funded project Pathways to Cannabis Use, Abuse and Dependence. The history, recruitment, assessment and retention of twin families in this project are described in detail along with preliminary findings and plans for future research. The goal of this NIDA project is to make a significant contribution to the discovery of quantitative trait loci (QTL) influencing cannabis use disorders. Although the focus is cannabis use, abuse and dependence in young adults, measures of comorbid illicit drug use disorders are also being collected. In addition, a variety of internalizing and externalizing disorders are being assessed, funded by support from the Australian National Health and Medical Research Council. Because these same twins have participated in numerous twin studies since 1992, future plans will include linking different phenotypes to investigate relationships between drug use, psychiatric disorders and psychological phenotypes within cross-sectional and longitudinal or developmental frameworks. PMID:23187020

  20. The Brisbane Longitudinal Twin Study: Pathways to Cannabis Use, Abuse, and Dependence project-current status, preliminary results, and future directions.

    PubMed

    Gillespie, Nathan A; Henders, Anjali K; Davenport, Tracy A; Hermens, Daniel F; Wright, Margie J; Martin, Nicholas G; Hickie, Ian B

    2013-02-01

    We describe the data being collected from the Brisbane Longitudinal Twin Study in Australia as part of the US National Institute on Drug Abuse (NIDA)-funded project, Pathways to Cannabis Use, Abuse and Dependence. The history, recruitment, assessment, and retention of twin families in this project are described in detail, along with preliminary findings and plans for future research. The goal of this NIDA project is to make a significant contribution to the discovery of quantitative trait loci influencing cannabis use disorders. Although the focus is cannabis use, abuse, and dependence in young adults, measures of comorbid illicit drug use disorders are also being collected. In addition, a variety of internalizing and externalizing disorders are being assessed, funded by support from the Australian National Health and Medical Research Council. Because these same twins have participated in numerous twin studies since 1992, future plans will include linking different phenotypes to investigate relationships between drug use, psychiatric disorders, and psychological phenotypes within cross-sectional and longitudinal or developmental frameworks.

  1. Cognitive, Linguistic, and Motor Abilities in a Multigenerational Family with Childhood Apraxia of Speech.

    PubMed

    Carrigg, Bronwyn; Parry, Louise; Baker, Elise; Shriberg, Lawrence D; Ballard, Kirrie J

    2016-10-05

    This study describes the phenotype in a large family with a strong, multigenerational history of severe speech sound disorder (SSD) persisting into adolescence and adulthood in approximately half the cases. Aims were to determine whether a core phenotype, broader than speech, separated persistent from resolved SSD cases; and to ascertain the uniqueness of the phenotype relative to published cases. Eleven members of the PM family (9-55 years) were assessed across cognitive, language, literacy, speech, phonological processing, numeracy, and motor domains. Between group comparisons were made using the Mann-Whitney U-test (p < 0.01). Participant performances were compared to normative data using standardized tests and to the limited published data on persistent SSD phenotypes. Significant group differences were evident on multiple speech, language, literacy, phonological processing, and verbal intellect measures without any overlapping scores. Persistent cases performed within the impaired range on multiple measures. Phonological memory impairment and subtle literacy weakness were present in resolved SSD cases. A core phenotype distinguished persistent from resolved SSD cases that was characterized by a multiple verbal trait disorder, including Childhood Apraxia of Speech. Several phenotypic differences differentiated the persistent SSD phenotype in the PM family from the few previously reported studies of large families with SSD, including the absence of comorbid dysarthria and marked orofacial apraxia. This study highlights how comprehensive phenotyping can advance the behavioral study of disorders, in addition to forming a solid basis for future genetic and neural studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. A Spatio-Temporal Model of Phenotypic Evolution in the Atlantic Silverside (Menidia menidia) and Its Implications for Size-Selective Fishing in a Warmer World

    NASA Astrophysics Data System (ADS)

    Sbrocco, E. J.

    2016-02-01

    A pervasive phenotypic pattern observed across marine fishes is that vertebral number increases with latitude. Jordan's Rule, as it is known, holds true both within and across species, and like other ecogeographic principles (e.g., Bergmann's Rule), it is presumed to be an adaptive response to latitudinal gradients in temperature. As such, future ocean warming is expected to impact not only the geographic range limits of marine fishes that conform to Jordan's Rule, but also their phenotype, with warmer waters selecting for fish with fewer vertebrae at any given latitude. Here I present a model of phenotypic evolution over space and time for the Atlantic silverside (Menidia menidia), a common marine fish found in coastal waters along the western North Atlantic. This species has long served as a model organism for the study of fisheries-induced selection and exhibits numerous latitudinal clines in phenotypic and life-history traits, including vertebral number. Common garden experiments have shown that vertebral number is genetically determined in this species, but correlative models of observed vertebral counts and climate reveal that SST is the single strongest predictor of phenotype, even after accounting for gene flow. This result indicates that natural selection is responsible for maintaining vertebral clines in the silverside, and allows for the prediction of phenotypic responses to ocean warming. By integrating genetic estimates of population connectivity, species distribution models, and statistical models, I find that by the end of the 21st century, ocean warming will select for silversides with up to 8% fewer vertebrae. Mid-Atlantic populations are the most mal-adapted for future conditions, but may be rescued by migration from small-phenotype southern neighbors or by directional selection. Despite smaller temperature anomalies, the strongest impacts of warming will be felt at both northern and southern edges of the distribution, where genetic rescue from neighboring populations is not predicted to occur and in situ directional selection is less likely due to low phenotypic variation. This study has important implications for marine fisheries, since climate-induced phenotypic evolution may compound issues that already exist as a result of size-selective harvest of large, fast-growing fish.

  3. Heritability of tic disorders: a twin-family study.

    PubMed

    Zilhão, N R; Olthof, M C; Smit, D J A; Cath, D C; Ligthart, L; Mathews, C A; Delucchi, K; Boomsma, D I; Dolan, C V

    2017-04-01

    Genetic-epidemiological studies that estimate the contributions of genetic factors to variation in tic symptoms are scarce. We estimated the extent to which genetic and environmental influences contribute to tics, employing various phenotypic definitions ranging between mild and severe symptomatology, in a large population-based adult twin-family sample. In an extended twin-family design, we analysed lifetime tic data reported by adult mono- and dizygotic twins (n = 8323) and their family members (n = 7164; parents and siblings) from 7311 families in the Netherlands Twin Register. We measured tics by the abbreviated version of the Schedule for Tourette and Other Behavioral Syndromes. Heritability was estimated by genetic structural equation modeling for four tic disorder definitions: three dichotomous and one trichotomous phenotype, characterized by increasingly strictly defined criteria. Prevalence rates of the different tic disorders in our sample varied between 0.3 and 4.5% depending on tic disorder definition. Tic frequencies decreased with increasing age. Heritability estimates varied between 0.25 and 0.37, depending on phenotypic definitions. None of the phenotypes showed evidence of assortative mating, effects of shared environment or non-additive genetic effects. Heritabilities of mild and severe tic phenotypes were estimated to be moderate. Overlapping confidence intervals of the heritability estimates suggest overlapping genetic liabilities between the various tic phenotypes. The most lenient phenotype (defined only by tic characteristics, excluding criteria B, C and D of DSM-IV) rendered sufficiently reliable heritability estimates. These findings have implications in phenotypic definitions for future genetic studies.

  4. Humanity in a Dish: Population Genetics with iPSCs.

    PubMed

    Warren, Curtis R; Cowan, Chad A

    2018-01-01

    Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype. Recent publications have described iPSC cohort studies of common genetic variants and their effects on gene expression and cellular phenotypes. These in vitro quantitative trait locus (QTL) studies are the first experiments in a new paradigm with great potential: iPSC-based functional population genetic studies. iPSC collections from large cohorts are currently under development to facilitate the next wave of these studies, which have the potential to discover the effects of common genetic variants on cellular phenotypes and to uncover the molecular basis of common genetic diseases. Here, we describe the recent advances in this developing field, and provide a road map for future in vitro functional population genetic studies and trial-in-a-dish experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Natural gene expression variation studies in yeast.

    PubMed

    Thompson, Dawn A; Cubillos, Francisco A

    2017-01-01

    The rise of sequence information across different yeast species and strains is driving an increasing number of studies in the emerging field of genomics to associate polymorphic variants, mRNA abundance and phenotypic differences between individuals. Here, we gathered evidence from recent studies covering several layers that define the genotype-phenotype gap, such as mRNA abundance, allele-specific expression and translation efficiency to demonstrate how genetic variants co-evolve and define an individual's genome. Moreover, we exposed several antecedents where inter- and intra-specific studies led to opposite conclusions, probably owing to genetic divergence. Future studies in this area will benefit from the access to a massive array of well-annotated genomes and new sequencing technologies, which will allow the fine breakdown of the complex layers that delineate the genotype-phenotype map. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Identifying Novel Phenotypes of Vulnerability and Resistance to Activity-Based Anorexia in Adolescent Female Rats

    PubMed Central

    Barbarich-Marsteller, Nicole C.; Underwood, Mark D.; Foltin, Richard W.; Myers, Michael M.; Walsh, B. Timothy; Barrett, Jeffrey S.; Marsteller, Douglas A.

    2018-01-01

    Objective Activity-based anorexia is a translational rodent model that results in severe weight loss, hyperactivity, and voluntary self-starvation. The goal of our investigation was to identify vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats. Method Sprague-Dawley rats were maintained under conditions of restricted access to food (N = 64; or unlimited access, N = 16) until experimental exit, predefined as a target weight loss of 30–35% or meeting predefined criteria for animal health. Nonlinear mixed effects statistical modeling was used to describe wheel running behavior, time to event analysis was used to assess experimental exit, and a regressive partitioning algorithm was used to classify phenotypes. Results Objective criteria were identified for distinguishing novel phenotypes of activity-based anorexia, including a vulnerable phenotype that conferred maximal hyperactivity, minimal food intake, and the shortest time to experimental exit, and a resistant phenotype that conferred minimal activity and the longest time to experimental exit. Discussion The identification of objective criteria for defining vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats provides an important framework for studying the neural mechanisms that promote vulnerability to or protection against the development of self-starvation and hyperactivity during adolescence. Ultimately, future studies using these novel phenotypes may provide important translational insights into the mechanisms that promote these maladaptive behaviors characteristic of anorexia nervosa. PMID:23853140

  7. Identifying novel phenotypes of vulnerability and resistance to activity-based anorexia in adolescent female rats.

    PubMed

    Barbarich-Marsteller, Nicole C; Underwood, Mark D; Foltin, Richard W; Myers, Michael M; Walsh, B Timothy; Barrett, Jeffrey S; Marsteller, Douglas A

    2013-11-01

    Activity-based anorexia is a translational rodent model that results in severe weight loss, hyperactivity, and voluntary self-starvation. The goal of our investigation was to identify vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats. Sprague-Dawley rats were maintained under conditions of restricted access to food (N = 64; or unlimited access, N = 16) until experimental exit, predefined as a target weight loss of 30-35% or meeting predefined criteria for animal health. Nonlinear mixed effects statistical modeling was used to describe wheel running behavior, time to event analysis was used to assess experimental exit, and a regressive partitioning algorithm was used to classify phenotypes. Objective criteria were identified for distinguishing novel phenotypes of activity-based anorexia, including a vulnerable phenotype that conferred maximal hyperactivity, minimal food intake, and the shortest time to experimental exit, and a resistant phenotype that conferred minimal activity and the longest time to experimental exit. The identification of objective criteria for defining vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats provides an important framework for studying the neural mechanisms that promote vulnerability to or protection against the development of self-starvation and hyperactivity during adolescence. Ultimately, future studies using these novel phenotypes may provide important translational insights into the mechanisms that promote these maladaptive behaviors characteristic of anorexia nervosa. Copyright © 2013 Wiley Periodicals, Inc.

  8. Daddy issues: paternal effects on phenotype

    PubMed Central

    Rando, Oliver J.

    2012-01-01

    The once-popular, then heretical, idea that ancestral environment can affect the phenotype of future generations is coming back into vogue, due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. PMID:23141533

  9. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease

    PubMed Central

    Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.

    2015-01-01

    The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739

  10. From psychiatric disorders to animal models: a bidirectional and dimensional approach

    PubMed Central

    Donaldson, Zoe. R.; Hen, René

    2014-01-01

    Psychiatric genetics research is bidirectional in nature, with human and animal studies becoming more closely integrated as techniques for genetic manipulations allow for more subtle exploration of disease phenotypes. This synergy, however, highlights the importance of considering the way in which we approach the genotype-phenotype relationship. In particular, the nosological divide of psychiatric illness, while clinically relevant, is not directly translatable in animal models. For instance, mice will never fully re-capitulate the broad criteria for many psychiatric disorders; nor will they have guilty ruminations, suicidal thoughts, or rapid speech. Instead, animal models have been and continue to provide a means to explore dimensions of psychiatric disorders in order to identify neural circuits and mechanisms underlying disease-relevant phenotypes. Thus, the genetic investigation of psychiatric illness will yield the greatest insights if efforts continue to identify and utilize biologically valid phenotypes across species. In this review we discuss the progress to date and the future efforts that will enhance translation between human and animal studies, including the identification of intermediate phenotypes that can be studied across species, as well as the importance of refined modeling of human disease-associated genetic variation in mice and other animal models. PMID:24650688

  11. Fifteen years of quantitative trait loci studies in fish: challenges and future directions.

    PubMed

    Ashton, David T; Ritchie, Peter A; Wellenreuther, Maren

    2017-03-01

    Understanding the genetic basis of phenotypic variation is a major challenge in biology. Here, we systematically evaluate 146 quantitative trait loci (QTL) studies on teleost fish over the last 15 years to investigate (i) temporal trends and (ii) factors affecting QTL detection and fine-mapping. The number of fish QTL studies per year increased over the review period and identified a cumulative number of 3632 putative QTLs. Most studies used linkage-based mapping approaches and were conducted on nonmodel species with limited genomic resources. A gradual and moderate increase in the size of the mapping population and a sharp increase in marker density from 2011 onwards were observed; however, the number of QTLs and variance explained by QTLs changed only minimally over the review period. Based on these findings, we discuss the causative factors and outline how larger sample sizes, phenomics, comparative genomics, epigenetics and software development could improve both the quantity and quality of QTLs in future genotype-phenotype studies. Given that the technical limitations on DNA sequencing have mostly been overcome in recent years, a renewed focus on these and other study design factors will likely lead to significant improvements in QTL studies in the future. © 2016 John Wiley & Sons Ltd.

  12. Development of Proteomics-Based Fungicides: New Strategies for Environmentally Friendly Control of Fungal Plant Diseases

    PubMed Central

    Acero, Francisco Javier Fernández; Carbú, María; El-Akhal, Mohamed Rabie; Garrido, Carlos; González-Rodríguez, Victoria E.; Cantoral, Jesús M.

    2011-01-01

    Proteomics has become one of the most relevant high-throughput technologies. Several approaches have been used for studying, for example, tumor development, biomarker discovery, or microbiology. In this “post-genomic” era, the relevance of these studies has been highlighted as the phenotypes determined by the proteins and not by the genotypes encoding them that is responsible for the final phenotypes. One of the most interesting outcomes of these technologies is the design of new drugs, due to the discovery of new disease factors that may be candidates for new therapeutic targets. To our knowledge, no commercial fungicides have been developed from targeted molecular research, this review will shed some light on future prospects. We will summarize previous research efforts and discuss future innovations, focused on the fight against one of the main agents causing a devastating crops disease, fungal phytopathogens. PMID:21340014

  13. Experience affects the outcome of agonistic contests without affecting the selective advantage of size

    PubMed Central

    Kasumovic, Michael M.; Elias, Damian O.; Punzalan, David; Mason, Andrew C.; Andrade, Maydianne C. B.

    2009-01-01

    In the field, phenotypic determinants of competitive success are not always absolute. For example, contest experience may alter future competitive performance. As future contests are not determined solely on phenotypic attributes, prior experience could also potentially alter phenotype–fitness associations. In this study, we examined the influence of single and multiple experiences on contest outcomes in the jumping spider Phidippus clarus. We also examined whether phenotype–fitness associations altered as individuals gained more experience. Using both size-matched contests and a tournament design, we found that both winning and losing experience affected future contest success; males with prior winning experience were more likely to win subsequent contests. Although experience was a significant determinant of success in future contests, male weight was approximately 1.3 times more important than experience in predicting contest outcomes. Despite the importance of experience in determining contest outcomes, patterns of selection did not change between rounds. Overall, our results show that experience can be an important determinant in contest outcomes, even in short-lived invertebrates, and that experience alone is unlikely to alter phenotype–fitness associations. PMID:20161296

  14. Red fluorescent proteins: advanced imaging applications and future design.

    PubMed

    Shcherbakova, Daria M; Subach, Oksana M; Verkhusha, Vladislav V

    2012-10-22

    In the past few years a large series of the advanced red-shifted fluorescent proteins (RFPs) has been developed. These enhanced RFPs provide new possibilities to study biological processes at the levels ranging from single molecules to whole organisms. Herein the relationship between the properties of the RFPs of different phenotypes and their applications to various imaging techniques are described. Existing and emerging imaging approaches are discussed for conventional RFPs, far-red FPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable and reversibly photoswitchable RFPs. Advantages and limitations of specific RFPs for each technique are presented. Recent progress in understanding the chemical transformations of red chromophores allows the future RFP phenotypes and their respective novel imaging applications to be foreseen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heritability of Tic Disorders: a Twin-Family Study

    PubMed Central

    Zilhao, Nuno R.; Olthof, Maria C.; Smit, Dirk J.A.; Cath, Danielle C.; Ligthart, Lannie; Mathews, Carol A.; Delucchi, Kevin; Boomsma, Dorret I.; Dolan, Conor V.

    2017-01-01

    Background Genetic-epidemiological studies that estimate the contributions of genetic factors to variation in tic symptoms are scarce. We estimated the extent to which genetic and environmental influences contribute to tics, employing various phenotypic definitions ranging between mild and severe symptomatology, in a large population-based adult twin-family sample. Methods In an extended twin-family design, we analyzed lifetime tic data reported by adult mono- and dizygotic twins (n= 8,323) and their family members (n=7,164; parents and siblings) from 7,311 families in the Netherlands Twin Register (NTR). We measured tics by the abbreviated version of the Schedule for Tourette and Other Behavioral Syndromes (STOBS) (TSAICG, 2007). Heritability was estimated by genetic Structural Equation Modeling (SEM) for four tic disorder definitions: three dichotomous and one trichotomous phenotype, characterized by increasingly strictly defined criteria. Results Prevalence rates of the different tic disorders in our sample varied between 0.3 and 4.5% depending on tic disorder definition. Tic frequencies decreased with increasing age. Heritability estimates varied between .25 and .37, depending on phenotypic definitions. None of the phenotypes showed evidence of assortative mating, effects of shared environment, or non-additive genetic effects. Conclusions Heritabilities of mild and severe tic phenotypes were estimated to be moderate. Overlapping confidence intervals of the heritability estimates suggest overlapping genetic liabilities between the various tic phenotypes. The most lenient phenotype (defined only by tic characteristics, excluding criteria B, C and D of DSMIV) rendered sufficiently reliable heritability estimates. These findings have implications in phenotypic definitions for future genetic studies. PMID:27974054

  16. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice.

    PubMed

    Bernhards, R C; Cote, C K; Amemiya, K; Waag, D M; Klimko, C P; Worsham, P L; Welkos, S L

    2017-03-01

    Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3-180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.

  17. Role of Fitness in the Metabolically Healthy but Obese Phenotype: A Review and Update.

    PubMed

    Ortega, Francisco B; Cadenas-Sánchez, Cristina; Sui, Xuemei; Blair, Steven N; Lavie, Carl J

    2015-01-01

    Despite the strong and consistent evidence supporting that a high physical fitness (PF) level at any age is a major predictor of a healthier metabolic profile, major studies focused on the metabolically healthy but obese (MHO) phenotype have ignored the role of PF when examining this phenotype and its prognosis. Particularly, the role of its main health-related components such as higher cardiorespiratory fitness (CRF) and muscular fitness in the MHO phenotype needs to be reviewed in depth. The present review aimed to: 1) contribute to the characterization of the MHO phenotype by examining whether MHO individuals are fitter than metabolically abnormal obese (MAO) individuals in terms of CRF and other PF components; 2) review the role of CRF and other PF components in the prognosis of MHO. The studies reviewed suggest that a higher CRF level should be considered a characteristic of the MHO phenotype. Likewise, CRF seems to play a key role in the prognosis of the MHO individuals, yet this statement is based on a single study and future studies need to confirm or contrast these findings. Comparability of studies is difficult due to the different definitions used for MHO; consequently, the present review makes a proposal for harmonizing this definition in adults and in youth. Obesity is still related to an important number of comorbidities; therefore, the public health message remains to fight against both obesity and low CRF in both adult and pediatric populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Characterization of X-linked Hypohidrotic Ectodermal Dysplasia (XL-HED) Hair and Sweat Gland Phenotypes Using Phototrichogram Analysis and Live Confocal Imaging

    PubMed Central

    Jones, Kyle B.; Goodwin, Alice F.; Landan, Maya; Seidel, Kerstin; Tran, Dong-Kha; Hogue, Jacob; Chavez, Miquella; Fete, Mary; Yu, Wenli; Hussein, Tarek; Johnson, Ramsey; Huttner, Kenneth; Jheon, Andrew H.; Klein, Ophir D.

    2015-01-01

    Hypohidrotic ectodermal dysplasia (HED) is the most common type of ectodermal dysplasia (ED), which encompasses a large group of syndromes that share several phenotypic features such as missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. X-linked hypohidrotic ectodermal dysplasia (XL-HED) is associated with mutations in ectodysplasin (EDA1). Hypohidrosis due to hypoplastic sweat glands and thin, sparse hair are phenotypic features that significantly affect the daily lives of XL-HED individuals and therefore require systematic analysis. We sought to determine the quality of life of individuals with XL-HED and to quantify sweat duct and hair phenotypes using confocal imaging, pilocarpine iontophoresis, and phototrichogram analysis. Using these highly sensitive and non-invasive techniques, we demonstrated that 11/12 XL-HED individuals presented with a complete absence of sweat ducts and that none produced sweat. We determined that the thin hair phenotype observed in XL-HED was due to multiple factors, such as fewer terminal hairs with decreased thickness and slower growth rate, as well as fewer follicular units and fewer hairs per unit. The precise characterization of XL-HED phenotypes using sensitive and non-invasive techniques presented in our study will improve upon larger genotype-phenotype studies and in the assessment of future therapies in XL-HED. PMID:23687000

  19. Paraoxonase 1 Phenotype and Mass in South Asian versus Caucasian Renal Transplant Recipients.

    PubMed

    Connelly, Philip W; Maguire, Graham F; Nash, Michelle M; Rapi, Lindita; Yan, Andrew T; Prasad, G V Ramesh

    2012-01-01

    South Asian renal transplant recipients have a higher incidence of cardiovascular disease compared with Caucasian renal transplant recipients. We carried out a study to determine whether paraoxonase 1, a novel biomarker for cardiovascular risk, was decreased in South Asian compared with Caucasian renal transplant recipients. Subjects were matched two to one on the basis of age and sex for a total of 129 subjects. Paraoxonase 1 was measured by mass, arylesterase activity, and two-substrate phenotype assay. Comparisons were made by using a matched design. The frequency of PON1 QQ, QR and RR phenotype was 56%, 37%, and 7% for Caucasian subjects versus 35%, 44%, and 21% for South Asian subjects (χ(2) = 7.72, P = 0.02). PON1 mass and arylesterase activity were not significantly different between South Asian and Caucasian subjects. PON1 mass was significantly associated with PON1 phenotype (P = 0.0001), HDL cholesterol (P = 0.009), LDL cholesterol (P = 0.02), and diabetes status (P < 0.05). Arylesterase activity was only associated with HDL cholesterol (P = 0.003). Thus the frequency of the PON1 RR phenotype was higher and that of the QQ phenotype was lower in South Asian versus Caucasian renal transplant recipients. However, ethnicity was not a significant factor as a determinant of PON1 mass or arylesterase activity, with or without analysis including PON1 phenotype. The two-substrate method for determining PON1 phenotype may be of value for future studies of cardiovascular complications in renal transplant recipients.

  20. [Phenotypic heterogeneity of chronic obstructive pulmonary disease].

    PubMed

    Garcia-Aymerich, Judith; Agustí, Alvar; Barberà, Joan A; Belda, José; Farrero, Eva; Ferrer, Antoni; Ferrer, Jaume; Gáldiz, Juan B; Gea, Joaquim; Gómez, Federico P; Monsó, Eduard; Morera, Josep; Roca, Josep; Sauleda, Jaume; Antó, Josep M

    2009-03-01

    A functional definition of chronic obstructive pulmonary disease (COPD) based on airflow limitation has largely dominated the field. However, a view has emerged that COPD involves a complex array of cellular, organic, functional, and clinical events, with a growing interest in disentangling the phenotypic heterogeneity of COPD. The present review is based on the opinion of the authors, who have extensive research experience in several aspects of COPD. The starting assumption of the review is that current knowledge on the pathophysiology and clinical features of COPD allows us to classify phenotypic information in terms of the following dimensions: respiratory symptoms and health status, acute exacerbations, lung function, structural changes, local and systemic inflammation, and systemic effects. Twenty-six phenotypic traits were identified and assigned to one of the 6 dimensions. For each dimension, a summary is provided of the best evidence on the relationships among phenotypic traits, in particular among those corresponding to different dimensions, and on the relationship between these traits and relevant events in the natural history of COPD. The information has been organized graphically into a phenotypic matrix where each cell representing a pair of phenotypic traits is linked to relevant references. The information provided has the potential to increase our understanding of the heterogeneity of COPD phenotypes and help us plan future studies on aspects that are as yet unexplored.

  1. Phenotypic and genetic characterization of Piscirickettsia salmonis from Chilean and Canadian salmonids.

    PubMed

    Otterlei, Alexander; Brevik, Øyvind J; Jensen, Daniel; Duesund, Henrik; Sommerset, Ingunn; Frost, Petter; Mendoza, Julio; McKenzie, Peter; Nylund, Are; Apablaza, Patricia

    2016-03-15

    The study presents the phenotypic and genetic characterization of selected P. salmonis isolates from Atlantic salmon and rainbow trout suffering from SRS (salmonid rickettsial septicemia) in Chile and in Canada. The phenotypic characterization of the P. salmonis isolates were based on growth on different agar media (including a newly developed medium), different growth temperatures, antibiotics susceptibility and biochemical tests. This is the first study differentiating Chilean P. salmonis isolates into two separate genetic groups. Genotyping, based on 16S rRNA-ITS and concatenated housekeeping genes grouped the selected isolates into two clades, constituted by the Chilean strains, while the Canadian isolates form a branch in the phylogenetic tree. The latter consisted of two isolates that were different in both genetic and phenotypic characteristics. The phylogenies and the MLST do not reflect the origin of the isolates with respect to host species. The isolates included were heterogeneous in phenotypic tests. The genotyping methods developed in this study provided a tool for separation of P. salmonis isolates into distinct clades. The SRS outbreaks in Chile are caused by minimum two different genetic groups of P. salmonis. This heterogeneity should be considered in future development of vaccines against this bacterium in Chile. Two different strains of P. salmonis, in regards to genetic and phenotypic characteristics, can occur in the same contemporary outbreak of SRS.

  2. Daddy issues: paternal effects on phenotype.

    PubMed

    Rando, Oliver J

    2012-11-09

    The once popular and then heretical idea that ancestral environment can affect the phenotype of future generations is coming back into vogue due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Human Laboratory Paradigms in Alcohol Research

    PubMed Central

    Plebani, Jennifer G.; Ray, Lara A.; Morean, Meghan E.; Corbin, William R.; Mackillop, James; Amlung, Michael; King, Andrea C.

    2014-01-01

    Human laboratory studies have a long and rich history in the field of alcoholism. Human laboratory studies have allowed for advances in alcohol research in a variety of ways, including elucidating of the neurobehavioral mechanisms of risk, identifying phenotypically distinct sub-types of alcohol users, investigating of candidate genes underlying experimental phenotypes for alcoholism, and testing mechanisms of action of alcoholism pharmacotherapies on clinically-relevant translational phenotypes, such as persons exhibiting positive-like alcohol effects or alcohol craving. Importantly, the field of human laboratory studies in addiction has progressed rapidly over the past decade and has built upon earlier findings of alcohol's neuropharmacological effects to advancing translational research on alcoholism etiology and treatment. To that end, the new generation of human laboratory studies has focused on applying new methodologies, further refining alcoholism phenotypes, and translating these findings to studies of alcoholism genetics, medication development, and pharmacogenetics. The combination of experimental laboratory approaches with recent developments in neuroscience and pharmacology has been particularly fruitful in furthering our understanding of the impact of individual differences in alcoholism risk and in treatment response. This review of the literature focuses on human laboratory studies of subjective intoxication, alcohol craving, anxiety, and behavioral economics. Each section discusses opportunities for phenotype refinement under laboratory conditions, as well as its application to translational science of alcoholism. A summary and recommendations for future research are also provided. PMID:22309888

  4. A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans

    PubMed Central

    Liu, Fan; van der Lijn, Fedde; Schurmann, Claudia; Zhu, Gu; Chakravarty, M. Mallar; Hysi, Pirro G.; Wollstein, Andreas; Lao, Oscar; de Bruijne, Marleen; Ikram, M. Arfan; van der Lugt, Aad; Rivadeneira, Fernando; Uitterlinden, André G.; Hofman, Albert; Niessen, Wiro J.; Homuth, Georg; de Zubicaray, Greig; McMahon, Katie L.; Thompson, Paul M.; Daboul, Amro; Puls, Ralf; Hegenscheid, Katrin; Bevan, Liisa; Pausova, Zdenka; Medland, Sarah E.; Montgomery, Grant W.; Wright, Margaret J.; Wicking, Carol; Boehringer, Stefan; Spector, Timothy D.; Paus, Tomáš; Martin, Nicholas G.; Biffar, Reiner; Kayser, Manfred

    2012-01-01

    Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs) and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes—PRDM16, PAX3, TP63, C5orf50, and COL17A1—in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications. PMID:23028347

  5. Main characteristics of metabolically obese normal weight and metabolically healthy obese phenotypes.

    PubMed

    Teixeira, Tatiana F S; Alves, Raquel D M; Moreira, Ana Paula B; Peluzio, Maria do Carmo G

    2015-03-01

    In this review, the influence of fat depots on insulin resistance and the main characteristics of metabolically obese normal-weight and metabolically healthy obese phenotypes are discussed. Medline/PubMed and Science Direct were searched for articles related to the terms metabolically healthy obesity, metabolically obese normal weight, adipose tissue, and insulin resistance. Normal weight and obesity might be heterogeneous in regard to their effects. Fat distribution and lower insulin sensitivity are the main factors defining phenotypes within the same body mass index. Although these terms are interesting, controversies about them remain. Future studies exploring these phenotypes will help elucidate the roles of adiposity and/or insulin resistance in the development of metabolic alterations. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Advanced transgenic approaches to understand alcohol-related phenotypes in animals.

    PubMed

    Bilbao, Ainhoa

    2013-01-01

    During the past two decades, the use of genetically manipulated animal models in alcohol research has greatly improved the understanding of the mechanisms underlying alcohol addiction. In this chapter, we present an overview of the progress made in this field by summarizing findings obtained from studies of mice harboring global and conditional mutations in genes that influence alcohol-related phenotypes. The first part reviews behavioral paradigms for modeling the different phases of the alcohol addiction cycle and other alcohol-induced behavioral phenotypes in mice. The second part reviews the current data available using genetic models targeting the main neurotransmitter and neuropeptide systems involved in the reinforcement and stress pathways, focusing on the phenotypes modeling the alcohol addiction cycle. Finally, the third part will discuss the current findings and future directions, and proposes advanced transgenic mouse models for their potential use in alcohol research.

  7. From the patient to the clinical mycology laboratory: how can we optimise microscopy and culture methods for mould identification?

    PubMed

    Vyzantiadis, Timoleon-Achilleas A; Johnson, Elizabeth M; Kibbler, Christopher C

    2012-06-01

    The identification of fungi relies mainly on morphological criteria. However, there is a need for robust and definitive phenotypic identification procedures in order to evaluate continuously evolving molecular methods. For the future, there is an emerging consensus that a combined (phenotypic and molecular) approach is more powerful for fungal identification, especially for moulds. Most of the procedures used for phenotypic identification are based on experience rather than comparative studies of effectiveness or performance and there is a need for standardisation among mycology laboratories. This review summarises and evaluates the evidence for the major existing phenotypic identification procedures for the predominant causes of opportunistic mould infection. We have concentrated mainly on Aspergillus, Fusarium and mucoraceous mould species, as these are the most important clinically and the ones for which there are the most molecular taxonomic data.

  8. What can aquatic gastropods tell us about phenotypic plasticity? A review and meta-analysis

    PubMed Central

    Bourdeau, P E; Butlin, R K; Brönmark, C; Edgell, T C; Hoverman, J T; Hollander, J

    2015-01-01

    There have been few attempts to synthesise the growing body of literature on phenotypic plasticity to reveal patterns and generalities about the extent and magnitude of plastic responses. Here, we conduct a review and meta-analysis of published literature on phenotypic plasticity in aquatic (marine and freshwater) gastropods, a common system for studying plasticity. We identified 96 studies, using pre-determined search terms, published between 1985 and November 2013. The literature was dominated by studies of predator-induced shell form, snail growth rates and life history parameters of a few model taxa, accounting for 67% of all studies reviewed. Meta-analyses indicated average plastic responses in shell thickness, shell shape, and growth and fecundity of freshwater species was at least three times larger than in marine species. Within marine gastropods, species with planktonic development had similar average plastic responses to species with benthic development. We discuss these findings in the context of the role of costs and limits of phenotypic plasticity and environmental heterogeneity as important constraints on the evolution of plasticity. We also consider potential publication biases and discuss areas for future research, indicating well-studied areas and important knowledge gaps. PMID:26219231

  9. Accounting for the Down syndrome advantage?

    PubMed

    Esbensen, Anna J; Seltzer, Marsha Mailick

    2011-01-01

    The authors examined factors that could explain the higher levels of psychosocial well being observed in past research in mothers of individuals with Down syndrome compared with mothers of individuals with other types of intellectual disabilities. The authors studied 155 mothers of adults with Down syndrome, contrasting factors that might validly account for the ?Down syndrome advantage? (behavioral phenotype) with those that have been portrayed in past research as artifactual (maternal age, social supports). The behavioral phenotype predicted less pessimism, more life satisfaction, and a better quality of the mother?child relationship. However, younger maternal age and fewer social supports, as well as the behavioral phenotype, predicted higher levels of caregiving burden. Implications for future research on families of individuals with Down syndrome are discussed.

  10. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants

    PubMed Central

    Reusch, Thorsten B H

    2014-01-01

    I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe–host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches. PMID:24454551

  11. Identification and characterization of near-fatal asthma phenotypes by cluster analysis.

    PubMed

    Serrano-Pariente, J; Rodrigo, G; Fiz, J A; Crespo, A; Plaza, V

    2015-09-01

    Near-fatal asthma (NFA) is a heterogeneous clinical entity and several profiles of patients have been described according to different clinical, pathophysiological and histological features. However, there are no previous studies that identify in a unbiased way--using statistical methods such as clusters analysis--different phenotypes of NFA. Therefore, the aim of the present study was to identify and to characterize phenotypes of near fatal asthma using a cluster analysis. Over a period of 2 years, 33 Spanish hospitals enrolled 179 asthmatics admitted for an episode of NFA. A cluster analysis using two-steps algorithm was performed from data of 84 of these cases. The analysis defined three clusters of patients with NFA: cluster 1, the largest, including older patients with clinical and therapeutic criteria of severe asthma; cluster 2, with an high proportion of respiratory arrest (68%), impaired consciousness level (82%) and mechanical ventilation (93%); and cluster 3, which included younger patients, characterized by an insufficient anti-inflammatory treatment and frequent sensitization to Alternaria alternata and soybean. These results identify specific asthma phenotypes involved in NFA, confirming in part previous findings observed in studies with a clinical approach. The identification of patients with a specific NFA phenotype could suggest interventions to prevent future severe asthma exacerbations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Association of Immunological Cell Profiles with Specific Clinical Phenotypes of Scleroderma Disease

    PubMed Central

    Calzada, David; Mayayo, Teodoro; González-Rodríguez, María Luisa; Rabasco, Antonio María; Lahoz, Carlos

    2014-01-01

    This study aimed to search the correlation among immunological profiles and clinical phenotypes of scleroderma in well-characterized groups of scleroderma patients, comparing forty-nine scleroderma patients stratified according to specific clinical phenotypes with forty-nine healthy controls. Five immunological cell subpopulations (B, CD4+ and CD8+ T-cells, NK, and monocytes) and their respective stages of apoptosis and activation were analyzed by flow cytometry, in samples of peripheral blood mononuclear cells (PBMCs). Analyses of results were stratified according to disease stage, time since the diagnosis, and visceral damage (pulmonary fibrosis, pulmonary hypertension, and cardiac affliction) and by time of treatment with corticosteroids. An increase in the percentages of monocytes and a decrease in the B cells were mainly related to the disease progression. A general apoptosis decrease was found in all phenotypes studied, except in localized scleroderma. An increase of B and NK cells activation was found in patients diagnosed more than 10 years ago. Specific cell populations like monocytes, NK, and B cells were associated with the type of affected organ. This study shows how, in a heterogeneous disease, proper patient's stratification according to clinical phenotypes allows finding specific cellular profiles. Our data may lead to improvements in the knowledge of prognosis factors and to aid in the analysis of future specific therapies. PMID:24818126

  13. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy.

    PubMed

    Li, Jingyun; Zhang, Yuan; Zhang, Luo

    2015-02-01

    Allergic rhinitis and allergy are complex conditions, in which both genetic and environmental factors contribute to the pathogenesis. Genome-wide association studies (GWASs) employing common single-nucleotide polymorphisms have accelerated the search for novel and interesting genes, and also confirmed the role of some previously described genes which may be involved in the cause of allergic rhinitis and allergy. The aim of this review is to provide an overview of the genetic basis of allergic rhinitis and the associated allergic phenotypes, with particular focus on GWASs. The last decade has been marked by the publication of more than 20 GWASs of allergic rhinitis and the associated allergic phenotypes. Allergic diseases and traits have been shown to share a large number of genetic susceptibility loci, of which IL33/IL1RL1, IL-13-RAD50 and C11orf30/LRRC32 appear to be important for more than two allergic phenotypes. GWASs have further reflected the genetic heterogeneity underlying allergic phenotypes. Large-scale genome-wide association strategies are underway to discover new susceptibility variants for allergic rhinitis and allergic phenotypes. Characterization of the underlying genetics provides us with an insight into the potential targets for future studies and the corresponding interventions.

  14. Expression of aberrant CD markers in acute leukemia: a study of 100 cases with immunophenotyping by multiparameter flowcytometry.

    PubMed

    Sarma, Anupam; Hazarika, Munlima; Das, Debabrata; Kumar Rai, Avdhesh; Sharma, Jagannath Dev; Bhuyan, Chidananda; Kataki, Amal Chandra

    2015-01-01

    Acute leukemia is a heterogenous disease having diverse phenotypes. Immunophenotyping by flowcytometry is essential for diagnosis of myeloid and lymphoid subtypes. Aberrant phenotype incidence is controversial and dissimilar results have been reported by different groups. Purpose of the study was to determine the incidence of aberrant phenotypes in North East Indian patients with acute leukemia. We analysed a total of 100 cases (AML = 36, ALL = 61, MPAL = 3) by multiparametric flow cytometry using an acute panel of monoclonal antibodies (MoAbs). The MoAbs were selected to identify differentiation-associated antigens of both myeloid and lymphoid lineages. Aberrant phenotypes were found in 21 (58.3%) cases of AML, 36 (59.2%) cases of B-ALL and 6 (66.7%) cases of T-ALL. CD7 was the most frequent lymphoid associated antigen found in 33% of AML cases while CD117 was the myeloid antigen most frequently detected in ALL (54%) cases. Aberrant expression of CD 117 is highly significant by Fischer's exact test (P< 0.0001). We conclude that aberrant phenotypes are present in a great majority of acute leukemia patients of North East India. Future studies will be directed to correlate of these markers with prognosis and therapeutic response.

  15. [Phenotypic trends and breeding values for canine congenital sensorineural deafness in Dalmatian dogs].

    PubMed

    Blum, Meike; Distl, Ottmar

    2014-01-01

    In the present study, breeding values for canine congenital sensorineural deafness, the presence of blue eyes and patches have been predicted using multivariate animal models to test the reliability of the breeding values for planned matings. The dataset consisted of 6669 German Dalmatian dogs born between 1988 and 2009. Data were provided by the Dalmatian kennel clubs which are members of the German Association for Dog Breeding and Husbandry (VDH). The hearing status for all dogs was evaluated using brainstem auditory evoked potentials. The reliability using the prediction error variance of breeding values and the realized reliability of the prediction of the phenotype of future progeny born in each one year between 2006 and 2009 were used as parameters to evaluate the goodness of prediction through breeding values. All animals from the previous birth years were used for prediction of the breeding values of the progeny in each of the up-coming birth years. The breeding values based on pedigree records achieved an average reliability of 0.19 for the future 1951 progeny. The predictive accuracy (R2) for the hearing status of single future progeny was at 1.3%. Combining breeding values for littermates increased the predictive accuracy to 3.5%. Corresponding values for maternal and paternal half-sib groups were at 3.2 and 7.3%. The use of breeding values for planned matings increases the phenotypic selection response over mass selection. The breeding values of sires may be used for planned matings because reliabilities and predictive accuracies for future paternal progeny groups were highest.

  16. Large-Scale Comparative Phenotypic and Genomic Analyses Reveal Ecological Preferences of Shewanella Species and Identify Metabolic Pathways Conserved at the Genus Level ▿ †

    PubMed Central

    Rodrigues, Jorge L. M.; Serres, Margrethe H.; Tiedje, James M.

    2011-01-01

    The use of comparative genomics for the study of different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at a time. In this study, we provided a high-throughput alternative to this limiting step by coupling comparative genomics to the use of phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed as missing. A number of previously unknown gene products were predicted to be parts of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high-throughput phenotype analysis provided insights into niche specialization among the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, isolated from deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N sources, they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects. PMID:21642407

  17. Mathematics interventions for children and adolescents with Down syndrome: a research synthesis.

    PubMed

    Lemons, C J; Powell, S R; King, S A; Davidson, K A

    2015-08-01

    Many children and adolescents with Down syndrome fail to achieve proficiency in mathematics. Researchers have suggested that tailoring interventions based on the behavioural phenotype may enhance efficacy. The research questions that guided this review were (1) what types of mathematics interventions have been empirically evaluated with children and adolescents with Down syndrome?; (2) do the studies demonstrate sufficient methodological rigor?; (3) is there evidence of efficacy for the evaluated mathematics interventions?; and (4) to what extent have researchers considered aspects of the behavioural phenotype in selecting, designing and/or implementing mathematics interventions for children and adolescents with Down syndrome? Nine studies published between 1989 and 2012 were identified for inclusion. Interventions predominantly focused on early mathematics skills and reported positive outcomes. However, no study met criteria for methodological rigor. Further, no authors explicitly considered the behavioural phenotype. Additional research using rigorous experimental designs is needed to evaluate the efficacy of mathematics interventions for children and adolescents with Down syndrome. Suggestions for considering the behavioural phenotype in future research are provided. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  18. Obese and Allergic Related Asthma Phenotypes Among Children Across the United States.

    PubMed

    Ross, Mindy K; Romero, Tahmineh; Sim, Myung S; Szilagyi, Peter G

    2018-04-19

    Pediatric asthma is heterogeneous with phenotypes that reflect differing underlying inflammation and pathophysiology. Little is known about the national prevalence of certain obesity and allergy related asthma phenotypes or associated characteristics. We therefore assessed the national prevalence, risk factors, and parent-reported severity of four asthma phenotypes: not-allergic-not-obese, allergic-not-obese, obese-not-allergic, and allergic-and-obese. We analyzed data from the 2007-2008 National Survey of Children's Health (NSCH) of 10-17 year-olds with parent-reported asthma. We described sociodemographic and health risk factors of each phenotype and then applied logistic and ordinal regression models to identify associated risk factors and level of severity of the phenotypes. Among 4,427 children with asthma in this NSCH cohort, the association between race and phenotype is statistically significant (p<0.0001); white children with asthma were most likely to have allergic-not-obese asthma while black and Hispanic children with asthma were most likely to have the obese-non-allergic phenotype (p<0.001). ADD/ADHD was more likely to be present in allergic-not-obese children (OR 1.50, CI 1.14-1.98, p = 0.004). The phenotype with the highest risk for more severe compared to mild asthma was the obese-and-allergic asthma phenotype (OR 3.34, CI 2.23-5.01, p<0.001). Allergic-not-obese asthma comprised half of our studied asthma phenotypes, while obesity-related asthma (with or without allergic components) comprised one-fifth of asthma phenotypes in this cohort representative of the U.S. Children with both obese and allergic asthma are most likely to have severe asthma. Future management of childhood asthma might consider more tailoring of treatment and management plans based upon different childhood asthma phenotypes.

  19. Neurodevelopmental model of schizophrenia: update 2012

    PubMed Central

    Rapoport, JL; Giedd, JN; Gogtay, N

    2012-01-01

    The neurodevelopmental model of schizophrenia, which posits that the illness is the end state of abnormal neurodevelopmental processes that started years before the illness onset, is widely accepted, and has long been dominant for childhood-onset neuropsychiatric disorders. This selective review updates our 2005 review of recent studies that have impacted, or have the greatest potential to modify or extend, the neurodevelopmental model of schizophrenia. Longitudinal whole-population studies support a dimensional, rather than categorical, concept of psychosis. New studies suggest that placental pathology could be a key measure in future prenatal high-risk studies. Both common and rare genetic variants have proved surprisingly diagnostically nonspecific, and copy number variants (CNVs) associated with schizophrenia are often also associated with autism, epilepsy and intellectual deficiency. Large post-mortem gene expression studies and prospective developmental multi-modal brain imaging studies are providing critical data for future clinical and high-risk developmental brain studies. Whether there can be greater molecular specificity for phenotypic characterization is a subject of current intense study and debate, as is the possibility of neuronal phenotyping using human pluripotent-inducible stem cells. Biological nonspecificity, such as in timing or nature of early brain development, carries the possibility of new targets for broad preventive treatments. PMID:22488257

  20. Phenome-Wide Association Studies as a Tool to Advance Precision Medicine

    PubMed Central

    Denny, Joshua C.; Bastarache, Lisa; Roden, Dan M.

    2017-01-01

    Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records (EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and phenotypes) using only data collected as a by-product of typical health care. In addition to disease and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and developing reverse genetics approaches such as phenome-wide association studies (PheWASs). PheWASs are designed to survey which of many phenotypes may be associated with a given genetic variant. PheWAS methods have been validated through replication of hundreds of known genotype-phenotype associations, and their use has differentiated between true pleiotropy and clinical comorbidity, added context to genetic discoveries, and helped define disease subtypes, and may also help repurpose medications. PheWAS methods have also proven to be useful with research-collected data. Future efforts that integrate broad, robust collection of phenotype data (e.g., EHR data) with purpose-collected research data in combination with a greater understanding of EHR data will create a rich resource for increasingly more efficient and detailed genome-phenome analysis to usher in new discoveries in precision medicine. PMID:27147087

  1. Evolutionary genomics of animal personality.

    PubMed

    van Oers, Kees; Mueller, Jakob C

    2010-12-27

    Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future.

  2. Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, P. J.; Presson, J. C.; Popper, A. N.

    1996-01-01

    Cell proliferation and hair cell addition have not been studied in the ears of otophysan fish, a group of species who have specialized hearing capabilities. In this study we used the mitotic S-phase marker bromodeoxyuridine (BrdU) to identify proliferating cells in the ear of one otophysan species, Carassius auratus (the goldfish). Animals were sacrificed at 3 h or 5 days postinjection with BrdU and processed for immunocytochemistry. The results of the study show that cell proliferation occurs in all of the otic endorgans and results in the addition of new hair cells. BrdU-labeled cells were distributed throughout all epithelia, including the primary auditory endorgan (saccule), where hair cell phenotypes vary considerably along the rostrocaudal axis. This study lays the groundwork for our transmission electron microscopy study of proliferative cells in the goldfish ear (Presson et al., Hearing Research 100 (1996) 10-20) as well as future studies of hair cell development in this species. The ability to predict, based on epithelial location, the future phenotype of developing hair cells in the saccule of the goldfish make that endorgan a particularly powerful model system for the investigation of early hair cell differentiation.

  3. Effects of environmental disturbance on phenotypic variation: an integrated assessment of canalization, developmental stability, modularity, and allometry in lizard head shape.

    PubMed

    Lazić, Marko M; Carretero, Miguel A; Crnobrnja-Isailović, Jelka; Kaliontzopoulou, Antigoni

    2015-01-01

    When populations experience suboptimal conditions, the mechanisms involved in the regulation of phenotypic variation can be challenged, resulting in increased phenotypic variance. This kind of disturbance can be diagnosed by using morphometric tools to study morphological patterns at different hierarchical levels and evaluate canalization, developmental stability, integration, modularity, and allometry. We assess the effect of urbanization on phenotypic variation in the common wall lizard (Podarcis muralis) by using geometric morphometrics to assess disturbance to head shape development. The head shapes of urban lizards were more variable and less symmetric, suggesting that urban living is more likely to disturb development. Head shape variation was congruent within and across individuals, which indicated that canalization and developmental stability are two related phenomena in these organisms. Furthermore, urban lizards exhibited smaller mean head sizes, divergent size-shape allometries, and increased deviation from within-group allometric lines. This suggests that mechanisms regulating head shape allometry may also be disrupted. The integrated evaluation of several measures of developmental instability at different hierarchical levels, which provided in this case congruent results, can be a powerful methodological guide for future studies, as it enhances the detection of environmental disturbances on phenotypic variation and aids biological interpretation of the results.

  4. The Barrett's Gland in Phenotype Space.

    PubMed

    McDonald, Stuart A C; Graham, Trevor A; Lavery, Danielle L; Wright, Nicholas A; Jansen, Marnix

    2015-01-01

    Barrett's esophagus is characterized by the erosive replacement of esophageal squamous epithelium by a range of metaplastic glandular phenotypes. These glandular phenotypes likely change over time, and their distribution varies along the Barrett's segment. Although much recent work has addressed Barrett's esophagus from the genomic viewpoint-its genotype space- the fact that the phenotype of Barrett's esophagus is nonstatic points to conversion between phenotypes and suggests that Barrett's esophagus also exists in phenotype space . Here we explore this latter concept, investigating the scope of glandular phenotypes in Barrett's esophagus and how they exist in physical and temporal space as well as their evolution and their life history. We conclude that individual Barrett's glands are clonal units; because of this important fact, we propose that it is the Barrett's gland that is the unit of selection in phenotypic and indeed neoplastic progression. Transition between metaplastic phenotypes may be governed by neutral drift akin to niche turnover in normal and dysplastic niches. In consequence, the phenotype of Barrett's glands assumes considerable importance, and we make a strong plea for the integration of the Barrett's gland in both genotype and phenotype space in future work.

  5. Respiratory reviews in asthma 2013.

    PubMed

    Kim, Tae-Hyung

    2014-03-01

    From January 2012 up until March 2013, many articles with huge clinical importance in asthma were published based on large numbered clinical trials or meta-analysis. The main subjects of these studies were the new therapeutic plan based on the asthma phenotype or efficacy along with the safety issues regarding the current treatment guidelines. For efficacy and safety issues, inhaled corticosteroid tapering strategy or continued long-acting beta agonists use was the major concern. As new therapeutic trials, monoclonal antibodies or macrolide antibiotics based on inflammatory phenotypes have been under investigation, with promising preliminary results. There were other issues on the disease susceptibility or genetic background of asthma, particularly for the "severe asthma" phenotype. In the era of genome and pharmacogenetics, there have been extensive studies to identify susceptible candidate genes based on the results of genome wide association studies (GWAS). However, for severe asthma, which is where most of the mortality or medical costs develop, it is very unclear. Moreover, there have been some efforts to find important genetic information in order to predict the possible disease progression, but with few significant results up until now. In conclusion, there are new on-going aspects in the phenotypic classification of asthma and therapeutic strategy according to the phenotypic variations. With more pharmacogenomic information and clear identification of the "severe asthma" group even before disease progression from GWAS data, more adequate and individualized therapeutic strategy could be realized in the future.

  6. Genetics of Attention Deficit Hyperactivity Disorder: A Current Review and Future Prospects

    ERIC Educational Resources Information Center

    Levy, Florence; Hay, David A.; Bennett, Kellie S.

    2006-01-01

    While there have been significant advances in both the behaviour genetics and molecular genetics of Attention Deficit Hyperactivity Disorder (ADHD), researchers are now beginning to develop hypotheses about relationships between phenotypes and genetic mechanisms. Twin studies are able to model genetic, shared environmental and non-shared…

  7. Transcriptome profile and cytogenetic analysis of immortalized neuronally restricted progenitor cells derived from the porcine olfactory bulb

    USDA-ARS?s Scientific Manuscript database

    Recently, we established and phenotypically characterized an immortalized porcine olfactory bulb neuroblast cell line, OBGF400 (Uebing-Czipura et al., 2008). To facilitate the future application of these cells in studies of neurological dysfunction and neuronal replacement therapies, a comprehensive...

  8. Development of a bipolar disorder biobank: differential phenotyping for subsequent biomarker analyses.

    PubMed

    Frye, Mark A; McElroy, Susan L; Fuentes, Manuel; Sutor, Bruce; Schak, Kathryn M; Galardy, Christine W; Palmer, Brian A; Prieto, Miguel L; Kung, Simon; Sola, Christopher L; Ryu, Euijung; Veldic, Marin; Geske, Jennifer; Cuellar-Barboza, Alfredo; Seymour, Lisa R; Mori, Nicole; Crowe, Scott; Rummans, Teresa A; Biernacka, Joanna M

    2015-12-01

    We aimed to establish a bipolar disorder biobank to serve as a resource for clinical and biomarker studies of disease risk and treatment response. Here, we describe the aims, design, infrastructure, and research uses of the biobank, along with demographics and clinical features of the first participants enrolled. Patients were recruited for the Mayo Clinic Bipolar Biobank beginning in July 2009. The Structured Clinical Interview for DSM-IV was used to confirm bipolar diagnosis. The Bipolar Biobank Clinical Questionnaire and Participant Questionnaire were designed to collect detailed demographic and clinical data, including clinical course of illness measures that would delineate differential phenotypes for subsequent analyses. Blood specimens were obtained from participants, and various aliquots were stored for future research. As of September 2014, 1363 participants have been enrolled in the bipolar biobank. Among these first participants, 69.0 % had a diagnosis of bipolar disorder type I. The group was 60.2 % women and predominantly white (90.6 %), with a mean (SD) age of 42.6 (14.9) years. Clinical phenotypes of the group included history of psychosis (42.3 %), suicide attempt (32.5 %), addiction to alcohol (39.1 %), addiction to nicotine (39.8 %), obesity (42.9 %), antidepressant-induced mania (31.7 %), tardive dyskinesia (3.2 %), and history of drug-related serious rash (5.7 %). Quantifying phenotypic patterns of illness beyond bipolar subtype can provide more detailed clinical disease characteristics for biomarker research, including genomic-risk studies. Future research can harness clinically useful biomarkers using state-of-the-art research technology to help stage disease burden and better individualize treatment selection for patients with bipolar disorder.

  9. Association between pain and the frailty phenotype in older men: longitudinal results from the Concord Health and Ageing in Men Project (CHAMP).

    PubMed

    Megale, Rodrigo Z; Ferreira, Manuela L; Ferreira, Paulo H; Naganathan, Vasi; Cumming, Robert; Hirani, Vasant; Waite, Louise M; Seibel, Markus J; Le Couteur, David G; Handelsman, David J; Blyth, Fiona M

    2018-05-01

    to determine whether pain increases the risk of developing the frailty phenotype and whether frailty increases the risk of developing chronic or intrusive pain, using longitudinal data. longitudinal data from the Concord Health and Ageing in Men Project (CHAMP), a prospective population based cohort study. a total of 1,705 men aged 70 years or older, living in an urban area of New South Wales, Australia. data on the presence of chronic pain (daily pain for at least 3 months), intrusive pain (pain causing moderate to severe interference with activities) and the criteria for the Cardiovascular Health Study (CHS) frailty phenotype were collected in three waves, from January 2005 to October 2013. Data on age, living arrangements, education, smoking status, alcohol consumption, body mass index, comorbidities, cognitive function, depressive symptoms and history of vertebral or hip fracture were also collected and included as covariates in the analyses. a total of 1,705 participants were included at baseline, of whom 1,332 provided data at the 2-year follow-up and 940 at the 5-year follow-up. Non-frail (robust and pre-frail) men who reported chronic pain were 1.60 (95% confidence interval (CI): 1.02-2.51, P = 0.039) times more likely to develop frailty at follow-up, compared to those with no pain. Intrusive pain did not significantly increase the risk of future frailty. Likewise, the frailty status was not associated with future chronic or intrusive pain in the adjusted analysis. the presence of chronic pain increases the risk of developing the frailty phenotype in community-dwelling older men.

  10. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    PubMed Central

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  11. iT2DMS: a Standard-Based Diabetic Disease Data Repository and its Pilot Experiment on Diabetic Retinopathy Phenotyping and Examination Results Integration.

    PubMed

    Wu, Huiqun; Wei, Yufang; Shang, Yujuan; Shi, Wei; Wang, Lei; Li, Jingjing; Sang, Aimin; Shi, Lili; Jiang, Kui; Dong, Jiancheng

    2018-06-06

    Type 2 diabetes mellitus (T2DM) is a common chronic disease, and the fragment data collected through separated vendors makes continuous management of DM patients difficult. The lack of standard of fragment data from those diabetic patients also makes the further potential phenotyping based on the diabetic data difficult. Traditional T2DM data repository only supports data collection from T2DM patients, lack of phenotyping ability and relied on standalone database design, limiting the secondary usage of these valuable data. To solve these issues, we proposed a novel T2DM data repository framework, which was based on standards. This repository can integrate data from various sources. It would be used as a standardized record for further data transfer as well as integration. Phenotyping was conducted based on clinical guidelines with KNIME workflow. To evaluate the phenotyping performance of the proposed system, data was collected from local community by healthcare providers and was then tested using algorithms. The results indicated that the proposed system could detect DR cases with an average accuracy of about 82.8%. Furthermore, these results had the promising potential of addressing fragmented data. The proposed system has integrating and phenotyping abilities, which could be used for diabetes research in future studies.

  12. Epithelial phenotype and the RPE: is the answer blowing in the Wnt?

    PubMed

    Burke, Janice M

    2008-11-01

    Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell-cell adhesion and melanization are linked by a common signaling pathway: the Wnt/beta-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/beta-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function.

  13. Epithelial phenotype and the RPE: Is the answer blowing in the Wnt?

    PubMed Central

    Burke, Janice M.

    2008-01-01

    Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell–cell adhesion and melanization are linked by a common signaling pathway: the Wnt/β-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/β-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function. PMID:18775790

  14. Characterization of a Stable, Metronidazole-Resistant Clostridium difficile Clinical Isolate

    PubMed Central

    Lynch, Tarah; Chong, Patrick; Zhang, Jason; Hizon, Romeo; Du, Tim; Graham, Morag R.; Beniac, Daniel R.; Booth, Timothy F.; Kibsey, Pamela; Miller, Mark; Gravel, Denise; Mulvey, Michael R.

    2013-01-01

    Background Clostridium difficile are Gram-positive, spore forming anaerobic bacteria that are the leading cause of healthcare-associated diarrhea, usually associated with antibiotic usage. Metronidazole is currently the first-line treatment for mild to moderate C. difficile diarrhea however recurrence occurs at rates of 15–35%. There are few reports of C. difficile metronidazole resistance in the literature, and when observed, the phenotype has been transient and lost after storage or exposure of the bacteria to freeze/thaw cycles. Owing to the unstable nature of the resistance phenotype in the laboratory, clinical significance and understanding of the resistance mechanisms is lacking. Methodology/Principal Findings Genotypic and phenotypic characterization was performed on a metronidazole resistant clinical isolate of C. difficile. Whole-genome sequencing was used to identify potential genetic contributions to the phenotypic variation observed with molecular and bacteriological techniques. Phenotypic observations of the metronidazole resistant strain revealed aberrant growth in broth and elongated cell morphology relative to a metronidazole-susceptible, wild type NAP1 strain. Comparative genomic analysis revealed single nucleotide polymorphism (SNP) level variation within genes affecting core metabolic pathways such as electron transport, iron utilization and energy production. Conclusions/Significance This is the first characterization of stable, metronidazole resistance in a C. difficile isolate. The study provides an in-depth genomic and phenotypic analysis of this strain and provides a foundation for future studies to elucidate mechanisms conferring metronidazole resistance in C. difficile that have not been previously described. PMID:23349739

  15. How Reliable Are the Reported Genetic Associations in Disc Degeneration?: The Influence of Phenotypes, Age, Population Size, and Inclusion Sequence in 809 Patients.

    PubMed

    Rajasekaran, S; Kanna, Rishi Mugesh; Reddy, Ranjani Raja; Natesan, Senthil; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Kao, Patrick Y P; Yee, Anita; Shetty, Ajoy Prasad

    2016-11-01

    Prospective genetic association study. The aim of this study was to document the variations in the genetic associations, when different magnetic resonance imaging (MRI) phenotypes, age stratification, cohort size, and sequence of cohort inclusion are varied in the same study population. Genetic associations with disc degeneration have shown high inconsistency, generally attributed to hereditary factors and ethnic variations. However, the effect of different phenotypes, size of the study population, age of the cohort, etc have not been documented clearly. Seventy-one single-nucleotide polymorphisms (SNPs) of 41 candidate genes were correlated to six MRI markers of disc degeneration (annular tears, Pfirmann grading, Schmorl nodes, Modic changes, Total Endplate Damage score, and disc bulge) in 809 patients with back pain and/or sciatica. In the same study group, the correlations were then retested for different age groups, different sample, size and sequence of subject inclusion (first 404 and the second 405) and the differences documented. The mean age of population (M: 455, F: 354) was 36.7 ± 10.8 years. Different genetic associations were found with different phenotypes: disc bulge with three SNPs of CILP; annular tears with rs2249350 of ADAMTS5 and rs11247361 IGF1R; modic changes with VDR and MMP20; Pfirmann grading with three SNPs of MMP20 and Schmorl node with SNPs of CALM1 and FN1 and none with Total End Plate Score.Subgroup analysis based on three age groups and dividing the total population into two groups also completely changed the associations for all the six radiographic parameters. In the same study population, SNP associations completely change with different phenotypes. Variations in age, inclusion sequence, and sample size resulted in change of genetic associations. Our study questions the validity of previous studies and necessitates the need for standardizing the description of disc degeneration, phenotype selection, study sample size, age, and other variables in future studies. 4.

  16. The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: results from the EPIC-Norfolk Prospective Population Study

    PubMed Central

    Arsenault, Benoit J.; Lemieux, Isabelle; Després, Jean-Pierre; Wareham, Nicholas J.; Kastelein, John J.P.; Khaw, Kay-Tee; Boekholdt, S. Matthijs

    2010-01-01

    Background Screening for increased waist circumference and hypertriglyceridemia (the hypertriglyceridemic-waist phenotype) has been proposed as an inexpensive approach to identify patients with excess intra-abdominal adiposity and associated metabolic abnormalities. We examined the relationship between the hypertriglyceridemic-waist phenotype to the risk of coronary artery disease in apparently healthy individuals. Methods A total of 21 787 participants aged 45–79 years were followed for a mean of 9.8 (standard deviation 1.7) years. Coronary artery disease developed in 2109 of them during follow-up. The hypertriglyceridemic-waist phenotype was defined as a waist circumference of 90 cm or more and a triglyceride level of 2.0 mmol/L or more in men, and a waist circumference of 85 cm or more and a triglyceride level of 1.5 mmol/L or more in women. Results Compared with participants who had a waist circumference and triglyceride level below the threshold, those with the hypertriglyceridemic-waist phenotype had higher blood pressure indices, higher levels of apolipoprotein B and C-reactive protein, lower levels of high-density lipoprotein cholesterol and apolipoprotein A-I, and smaller low-density lipoprotein particles. Among men, those with the hypertriglyceridemic-waist phenotype had an unadjusted hazard ratio for future coronary artery disease of 2.40 (95% confidence interval [CI] 2.02–2.87) compared with men who did not have the phenotype. Women with the phenotype had an unadjusted hazard ratio of 3.84 (95% CI 3.20–4.62) compared with women who did not have the phenotype. Interpretation Among participants from a European cohort representative of a contemporary Western population, the hypertriglyceridemic-waist phenotype was associated with a deteriorated cardiometabolic risk profile and an increased risk for coronary artery disease. PMID:20643837

  17. Weighting Primary Care Patient Panel Size: A Novel Electronic Health Record-Derived Measure Using Machine Learning.

    PubMed

    Rajkomar, Alvin; Yim, Joanne Wing Lan; Grumbach, Kevin; Parekh, Ami

    2016-10-14

    Characterizing patient complexity using granular electronic health record (EHR) data regularly available to health systems is necessary to optimize primary care processes at scale. To characterize the utilization patterns of primary care patients and create weighted panel sizes for providers based on work required to care for patients with different patterns. We used EHR data over a 2-year period from patients empaneled to primary care clinicians in a single academic health system, including their in-person encounter history and virtual encounters such as telephonic visits, electronic messaging, and care coordination with specialists. Using a combination of decision rules and k-means clustering, we identified clusters of patients with similar health care system activity. Phenotypes with basic demographic information were used to predict future health care utilization using log-linear models. Phenotypes were also used to calculate weighted panel sizes. We identified 7 primary care utilization phenotypes, which were characterized by various combinations of primary care and specialty usage and were deemed clinically distinct by primary care physicians. These phenotypes, combined with age-sex and primary payer variables, predicted future primary care utilization with R 2 of .394 and were used to create weighted panel sizes. Individual patients' health care utilization may be useful for classifying patients by primary care work effort and for predicting future primary care usage.

  18. New phenotypes for new breeding goals in pigs.

    PubMed

    Merks, J W M; Mathur, P K; Knol, E F

    2012-04-01

    Pig breeders in the past have adopted their breeding goals according to the needs of the producers, processors and consumers and have made remarkable genetic improvements in the traits of interest. However, it is becoming more and more challenging to meet the market needs and expectations of consumers and in general of the citizens. In view of the current and future trends, the breeding goals have to include several additional traits and new phenotypes. These phenotypes include (a) vitality from birth to slaughter, (b) uniformity at different levels of production, (c) robustness, (d) welfare and health and (e) phenotypes to reduce carbon footprint. Advancements in management, genomics, statistical models and other technologies provide opportunities for recording these phenotypes. These new developments also provide opportunities for making effective use of the new phenotypes for faster genetic improvement to meet the newly adapted breeding goals.

  19. Epilepsy Genetics—Past, Present, and Future

    PubMed Central

    Poduri, Annapurna; Lowenstein, Daniel

    2014-01-01

    Human epilepsy is a common and heterogeneous condition in which genetics play an important etiological role. We begin by reviewing the past history of epilepsy genetics, a field that has traditionally included studies of pedigrees with epilepsy caused by defects in ion channels and neurotransmitters. We highlight important recent discoveries that have expanded the field beyond the realm of channels and neurotransmitters and that have challenged the notion that single genes produce single disorders. Finally, we project toward an exciting future for epilepsy genetics as large-scale collaborative phenotyping studies come face to face with new technologies in genomic medicine. PMID:21277190

  20. Ecological transition predictably associated with gene degeneration.

    PubMed

    Wessinger, Carolyn A; Rausher, Mark D

    2015-02-01

    Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Genetic Modifiers of Sickle Cell Disease

    PubMed Central

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  2. Climate change and mammals: evolutionary versus plastic responses.

    PubMed

    Boutin, Stan; Lane, Jeffrey E

    2014-01-01

    Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.

  3. Climate change and mammals: evolutionary versus plastic responses

    PubMed Central

    Boutin, Stan; Lane, Jeffrey E

    2014-01-01

    Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made. PMID:24454546

  4. The Importance of Clinical Phenotype in Understanding and Preventing Spontaneous Preterm Birth.

    PubMed

    Esplin, M Sean

    2016-02-01

    Spontaneous preterm birth (SPTB) is a well-known cause of maternal and neonatal morbidity. The search for the underlying pathways, documentation of the genetic causes, and identification of markers of spontaneous PTB have been marginally successful due to the fact that it is highly complex, with numerous processes that lead to a final common pathway. There is a great need for a comprehensive, consistent, and uniform classification system, which will be useful in identifying mechanisms, assigning prognosis, aiding in clinical management, and can identify areas of interest for intervention and future study. Effective classification systems must overcome obstacles including the lack of widely accepted definitions and uncertainty about inclusion of classifying features (e.g., presentation at delivery and multiple gestations) and levels of detail of these features. The optimal classification system should be based on the clinical phenotype, including characteristics of the mother, fetus, placenta, and the presentation for delivery. We present a proposed phenotyping system for spontaneous PTB. Future classification systems must establish a universally accepted set of definitions and a standardized clinical workup for all PTBs including the minimum clinical data to be collected and the laboratory and pathologic evaluation that should be completed. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. A high-content platform to characterise human induced pluripotent stem cell lines.

    PubMed

    Leha, Andreas; Moens, Nathalie; Meleckyte, Ruta; Culley, Oliver J; Gervasio, Mia K; Kerz, Maximilian; Reimer, Andreas; Cain, Stuart A; Streeter, Ian; Folarin, Amos; Stegle, Oliver; Kielty, Cay M; Durbin, Richard; Watt, Fiona M; Danovi, Davide

    2016-03-01

    Induced pluripotent stem cells (iPSCs) provide invaluable opportunities for future cell therapies as well as for studying human development, modelling diseases and discovering therapeutics. In order to realise the potential of iPSCs, it is crucial to comprehensively characterise cells generated from large cohorts of healthy and diseased individuals. The human iPSC initiative (HipSci) is assessing a large panel of cell lines to define cell phenotypes, dissect inter- and intra-line and donor variability and identify its key determinant components. Here we report the establishment of a high-content platform for phenotypic analysis of human iPSC lines. In the described assay, cells are dissociated and seeded as single cells onto 96-well plates coated with fibronectin at three different concentrations. This method allows assessment of cell number, proliferation, morphology and intercellular adhesion. Altogether, our strategy delivers robust quantification of phenotypic diversity within complex cell populations facilitating future identification of the genetic, biological and technical determinants of variance. Approaches such as the one described can be used to benchmark iPSCs from multiple donors and create novel platforms that can readily be tailored for disease modelling and drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Pharmacogenomics in childhood rheumatic disorders: a foundation for future individualized therapy.

    PubMed

    Polk, Brooke I; Becker, Mara L

    2013-12-01

    Investigating the effect of genotype on drug response in children is an evolving field, with many challenges, but there is great potential to optimize safe and effective use of drugs in children. An exponential increase in available medications for use in children with rheumatic disease has opened seemingly endless genotype/phenotype relationships to explore, but challenges inherent in studying rare diseases and the often overlooked role of ontogeny contribute to limitations in pharmacogenomic studies in this population. With careful recognition of the importance of development, improved phenotyping with the incorporation of biomarkers, and expanding collaborative efforts on a national and even international scale, the field of pediatric rheumatology has the opportunity to strategically study the new therapeutic armamentarium available and provide individualized/personalized safe and effective therapies to our population of patients.

  8. Bio-chemo-mechanics of thoracic aortic aneurysms.

    PubMed

    Wagenseil, Jessica E

    2018-03-01

    Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.

  9. Future of phytonematode taxonomy

    USDA-ARS?s Scientific Manuscript database

    The future of nematode taxonomy will be characterized by rapid accumulation of new and revised taxa examined in light of a refined understanding of phenotypic plasticity and cryptic speciation, multiple molecular markers and appropriate phylogenetic analyses. The inevitable result will be improved t...

  10. Deep learning in mammography and breast histology, an overview and future trends.

    PubMed

    Hamidinekoo, Azam; Denton, Erika; Rampun, Andrik; Honnor, Kate; Zwiggelaar, Reyer

    2018-07-01

    Recent improvements in biomedical image analysis using deep learning based neural networks could be exploited to enhance the performance of Computer Aided Diagnosis (CAD) systems. Considering the importance of breast cancer worldwide and the promising results reported by deep learning based methods in breast imaging, an overview of the recent state-of-the-art deep learning based CAD systems developed for mammography and breast histopathology images is presented. In this study, the relationship between mammography and histopathology phenotypes is described, which takes biological aspects into account. We propose a computer based breast cancer modelling approach: the Mammography-Histology-Phenotype-Linking-Model, which develops a mapping of features/phenotypes between mammographic abnormalities and their histopathological representation. Challenges are discussed along with the potential contribution of such a system to clinical decision making and treatment management. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  11. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals.

    PubMed

    Doremus-Fitzwater, Tamara L; Spear, Linda P

    2016-11-01

    Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Phenotype- and Genotype-Specific Structural Alterations in Spasmodic Dysphonia

    PubMed Central

    Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F.; Frucht, Steven J.; Blitzer, Andrew; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Methods Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Results Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Conclusions Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. PMID:28186656

  13. Annual Research Review: Understudied Populations within the Autism Spectrum--Current Trends and Future Directions in Neuroimaging Research

    ERIC Educational Resources Information Center

    Jack, Allison; Pelphrey, Kevin A.

    2017-01-01

    Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions that vary in both etiology and phenotypic expression. Expressions of ASD characterized by a more severe phenotype, including autism with intellectual disability (ASD + ID), autism with a history of developmental regression (ASD + R), and minimally verbal…

  14. Therapeutics: Gene Therapy for Alpha-1 Antitrypsin Deficiency.

    PubMed

    Gruntman, Alisha M; Flotte, Terence R

    2017-01-01

    This review seeks to give an overview of alpha-1 antitrypsin deficiency, including the different disease phenotypes that it encompasses. We then describe the different therapeutic endeavors that have been undertaken to address these different phenotypes. Lastly we discuss future potential therapeutics, such as genome editing, and how they may play a role in treating alpha-1 antitrypsin deficiency.

  15. Stable phenotype of B-cell subsets following cryopreservation and thawing of normal human lymphocytes stored in a tissue biobank.

    PubMed

    Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik

    2015-01-01

    Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are no phenotypic differences between cryopreserved and fresh B-cell subsets." Subsequently, we performed an uncontrolled comparison of tonsil tissue samples. By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue-specific comparative analysis. © 2014 Clinical Cytometry Society.

  16. Stable Phenotype Of B-Cell Subsets Following Cryopreservation and Thawing of Normal Human Lymphocytes Stored in a Tissue Biobank.

    PubMed

    Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik

    2014-09-20

    Background Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. Methods We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are phenotypic differences between cryopreserved and fresh B-cell subsets". Subsequently, we performed a consecutive uncontrolled comparison of tonsil tissue samples. Results By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. Conclusions We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue specific comparative analysis. © 2014 Clinical Cytometry Society. Copyright © 2014 Clinical Cytometry Society.

  17. Do genetic variations alter the effects of exercise training on cardiovascular disease and can we identify the candidate variants now or in the future?

    PubMed

    Hagberg, James M

    2011-09-01

    Cardiovascular disease (CVD) and CVD risk factors are highly heritable, and numerous lines of evidence indicate they have a strong genetic basis. While there is nothing known about the interactive effects of genetics and exercise training on CVD itself, there is at least some literature addressing their interactive effect on CVD risk factors. There is some evidence indicating that CVD risk factor responses to exercise training are also heritable and, thus, may have a genetic basis. While roughly 100 studies have reported significant effects of genetic variants on CVD risk factor responses to exercise training, no definitive conclusions can be generated at the present time, because of the lack of consistent and replicated results and the small sample sizes evident in most studies. There is some evidence supporting "possible" candidate genes that may affect these responses to exercise training: APO E and CETP for plasma lipoprotein-lipid profiles; eNOS, ACE, EDN1, and GNB3 for blood pressure; PPARG for type 2 diabetes phenotypes; and FTO and BAR genes for obesity-related phenotypes. However, while genotyping technologies and statistical methods are advancing rapidly, the primary limitation in this field is the need to generate what in terms of exercise intervention studies would be almost incomprehensible sample sizes. Most recent diabetes, obesity, and blood pressure genetic studies have utilized populations of 10,000-250,000 subjects, which result in the necessary statistical power to detect the magnitude of effects that would probably be expected for the impact of an individual gene on CVD risk factor responses to exercise training. Thus at this time it is difficult to see how this field will advance in the future to the point where robust, consistent, and replicated data are available to address these issues. However, the results of recent large-scale genomewide association studies for baseline CVD risk factors may drive future hypothesis-driven exercise training intervention studies in smaller populations addressing the impact of specific genetic variants on well-defined physiological phenotypes.

  18. Future animal improvement programs applied to global populations

    USDA-ARS?s Scientific Manuscript database

    Breeding programs evolved gradually from within-herd phenotypic selection to local and regional cooperatives to national evaluations and now international evaluations. In the future, breeders may adapt reproductive, computational, and genomic methods to global populations as easily as with national ...

  19. Phenotypic and genetic overlap between autistic traits at the extremes of the general population.

    PubMed

    Ronald, Angelica; Happé, Francesca; Price, Thomas S; Baron-Cohen, Simon; Plomin, Robert

    2006-10-01

    To investigate children selected from a community sample for showing extreme autistic-like traits and to assess the degree to which these individual traits--social impairments (SIs), communication impairments (CIs), and restricted repetitive behaviors and interests (RRBIs)--are caused by genes and environments, whether all of them are caused by the same genes and environments, and how often they occur together (as required by an autism diagnosis). The most extreme-scoring 5% were selected from 3,419 8-year-old pairs in the Twins Early Development Study assessed on the Childhood Asperger Syndrome Test. Phenotypic associations between extreme traits were compared with associations among the full-scale scores. Genetic associations between extreme traits were quantified using bivariate DeFries-Fulker extremes analysis. Phenotypic relationships between extreme SIs, CIs, and RRBIs were modest. There was a degree of genetic overlap between them, but also substantial genetic specificity. This first twin study assessing the links between extreme individual autistic-like traits (SIs, CIs, and RRBIs) found that all are highly heritable but show modest phenotypic and genetic overlap. This finding concurs with that of an earlier study from the same cohort that showed that a total autistic symptoms score at the extreme showed high heritability and that SIs, CIs, and RRBIs show weak links in the general population. This new finding has relevance for both clinical models and future molecular genetic studies.

  20. Selection and phenotypic characterization of a core collection of Brachypodium distachyon inbred lines.

    PubMed

    Tyler, Ludmila; Fangel, Jonatan U; Fagerström, Alexandra Dotson; Steinwand, Michael A; Raab, Theodore K; Willats, William Gt; Vogel, John P

    2014-01-14

    The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community. The natural variation in this collection can serve as a powerful experimental tool for many areas of inquiry, including investigating biomass traits. We surveyed the phenotypic diversity in a large collection of inbred lines and then selected a core collection of lines for more detailed analysis with an emphasis on traits relevant to the use of grasses as biofuel and grain crops. Phenotypic characters examined included plant height, growth habit, stem density, flowering time, and seed weight. We also surveyed differences in cell wall composition using near infrared spectroscopy (NIR) and comprehensive microarray polymer profiling (CoMPP). In all cases, we observed extensive natural variation including a two-fold variation in stem density, four-fold variation in ferulic acid bound to hemicellulose, and 1.7-fold variation in seed mass. These characterizations can provide the criteria for selecting diverse lines for future investigations of the genetic basis of the observed phenotypic variation.

  1. Evolutionary and plastic responses to climate change in terrestrial plant populations

    PubMed Central

    Franks, Steven J; Weber, Jennifer J; Aitken, Sally N

    2014-01-01

    As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change. PMID:24454552

  2. Phenotypic screening in cancer drug discovery - past, present and future.

    PubMed

    Moffat, John G; Rudolph, Joachim; Bailey, David

    2014-08-01

    There has been a resurgence of interest in the use of phenotypic screens in drug discovery as an alternative to target-focused approaches. Given that oncology is currently the most active therapeutic area, and also one in which target-focused approaches have been particularly prominent in the past two decades, we investigated the contribution of phenotypic assays to oncology drug discovery by analysing the origins of all new small-molecule cancer drugs approved by the US Food and Drug Administration (FDA) over the past 15 years and those currently in clinical development. Although the majority of these drugs originated from target-based discovery, we identified a significant number whose discovery depended on phenotypic screening approaches. We postulate that the contribution of phenotypic screening to cancer drug discovery has been hampered by a reliance on 'classical' nonspecific drug effects such as cytotoxicity and mitotic arrest, exacerbated by a paucity of mechanistically defined cellular models for therapeutically translatable cancer phenotypes. However, technical and biological advances that enable such mechanistically informed phenotypic models have the potential to empower phenotypic drug discovery in oncology.

  3. Biomarkers in Pediatric ARDS: Future Directions.

    PubMed

    Orwoll, Benjamin E; Sapru, Anil

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is common among mechanically ventilated children and accompanies up to 30% of all pediatric intensive care unit deaths. Though ARDS diagnosis is based on clinical criteria, biological markers of acute lung damage have been extensively studied in adults and children. Biomarkers of inflammation, alveolar epithelial and capillary endothelial disruption, disordered coagulation, and associated derangements measured in the circulation and other body fluids, such as bronchoalveolar lavage, have improved our understanding of pathobiology of ARDS. The biochemical signature of ARDS has been increasingly well described in adult populations, and this has led to the identification of molecular phenotypes to augment clinical classifications. However, there is a paucity of data from pediatric ARDS (pARDS) patients. Biomarkers and molecular phenotypes have the potential to identify patients at high risk of poor outcomes, and perhaps inform the development of targeted therapies for specific groups of patients. Additionally, because of the lower incidence of and mortality from ARDS in pediatric patients relative to adults and lack of robust clinical predictors of outcome, there is an ongoing interest in biological markers as surrogate outcome measures. The recent definition of pARDS provides additional impetus for the measurement of established and novel biomarkers in future pediatric studies in order to further characterize this disease process. This chapter will review the currently available literature and discuss potential future directions for investigation into biomarkers in ARDS among children.

  4. Biomarkers in Pediatric ARDS: Future Directions

    PubMed Central

    Orwoll, Benjamin E.; Sapru, Anil

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is common among mechanically ventilated children and accompanies up to 30% of all pediatric intensive care unit deaths. Though ARDS diagnosis is based on clinical criteria, biological markers of acute lung damage have been extensively studied in adults and children. Biomarkers of inflammation, alveolar epithelial and capillary endothelial disruption, disordered coagulation, and associated derangements measured in the circulation and other body fluids, such as bronchoalveolar lavage, have improved our understanding of pathobiology of ARDS. The biochemical signature of ARDS has been increasingly well described in adult populations, and this has led to the identification of molecular phenotypes to augment clinical classifications. However, there is a paucity of data from pediatric ARDS (pARDS) patients. Biomarkers and molecular phenotypes have the potential to identify patients at high risk of poor outcomes, and perhaps inform the development of targeted therapies for specific groups of patients. Additionally, because of the lower incidence of and mortality from ARDS in pediatric patients relative to adults and lack of robust clinical predictors of outcome, there is an ongoing interest in biological markers as surrogate outcome measures. The recent definition of pARDS provides additional impetus for the measurement of established and novel biomarkers in future pediatric studies in order to further characterize this disease process. This chapter will review the currently available literature and discuss potential future directions for investigation into biomarkers in ARDS among children. PMID:27313995

  5. Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson's Disease and Amyotrophic Lateral Sclerosis.

    PubMed

    Roser, Anna-Elisa; Tönges, Lars; Lingor, Paul

    2017-01-01

    Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS.

  6. Novel application of the published kinase inhibitor set to identify therapeutic targets and pathways in triple negative breast cancer subtypes

    PubMed Central

    Phamduy, Theresa B.; Chrisey, Douglas B.

    2017-01-01

    Triple negative breast cancers (TNBCs) have high recurrence and metastasis rates. Acquisition of a mesenchymal morphology and phenotype in addition to driving migration is a consequential process that promotes metastasis. Although some kinases are known to regulate a mesenchymal phenotype, the role for a substantial portion of the human kinome remains uncharacterized. Here we evaluated the Published Kinase Inhibitor Set (PKIS) and screened a panel of TNBC cell lines to evaluate the compounds’ effects on a mesenchymal phenotype. Our screen identified 36 hits representative of twelve kinase inhibitor chemotypes based on reversal of the mesenchymal cell morphology, which was then prioritized to twelve compounds based on gene expression and migratory behavior analyses. We selected the most active compound and confirmed mesenchymal reversal on transcript and protein levels with qRT-PCR and Western Blot. Finally, we utilized a kinase array to identify candidate kinases responsible for the EMT reversal. This investigation shows the novel application to identify previously unrecognized kinase pathways and targets in acquisition of a mesenchymal TNBC phenotype that warrant further investigation. Future studies will examine specific roles of the kinases in mechanisms responsible for acquisition of the mesenchymal and/or migratory phenotype. PMID:28771473

  7. New approaches to the representation and analysis of phenotype knowledge in human diseases and their animal models.

    PubMed

    Schofield, Paul N; Sundberg, John P; Hoehndorf, Robert; Gkoutos, Georgios V

    2011-09-01

    The systematic investigation of the phenotypes associated with genotypes in model organisms holds the promise of revealing genotype-phenotype relations directly and without additional, intermediate inferences. Large-scale projects are now underway to catalog the complete phenome of a species, notably the mouse. With the increasing amount of phenotype information becoming available, a major challenge that biology faces today is the systematic analysis of this information and the translation of research results across species and into an improved understanding of human disease. The challenge is to integrate and combine phenotype descriptions within a species and to systematically relate them to phenotype descriptions in other species, in order to form a comprehensive understanding of the relations between those phenotypes and the genotypes involved in human disease. We distinguish between two major approaches for comparative phenotype analyses: the first relies on evolutionary relations to bridge the species gap, while the other approach compares phenotypes directly. In particular, the direct comparison of phenotypes relies heavily on the quality and coherence of phenotype and disease databases. We discuss major achievements and future challenges for these databases in light of their potential to contribute to the understanding of the molecular mechanisms underlying human disease. In particular, we discuss how the use of ontologies and automated reasoning can significantly contribute to the analysis of phenotypes and demonstrate their potential for enabling translational research.

  8. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    PubMed

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  9. Helicase-inactivating mutations as a basis for dominant negative phenotypes

    PubMed Central

    Wu, Yuliang

    2010-01-01

    There is ample evidence from studies of both unicellular and multicellular organisms that helicase-inactivating mutations lead to cellular dysfunction and disease phenotypes. In this review, we will discuss the mechanisms underlying the basis for abnormal phenotypes linked to mutations in genes encoding DNA helicases. Recent evidence demonstrates that a clinically relevant patient missense mutation in Fanconi Anemia Complementation Group J exerts detrimental effects on the biochemical activities of the FANC J helicase, and these molecular defects are responsible for aberrant genomic stability and a poor DNA damage response. The ability of FANC J to use the energy from AT P hydrolysis to produce the force required to unwind duplex or G-quadruplex DNA structures or destabilize protein bound to DNA is required for its DNA repair functions in vivo. Strikingly, helicase-inactivating mutations can exert a spectrum of dominant negative phenotypes, indicating that expression of the mutant helicase protein potentially interferes with normal DNA metabolism and has an effect on basic cellular processes such as DNA replication, the DNA damage response and protein trafficking. This review emphasizes that future studies of clinically relevant mutations in helicase genes will be important to understand the molecular pathologies of the associated diseases and their impact on heterozygote carriers. PMID:20980836

  10. Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults

    PubMed Central

    Chen, Fang; He, Jing; Zhang, Jianqi; Chen, Gary K.; Thomas, Venetta; Ambrosone, Christine B.; Bandera, Elisa V.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Cai, Qiuyin; Carpten, John; Casey, Graham; Chanock, Stephen J.; Cheng, Iona; Chu, Lisa; Deming, Sandra L.; Driver, W. Ryan; Goodman, Phyllis; Hayes, Richard B.; Hennis, Anselm J. M.; Hsing, Ann W.; Hu, Jennifer J.; Ingles, Sue A.; John, Esther M.; Kittles, Rick A.; Kolb, Suzanne; Leske, M. Cristina; Monroe, Kristine R.; Murphy, Adam; Nemesure, Barbara; Neslund-Dudas, Christine; Nyante, Sarah; Ostrander, Elaine A; Press, Michael F.; Rodriguez-Gil, Jorge L.; Rybicki, Ben A.; Schumacher, Fredrick; Stanford, Janet L.; Signorello, Lisa B.; Strom, Sara S.; Stevens, Victoria; Van Den Berg, David; Wang, Zhaoming; Witte, John S.; Wu, Suh-Yuh; Yamamura, Yuko; Zheng, Wei; Ziegler, Regina G.; Stram, Alexander H.; Kolonel, Laurence N.; Marchand, Loïc Le; Henderson, Brian E.; Haiman, Christopher A.; Stram, Daniel O.

    2015-01-01

    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious. PMID:26125186

  11. Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults.

    PubMed

    Chen, Fang; He, Jing; Zhang, Jianqi; Chen, Gary K; Thomas, Venetta; Ambrosone, Christine B; Bandera, Elisa V; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Cai, Qiuyin; Carpten, John; Casey, Graham; Chanock, Stephen J; Cheng, Iona; Chu, Lisa; Deming, Sandra L; Driver, W Ryan; Goodman, Phyllis; Hayes, Richard B; Hennis, Anselm J M; Hsing, Ann W; Hu, Jennifer J; Ingles, Sue A; John, Esther M; Kittles, Rick A; Kolb, Suzanne; Leske, M Cristina; Millikan, Robert C; Monroe, Kristine R; Murphy, Adam; Nemesure, Barbara; Neslund-Dudas, Christine; Nyante, Sarah; Ostrander, Elaine A; Press, Michael F; Rodriguez-Gil, Jorge L; Rybicki, Ben A; Schumacher, Fredrick; Stanford, Janet L; Signorello, Lisa B; Strom, Sara S; Stevens, Victoria; Van Den Berg, David; Wang, Zhaoming; Witte, John S; Wu, Suh-Yuh; Yamamura, Yuko; Zheng, Wei; Ziegler, Regina G; Stram, Alexander H; Kolonel, Laurence N; Le Marchand, Loïc; Henderson, Brian E; Haiman, Christopher A; Stram, Daniel O

    2015-01-01

    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious.

  12. Developmental plasticity and the origin of species differences

    PubMed Central

    West-Eberhard, Mary Jane

    2005-01-01

    Speciation is the origin of reproductive isolation and divergence between populations, according to the “biological species concept” of Mayr. Studies of reproductive isolation have dominated research on speciation, leaving the origin of species differences relatively poorly understood. Here, I argue that the origin of species differences, and of novel phenotypes in general, involves the reorganization of ancestral phenotypes (developmental recombination) followed by the genetic accommodation of change. Because selection acts on phenotypes, not directly on genotypes or genes, novel traits can originate by environmental induction as well as mutation, then undergo selection and genetic accommodation fueled by standing genetic variation or by subsequent mutation and genetic recombination. Insofar as phenotypic novelties arise from adaptive developmental plasticity, they are not “random” variants, because their initial form reflects adaptive responses with an evolutionary history, even though they are initiated by mutations or novel environmental factors that are random with respect to (future) adaptation. Change in trait frequency involves genetic accommodation of the threshold or liability for expression of a novel trait, a process that follows rather than directs phenotypic change. Contrary to common belief, environmentally initiated novelties may have greater evolutionary potential than mutationally induced ones. Thus, genes are probably more often followers than leaders in evolutionary change. Species differences can originate before reproductive isolation and contribute to the process of speciation itself. Therefore, the genetics of speciation can profit from studies of changes in gene expression as well as changes in gene frequency and genetic isolation. PMID:15851679

  13. Chronic fatigue syndrome (CFS) symptom-based phenotypes in two clinical cohorts of adult patients in the UK and The Netherlands.

    PubMed

    Collin, Simon M; Nikolaus, Stephanie; Heron, Jon; Knoop, Hans; White, Peter D; Crawley, Esther

    2016-02-01

    Studies have provided evidence of heterogeneity within chronic fatigue syndrome (CFS), but few have used data from large cohorts of CFS patients or replication samples. 29 UK secondary-care CFS services recorded the presence/absence of 12 CFS-related symptoms; 8 of these symptoms were recorded by a Dutch tertiary service. Latent Class Analysis (LCA) was used to assign symptom profiles (phenotypes). Regression models were fitted with phenotype as outcome (in relation to age, sex, BMI, duration of illness) and exposure (in relation to comorbidities and patient-reported measures). Data were available for 7041 UK and 1392 Dutch patients. Almost all patients in both cohorts presented with post-exertional malaise, cognitive dysfunction and disturbed/unrefreshing sleep, and these 3 symptoms were excluded from LCA. In UK patients, six phenotypes emerged: 'full' polysymptomatic (median 8, IQR 7-9 symptoms) 32.8%; 'pain-only' (muscle/joint) 20.3%; 'sore throat/painful lymph node' 4.5%; and 'oligosymptomatic' (median 1, IQR 0-2 symptoms) 4.7%. Two 'partial' polysymptomatic phenotypes were similar to the 'full' phenotype, bar absence of dizziness/nausea/palpitations (21.4%) or sore throat/painful lymph nodes (16.3%). Women and patients with longer duration of illness were more likely to be polysymptomatic. Polysymptomatic patients had more severe illness and more comorbidities. LCA restricted to 5 symptoms recorded in both cohorts indicated 3 classes (polysymptomatic, oligosymptomatic, pain-only), which were replicated in Dutch data. Adults with CFS may have one of 6 symptom-based phenotypes associated with sex, duration and severity of illness, and comorbidity. Future research needs to determine whether phenotypes predict treatment outcomes, and require different treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis.

    PubMed

    Bos, L D; Schouten, L R; van Vught, L A; Wiewel, M A; Ong, D S Y; Cremer, O; Artigas, A; Martin-Loeches, I; Hoogendijk, A J; van der Poll, T; Horn, J; Juffermans, N; Calfee, C S; Schultz, M J

    2017-10-01

    We hypothesised that patients with acute respiratory distress syndrome (ARDS) can be clustered based on concentrations of plasma biomarkers and that the thereby identified biological phenotypes are associated with mortality. Consecutive patients with ARDS were included in this prospective observational cohort study. Cluster analysis of 20 biomarkers of inflammation, coagulation and endothelial activation provided the phenotypes in a training cohort, not taking any outcome data into account. Logistic regression with backward selection was used to select the most predictive biomarkers, and these predicted phenotypes were validated in a separate cohort. Multivariable logistic regression was used to quantify the independent association with mortality. Two phenotypes were identified in 454 patients, which we named 'uninflamed' (N=218) and 'reactive' (N=236). A selection of four biomarkers (interleukin-6, interferon gamma, angiopoietin 1/2 and plasminogen activator inhibitor-1) could be used to accurately predict the phenotype in the training cohort (area under the receiver operating characteristics curve: 0.98, 95% CI 0.97 to 0.99). Mortality rates were 15.6% and 36.4% (p<0.001) in the training cohort and 13.6% and 37.5% (p<0.001) in the validation cohort (N=207). The 'reactive phenotype' was independent from confounders associated with intensive care unit mortality (training cohort: OR 1.13, 95% CI 1.04 to 1.23; validation cohort: OR 1.18, 95% CI 1.06 to 1.31). Patients with ARDS can be clustered into two biological phenotypes, with different mortality rates. Four biomarkers can be used to predict the phenotype with high accuracy. The phenotypes were very similar to those found in cohorts derived from randomised controlled trials, and these results may improve patient selection for future clinical trials targeting host response in patients with ARDS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Female mating preferences determine system-level evolution in a gene network model.

    PubMed

    Fierst, Janna L

    2013-06-01

    Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.

  16. Proteomics to assess the role of phenotypic plasticity in aquatic organisms exposed to pollution and global warming.

    PubMed

    Silvestre, Frédéric; Gillardin, Virginie; Dorts, Jennifer

    2012-11-01

    Nowadays, the unprecedented rates of anthropogenic changes in ecosystems suggest that organisms have to migrate to new distributional ranges or to adapt commensurately quickly to new conditions to avoid becoming extinct. Pollution and global warming are two of the most important threats aquatic organisms will have to face in the near future. If genetic changes in a population in response to natural selection are extensively studied, the role of acclimation through phenotypic plasticity (the property of a given genotype to produce different phenotypes in response to particular environmental conditions) in a species to deal with new environmental conditions remains largely unknown. Proteomics is the extensive study of the protein complement of a genome. It is dynamic and depends on the specific tissue, developmental stage, and environmental conditions. As the final product of gene expression, it is subjected to several regulatory steps from gene transcription to the functional protein. Consequently, there is a discrepancy between the abundance of mRNA and the abundance of the corresponding protein. Moreover, proteomics is closer to physiology and gives a more functional knowledge of the regulation of gene expression than does transcriptomics. The study of protein-expression profiles, however, gives a better portrayal of the cellular phenotype and is considered as a key link between the genotype and the organismal phenotype. Under new environmental conditions, we can observe a shift of the protein-expression pattern defining a new cellular phenotype that can possibly improve the fitness of the organism. It is now necessary to define a proteomic norm of reaction for organisms acclimating to environmental stressors. Its link to fitness will give new insights into how organisms can evolve in a changing environment. The proteomic literature bearing on chronic exposure to pollutants and on acclimation to heat stress in aquatic organisms, as well as potential application of proteomics in evolutionary issues, are outlined. While the transcriptome responses are commonly investigated, proteomics approaches now need to be intensified, with the new perspective of integrating the cellular phenotype with the organismal phenotype and with the mechanisms of the regulation of gene expression, such as epigenetics.

  17. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.

    PubMed

    Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina

    2017-04-01

    Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  18. Joubert syndrome: A model for untangling recessive disorders with extreme genetic heterogeneity

    PubMed Central

    R, Bachmann-Gagescu; JC, Dempsey; IG, Phelps; BJ, O’Roak; DM, Knutzen; TC, Rue; GE, Ishak; CR, Isabella; N, Gorden; J, Adkins; EA, Boyle; N, de Lacy; D, O’Day; A, Alswaid; AR, Devi; L, Lingappa; C, Lourenço; L, Martorell; À, Garcia-Cazorla; H, Ozyürek; G, Haliloğlu; B, Tuysuz; M, Topçu; P, Chance; MA, Parisi; I, Glass; J, Shendure; D, Doherty

    2016-01-01

    Background Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, cognitive impairment, abnormal eye movements, respiratory control disturbances, and a distinctive mid-hindbrain malformation. JS demonstrates substantial phenotypic variability and genetic heterogeneity. This study provides a comprehensive view of the current genetic basis, phenotypic range and gene-phenotype associations in JS. Methods We sequenced 27 JS-associated genes in 440 affected individuals (375 families) from a cohort of 532 individuals (440 families) with JS, using molecular inversion probe-based targeted capture and next generation sequencing. Variant pathogenicity was defined using the Combined Annotation Dependent Depletion (CADD) algorithm with an optimized score cut-off. Results We identified presumed causal variants in 62% of pedigrees, including the first B9D2 mutations associated with JS. 253 different mutations in 23 genes highlight the extreme genetic heterogeneity of JS. Phenotypic analysis revealed that only 34% of individuals have a “pure JS” phenotype. Retinal disease is present in 30% of individuals, renal disease in 25%, coloboma in 17%, polydactyly in 15%, liver fibrosis in 14% and encephalocele in 8%. Loss of CEP290 function is associated with retinal dystrophy, while loss of TMEM67 function is associated with liver fibrosis and coloboma, but we observe no clear-cut distinction between JS-subtypes. Conclusion This work illustrates how combining advanced sequencing techniques with phenotypic data addresses extreme genetic heterogeneity to provide diagnostic and carrier testing, guide medical monitoring for progressive complications, facilitate interpretation of genome-wide sequencing results in individuals with a variety of phenotypes, and enable gene-specific treatments in the future. PMID:26092869

  19. Software engineering the mixed model for genome-wide association studies on large samples.

    PubMed

    Zhang, Zhiwu; Buckler, Edward S; Casstevens, Terry M; Bradbury, Peter J

    2009-11-01

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models. While multiple software packages implement the mixed model method, no single package provides the best combination of fast computation, ability to handle large samples, flexible modeling and ease of use. Key elements of association analysis with mixed models are reviewed, including modeling phenotype-genotype associations using mixed models, population stratification, kinship and its estimation, variance component estimation, use of best linear unbiased predictors or residuals in place of raw phenotype, improving efficiency and software-user interaction. The available software packages are evaluated, and suggestions made for future software development.

  20. Survival by genotype: patterns at Mc1r are not black and white at the White Sands ecotone.

    PubMed

    Des Roches, S; Sollmann, R; Calhoun, K; Rothstein, A P; Rosenblum, E B

    2017-01-01

    Measuring links among genotype, phenotype and survival in the wild has long been a focus of studies of adaptation. We conducted a 4-year capture-recapture study to measure survival by genotype and phenotype in the Southwestern Fence Lizard (Sceloporus cowlesi) at the White Sands ecotone (transition area between white sands and dark soil habitats). We report several unanticipated findings. First, in contrast with previous work showing that cryptic blanched coloration in S. cowlesi from the heart of the dunes is associated with mutations in the melanocortin-1 receptor gene (Mc1r), ecotonal S. cowlesi showed minimal association between colour phenotype and Mc1r genotype. Second, the frequency of the derived Mc1r allele in ecotonal S. cowlesi appeared to decrease over time. Third, our capture-recapture data revealed a lower survival rate for S. cowlesi individuals with the derived Mc1r allele. Thus, our results suggest that selection at the ecotone may have favoured the wild-type allele in recent years. Even in a system where a genotype-phenotype association appeared to be black and white, our study suggests that additional factors - including phenotypic plasticity, epistasis, pleiotropy and gene flow - may play important roles at the White Sands ecotone. Our study highlights the importance of linking molecular, genomic and organismal approaches for understanding adaptation in the wild. Furthermore, our findings indicate that dynamics of natural selection can be particularly complex in transitional habitats like ecotones and emphasize the need for future research that examines the patterns of ongoing selection in other ecological 'grey' zones. © 2016 John Wiley & Sons Ltd.

  1. Combined pituitary hormone deficiency: current and future status.

    PubMed

    Castinetti, F; Reynaud, R; Quentien, M-H; Jullien, N; Marquant, E; Rochette, C; Herman, J-P; Saveanu, A; Barlier, A; Enjalbert, A; Brue, T

    2015-01-01

    Over the last two decades, the understanding of the mechanisms involved in pituitary ontogenesis has largely increased. Since the first description of POU1F1 human mutations responsible for a well-defined phenotype without extra-pituitary malformation, several other genetic defects of transcription factors have been reported with variable degrees of phenotype-genotype correlations. However, to date, despite the identification of an increased number of genetic causes of isolated or multiple pituitary deficiencies, the etiology of most (80-90 %) congenital cases of hypopituitarism remains unsolved. Identifying new etiologies is of importance as a post-natal diagnosis to better diagnose and treat the patients (delayed pituitary deficiencies, differential diagnosis of a pituitary mass on MRI, etc.), and as a prenatal diagnosis to decrease the risk of early death (undiagnosed corticotroph deficiency for instance). The aim of this review is to summarize the main etiologies and phenotypes of combined pituitary hormone deficiencies, associated or not with extra-pituitary anomalies, and to suggest how the identification of such etiologies could be improved in the near future.

  2. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change.

    PubMed

    Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O

    2018-04-24

    As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.

  3. The digital revolution in phenotyping

    PubMed Central

    Oellrich, Anika; Collier, Nigel; Groza, Tudor; Rebholz-Schuhmann, Dietrich; Shah, Nigam; Bodenreider, Olivier; Boland, Mary Regina; Georgiev, Ivo; Liu, Hongfang; Livingston, Kevin; Luna, Augustin; Mallon, Ann-Marie; Manda, Prashanti; Robinson, Peter N.; Rustici, Gabriella; Simon, Michelle; Wang, Liqin; Winnenburg, Rainer; Dumontier, Michel

    2016-01-01

    Phenotypes have gained increased notoriety in the clinical and biological domain owing to their application in numerous areas such as the discovery of disease genes and drug targets, phylogenetics and pharmacogenomics. Phenotypes, defined as observable characteristics of organisms, can be seen as one of the bridges that lead to a translation of experimental findings into clinical applications and thereby support ‘bench to bedside’ efforts. However, to build this translational bridge, a common and universal understanding of phenotypes is required that goes beyond domain-specific definitions. To achieve this ambitious goal, a digital revolution is ongoing that enables the encoding of data in computer-readable formats and the data storage in specialized repositories, ready for integration, enabling translational research. While phenome research is an ongoing endeavor, the true potential hidden in the currently available data still needs to be unlocked, offering exciting opportunities for the forthcoming years. Here, we provide insights into the state-of-the-art in digital phenotyping, by means of representing, acquiring and analyzing phenotype data. In addition, we provide visions of this field for future research work that could enable better applications of phenotype data. PMID:26420780

  4. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T

    2007-12-01

    Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.

  5. Identifying the role of pre-and postsynaptic GABAB receptors in behavior

    PubMed Central

    Kasten, Chelsea R.; Boehm, Stephen L.

    2015-01-01

    Although many reviews exist characterizing the molecular differences of GABAB receptor isoforms, there is no current review of the in vivo effects of these isoforms. The current review focuses on whether the GABAB1a and GABAB1b isoforms contribute differentially to behaviors in isoform knockout mice. The roles of these receptors have primarily been characterized in cognitive, anxiety, and depressive phenotypes. Currently, the field supports a role of GABAB1a in memory maintenance and protection against an anhedonic phenotype, whereas GABAB1b appears to be involved in memory formation and a susceptibility to developing an anhedonic phenotype. Although GABAB receptors have been strongly implicated in drug abuse phenotypes, no isoform-specific work has been done in this field. Future directions include developing site-specific isoform knockdown to identify the role of different brain regions in behavior, as well as identifying how these isoforms are involved in development of behavioral phenotypes. PMID:26283074

  6. Defining the clinical course of multiple sclerosis

    PubMed Central

    Reingold, Stephen C.; Cohen, Jeffrey A.; Cutter, Gary R.; Sørensen, Per Soelberg; Thompson, Alan J.; Wolinsky, Jerry S.; Balcer, Laura J.; Banwell, Brenda; Barkhof, Frederik; Bebo, Bruce; Calabresi, Peter A.; Clanet, Michel; Comi, Giancarlo; Fox, Robert J.; Freedman, Mark S.; Goodman, Andrew D.; Inglese, Matilde; Kappos, Ludwig; Kieseier, Bernd C.; Lincoln, John A.; Lubetzki, Catherine; Miller, Aaron E.; Montalban, Xavier; O'Connor, Paul W.; Petkau, John; Pozzilli, Carlo; Rudick, Richard A.; Sormani, Maria Pia; Stüve, Olaf; Waubant, Emmanuelle; Polman, Chris H.

    2014-01-01

    Accurate clinical course descriptions (phenotypes) of multiple sclerosis (MS) are important for communication, prognostication, design and recruitment of clinical trials, and treatment decision-making. Standardized descriptions published in 1996 based on a survey of international MS experts provided purely clinical phenotypes based on data and consensus at that time, but imaging and biological correlates were lacking. Increased understanding of MS and its pathology, coupled with general concern that the original descriptors may not adequately reflect more recently identified clinical aspects of the disease, prompted a re-examination of MS disease phenotypes by the International Advisory Committee on Clinical Trials of MS. While imaging and biological markers that might provide objective criteria for separating clinical phenotypes are lacking, we propose refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression. Strategies for future research to better define phenotypes are also outlined. PMID:24871874

  7. Detection of pleiotropy through a Phenome-wide association study (PheWAS) of epidemiologic data as part of the Environmental Architecture for Genes Linked to Environment (EAGLE) study.

    PubMed

    Hall, Molly A; Verma, Anurag; Brown-Gentry, Kristin D; Goodloe, Robert; Boston, Jonathan; Wilson, Sarah; McClellan, Bob; Sutcliffe, Cara; Dilks, Holly H; Gillani, Nila B; Jin, Hailing; Mayo, Ping; Allen, Melissa; Schnetz-Boutaud, Nathalie; Crawford, Dana C; Ritchie, Marylyn D; Pendergrass, Sarah A

    2014-12-01

    We performed a Phenome-wide association study (PheWAS) utilizing diverse genotypic and phenotypic data existing across multiple populations in the National Health and Nutrition Examination Surveys (NHANES), conducted by the Centers for Disease Control and Prevention (CDC), and accessed by the Epidemiological Architecture for Genes Linked to Environment (EAGLE) study. We calculated comprehensive tests of association in Genetic NHANES using 80 SNPs and 1,008 phenotypes (grouped into 184 phenotype classes), stratified by race-ethnicity. Genetic NHANES includes three surveys (NHANES III, 1999-2000, and 2001-2002) and three race-ethnicities: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We identified 69 PheWAS associations replicating across surveys for the same SNP, phenotype-class, direction of effect, and race-ethnicity at p<0.01, allele frequency >0.01, and sample size >200. Of these 69 PheWAS associations, 39 replicated previously reported SNP-phenotype associations, 9 were related to previously reported associations, and 21 were novel associations. Fourteen results had the same direction of effect across more than one race-ethnicity: one result was novel, 11 replicated previously reported associations, and two were related to previously reported results. Thirteen SNPs showed evidence of pleiotropy. We further explored results with gene-based biological networks, contrasting the direction of effect for pleiotropic associations across phenotypes. One PheWAS result was ABCG2 missense SNP rs2231142, associated with uric acid levels in both non-Hispanic whites and Mexican Americans, protoporphyrin levels in non-Hispanic whites and Mexican Americans, and blood pressure levels in Mexican Americans. Another example was SNP rs1800588 near LIPC, significantly associated with the novel phenotypes of folate levels (Mexican Americans), vitamin E levels (non-Hispanic whites) and triglyceride levels (non-Hispanic whites), and replication for cholesterol levels. The results of this PheWAS show the utility of this approach for exposing more of the complex genetic architecture underlying multiple traits, through generating novel hypotheses for future research.

  8. Genotypic & Phenotypic Diversity of Microbial Isolates from the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Arora-Williams, Keith

    2012-01-01

    Mars-bound rovers such as the Mars Exploration Rover (MER) endure strict planetary protection implementation campaigns to assess bioburden. The objective of this study is to identify cultivable microorganisms isolated by the NASA Standard Assay from spacecraft during pre-launch and evaluate their potential to survive conditions on the Martian surface. Of approximately 350 isolates collected from the MER spacecraft archive, 171 microorganisms were reconstituted for characterization via 16S rRNA fingerprinting. Alignment of 16S sequences revealed high levels of sequence similarity to spore-forming species, overwhelmingly of the genera Bacillus (73.7%) and Paenibacillus (14.0%). Samples underwent phenotype characterization employing multiple carbon sources and ion concentrations in an automated microarray format using the Omnilog system. Working and stock cultures were prepared to address the immediate needs for day-to-day culture utilization and long-term preservation, respectively. Results from this study produced details about the microbes that contaminate surfaces of spacecraft, as well as a preliminary evaluation of a rapid biochemical ID method that also provides a phenotypic assessment of contaminants. The overall outcome of this study will benefit emerging cleaning and sterilization technologies for preventing forward contamination that could negatively impact future life detection or sample return missions.

  9. Obstructive Sleep Apnea Syndrome: From Phenotype to Genetic Basis

    PubMed Central

    Casale, M; Pappacena, M; Rinaldi, V; Bressi, F; Baptista, P; Salvinelli, F

    2009-01-01

    Obstructive sleep apnea syndrome (OSAS) is a complex chronic clinical syndrome, characterized by snoring, periodic apnea, hypoxemia during sleep, and daytime hypersomnolence. It affects 4-5% of the general population. Racial studies and chromosomal mapping, familial studies and twin studies have provided evidence for the possible link between the OSAS and genetic factors and also most of the risk factors involved in the pathogenesis of OSAS are largely genetically determined. A percentage of 35-40% of its variance can be attributed to genetic factors. It is likely that genetic factors associated with craniofacial structure, body fat distribution and neural control of the upper airway muscles interact to produce the OSAS phenotype. Although the role of specific genes that influence the development of OSAS has not yet been identified, current researches, especially in animal model, suggest that several genetic systems may be important. In this chapter, we will first define the OSAS phenotype, the pathogenesis and the risk factors involved in the OSAS that may be inherited, then, we will review the current progress in the genetics of OSAS and suggest a few future perspectives in the development of therapeutic agents for this complex disease entity. PMID:19794884

  10. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    PubMed

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-12-01

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  11. Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes

    PubMed Central

    Petit, Emilie I; Michalak, Zuzanna; Cox, Rachel; O'Tuathaigh, Colm M P; Clarke, Niamh; Tighe, Orna; Talbot, Konrad; Blake, Derek; Joel, Josephine; Shaw, Alexander; Sheardown, Steven A; Morrison, Alastair D; Wilson, Stephen; Shapland, Ellen M; Henshall, David C; Kew, James N; Kirby, Brian P; Waddington, John L

    2017-01-01

    Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A−/−, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A−/− showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A−/− provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects. PMID:27986973

  12. Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes.

    PubMed

    Petit, Emilie I; Michalak, Zuzanna; Cox, Rachel; O'Tuathaigh, Colm M P; Clarke, Niamh; Tighe, Orna; Talbot, Konrad; Blake, Derek; Joel, Josephine; Shaw, Alexander; Sheardown, Steven A; Morrison, Alastair D; Wilson, Stephen; Shapland, Ellen M; Henshall, David C; Kew, James N; Kirby, Brian P; Waddington, John L

    2017-05-01

    Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A -/- , with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A -/- showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A -/- provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects.

  13. Reprogramming to developmental plasticity in cancer stem cells.

    PubMed

    O'Brien-Ball, Caitlin; Biddle, Adrian

    2017-10-15

    During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Norrie disease: extraocular clinical manifestations in 56 patients.

    PubMed

    Smith, Sharon E; Mullen, Thomas E; Graham, Dionne; Sims, Katherine B; Rehm, Heidi L

    2012-08-01

    Norrie disease (ND) is an X-linked recessive disorder characterized by congenital blindness, progressive sensorineural hearing loss and cognitive impairment. The ocular phenotype has been well described, while the extraocular manifestations of the disorder are not well understood. We present the data from the Norrie Disease Registry, which consists of 56 patients with detailed clinical histories and genotype data. This study represents the largest, detailed investigation into the phenotypic spectrum of ND to date and more importantly expands knowledge of the extraocular clinical manifestations. We identify several novel aspects of the syndrome that will improve the management of these patients. In particular, we expand our understanding of the neurologic manifestations in ND and identify a chronic seizure disorder in approximately 10% of all patients. In addition, details of the hearing phenotype are described including the median age of onset (12 years of age) and how genotype affects onset. Moreover, we find vascular disease to be a significant component of ND; and vascular health should be, in the future, a component of patient clinical care. In summary, the results expand our understanding of the phenotypic variability and genotypic heterogeneity in ND patients. Copyright © 2012 Wiley Periodicals, Inc.

  15. Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections

    PubMed Central

    Becker, Karsten; Löffler, Bettina

    2016-01-01

    SUMMARY Small colony variants (SCVs) were first described more than 100 years ago for Staphylococcus aureus and various coagulase-negative staphylococci. Two decades ago, an association between chronic staphylococcal infections and the presence of SCVs was observed. Since then, many clinical studies and observations have been published which tie recurrent, persistent staphylococcal infections, including device-associated infections, bone and tissue infections, and airway infections of cystic fibrosis patients, to this special phenotype. By their intracellular lifestyle, SCVs exhibit so-called phenotypic (or functional) resistance beyond the classical resistance mechanisms, and they can often be retrieved from therapy-refractory courses of infection. In this review, the various clinical infections where SCVs can be expected and isolated, diagnostic procedures for optimized species confirmation, and the pathogenesis of SCVs, including defined underlying molecular mechanisms and the phenotype switch phenomenon, are presented. Moreover, relevant animal models and suggested treatment regimens, as well as the requirements for future research areas, are highlighted. PMID:26960941

  16. Studying human disease genes in Caenorhabditis elegans: a molecular genetics laboratory project.

    PubMed

    Cox-Paulson, Elisabeth A; Grana, Theresa M; Harris, Michelle A; Batzli, Janet M

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether Caenorhabditis elegans can be a useful model system for studying genes associated with human disease. In a large-enrollment, sophomore-level laboratory course, groups of three to four students were assigned a gene associated with either breast cancer (brc-1), Wilson disease (cua-1), ovarian dysgenesis (fshr-1), or colon cancer (mlh-1). Students compared observable phenotypes of wild-type C. elegans and C. elegans with a homozygous deletion in the assigned gene. They confirmed the genetic deletion with nested polymerase chain reaction and performed a bioinformatics analysis to predict how the deletion would affect the encoded mRNA and protein. Students also performed RNA interference (RNAi) against their assigned gene and evaluated whether RNAi caused a phenotype similar to that of the genetic deletion. As a capstone activity, students prepared scientific posters in which they presented their data, evaluated whether C. elegans was a useful model system for studying their assigned genes, and proposed future directions. Assessment showed gains in understanding genotype versus phenotype, RNAi, common bioinformatics tools, and the utility of model organisms.

  17. Studying Human Disease Genes in Caenorhabditis elegans: A Molecular Genetics Laboratory Project

    PubMed Central

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether Caenorhabditis elegans can be a useful model system for studying genes associated with human disease. In a large-enrollment, sophomore-level laboratory course, groups of three to four students were assigned a gene associated with either breast cancer (brc-1), Wilson disease (cua-1), ovarian dysgenesis (fshr-1), or colon cancer (mlh-1). Students compared observable phenotypes of wild-type C. elegans and C. elegans with a homozygous deletion in the assigned gene. They confirmed the genetic deletion with nested polymerase chain reaction and performed a bioinformatics analysis to predict how the deletion would affect the encoded mRNA and protein. Students also performed RNA interference (RNAi) against their assigned gene and evaluated whether RNAi caused a phenotype similar to that of the genetic deletion. As a capstone activity, students prepared scientific posters in which they presented their data, evaluated whether C. elegans was a useful model system for studying their assigned genes, and proposed future directions. Assessment showed gains in understanding genotype versus phenotype, RNAi, common bioinformatics tools, and the utility of model organisms. PMID:22665589

  18. Habit Reversal Therapy for Body-Focused Repetitive Behaviors in Williams Syndrome: A Case Study

    PubMed Central

    Klein-Tasman, Bonita P.

    2013-01-01

    Williams syndrome (WS) is genetic neurodevelopmental disorder with a well-characterized cognitive and behavioral phenotype. Research has consistently demonstrated high rates of psychopathology in this population; however, little research has examined the use of empirically-supported psychosocial interventions in those with WS. The current case study reports on the use of Habit Reversal Therapy (HRT) to treat multiple body-focused repetitive behaviors in a child with WS. Although HRT is a well-established cognitive-behavioral intervention for body-focused repetitive behaviors, it has been infrequently used in populations with developmental disabilities. An etiologically-informed approach was used to adapt HRT to fit the known behavioral and cognitive phenotype of WS. Results suggest that HRT may be beneficial for this population. Modified treatment elements are described and future research areas highlighted. PMID:24357918

  19. Concept mapping One-Carbon Metabolism to model future ontologies for nutrient-gene-phenotype interactions.

    PubMed

    Joslin, A C; Green, R; German, J B; Lange, M C

    2014-09-01

    Advances in the development of bioinformatic tools continue to improve investigators' ability to interrogate, organize, and derive knowledge from large amounts of heterogeneous information. These tools often require advanced technical skills not possessed by life scientists. User-friendly, low-barrier-to-entry methods of visualizing nutrigenomics information are yet to be developed. We utilized concept mapping software from the Institute for Human and Machine Cognition to create a conceptual model of diet and health-related data that provides a foundation for future nutrigenomics ontologies describing published nutrient-gene/polymorphism-phenotype data. In this model, maps containing phenotype, nutrient, gene product, and genetic polymorphism interactions are visualized as triples of two concepts linked together by a linking phrase. These triples, or "knowledge propositions," contextualize aggregated data and information into easy-to-read knowledge maps. Maps of these triples enable visualization of genes spanning the One-Carbon Metabolism (OCM) pathway, their sequence variants, and multiple literature-mined associations including concepts relevant to nutrition, phenotypes, and health. The concept map development process documents the incongruity of information derived from pathway databases versus literature resources. This conceptual model highlights the importance of incorporating information about genes in upstream pathways that provide substrates, as well as downstream pathways that utilize products of the pathway under investigation, in this case OCM. Other genes and their polymorphisms, such as TCN2 and FUT2, although not directly involved in OCM, potentially alter OCM pathway functionality. These upstream gene products regulate substrates such as B12. Constellations of polymorphisms affecting the functionality of genes along OCM, together with substrate and cofactor availability, may impact resultant phenotypes. These conceptual maps provide a foundational framework for development of nutrient-gene/polymorphism-phenotype ontologies and systems visualization.

  20. EHR Big Data Deep Phenotyping

    PubMed Central

    Lenert, L.; Lopez-Campos, G.

    2014-01-01

    Summary Objectives Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships. Conclusions Stead and colleagues’ 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research. PMID:25123744

  1. The evolution of ethylene signaling in plant chemical ecology.

    PubMed

    Groen, Simon C; Whiteman, Noah K

    2014-07-01

    Ethylene is a key hormone in plant development, mediating plant responses to abiotic environmental stress, and interactions with attackers and mutualists. Here, we provide a synthesis of the role of ethylene in the context of plant ecology and evolution, and a prospectus for future research in this area. We focus on the regulatory function of ethylene in multi-organismal interactions. In general, plant interactions with different types of organisms lead to reduced or enhanced levels of ethylene. This in turn affects not only the plant's response to the interacting organism at hand, but also to other organisms in the community. These community-level effects become observable as enhanced or diminished relationships with future commensals, and systemic resistance or susceptibility to secondary attackers. Ongoing comparative genomic and phenotypic analyses continue to shed light on these interactions. These studies have revealed that plants and interacting organisms from separate kingdoms of life have independently evolved the ability to produce, perceive, and respond to ethylene. This signature of convergent evolution of ethylene signaling at the phenotypic level highlights the central role ethylene metabolism and signaling plays in plant interactions with microbes and animals.

  2. Methodology for the inference of gene function from phenotype data.

    PubMed

    Ascensao, Joao A; Dolan, Mary E; Hill, David P; Blake, Judith A

    2014-12-12

    Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology development and usage can be hampered by the segregation of knowledge by domain that occurs due to independent development and use of the ontologies. The ability to infer data associated with one ontology to data associated with another ontology would prove useful in expanding information content and scope. We here focus on relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures. We have designed and tested a set of algorithms that represents a novel methodology to define rules for predicting gene function by examining the emergent structure and relationships between the gene functions and phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple phenotype terms to deduce if there are cases where they all arise from a single gene function. We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules, resulting in 4818 unique GO functional predictions for 1796 genes. We show that our method is capable of inferring high-quality functional annotations from curated phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of unforeseen, biologically significant associations between gene function and phenotypes that would be overlooked by a semantics-based approach. Future work will include the implementation of the described algorithms for a variety of other model organism databases, taking full advantage of the abundance of available high quality curated data.

  3. GC[Formula: see text]NMF: A Novel Matrix Factorization Framework for Gene-Phenotype Association Prediction.

    PubMed

    Zhang, Yaogong; Liu, Jiahui; Liu, Xiaohu; Hong, Yuxiang; Fan, Xin; Huang, Yalou; Wang, Yuan; Xie, Maoqiang

    2018-04-24

    Gene-phenotype association prediction can be applied to reveal the inherited basis of human diseases and facilitate drug development. Gene-phenotype associations are related to complex biological processes and influenced by various factors, such as relationship between phenotypes and that among genes. While due to sparseness of curated gene-phenotype associations and lack of integrated analysis of the joint effect of multiple factors, existing applications are limited to prediction accuracy and potential gene-phenotype association detection. In this paper, we propose a novel method by exploiting weighted graph constraint learned from hierarchical structures of phenotype data and group prior information among genes by inheriting advantages of Non-negative Matrix Factorization (NMF), called Weighted Graph Constraint and Group Centric Non-negative Matrix Factorization (GC[Formula: see text]NMF). Specifically, first we introduce the depth of parent-child relationships between two adjacent phenotypes in hierarchical phenotypic data as weighted graph constraint for a better phenotype understanding. Second, we utilize intra-group correlation among genes in a gene group as group constraint for gene understanding. Such information provides us with the intuition that genes in a group probably result in similar phenotypes. The model not only allows us to achieve a high-grade prediction performance, but also helps us to learn interpretable representation of genes and phenotypes simultaneously to facilitate future biological analysis. Experimental results on biological gene-phenotype association datasets of mouse and human demonstrate that GC[Formula: see text]NMF can obtain superior prediction accuracy and good understandability for biological explanation over other state-of-the-arts methods.

  4. The Pathogen-Host Interactions database (PHI-base): additions and future developments

    PubMed Central

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  5. Beyond BMI: Conceptual Issues Related to Overweight and Obese Patients

    PubMed Central

    Müller, Manfred James; Braun, Wiebke; Enderle, Janna; Bosy-Westphal, Anja

    2016-01-01

    BMI is widely used as a measure of weight status and disease risks; it defines overweight and obesity based on statistical criteria. BMI is a score; neither is it biologically sound nor does it reflect a suitable phenotype worthwhile to study. Because of its limited value, BMI cannot provide profound insight into obesity biology and its co-morbidity. Alternative assessments of weight status include detailed phenotyping by body composition analysis (BCA). However, predicting disease risks, fat mass, and fat-free mass as assessed by validated techniques (i.e., densitometry, dual energy X ray absorptiometry, and bioelectrical impedance analysis) does not exceed the value of BMI. Going beyond BMI and descriptive BCA, the concept of functional body composition (FBC) integrates body components into regulatory systems. FBC refers to the masses of body components, organs, and tissues as well as to their inter-relationships within the context of endocrine, metabolic and immune functions. FBC can be used to define specific phenotypes of obesity, e.g. the sarcopenic-obese patient. Well-characterized obesity phenotypes are a precondition for targeted research (e.g., on the genomics of obesity) and patient-centered care (e.g., adequate treatment of individual obese phenotypes such as the sarcopenic-obese patient). FBC contributes to a future definition of overweight and obesity based on physiological criteria rather than on body weight alone. PMID:27286962

  6. Genetics of Addiction: Future Focus on Gene × Environment Interaction?

    PubMed

    Vink, Jacqueline M

    2016-09-01

    The heritability of substance use is moderate to high. Successful efforts to find genetic variants associated with substance use (smoking, alcohol, cannabis) have been undertaken by large consortia. However, the proportion of phenotypic variance explained by the identified genetic variants is small. Interestingly, there is overlap between the genetic variants that influence different substances. Moreover, there are sets of "substance-specific" genes and sets of genes contributing to a "vulnerability for addictive behavior" in general. It is important to recognize that genes alone do not determine addiction phenotypes: Environmental factors such as parental monitoring, peer pressure, or socioeconomic status also play an important role. Despite a rich epidemiologic literature focused on the social determinants of substance use, few studies have examined the moderation of genetic influences like gene-environment (G × E) interactions. Understanding this balance may hold the key to understanding the individual differences in substance use, abuse, and addictive behavior. Recommendations for future research are described in this commentary and include increasing the power of G × E studies by using state-of-the-art methods such as polygenic risk scores instead of single genetic variants and taking genetic overlap between substances into account. Future genetic studies should also investigate environmental risk factors for addictive behavior more extensively to unravel the interaction between nature and nurture. Focusing on G × E interactions not only will give insight into the underlying biological mechanism but will also characterize subgroups (based on environmental factors) at high risk for addictive behaviors. With this information, we could bridge the gap between fundamental research and applications for society.

  7. Phenotypic approaches to drought in cassava: review

    PubMed Central

    Okogbenin, Emmanuel; Setter, Tim L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2012-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12–18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID:23717282

  8. A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries).

    PubMed

    Peng, W-F; Xu, S-S; Ren, X; Lv, F-H; Xie, X-L; Zhao, Y-X; Zhang, M; Shen, Z-Q; Ren, Y-L; Gao, L; Shen, M; Kantanen, J; Li, M-H

    2017-10-01

    Genome-wide association studies (GWASs) have been widely applied in livestock to identify genes associated with traits of economic interest. Here, we conducted the first GWAS of the supernumerary nipple phenotype in Wadi sheep, a native Chinese sheep breed, based on Ovine Infinium HD SNP BeadChip genotypes in a total of 144 ewes (75 cases with four teats, including two normal and two supernumerary teats, and 69 control cases with two teats). We detected 63 significant SNPs at the chromosome-wise threshold. Additionally, one candidate region (chr1: 170.723-170.734 Mb) was identified by haplotype-based association tests, with one SNP (rs413490006) surrounding functional genes BBX and CD47 on chromosome 1 being commonly identified as significant by the two mentioned analyses. Moreover, Gene Ontology enrichment for the significant SNPs identified by the GWAS analysis was functionally clustered into the categories of receptor activity and synaptic membrane. In addition, pathway mapping revealed four promising pathways (Wnt, oxytocin, MAPK and axon guidance) involved in the development of the supernumerary nipple phenotype. Our results provide novel and important insights into the genetic mechanisms underlying the phenotype of supernumerary nipples in mammals, including humans. These findings may be useful for future breeding and genetics in sheep and other livestock. © 2017 Stichting International Foundation for Animal Genetics.

  9. Molecular and morphologic correlates of the alternative lengthening of telomeres phenotype in high-grade astrocytomas.

    PubMed

    Nguyen, Doreen N; Heaphy, Christopher M; de Wilde, Roeland F; Orr, Brent A; Odia, Yazmin; Eberhart, Charles G; Meeker, Alan K; Rodriguez, Fausto J

    2013-05-01

    Recent studies suggest that the telomere maintenance mechanism known as alternative lengthening of telomeres (ALT) is relatively more common in specific glioma subsets and strongly associated with ATRX mutations. We retrospectively examined 116 high-grade astrocytomas (32 pediatric glioblastomas, 65 adult glioblastomas, 19 anaplastic astrocytomas) with known ALT status using tissue microarrays to identify associations with molecular and phenotypic features. Immunohistochemistry was performed using antibodies against ATRX, DAXX, p53 and IDH1(R132H) mutant protein. EGFR amplification was evaluated by fluorescence in situ hybridization (FISH). Almost half of fibrillary and gemistocytic astrocytomas (44%) demonstrated ALT. Conversely all gliosarcomas (n = 4), epithelioid (n = 2), giant cell (n = 2) and adult small cell astrocytomas (n = 7) were ALT negative. The ALT phenotype was positively correlated with the presence of round cells (P = 0.002), microcysts (P < 0.0002), IDH1 mutant protein (P < 0.0001), ATRX protein loss (P < 0.0001), strong P53 immunostaining (P < 0.0001) and absence of EGFR amplification (P = 0.004). There was no significant correlation with DAXX expression. We conclude that ALT represents a specific phenotype in high-grade astrocytomas with distinctive pathologic and molecular features. Future studies are required to clarify the clinical and biological significance of ALT in high-grade astrocytomas. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  10. Human Immunodeficiency Virus Type 1 Primary Isolate Neutralization Resistance Is Associated with the Syncytium-Inducing Phenotype and Lower CD4 Cell Counts in Subtype CRF01_AE-Infected Patients

    PubMed Central

    Polonis, Victoria R.; Souza, Mark S. de; Darden, Janice M.; Chantakulkij, Somsak; Chuenchitra, Thippawan; Nitayaphan, Sorachai; Brown, Arthur E.; Robb, Merlin L.; Birx, Deborah L.

    2003-01-01

    A number of human immunodeficiency virus type 1 (HIV-1) non-B-subtype products have been developed for present or future vaccine trials; in Thailand, several studies using subtype B and/or CRF01_AE vaccines have been conducted. To better characterize the biologic properties of these subtypes, 70 HIV-1 subtype B and E isolates were phenotyped as syncytium-inducing (SI) or non-syncytium-inducing (NSI) isolates and assessed for sensitivity to neutralizing antibody (NAb). A significantly higher number of NSI subtype E viruses were neutralization sensitive than SI subtype E viruses (P = 0.009), while no association between viral phenotype and sensitivity to NAb was observed for subtype B (P = 0.856), suggesting a difference in the neutralization patterns of subtypes B and E. Strikingly, concurrent CD4 T-cell numbers were significantly lower for subtype E-infected patients whose isolates were more resistant to NAb, both for the overall study group (P < 0.001) as well as for the 22 patients with NSI isolates (P = 0.013). Characterization of the evolution of biologic properties of both B and non-B HIV-1 subtypes will provide a clearer understanding of the repertoire of antibodies that must be elicited for a vaccine to be effective against all phenotypes and subtypes. PMID:12857927

  11. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change.

    PubMed

    Housset, Johann M; Nadeau, Simon; Isabel, Nathalie; Depardieu, Claire; Duchesne, Isabelle; Lenz, Patrick; Girardin, Martin P

    2018-04-01

    Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. The genetic diversity and phenotypic characterisation of Streptococcus agalactiae isolates from Rio de Janeiro, Brazil.

    PubMed

    Corrêa, Ana Beatriz de Almeida; Silva, Lígia Guedes da; Pinto, Tatiana de Castro Abreu; Oliveira, Ivi Cristina Menezes de; Fernandes, Flávio Gimenis; Costa, Natalia Silva da; Mattos, Marcos Corrêa de; Fracalanzza, Sergio Eduardo Longo; Benchetrit, Leslie Claude

    2011-12-01

    Streptococcus agalactiae isolates are more common among pregnant women, neonates and nonpregnant adults with underlying diseases compared to other demographic groups. In this study, we evaluate the genetic and phenotypic diversity in S. agalactiae strains from Rio de Janeiro (RJ) that were isolated from asymptomatic carriers. We analysed these S. agalactiae strains using pulsed-field gel electrophoresis (PFGE), serotyping and antimicrobial susceptibility testing, as well as by determining the macrolide resistance phenotype, and detecting the presence of the ermA/B, mefA/E and lnuB genes. The serotypes Ia, II, III and V were the most prevalent serotypes observed. The 60 strains analysed were susceptible to penicillin, vancomycin and levofloxacin. Resistance to clindamycin, chloramphenicol, erythromycin, rifampin and tetracycline was observed. Among the erythromycin and/or clindamycin resistant strains, the ermA, ermB and mefA/E genes were detected and the constitutive macrolides, lincosamides and streptogramin B-type resistance was the most prevalent phenotype observed. The lnuB gene was not detected in any of the strains studied. We found 56 PFGE electrophoretic profiles and only 22 of them were allocated in polymorphism patterns. This work presents data on the genetic diversity and prevalent capsular serotypes among RJ isolates. Approximately 85% of these strains came from pregnant women; therefore, these data may be helpful in developing future prophylaxis and treatment strategies for neonatal syndromes in RJ.

  13. Glutathione S-transferase gene polymorphisms in celiac disease and their correlation with genomic instability phenotype.

    PubMed

    Fundia, Ariela F; Weich, Natalia; Crivelli, Adriana; La Motta, Graciela; Larripa, Irene B; Slavutsky, Irma

    2014-06-01

    Genomic instability and reduced glutathione S-transferase (GST) activity have been identified as potential risk factors for malignant complications in celiac disease (CD). In this study, we assessed the possible influence of GST polymorphisms on genome instability phenotypes in a genetically characterised group of celiac patients from previous studies. The deletion polymorphisms in GSTM1 and GSTT1 genes and the single-nucleotide polymorphism GSTP1 c.313A>G were genotyped using PCR in a set of 20 untreated adult patients with a known genomic instability phenotype and 69 age- and sex-matched healthy individuals. The frequencies of variant genotypes in patients were GSTM1-null (30%), GSTT1-null (5%), GSTP1-AG (60%) and GSTP1-GG (15%), and they showed no differences from controls. No significant differences were found in the genotype distribution based on telomere length. Cases with GSTM1-null genotype (83%) and microsatellite stability were more frequent than those with genomic instability. Moreover, carriers of GSTP1-variant genotype (73%) and stable phenotype were significantly increased compared to unstable patients (27%) (P=0.031). No differences were found according to the clinical-pathological characteristics of celiac cases. No association between GST polymorphic variants and celiac-associated genomic instability was proven in our cohort. Future studies should explore the usefulness of other biomarkers to distinguish celiac patients who are susceptible to cancer development. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Behavioral and Psychological Phenotyping of Physical Activity and Sedentary Behavior: Implications for Weight Management.

    PubMed

    Bryan, Angela D; Jakicic, John M; Hunter, Christine M; Evans, Mary E; Yanovski, Susan Z; Epstein, Leonard H

    2017-10-01

    Risk for obesity is determined by a complex mix of genetics and lifetime exposures at multiple levels, from the metabolic milieu to psychosocial and environmental influences. These phenotypic differences underlie the variability in risk for obesity and response to weight management interventions, including differences in physical activity and sedentary behavior. As part of a broader effort focused on behavioral and psychological phenotyping in obesity research, the National Institutes of Health convened a multidisciplinary workshop to explore the state of the science in behavioral and psychological phenotyping in humans to explain individual differences in physical activity, both as a risk factor for obesity development and in response to activity-enhancing interventions. Understanding the behavioral and psychological phenotypes that contribute to differences in physical activity and sedentary behavior could allow for improved treatment matching and inform new targets for tailored, innovative, and effective weight management interventions. This summary provides the rationale for identifying psychological and behavioral phenotypes relevant to physical activity and identifies opportunities for future research to better understand, define, measure, and validate putative phenotypic factors and characterize emerging phenotypes that are empirically associated with initiation of physical activity, response to intervention, and sustained changes in physical activity. © 2017 The Obesity Society.

  15. Envirotyping for deciphering environmental impacts on crop plants.

    PubMed

    Xu, Yunbi

    2016-04-01

    Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts.

  16. In vitro characterization of cancer cell morphology, chemokinesis, and matrix invasion using a novel microfabricated system

    NASA Astrophysics Data System (ADS)

    Blaha, Laura

    A diagnosis of metastatic cancer reduces a patient's 5-year survival rate by nearly 80% compared to a primary tumor diagnosed at an early stage. While gene expression arrays have revealed unique gene signatures for metastatic cancer cells, we are lacking an understanding of the tangible physical changes that distinguish metastatic tumor cells from each other and from their related primary tumors. At the fundamental level, this translates into first characterizing the phenotype of metastatic cancer cells in vitro both in 2D - looking at morphology and migration - and in 3D - focusing on matrix invasion. While 2D in vitro studies have provided insight into the effects of specific environmental conditions on specific cancer cell lines, the unique details included in each experimental design make it challenging to compare cell phenotype across different in vitro platforms as well as between laboratories and disciplines that share the goal of understanding cancer. While 3D phenotype studies have employed more standardized and ubiquitous assays, most available tools lack the imaging capability and geometry to effectively characterize all factors driving 3D matrix invasion. In this work, we present protocols and platforms aimed at addressing the problems identified in the tools currently available for studying metastatic cancer in vitro. First, we present a 2D study of morphology and migration using widely accepted protocols. The study is applied to characterizing phenotypes of three breast cancer cell lines with different metastatic organ tropisms. The results show that general populations of cells from each of the 3 lines are unique in shape and motility despite being derived from the same tumor line and that the observed phenotype differences may be related to differences in focal adhesion assembly. More broadly, these studies suggest that standardizing phenotype studies using commonly available techniques may provide a platform by which to compare phenotypic studies across cancer cell types and between research groups to investigate tropism-specific cancer phenotypes. We conclude our investigation of phenotype with a study of 3D matrix invasion using a novel microfluidic platform. The results show that invasion of metastatic breast cancer cells into a 3D type I collagen gel is significantly enhanced in the presence of live endothelial cells. In applying the model to study cell-cell and cell-matrix interactions driving invasion, our platform revealed that, while the fibronectin-rich matrix deposited by endothelial cells was not sufficient to drive invasion alone, metastatic breast cancer cells were able to exploit a structural or secreted component of energetically inactivated endothelial cell to gain entry into the underlying matrix. These findings have important implications for designing drugs targeted at preventing cancer metastasis. The findings in this dissertation reveal significant phenotypic differences in metastatic breast cancer cells with different preferences in metastatic target organ. In addition, the microfluidic platform reveals novel cell-cell interactions driving a key step in the seeding and colonization of a metastatic tumor. Collectively, these results reveal important characteristics of metastatic cancer cells and their interactions with other cell types during metastasis. These studies also provide platforms on which to target or prevent malignant phenotypes and cellular interactions in the future.

  17. Exploring Genetic Attributions Underlying Radiotherapy-Induced Fatigue in Prostate Cancer Patients.

    PubMed

    Hashemi, Sepehr; Fernandez Martinez, Juan Luis; Saligan, Leorey; Sonis, Stephen

    2017-09-01

    Despite numerous proposed mechanisms, no definitive pathophysiology underlying radiotherapy-induced fatigue (RIF) has been established. However, the dysregulation of a set of 35 genes was recently validated to predict development of fatigue in prostate cancer patients receiving radiotherapy. To hypothesize novel pathways, and provide genetic targets for currently proposed pathways implicated in RIF development through analysis of the previously validated gene set. The gene set was analyzed for all phenotypic attributions implicated in the phenotype of fatigue. Initially, a "directed" approach was used by querying specific fatigue-related sub-phenotypes against all known phenotypic attributions of the gene set. Then, an "undirected" approach, reviewing the entirety of the literature referencing the 35 genes, was used to increase analysis sensitivity. The dysregulated genes attribute to neural, immunological, mitochondrial, muscular, and metabolic pathways. In addition, certain genes suggest phenotypes not previously emphasized in the context of RIF, such as ionizing radiation sensitivity, DNA damage, and altered DNA repair frequency. Several genes also associated with prostate cancer depression, possibly emphasizing variable radiosensitivity by RIF-prone patients, which may have palliative care implications. Despite the relevant findings, many of the 35 RIF-predictive genes are poorly characterized, warranting their investigation. The implications of herein presented RIF pathways are purely theoretical until specific end-point driven experiments are conducted in more congruent contexts. Nevertheless, the presented attributions are informative, directing future investigation to definitively elucidate RIF's pathoetiology. This study demonstrates an arguably comprehensive method of approaching known differential expression underlying a complex phenotype, to correlate feasible pathophysiology. Copyright © 2017 American Academy of Hospice and Palliative Medicine. All rights reserved.

  18. Screening and advanced lipid phenotyping in familial hypercholesterolemia: The Very Large Database of Lipids Study-17 (VLDL-17).

    PubMed

    Miller, P Elliott; Martin, Seth S; Toth, Peter P; Santos, Raul D; Blaha, Michael J; Nasir, Khurram; Virani, Salim S; Post, Wendy S; Blumenthal, Roger S; Jones, Steven R

    2015-01-01

    Familial hypercholesterolemia (FH) is an autosomal dominant dyslipidemia characterized by defective low-density lipoprotein (LDL) clearance. The aim of this study was to compare Friedewald-estimated LDL cholesterol (LDL-C) to biologic LDL-C in individuals screening positive for FH and then further characterize FH phenotypes. We studied 1,320,581 individuals from the Very Large Database of Lipids, referred from 2009 to 2011 for Vertical Auto Profile ultracentrifugation testing. Friedewald LDL-C was defined as the cholesterol content of LDL-C, intermediate-density lipoprotein cholesterol, and lipoprotein(a) cholesterol (Lp(a)-C), with LDL-C representing biologic LDL-C. Using Friedewald LDL-C, we phenotypically categorized patients by the National Lipid Association guideline age-based screening thresholds for FH. In those meeting criteria, we categorized patients using population percentile-equivalent biologic LDL-C cutpoints and explored Lp(a)-C and remnant lipoprotein cholesterol (RLP-C) levels. Overall, 3829 patients met phenotypic criteria for FH by Friedewald LDL-C screening (FH+). Of those screening FH+, 78.8% were above and 21.2% were below the population percentile-equivalent biologic LDL-C. The mean difference in Friedewald biologic LDL-C percentiles was -0.01 (standard deviation, 0.17) for those above, and 1.92 (standard deviation, 9.16) for those below, respectively. Over 1 of 3 were found to have an elevated Lp(a)-C and over 50% had RLP-C greater than 95th percentile of the entire VLDL population. Of those who screened FH+, Friedewald and biologic LDL-C levels were closely correlated. Large proportions of the FH+ group had excess levels of Lp(a)-C and RLP-C. Future studies are warranted to study these mixed phenotypic groups and determine the role for further risk stratification and treatment algorithms. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  19. Pharmacotherapy for childhood obesity: present and future prospects

    PubMed Central

    Sherafat-Kazemzadeh, Roya; Yanovski, Susan Z.; Yanovski, Jack A.

    2012-01-01

    Pediatric obesity is a serious medical condition associated with significant comorbidities during childhood and adulthood. Lifestyle modifications are essential for treating children with obesity, yet many have insufficient response to improve health with behavioral approaches alone. This review summarizes the relatively sparse data on pharmacotherapy for pediatric obesity and presents information on obesity medications in development. Most previously studied medications demonstrated, at best, modest effects on body weight and obesity-related conditions. It is to be hoped that the future will bring new drugs targeting specific obesity phenotypes that will allow clinicians to use etiology-specific, and therefore more effective, anti-obesity therapies. PMID:22929210

  20. Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution.

    PubMed

    Fricke, W Florian; Mammel, Mark K; McDermott, Patrick F; Tartera, Carmen; White, David G; Leclerc, J Eugene; Ravel, Jacques; Cebula, Thomas A

    2011-07-01

    Despite extensive surveillance, food-borne Salmonella enterica infections continue to be a significant burden on public health systems worldwide. As the S. enterica species comprises sublineages that differ greatly in antigenic representation, virulence, and antimicrobial resistance phenotypes, a better understanding of the species' evolution is critical for the prediction and prevention of future outbreaks. The roles that virulence and resistance phenotype acquisition, exchange, and loss play in the evolution of S. enterica sublineages, which to a certain extent are represented by serotypes, remains mostly uncharacterized. Here, we compare 17 newly sequenced and phenotypically characterized nontyphoidal S. enterica strains to 11 previously sequenced S. enterica genomes to carry out the most comprehensive comparative analysis of this species so far. These phenotypic and genotypic data comparisons in the phylogenetic species context suggest that the evolution of known S. enterica sublineages is mediated mostly by two mechanisms, (i) the loss of coding sequences with known metabolic functions, which leads to functional reduction, and (ii) the acquisition of horizontally transferred phage and plasmid DNA, which provides virulence and resistance functions and leads to increasing specialization. Matches between S. enterica clustered regularly interspaced short palindromic repeats (CRISPR), part of a defense mechanism against invading plasmid and phage DNA, and plasmid and prophage regions suggest that CRISPR-mediated immunity could control short-term phenotype changes and mediate long-term sublineage evolution. CRISPR analysis could therefore be critical in assessing the evolutionary potential of S. enterica sublineages and aid in the prediction and prevention of future S. enterica outbreaks.

  1. Comparative Genomics of 28 Salmonella enterica Isolates: Evidence for CRISPR-Mediated Adaptive Sublineage Evolution ▿†

    PubMed Central

    Fricke, W. Florian; Mammel, Mark K.; McDermott, Patrick F.; Tartera, Carmen; White, David G.; LeClerc, J. Eugene; Ravel, Jacques; Cebula, Thomas A.

    2011-01-01

    Despite extensive surveillance, food-borne Salmonella enterica infections continue to be a significant burden on public health systems worldwide. As the S. enterica species comprises sublineages that differ greatly in antigenic representation, virulence, and antimicrobial resistance phenotypes, a better understanding of the species' evolution is critical for the prediction and prevention of future outbreaks. The roles that virulence and resistance phenotype acquisition, exchange, and loss play in the evolution of S. enterica sublineages, which to a certain extent are represented by serotypes, remains mostly uncharacterized. Here, we compare 17 newly sequenced and phenotypically characterized nontyphoidal S. enterica strains to 11 previously sequenced S. enterica genomes to carry out the most comprehensive comparative analysis of this species so far. These phenotypic and genotypic data comparisons in the phylogenetic species context suggest that the evolution of known S. enterica sublineages is mediated mostly by two mechanisms, (i) the loss of coding sequences with known metabolic functions, which leads to functional reduction, and (ii) the acquisition of horizontally transferred phage and plasmid DNA, which provides virulence and resistance functions and leads to increasing specialization. Matches between S. enterica clustered regularly interspaced short palindromic repeats (CRISPR), part of a defense mechanism against invading plasmid and phage DNA, and plasmid and prophage regions suggest that CRISPR-mediated immunity could control short-term phenotype changes and mediate long-term sublineage evolution. CRISPR analysis could therefore be critical in assessing the evolutionary potential of S. enterica sublineages and aid in the prediction and prevention of future S. enterica outbreaks. PMID:21602358

  2. Association of genetic and phenotypic variability with geography and climate in three southern California oaks.

    PubMed

    Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L

    2016-01-01

    Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.

  3. ACTN3: More than Just a Gene for Speed

    PubMed Central

    Pickering, Craig; Kiely, John

    2017-01-01

    Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3, which has commonly been referred to as “a gene for speed”. Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes. PMID:29326606

  4. ACTN3: More than Just a Gene for Speed.

    PubMed

    Pickering, Craig; Kiely, John

    2017-01-01

    Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3 , which has commonly been referred to as "a gene for speed". Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes.

  5. Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change.

    PubMed

    Ensslin, Andreas; Fischer, Markus

    2015-08-01

    • Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments.• We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain's slope and measured performance, reproductive, and phenological traits.• Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values.• We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability. © 2015 Botanical Society of America, Inc.

  6. Visual and acoustic components of courtship in the bird-of-paradise genus Astrapia (Aves: Paradisaeidae)

    PubMed Central

    Gillis, Julia M.; Laman, Timothy G.

    2017-01-01

    The distinctive and divergent courtship phenotypes of the birds-of-paradise make them an important group for gaining insights into the evolution of sexually selected phenotypic evolution. The genus Astrapia includes five long-tailed species that inhabit New Guinea’s montane forests. The visual and acoustic components of courtship among Astrapia species are very poorly known. In this study, we use audiovisual data from a natural history collection of animal behavior to fill gaps in knowledge about the visual and acoustic components of Astrapia courtship. We report seven distinct male behaviors and two female specific behaviors along with distinct vocalizations and wing-produced sonations for all five species. These results provide the most complete assessment of courtship in the genus Astrapia to date and provide a valuable baseline for future research, including comparative and evolutionary studies among these and other bird-of-paradise species. PMID:29134145

  7. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept.

    PubMed

    Franke, Barbara; Stein, Jason L; Ripke, Stephan; Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne Yw; Martin, Nicholas G; Wright, Margaret J; O'Donovan, Michael C; Thompson, Paul M; Neale, Benjamin M; Medland, Sarah E; Sullivan, Patrick F

    2016-03-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders.

  8. Prader-Willi syndrome and autism spectrum disorders: an evolving story.

    PubMed

    Dykens, Elisabeth M; Lee, Evon; Roof, Elizabeth

    2011-09-01

    Prader-Willi syndrome (PWS) is well-known for its genetic and phenotypic complexities. Caused by a lack of paternally derived imprinted material on chromosome 15q11-q13, individuals with PWS have mild to moderate intellectual disabilities, repetitive and compulsive behaviors, skin picking, tantrums, irritability, hyperphagia, and increased risks of obesity. Many individuals also have co-occurring autism spectrum disorders (ASDs), psychosis, and mood disorders. Although the PWS 15q11-q13 region confers risks for autism, relatively few studies have assessed autism symptoms in PWS or directly compared social, behavioral, and cognitive functioning across groups with autism or PWS. This article identifies areas of phenotypic overlap and difference between PWS and ASD in core autism symptoms and in such comorbidities as psychiatric disorders, and dysregulated sleep and eating. Though future studies are needed, PWS provides a promising alternative lens into specific symptoms and comorbidities of autism.

  9. Damaged mitochondria in Fanconi anemia - an isolated event or a general phenomenon?

    PubMed

    Pagano, Giovanni; Shyamsunder, Pavithra; Verma, Rama S; Lyakhovich, Alex

    2014-01-01

    Fanconi anemia (FA) is known as an inherited bone marrow failure syndrome associated with cancer predisposition and susceptibility to a number of DNA damaging stimuli, along with a number of clinical features such as upper limb malformations, increased diabetes incidence and typical anomalies in skin pigmentation. The proteins encoded by FA-defective genes (FANC proteins) display well-established roles in DNA damage and repair pathways. Moreover, some independent studies have revealed that mitochondrial dysfunction (MDF) is also involved in FA phenotype. Unconfined to FA, we have shown that other syndromes featuring DNA damage and repair (such as ataxia-telangiectasia, AT, and Werner syndrome, WS) display MDF-related phenotypes, along with oxidative stress (OS) that, altogether, may play major roles in these diseases. Experimental and clinical studies are warranted in the prospect of future therapies to be focused on compounds scavenging reactive oxygen species (ROS) as well as protecting mitochondrial functions.

  10. Association Between N-acetyltransferase 2 Polymorphism and Bladder Cancer Risk: Results From Studies of the Past Decade and a Meta-Analysis.

    PubMed

    Wu, Haoran; Wang, Xugang; Zhang, Liang; Mo, Naixin; Lv, Zhong

    2016-04-01

    Numerous studies have identified that the slow acetylation status of N-acetyltransferase 2 (NAT2) is associated with an elevated bladder cancer risk. However, the results remain inconclusive. The aim of our study was to evaluate the effect of NAT2 acetylation status in patients with bladder cancer. Electronic databases were searched to retrieve related studies published in the past decade. The pooled odds ratio (OR) with its 95% confidence interval (CI) was used to calculate the strength of this relationship. Overall, a total of 18 studies were selected for the analysis, which included 4473 bladder cancer cases and 7204 matched controls. Our result showed that the NAT2 slow acetylation phenotypes were significantly associated with an increased risk of bladder cancer compared with the rapid phenotypes (OR, 1.56; 95% CI, 1.33-1.82; P < .00001) in a random-effect model. This significant association was also found in a subgroup analysis of ethnicity (P < .05). Furthermore, the NAT2 slow phenotypes also significantly increased the risk of bladder cancer in smokers (OR, 0.75; 95% CI, 0.62-0.90; P = .002). However, no correlation was found between the combined effect of NAT2 slow phenotypes and gender with bladder cancer risk (OR, 0.89; 95% CI, 0.28-2.78; P = .84). In conclusion, our results suggest that the NAT2 slow acetylator, in particular, the NAT2 slow acetylator combined with smoking, are associated with an increased bladder cancer risk. Future well-designed studies with large populations and more ethnicities are needed to clarify this association further. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Optogenetics and the future of neuroscience.

    PubMed

    Boyden, Edward S

    2015-09-01

    Over the last 10 years, optogenetics has become widespread in neuroscience for the study of how specific cell types contribute to brain functions and brain disorder states. The full impact of optogenetics will emerge only when other toolsets mature, including neural connectivity and cell phenotyping tools and neural recording and imaging tools. The latter tools are rapidly improving, in part because optogenetics has helped galvanize broad interest in neurotechnology development.

  12. Structure–property characterization of the crinkle-leaf peach wood phenotype: a future model system for wood properties research?

    Treesearch

    Alex C. Wiedenhoeft; Rafael Arévalo; Craig Ledbetter; Joseph E. Jakes

    2016-01-01

    Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure– property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach (Prunus persica L.)...

  13. Study on tooth development, past, present, and future.

    PubMed

    Jung, Han-Sung; Hitoshi, Yamamoto; Kim, Hee-Jin

    2003-04-01

    For decades, the understanding of craniofacial development has been a central issue in odontology and developmental biology. As a consequence, a significant number of deformities are being studied for their variety of genotype and phenotype. Although there is little doubt about the essential roles of homeobox genes, transcription factors, and growth factors, we now know at least the fundamental strategy of craniofacial biology. The tooth as an organ performs a whole range of functions, each of which is truly indispensable for the maintenance of life. The possession of teeth is, therefore, obviously coupled with the complication of the natural structure of an individual organism. In the following, we shall focus on a brief history of tooth studies and some suggestions for obtaining a full understanding of teeth in the future. Copyright 2003 Wiley-Liss, Inc.

  14. Integrating mRNA and Protein Sequencing Enables the Detection and Quantitative Profiling of Natural Protein Sequence Variants of Populus trichocarpa.

    PubMed

    Abraham, Paul E; Wang, Xiaojing; Ranjan, Priya; Nookaew, Intawat; Zhang, Bing; Tuskan, Gerald A; Hettich, Robert L

    2015-12-04

    Next-generation sequencing has transformed the ability to link genotypes to phenotypes and facilitates the dissection of genetic contribution to complex traits. However, it is challenging to link genetic variants with the perturbed functional effects on proteins encoded by such genes. Here we show how RNA sequencing can be exploited to construct genotype-specific protein sequence databases to assess natural variation in proteins, providing information about the molecular toolbox driving cellular processes. For this study, we used two natural genotypes selected from a recent genome-wide association study of Populus trichocarpa, an obligate outcrosser with tremendous phenotypic variation across the natural population. This strategy allowed us to comprehensively catalogue proteins containing single amino acid polymorphisms (SAAPs), as well as insertions and deletions. We profiled the frequency of 128 types of naturally occurring amino acid substitutions, including both expected (neutral) and unexpected (non-neutral) SAAPs, with a subset occurring in regions of the genome having strong polymorphism patterns consistent with recent positive and/or divergent selection. By zeroing in on the molecular signatures of these important regions that might have previously been uncharacterized, we now provide a high-resolution molecular inventory that should improve accessibility and subsequent identification of natural protein variants in future genotype-to-phenotype studies.

  15. The Pathogen-Host Interactions database (PHI-base): additions and future developments.

    PubMed

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Controlling for Frailty in Pharmacoepidemiologic Studies of Older Adults: Validation of an Existing Medicare Claims-based Algorithm.

    PubMed

    Cuthbertson, Carmen C; Kucharska-Newton, Anna; Faurot, Keturah R; Stürmer, Til; Jonsson Funk, Michele; Palta, Priya; Windham, B Gwen; Thai, Sydney; Lund, Jennifer L

    2018-07-01

    Frailty is a geriatric syndrome characterized by weakness and weight loss and is associated with adverse health outcomes. It is often an unmeasured confounder in pharmacoepidemiologic and comparative effectiveness studies using administrative claims data. Among the Atherosclerosis Risk in Communities (ARIC) Study Visit 5 participants (2011-2013; n = 3,146), we conducted a validation study to compare a Medicare claims-based algorithm of dependency in activities of daily living (or dependency) developed as a proxy for frailty with a reference standard measure of phenotypic frailty. We applied the algorithm to the ARIC participants' claims data to generate a predicted probability of dependency. Using the claims-based algorithm, we estimated the C-statistic for predicting phenotypic frailty. We further categorized participants by their predicted probability of dependency (<5%, 5% to <20%, and ≥20%) and estimated associations with difficulties in physical abilities, falls, and mortality. The claims-based algorithm showed good discrimination of phenotypic frailty (C-statistic = 0.71; 95% confidence interval [CI] = 0.67, 0.74). Participants classified with a high predicted probability of dependency (≥20%) had higher prevalence of falls and difficulty in physical ability, and a greater risk of 1-year all-cause mortality (hazard ratio = 5.7 [95% CI = 2.5, 13]) than participants classified with a low predicted probability (<5%). Sensitivity and specificity varied across predicted probability of dependency thresholds. The Medicare claims-based algorithm showed good discrimination of phenotypic frailty and high predictive ability with adverse health outcomes. This algorithm can be used in future Medicare claims analyses to reduce confounding by frailty and improve study validity.

  17. Social disinhibition is a heritable subphenotype of tics in Tourette syndrome

    PubMed Central

    Hirschtritt, Matthew E.; Darrow, Sabrina M.; Illmann, Cornelia; Osiecki, Lisa; Grados, Marco; Sandor, Paul; Dion, Yves; King, Robert A.; Pauls, David L.; Budman, Cathy L.; Cath, Danielle C.; Greenberg, Erica; Lyon, Gholson J.; Yu, Dongmei; McGrath, Lauren M.; McMahon, William M.; Lee, Paul C.; Delucchi, Kevin L.; Scharf, Jeremiah M.

    2016-01-01

    Objective: To identify heritable symptom-based subtypes of Tourette syndrome (TS). Methods: Forty-nine motor and phonic tics were examined in 3,494 individuals (1,191 TS probands and 2,303 first-degree relatives). Item-level exploratory factor and latent class analyses (LCA) were used to identify tic-based subtypes. Heritabilities of the subtypes were estimated, and associations with clinical characteristics were examined. Results: A 6-factor exploratory factor analysis model provided the best fit, which paralleled the somatotopic representation of the basal ganglia, distinguished simple from complex tics, and separated out socially disinhibited and compulsive tics. The 5-class LCA model best distinguished among the following groups: unaffected, simple tics, intermediate tics without social disinhibition, intermediate with social disinhibition, and high rates of all tic types. Across models, a phenotype characterized by high rates of social disinhibition emerged. This phenotype was associated with increased odds of comorbid psychiatric disorders, in particular, obsessive-compulsive disorder and attention-deficit/hyperactivity disorder, earlier age at TS onset, and increased tic severity. The heritability estimate for this phenotype based on the LCA was 0.53 (SE 0.08, p 1.7 × 10−18). Conclusions: Expanding on previous modeling approaches, a series of TS-related phenotypes, including one characterized by high rates of social disinhibition, were identified. These phenotypes were highly heritable and may reflect underlying biological networks more accurately than traditional diagnoses, thus potentially aiding future genetic, imaging, and treatment studies. PMID:27371487

  18. Social disinhibition is a heritable subphenotype of tics in Tourette syndrome.

    PubMed

    Hirschtritt, Matthew E; Darrow, Sabrina M; Illmann, Cornelia; Osiecki, Lisa; Grados, Marco; Sandor, Paul; Dion, Yves; King, Robert A; Pauls, David L; Budman, Cathy L; Cath, Danielle C; Greenberg, Erica; Lyon, Gholson J; Yu, Dongmei; McGrath, Lauren M; McMahon, William M; Lee, Paul C; Delucchi, Kevin L; Scharf, Jeremiah M; Mathews, Carol A

    2016-08-02

    To identify heritable symptom-based subtypes of Tourette syndrome (TS). Forty-nine motor and phonic tics were examined in 3,494 individuals (1,191 TS probands and 2,303 first-degree relatives). Item-level exploratory factor and latent class analyses (LCA) were used to identify tic-based subtypes. Heritabilities of the subtypes were estimated, and associations with clinical characteristics were examined. A 6-factor exploratory factor analysis model provided the best fit, which paralleled the somatotopic representation of the basal ganglia, distinguished simple from complex tics, and separated out socially disinhibited and compulsive tics. The 5-class LCA model best distinguished among the following groups: unaffected, simple tics, intermediate tics without social disinhibition, intermediate with social disinhibition, and high rates of all tic types. Across models, a phenotype characterized by high rates of social disinhibition emerged. This phenotype was associated with increased odds of comorbid psychiatric disorders, in particular, obsessive-compulsive disorder and attention-deficit/hyperactivity disorder, earlier age at TS onset, and increased tic severity. The heritability estimate for this phenotype based on the LCA was 0.53 (SE 0.08, p 1.7 × 10(-18)). Expanding on previous modeling approaches, a series of TS-related phenotypes, including one characterized by high rates of social disinhibition, were identified. These phenotypes were highly heritable and may reflect underlying biological networks more accurately than traditional diagnoses, thus potentially aiding future genetic, imaging, and treatment studies. © 2016 American Academy of Neurology.

  19. A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation

    PubMed Central

    2014-01-01

    Background Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. Methods 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). Results No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium’s panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10–14) and explained approximately 2% of the phenotypic variance. Conclusions Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data. PMID:23871474

  20. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation.

    PubMed

    Bramon, Elvira; Pirinen, Matti; Strange, Amy; Lin, Kuang; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Band, Gavin; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J; Arranz, Maria J; Bakker, Steven; Bender, Stephan; Bruggeman, Richard; Cahn, Wiepke; Chandler, David; Collier, David A; Crespo-Facorro, Benedicto; Dazzan, Paola; de Haan, Lieuwe; Di Forti, Marta; Dragović, Milan; Giegling, Ina; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, René S; Kalaydjieva, Luba; Kravariti, Eugenia; Lawrie, Stephen; Linszen, Don H; Mata, Ignacio; McDonald, Colm; McIntosh, Andrew; Myin-Germeys, Inez; Ophoff, Roel A; Pariante, Carmine M; Paunio, Tiina; Picchioni, Marco; Ripke, Stephan; Rujescu, Dan; Sauer, Heinrich; Shaikh, Madiha; Sussmann, Jessika; Suvisaari, Jaana; Tosato, Sarah; Toulopoulou, Timothea; Van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Whalley, Heather; Wiersma, Durk; Blackwell, Jenefer M; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A Z; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Wood, Nicholas W; Barroso, Ines; Peltonen, Leena; Lewis, Cathryn M; Murray, Robin M; Donnelly, Peter; Powell, John; Spencer, Chris C A

    2014-03-01

    Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium's panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10(-14)) and explained approximately 2% of the phenotypic variance. Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor.

    PubMed

    Mantilla Perez, Maria B; Zhao, Jing; Yin, Yanhai; Hu, Jieyun; Salas Fernandez, Maria G

    2014-12-01

    This first association analysis between plant architecture and BR candidate genes in sorghum suggests that natural allelic variation has significant and pleiotropic effects on plant architecture phenotypes. Sorghum bicolor (L) Moench is a self-pollinated species traditionally used as a staple crop for human consumption and as a forage crop for livestock feed. Recently, sorghum has received attention as a bioenergy crop due to its water use efficiency and biomass yield potential. Breeding for superior bioenergy-type lines requires knowledge of the genetic mechanisms controlling plant architecture. Brassinosteroids (BRs) are a group of hormones that determine plant growth, development, and architecture. Biochemical and genetic information on BRs are available from model species but the application of that knowledge to crop species has been very limited. A candidate gene association mapping approach and a diverse sorghum collection of 315 accessions were used to assess marker-trait associations between BR biosynthesis and signaling genes and six plant architecture traits. A total of 263 single nucleotide polymorphisms (SNPs) from 26 BR genes were tested, 73 SNPs were significantly associated with the phenotypes of interest and 18 of those were associated with more than one trait. An analysis of the phenotypic variation explained by each BR pathway revealed that the signaling pathway had a larger effect for most phenotypes (R (2) = 0.05-0.23). This study constitutes the first association analysis between plant architecture and BR genes in sorghum and the first LD mapping for leaf angle, stem circumference, panicle exsertion and panicle length. Markers on or close to BKI1 associated with all phenotypes and thus, they are the most important outcomes of this study and will be further validated for their future application in breeding programs.

  2. Mother and offspring fitness in an insect with maternal care: phenotypic trade-offs between egg number, egg mass and egg care

    PubMed Central

    2014-01-01

    Background Oviparous females have three main options to increase their reproductive success: investing into egg number, egg mass and/or egg care. Although allocating resources to either of these three components is known to shape offspring number and size, potential trade-offs among them may have key impacts on maternal and offspring fitness. Here, we tested the occurrence of phenotypic trade-offs between egg number, egg mass and maternal expenditure on egg care in the European earwig, Forficula auricularia, an insect with pre- and post-hatching forms of maternal care. In particular, we used a series of laboratory observations and experiments to investigate whether these three components non-additively influenced offspring weight and number at hatching, and whether they were associated with potential costs to females in terms of future reproduction. Results We found negative associations between egg number and mass as well as between egg number and maternal expenditure on egg care. However, these trade-offs could only be detected after statistically correcting for female weight at egg laying. Hatchling number was not determined by single or additive effects among the three life-history traits, but instead by pairwise interactions among them. In particular, offspring number was positively associated with the number of eggs only in clutches receiving high maternal care or consisting of heavy eggs, and negatively associated with mean egg mass in clutches receiving low care. In contrast, offspring weight was positively associated with egg mass only. Finally, maternal expenditure on egg care reduced their future reproduction, but this effect was only detected when mothers were experimentally isolated from their offspring at egg hatching. Conclusions Overall, our study reveals simultaneous trade-offs between the number, mass and care of eggs. It also demonstrates that these factors interact in their impact on offspring production, and that maternal expenditure on egg care possibly shapes female future reproduction. These findings emphasize that studying reproductive success requires consideration of phenotypic trade-offs between egg-number, egg mass and egg care in oviparous species. PMID:24913927

  3. A theoretical model of the evolution of maternal effects under parent-offspring conflict.

    PubMed

    Uller, Tobias; Pen, Ido

    2011-07-01

    The evolution of maternal effects on offspring phenotype should depend on the extent of parent-offspring conflict and costs and constraints associated with maternal and offspring strategies. Here, we develop a model of maternal effects on offspring dispersal phenotype under parent-offspring conflict to evaluate such dependence. In the absence of evolutionary constraints and costs, offspring evolve dispersal rates from different patch types that reflect their own, rather than the maternal, optima. This result also holds true when offspring are unable to assess their own environment because the maternal phenotype provides an additional source of information. Consequently, maternal effects on offspring diapause, dispersal, and other traits that do not necessarily represent costly resource investment are more likely to maximize offspring than maternal fitness. However, when trait expression was costly, the evolutionarily stable dispersal rates tended to deviate from those under both maternal and offspring control. We use our results to (re)interpret some recent work on maternal effects and their adaptive value and provide suggestions for future work. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. GExplore: a web server for integrated queries of protein domains, gene expression and mutant phenotypes

    PubMed Central

    2009-01-01

    Background The majority of the genes even in well-studied multi-cellular model organisms have not been functionally characterized yet. Mining the numerous genome wide data sets related to protein function to retrieve potential candidate genes for a particular biological process remains a challenge. Description GExplore has been developed to provide a user-friendly database interface for data mining at the gene expression/protein function level to help in hypothesis development and experiment design. It supports combinatorial searches for proteins with certain domains, tissue- or developmental stage-specific expression patterns, and mutant phenotypes. GExplore operates on a stand-alone database and has fast response times, which is essential for exploratory searches. The interface is not only user-friendly, but also modular so that it accommodates additional data sets in the future. Conclusion GExplore is an online database for quick mining of data related to gene and protein function, providing a multi-gene display of data sets related to the domain composition of proteins as well as expression and phenotype data. GExplore is publicly available at: http://genome.sfu.ca/gexplore/ PMID:19917126

  5. Development of allergic sensitization and its relevance to paediatric asthma.

    PubMed

    Oksel, Ceyda; Custovic, Adnan

    2018-04-01

    The purpose of this review is to summarize the recent evidence on the distinct atopic phenotypes and their relationship with childhood asthma. We start by considering definitions and phenotypic classification of atopy and then review evidence on its association with asthma in children. It is now well recognized that both asthma and atopy are complex entities encompassing various different sub-groups that also differ in the way they interconnect. The lack of gold standards for diagnostic markers of atopy and asthma further adds to the existing complexity over diagnostic accuracy and definitions. Although recent statistical phenotyping studies contributed significantly to our understanding of these heterogeneous disorders, translating these findings into meaningful information and effective therapies requires further work on understanding underpinning biological mechanisms. The disaggregation of allergic sensitization may help predict how the allergic disease is likely to progress. One of the important questions is how best to incorporate tests for the assessment of allergic sensitization into diagnostic algorithms for asthma, both in terms of confirming asthma diagnosis, and the assessment of future risk.

  6. A novel canine model of immune thrombocytopenia: Has ITP gone to the dogs?

    PubMed Central

    LeVine, Dana N; Birkenheuer, Adam J; Brooks, Marjory B; Nordone, Shila K; Bellinger, Dwight A; Jones, Sam L; Fischer, Thomas H; Oglesbee, Stephen E; Frey, Kahlina; Brinson, Nicole S; Peters, Allison Pazandak; Marr, Henry S; Motsinger-Reif, Alison; Gudbrandsdottir, Sif; Bussel, James B; Key, Nigel S

    2014-01-01

    Summary Canine immune thrombocytopenia (ITP) is analogous to human ITP, with similar platelet counts and heterogeneity in bleeding phenotype among affected individuals. With a goal of ultimately investigating this bleeding heterogeneity, a canine model of antibody-mediated ITP was developed. Infusion of healthy dogs with 2F9, a murine IgG2a monoclonal antibody to the canine platelet glycoprotein GPIIb (a common target of autoantibodies in ITP) resulted in profound, dose-dependent thrombocytopenia. Model dogs developed variable bleeding phenotypes, e.g. petechiae and haematuria, despite similar degrees of thrombocytopenia. 2F9 infusion was not associated with systemic inflammation, consumptive coagulopathy, or impairment of platelet function. Unexpectedly however, evaluation of cytokine profiles led to the identification of platelets as a potential source of serum interleukin-8 (IL8) in dogs. This finding was confirmed in humans with ITP, suggesting that platelet IL8 may be a previously unrecognized modulator of platelet-neutrophil crosstalk. The utility of this model will allow future study of bleeding phenotypic heterogeneity including the role of neutrophils and endothelial cells in ITP. PMID:25039744

  7. Application of single-cell sequencing in human cancer.

    PubMed

    Rantalainen, Mattias

    2017-11-02

    Precision medicine is emerging as a cornerstone of future cancer care with the objective of providing targeted therapies based on the molecular phenotype of each individual patient. Traditional bulk-level molecular phenotyping of tumours leads to significant information loss, as the molecular profile represents an average phenotype over large numbers of cells, while cancer is a disease with inherent intra-tumour heterogeneity at the cellular level caused by several factors, including clonal evolution, tissue hierarchies, rare cells and dynamic cell states. Single-cell sequencing provides means to characterize heterogeneity in a large population of cells and opens up opportunity to determine key molecular properties that influence clinical outcomes, including prognosis and probability of treatment response. Single-cell sequencing methods are now reliable enough to be used in many research laboratories, and we are starting to see applications of these technologies for characterization of human primary cancer cells. In this review, we provide an overview of studies that have applied single-cell sequencing to characterize human cancers at the single-cell level, and we discuss some of the current challenges in the field. © The Author 2017. Published by Oxford University Press.

  8. A System-Level Pathway-Phenotype Association Analysis Using Synthetic Feature Random Forest

    PubMed Central

    Pan, Qinxin; Hu, Ting; Malley, James D.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.

    2015-01-01

    As the cost of genome-wide genotyping decreases, the number of genome-wide association studies (GWAS) has increased considerably. However, the transition from GWAS findings to the underlying biology of various phenotypes remains challenging. As a result, due to its system-level interpretability, pathway analysis has become a popular tool for gaining insights on the underlying biology from high-throughput genetic association data. In pathway analyses, gene sets representing particular biological processes are tested for significant associations with a given phenotype. Most existing pathway analysis approaches rely on single-marker statistics and assume that pathways are independent of each other. As biological systems are driven by complex biomolecular interactions, embracing the complex relationships between single-nucleotide polymorphisms (SNPs) and pathways needs to be addressed. To incorporate the complexity of gene-gene interactions and pathway-pathway relationships, we propose a system-level pathway analysis approach, synthetic feature random forest (SF-RF), which is designed to detect pathway-phenotype associations without making assumptions about the relationships among SNPs or pathways. In our approach, the genotypes of SNPs in a particular pathway are aggregated into a synthetic feature representing that pathway via Random Forest (RF). Multiple synthetic features are analyzed using RF simultaneously and the significance of a synthetic feature indicates the significance of the corresponding pathway. We further complement SF-RF with pathway-based Statistical Epistasis Network (SEN) analysis that evaluates interactions among pathways. By investigating the pathway SEN, we hope to gain additional insights into the genetic mechanisms contributing to the pathway-phenotype association. We apply SF-RF to a population-based genetic study of bladder cancer and further investigate the mechanisms that help explain the pathway-phenotype associations using SEN. The bladder cancer associated pathways we found are both consistent with existing biological knowledge and reveal novel and plausible hypotheses for future biological validations. PMID:24535726

  9. Enhancing Psychosis-Spectrum Nosology Through an International Data Sharing Initiative.

    PubMed

    Docherty, Anna R; Fonseca-Pedrero, Eduardo; Debbané, Martin; Chan, Raymond C K; Linscott, Richard J; Jonas, Katherine G; Cicero, David C; Green, Melissa J; Simms, Leonard J; Mason, Oliver; Watson, David; Ettinger, Ulrich; Waszczuk, Monika; Rapp, Alexander; Grant, Phillip; Kotov, Roman; DeYoung, Colin G; Ruggero, Camilo J; Eaton, Nicolas R; Krueger, Robert F; Patrick, Christopher; Hopwood, Christopher; O'Neill, F Anthony; Zald, David H; Conway, Christopher C; Adkins, Daniel E; Waldman, Irwin D; van Os, Jim; Sullivan, Patrick F; Anderson, John S; Shabalin, Andrey A; Sponheim, Scott R; Taylor, Stephan F; Grazioplene, Rachel G; Bacanu, Silviu A; Bigdeli, Tim B; Haenschel, Corinna; Malaspina, Dolores; Gooding, Diane C; Nicodemus, Kristin; Schultze-Lutter, Frauke; Barrantes-Vidal, Neus; Mohr, Christine; Carpenter, William T; Cohen, Alex S

    2018-05-16

    The latent structure of schizotypy and psychosis-spectrum symptoms remains poorly understood. Furthermore, molecular genetic substrates are poorly defined, largely due to the substantial resources required to collect rich phenotypic data across diverse populations. Sample sizes of phenotypic studies are often insufficient for advanced structural equation modeling approaches. In the last 50 years, efforts in both psychiatry and psychological science have moved toward (1) a dimensional model of psychopathology (eg, the current Hierarchical Taxonomy of Psychopathology [HiTOP] initiative), (2) an integration of methods and measures across traits and units of analysis (eg, the RDoC initiative), and (3) powerful, impactful study designs maximizing sample size to detect subtle genomic variation relating to complex traits (the Psychiatric Genomics Consortium [PGC]). These movements are important to the future study of the psychosis spectrum, and to resolving heterogeneity with respect to instrument and population. The International Consortium of Schizotypy Research is composed of over 40 laboratories in 12 countries, and to date, members have compiled a body of schizotypy- and psychosis-related phenotype data from more than 30000 individuals. It has become apparent that compiling data into a protected, relational database and crowdsourcing analytic and data science expertise will result in significant enhancement of current research on the structure and biological substrates of the psychosis spectrum. The authors present a data-sharing infrastructure similar to that of the PGC, and a resource-sharing infrastructure similar to that of HiTOP. This report details the rationale and benefits of the phenotypic data collective and presents an open invitation for participation.

  10. Mast cell phenotypes in the allograft after lung transplantation.

    PubMed

    Banga, Amit; Han, Yingchun; Wang, Xiaofeng; Hsieh, Fred H

    2016-07-01

    The burden of mast cell (MC) infiltration and their phenotypes, MC-tryptase (MCT ) and MC-tryptase/chymase (MCTC ), after lung transplantation (LT) has not been evaluated in human studies. We reviewed 20 transbronchial lung biopsy (TBLB) specimen from patients with early normal allograft (<6 months post-LT, n=5), late normal allograft (>6 months, n=5), A2 or worse acute cellular rejection (ACR, n=5), and chronic lung allograft dysfunction (CLAD, n=5). Slides were immunostained for tryptase and chymase. Total MC, MCT , MCTC and MCTC to-MCT ratio were compared between the four groups using a generalized linear mixed model. Irrespective of clinicopathologic diagnosis, MC burden tends to increase with time (r(2) =.56, P=.009). MCTC phenotype was significantly increased in the CLAD group (8.2±4.9 cells per HPF) in comparison with the other three groups (early normal: 1.6±1.7, P=.0026; late normal: 2.5±2.3, P=.048; ACR: 2.7±3.5, P=.021). Further, the ratio of MCTC to MCT was significantly increased in CLAD group as compared to the other three groups (P<.001 for all comparisons). The burden of MC may increase in the allograft as function of time. Patients with CLAD have an increased relative and absolute burden of MCTC phenotype MC. Future studies are needed to confirm these findings and evaluate the potential pathologic role of MCTC in allograft dysfunction. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Global change and the evolution of phenotypic plasticity in plants.

    PubMed

    Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando

    2010-09-01

    Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.

  12. Twin studies advance the understanding of gene-environment interplay in human nutrigenomics.

    PubMed

    Pallister, Tess; Spector, Tim D; Menni, Cristina

    2014-12-01

    Investigations into the genetic architecture of diet-disease relationships are particularly relevant today with the global epidemic of obesity and chronic disease. Twin studies have demonstrated that genetic makeup plays a significant role in a multitude of dietary phenotypes such as energy and macronutrient intakes, dietary patterns, and specific food group intakes. Besides estimating heritability of dietary assessment, twins provide a naturally unique, case-control experiment. Due to their shared upbringing, matched genes and sex (in the case of monozygotic (MZ) twin pairs), and age, twins provide many advantages over classic epidemiological approaches. Future genetic epidemiological studies could benefit from the twin approach particularly where defining what is 'normal' is problematic due to the high inter-individual variability underlying metabolism. Here, we discuss the use of twins to generate heritability estimates of food intake phenotypes. We then highlight the value of discordant MZ pairs to further nutrition research through discovery and validation of biomarkers of intake and health status in collaboration with cutting-edge omics technologies.

  13. Annual Research Review: Understudied populations within the autism spectrum – current trends and future directions in neuroimaging research

    PubMed Central

    Jack, Allison; Pelphrey, Kevin

    2017-01-01

    Background Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions that vary in both etiology and phenotypic expression. Expressions of ASD characterized by a more severe phenotype, including autism with intellectual disability (ASD+ID), autism with a history of developmental regression (ASD+R), and minimally verbal autism (ASD+MV) are understudied generally, and especially in the domain of neuroimaging. However, neuroimaging methods are a potentially powerful tool for understanding the etiology of these ASD subtypes. Scope and Methodology This review evaluates existing neuroimaging research on ASD+MV, ASD+ID, and ASD+R, identified by a search of the literature using the PubMed database, and discusses methodological, theoretical, and practical considerations for future research involving neuroimaging assessment of these populations. Findings There is a paucity of neuroimaging research on ASD+ID, ASD+MV, and ASD+R, and what findings do exist are often contradictory, or so sparse as to be ungeneralizable. We suggest that while greater sample sizes and more studies are necessary, more important would be a paradigm shift toward multimodal (e.g., imaging genetics) approaches that allow for the characterization of heterogeneity within etiologically diverse samples. PMID:28102566

  14. Advantageous developmental outcomes of advancing paternal age

    PubMed Central

    Janecka, M; Rijsdijk, F; Rai, D; Modabbernia, A; Reichenberg, A

    2017-01-01

    Advanced paternal age (APA) at conception has been associated with negative outcomes in offspring, raising concerns about increasing age at fatherhood. Evidence from evolutionary and psychological research, however, suggests possible link between APA and a phenotypic advantage. We defined such advantage as educational success, which is positively associated with future socioeconomic status. We hypothesised that high IQ, strong focus on the subject of interest and little concern about ‘fitting in’ will be associated with such success. Although these traits are continuously distributed in the population, they cluster together in so-called ‘geeks’. We used these measures to compute a ‘geek index’ (GI), and showed it to be strongly predictive of future academic attainment, beyond the independent contribution of the individual traits. GI was associated with paternal age in male offspring only, and mediated the positive effects of APA on education outcomes, in a similar sexually dimorphic manner. The association between paternal age and GI was partly mediated by genetic factors not correlated with age at fatherhood, suggesting contribution of de novo factors to the ‘geeky’ phenotype. Our study sheds new light on the multifaceted nature of the APA effects and explores the intricate links between APA, autism and talent. PMID:28632201

  15. Psoriasis

    PubMed Central

    Di Meglio, Paola; Villanova, Federica; Nestle, Frank O.

    2014-01-01

    Psoriasis is a common chronic inflammatory skin disease with a spectrum of clinical phenotypes and results from the interplay of genetic, environmental, and immunological factors. Four decades of clinical and basic research on psoriasis have elucidated many of the pathogenic mechanisms underlying disease and paved the way to effective targeted therapies. Here, we review this progress and identify future directions of study that are supported by a more integrative research approach and aim at further improving the patients' life. PMID:25085957

  16. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer.

    PubMed

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-05-30

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity.

  17. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer

    PubMed Central

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-01-01

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957

  18. Genetic Psychophysiology: advances, problems, and future directions

    PubMed Central

    Anokhin, Andrey P.

    2014-01-01

    This paper presents an overview of historical advances and the current state of genetic psychophysiology, a rapidly developing interdisciplinary research linking genetics, brain, and human behavior, discusses methodological problems, and outlines future directions of research. The main goals of genetic psychophysiology are to elucidate the neural pathways and mechanisms mediating genetic influences on cognition and emotion, identify intermediate brain-based phenotypes for psychopathology, and provide a functional characterization of genes being discovered by large association studies of behavioral phenotypes. Since the initiation of this neurogenetic approach to human individual differences in the 1970s, numerous twin and family studies have provided strong evidence for heritability of diverse aspects of brain function including resting-state brain oscillations, functional connectivity, and event-related neural activity in a variety of cognitive and emotion processing tasks, as well as peripheral psychophysiological responses. These data indicate large differences in the presence and strength of genetic influences across measures and domains, permitting the selection of heritable characteristics for gene finding studies. More recently, candidate gene association studies began to implicate specific genetic variants in different aspects of neurocognition. However, great caution is needed in pursuing this line of research due to its demonstrated proneness to generate false-positive findings. Recent developments in methods for physiological signal analysis, hemodynamic imaging, and genomic technologies offer new exciting opportunities for the investigation of the interplay between genetic and environmental factors in the development of individual differences in behavior, both normal and abnormal. PMID:24739435

  19. Psoriasis: the future.

    PubMed

    Menter, M Alan; Griffiths, Christopher E M

    2015-01-01

    The umbrella term psoriasis is now understood to incorporate several distinct phenotypes or endotypes along the disease spectrum that in turn will dictate different therapies. A stratified medicine approach to psoriasis using this clinical information coupled with pharmacogenomic and immunologic data will become more widely acceptable in the future. Comorbidities associated with psoriasis, such as diabetes, depression, and Crohn disease, and the debate about the interdependence of psoriasis and cardiovascular disease will also dictate future research and holistic and management plans for this complex disease.

  20. The KSR2-rs7973260 Polymorphism is Associated with Metabolic Phenotypes, but Not Psychological Phenotypes, in Chinese Elders.

    PubMed

    Wang, Yong; Ma, Teng; Zhu, Yin-Sheng; Chu, Xue-Feng; Yao, Shun; Wang, Hong-Fei; Cai, Jian; Wang, Xiao-Feng; Jiang, Xiao-Yan

    2017-07-01

    To examine the associations between genetic variants of KSR2 (kinase suppressor of RAS)-rs7973260, RAPGEF6 (guanine nucleotide exchange factor 6)-rs3756290, LOC105377703-rs4481363, and subjective well-being (SWB) and depressive symptoms (DSs) in Chinese elders, which were recently associated in a genome-wide association study conducted in Caucasians. The pleiotropic effects of KSR2-rs7973260 on metabolic phenotypes were also explored. We used data from 1788 older individuals aged 70-84 years from the aging arm of the Rugao Longevity and Aging Study, a population-based cohort study conducted in the Jiangsu province of China. No significant distributions of genotype frequencies were observed between life-satisfied and -unsatisfied groups across those with the three polymorphisms. The level of SWB components (positive affect, negative affect, and affect balance) and DSs did not differ among genotypes of the three variants. However, the presence of GA+AA of KSR2-rs7973260 was significantly higher in the metabolic syndrome (MetS), severe hypertriglyceridemia (HTG), and diabetes groups than in control groups (43.7% vs. 37.6%, 46.4% vs. 37.6%, 45.8% vs. 37.9%, respectively). The A allele of rs7973260 was associated with increased risk of MetS, severe HTG, and diabetes with an odds ratios (95% confidence intervals) of 1.289 (1.002-1.658), 1.438 (1.076-1.921), and 1.384 (1.022-1.875), which remained significant after multiple adjustments. Rs7973260, rs3756290, and rs4481363 were not associated with SWB and DSs in Chinese elders. However, the KSR2-rs7973260 A allele exhibited pleiotropic effects on some metabolic phenotypes in Chinese elders. These effects should be validated in future studies.

  1. Phenotyping of lumbosacral stenosis in Labrador retrievers using computed tomography.

    PubMed

    Mukherjee, Meenakshi; Jones, Jeryl C; Holásková, Ida; Raylman, Raymond; Meade, Jean

    2017-09-01

    Deep phenotyping tools for characterizing preclinical morphological conditions are important for supporting genetic research studies. Objectives of this retrospective, cross-sectional, methods comparison study were to describe and compare qualitative and quantitative deep phenotypic characteristics of lumbosacral stenosis in Labrador retrievers using computed tomography (CT). Lumbosacral CT scans and medical records were retrieved from data archives at three veterinary hospitals. Using previously published qualitative CT diagnostic criteria, a board-certified veterinary radiologist assigned dogs as either lumbosacral stenosis positive or lumbosacral stenosis negative at six vertebral locations. A second observer independently measured vertebral canal area, vertebral fat area, and vertebral body area; and calculated ratios of vertebral canal area/vertebral body area and vertebral fat area/vertebral body area (fat area ratio) at all six locations. Twenty-five dogs were sampled (lumbosacral stenosis negative, 11 dogs; lumbosacral stenosis positive, 14 dogs). Of the six locations, cranial L6 was the most affected by lumbosacral stenosis (33%). Five of six dogs (83%) with clinical signs of lumbosacral pain were lumbosacral stenosis positive at two or more levels. All four quantitative variables were significantly smaller at the cranial aspects of the L6 and L7 vertebral foramina than at the caudal aspects (P < 0.0001). Fat area ratio was a significant predictor of lumbosacral stenosis positive status at all six locations with cranial L6 having the greatest predictive value (R 2 = 0.43) and range of predictive probability (25-90%). Findings from the current study supported the use of CT as a deep phenotyping tool for future research studies of lumbosacral stenosis in Labrador retrievers. © 2017 American College of Veterinary Radiology.

  2. Accounting for genetic and environmental confounds in associations between parent and child characteristics: a systematic review of children-of-twins studies.

    PubMed

    McAdams, Tom A; Neiderhiser, Jenae M; Rijsdijk, Fruhling V; Narusyte, Jurgita; Lichtenstein, Paul; Eley, Thalia C

    2014-07-01

    Parental psychopathology, parenting style, and the quality of intrafamilial relationships are all associated with child mental health outcomes. However, most research can say little about the causal pathways underlying these associations. This is because most studies are not genetically informative and are therefore not able to account for the possibility that associations are confounded by gene-environment correlation. That is, biological parents not only provide a rearing environment for their child, but also contribute 50% of their genes. Any associations between parental phenotype and child phenotype are therefore potentially confounded. One technique for disentangling genetic from environmental effects is the children-of-twins (COT) method. This involves using data sets comprising twin parents and their children to distinguish genetic from environmental associations between parent and child phenotypes. The COT technique has grown in popularity in the last decade, and we predict that this surge in popularity will continue. In the present article we explain the COT method for those unfamiliar with its use. We present the logic underlying this approach, discuss strengths and weaknesses, and highlight important methodological considerations for researchers interested in the COT method. We also cover variations on basic COT approaches, including the extended-COT method, capable of distinguishing forms of gene-environment correlation. We then present a systematic review of all the behavioral COT studies published to date. These studies cover such diverse phenotypes as psychosis, substance abuse, internalizing, externalizing, parenting, and marital difficulties. In reviewing this literature, we highlight past applications, identify emergent patterns, and suggest avenues for future research. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Human Cytomegalovirus-Infected Glioblastoma Cells Display Stem Cell-Like Phenotypes

    PubMed Central

    Liu, Che; Clark, Paul A.; Kuo, John S.

    2017-01-01

    ABSTRACT Glioblastoma multiforme (GBM) is the most common brain tumor in adults. Human cytomegalovirus (HCMV) genomes are present in GBM tumors, yielding hope that antiviral treatments could prove therapeutic and improve the poor prognosis of GBM patients. We discovered that GBM cells infected in vitro with HCMV display properties of cancer stem cells. HCMV-infected GBM cells grow more slowly than mock-infected controls, demonstrate a higher capacity for self-renewal determined by a sphere formation assay, and display resistance to the chemotherapeutic drug temozolomide. Our data suggest that HCMV, while present in only a minority of the cells within a tumor, could contribute to the pathogenesis of GBMs by promoting or prolonging stem cell-like phenotypes, thereby perpetuating tumors in the face of chemotherapy. Importantly, we show that temozolomide sensitivity is restored by the antiviral drug ganciclovir, indicating a potential mechanism underlying the positive effects observed in GBM patients treated with antiviral therapy. IMPORTANCE A role for HCMV in GBMs remains controversial for several reasons. Some studies find HCMV in GBM tumors, while others do not. Few cells within a GBM may harbor HCMV, making it unclear how the virus could be contributing to the tumor phenotype without infecting every cell. Finally, HCMV does not overtly transform cells in vitro. However, tumors induced by other viruses can be treated with antiviral remedies, and initial results indicate that this may be true for anti-HCMV therapies and GBMs. With such a poor prognosis for GBM patients, any potential new intervention deserves exploration. Our work here describes an evidence-based model for how HCMV could contribute to GBM biology while infecting very few cells and without transforming them. It also illuminates why anti-HCMV treatments may be beneficial to GBM patients. Our observations provide blueprints for future in vitro studies examining how HCMV manipulates stem cell-specific pathways and future clinical studies of anti-HCMV measures as GBM therapeutics. PMID:28656174

  4. Advances on polyphenism in insects.

    PubMed

    Xue, Xian-Ci; Yu, Li

    2017-09-20

    Polyphenism denotes that one genome produces two or more distinct phenotypes due to environmental inductions. Many cases have been reported in insects, for example, metamorphosis, seasonal polyphenism, the caste of eusocial insects and so on. Polyphenism is one of the most important reasons for insects to survive and thrive, because insects can adapt and use the environmental cues around them in order to avoid predators and reproduce by changing their phenotypes. Polyphenism has received growing attentions, ranging from the earlier description of this phenomenon to the exploration of possible inducing factors. With the recent advent of the genomic era, more and more studies based on next generation sequencing, gene knockout and RNA interference have been reported to reveal the molecular mechanism of polyphenism. In this review, we summarize the progresses of the polyphenism in insects and envision prospects of future researches.

  5. Single Cell Multi-Omics Technology: Methodology and Application.

    PubMed

    Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying

    2018-01-01

    In the era of precision medicine, multi-omics approaches enable the integration of data from diverse omics platforms, providing multi-faceted insight into the interrelation of these omics layers on disease processes. Single cell sequencing technology can dissect the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen our understanding of the underlying mechanisms governing both health and disease. Through modification and combination of single cell assays available for transcriptome, genome, epigenome, and proteome profiling, single cell multi-omics approaches have been developed to simultaneously and comprehensively study not only the unique genotypic and phenotypic characteristics of single cells, but also the combined regulatory mechanisms evident only at single cell resolution. In this review, we summarize the state-of-the-art single cell multi-omics methods and discuss their applications, challenges, and future directions.

  6. Single Cell Multi-Omics Technology: Methodology and Application

    PubMed Central

    Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying

    2018-01-01

    In the era of precision medicine, multi-omics approaches enable the integration of data from diverse omics platforms, providing multi-faceted insight into the interrelation of these omics layers on disease processes. Single cell sequencing technology can dissect the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen our understanding of the underlying mechanisms governing both health and disease. Through modification and combination of single cell assays available for transcriptome, genome, epigenome, and proteome profiling, single cell multi-omics approaches have been developed to simultaneously and comprehensively study not only the unique genotypic and phenotypic characteristics of single cells, but also the combined regulatory mechanisms evident only at single cell resolution. In this review, we summarize the state-of-the-art single cell multi-omics methods and discuss their applications, challenges, and future directions. PMID:29732369

  7. Polycystic ovary syndrome and adverse pregnancy outcomes: Current state of knowledge, challenges and potential implications for practice.

    PubMed

    Bahri Khomami, Mahnaz; Boyle, Jacqueline A; Tay, Chau T; Vanky, Eszter; Teede, Helena J; Joham, Anju E; Moran, Lisa J

    2018-06-01

    Although there is a growing body of literature reporting that pregnancies in women with polycystic ovary syndrome (PCOS) are associated with greater complications than those without PCOS, methodological differences across studies make these results difficult to consolidate. This narrative review outlines potential mechanisms involved in adverse pregnancy outcomes in PCOS and the nature of the complications. It covers limitations of current evidence and future research directions. Future research should include prospective studies with phenotypic stratification of PCOS and matching or consideration of specific PCOS manifestations and risk factors specific to each pregnancy complication. This review also emphasizes the importance of following a healthy lifestyle for women with PCOS and of individualized care according to overall risk factors for pregnancy complications. © 2018 John Wiley & Sons Ltd.

  8. A combined genome-wide linkage and association approach to find susceptibility loci for platelet function phenotypes in European American and African American families with coronary artery disease

    PubMed Central

    2010-01-01

    Background The inability of aspirin (ASA) to adequately suppress platelet aggregation is associated with future risk of coronary artery disease (CAD). Heritability studies of agonist-induced platelet function phenotypes suggest that genetic variation may be responsible for ASA responsiveness. In this study, we leverage independent information from genome-wide linkage and association data to determine loci controlling platelet phenotypes before and after treatment with ASA. Methods Clinical data on 37 agonist-induced platelet function phenotypes were evaluated before and after a 2-week trial of ASA (81 mg/day) in 1231 European American and 846 African American healthy subjects with a family history of premature CAD. Principal component analysis was performed to minimize the number of independent factors underlying the covariance of these various phenotypes. Multi-point sib-pair based linkage analysis was performed using a microsatellite marker set, and single-SNP association tests were performed using markers from the Illumina 1 M genotyping chip from deCODE Genetics, Inc. All analyses were performed separately within each ethnic group. Results Several genomic regions appear to be linked to ASA response factors: a 10 cM region in African Americans on chromosome 5q11.2 had several STRs with suggestive (p-value < 7 × 10-4) and significant (p-value < 2 × 10-5) linkage to post aspirin platelet response to ADP, and ten additional factors had suggestive evidence for linkage (p-value < 7 × 10-4) to thirteen genomic regions. All but one of these factors were aspirin response variables. While the strength of genome-wide SNP association signals for factors showing evidence for linkage is limited, especially at the strict thresholds of genome-wide criteria (N = 9 SNPs for 11 factors), more signals were considered significant when the association signal was weighted by evidence for linkage (N = 30 SNPs). Conclusions Our study supports the hypothesis that platelet phenotypes in response to ASA likely have genetic control and the combined approach of linkage and association offers an alternative approach to prioritizing regions of interest for subsequent follow-up. PMID:20529293

  9. DRD4 and DAT1 in ADHD: Functional neurobiology to pharmacogenetics

    PubMed Central

    Turic, Darko; Swanson, James; Sonuga-Barke, Edmund

    2010-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a common and potentially very impairing neuropsychiatric disorder of childhood. Statistical genetic studies of twins have shown ADHD to be highly heritable, with the combination of genes and gene by environment interactions accounting for around 80% of phenotypic variance. The initial molecular genetic studies where candidates were selected because of the efficacy of dopaminergic compounds in the treatment of ADHD were remarkably successful and provided strong evidence for the role of DRD4 and DAT1 variants in the pathogenesis of ADHD. However, the recent application of non-candidate gene strategies (eg, genome-wide association scans) has failed to identify additional genes with substantial genetic main effects, and the effects for DRD4 and DAT1 have not been replicated. This is the usual pattern observed for most other physical and mental disorders evaluated with current state-of-the-art methods. In this paper we discuss future strategies for genetic studies in ADHD, highlighting both the pitfalls and possible solutions relating to candidate gene studies, genome-wide studies, defining the phenotype, and statistical approaches. PMID:23226043

  10. Developmental Origin of Reproductive and Metabolic Dysfunctions: Androgenic Versus Estrogenic Reprogramming

    PubMed Central

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena

    2013-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common fertility disorders, affecting several million women worldwide. Women with PCOS manifest neuroendocrine, ovarian, and metabolic defects. A large number of animal models have evolved to understand the etiology of PCOS. These models provide support for the contributing role of excess steroids during development in programming the PCOS phenotype. However, considerable phenotypic variability is evident across animal models, depending on the quality of the steroid administered and the perinatal time of treatment relative to the developmental trajectory of the fetus/offspring. This review focuses on the reproductive and metabolic phenotypes of the various PCOS animal models that have evolved in the last decade to delineate the relative roles of androgens and estrogens in relation to the timing of exposure in programming the various dysfunctions that are part and parcel of the PCOS phenotype. Furthermore, the review addresses the contributory role of the postnatal metabolic environment in exaggerating the severity of the phenotype, the translational relevance of the various animal models to PCOS, and areas for future research. PMID:21710394

  11. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults.

    PubMed

    Angulo, Javier; El Assar, Mariam; Rodríguez-Mañas, Leocadio

    2016-08-01

    Frailty is a functional status that precedes disability and is characterized by decreased functional reserve and increased vulnerability. In addition to disability, the frailty phenotype predicts falls, institutionalization, hospitalization and mortality. Frailty is the consequence of the interaction between the aging process and some chronic diseases and conditions that compromise functional systems and finally produce sarcopenia. Many of the clinical manifestations of frailty are explained by sarcopenia which is closely related to poor physical performance. Reduced regenerative capacity, malperfusion, oxidative stress, mitochondrial dysfunction and inflammation compose the sarcopenic skeletal muscle alterations associated to the frailty phenotype. Inflammation appears as a common determinant for chronic diseases, sarcopenia and frailty. The strategies to prevent the frailty phenotype include an adequate amount of physical activity and exercise as well as pharmacological interventions such as myostatin inhibitors and specific androgen receptor modulators. Cell response to stress pathways such as Nrf2, sirtuins and klotho could be considered as future therapeutic interventions for the management of frailty phenotype and aging-related chronic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Where the lake meets the sea: strong reproductive isolation is associated with adaptive divergence between lake resident and anadromous three-spined sticklebacks.

    PubMed

    Ravinet, Mark; Hynes, Rosaleen; Poole, Russell; Cross, Tom F; McGinnity, Phil; Harrod, Chris; Prodöhl, Paulo A

    2015-01-01

    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.

  13. Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks

    PubMed Central

    Ravinet, Mark; Hynes, Rosaleen; Poole, Russell; Cross, Tom F.; McGinnity, Phil; Harrod, Chris; Prodöhl, Paulo A.

    2015-01-01

    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone. PMID:25874617

  14. Patterns of developmental plasticity in response to incubation temperature in reptiles.

    PubMed

    While, Geoffrey M; Noble, Daniel W A; Uller, Tobias; Warner, Daniel A; Riley, Julia L; Du, Wei-Guo; Schwanz, Lisa E

    2018-05-28

    Early life environments shape phenotypic development in important ways that can lead to long-lasting effects on phenotype and fitness. In reptiles, one aspect of the early environment that impacts development is temperature (termed 'thermal developmental plasticity'). Indeed, the thermal environment during incubation is known to influence morphological, physiological, and behavioral traits, some of which have important consequences for many ecological and evolutionary processes. Despite this, few studies have attempted to synthesize and collate data from this expansive and important body of research. Here, we systematically review research into thermal developmental plasticity across reptiles, structured around the key papers and findings that have shaped the field over the past 50 years. From these papers, we introduce a large database (the 'Reptile Development Database') consisting of 9,773 trait means across 300 studies examining thermal developmental plasticity. This dataset encompasses data on a range of phenotypes, including morphological, physiological, behavioral, and performance traits along with growth rate, incubation duration, sex ratio, and survival (e.g., hatching success) across all major reptile clades. Finally, from our literature synthesis and data exploration, we identify key research themes associated with thermal developmental plasticity, important gaps in empirical research, and demonstrate how future progress can be made through targeted empirical, meta-analytic, and comparative work. © 2018 Wiley Periodicals, Inc.

  15. Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants

    PubMed Central

    Weston, David J; Gunter, Lee E; Rogers, Alistair; Wullschleger, Stan D

    2008-01-01

    Background One of the eminent opportunities afforded by modern genomic technologies is the potential to provide a mechanistic understanding of the processes by which genetic change translates to phenotypic variation and the resultant appearance of distinct physiological traits. Indeed much progress has been made in this area, particularly in biomedicine where functional genomic information can be used to determine the physiological state (e.g., diagnosis) and predict phenotypic outcome (e.g., patient survival). Ecology currently lacks an analogous approach where genomic information can be used to diagnose the presence of a given physiological state (e.g., stress response) and then predict likely phenotypic outcomes (e.g., stress duration and tolerance, fitness). Results Here, we demonstrate that a compendium of genomic signatures can be used to classify the plant abiotic stress phenotype in Arabidopsis according to the architecture of the transcriptome, and then be linked with gene coexpression network analysis to determine the underlying genes governing the phenotypic response. Using this approach, we confirm the existence of known stress responsive pathways and marker genes, report a common abiotic stress responsive transcriptome and relate phenotypic classification to stress duration. Conclusion Linking genomic signatures to gene coexpression analysis provides a unique method of relating an observed plant phenotype to changes in gene expression that underlie that phenotype. Such information is critical to current and future investigations in plant biology and, in particular, to evolutionary ecology, where a mechanistic understanding of adaptive physiological responses to abiotic stress can provide researchers with a tool of great predictive value in understanding species and population level adaptation to climate change. PMID:18248680

  16. Adiposity rebound and the development of metabolic syndrome.

    PubMed

    Koyama, Satomi; Ichikawa, Go; Kojima, Megumi; Shimura, Naoto; Sairenchi, Toshimi; Arisaka, Osamu

    2014-01-01

    The age of adiposity rebound (AR) is defined as the time at which BMI starts to rise after infancy and is thought to be a marker of later obesity. To determine whether this age is related to future occurrence of metabolic syndrome, we investigated the relationship of the timing of AR with metabolic consequences at 12 years of age. A total of 271 children (147 boys and 124 girls) born in 1995 and 1996 were enrolled in the study. Serial measurements of BMI were conducted at the ages of 4 and 8 months and 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 years, based on which age of AR was calculated. Plasma lipids and blood pressure were measured at 12 years of age. An earlier AR (<4 years of age) was associated with a higher BMI (≥ 20) and a lipoprotein phenotype representative of insulin resistance. This phenotype consists of elevated triglycerides, apolipoprotein B, and atherogenic index and decreased high-density lipoprotein cholesterol in boys and elevated apolipoprotein B in girls at 12 years of age. The earlier AR was also related to elevated blood pressure in boys. This longitudinal population-based study indicates that children who exhibit AR at a younger age are predisposed to future development of metabolic syndrome. Therefore, monitoring of AR may be an effective method for the early identification of children at risk for metabolic syndrome.

  17. Elucidation of the Metabolic Network of Helicobacter pylori J99 and Malaysian Clinical Strains by Phenotype Microarray.

    PubMed

    Lee, Woon Ching; Goh, Khean Lee; Loke, Mun Fai; Vadivelu, Jamuna

    2017-02-01

    Helicobacter pylori colonizes almost half of the human population worldwide. H. pylori strains are genetically diverse, and the specific genotypes are associated with various clinical manifestations including gastric adenocarcinoma, peptic ulcer disease (PUD), and nonulcer dyspepsia (NUD). However, our current knowledge of the H. pylori metabolism is limited. To understand the metabolic differences among H. pylori strains, we investigated four Malaysian H. pylori clinical strains, which had been previously sequenced, and a standard strain, H. pylori J99, at the phenotypic level. The phenotypes of the H. pylori strains were profiled using the Biolog Phenotype Microarray system to corroborate genomic data. We initiated the analyses by predicting carbon and nitrogen metabolic pathways from the H. pylori genomic data from the KEGG database. Biolog PM aided the validation of the prediction and provided a more intensive analysis of the H. pylori phenomes. We have identified a core set of metabolic nutrient sources that was utilized by all strains tested and another set that was differentially utilized by only the local strains. Pentose sugars are the preferred carbon nutrients utilized by H. pylori. The amino acids l-aspartic acid, d-alanine, and l-asparagine serve as both carbon and nitrogen sources in the metabolism of the bacterium. The phenotypic profile based on this study provides a better understanding on the survival of H. pylori in its natural host. Our data serve as a foundation for future challenges in correlating interstrain metabolic differences in H. pylori. © 2016 The Authors. Helicobacter Published by John Wiley & Sons Ltd.

  18. Optimizing the creation of base populations for aquaculture breeding programs using phenotypic and genomic data and its consequences on genetic progress.

    PubMed

    Fernández, Jesús; Toro, Miguel Á; Sonesson, Anna K; Villanueva, Beatriz

    2014-01-01

    The success of an aquaculture breeding program critically depends on the way in which the base population of breeders is constructed since all the genetic variability for the traits included originally in the breeding goal as well as those to be included in the future is contained in the initial founders. Traditionally, base populations were created from a number of wild strains by sampling equal numbers from each strain. However, for some aquaculture species improved strains are already available and, therefore, mean phenotypic values for economically important traits can be used as a criterion to optimize the sampling when creating base populations. Also, the increasing availability of genome-wide genotype information in aquaculture species could help to refine the estimation of relationships within and between candidate strains and, thus, to optimize the percentage of individuals to be sampled from each strain. This study explores the advantages of using phenotypic and genome-wide information when constructing base populations for aquaculture breeding programs in terms of initial and subsequent trait performance and genetic diversity level. Results show that a compromise solution between diversity and performance can be found when creating base populations. Up to 6% higher levels of phenotypic performance can be achieved at the same level of global diversity in the base population by optimizing the selection of breeders instead of sampling equal numbers from each strain. The higher performance observed in the base population persisted during 10 generations of phenotypic selection applied in the subsequent breeding program.

  19. Autism beyond diagnostic categories: characterization of autistic phenotypes in schizophrenia.

    PubMed

    Kästner, Anne; Begemann, Martin; Michel, Tanja Maria; Everts, Sarah; Stepniak, Beata; Bach, Christiane; Poustka, Luise; Becker, Joachim; Banaschewski, Tobias; Dose, Matthias; Ehrenreich, Hannelore

    2015-05-13

    Behavioral phenotypical continua from health to disease suggest common underlying mechanisms with quantitative rather than qualitative differences. Until recently, autism spectrum disorders and schizophrenia were considered distinct nosologic entities. However, emerging evidence contributes to the blurring of symptomatic and genetic boundaries between these conditions. The present study aimed at quantifying behavioral phenotypes shared by autism spectrum disorders and schizophrenia to prepare the ground for biological pathway analyses. Specific items of the Positive and Negative Syndrome Scale were employed and summed up to form a dimensional autism severity score (PAUSS). The score was created in a schizophrenia sample (N = 1156) and validated in adult high-functioning autism spectrum disorder (ASD) patients (N = 165). To this end, the Autism Diagnostic Observation Schedule (ADOS), the Autism (AQ) and Empathy Quotient (EQ) self-rating questionnaires were applied back to back with the newly developed PAUSS. PAUSS differentiated between ASD, schizophrenia and a disease-control sample and substantially correlated with the Autism Diagnostic Observation Schedule. Patients with ADOS scores ≥12 obtained highest, those with scores <7 lowest PAUSS values. AQ and EQ were not found to vary dependent on ADOS diagnosis. ROC curves for ADOS and PAUSS resulted in AuC values of 0.9 and 0.8, whereas AQ and EQ performed at chance level in the prediction of ASD. This work underscores the convergence of schizophrenia negative symptoms and autistic phenotypes. PAUSS evolved as a measure capturing the continuous nature of autistic behaviors. The definition of extreme-groups based on the dimensional PAUSS may permit future investigations of genetic constellations modulating autistic phenotypes.

  20. Serotonin at the Nexus of Impulsivity and Cue Reactivity in Cocaine Addiction

    PubMed Central

    Cunningham, Kathryn A.; Anastasio, Noelle C.

    2014-01-01

    Cocaine abuse and addiction remain great challenges on the public health agendas in the U.S. and the world. Increasingly sophisticated perspectives on addiction to cocaine and other drugs of abuse have evolved with concerted research efforts over the last 30 years. Relapse remains a particularly powerful clinical problem as, even upon termination of drug use and initiation of abstinence, the recidivism rates can be very high. The cycling course of cocaine intake, abstinence and relapse is tied to a multitude of behavioral and cognitive processes including impulsivity (a predisposition toward rapid unplanned reactions to stimuli without regard to the negative consequences), and cocaine cue reactivity (responsivity to cocaine-associated stimuli) cited as two key phenotypes that contribute to relapse vulnerability even years into recovery. Preclinical studies suggest that serotonin (5-hydroxytryptamine; 5-HT) neurotransmission in key neural circuits may contribute to these interlocked phenotypes well as the altered neurobiological states evoked by cocaine that precipitate relapse events. As such, 5-HT is an important target in the quest to to understand the neurobiology of relapse-predictive phenotypes, to successfully treat this complex disorder and improve diagnostic and prognostic capabilities. This review emphasizes the role of 5-HT and its receptor proteins in key addiction phenotypes and the implications of current findings to the future of therapeutics in addiction. PMID:23850573

  1. In vivo Phenotyping Methods: Cytochrome P450 Probes with Emphasis on the Cocktail Approach.

    PubMed

    Keller, Guillermo Alberto; Gago, María Laura Ferreirós; Diez, Roberto Alejandro; Di Girolamo, Guillermo

    2017-01-01

    Differences in drug response among patients are common. Most major drugs are effective in only 25 to 60 percent of the patients, in part due to the CYP enzymes, whose activity vary up to 50-fold between individuals for some index metabolic reactions. Several factors affect CYP activity, among which genetic polymorphisms have been studied as the major cause for long time. Age, gender, disease states, and environmental influences such as smoking, concomitant drug treatment or exposure to environmental chemicals are also important. This article reviews the available literature on multiple phenotypes assessment as an important tool to predict possible therapeutic failures or toxic reactions to conventional drug doses during patient evaluation. Probe drugs can be used in various combinations allowing for the in vivo assessment of multiple pathways of drug metabolism in a single experiment, configuring a new tool known as phenotyping "cocktails". There are several drug cocktails with different advantages and disadvantages. Most of them have sufficient clinical evidence and data validation to support their use in clinical setting as a surrogate for the risk of adverse reaction in the course of therapy, leading to a better balance between efficacy and safety. Probes characteristics and metabolic ratio measurements are important in the evaluation of phenotyping cocktails as near-future applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting.

    PubMed

    Risbud, Makarand V; Schoepflin, Zachary R; Mwale, Fackson; Kandel, Rita A; Grad, Sibylle; Iatridis, James C; Sakai, Daisuke; Hoyland, Judith A

    2015-03-01

    Low back pain is a major physical and socioeconomic problem. Degeneration of the intervertebral disc and especially that of nucleus pulposus (NP) has been linked to low back pain. In spite of much research focusing on the NP, consensus among the research community is lacking in defining the NP cell phenotype. A consensus agreement will allow easier distinguishing of NP cells from annulus fibrosus (AF) cells and endplate chondrocytes, a better gauge of therapeutic success, and a better guidance of tissue-engineering-based regenerative strategies that attempt to replace lost NP tissue. Most importantly, a clear definition will further the understanding of physiology and function of NP cells, ultimately driving development of novel cell-based therapeutic modalities. The Spine Research Interest Group at the 2014 Annual ORS Meeting in New Orleans convened with the task of compiling a working definition of the NP cell phenotype with hope that a consensus statement will propel disc research forward into the future. Based on evaluation of recent studies describing characteristic NP markers and their physiologic relevance, we make the recommendation of the following healthy NP phenotypic markers: stabilized expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, Brachyury, KRT18/19, CA12, and CD24. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Ocean acidification challenges copepod phenotypic plasticity

    NASA Astrophysics Data System (ADS)

    Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah; Riebesell, Ulf; Furuhagen, Sara; Engström-Öst, Jonna

    2016-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ˜ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  4. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model

    PubMed Central

    Silva-Santos, Sara; van Woerden, Geeske M.; Bruinsma, Caroline F.; Mientjes, Edwin; Jolfaei, Mehrnoush Aghadavoud; Distel, Ben; Kushner, Steven A.; Elgersma, Ype

    2015-01-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder that results from loss of function of the maternal ubiquitin protein ligase E3A (UBE3A) allele. Due to neuron-specific imprinting, the paternal UBE3A copy is silenced. Previous studies in murine models have demonstrated that strategies to activate the paternal Ube3a allele are feasible; however, a recent study showed that pharmacological Ube3a gene reactivation in adulthood failed to rescue the majority of neurocognitive phenotypes in a murine AS model. Here, we performed a systematic study to investigate the possibility that neurocognitive rescue can be achieved by reinstating Ube3a during earlier neurodevelopmental windows. We developed an AS model that allows for temporally controlled Cre-dependent induction of the maternal Ube3a allele and determined that there are distinct neurodevelopmental windows during which Ube3a restoration can rescue AS-relevant phenotypes. Motor deficits were rescued by Ube3a reinstatement in adolescent mice, whereas anxiety, repetitive behavior, and epilepsy were only rescued when Ube3a was reinstated during early development. In contrast, hippocampal synaptic plasticity could be restored at any age. Together, these findings suggest that Ube3a reinstatement early in development may be necessary to prevent or rescue most AS-associated phenotypes and should be considered in future clinical trial design. PMID:25866966

  5. Genotypic and Phenotypic Markers of Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC9 in Humans.

    PubMed

    Ye, Xiaohua; Wang, Xiaolin; Fan, Yanping; Peng, Yang; Li, Ling; Li, Shunming; Huang, Jingya; Yao, Zhenjiang; Chen, Sidong

    2016-07-01

    Use of antimicrobials in industrial food animal production is associated with the presence of multidrug-resistant Staphylococcus aureus among animals and humans. The livestock-associated (LA) methicillin-resistant S. aureus (MRSA) clonal complex 9 (CC9) is associated with animals and related workers in Asia. This study aimed to explore the genotypic and phenotypic markers of LA-MRSA CC9 in humans. We conducted a cross-sectional study of livestock workers and controls in Guangdong, China. The study participants responded to a questionnaire and provided a nasal swab for S. aureus analysis. The resulting isolates were assessed for antibiotic susceptibility, multilocus sequence type, and immune evasion cluster (IEC) genes. Livestock workers had significantly higher rates of S. aureus CC9 (odds ratio [OR] = 30.98; 95% confidence interval [CI], 4.06 to 236.39) and tetracycline-resistant S. aureus (OR = 3.26; 95% CI, 2.12 to 5.00) carriage than controls. All 19 S. aureus CC9 isolates from livestock workers were MRSA isolates and also exhibited the characteristics of resistance to several classes of antibiotics and absence of the IEC genes. Notably, the interaction analyses indicated phenotype-phenotype (OR = 525.7; 95% CI, 60.0 to 4,602.1) and gene-environment (OR = 232.3; 95% CI, 28.7 to 1,876.7) interactions associated with increased risk for livestock-associated S. aureus CC9 carriage. These findings suggest that livestock-associated S. aureus and MRSA (CC9, IEC negative, and tetracycline resistant) in humans are associated with occupational livestock contact, raising questions about the potential for occupational exposure to opportunistic S. aureus This study adds to existing knowledge by giving insight into the genotypic and phenotypic markers of LA-MRSA. Our findings suggest that livestock-associated S. aureus and MRSA (CC9, IEC negative, and tetracycline resistant) in humans are associated with occupational livestock contact. Future studies should direct more attention to exploring the exact transmission routes and establishing measures to prevent the spread of LA-MRSA. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Genotypic and Phenotypic Markers of Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC9 in Humans

    PubMed Central

    Ye, Xiaohua; Wang, Xiaolin; Fan, Yanping; Peng, Yang; Li, Ling; Li, Shunming; Huang, Jingya; Yao, Zhenjiang

    2016-01-01

    ABSTRACT Use of antimicrobials in industrial food animal production is associated with the presence of multidrug-resistant Staphylococcus aureus among animals and humans. The livestock-associated (LA) methicillin-resistant S. aureus (MRSA) clonal complex 9 (CC9) is associated with animals and related workers in Asia. This study aimed to explore the genotypic and phenotypic markers of LA-MRSA CC9 in humans. We conducted a cross-sectional study of livestock workers and controls in Guangdong, China. The study participants responded to a questionnaire and provided a nasal swab for S. aureus analysis. The resulting isolates were assessed for antibiotic susceptibility, multilocus sequence type, and immune evasion cluster (IEC) genes. Livestock workers had significantly higher rates of S. aureus CC9 (odds ratio [OR] = 30.98; 95% confidence interval [CI], 4.06 to 236.39) and tetracycline-resistant S. aureus (OR = 3.26; 95% CI, 2.12 to 5.00) carriage than controls. All 19 S. aureus CC9 isolates from livestock workers were MRSA isolates and also exhibited the characteristics of resistance to several classes of antibiotics and absence of the IEC genes. Notably, the interaction analyses indicated phenotype-phenotype (OR = 525.7; 95% CI, 60.0 to 4,602.1) and gene-environment (OR = 232.3; 95% CI, 28.7 to 1,876.7) interactions associated with increased risk for livestock-associated S. aureus CC9 carriage. These findings suggest that livestock-associated S. aureus and MRSA (CC9, IEC negative, and tetracycline resistant) in humans are associated with occupational livestock contact, raising questions about the potential for occupational exposure to opportunistic S. aureus. IMPORTANCE This study adds to existing knowledge by giving insight into the genotypic and phenotypic markers of LA-MRSA. Our findings suggest that livestock-associated S. aureus and MRSA (CC9, IEC negative, and tetracycline resistant) in humans are associated with occupational livestock contact. Future studies should direct more attention to exploring the exact transmission routes and establishing measures to prevent the spread of LA-MRSA. PMID:27107114

  7. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization.

    PubMed

    Noda, Shinji; Suárez-Fariñas, Mayte; Ungar, Benjamin; Kim, Soo Jung; de Guzman Strong, Cristina; Xu, Hui; Peng, Xiangyu; Estrada, Yeriel D; Nakajima, Saeko; Honda, Tetsuya; Shin, Jung U; Lee, Hemin; Krueger, James G; Lee, Kwang-Hoon; Kabashima, Kenji; Guttman-Yassky, Emma

    2015-11-01

    Atopic dermatitis (AD) shows very high prevalence in Asia, with a large unmet need for effective therapeutics. Direct comparisons between European American (EA) and Asian patients with AD are unavailable, but earlier blood studies detected increased IL-17(+)-producing cell counts in Asian patients with AD. We sought to characterize the Asian AD skin phenotype and compare it with the EA AD skin phenotype. We performed genomic profiling (real-time PCR) and immunohistochemistry on lesional and nonlesional biopsy specimens from 52 patients with AD (25 EAs and 27 Asians), 10 patients with psoriasis (all EAs), and 27 healthy subjects (12 EAs and 15 Asians). Although disease severity/SCORAD scores were similar between the AD groups (58.0 vs 56.7, P = .77), greater acanthosis, higher Ki67 counts, and frequent parakeratosis were characteristics of lesional epidermis from Asian patients with AD (P < .05). Most (24/27) Asian patients had high IgE levels. A principal component analysis using real-time PCR data clustered the Asian AD phenotype between the EA AD and psoriasis phenotypes. TH2 skewing characterized both Asian and EA patients with AD but not patients with psoriasis. Significantly higher TH17 and TH22 (IL17A, IL19, and S100A12 in lesional and IL-22 in nonlesional skin; P < .05) and lower TH1/interferon (CXCL9, CXCL10, MX1, and IFNG in nonlesional skin; P < .05) gene induction typified AD skin in Asian patients. The Asian AD phenotype presents (even in the presence of increased IgE levels) a blended phenotype between that of EA patients with AD and those with psoriasis, including increased hyperplasia, parakeratosis, higher TH17 activation, and a strong TH2 component. The relative pathogenic contributions of the TH17 and TH2 axes in creating the Asian AD phenotype need to be tested in future clinical trials with appropriate targeted therapeutics. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity.

    PubMed

    Bergamo, Pedro Joaquim; Wolowski, Marina; Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Carvalheiro, Luísa G; Sazima, Marlies

    2017-07-01

    Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in mutualistic systems. © 2017 by the Ecological Society of America.

  9. Ethnicity/culture modulates the relationships of the haptoglobin (Hp) 1-1 phenotype with cognitive function in older individuals with type 2 diabetes.

    PubMed

    Guerrero-Berroa, Elizabeth; Ravona-Springer, Ramit; Heymann, Anthony; Schmeidler, James; Hoffman, Hadas; Preiss, Rachel; Koifmann, Keren; Greenbaum, Lior; Levy, Andrew; Silverman, Jeremy M; Leroith, Derek; Sano, Mary; Schnaider-Beeri, Michal

    2016-05-01

    The haptoglobin (Hp) genotype has been associated with cognitive function in type 2 diabetes. Because ethnicity/culture has been associated with both cognitive function and Hp genotype frequencies, we examined whether it modulates the association of Hp with cognitive function. This cross-sectional study evaluated 787 cognitively normal older individuals (>65 years of age) with type 2 diabetes participating in the Israel Diabetes and Cognitive Decline study. Interactions in two-way analyses of covariance compared Group (Non-Ashkenazi versus Ashkenazi Jews) on the associations of Hp phenotype (Hp 1-1 versus non- Hp 1-1) with five cognitive outcome measures. The primary control variables were age, gender, and education. Compared with Ashkenazi Jews, non-Ashkenazi Jews with the Hp 1-1 phenotype had significantly poorer cognitive function than non-Hp 1-1 in the domains of Attention/Working Memory (p = 0.035) and Executive Function (p = 0.023), but not in Language/Semantic Categorization (p = 0.432), Episodic Memory (p = 0.268), or Overall Cognition (p = 0.082). After controlling for additional covariates (type 2 diabetes-related characteristics, cardiovascular risk factors, Mini-mental State Examination, and extent of depressive symptoms), Attention/Working Memory (p = 0.038) and Executive Function (p = 0.013) remained significant. Older individuals from specific ethnic/cultural backgrounds with the Hp 1-1 phenotype may benefit more from treatment targeted at decreasing or halting the detrimental effects of Hp 1-1 on the brain. Future studies should examine differential associations of Hp 1-1 and cognitive impairment, especially for groups with high prevalence of both, such as African-Americans and Hispanics. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Genetic and phenotypic features defining industrial relevant Lactococcus lactis, L. cremoris and L. lactis biovar. diacetylactis strains.

    PubMed

    Manno, Mariano Torres; Zuljan, Federico; Alarcón, Sergio; Esteban, Luis; Blancato, Victor; Espariz, Martín; Magni, Christian

    2018-06-23

    Lactococcus lactis strains constitute one of the most important starter cultures for cheese production. In this study, a genome-wide analysis was performed including 68 available genomes of L. lactis group strains showing the existence of two species (L. lactis and L. cremoris) and two biovars (L. lactis biovar. diacetylactis and L. cremoris biovar. lactis). The proposed classification scheme revealed coherency among phenotypic (through in silico and in vivo bacterial function profiling), phylogenomic (through maximum likelihood trees) and genomic (using overall genome sequence-based parameters) approaches. Strain biodiversity for the industrial biovar. diacetylactis was also analyzed, finding they are formed by at least three variants with the CC1 clonal complex as the only one distributed worldwide. These findings and methodologies will help improve the selection of L. lactis group strains for industrial use as well as facilitate the interpretation of previous or future research studies on this diverse group of bacteria. Copyright © 2018. Published by Elsevier B.V.

  11. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    PubMed

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  12. Matching disease and phenotype ontologies in the ontology alignment evaluation initiative.

    PubMed

    Harrow, Ian; Jiménez-Ruiz, Ernesto; Splendiani, Andrea; Romacker, Martin; Woollard, Peter; Markel, Scott; Alam-Faruque, Yasmin; Koch, Martin; Malone, James; Waaler, Arild

    2017-12-02

    The disease and phenotype track was designed to evaluate the relative performance of ontology matching systems that generate mappings between source ontologies. Disease and phenotype ontologies are important for applications such as data mining, data integration and knowledge management to support translational science in drug discovery and understanding the genetics of disease. Eleven systems (out of 21 OAEI participating systems) were able to cope with at least one of the tasks in the Disease and Phenotype track. AML, FCA-Map, LogMap(Bio) and PhenoMF systems produced the top results for ontology matching in comparison to consensus alignments. The results against manually curated mappings proved to be more difficult most likely because these mapping sets comprised mostly subsumption relationships rather than equivalence. Manual assessment of unique equivalence mappings showed that AML, LogMap(Bio) and PhenoMF systems have the highest precision results. Four systems gave the highest performance for matching disease and phenotype ontologies. These systems coped well with the detection of equivalence matches, but struggled to detect semantic similarity. This deserves more attention in the future development of ontology matching systems. The findings of this evaluation show that such systems could help to automate equivalence matching in the workflow of curators, who maintain ontology mapping services in numerous domains such as disease and phenotype.

  13. Biomarkers of tolerance: searching for the hidden phenotype.

    PubMed

    Perucha, Esperanza; Rebollo-Mesa, Irene; Sagoo, Pervinder; Hernandez-Fuentes, Maria P

    2011-08-01

    Induction of transplantation tolerance remains the ideal long-term clinical and logistic solution to the current challenges facing the management of renal allograft recipients. In this review, we describe the recent studies and advances made in identifying biomarkers of renal transplant tolerance, from study inceptions, to the lessons learned and their implications for current and future studies with the same goal. With the age of biomarker discovery entering a new dimension of high-throughput technologies, here we also review the current approaches, developments, and pitfalls faced in the subsequent statistical analysis required to identify valid biomarker candidates.

  14. Distinctive courtship phenotype of the Vogelkop Superb Bird-of-Paradise Lophorina niedda Mayr, 1930 confirms new species status

    PubMed Central

    Laman, Timothy G.

    2018-01-01

    The birds-of-paradise (Aves: Paradisaeidae) are a quintessential example of elaborate ornamental diversification among animals. Ornamental evolution in the birds-of-paradise is exemplified by the presence of a highly integrated courtship phenotype, which is the whole package of plumage ornaments, behaviors and sounds that each species uses during courtship. Characterizing a species’ courtship phenotype is therefore a key part of evolutionary and taxonomic investigation in the group. With its unprecedented transmogrification from bird-like form into something abstract and otherworldly, the courtship phenotype of the Superb Bird-of-Paradise, Lophorina superba, is one of the most remarkable of all. Recent research by Irestedt et al. (2017) suggests that the genus Lophorina is not a single species but is likely a complex of three allopatric species spanning the island of New Guinea: L. niedda in the Bird’s Head Peninsula of the west, L. superba throughout the central cordillera and L. minor in the Papuan Peninsula of the east. Of these, niedda is the most phenotypically divergent with plumage traits hypothesized to possibly produce differences in ornamental appearance during display. However, the whole courtship phenotype of niedda has not been documented and so the actual extent of differences in ornamental appearance during courtship remain unknown. Here we analyze the first audiovisual recordings of niedda and compare its courtship phenotype with superba to test the hypothesis of potential differences in ornamental appearance. Our main goals are to: (1) provide the first description of the courtship phenotype of niedda in the wild, (2) determine if and how the niedda courtship phenotype differs from superba and (3) evaluate any uncovered differences in light of niedda’s newly recognized species status. Our secondary goal is to provide a more thorough characterization of courtship phenotype diversity within the genus Lophorina to facilitate future comparative study within the genus and family. Results show that the niedda courtship phenotype differs substantially from superba in numerous aspects of ornamental appearance, display behavior and sound. We highlight six key differences and conclude that the new species status of niedda is corroborated by the distinctly differentiated ornamental features documented here. With full species status, niedda becomes the fourth endemic bird-of-paradise to the Bird’s Head region of Indonesian New Guinea (i.e., the Vogelkop Peninsula), a fact that underscores the importance of this region as a center of endemic biodiversity worthy of enhanced conservation protection. PMID:29682415

  15. Distinctive courtship phenotype of the Vogelkop Superb Bird-of-Paradise Lophorina niedda Mayr, 1930 confirms new species status.

    PubMed

    Scholes, Edwin; Laman, Timothy G

    2018-01-01

    The birds-of-paradise (Aves: Paradisaeidae) are a quintessential example of elaborate ornamental diversification among animals. Ornamental evolution in the birds-of-paradise is exemplified by the presence of a highly integrated courtship phenotype, which is the whole package of plumage ornaments, behaviors and sounds that each species uses during courtship. Characterizing a species' courtship phenotype is therefore a key part of evolutionary and taxonomic investigation in the group. With its unprecedented transmogrification from bird-like form into something abstract and otherworldly, the courtship phenotype of the Superb Bird-of-Paradise, Lophorina superba, is one of the most remarkable of all. Recent research by Irestedt et al. (2017) suggests that the genus Lophorina is not a single species but is likely a complex of three allopatric species spanning the island of New Guinea: L. niedda in the Bird's Head Peninsula of the west, L. superba throughout the central cordillera and L. minor in the Papuan Peninsula of the east. Of these, niedda is the most phenotypically divergent with plumage traits hypothesized to possibly produce differences in ornamental appearance during display. However, the whole courtship phenotype of niedda has not been documented and so the actual extent of differences in ornamental appearance during courtship remain unknown. Here we analyze the first audiovisual recordings of niedda and compare its courtship phenotype with superba to test the hypothesis of potential differences in ornamental appearance . Our main goals are to: (1) provide the first description of the courtship phenotype of niedda in the wild, (2) determine if and how the niedda courtship phenotype differs from superba and (3) evaluate any uncovered differences in light of niedda's newly recognized species status. Our secondary goal is to provide a more thorough characterization of courtship phenotype diversity within the genus Lophorina to facilitate future comparative study within the genus and family . Results show that the niedda courtship phenotype differs substantially from superba in numerous aspects of ornamental appearance, display behavior and sound. We highlight six key differences and conclude that the new species status of niedda is corroborated by the distinctly differentiated ornamental features documented here . With full species status, niedda becomes the fourth endemic bird-of-paradise to the Bird's Head region of Indonesian New Guinea (i.e., the Vogelkop Peninsula), a fact that underscores the importance of this region as a center of endemic biodiversity worthy of enhanced conservation protection.

  16. Emerging targets and therapeutic approaches for the treatment of osteoarthritis pain.

    PubMed

    Rahman, Wahida; Dickenson, Anthony H

    2015-06-01

    Osteoarthritis is a complex and often painful disease that is inadequately controlled with current analgesics. This review discusses emerging targets and therapeutic approaches that may lead to the development of better analgesics. Aberrant excitability in peripheral and central pain pathways drives osteoarthritis pain, reversing this via modulation of nerve growth factor, voltage-gated sodium channel, voltage-gated calcium channel and transient receptor potential vanilloid one activity, and increasing inhibitory mechanisms through modulation of cannabinoid and descending modulatory systems hold promise for osteoarthritis pain therapy. Somatosensory phenotyping of chronic pain patients, as a surrogate of putative pain generating mechanisms, may predict patient response to treatment. Identification of new targets will inform and guide future research, aiding the development of more effective analgesics. Future clinical trial designs should implement sensory phenotyping of patients, as an inclusion or stratification criterion, in order to establish an individualized, mechanism-based treatment of osteoarthritis pain.

  17. Real time forecasting of near-future evolution.

    PubMed

    Gerrish, Philip J; Sniegowski, Paul D

    2012-09-07

    A metaphor for adaptation that informs much evolutionary thinking today is that of mountain climbing, where horizontal displacement represents change in genotype, and vertical displacement represents change in fitness. If it were known a priori what the 'fitness landscape' looked like, that is, how the myriad possible genotypes mapped onto fitness, then the possible paths up the fitness mountain could each be assigned a probability, thus providing a dynamical theory with long-term predictive power. Such detailed genotype-fitness data, however, are rarely available and are subject to change with each change in the organism or in the environment. Here, we take a very different approach that depends only on fitness or phenotype-fitness data obtained in real time and requires no a priori information about the fitness landscape. Our general statistical model of adaptive evolution builds on classical theory and gives reasonable predictions of fitness and phenotype evolution many generations into the future.

  18. Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering.

    PubMed

    Busuttil, Francesca; Rahim, Ahad A; Phillips, James B

    2017-02-15

    Despite a substantially increased understanding of neuropathophysiology, insufficient functional recovery after peripheral nerve injury remains a significant clinical challenge. Nerve regeneration following injury is dependent on Schwann cells, the supporting cells in the peripheral nervous system. Following nerve injury, Schwann cells adopt a proregenerative phenotype, which supports and guides regenerating nerves. However, this phenotype may not persist long enough to ensure functional recovery. Tissue-engineered nerve repair devices containing therapeutic cells that maintain the appropriate phenotype may help enhance nerve regeneration. The combination of gene and cell therapy is an emerging experimental strategy that seeks to provide the optimal environment for axonal regeneration and reestablishment of functional circuits. This review aims to summarize current preclinical evidence with potential for future translation from bench to bedside.

  19. Neurogenetics of Depression: A Focus on Reward Processing and Stress Sensitivity

    PubMed Central

    Bogdan, Ryan; Nikolova, Yuliya S.; Pizzagalli, Diego A.

    2013-01-01

    Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions. PMID:22659304

  20. Genome-Wide Association Study for Indicator Traits of Sexual Precocity in Nellore Cattle

    PubMed Central

    Irano, Natalia; de Camargo, Gregório Miguel Ferreira; Costa, Raphael Bermal; Terakado, Ana Paula Nascimento; Magalhães, Ana Fabrícia Braga; Silva, Rafael Medeiros de Oliveira; Dias, Marina Mortati; Bignardi, Annaiza Braga; Baldi, Fernando; Carvalheiro, Roberto; de Oliveira, Henrique Nunes; de Albuquerque, Lucia Galvão

    2016-01-01

    The objective of this study was to perform a genome-wide association study (GWAS) to detect chromosome regions associated with indicator traits of sexual precocity in Nellore cattle. Data from Nellore animals belonging to farms which participate in the DeltaGen® and Paint® animal breeding programs, were used. The traits used in this study were the occurrence of early pregnancy (EP) and scrotal circumference (SC). Data from 72,675 females and 83,911 males with phenotypes were used; of these, 1,770 females and 1,680 males were genotyped. The SNP effects were estimated with a single-step procedure (WssGBLUP) and the observed phenotypes were used as dependent variables. All animals with available genotypes and phenotypes, in addition to those with only phenotypic information, were used. A single-trait animal model was applied to predict breeding values and the solutions of SNP effects were obtained from these breeding values. The results of GWAS are reported as the proportion of variance explained by windows with 150 adjacent SNPs. The 10 windows that explained the highest proportion of variance were identified. The results of this study indicate the polygenic nature of EP and SC, demonstrating that the indicator traits of sexual precocity studied here are probably controlled by many genes, including some of moderate effect. The 10 windows with large effects obtained for EP are located on chromosomes 5, 6, 7, 14, 18, 21 and 27, and together explained 7.91% of the total genetic variance. For SC, these windows are located on chromosomes 4, 8, 11, 13, 14, 19, 22 and 23, explaining 6.78% of total variance. GWAS permitted to identify chromosome regions associated with EP and SC. The identification of these regions contributes to a better understanding and evaluation of these traits, and permits to indicate candidate genes for future investigation of causal mutations. PMID:27494397

  1. ABSTRACTION FOR DATA INTEGRATION: FUSING MAMMALIAN MOLECULAR, CELLULAR AND PHENOTYPE BIG DATASETS FOR BETTER KNOWLEDGE EXTRACTION

    PubMed Central

    Rouillard, Andrew D.; Wang, Zichen; Ma’ayan, Avi

    2015-01-01

    With advances in genomics, transcriptomics, metabolomics and proteomics, and more expansive electronic clinical record monitoring, as well as advances in computation, we have entered the Big Data era in biomedical research. Data gathering is growing rapidly while only a small fraction of this data is converted to useful knowledge or reused in future studies. To improve this, an important concept that is often overlooked is data abstraction. To fuse and reuse biomedical datasets from diverse resources, data abstraction is frequently required. Here we summarize some of the major Big Data biomedical research resources for genomics, proteomics and phenotype data, collected from mammalian cells, tissues and organisms. We then suggest simple data abstraction methods for fusing this diverse but related data. Finally, we demonstrate examples of the potential utility of such data integration efforts, while warning about the inherit biases that exist within such data. PMID:26101093

  2. Current concepts of severe asthma

    PubMed Central

    Raundhal, Mahesh; Oriss, Timothy B.; Ray, Prabir; Wenzel, Sally E.

    2016-01-01

    The term asthma encompasses a disease spectrum with mild to very severe disease phenotypes whose traditional common characteristic is reversible airflow limitation. Unlike milder disease, severe asthma is poorly controlled by the current standard of care. Ongoing studies using advanced molecular and immunological tools along with improved clinical classification show that severe asthma does not identify a specific patient phenotype, but rather includes patients with constant medical needs, whose pathobiologic and clinical characteristics vary widely. Accordingly, in recent clinical trials, therapies guided by specific patient characteristics have had better outcomes than previous therapies directed to any subject with a diagnosis of severe asthma. However, there are still significant gaps in our understanding of the full scope of this disease that hinder the development of effective treatments for all severe asthmatics. In this Review, we discuss our current state of knowledge regarding severe asthma, highlighting different molecular and immunological pathways that can be targeted for future therapeutic development. PMID:27367183

  3. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction.

    PubMed

    Leveau, Johan H J; Preston, Gail M

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.

  4. Primary Immunodeficiencies: “New” Disease in an Old Country

    PubMed Central

    Lee, Pamela P W; Lau, Yu-Lung

    2009-01-01

    Primary immunodeficiency disorders (PIDs) are rare inborn errors of the immune system. Patients with PIDs are unique models that exemplify the functional and phenotypic consequences of various immune defects underlying infections, autoimmunity, lymphoproliferation, allergy and cancer. Over 150 PID syndromes were characterized in the past 60 years, with an ever growing list of new entities being discovered. Because of their rarity, multi-center collaboration for pooled data analysis and molecular studies is important to gain meaningful insights into the phenotypic and genetic diversities of PIDs. In this article, we summarize our research findings on PIDs in Chinese population in the past 20 years. Close collaboration among various immunology centers, cross-referrals and systematic data analysis constitute the foundation for research on PIDs. Future directions include establishment of a national PID registry, raising awareness of PIDs and securing sufficient resources for patient care and scientific research. PMID:20003815

  5. Mouse Models of Gastric Cancer

    PubMed Central

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  6. Epigenomics in marine fishes.

    PubMed

    Metzger, David C H; Schulte, Patricia M

    2016-12-01

    Epigenetic mechanisms are an underappreciated and often ignored component of an organism's response to environmental change and may underlie many types of phenotypic plasticity. Recent technological advances in methods for detecting epigenetic marks at a whole-genome scale have launched new opportunities for studying epigenomics in ecologically relevant non-model systems. The study of ecological epigenomics holds great promise to better understand the linkages between genotype, phenotype, and the environment and to explore mechanisms of phenotypic plasticity. The many attributes of marine fish species, including their high diversity, variable life histories, high fecundity, impressive plasticity, and economic value provide unique opportunities for studying epigenetic mechanisms in an environmental context. To provide a primer on epigenomic research for fish biologists, we start by describing fundamental aspects of epigenetics, focusing on the most widely studied and most well understood of the epigenetic marks: DNA methylation. We then describe the techniques that have been used to investigate DNA methylation in marine fishes to date and highlight some new techniques that hold great promise for future studies. Epigenomic research in marine fishes is in its early stages, so we first briefly discuss what has been learned about the establishment, maintenance, and function of DNA methylation in fishes from studies in zebrafish and then summarize the studies demonstrating the pervasive effects of the environment on the epigenomes of marine fishes. We conclude by highlighting the potential for ongoing research on the epigenomics of marine fishes to reveal critical aspects of the interaction between organisms and their environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Moving into a new era of periodontal genetic studies: relevance of large case-control samples using severe phenotypes for genome-wide association studies.

    PubMed

    Vaithilingam, R D; Safii, S H; Baharuddin, N A; Ng, C C; Cheong, S C; Bartold, P M; Schaefer, A S; Loos, B G

    2014-12-01

    Studies to elucidate the role of genetics as a risk factor for periodontal disease have gone through various phases. In the majority of cases, the initial 'hypothesis-dependent' candidate-gene polymorphism studies did not report valid genetic risk loci. Following a large-scale replication study, these initially positive results are believed to be caused by type 1 errors. However, susceptibility genes, such as CDKN2BAS (Cyclin Dependend KiNase 2B AntiSense RNA; alias ANRIL [ANtisense Rna In the Ink locus]), glycosyltransferase 6 domain containing 1 (GLT6D1) and cyclooxygenase 2 (COX2), have been reported as conclusive risk loci of periodontitis. The search for genetic risk factors accelerated with the advent of 'hypothesis-free' genome-wide association studies (GWAS). However, despite many different GWAS being performed for almost all human diseases, only three GWAS on periodontitis have been published - one reported genome-wide association of GLT6D1 with aggressive periodontitis (a severe phenotype of periodontitis), whereas the remaining two, which were performed on patients with chronic periodontitis, were not able to find significant associations. This review discusses the problems faced and the lessons learned from the search for genetic risk variants of periodontitis. Current and future strategies for identifying genetic variance in periodontitis, and the importance of planning a well-designed genetic study with large and sufficiently powered case-control samples of severe phenotypes, are also discussed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The genetic basis for survivorship in coronary artery disease

    PubMed Central

    Dungan, Jennifer R.; Hauser, Elizabeth R.; Qin, Xuejun; Kraus, William E.

    2013-01-01

    Survivorship is a trait characterized by endurance and virility in the face of hardship. It is largely considered a psychosocial attribute developed during fatal conditions, rather than a biological trait for robustness in the context of complex, age-dependent diseases like coronary artery disease (CAD). The purpose of this paper is to present the novel phenotype, survivorship in CAD as an observed survival advantage concurrent with clinically significant CAD. We present a model for characterizing survivorship in CAD and its relationships with overlapping time- and clinically-related phenotypes. We offer an optimal measurement interval for investigating survivorship in CAD. We hypothesize genetic contributions to this construct and review the literature for evidence of genetic contribution to overlapping phenotypes in support of our hypothesis. We also present preliminary evidence of genetic effects on survival in people with clinically significant CAD from a primary case-control study of symptomatic coronary disease. Identifying gene variants that confer improved survival in the context of clinically appreciable CAD may improve our understanding of cardioprotective mechanisms acting at the gene level and potentially impact patients clinically in the future. Further, characterizing other survival-variant genetic effects may improve signal-to-noise ratio in detecting gene associations for CAD. PMID:24143143

  9. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae).

    PubMed

    Roxo, Fábio F; Lujan, Nathan K; Tagliacollo, Victor A; Waltz, Brandon T; Silva, Gabriel S C; Oliveira, Claudio; Albert, James S

    2017-01-01

    Identifying habitat characteristics that accelerate organismal evolution is essential to understanding both the origins of life on Earth and the ecosystem properties that are most critical to maintaining life into the future. Searching for these characteristics on a large scale has only recently become possible via advances in phylogenetic reconstruction, time-calibration, and comparative analyses. In this study, we combine these tools with habitat and phenotype data for 105 species in a clade of Neotropical suckermouth catfishes commonly known as cascudinhos. Our goal was to determine whether riverine mesohabitats defined by different flow rates (i.e., pools vs. rapids) and substrates (plants vs. rocks) have affected rates of cascudinho cladogenesis and morphological diversification. In contrast to predictions based on general theory related to life in fast-flowing, rocky riverine habitats, Neoplecostomini lineages associated with these habitats exhibited increased body size, head shape diversity, and lineage and phenotype diversification rates. These findings are consistent with a growing understanding of river rapids as incubators of biological diversification and specialization. They also highlight the urgent need to conserve rapids habitats throughout the major rivers of the world.

  10. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?

    PubMed Central

    Albinsson, Sebastian

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, differentiation, and function is evident by the fact that loss of the miRNA processing enzyme Dicer in VSMCs results in embryonic lethality due to severe vascular abnormalities. Similar abnormalities are observed in adult miR-143/145 knockout mice, indicating that these miRNAs are important for VSMC differentiation and function. However, since miR-143/145 knockout is not embryonically lethal, additional miRNA must be required during embryonic development of VSMCs. In addition, specific miRNAs such as miR-145, miR-21, and miR-221 have been found to regulate neointimal hyperplasia following vascular injury, which provides interesting possibilities for future therapeutical targets against vascular disease. Herein, we summarize recent advances regarding the role of miRNAs in VSMC phenotype modulation and response to injury. PMID:20841497

  11. Dioecy in Amborella trichopoda: evidence for genetically based sex determination and its consequences for inferences of the breeding system in early angiosperms.

    PubMed

    Anger, Nicolas; Fogliani, Bruno; Scutt, Charles P; Gâteblé, Gildas

    2017-03-01

    This work aimed to gain insight into the breeding system at the base of living angiosperms through both character state reconstructions and the study of sex ratios and phenotypes in the likely sister to all other living angiosperms, Amborella trichopoda . Sex phenotypes were mapped onto a phylogeny of basally diverging angiosperms using maximum parsimony. In parallel, sex ratios and phenotypes were studied over two consecutive flowering seasons in an ex situ population of A. trichopoda , while the sex ratio of an in situ population was also assessed. Parsimony analyses failed to resolve the breeding system present at the base of living angiosperms, but indicated the importance of A. trichopoda for the future elucidation of this question. The ex situ A. trichopoda population studied showed a primary sex ratio close to 1:1, though sex ratio bias was found in the in situ population studied. Instances of sexual instability were quantified in both populations. Sex ratio data support the presence of genetic sex determination in A. trichopoda , whose further elucidation may guide inferences on the breeding system at the base of living angiosperms. Sexual instability in A. trichopoda suggests the operation of epigenetic mechanisms, and the evolution of dioecy via a gynodioecious intermediate. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Phenotyping of subjects for large scale studies on patients with IBS.

    PubMed

    Boeckxstaens, G E; Drug, V; Dumitrascu, D; Farmer, A D; Hammer, J; Hausken, T; Niesler, B; Pohl, D; Pojskic, L; Polster, A; Simren, M; Goebel-Stengel, M; Van Oudenhove, L; Vassallo, M; Wensaas, K-A; Aziz, Q; Houghton, L A

    2016-08-01

    Irritable bowel syndrome (IBS) is a complex condition with multiple factors contributing to its aetiology and pathophysiology. Aetiologically these include genetics, life-time events and environment, and physiologically, changes in motility, central processing, visceral sensitivity, immunity, epithelial permeability and gastrointestinal microflora. Such complexity means there is currently no specific reliable biomarker for IBS, and thus IBS continues to be diagnosed and classified according to symptom based criteria, the Rome Criteria. Carefully phenotyping and characterisation of a 'large' pool of IBS patients across Europe and even the world however, might help identify sub-populations with accuracy and consistency. This will not only aid future research but improve tailoring of treatment and health care of IBS patients. The aim of this position paper is to discuss the requirements necessary to standardize the process of selecting and phenotyping IBS patients and how to organise the collection and storage of patient information/samples in such a large multi-centre pan European/global study. We include information on general demographics, gastrointestinal symptom assessment, psychological factors, quality of life, physiological evaluation, genetic/epigenetic and microbiota analysis, biopsy/blood sampling, together with discussion on the organisational, ethical and language issues associated with implementing such a study. The proposed approach and documents selected to be used in such a study was the result of a thoughtful and thorough four-year dialogue amongst experts associated with the European COST action BM1106 GENIEUR (www.GENIEUR.eu). © 2016 John Wiley & Sons Ltd.

  13. Psoriasis.

    PubMed

    Di Meglio, Paola; Villanova, Federica; Nestle, Frank O

    2014-08-01

    Psoriasis is a common chronic inflammatory skin disease with a spectrum of clinical phenotypes and results from the interplay of genetic, environmental, and immunological factors. Four decades of clinical and basic research on psoriasis have elucidated many of the pathogenic mechanisms underlying disease and paved the way to effective targeted therapies. Here, we review this progress and identify future directions of study that are supported by a more integrative research approach and aim at further improving the patients' life. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. New KRAS Antibodies Available | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Researchers estimate that approximately 30% of all human cancers are driven by RAS oncogenes. Mutated RAS genes are responsible for making RAS proteins that support cancer development. While anti-RAS therapies may have potential clinical benefit, researchers yet do not understand how the four RAS protein isoforms, KRAS4A, KRAS4B, HRAS, and NRAS, drive malignant phenotypes. Well-characterized and defined reagents like antibodies are central to reproducibility in biomedical research and necessary for future RAS studies.

  15. [Modulating the survival and maturation system of B lymphocytes: Current and future new therapeutic strategies in systemic lupus erythematosus].

    PubMed

    Valor, Lara; López-Longo, Francisco Javier

    2015-09-07

    Systemic lupus erythematosus is an autoimmune disease associated with an aberrant production of autoantibodies by self-reactive B lymphocytes. The study of the phenotypic characteristics of B lymphocytes and the identification of their surface receptors such as BAFF-R, TACI and BCMA, which are responsible of their survival and maturation, have contributed to the development of new therapeutic strategies in recent years. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  16. Social parasitism and the molecular basis of phenotypic evolution.

    PubMed

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B J; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization.

  17. Social parasitism and the molecular basis of phenotypic evolution

    PubMed Central

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B. J.; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer—Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  18. Study design of DIACORE (DIAbetes COhoRtE) – a cohort study of patients with diabetes mellitus type 2

    PubMed Central

    2013-01-01

    Background Diabetes mellitus type 2 (DM2) is highly associated with increased risk for chronic kidney disease (CKD), end stage renal disease (ESRD) and cardiovascular morbidity. Epidemiological and genetic studies generate hypotheses for innovative strategies in DM2 management by unravelling novel mechanisms of diabetes complications, which is essential for future intervention trials. We have thus initiated the DIAbetes COhoRtE study (DIACORE). Methods DIACORE is a prospective cohort study aiming to recruit 6000 patients of self-reported Caucasian ethnicity with prevalent DM2 for at least 10 years of follow-up. Study visits are performed in University-based recruiting clinics in Germany using standard operating procedures. All prevalent DM2 patients in outpatient clinics surrounding the recruiting centers are invited to participate. At baseline and at each 2-year follow-up examination, patients are subjected to a core phenotyping protocol. This includes a standardized online questionnaire and physical examination to determine incident micro- and macrovascular DM2 complications, malignancy and hospitalization, with a primary focus on renal events. Confirmatory outcome information is requested from patient records. Blood samples are obtained for a centrally analyzed standard laboratory panel and for biobanking of aliquots of serum, plasma, urine, mRNA and DNA for future scientific use. A subset of the cohort is subjected to extended phenotyping, e.g. sleep apnea screening, skin autofluorescence measurement, non-mydriatic retinal photography and non-invasive determination of arterial stiffness. Discussion DIACORE will enable the prospective evaluation of factors involved in DM2 complication pathogenesis using high-throughput technologies in biosamples and genetic epidemiological studies. PMID:23409726

  19. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations.

    PubMed

    van der Velde, K Joeri; Dhekne, Herschel S; Swertz, Morris A; Sirigu, Serena; Ropars, Virginie; Vinke, Petra C; Rengaw, Trebor; van den Akker, Peter C; Rings, Edmond H H M; Houdusse, Anne; van Ijzendoorn, Sven C D

    2013-12-01

    Microvillus inclusion disease (MVID) is one of the most severe congenital intestinal disorders and is characterized by neonatal secretory diarrhea and the inability to absorb nutrients from the intestinal lumen. MVID is associated with patient-, family-, and ancestry-unique mutations in the MYO5B gene, encoding the actin-based motor protein myosin Vb. Here, we review the MYO5B gene and all currently known MYO5B mutations and for the first time methodologically categorize these with regard to functional protein domains and recurrence in MYO7A associated with Usher syndrome and other myosins. We also review animal models for MVID and the latest data on functional studies related to the myosin Vb protein. To congregate existing and future information on MVID geno-/phenotypes and facilitate its quick and easy sharing among clinicians and researchers, we have constructed an online MOLGENIS-based international patient registry (www.MVID-central.org). This easily accessible database currently contains detailed information of 137 MVID patients together with reported clinical/phenotypic details and 41 unique MYO5B mutations, of which several unpublished. The future expansion and prospective nature of this registry is expected to improve disease diagnosis, prognosis, and genetic counseling. © 2013 WILEY PERIODICALS, INC.

  20. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Spear, Linda P.

    2016-01-01

    Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a “reward-centric” phenotype—an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a “reward deficiency” syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater “pleasure” from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse. PMID:27524639

  1. Updates on the COPD gene list

    PubMed Central

    Bossé, Yohan

    2012-01-01

    A genetic contribution to develop chronic obstructive pulmonary disease (COPD) is well established. However, the specific genes responsible for enhanced risk or host differences in susceptibility to smoke exposure remain poorly understood. The goal of this review is to provide a comprehensive literature overview on the genetics of COPD, highlight the most promising findings during the last few years, and ultimately provide an updated COPD gene list. Candidate gene studies on COPD and related phenotypes indexed in PubMed before January 5, 2012 are tabulated. An exhaustive list of publications for any given gene was looked for. This well-documented COPD candidate-gene list is expected to serve many purposes for future replication studies and meta-analyses as well as for reanalyzing collected genomic data in the field. In addition, this review summarizes recent genetic loci identified by genome-wide association studies on COPD, lung function, and related complications. Assembling resources, integrative genomic approaches, and large sample sizes of well-phenotyped subjects is part of the path forward to elucidate the genetic basis of this debilitating disease. PMID:23055711

  2. Multiple homologous genes knockout (KO) by CRISPR/Cas9 system in rabbit.

    PubMed

    Liu, Huan; Sui, Tingting; Liu, Di; Liu, Tingjun; Chen, Mao; Deng, Jichao; Xu, Yuanyuan; Li, Zhanjun

    2018-03-20

    The CRISPR/Cas9 system is a highly efficient and convenient genome editing tool, which has been widely used for single or multiple gene mutation in a variety of organisms. Disruption of multiple homologous genes, which have similar DNA sequences and gene function, is required for the study of the desired phenotype. In this study, to test whether the CRISPR/Cas9 system works on the mutation of multiple homologous genes, a single guide RNA (sgRNA) targeting three fucosyltransferases encoding genes (FUT1, FUT2 and SEC1) was designed. As expected, triple gene mutation of FUT1, FUT2 and SEC1 could be achieved simultaneously via a sgRNA mediated CRISPR/Cas9 system. Besides, significantly reduced serum fucosyltransferases enzymes activity was also determined in those triple gene mutation rabbits. Thus, we provide the first evidence that multiple homologous genes knockout (KO) could be achieved efficiently by a sgRNA mediated CRISPR/Cas9 system in mammals, which could facilitate the genotype to phenotype studies of homologous genes in future. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype.

    PubMed

    Loland, Sigmund

    2015-09-01

    New insights into the genetics of sport performance lead to new areas of application. One area is the use of genetic tests to identify athletic talent. Athletic performances involve a high number of complex phenotypical traits. Based on the ACCE model (review of Analytic and Clinical validity, Clinical utility, and Ethical, legal and social implications), a critique is offered of the lack of validity and predictive power of genetic tests for talent. Based on the ideal of children's right to an open future, a moral argument is given against such tests on children and young athletes. A possible role of genetic tests in sport is proposed in terms of identifying predisposition for injury. In meeting ACCE requirements, such tests could improve individualised injury prevention and increase athlete health. More generally, limitations of science are discussed in the identification of talent and in the understanding of complex human performance phenotypes. An alternative approach to talent identification is proposed in terms of ethically sensitive, systematic and evidence-based holistic observation over time of relevant phenotypical traits by experienced observers. Talent identification in sport should be based on the primacy of the phenotype.

  4. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes

    PubMed Central

    Lauvrak, S U; Munthe, E; Kresse, S H; Stratford, E W; Namløs, H M; Meza-Zepeda, L A; Myklebost, O

    2013-01-01

    Background: Osteosarcoma is the most common primary malignant bone tumour, predominantly affecting children and adolescents. Cancer cell line models are required to understand the underlying mechanisms of tumour progression and for preclinical investigations. Methods: To identify cell lines that are well suited for studies of critical cancer-related phenotypes, such as tumour initiation, growth and metastasis, we have evaluated 22 osteosarcoma cell lines for in vivo tumorigenicity, in vitro colony-forming ability, invasive/migratory potential and proliferation capacity. Importantly, we have also identified mRNA and microRNA (miRNA) gene expression patterns associated with these phenotypes by expression profiling. Results: The cell lines exhibited a wide range of cancer-related phenotypes, from rather indolent to very aggressive. Several mRNAs were differentially expressed in highly aggressive osteosarcoma cell lines compared with non-aggressive cell lines, including RUNX2, several S100 genes, collagen genes and genes encoding proteins involved in growth factor binding, cell adhesion and extracellular matrix remodelling. Most notably, four genes—COL1A2, KYNU, ACTG2 and NPPB—were differentially expressed in high and non-aggressive cell lines for all the cancer-related phenotypes investigated, suggesting that they might have important roles in the process of osteosarcoma tumorigenesis. At the miRNA level, miR-199b-5p and mir-100-3p were downregulated in the highly aggressive cell lines, whereas miR-155-5p, miR-135b-5p and miR-146a-5p were upregulated. miR-135b-5p and miR-146a-5p were further predicted to be linked to the metastatic capacity of the disease. Interpretation: The detailed characterisation of cell line phenotypes will support the selection of models to use for specific preclinical investigations. The differentially expressed mRNAs and miRNAs identified in this study may represent good candidates for future therapeutic targets. To our knowledge, this is the first time that expression profiles are associated with functional characteristics of osteosarcoma cell lines. PMID:24064976

  5. Molecular and genetic insights into an infantile epileptic encephalopathy - CDKL5 disorder.

    PubMed

    Zhou, Ailing; Han, Song; Zhou, Zhaolan Joe

    2017-02-01

    The discovery that mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  6. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder

    PubMed Central

    Zhou, Ailing; Han, Song

    2017-01-01

    Background The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. Methods A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. Results On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Conclusions Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes. PMID:28580010

  7. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  8. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ.

    PubMed

    Sittig, Laura J; Jeong, Choongwon; Tixier, Emily; Davis, Joe; Barrios-Camacho, Camila M; Palmer, Abraham A

    2014-12-01

    Closely related substrains of inbred mice often show phenotypic differences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole-genome sequence data for both inbred strains (~3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies.

  9. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ

    PubMed Central

    Sittig, Laura J.; Jeong, Choongwon; Tixier, Emily; Davis, Joe; Barrios Camacho, Camila M.; Palmer, Abraham A.

    2014-01-01

    Closely related substrains of inbred mice often show phenotypic difzferences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole genome sequence data for both inbred strains (∼3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies. PMID:24997021

  10. Epigenetic imbalance and the floral developmental abnormality of the in vitro-regenerated oil palm Elaeis guineensis

    PubMed Central

    Jaligot, Estelle; Adler, Sophie; Debladis, Émilie; Beulé, Thierry; Richaud, Frédérique; Ilbert, Pascal; Finnegan, E. Jean; Rival, Alain

    2011-01-01

    Background The large-scale clonal propagation of oil palm (Elaeis guineensis) is being stalled by the occurrence of the mantled somaclonal variation. Indeed, this abnormality which presents a homeotic-like conversion of male floral organs into carpelloid structures, hampers oil production since the supernumerary female organs are either sterile or produce fruits with poor oil yields. Scope In the last 15 years, the prevailing point of view on the origin of the mantled floral phenotype has evolved from a random mutation event triggered by in vitro culture to a hormone-dependent dysfunction of gene regulation processes. In this review, we retrace the history of the research on the mantled variation in the light of the parallel advances made in the understanding of plant development regulation in model systems and more specifically in the role of epigenetic mechanisms. An overview of the current state of oil palm genomic and transcriptomic resources, which are key to any comparison with model organisms, is given. We show that, while displaying original characteristics, the mantled phenotype of oil palm is morphologically, and possibly molecularly, related to MADS-box genes mutants described in model plants. We also discuss the occurrence of comparable floral phenotypes in other palm species. Conclusions Beyond its primary interest in the search for discriminating markers against an economically crippling phenotype, the study of the mantled abnormality also provides a unique opportunity to investigate the regulation of reproductive development in a perennial tropical palm. On the basis of recent results, we propose that future efforts should concentrate on the epigenetic regulation targeting MADS-box genes and transposable elements of oil palm, since both types of sequences are most likely to be involved in the mantled variant phenotype. PMID:21224269

  11. Inverse relationship of interleukin-6 and mast cells in children with inflammatory and non-inflammatory abdominal pain phenotypes

    PubMed Central

    Henderson, Wendy A; Shankar, Ravi; Taylor, Tara J; Del Valle-Pinero, Arseima Y; Kleiner, David E; Kim, Kevin H; Youssef, Nader N

    2012-01-01

    AIM: To investigate interleukin-6 (IL-6), mast cells, enterochromaffin cells, 5-hydroxytryptamine, and substance P in the gastrointestinal mucosa of children with abdominal pain. METHODS: Formalin-fixed paraffin-embedded gastrointestinal biopsy blocks from patients (n = 48) with non-inflammatory bowel disease (irritable bowel syndrome and functional abdominal pain) and inflammatory bowel disease were sectioned and stained for IL-6, mast cells, enterochromaffin cells, 5-hydroxytryptamine, and substance P. All children had chronic abdominal pain as part of their presenting symptoms. Biopsy phenotype was confirmed by a pathologist, blinded to patient information. Descriptive statistics, chi-square, and independent sample t tests were used to compare differences between the inflammatory and non-inflammatory groups. RESULTS: The cohort (n = 48), mean age 11.9 years (SD = 2.9), 54.2% females, 90% Caucasian, was comprised of a non-inflammatory (n = 26) and an inflammatory (n = 22) phenotype. There was a significant negative correlation between substance P expression and mast cell count (P = 0.05, r = -0.373). Substance P was found to be expressed more often in female patient biopsies and more intensely in the upper gastrointestinal mucosa as compared to the lower mucosa. There were significantly increased gastrointestinal mucosal immunoreactivity to IL-6 (P = 0.004) in the inflammatory phenotype compared to non-inflammatory. Additionally, we found significantly increased mast cells (P = 0.049) in the mucosa of the non-inflammatory phenotype compared to the inflammatory group. This difference was particularly noted in the lower colon biopsies. CONCLUSION: The findings of this study yield preliminary evidence in identifying biomarkers of undiagnosed abdominal pain in children and may suggest candidate genes for future evaluation. PMID:23516176

  12. Evolution in translational science: Whither the CTSAs?

    PubMed

    FitzGerald, Garret A

    2015-04-22

    Clinical and Translational Science Awards-funded institutions are naturally equipped to drive research on human phenotyping and, in turn, shape the practice of precision medicine in the clinic of the future. Copyright © 2015, American Association for the Advancement of Science.

  13. Generating Phenotypic Diversity in a Fungal Biocatalyst to Investigate Alcohol Stress Tolerance Encountered during Microbial Cellulosic Biofuel Production

    PubMed Central

    Hennessy, Rosanna C.; Doohan, Fiona; Mullins, Ewen

    2013-01-01

    Consolidated bioprocessing (CBP) of lignocellulosic biomass offers an alternative route to renewable energy. The crop pathogen Fusarium oxysporum is a promising fungal biocatalyst because of its broad host range and innate ability to co-saccharify and ferment lignocellulose to bioethanol. A major challenge for cellulolytic CBP-enabling microbes is alcohol inhibition. This research tested the hypothesis that Agrobacterium tumefaciens - mediated transformation (ATMT) could be exploited as a tool to generate phenotypic diversity in F. oxysporum to investigate alcohol stress tolerance encountered during CBP. A random mutagenesis library of gene disruption transformants (n=1,563) was constructed and screened for alcohol tolerance in order to isolate alcohol sensitive or tolerant phenotypes. Following three rounds of screening, exposure of select transformants to 6% ethanol and 0.75% n-butanol resulted respectively in increased (≥11.74%) and decreased (≤43.01%) growth compared to the wild –type (WT). Principal component analysis (PCA) quantified the level of phenotypic diversity across the population of genetically transformed individuals and isolated candidate strains for analysis. Characterisation of one strain, Tr. 259, ascertained a reduced growth phenotype under alcohol stress relative to WT and indicated the disruption of a coding region homologous to a putative sugar transporter (FOXG_09625). Quantitative PCR (RT-PCR) showed FOXG_09625 was differentially expressed in Tr. 259 compared to WT during alcohol-induced stress (P<0.05). Phylogenetic analysis of putative sugar transporters suggests diverse functional roles in F. oxysporum and other filamentous fungi compared to yeast for which sugar transporters form part of a relatively conserved family. This study has confirmed the potential of ATMT coupled with a phenotypic screening program to select for genetic variation induced in response to alcohol stress. This research represents a first step in the investigation of alcohol tolerance in F. oxysporum and has resulted in the identification of several novel strains, which will be of benefit to future biofuel research. PMID:24147009

  14. Update on oral-facial-digital syndromes (OFDS).

    PubMed

    Franco, Brunella; Thauvin-Robinet, Christel

    2016-01-01

    Oral-facial-digital syndromes (OFDS) represent a heterogeneous group of rare developmental disorders affecting the mouth, the face and the digits. Additional signs may involve brain, kidneys and other organs thus better defining the different clinical subtypes. With the exception of OFD types I and VIII, which are X-linked, the majority of OFDS is transmitted as an autosomal recessive syndrome. A number of genes have already found to be mutated in OFDS and most of the encoded proteins are predicted or proven to be involved in primary cilia/basal body function. Preliminary data indicate a physical interaction among some of those proteins and future studies will clarify whether all OFDS proteins are part of a network functionally connected to cilia. Mutations in some of the genes can also lead to other types of ciliopathies with partially overlapping phenotypes, such as Joubert syndrome (JS) and Meckel syndrome (MKS), supporting the concept that cilia-related diseases might be a continuous spectrum of the same phenotype with different degrees of severity. To date, seven of the described OFDS still await a molecular definition and two unclassified forms need further clinical and molecular validation. Next-generation sequencing (NGS) approaches are expected to shed light on how many OFDS geneticists should consider while evaluating oral-facial-digital cases. Functional studies will establish whether the non-ciliary functions of the transcripts mutated in OFDS might contribute to any of the phenotypic abnormalities observed in OFDS.

  15. A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells.

    PubMed

    Bassett, Andrew R; Kong, Lesheng; Liu, Ji-Long

    2015-06-20

    The simplicity of the CRISPR/Cas9 system of genome engineering has opened up the possibility of performing genome-wide targeted mutagenesis in cell lines, enabling screening for cellular phenotypes resulting from genetic aberrations. Drosophila cells have proven to be highly effective in identifying genes involved in cellular processes through similar screens using partial knockdown by RNAi. This is in part due to the lower degree of redundancy between genes in this organism, whilst still maintaining highly conserved gene networks and orthologs of many human disease-causing genes. The ability of CRISPR to generate genetic loss of function mutations not only increases the magnitude of any effect over currently employed RNAi techniques, but allows analysis over longer periods of time which can be critical for certain phenotypes. In this study, we have designed and built a genome-wide CRISPR library covering 13,501 genes, among which 8989 genes are targeted by three or more independent single guide RNAs (sgRNAs). Moreover, we describe strategies to monitor the population of guide RNAs by high throughput sequencing (HTS). We hope that this library will provide an invaluable resource for the community to screen loss of function mutations for cellular phenotypes, and as a source of guide RNA designs for future studies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells.

    PubMed

    Watmuff, Bradley; Berkovitch, Shaunna S; Huang, Joanne H; Iaconelli, Jonathan; Toffel, Steven; Karmacharya, Rakesh

    2016-06-01

    Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique challenges in the study of disease biology. There are no objective biological phenotypes for these disorders, which are characterized by complex genetics and prominent roles for gene-environment interactions. The study of the neurobiology underlying these severe psychiatric disorders has been hindered by the lack of access to the tissue of interest - neurons from patients. The advent of reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new approaches to study relevant disease biology using iPSC-derived neurons. While early studies with patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our attempts to capture the complexity of these disorders in vitro. We present here an overview of studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss potential future directions that can result in the identification of robust and valid cellular phenotypes that in turn can lay the groundwork for meaningful clinical advances. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Endocrinology of human female sexuality, mating, and reproductive behavior.

    PubMed

    Motta-Mena, Natalie V; Puts, David A

    2017-05-01

    Hormones orchestrate and coordinate human female sexual development, sexuality, and reproduction in relation to three types of phenotypic changes: life history transitions such as puberty and childbirth, responses to contextual factors such as caloric intake and stress, and cyclical patterns such as the ovulatory cycle. Here, we review the endocrinology underlying women's reproductive phenotypes, including sexual orientation and gender identity, mate preferences, competition for mates, sex drive, and maternal behavior. We highlight distinctive aspects of women's sexuality such as the possession of sexual ornaments, relatively cryptic fertile windows, extended sexual behavior across the ovulatory cycle, and a period of midlife reproductive senescence-and we focus on how hormonal mechanisms were shaped by selection to produce adaptive outcomes. We conclude with suggestions for future research to elucidate how hormonal mechanisms subserve women's reproductive phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Neuroimaging and Anxiety: the Neural Substrates of Pathological and Non-pathological Anxiety.

    PubMed

    Taylor, James M; Whalen, Paul J

    2015-06-01

    Advances in the use of noninvasive neuroimaging to study the neural correlates of pathological and non-pathological anxiety have shone new light on the underlying neural bases for both the development and manifestation of anxiety. This review summarizes the most commonly observed neural substrates of the phenotype of anxiety. We focus on the neuroimaging paradigms that have shown promise in exposing this relevant brain circuitry. In this way, we offer a broad overview of how anxiety is studied in the neuroimaging laboratory and the key findings that offer promise for future research and a clearer understanding of anxiety.

  19. Developmental programming: the role of growth hormone.

    PubMed

    Oberbauer, Anita M

    2015-01-01

    Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.

  20. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis

    PubMed Central

    Kagohara, Luciane T; Stein-O’Brien, Genevieve L; Kelley, Dylan; Flam, Emily; Wick, Heather C; Danilova, Ludmila V; Easwaran, Hariharan; Favorov, Alexander V; Qian, Jiang; Gaykalova, Daria A; Fertig, Elana J

    2018-01-01

    Abstract Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies. PMID:28968850

  1. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    PubMed Central

    Bartlett, Madelaine E.; Whipple, Clinton J.

    2013-01-01

    Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420

  2. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture

    PubMed Central

    González-Plaza, Juan J.; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F.; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R.; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R.

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species. PMID:26973682

  3. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Prognostic significance of monocarboxylate transporter expression in oral cavity tumors

    PubMed Central

    Simões-Sousa, Susana; Granja, Sara; Pinheiro, Céline; Fernandes, Daniela; Longatto-Filho, Adhemar; Laus, Ana Carolina; Alves, Cira Danielle Casado; Suárez-Peñaranda, J. M.; Pérez-Sayáns, Mario; Lopes Carvalho, Andre; Schmitt, Fernando C.; García-García, Abel; Baltazar, Fatima

    2016-01-01

    ABSTRACT Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer. The majority of patients present advanced stage disease and has poor survival. Therefore, it is imperative to search for new biomarkers and new alternative and effective treatment options. Most cancer cells rely on aerobic glycolysis to generate energy and metabolic intermediates. This phenotype is a hallmark of cancer, characterized by an increase in glucose consumption and production of high amounts of lactate. Consequently, cancer cells need to up-regulate many proteins and enzymes related with the glycolytic metabolism. Thus, the aim of this study was to characterize metabolic phenotype of oral cavity cancers (OCC) by assessing the expression pattern of monocarboxylate transporters (MCTs) 1, 2 and 4 and other proteins related with the glycolytic phenotype. Material and Methods: We evaluated the immunohistochemical expression of MCT1, MCT4, CD147, GLUT1 and CAIX in 135 human samples of OCC and investigated the correlation with clinicopathological parameters and the possible association with prognosis. Results: We observed that all proteins analyzed presented significantly higher plasma membrane expression in neoplastic compared to non-neoplastic samples. MCT4 was significantly associated with T-stage and advanced tumoral stage, while CD147 was significantly correlated with histologic differentiation. Interestingly, tumors expressing both MCT1 and MCT4 but negative for MCT2 were associated with shorter overall survival. Conclusion: Overexpression of MCT1/4, CD147, GLUT1 and CAIX, supports previous findings of metabolic reprograming in OCC, warranting future studies to explore the hyper-glycolytic phenotype of these tumors. Importantly, MCT expression revealed to have a prognostic value in OCC survival. PMID:27232157

  5. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype.

    PubMed

    Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab

    2015-09-04

    A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our findings reveal dynamics of developmental gene network evolution in wild populations. This holds important implications: (1) for understanding how phenotypic novelty is generated in the wild; (2) for providing a possible bridge between micro- and macroevolution; and (3) for understanding how development mediates the response of organisms to past, and potentially, future climate change.

  6. Common single nucleotide variants underlying drug addiction: more than a decade of research.

    PubMed

    Bühler, Kora-Mareen; Giné, Elena; Echeverry-Alzate, Victor; Calleja-Conde, Javier; de Fonseca, Fernando Rodriguez; López-Moreno, Jose Antonio

    2015-09-01

    Drug-related phenotypes are common complex and highly heritable traits. In the last few years, candidate gene (CGAS) and genome-wide association studies (GWAS) have identified a huge number of single nucleotide polymorphisms (SNPs) associated with drug use, abuse or dependence, mainly related to alcohol or nicotine. Nevertheless, few of these associations have been replicated in independent studies. The aim of this study was to provide a review of the SNPs that have been most significantly associated with alcohol-, nicotine-, cannabis- and cocaine-related phenotypes in humans between the years of 2000 and 2012. To this end, we selected CGAS, GWAS, family-based association and case-only studies published in peer-reviewed international scientific journals (using the PubMed/MEDLINE and Addiction GWAS Resource databases) in which a significant association was reported. A total of 371 studies fit the search criteria. We then filtered SNPs with at least one replication study and performed meta-analysis of the significance of the associations. SNPs in the alcohol metabolizing genes, in the cholinergic gene cluster CHRNA5-CHRNA3-CHRNB4, and in the DRD2 and ANNK1 genes, are, to date, the most replicated and significant gene variants associated with alcohol- and nicotine-related phenotypes. In the case of cannabis and cocaine, a far fewer number of studies and replications have been reported, indicating either a need for further investigation or that the genetics of cannabis/cocaine addiction are more elusive. This review brings a global state-of-the-art vision of the behavioral genetics of addiction and collaborates on formulation of new hypothesis to guide future work. © 2015 Society for the Study of Addiction.

  7. Genome-wide scans for loci under selection in humans

    PubMed Central

    2005-01-01

    Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection. PMID:16004726

  8. The Nutritional Phenotype in the Age of Metabolomics

    PubMed Central

    Zeisel, S. H.; Freake, H. C.; Bauman, D. E.; Bier, D. M.; Burrin, D. G.; German, J. B.; Klein, S.; Marquis, G. S.; Milner, J. A.; Pelto, G. H.; Rasmussen, K. M.

    2008-01-01

    The concept of the nutritional phenotype is proposed as a defined and integrated set of genetic, proteomic, metabolomic, functional, and behavioral factors that, when measured, form the basis for assessment of human nutritional status. The nutritional phenotype integrates the effects of diet on disease/wellness and is the quantitative indication of the paths by which genes and environment exert their effects on health. Advances in technology and in fundamental biological knowledge make it possible to define and measure the nutritional phenotype accurately in a cross section of individuals with various states of health and disease. This growing base of data and knowledge could serve as a resource for all scientific disciplines involved in human health. Nutritional sciences should be a prime mover in making key decisions that include: what environmental inputs (in addition to diet) are needed; what genes/proteins/metabolites should be measured; what end-point phenotypes should be included; and what informatics tools are available to ask nutritionally relevant questions. Nutrition should be the major discipline establishing how the elements of the nutritional phenotype vary as a function of diet. Nutritional sciences should also be instrumental in linking the elements that are responsive to diet with the functional outcomes in organisms that derive from them. As the first step in this initiative, a prioritized list of genomic, proteomic, and metabolomic as well as functional and behavioral measures that defines a practically useful subset of the nutritional phenotype for use in clinical and epidemiological investigations must be developed. From this list, analytic platforms must then be identified that are capable of delivering highly quantitative data on these endpoints. This conceptualization of a nutritional phenotype provides a concrete form and substance to the recognized future of nutritional sciences as a field addressing diet, integrated metabolism, and health. PMID:15987837

  9. Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future

    PubMed Central

    Unemo, Magnus

    2014-01-01

    SUMMARY Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. PMID:24982323

  10. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    PubMed Central

    Sundelacruz, Sarah; Levin, Michael

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved ability to achieve correct adipocyte morphology compared with nondepolarized osteoblasts. The present study thus demonstrates that depolarization reduces the differentiated phenotype of hMSC-derived cells and improves their transdifferentiation capacity, but does not restore a stem-like genetic profile. Through global transcript profiling of depolarized osteoblasts, we identified pathways that may mediate the effects of voltage signaling on cell state, which will require a detailed mechanistic inquiry in future studies. PMID:23738690

  11. Response of patients to upper gastrointestinal endoscopy: effect of inherent personality traits and premedication with diazepam.

    PubMed Central

    Webberley, M J; Cuschieri, A

    1982-01-01

    The influence of personality traits on the reaction of patients to upper gastrointestinal endoscopy was studied prospectively in 86 patients. High N (neuroticism) scores on the Eysenck personality inventory were associated with poor tolerance to and future compliance with the procedure. Although premedication with diazepam did not affect the degree of discomfort and distress during the procedure, it guaranteed acceptance of repeat endoscopy by virtue of its strong amnesic effect. By contrast, not giving premedication to patients who were anxious and had high N scores jeopardized future compliance. These findings suggest that a version of the Eysenck personality inventory should be used to assess patients' neurotic phenotype and their need for premedication before endoscopy. Alternatively, all patients might be given premedication. PMID:6807436

  12. CpG Island Methylation in Colorectal Cancer: Past, Present and Future

    PubMed Central

    Curtin, Karen; Slattery, Martha L.; Samowitz, Wade S.

    2011-01-01

    The concept of a CpG island methylator phenotype, or CIMP, quickly became the focus of several colorectal cancer studies describing its clinical and pathological features after its introduction in 1999 by Toyota and colleagues. Further characterization of CIMP in tumors lead to widespread acceptance of the concept, as expressed by Shen and Issa in their 2005 editorial, “CIMP, at last.” Since that time, extensive research efforts have brought great insights into the epidemiology and prognosis of CIMP+ tumors and other epigenetic mechanisms underlying tumorigenesis. With the advances in technology and subsequent cataloging of the human methylome in cancer and normal tissue, new directions in research to understand CIMP and its role in complex biological systems yield hope for future epigenetically based diagnostics and treatments. PMID:21559209

  13. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort.

    PubMed

    Org, Elin; Blum, Yuna; Kasela, Silva; Mehrabian, Margarete; Kuusisto, Johanna; Kangas, Antti J; Soininen, Pasi; Wang, Zeneng; Ala-Korpela, Mika; Hazen, Stanley L; Laakso, Markku; Lusis, Aldons J

    2017-04-13

    The gut microbiome is a complex and metabolically active community that directly influences host phenotypes. In this study, we profile gut microbiota using 16S rRNA gene sequencing in 531 well-phenotyped Finnish men from the Metabolic Syndrome In Men (METSIM) study. We investigate gut microbiota relationships with a variety of factors that have an impact on the development of metabolic and cardiovascular traits. We identify novel associations between gut microbiota and fasting serum levels of a number of metabolites, including fatty acids, amino acids, lipids, and glucose. In particular, we detect associations with fasting plasma trimethylamine N-oxide (TMAO) levels, a gut microbiota-dependent metabolite associated with coronary artery disease and stroke. We further investigate the gut microbiota composition and microbiota-metabolite relationships in subjects with different body mass index and individuals with normal or altered oral glucose tolerance. Finally, we perform microbiota co-occurrence network analysis, which shows that certain metabolites strongly correlate with microbial community structure and that some of these correlations are specific for the pre-diabetic state. Our study identifies novel relationships between the composition of the gut microbiota and circulating metabolites and provides a resource for future studies to understand host-gut microbiota relationships.

  14. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral.

    PubMed

    Liew, Yi Jin; Zoccola, Didier; Li, Yong; Tambutté, Eric; Venn, Alexander A; Michell, Craig T; Cui, Guoxin; Deutekom, Eva S; Kaandorp, Jaap A; Voolstra, Christian R; Forêt, Sylvain; Allemand, Denis; Tambutté, Sylvie; Aranda, Manuel

    2018-06-01

    There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata . Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.

  15. When should we expect microbial phenotypic traits to predict microbial abundances?

    PubMed

    Fox, Jeremy W

    2012-01-01

    Species' phenotypic traits may predict their relative abundances. Intuitively, this is because locally abundant species have traits making them well-adapted to local abiotic and biotic conditions, while locally rare species are not as well-adapted. But this intuition may not be valid. If competing species vary in how well-adapted they are to local conditions, why doesn't the best-adapted species simply exclude the others entirely? But conversely, if species exhibit niche differences that allow them to coexist, then by definition there is no single best adapted species. Rather, demographic rates depend on species' relative abundances, so that phenotypic traits conferring high adaptedness do not necessarily confer high abundance. I illustrate these points using a simple theoretical model incorporating adjustable levels of "adaptedness" and "niche differences." Even very small niche differences can weaken or even reverse the expected correlation between adaptive traits and abundance. Conversely, adaptive traits confer high abundance when niche differences are very strong. Future work should be directed toward understanding the link between phenotypic traits and frequency-dependence of demographic rates.

  16. Definitions of the Phenotypic Manifestations of Sickle Cell Disease

    PubMed Central

    Ballas, Samir K.; Lieff, Susan; Benjamin, Lennette J.; Dampier, Carlton D.; Heeney, Matthew M.; Hoppe, Carolyn; Johnson, Cage S.; Rogers, Zora R.; Smith-Whitley, Kim; Wang, Winfred C.; Telen, Marilyn J.

    2016-01-01

    Sickle cell disease (SCD) is a pleiotropic genetic disorder of hemoglobin that has profound multi-organ effects. The low prevalence of SCD (~100,000/US) has limited progress in clinical, basic, and translational research. Lack of a large, readily accessible population for clinical studies has contributed to the absence of standard definitions and diagnostic criteria for the numerous complications of SCD and inadequate understanding of SCD pathophysiology. In 2005, the Comprehensive Sickle Cell Centers initiated a project to establish consensus definitions of the most frequently occurring complications. A group of clinicians and scientists with extensive expertise in research and treatment of SCD gathered to identify and categorize the most common complications. From this group, a formal writing team was formed that further reviewed the literature, sought specialist input, and produced definitions in a standard format. This manuscript provides an overview of the process and describes twelve body system categories and the most prevalent or severe complications within these categories. A detailed Appendix provides standardized definitions for all complications identified within each system. This report proposes use of these definitions for studies of SCD complications, so future studies can be comparably robust and treatment efficacy measured. Use of these definitions will support greater accuracy in genotype-phenotype studies, thereby achieving a better understanding of SCD pathophysiology. This should nevertheless be viewed as a dynamic rather than final document; phenotype descriptions should be reevaluated and revised periodically to provide the most current standard definitions as etiologic factors are better understood and new diagnostic options are developed. PMID:19902523

  17. The MAPP research network: design, patient characterization and operations.

    PubMed

    Landis, J Richard; Williams, David A; Lucia, M Scott; Clauw, Daniel J; Naliboff, Bruce D; Robinson, Nancy A; van Bokhoven, Adrie; Sutcliffe, Siobhan; Schaeffer, Anthony J; Rodriguez, Larissa V; Mayer, Emeran A; Lai, H Henry; Krieger, John N; Kreder, Karl J; Afari, Niloofar; Andriole, Gerald L; Bradley, Catherine S; Griffith, James W; Klumpp, David J; Hong, Barry A; Lutgendorf, Susan K; Buchwald, Dedra; Yang, Claire C; Mackey, Sean; Pontari, Michel A; Hanno, Philip; Kusek, John W; Mullins, Chris; Clemens, J Quentin

    2014-08-01

    The "Multidisciplinary Approach to the Study of Chronic Pelvic Pain" (MAPP) Research Network was established by the NIDDK to better understand the pathophysiology of urologic chronic pelvic pain syndromes (UCPPS), to inform future clinical trials and improve clinical care. The evolution, organization, and scientific scope of the MAPP Research Network, and the unique approach of the network's central study and common data elements are described. The primary scientific protocol for the Trans-MAPP Epidemiology/Phenotyping (EP) Study comprises a multi-site, longitudinal observational study, including bi-weekly internet-based symptom assessments, following a comprehensive in-clinic deep-phenotyping array of urological symptoms, non-urological symptoms and psychosocial factors to evaluate men and women with UCPPS. Healthy controls, matched on sex and age, as well as "positive" controls meeting the non-urologic associated syndromes (NUAS) criteria for one or more of the target conditions of Fibromyalgia (FM), Chronic Fatigue Syndrome (CFS) or Irritable Bowel Syndrome (IBS), were also evaluated. Additional, complementary studies addressing diverse hypotheses are integrated into the Trans-MAPP EP Study to provide a systemic characterization of study participants, including biomarker discovery studies of infectious agents, quantitative sensory testing, and structural and resting state neuroimaging and functional neurobiology studies. A highly novel effort to develop and assess clinically relevant animal models of UCPPS was also undertaken to allow improved translation between clinical and mechanistic studies. Recruitment into the central study occurred at six Discovery Sites in the United States, resulting in a total of 1,039 enrolled participants, exceeding the original targets. The biospecimen collection rate at baseline visits reached nearly 100%, and 279 participants underwent common neuroimaging through a standardized protocol. An extended follow-up study for 161 of the UCPPS participants is ongoing. The MAPP Research Network represents a novel, comprehensive approach to the study of UCPPS, as well as other concomitant NUAS. Findings are expected to provide significant advances in understanding UCPPS pathophysiology that will ultimately inform future clinical trials and lead to improvements in patient care. Furthermore, the structure and methodologies developed by the MAPP Network provide the foundation upon which future studies of other urologic or non-urologic disorders can be based. ClinicalTrials.gov identifier: NCT01098279 "Chronic Pelvic Pain Study of Individuals with Diagnoses or Symptoms of Interstitial Cystitis and/or Chronic Prostatitis (MAPP-EP)". http://clinicaltrials.gov/show/NCT01098279.

  18. Spatio-temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification

    PubMed Central

    Villanueva, Paola A.; Lopez, Jorge; Torres, Rodrigo; Navarro, Jorge M.; Bacigalupe, Leonardo D.

    2017-01-01

    Phenotypic plasticity is expected to play a major adaptive role in the response of species to ocean acidification (OA), by providing broader tolerances to changes in pCO2 conditions. However, tolerances and sensitivities to future OA may differ among populations within a species because of their particular environmental context and genetic backgrounds. Here, using the climatic variability hypothesis (CVH), we explored this conceptual framework in populations of the sea urchin Loxechinus albus across natural fluctuating pCO2/pH environments. Although elevated pCO2 affected the morphology, physiology, development and survival of sea urchin larvae, the magnitude of these effects differed among populations. These differences were consistent with the predictions of the CVH showing greater tolerance to OA in populations experiencing greater local variation in seawater pCO2/pH. Considering geographical differences in plasticity, tolerances and sensitivities to increased pCO2 will provide more accurate predictions for species responses to future OA. PMID:28179409

  19. Spatio-temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification.

    PubMed

    Gaitán-Espitia, Juan Diego; Villanueva, Paola A; Lopez, Jorge; Torres, Rodrigo; Navarro, Jorge M; Bacigalupe, Leonardo D

    2017-02-01

    Phenotypic plasticity is expected to play a major adaptive role in the response of species to ocean acidification (OA), by providing broader tolerances to changes in p CO 2 conditions. However, tolerances and sensitivities to future OA may differ among populations within a species because of their particular environmental context and genetic backgrounds. Here, using the climatic variability hypothesis (CVH), we explored this conceptual framework in populations of the sea urchin Loxechinus albus across natural fluctuating p CO 2 /pH environments. Although elevated p CO 2 affected the morphology, physiology, development and survival of sea urchin larvae, the magnitude of these effects differed among populations. These differences were consistent with the predictions of the CVH showing greater tolerance to OA in populations experiencing greater local variation in seawater p CO 2 /pH. Considering geographical differences in plasticity, tolerances and sensitivities to increased p CO 2 will provide more accurate predictions for species responses to future OA. © 2017 The Author(s).

  20. Antibodies in juvenile-onset myositis.

    PubMed

    Tansley, Sarah L

    2016-11-01

    Juvenile-onset myositis is a highly heterogeneous disease. Myositis-specific and associated autoantibodies provide a potential means of subdividing patients into clinically homogenous subgroups. Given the increasing availability of autoantibody testing, this review explores the phenotypes associated with different autoantibodies in juvenile-onset myositis and the potential clinical utility of autoantibody testing. Autoantibodies can be identified in 60-70% of children with myositis and the recent discovery of novel myositis-associated autoantibodies in adult patients suggests this may increase in the near future. Detailed phenotype descriptions are now known for several autoantibodies commonly identified in juvenile-onset disease. Whilst there is insufficient evidence to recommend a differential treatment approach based on autoantibody status, it is becoming increasingly clear that some autoantibody subgroups are often treatment resistant and may benefit from a more aggressive approach. The validation of nonspecialised methods for myositis-specific autoantibody detection should lead to more widely available testing. In juvenile-onset disease, this will provide detailed prognostic information and in the future may also influence approach.

  1. Future Directions in Painful Knee Osteoarthritis: Harnessing Complexity in a Heterogeneous Population

    PubMed Central

    George, Steven Z.; Maluf, Katrina S.; Stevens-Lapsley, Jennifer E.

    2014-01-01

    This perspective article proposes a conceptual model for the pain experience for individuals diagnosed with knee osteoarthritis (OA). Pain in knee OA is likely a heterogeneous, multifactorial phenomenon that involves not only the OA disease process but also elements specific to patient psychology and pain neurophysiology. The relevant contributions to the pain experience for any individual patient remain difficult, if not impossible, to definitively determine, and the rationale for many clinical treatment decisions arises primarily from a mechanistic understanding of OA pathophysiology. The Osteoarthritis Research Society International (OARSI) recently identified “phenotyping” of OA pain as a research priority to “better target pain therapies to individual patients.” This perspective article proposes that contributions from 3 domains—knee pathology, psychological distress, and pain neurophysiology—should be considered equally important in future efforts to understand pain phenotypes in knee OA. Ultimately, characterization of pain phenotypes may aid in the understanding of the pain experience and the development of interventions specific to pain for individual patients. PMID:24179141

  2. From the Psychiatrist’s Couch to Induced Pluripotent Stem Cells: Bipolar Disease in a Dish

    PubMed Central

    Hoffmann, Anke; Sportelli, Vincenza; Ziller, Michael; Spengler, Dietmar

    2018-01-01

    Bipolar disease (BD) is one of the major public health burdens worldwide and more people are affected every year. Comprehensive genetic studies have associated thousands of single nucleotide polymorphisms (SNPs) with BD risk; yet, very little is known about their functional roles. Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype in disease-relevant tissues and cell types. Neural cells generated from BD-specific iPSCs are thought to capture associated genetic risk factors, known and unknown, and to allow the analysis of their effects on cellular and molecular phenotypes. Interestingly, an increasing number of studies on BD-derived iPSCs report distinct alterations in neural patterning, postmitotic calcium signaling, and neuronal excitability. Importantly, these alterations are partly normalized by lithium, a first line treatment in BD. In light of these exciting findings, we discuss current challenges to the field of iPSC-based disease modelling and future steps to be taken in order to fully exploit the potential of this approach for the investigation of BD and the development of new therapies. PMID:29517996

  3. Identification of Arcanobacterium pyogenes isolated by post mortem examinations of a bearded dragon and a gecko by phenotypic and genotypic properties.

    PubMed

    Ulbegi-Mohyla, H; Hijazin, M; Alber, J; Lämmler, C; Hassan, A A; Abdulmawjood, A; Prenger-Berninghoff, E; Weiss, R; Zschöck, M

    2010-09-01

    The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens.

  4. Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops.

    PubMed

    Cao, Ke; Zheng, Zhijun; Wang, Lirong; Liu, Xin; Zhu, Gengrui; Fang, Weichao; Cheng, Shifeng; Zeng, Peng; Chen, Changwen; Wang, Xinwei; Xie, Min; Zhong, Xiao; Wang, Xiaoli; Zhao, Pei; Bian, Chao; Zhu, Yinling; Zhang, Jiahui; Ma, Guosheng; Chen, Chengxuan; Li, Yanjun; Hao, Fengge; Li, Yong; Huang, Guodong; Li, Yuxiang; Li, Haiyan; Guo, Jian; Xu, Xun; Wang, Jun

    2014-07-31

    Recently, many studies utilizing next generation sequencing have investigated plant evolution and domestication in annual crops. Peach, Prunus persica, is a typical perennial fruit crop that has ornamental and edible varieties. Unlike other fruit crops, cultivated peach includes a large number of phenotypes but few polymorphisms. In this study, we explore the genetic basis of domestication in peach and the influence of humans on its evolution. We perform large-scale resequencing of 10 wild and 74 cultivated peach varieties, including 9 ornamental, 23 breeding, and 42 landrace lines. We identify 4.6 million SNPs, a large number of which could explain the phenotypic variation in cultivated peach. Population analysis shows a single domestication event, the speciation of P. persica from wild peach. Ornamental and edible peach both belong to P. persica, along with another geographically separated subgroup, Prunus ferganensis. Our analyses enhance our knowledge of the domestication history of perennial fruit crops, and the dataset we generated could be useful for future research on comparative population genomics.

  5. Brain trauma and autophagy: What flies and mice can teach us about conserved responses.

    PubMed

    Ratliff, Eric P; Barekat, Ayeh; Lipinski, Marta M; Finley, Kim D

    2016-11-01

    Drosophila models have been successfully used to identify many genetic components that affect neurodegenerative disorders. Recently, there has been a growing interest in identifying innate and environmental factors that influence the individual outcomes following traumatic brain injury (TBI). This includes both severe TBI and more subtle, mild TBI (mTBI), which is common in people playing contact sports. Autophagy, as a clearance pathway, exerts protective effects in multiple neurological disease models. In a recent publication, we highlighted the development of a novel repetitive mTBI system using Drosophila, which recapitulates several phenotypes associated with trauma in mammalian models. In particular, flies subjected to mTBI exhibit an acute impairment of the macroautophagy/autophagy pathway that is restored 1 wk following traumatic injury exposure. These phenotypes closely resemble temporary autophagy defects observed in a mouse TBI model. Through these studies, we also identified methods to directly assess autophagic responses in the fly nervous system and laid the groundwork for future studies designed to identify genetic, epigenetic and environmental factors that have an impact on TBI outcomes.

  6. Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics

    PubMed Central

    Hernandez, Leanna M; Rudie, Jeffrey D; Green, Shulamite A; Bookheimer, Susan; Dapretto, Mirella

    2015-01-01

    Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data. PMID:25011468

  7. The Role of Oxidative Stress in Cerebral Aneurysm Formation and Rupture

    PubMed Central

    Starke, Robert M.; Chalouhi, Nohra; Ali, Muhammad S.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.

    2013-01-01

    Oxidative stress is known to contribute to the progression of cerebrovascular disease. Additionally, oxidative stress may be increased by, but also augment inflammation, a key contributor to cerebral aneurysm development and rupture. Oxidative stress can induce important processes leading to cerebral aneurysm formation including direct endothelial injury as well as smooth muscle cell phenotypic switching to an inflammatory phenotype and ultimately apoptosis. Oxidative stress leads to recruitment and invasion of inflammatory cells through upregulation of chemotactic cytokines and adhesion molecules. Matrix metalloproteinases can be activated by free radicals leading to vessel wall remodeling and breakdown. Free radicals mediate lipid peroxidation leading to atherosclerosis and contribute to hemodynamic stress and hypertensive pathology, all integral elements of cerebral aneurysm development. Preliminary studies suggest that therapies targeted at oxidative stress may provide a future beneficial treatment for cerebral aneurysms, but further studies are indicated to define the role of free radicals in cerebral aneurysm formation and rupture. The goal of this review is to assess the role of oxidative stress in cerebral aneurysm pathogenesis. PMID:23713738

  8. Evolution of plasticity and adaptive responses to climate change along climate gradients.

    PubMed

    Kingsolver, Joel G; Buckley, Lauren B

    2017-08-16

    The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).

  9. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of Cerebrotendinous xanthomatosis.

    PubMed

    Taboada, María; Martínez, Diego; Pilo, Belén; Jiménez-Escrig, Adriano; Robinson, Peter N; Sobrido, María J

    2012-07-31

    Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.

  10. THERAPY-RELATED T/MYELOID MIXED PHENOTYPE ACUTE LEUKEMIA IN A PATIENT TREATED WITH CHEMOTHERAPY FOR CUTANEOUS DIFFUSE LARGE B CELL LYMPHOMA.

    PubMed

    Roberts, Evans; Oncale, Melody; Safah, Hana; Schmieg, John

    2016-01-01

    Mixed-phenotype acute leukemia is a rare form of leukemia that is associated with a poor prognosis. Most cases of mixed-phenotype acute leukemia are de novo. However, therapy-related mixed-phenotype acute leukemia can occur, and are often associated with exposure to topoisomerase-II inhibitors and alkylating agents. There are no known treatment guidelines for therapy-related mixed-phenotype acute leukemia. We present a patient with T/myeloid mixed-phenotype acute leukemia secondary to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone R-CHOP chemotherapy for primary cutaneous diffuse large B-cell lymphoma. The patient's leukemic cells express CD34, an immaturity marker, CD3, a T-cell marker, and myeloperoxidase, a myeloid marker, and her history of chemotherapy for previous lymphoma supports the diagnosis of therapy-related T/myeloid mixed phenotype acute leukemia. Clinicians should be aware that this entity could be associated with R-CHOP chemotherapy. Given the complexity in diagnosis, and lack of treatment guidelines, a further understanding of the pathological and genetic principles of therapy-related mixed-phenotype acute leukemia will assist in future efforts to treat and categorize these patients. Mixed phenotype acute leukemia is a rare entity that accounts for two to five percent of all acute leukemias. Therapy- related mixed phenotype acute leukemia is an exceedingly rare hematological neoplasm that accounts for less than one percent of acute leukemias. We describe a case of therapy-related T/myeloid mixed phenotype acute leukemia following rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone R-CHOP chemotherapy for primary cutaneous diffuse large B-cell lymphoma DLBCL. The patient is a 63-year-old female who presented with several cutaneous nodules diagnosed as primary cutaneous DLBCL. The patient received R-CHOP chemotherapy and achieved remission. She remained in remission for four years until she presented with dyspnea, night sweats, weakness, and diffuse lymphadenopathy. Her presentation was initially concerning for recurrent lymphoma; however, a bone marrow biopsy and aspirate and a lymph node biopsy revealed a distinct blast population consistent with T/myeloid mixed phenotype acute leukemia T/M-MPAL. Given the patient's history of previous chemotherapy exposure, our patient represents a case of therapy-related T/myeloid mixed phenotype acute leukemia t-MPAL.

  11. Baseline Gray- and White Matter Volume Predict Successful Weight Loss in the Elderly

    PubMed Central

    Mokhtari, Fatemeh; Paolini, Brielle M.; Burdette, Jonathan H.; Marsh, Anthony P.; Rejeski, W. Jack; Laurienti, Paul J.

    2016-01-01

    Objective The purpose of this study is to investigate if structural brain phenotypes can be used to predict weight loss success following behavioral interventions in older adults that are overweight or obese and have cardiometabolic dysfunction. Methods A support vector machine (SVM) with a repeated random subsampling validation approach was used to classify participants into the upper and lower halves of the weight loss distribution following 18 months of a weight loss intervention. Predictions were based on baseline brain gray matter (GM) and white matter (WM) volume from 52 individuals that completed the intervention and a magnetic resonance imaging session. Results The SVM resulted in an average classification accuracy of 72.62 % based on GM and WM volume. A receiver operating characteristic analysis indicated that classification performance was robust based on an area under the curve of 0.82. Conclusions Our findings suggest that baseline brain structure is able to predict weight loss success following 18 months of treatment. The identification of brain structure as a predictor of successful weight loss is an innovative approach to identifying phenotypes for responsiveness to intensive lifestyle interventions. This phenotype could prove useful in future research focusing on the tailoring of treatment for weight loss. PMID:27804273

  12. Deciphering the distance to antibiotic resistance for the pneumococcus using genome sequencing data

    PubMed Central

    Mobegi, Fredrick M.; Cremers, Amelieke J. H.; de Jonge, Marien I.; Bentley, Stephen D.; van Hijum, Sacha A. F. T.; Zomer, Aldert

    2017-01-01

    Advances in genome sequencing technologies and genome-wide association studies (GWAS) have provided unprecedented insights into the molecular basis of microbial phenotypes and enabled the identification of the underlying genetic variants in real populations. However, utilization of genome sequencing in clinical phenotyping of bacteria is challenging due to the lack of reliable and accurate approaches. Here, we report a method for predicting microbial resistance patterns using genome sequencing data. We analyzed whole genome sequences of 1,680 Streptococcus pneumoniae isolates from four independent populations using GWAS and identified probable hotspots of genetic variation which correlate with phenotypes of resistance to essential classes of antibiotics. With the premise that accumulation of putative resistance-conferring SNPs, potentially in combination with specific resistance genes, precedes full resistance, we retrogressively surveyed the hotspot loci and quantified the number of SNPs and/or genes, which if accumulated would confer full resistance to an otherwise susceptible strain. We name this approach the ‘distance to resistance’. It can be used to identify the creep towards complete antibiotics resistance in bacteria using genome sequencing. This approach serves as a basis for the development of future sequencing-based methods for predicting resistance profiles of bacterial strains in hospital microbiology and public health settings. PMID:28205635

  13. Observ-OM and Observ-TAB: Universal syntax solutions for the integration, search, and exchange of phenotype and genotype information.

    PubMed

    Adamusiak, Tomasz; Parkinson, Helen; Muilu, Juha; Roos, Erik; van der Velde, Kasper Joeri; Thorisson, Gudmundur A; Byrne, Myles; Pang, Chao; Gollapudi, Sirisha; Ferretti, Vincent; Hillege, Hans; Brookes, Anthony J; Swertz, Morris A

    2012-05-01

    Genetic and epidemiological research increasingly employs large collections of phenotypic and molecular observation data from high quality human and model organism samples. Standardization efforts have produced a few simple formats for exchange of these various data, but a lightweight and convenient data representation scheme for all data modalities does not exist, hindering successful data integration, such as assignment of mouse models to orphan diseases and phenotypic clustering for pathways. We report a unified system to integrate and compare observation data across experimental projects, disease databases, and clinical biobanks. The core object model (Observ-OM) comprises only four basic concepts to represent any kind of observation: Targets, Features, Protocols (and their Applications), and Values. An easy-to-use file format (Observ-TAB) employs Excel to represent individual and aggregate data in straightforward spreadsheets. The systems have been tested successfully on human biobank, genome-wide association studies, quantitative trait loci, model organism, and patient registry data using the MOLGENIS platform to quickly setup custom data portals. Our system will dramatically lower the barrier for future data sharing and facilitate integrated search across panels and species. All models, formats, documentation, and software are available for free and open source (LGPLv3) at http://www.observ-om.org. © 2012 Wiley Periodicals, Inc.

  14. ACUTE DIALYSIS QUALITY INITIATIVE (ADQI) XIV SEPSIS PHENOTYPES AND TARGETS FOR BLOOD PURIFICATION IN SEPSIS: THE BOGOTÁ CONSENSUS.

    PubMed

    Kellum, John A; Gómez, Hernando; Gómez, Alonso; Murray, Patrick; Ronco, Claudio

    2016-03-01

    Despite widespread use, there is currently no consensus on how extracorporeal blood purification therapies should be applied or studied in patients with sepsis. One major obstacle has been the lack of clear descriptions of specific sepsis phenotypes tied to mechanisms that would permit the identification of molecular targets. Current evidence suggests that sepsis-related morbidity and mortality involve widely different clinical phenotypes that variably include mitochondrial dysfunction, abnormalities of vascular biology including endothelial dysfunction and coagulopathy, epithelial dysfunction, and immune suppression and dysregulation. While most cases of sepsis involve some element of all of these pathobiologic processes, the magnitude of each varies greatly from patient to patient in part as a result of the pathogen and in part related to host-specific factors. Thus, the purpose of the fourteenth international consensus conference of acute dialysis quality initiative was to develop consensus for a conceptual model of sepsis-induced organ failure that can be treated by extracorporeal blood purification and possibly also with drugs or other therapies. We assembled a group of experts from around the world and used a modified Delphi method to reach consensus. Specific findings and recommendations for future research are provided in the four accompanying papers.

  15. Copy number variation in metabolic phenotypes.

    PubMed

    Lanktree, M; Hegele, R A

    2008-01-01

    Despite successes in identifying genetic contributors to common metabolic phenotypes, only part of the heritable component of these traits has thus far been explained. Copy number variation (CNV) is likely to be responsible for some of the unexplained variation. As observed with single nucleotide changes, it is probable that both rare and common CNVs will contribute to susceptibility to metabolic disease. For instance, CNVs in the LDLR gene underlie a substantial portion of disease in patients with heterozygous familial hypercholesterolemia. As well, a common CNV in LPA encoding apolipoprotein(a) is the primary determinant of plasma lipoprotein(a) concentrations, a risk factor for atherosclerosis. Recent efforts to map CNVs in control populations have defined their size, frequency and distribution. Many of the identified CNVs overlap genes with important functions in metabolic pathways. The overlap of CNVs that were found in control datasets with functional candidate genes or genes with previous evidence of association with metabolic syndrome presents an important subset for future CNV association studies. Finally, we describe an approach to search for CNVs in a rare high-penetrance metabolic disorder, namely lipodystrophy. As methods to identify CNVs increase in precision and accuracy, the prospect of identifying their role in both rare Mendelian and common complex metabolic phenotypes will become a reality. Copyright 2009 S. Karger AG, Basel.

  16. The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes.

    PubMed

    Winkler, James D; Halweg-Edwards, Andrea L; Erickson, Keesha E; Choudhury, Alaksh; Pines, Gur; Gill, Ryan T

    2016-12-16

    The microbial ability to resist stressful environmental conditions and chemical inhibitors is of great industrial and medical interest. Much of the data related to mutation-based stress resistance, however, is scattered through the academic literature, making it difficult to apply systematic analyses to this wealth of information. To address this issue, we introduce the Resistome database: a literature-curated collection of Escherichia coli genotypes-phenotypes containing over 5,000 mutants that resist hundreds of compounds and environmental conditions. We use the Resistome to understand our current state of knowledge regarding resistance and to detect potential synergy or antagonism between resistance phenotypes. Our data set represents one of the most comprehensive collections of genomic data related to resistance currently available. Future development will focus on the construction of a combined genomic-transcriptomic-proteomic framework for understanding E. coli's resistance biology. The Resistome can be downloaded at https://bitbucket.org/jdwinkler/resistome_release/overview .

  17. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study.

    PubMed

    Ameling, Sabine; Kacprowski, Tim; Chilukoti, Ravi Kumar; Malsch, Carolin; Liebscher, Volkmar; Suhre, Karsten; Pietzner, Maik; Friedrich, Nele; Homuth, Georg; Hammer, Elke; Völker, Uwe

    2015-10-14

    Non-cellular blood circulating microRNAs (plasma miRNAs) represent a promising source for the development of prognostic and diagnostic tools owing to their minimally invasive sampling, high stability, and simple quantification by standard techniques such as RT-qPCR. So far, the majority of association studies involving plasma miRNAs were disease-specific case-control analyses. In contrast, in the present study, plasma miRNAs were analysed in a sample of 372 individuals from a population-based cohort study, the Study of Health in Pomerania (SHIP). Quantification of miRNA levels was performed by RT-qPCR using the Exiqon Serum/Plasma Focus microRNA PCR Panel V3.M covering 179 different miRNAs. Of these, 155 were included in our analyses after quality-control. Associations between plasma miRNAs and the phenotypes age, body mass index (BMI), and sex were assessed via a two-step linear regression approach per miRNA. The first step regressed out the technical parameters and the second step determined the remaining associations between the respective plasma miRNA and the phenotypes of interest. After regressing out technical parameters and adjusting for the respective other two phenotypes, 7, 15, and 35 plasma miRNAs were significantly (q < 0.05) associated with age, BMI, and sex, respectively. Additional adjustment for the blood cell parameters identified 12 and 19 miRNAs to be significantly associated with age and BMI, respectively. Most of the BMI-associated miRNAs likely originate from liver. Sex-associated differences in miRNA levels were largely determined by differences in blood cell parameters. Thus, only 7 as compared to originally 35 sex-associated miRNAs displayed sex-specific differences after adjustment for blood cell parameters. These findings emphasize that circulating miRNAs are strongly impacted by age, BMI, and sex. Hence, these parameters should be considered as covariates in association studies based on plasma miRNA levels. The established experimental and computational workflow can now be used in future screening studies to determine associations of plasma miRNAs with defined disease phenotypes.

  18. Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics.

    PubMed

    Pons, Elsa; Peris, Josep E; Peña, Leandro

    2012-07-15

    The future of genetic transformation as a tool for the improvement of fruit trees depends on the development of proper systems for the assessment of unintended effects in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types (sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the long-term stability of transgene expression and whether transgene-derived pleiotropic effects occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus trees. The stability of the integration and expression of the transgenes was confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected in the expression levels between plants of the same transgenic line in different organs and over the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the transgenes after transferring the plants to field conditions. Comparisons between the GM citrus lines with their non-GM counterparts across the study years showed that the expression of these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit characteristics. However, when comparisons were performed between diploid and tetraploid transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, significant and consistent differences were detected, indicating that factors other than their transgenic nature induced a much higher phenotypic variability. Our results indicate that transgene expression in GM citrus remains stable during long-term agricultural cultivation, without causing unexpected effects on crop characteristics. This study also shows that the transgenic citrus trees expressing the selectable marker genes that are most commonly used in citrus transformation were substantially equivalent to the non-transformed controls with regard to their overall agronomic performance, as based on the use of robust and powerful assessment techniques. Therefore, future studies of the possible pleiotropic effects induced by the integration and expression of transgenes in field-grown GM citrus may focus on the newly inserted trait(s) of biotechnological interest.

  19. Field performance of transgenic citrus trees: Assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics

    PubMed Central

    2012-01-01

    Background The future of genetic transformation as a tool for the improvement of fruit trees depends on the development of proper systems for the assessment of unintended effects in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types (sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the long-term stability of transgene expression and whether transgene-derived pleiotropic effects occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus trees. Results The stability of the integration and expression of the transgenes was confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected in the expression levels between plants of the same transgenic line in different organs and over the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the transgenes after transferring the plants to field conditions. Comparisons between the GM citrus lines with their non-GM counterparts across the study years showed that the expression of these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit characteristics. However, when comparisons were performed between diploid and tetraploid transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, significant and consistent differences were detected, indicating that factors other than their transgenic nature induced a much higher phenotypic variability. Conclusions Our results indicate that transgene expression in GM citrus remains stable during long-term agricultural cultivation, without causing unexpected effects on crop characteristics. This study also shows that the transgenic citrus trees expressing the selectable marker genes that are most commonly used in citrus transformation were substantially equivalent to the non-transformed controls with regard to their overall agronomic performance, as based on the use of robust and powerful assessment techniques. Therefore, future studies of the possible pleiotropic effects induced by the integration and expression of transgenes in field-grown GM citrus may focus on the newly inserted trait(s) of biotechnological interest. PMID:22794278

  20. Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes.

    PubMed

    Paleari, Livia; Movedi, Ermes; Cappelli, Giovanni; Wilson, Lloyd T; Confalonieri, Roberto

    2017-11-01

    Growing food crops to meet global demand and the search for more sustainable cropping systems are increasing the need for new cultivars in key production areas. This study presents the identification of rice traits putatively producing the largest yield benefits in five areas that markedly differ in terms of environmental conditions in the Philippines, India, China, Japan and Italy. The ecophysiological model WARM and sensitivity analysis techniques were used to evaluate phenotypic traits involved with light interception, photosynthetic efficiency, tolerance to abiotic stressors, resistance to fungal pathogens and grain quality. The analysis involved only model parameters that have a close relationship with phenotypic traits breeders are working on, to increase the in vivo feasibility of selected ideotypes. Current climate and future projections were considered, in the light of the resources required by breeding programs and of the role of weather variables in the identification of promising traits. Results suggest that breeding for traits involved with disease resistance, and tolerance to cold- and heat-induced spikelet sterility could provide benefits similar to those obtained from the improvement of traits involved with canopy structure and photosynthetic efficiency. In contrast, potential benefits deriving from improved grain quality traits are restricted by weather variability and markedly affected by G × E interactions. For this reason, district-specific ideotypes were identified using a new index accounting for both their productivity and feasibility. © 2017 John Wiley & Sons Ltd.

  1. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalized Nutrition: Part 2 - Ethics, Challenges and Endeavors of Precision Nutrition.

    PubMed

    Kohlmeier, Martin; De Caterina, Raffaele; Ferguson, Lynnette R; Görman, Ulf; Allayee, Hooman; Prasad, Chandan; Kang, Jing X; Nicoletti, Carolina Ferreira; Martinez, J Alfredo

    2016-01-01

    Nutrigenetics considers the influence of individual genetic variation on differences in response to dietary components, nutrient requirements and predisposition to disease. Nutrigenomics involves the study of interactions between the genome and diet, including how nutrients affect the transcription and translation process plus subsequent proteomic and metabolomic changes, and also differences in response to dietary factors based on the individual genetic makeup. Personalized characteristics such as age, gender, physical activity, physiological state and social status, and special conditions such as pregnancy and risk of disease can inform dietary advice that more closely meets individual needs. Precision nutrition has a promising future in treating the individual according to their phenotype and genetic characteristics, aimed at both the treatment and prevention of disease. However, many aspects are still in progress and remain as challenges for the future of nutrition. The integration of the human genotype and microbiome needs to be better understood. Further advances in data interpretation tools are also necessary, so that information obtained through newer tests and technologies can be properly transferred to consumers. Indeed, precision nutrition will integrate genetic data with phenotypical, social, cultural and personal preferences and lifestyles matters to provide a more individual nutrition, but considering public health perspectives, where ethical, legal and policy aspects need to be defined and implemented. © 2016 S. Karger AG, Basel.

  2. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line.

    PubMed

    Soubry, Adelheid; Hoyo, Cathrine; Jirtle, Randy L; Murphy, Susan K

    2014-04-01

    Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations. © 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.

  3. Structural and Functional Phenotyping of the Failing Heart: Is the Left Ventricular Ejection Fraction Obsolete?

    PubMed

    Bristow, Michael R; Kao, David P; Breathett, Khadijah K; Altman, Natasha L; Gorcsan, John; Gill, Edward A; Lowes, Brian D; Gilbert, Edward M; Quaife, Robert A; Mann, Douglas L

    2017-11-01

    Diagnosis, prognosis, treatment, and development of new therapies for diseases or syndromes depend on a reliable means of identifying phenotypes associated with distinct predictive probabilities for these various objectives. Left ventricular ejection fraction (LVEF) provides the current basis for combined functional and structural phenotyping in heart failure by classifying patients as those with heart failure with reduced ejection fraction (HFrEF) and those with heart failure with preserved ejection fraction (HFpEF). Recently the utility of LVEF as the major phenotypic determinant of heart failure has been challenged based on its load dependency and measurement variability. We review the history of the development and adoption of LVEF as a critical measurement of LV function and structure and demonstrate that, in chronic heart failure, load dependency is not an important practical issue, and we provide hemodynamic and molecular biomarker evidence that LVEF is superior or equal to more unwieldy methods of identifying phenotypes of ventricular remodeling. We conclude that, because it reliably measures both left ventricular function and structure, LVEF remains the best current method of assessing pathologic remodeling in heart failure in both individual clinical and multicenter group settings. Because of the present and future importance of left ventricular phenotyping in heart failure, LVEF should be measured by using the most accurate technology and methodologic refinements available, and improved characterization methods should continue to be sought. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro

    PubMed Central

    Heinrich, Franziska; Lehmbecker, Annika; Raddatz, Barbara B.; Kegler, Kristel; Tipold, Andrea; Stein, Veronika M.; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-01-01

    Macrophages are a heterogeneous cell population playing a pivotal role in tissue homeostasis and inflammation, and their phenotype strongly depends on the micromilieu. Despite its increasing importance as a translational animal model for human diseases, there is a considerable gap of knowledge with respect to macrophage polarization in dogs. The present study comprehensively investigated the morphologic, phenotypic, and transcriptomic characteristics of unstimulated (M0), M1- (GM-CSF, LPS, IFNγ-stimulated) and M2- (M-CSF, IL-4-stimulated)-polarized canine blood-derived macrophages in vitro. Scanning electron microscopy revealed distinct morphologies of polarized macrophages with formation of multinucleated cells in M2-macrophages, while immunofluorescence employing literature-based prototype-antibodies against CD16, CD32, iNOS, MHC class II (M1-markers), CD163, CD206, and arginase-1 (M2-markers) demonstrated that only CD206 was able to discriminate M2-macrophages from both other phenotypes, highlighting this molecule as a promising marker for canine M2-macrophages. Global microarray analysis revealed profound changes in the transcriptome of polarized canine macrophages. Functional analysis pointed out that M1-polarization was associated with biological processes such as “respiratory burst”, whereas M2-polarization was associated with processes such as “mitosis”. Literature-based marker gene selection revealed only minor overlaps in the gene sets of the dog compared to prototype markers of murine and human macrophages. Biomarker selection using supervised clustering suggested latexin (LXN) and membrane-spanning 4-domains, subfamily A, member 2 (MS4A2) to be the most powerful predicting biomarkers for canine M1- and M2-macrophages, respectively. Immunofluorescence for both markers demonstrated expression of both proteins by macrophages in vitro but failed to reveal differences between canine M1 and M2-macrophages. The present study provides a solid basis for future studies upon the role of macrophage polarization in spontaneous diseases of the dog, a species that has emerging importance for translational research. PMID:28817687

  5. [Precision and personalized medicine].

    PubMed

    Sipka, Sándor

    2016-10-01

    The author describes the concept of "personalized medicine" and the newly introduced "precision medicine". "Precision medicine" applies the terms of "phenotype", "endotype" and "biomarker" in order to characterize more precisely the various diseases. Using "biomarkers" the homogeneous type of a disease (a "phenotype") can be divided into subgroups called "endotypes" requiring different forms of treatment and financing. The good results of "precision medicine" have become especially apparent in relation with allergic and autoimmune diseases. The application of this new way of thinking is going to be necessary in Hungary, too, in the near future for participants, controllers and financing boards of healthcare. Orv. Hetil., 2016, 157(44), 1739-1741.

  6. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    PubMed

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  7. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.).

    PubMed

    Dai, Fanwei; Wang, Zhenjiang; Luo, Guoqing; Tang, Cuiming

    2015-09-22

    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work.

  8. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.)

    PubMed Central

    Dai, Fanwei; Wang, Zhenjiang; Luo, Guoqing; Tang, Cuiming

    2015-01-01

    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work. PMID:26402678

  9. Reprint of "Abstraction for data integration: Fusing mammalian molecular, cellular and phenotype big datasets for better knowledge extraction".

    PubMed

    Rouillard, Andrew D; Wang, Zichen; Ma'ayan, Avi

    2015-12-01

    With advances in genomics, transcriptomics, metabolomics and proteomics, and more expansive electronic clinical record monitoring, as well as advances in computation, we have entered the Big Data era in biomedical research. Data gathering is growing rapidly while only a small fraction of this data is converted to useful knowledge or reused in future studies. To improve this, an important concept that is often overlooked is data abstraction. To fuse and reuse biomedical datasets from diverse resources, data abstraction is frequently required. Here we summarize some of the major Big Data biomedical research resources for genomics, proteomics and phenotype data, collected from mammalian cells, tissues and organisms. We then suggest simple data abstraction methods for fusing this diverse but related data. Finally, we demonstrate examples of the potential utility of such data integration efforts, while warning about the inherit biases that exist within such data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres

    PubMed Central

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering. PMID:26760956

  11. Comparison of the Phenotype and Approach to Pediatric Versus Adult Patients with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Nobili, V; Alisi, A; Newton, Kimberly P.; Schwimmer, Jeffrey B.

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the main chronic non-communicable diseases in westernized societies; its worldwide prevalence has doubled during the last 20 years. NAFLD has serious health implications not only for adults, but also for children. However, pediatric NAFLD is not only an important global problem in itself, but it is likely to be associated with increases in comorbidities such as metabolic syndrome and cardiovascular diseases. There are several differences between NAFLD in children and adults and it is not clear whether the disease observed in children is the initial phase of a process that progresses with age. The increasing prevalence of pediatric NAFLD has serious implications for the future adult population requiring appropriate action. Studies of NAFLD progression, pathogenesis, and management should evaluate disease phenotypes in children and follow these over patient lifetimes. We review the similarities and differences of NAFLD between children and adults. PMID:27003600

  12. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes.

    PubMed

    Hassani-Pak, Keywan; Rawlings, Christopher

    2017-06-13

    Genetics and "omics" studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.

  13. Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells.

    PubMed

    Fong, Helen; Wang, Chengzhong; Knoferle, Johanna; Walker, David; Balestra, Maureen E; Tong, Leslie M; Leung, Laura; Ring, Karen L; Seeley, William W; Karydas, Anna; Kshirsagar, Mihir A; Boxer, Adam L; Kosik, Kenneth S; Miller, Bruce L; Huang, Yadong

    2013-01-01

    Tauopathies represent a group of neurodegenerative disorders characterized by the accumulation of pathological TAU protein in brains. We report a human neuronal model of tauopathy derived from induced pluripotent stem cells (iPSCs) carrying a TAU-A152T mutation. Using zinc-finger nuclease-mediated gene editing, we generated two isogenic iPSC lines: one with the mutation corrected, and another with the homozygous mutation engineered. The A152T mutation increased TAU fragmentation and phosphorylation, leading to neurodegeneration and especially axonal degeneration. These cellular phenotypes were consistent with those observed in a patient with TAU-A152T. Upon mutation correction, normal neuronal and axonal morphologies were restored, accompanied by decreases in TAU fragmentation and phosphorylation, whereas the severity of tauopathy was intensified in neurons with the homozygous mutation. These isogenic TAU-iPSC lines represent a critical advancement toward the accurate modeling and mechanistic study of tauopathies with human neurons and will be invaluable for drug-screening efforts and future cell-based therapies.

  14. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials

    PubMed Central

    Vamecq, Joseph; Colet, Jean-Marie; Vanden Eynde, Jean Jacques; Briand, Gilbert; Porchet, Nicole; Rocchi, Stéphane

    2012-01-01

    The metabolic/cell signaling basis of Warburg's effect (“aerobic glycolysis”) and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date. PMID:22654896

  15. Genome-wide association study of triglyceride response to a high-fat meal among participants of the NHLBI Genetics of Lipid Lowering Drugs and Diet Network (GOLDN).

    PubMed

    Wojczynski, Mary K; Parnell, Laurence D; Pollin, Toni I; Lai, Chao Q; Feitosa, Mary F; O'Connell, Jeff R; Frazier-Wood, Alexis C; Gibson, Quince; Aslibekyan, Stella; Ryan, Kathy A; Province, Michael A; Tiwari, Hemant K; Ordovas, Jose M; Shuldiner, Alan R; Arnett, Donna K; Borecki, Ingrid B

    2015-10-01

    The triglyceride (TG) response to a high-fat meal (postprandial lipemia, PPL) affects cardiovascular disease risk and is influenced by genes and environment. Genes involved in lipid metabolism have dominated genetic studies of PPL TG response. We sought to elucidate common genetic variants through a genome-wide association (GWA) study in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). The GOLDN GWAS discovery sample consisted of 872 participants within families of European ancestry. Genotypes for 2,543,887 variants were measured or imputed from HapMap. Replication of our top results was performed in the Heredity and Phenotype Intervention (HAPI) Heart Study (n = 843). PPL TG response phenotypes were constructed from plasma TG measured at baseline (fasting, 0 hour), 3.5 and 6 hours after a high-fat meal, using a random coefficient regression model. Association analyses were adjusted for covariates and principal components, as necessary, in a linear mixed model using the kinship matrix; additional models further adjusted for fasting TG were also performed. Meta-analysis of the discovery and replication studies (n = 1715) was performed on the top SNPs from GOLDN. GOLDN revealed 111 suggestive (p < 1E-05) associations, with two SNPs meeting GWA significance level (p < 5E-08). Of the two significant SNPs, rs964184 demonstrated evidence of replication (p = 1.20E-03) in the HAPI Heart Study and in a joint analysis, was GWA significant (p = 1.26E-09). Rs964184 has been associated with fasting lipids (TG and HDL) and is near ZPR1 (formerly ZNF259), close to the APOA1/C3/A4/A5 cluster. This association was attenuated upon additional adjustment for fasting TG. This is the first report of a genome-wide significant association with replication for a novel phenotype, namely PPL TG response. Future investigation into response phenotypes is warranted using pathway analyses, or newer genetic technologies such as metabolomics. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. GENOME-WIDE ASSOCIATION STUDY OF TRIGLYCERIDE RESPONSE TO A HIGH-FAT MEAL AMONG PARTICIPANTS OF THE NHLBI GENETICS OF LIPID LOWERING DRUGS AND DIET NETWORK (GOLDN)

    PubMed Central

    Wojczynski, M.K.; Parnel, L.D.; Pollin, T.I.; Lai, C.Q.; Feitosa, M.F.; O’Connell, J.R.; Frazier-Wood, A.C.; Gibson, Q.; Aslibekyan, S.; Ryan, K.A.; Province, M.A.; Tiwari, H.K.; Ordovas, J.M.; Shuldiner, A.R.; Arnett, D.K.; Borecki, I.B.

    2015-01-01

    Objective The triglyceride (TG) response to a high-fat meal (postprandial lipemia, PPL) affects cardiovascular disease risk and is influenced by genes and environment. Genes involved in lipid metabolism have dominated genetic studies of PPL TG response. We sought to elucidate common genetic variants through a genome-wide association (GWA) study in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). Methods The GOLDN GWAS discovery sample consisted of 872 participants within families of European ancestry. Genotypes for 2,543,887 variants were measured or imputed from HapMap. Replication of our top results was performed in the Heredity and Phenotype Intervention (HAPI) Heart Study (n=843). PPL TG response phenotypes were constructed from plasma TG measured at baseline (fasting, 0 hour), 3.5 and 6 hours after a high-fat meal, using a random coefficient regression model. Association analyses were adjusted for covariates and principal components, as necessary, in a linear mixed model using the kinship matrix; additional models further adjusted for fasting TG were also performed. Meta-analysis of the discovery and replication studies (n=1,715) was performed on the top SNPs from GOLDN. Results GOLDN revealed 111 suggestive (p<1E-05) associations, with two SNPs meeting GWA significance level (p<5E-08). Of the two significant SNPs, rs964184 demonstrated evidence of replication (p=1.20E-03) in the HAPI Heart Study and in a joint analysis, was GWA significant (p=1.26E-09). Rs964184 has been associated with fasting lipids (TG and HDL) and is near ZPR1 (formerly ZNF259), close to the APOA1/C3/A4/A5 cluster. This association was attenuated upon additional adjustment for fasting TG. Conclusion This is the first report of a genome-wide significant association with replication for a novel phenotype, namely PPL TG response. Future investigation into response phenotypes is warranted using pathway analyses, or newer genetic technologies such as metabolomics. PMID:26256467

  17. Automated 3D Phenotype Analysis Using Data Mining

    PubMed Central

    Plyusnin, Ilya; Evans, Alistair R.; Karme, Aleksis; Gionis, Aristides; Jernvall, Jukka

    2008-01-01

    The ability to analyze and classify three-dimensional (3D) biological morphology has lagged behind the analysis of other biological data types such as gene sequences. Here, we introduce the techniques of data mining to the study of 3D biological shapes to bring the analyses of phenomes closer to the efficiency of studying genomes. We compiled five training sets of highly variable morphologies of mammalian teeth from the MorphoBrowser database. Samples were labeled either by dietary class or by conventional dental types (e.g. carnassial, selenodont). We automatically extracted a multitude of topological attributes using Geographic Information Systems (GIS)-like procedures that were then used in several combinations of feature selection schemes and probabilistic classification models to build and optimize classifiers for predicting the labels of the training sets. In terms of classification accuracy, computational time and size of the feature sets used, non-repeated best-first search combined with 1-nearest neighbor classifier was the best approach. However, several other classification models combined with the same searching scheme proved practical. The current study represents a first step in the automatic analysis of 3D phenotypes, which will be increasingly valuable with the future increase in 3D morphology and phenomics databases. PMID:18320060

  18. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage

    USGS Publications Warehouse

    Zimova, Marketa; Mills, L. Scott; Lukacs, Paul M.; Mitchell, Michael S.

    2014-01-01

    As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour.

  19. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms.

    PubMed

    Zeitz, Christina; Robson, Anthony G; Audo, Isabelle

    2015-03-01

    Congenital stationary night blindness (CSNB) refers to a group of genetically and clinically heterogeneous retinal disorders. Seventeen different genes with more than 360 different mutations and more than 670 affected alleles have been associated with CSNB, including genes coding for proteins of the phototransduction cascade, those important for signal transmission from the photoreceptors to the bipolar cells or genes involved in retinoid recycling in the retinal pigment epithelium. This article describes the phenotypic characteristics of different forms of CSNB that are necessary for accurate diagnosis and to direct and improve genetic testing. An overview of classical and recent methods used to identify specific CSNB genotypes is provided and a meta-analysis of all previously published and novel data is performed to determine the prevalence of disease-causing mutations. Studies of the underlying molecular pathogenic mechanisms based on cell culture techniques and animal studies are outlined. The article highlights how the study of CSNB has increased understanding of the mechanisms of visual signalling in the retina, likely to prove important in developing future treatments for CSNB and other retinal disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Silencing Effect of Hominoid Highly Conserved Noncoding Sequences on Embryonic Brain Development

    PubMed Central

    Mahmoudi Saber, Morteza

    2017-01-01

    Abstract Superfamily Hominoidea, which consists of Hominidae (humans and great apes) and Hylobatidae (gibbons), is well-known for sharing human-like characteristics, however, the genomic origins of these shared unique phenotypes have mainly remained elusive. To decipher the underlying genomic basis of Hominoidea-restricted phenotypes, we identified and characterized Hominoidea-restricted highly conserved noncoding sequences (HCNSs) that are a class of potential regulatory elements which may be involved in evolution of lineage-specific phenotypes. We discovered 679 such HCNSs from human, chimpanzee, gorilla, orangutan and gibbon genomes. These HCNSs were demonstrated to be under purifying selection but with lineage-restricted characteristics different from old CNSs. A significant proportion of their ancestral sequences had accelerated rates of nucleotide substitutions, insertions and deletions during the evolution of common ancestor of Hominoidea, suggesting the intervention of positive Darwinian selection for creating those HCNSs. In contrary to enhancer elements and similar to silencer sequences, these Hominoidea-restricted HCNSs are located in close proximity of transcription start sites. Their target genes are enriched in the nervous system, development and transcription, and they tend to be remotely located from the nearest coding gene. Chip-seq signals and gene expression patterns suggest that Hominoidea-restricted HCNSs are likely to be functional regulatory elements by imposing silencing effects on their target genes in a tissue-restricted manner during fetal brain development. These HCNSs, emerged through adaptive evolution and conserved through purifying selection, represent a set of promising targets for future functional studies of the evolution of Hominoidea-restricted phenotypes. PMID:28633494

  1. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change.

    PubMed

    Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T

    2015-10-01

    Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. © 2015 John Wiley & Sons Ltd.

  2. Blue genes: An integrative laboratory to differentiate genetic transformation from gene mutation for underclassmen.

    PubMed

    Militello, Kevin T; Chang, Ming-Mei; Simon, Robert D; Lazatin, Justine C

    2016-01-01

    The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by which the genetic material can be altered: genetic transformation and gene mutation. In the first week of the laboratory, students incubate a plasmid DNA with calcium chloride-treated Escherichia coli JM109 cells and observe a phenotype change from ampicillin sensitive to ampicillin resistant and from white color to blue color on plates containing 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and isopropyl β-D-thiogalactopyranoside (IPTG). Over the course of the next three weeks, students use a battery of approaches including plasmid DNA isolation experiments, restriction maps, and PCR to differentiate between mutation and transformation. The students ultimately come to the conclusion that the changes in phenotypes are due to genetic transformation and not mutation based on the evidence generated over the four-week period. Pre-laboratory tests and post-laboratory tests indicate that this set of exercises is successful in helping students differentiate between transformation and mutation. The laboratory is designed for underclassmen and is a good prerequisite for an apprentice-based research opportunity, although it is not designed as a class based research experience. Potential modifications and future directions of the laboratory based upon student experiences and assessment are presented. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. Genetic differences based on a beef terminal index are reflected in future phenotypic performance differences in commercial beef cattle.

    PubMed

    Connolly, S M; Cromie, A R; Berry, D P

    2016-05-01

    The increased demand for animal-derived protein and energy for human consumption will have to be achieved through a combination of improved animal genetic merit and better management strategies. The objective of the present study was to quantify whether differences in genetic merit among animals materialised into phenotypic differences in commercial herds. Carcass phenotypes on 156 864 animals from 7301 finishing herds were used, which included carcass weight (kg), carcass conformation score (scale 1 to 15), carcass fat score (scale 1 to 15) at slaughter as well as carcass price. The price per kilogram and the total carcass value that the producer received for the animal at slaughter was also used. A terminal index, calculated in the national genetic evaluations, was obtained for each animal. The index was based on pedigree index for calving performance, feed intake and carcass traits from the national genetic evaluations. Animals were categorised into four terminal index groups on the basis of genetic merit estimates that were derived before the expression of the phenotypic information by the validation animals. The association between terminal index and phenotypic performance at slaughter was undertaken using mixed models; whether the association differed by gender (i.e. young bulls, steers and heifers) or by early life experiences (animals born in a dairy herd or beef herd) was also investigated. The regression coefficient of phenotypic carcass weight, carcass conformation and carcass fat on their respective estimated breeding values (EBVs) was 0.92 kg, 1.08 units and 0.79 units, respectively, which is close to the expectation of one. Relative to animals in the lowest genetic merit group, animals in the highest genetic merit group had, on average, a 38.7 kg heavier carcass, with 2.21 units greater carcass conformation, and 0.82 units less fat. The superior genetic merit animals were, on average, slaughtered 6 days younger than their inferior genetic merit contemporaries. The superior carcass characteristics of the genetically elite animals materialised in carcasses worth €187 more than those of the lowest genetic merit animals. Although the phenotypic difference in carcass traits of animals divergent in terminal index differed statistically by animal gender and early life experience, the detected interactions were generally biologically small. This study clearly indicates that selection on an appropriate terminal index will produce higher performing animals and this was consistent across all production systems investigated.

  4. Epigenetics in Comparative Biology: Why We Should Pay Attention

    PubMed Central

    Burggren, Warren W.; Crews, David

    2014-01-01

    The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat “old wine in new bottles” and represents a reformulation of the old debate of preformationism versus epigenesis—one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which “true” epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., “the epigenetics of cancer”). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret “sunsetting” of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic modification of phenotype (molecular, cellular, morphological, physiological, and behavioral) can be highly variable depending upon ancestral environmental exposure and can contribute to apparent “random” noise in collected datasets. Thus, future research should go beyond the study of epigenetic mechanisms at the level of the gene and devote additional investigation of epigenetic outcomes at the level of both the individual organism and how it affects the evolution of populations. This review is the first of seven in this special issue of Integrative and Comparative Biology that addresses in detail these and other key topics in the study of epigenetics. PMID:24722321

  5. Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum1[CC-BY

    PubMed Central

    Lenser, Teresa; Adigüzel, Nezaket; Dönmez, Ali A.; Grosche, Christopher; Kettermann, Marcel; Mayland-Quellhorst, Sara; Mohammadin, Setareh; Rümpler, Florian; Sperber, Katja; Wiegand, Nils

    2016-01-01

    Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum. Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity. PMID:27702842

  6. Tic symptom dimensions and their heritabilities in Tourette's syndrome.

    PubMed

    de Haan, Marcel J; Delucchi, Kevin L; Mathews, Carol M; Cath, Danielle C

    2015-06-01

    Gilles de la Tourette's syndrome (TS) is both genotypically and phenotypically heterogeneous. Gene-finding strategies have had limited success, possibly because of symptom heterogeneity. This study aimed at specifically investigating heritabilities of tic symptom factors in a relatively large sample of TS patients and family members. Lifetime tic symptom data were collected in 494 diagnosed individuals in two cohorts of TS patients from the USA (n=273) and the Netherlands (n=221), and in 351 Dutch family members. Item-level factor analysis, using a tetrachoric correlation matrix in SAS (v9.2), was carried out on 23 tic symptoms from the Yale Global Tic Severity Scale. Three factors were identified explaining 49% of the total variance: factor 1, complex vocal tics and obscene behaviour; factor 2, body tics; and factor 3, head/neck tics. Using Sequential Oligogenic Linkage Analysis Routine, moderate heritabilities were found for factor 1 (h2r=0.21) and factor 3 (h2r=0.25). Lower heritability was found for overall tic severity (h2r=0.19). Bivariate analyses indicated no genetic associations between tic factors. These findings suggest that (i) three tic factors can be discerned with a distinct underlying genetic architecture and that (ii) considering the low tic heritabilities found, only focusing on the narrow-sense TS phenotype and leaving out comorbidities that are part of the broader sense tic phenotype may lead to missing heritability. Although these findings need replication in larger independent samples, they might have consequences for future genetic studies in TS.

  7. The genetics of muscle atrophy and growth: the impact and implications of polymorphisms in animals and humans.

    PubMed

    Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P

    2005-10-01

    Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.

  8. Complex and multi-allelic copy number variation in human disease

    PubMed Central

    McCarroll, Steven A.

    2015-01-01

    Hundreds of copy number variants are complex and multi-allelic, in that they have many structural alleles and have rearranged multiple times in the ancestors who contributed chromosomes to current humans. Not only are the relationships of these multi-allelic CNVs (mCNVs) to phenotypes generally unknown, but many mCNVs have not yet been described at the basic levels—alleles, allele frequencies, structural features—that support genetic investigation. To date, most reported disease associations to these variants have been ascertained through candidate gene studies. However, only a few associations have reached the level of acceptance defined by durable replications in many cohorts. This likely stems from longstanding challenges in making precise molecular measurements of the alleles individuals have at these loci. However, approaches for mCNV analysis are improving quickly, and some of the unique characteristics of mCNVs may assist future association studies. Their various structural alleles are likely to have different magnitudes of effect, creating a natural allelic series of growing phenotypic impact and giving investigators a set of natural predictions and testable hypotheses about the extent to which each allele of an mCNV predisposes to a phenotype. Also, mCNVs’ low-to-modest correlation to individual single-nucleotide polymorphisms (SNPs) may make it easier to distinguish between mCNVs and nearby SNPs as the drivers of an association signal, and perhaps, make it possible to preliminarily screen candidate loci, or the entire genome, for the many mCNV–disease relationships that remain to be discovered. PMID:26163405

  9. Prospective association of the SHARE-operationalized frailty phenotype with adverse health outcomes: evidence from 60+ community-dwelling Europeans living in 11 countries

    PubMed Central

    2013-01-01

    Background Among the many definitions of frailty, the frailty phenotype defined by Fried et al. is one of few constructs that has been repeatedly validated: first in the Cardiovascular Health Study (CHS) and subsequently in other large cohorts in the North America. In Europe, the Survey of Health, Aging and Retirement in Europe (SHARE) is a gold mine of individual, economic and health information that can provide insight into better understanding of frailty across diverse population settings. A recent adaptation of the original five CHS-frailty criteria was proposed to make use of SHARE data and measure frailty in the European population. To test the validity of the SHARE operationalized frailty phenotype, this study aims to evaluate its prospective association with adverse health outcomes. Methods Data are from 11,015 community-dwelling men and women aged 60+ participating in wave 1 and 2 of the Survey of Health, Aging and Retirement in Europe, a population-based survey. Multivariate logistic regression analyses were used to assess the 2-year follow up effect of SHARE-operationalized frailty phenotype on the incidence of disability (disability-free at baseline) and on worsening disability and morbidity, adjusting for age, sex, income and baseline morbidity and disability. Results At 2-year follow up, frail individuals were at increased risk for: developing mobility (OR 3.07, 95% CI, 1.02-9.36), IADL (OR 5.52, 95% CI, 3.76-8.10) and BADL (OR 5.13, 95% CI, 3.53-7.44) disability; worsening mobility (OR 2.94, 95% CI, 2.19- 3.93) IADL (OR 4.43, 95% CI, 3.19-6.15) and BADL disability (OR 4.53, 95% CI, 3.14-6.54); and worsening morbidity (OR 1.77, 95% CI, 1.35-2.32). These associations were significant even among the prefrail, but with a lower magnitude of effect. Conclusions The SHARE-operationalized frailty phenotype is significantly associated with all tested health outcomes independent of baseline morbidity and disability in community-dwelling men and women aged 60 and older living in Europe. The robustness of results validate the use of this phenotype in the SHARE survey for future research on frailty in Europe. PMID:23286928

  10. Prospective association of the SHARE-operationalized frailty phenotype with adverse health outcomes: evidence from 60+ community-dwelling Europeans living in 11 countries.

    PubMed

    Macklai, Nejma S; Spagnoli, Jacques; Junod, Julien; Santos-Eggimann, Brigitte

    2013-01-03

    Among the many definitions of frailty, the frailty phenotype defined by Fried et al. is one of few constructs that has been repeatedly validated: first in the Cardiovascular Health Study (CHS) and subsequently in other large cohorts in the North America. In Europe, the Survey of Health, Aging and Retirement in Europe (SHARE) is a gold mine of individual, economic and health information that can provide insight into better understanding of frailty across diverse population settings. A recent adaptation of the original five CHS-frailty criteria was proposed to make use of SHARE data and measure frailty in the European population. To test the validity of the SHARE operationalized frailty phenotype, this study aims to evaluate its prospective association with adverse health outcomes. Data are from 11,015 community-dwelling men and women aged 60+ participating in wave 1 and 2 of the Survey of Health, Aging and Retirement in Europe, a population-based survey. Multivariate logistic regression analyses were used to assess the 2-year follow up effect of SHARE-operationalized frailty phenotype on the incidence of disability (disability-free at baseline) and on worsening disability and morbidity, adjusting for age, sex, income and baseline morbidity and disability. At 2-year follow up, frail individuals were at increased risk for: developing mobility (OR 3.07, 95% CI, 1.02-9.36), IADL (OR 5.52, 95% CI, 3.76-8.10) and BADL (OR 5.13, 95% CI, 3.53-7.44) disability; worsening mobility (OR 2.94, 95% CI, 2.19- 3.93) IADL (OR 4.43, 95% CI, 3.19-6.15) and BADL disability (OR 4.53, 95% CI, 3.14-6.54); and worsening morbidity (OR 1.77, 95% CI, 1.35-2.32). These associations were significant even among the prefrail, but with a lower magnitude of effect. The SHARE-operationalized frailty phenotype is significantly associated with all tested health outcomes independent of baseline morbidity and disability in community-dwelling men and women aged 60 and older living in Europe. The robustness of results validate the use of this phenotype in the SHARE survey for future research on frailty in Europe.

  11. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.

    PubMed

    Mukherjee, Vaskar; Radecka, Dorota; Aerts, Guido; Verstrepen, Kevin J; Lievens, Bart; Thevelein, Johan M

    2017-01-01

    Non-conventional yeasts present a huge, yet barely exploited, resource of yeast biodiversity for industrial applications. This presents a great opportunity to explore alternative ethanol-fermenting yeasts that are more adapted to some of the stress factors present in the harsh environmental conditions in second-generation (2G) bioethanol fermentation. Extremely tolerant yeast species are interesting candidates to investigate the underlying tolerance mechanisms and to identify genes that when transferred to existing industrial strains could help to design more stress-tolerant cell factories. For this purpose, we performed a high-throughput phenotypic evaluation of a large collection of non-conventional yeast species to identify the tolerance limits of the different yeast species for desirable stress tolerance traits in 2G bioethanol production. Next, 12 multi-tolerant strains were selected and used in fermentations under different stressful conditions. Five strains out of which, showing desirable fermentation characteristics, were then evaluated in small-scale, semi-anaerobic fermentations with lignocellulose hydrolysates. Our results revealed the phenotypic landscape of many non-conventional yeast species which have not been previously characterized for tolerance to stress conditions relevant for bioethanol production. This has identified for each stress condition evaluated several extremely tolerant non- Saccharomyces yeasts. It also revealed multi-tolerance in several yeast species, which makes those species good candidates to investigate the molecular basis of a robust general stress tolerance. The results showed that some non-conventional yeast species have similar or even better fermentation efficiency compared to S. cerevisiae in the presence of certain stressful conditions. Prior to this study, our knowledge on extreme stress-tolerant phenotypes in non-conventional yeasts was limited to only few species. Our work has now revealed in a systematic way the potential of non- Saccharomyces species to emerge either as alternative host species or as a source of valuable genetic information for construction of more robust industrial S. serevisiae bioethanol production yeasts. Striking examples include yeast species like Pichia kudriavzevii and Wickerhamomyces anomalus that show very high tolerance to diverse stress factors. This large-scale phenotypic analysis has yielded a detailed database useful as a resource for future studies to understand and benefit from the molecular mechanisms underlying the extreme phenotypes of non-conventional yeast species.

  12. PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit

    PubMed Central

    Aiello, Allison E.; Dowd, Jennifer B.; Jayabalasingham, Bamini; Feinstein, Lydia; Uddin, Monica; Simanek, Amanda M.; Cheng, Caroline K.; Galea, Sandro; Wildman, Derek E.; Koenen, Karestan; Pawelec, Graham

    2016-01-01

    Background Psychosocial stress is thought to play a key role in the acceleration of immunological aging. This study investigated the relationship between lifetime and past-year history of post-traumatic stress disorder (PTSD) and the distribution of T cell phenotypes thought to be characteristic of immunological aging. Methods Data were from 85 individuals who participated in the community-based Detroit Neighborhood Health Study. Immune markers assessed included the CD4:CD8 ratio, the ratio of late-differentiated effector (CCR7-CD45RA+CD27-CD28-) to naïve (CCR7+CD45RA+CD27+CD28+) T cells, the percentage of KLRG1-expressing cells, and the percentage of CD57-expressing cells. Results In models adjusted for age, gender, race/ethnicity, education, smoking status, and medication use, we found that past-year PTSD was associated with statistically significant differences in the CD8+ T cell population, including a higher ratio of late-differentiated effector to naïve T cells, a higher percentage of KLRG1+ cells, and a higher percentage of CD57+ cells. The percentage of CD57+ cells in the CD4 subset was also significantly higher and the CD4:CD8 ratio significantly lower among individuals who had experienced past-year PTSD. Lifetime PTSD was also associated with differences in several parameters of immune aging. Conclusions PTSD is associated with an aged immune phenotype and should be evaluated as a potential catalyzer of accelerated immunological aging in future studies. PMID:26894484

  13. Cross-validation of clinical characteristics and treatment patterns associated with phenotypes for lithium response defined by the Alda scale.

    PubMed

    Scott, Jan; Geoffroy, Pierre Alexis; Sportiche, Sarah; Brichant-Petit-Jean, Clara; Gard, Sebastien; Kahn, Jean-Pierre; Azorin, Jean-Michel; Henry, Chantal; Etain, Bruno; Bellivier, Frank

    2017-01-15

    It is increasingly recognised that reliable and valid assessments of lithium response are needed in order to target more efficiently the use of this medication in bipolar disorders (BD) and to identify genotypes, endophenotypes and biomarkers of response. In a large, multi-centre, clinically representative sample of 300 cases of BD, we assess external clinical validators of lithium response phenotypes as defined using three different recommended approaches to scoring the Alda lithium response scale. The scale comprises an A scale (rating lithium response) and a B scale (assessing confounders). Analysis of the two continuous scoring methods (A scale score minus the B scale score, or A scale score in those with a low B scale score) demonstrated that 21-23% of the explained variance in lithium response was accounted for by a positive family history of BD I and the early introduction of lithium. Categorical definitions of response suggest poor response is also associated with a positive history of alcohol and/or substance use comorbidities. High B scale scores were significantly associated with longer duration of illness prior to receiving lithium and the presence of psychotic symptoms. The original sample was not recruited specifically to study lithium response. The Alda scale is designed to assess response retrospectively. This cross-validation study identifies different clinical phenotypes of lithium response when defined by continuous or categorical measures. Future clinical, genetic and biomarker studies should report both the findings and the method employed to assess lithium response according to the Alda scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Variation in the ovine cortisol response to systemic bacterial endotoxin challenge is predominantly determined by signalling within the hypothalamic-pituitary-adrenal axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You Qiumei; Karrow, Niel A.; Cao Honghe

    Bi-directional communication between the neuroendocrine and immune systems is designed, in part, to maintain or restore homeostasis during physiological stress. Exposure to endotoxin during Gram-negative bacterial infection for example, elicits the release of pro-inflammatory cytokines that activate the hypothalamic-pituitary-adrenal axis (HPAA). The secretion of adrenal glucocorticoids subsequently down regulates the host inflammatory response, minimizing potential tissue damage. Sequence and epigenetic variants in genes involved in regulating the neuroendocrine and immune systems are likely to contribute to individual differences in the HPAA response, and this may influence the host anti-inflammatory response to toxin exposure and susceptibility to inflammatory disease. In thismore » study, high (HCR) and low (LCR) cortisol responders were selected from a normal population of 110 female sheep challenged iv with Escherichia coli endotoxin (400 ng/kg) to identify potential determinants that contribute to variation in the cortisol response phenotype. This phenotype was stable over several years in the HCR and LCR animals, and did not appear to be attributed to differences in expression of hepatic immune-related genes or systemic pro-inflammatory cytokine concentrations. Mechanistic studies using corticotrophin-releasing factor (0.5 {mu}g/kg body weight), arginine vasopressin (0.5 {mu}g/kg), and adrenocorticotropic hormone (0.5 {mu}g/kg) administered iv demonstrated that variation in this phenotype is largely determined by signalling within the HPAA. Future studies will use this ovine HCR/LCR model to investigate potential genetic and epigenetic variants that may contribute to variation in cortisol responsiveness to bacterial endotoxin.« less

  15. Knowing your genes: does this impact behaviour change?

    PubMed

    O'Donovan, Clare B; Walsh, Marianne C; Gibney, Michael J; Brennan, Lorraine; Gibney, Eileen R

    2017-08-01

    It is postulated that knowledge of genotype may be more powerful than other types of personalised information in terms of motivating behaviour change. However, there is also a danger that disclosure of genetic risk may promote a fatalistic attitude and demotivate individuals. The original concept of personalised nutrition (PN) focused on genotype-based tailored dietary advice; however, PN can also be delivered based on assessment of dietary intake and phenotypic measures. Whilst dietitians currently provide PN advice based on diet and phenotype, genotype-based PN advice is not so readily available. The aim of this review is to examine the evidence for genotype-based personalised information on motivating behaviour change, and factors which may affect the impact of genotype-based personalised advice. Recent findings in PN will also be discussed, with respect to a large European study, Food4Me, which investigated the impact of varying levels of PN advice on motivating behaviour change. The researchers reported that PN advice resulted in greater dietary changes compared with general healthy eating advice, but no additional benefit was observed for PN advice based on phenotype and genotype information. Within Food4Me, work from our group revealed that knowledge of MTHFR genotype did not significantly improve intakes of dietary folate. In general, evidence is weak with regard to genotype-based PN advice. For future work, studies should test the impact of PN advice developed on a strong nutrigenetic evidence base, ensure an appropriate study design for the research question asked, and incorporate behaviour change techniques into the intervention.

  16. Phenotype Refinement Strengthens the Association of AHR and CYP1A1 Genotype with Caffeine Consumption

    PubMed Central

    McMahon, George; Taylor, Amy E.; Davey Smith, George; Munafò, Marcus R.

    2014-01-01

    Two genetic loci, one in the cytochrome P450 1A1 (CYP1A1) and 1A2 (CYP1A2) gene region (rs2472297) and one near the aryl-hydrocarbon receptor (AHR) gene (rs6968865), have been associated with habitual caffeine consumption. We sought to establish whether a more refined and comprehensive assessment of caffeine consumption would provide stronger evidence of association, and whether a combined allelic score comprising these two variants would further strengthen the association. We used data from between 4,460 and 7,520 women in the Avon Longitudinal Study of Parents and Children, a longitudinal birth cohort based in the United Kingdom. Self-report data on coffee, tea and cola consumption (including consumption of decaffeinated drinks) were available at multiple time points. Both genotypes were individually associated with total caffeine consumption, and with coffee and tea consumption. There was no association with cola consumption, possibly due to low levels of consumption in this sample. There was also no association with measures of decaffeinated drink consumption, indicating that the observed association is most likely mediated via caffeine. The association was strengthened when a combined allelic score was used, accounting for up to 1.28% of phenotypic variance. This was not associated with potential confounders of observational association. A combined allelic score accounts for sufficient phenotypic variance in caffeine consumption that this may be useful in Mendelian randomization studies. Future studies may therefore be able to use this combined allelic score to explore causal effects of habitual caffeine consumption on health outcomes. PMID:25075865

  17. Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia

    USDA-ARS?s Scientific Manuscript database

    Hyperphagia is a central feature of inherited disorders (e.g., Prader-Willi Syndrome) in which obesity is a primary phenotypic component. Hyperphagia may also contribute to obesity as observed in the general population, thus raising the potential importance of common underlying mechanisms and treatm...

  18. Possibilities in an age of genomics: The future of the breeding index

    USDA-ARS?s Scientific Manuscript database

    Selective breeding has been practiced since domestication, but early breeders commonly selected on appearance (e.g., coat color and pattern) rather than quantitative phenotypes (e.g., milk yield). A breeding index converts information about several traits of a cow – for example, how much she milks a...

  19. A hymenopterist’s guide to the Hymenoptera Anatomy Ontology: utility, clarification, and future directions

    USDA-ARS?s Scientific Manuscript database

    Hymenoptera exhibit an incredible diversity of phenotypes, the result of ~240 million years of evolution and the primary subject of more than 250 years of research. Here we describe the history, development, and utility of the Hymenoptera Anatomy Ontology (HAO) and its associated applications. These...

  20. Symposium review: Possibilities in an age of genomics: The future of the breeding index

    USDA-ARS?s Scientific Manuscript database

    Selective breeding has been practiced since domestication, but early breeders commonly selected on appearance (e.g., coat color) rather than quantitative phenotypes (e.g., milk yield). A breeding index converts information about several traits into 1 number used for selection and also to predict an ...

  1. Project Baseline: An unprecedented resource to study plant evolution across space and time.

    PubMed

    Etterson, Julie R; Franks, Steven J; Mazer, Susan J; Shaw, Ruth G; Gorden, Nicole L Soper; Schneider, Heather E; Weber, Jennifer J; Winkler, Katharine J; Weis, Arthur E

    2016-01-01

    Project Baseline is a seed bank that offers an unprecedented opportunity to examine spatial and temporal dimensions of microevolution during an era of rapid environmental change. Over the upcoming 50 years, biologists will withdraw genetically representative samples of past populations from this time capsule of seeds and grow them contemporaneously with modern samples to detect any phenotypic and molecular evolution that has occurred during the intervening time. We carefully developed this living genome bank using protocols to enhance its experimental value by collecting from multiple populations and species across a broad geographical range in sites that are likely to be preserved into the future. Seeds are accessioned with site and population data and are stored by maternal line under conditions that maximize seed longevity. This open-access resource will be available to researchers at regular intervals to evaluate contemporary evolution. To date, the Project Baseline collection includes 100-200 maternal lines of each of 61 species collected from over 831 populations on sites that are likely to be preserved into the future across the United States (∼78,000 maternal lines). Our strategically designed collection circumvents some problems that can cloud the results of "resurrection" studies involving naturally preserved or existing seed collections that are available fortuitously. The resurrection approach can be coupled with long-established and newer techniques over the next five decades to elucidate genetic change and thereby vastly improve our understanding of temporal and spatial changes in phenotype and the evolutionary processes underlying it. © 2016 Botanical Society of America.

  2. Deepening our understanding of immune sentinels in the skin

    PubMed Central

    Nestle, Frank O.; Nickoloff, Brian J.

    2007-01-01

    Advances in our understanding of the skin immune system have a major impact on studies of skin autoimmunity, graft-versus-host disease, inflammation, and cancer as well as on the development of novel vaccines and immunotherapy approaches. In this issue of the JCI, Zaba et al. carefully dissected the complex network of DCs and macrophages residing in normal human skin and defined novel phenotypic markers for these immunocytes (see the related article beginning on page 2517). These studies provide the basis for better insight into the role of important immune sentinels contributing to the maintenance of skin tissue homeostasis and lay the foundation for future studies of the skin immune system. PMID:17786233

  3. Gene-Environment Studies and Borderline Personality Disorder: A Review

    PubMed Central

    Carpenter, Ryan W.; Tomko, Rachel L.; Boomsma, Dorret I.

    2014-01-01

    We review recent gene-environment studies relevant to borderline personality disorder, including those focusing on impulsivity, emotion sensitivity, suicidal behavior, aggression and anger, and the borderline personality phenotype itself. Almost all the studies reviewed suffered from a number of methodological and statistical problems, limiting the conclusions that currently can be drawn. The best evidence to date supports a gene-environment correlation (rGE) model for borderline personality traits and a range of adverse life events, indicating that those at risk for BPD are also at increased risk for exposure to environments that may trigger BPD. We provide suggestions regarding future research on GxE interaction and rGE effects in borderline personality. PMID:23250817

  4. Premonitory Symptoms of Migraine in Childhood and Adolescence.

    PubMed

    Karsan, N; Prabhakar, P; Goadsby, P J

    2017-07-01

    Premonitory symptoms in migraine; symptoms occurring before the onset of migraine pain or aura, are an increasingly recognised area of interest within headache research. It has been recently documented in the literature that these symptoms also occur in children and adolescents, with a comparable phenotype to adults. This review discusses the wide presentation of premonitory symptoms in migraine in children and adolescents, and the importance of understanding how these early symptoms are mediated in order to ensure that targeted abortive therapies are developed in the future. Recognition of these symptoms by parents, guardians, teachers and carers is of importance in ensuring early and effective attack treatment. A previous clinic-based questionnaire study in 103 children found a prevalence of premonitory symptoms in paediatric migraine of 67%, with a mean number of reported symptoms of two. A recent study found that in a clinic population of 100 children or adolescents with a migraine diagnosis who were preselected as having at least one premonitory symptom associated with their attacks, two or more premonitory symptoms were reported by 85% of patients. The most common symptoms were fatigue, mood change and neck stiffness. Although the population prevalence of premonitory symptoms in migraine within the paediatric population, or their ability to predict accurately the onset of an impending headache cannot be deduced from the retrospective studies performed to date, premonitory symptoms occur in children as young as 18 months old. Understanding the biological basis of these, and their heterogeneous phenotype may help future targeted therapeutic research, helping the development of drugs that act before the onset of pain, limiting the morbidity associated with the migraine attack.

  5. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    PubMed

    Richardson, Bryce A; Chaney, Lindsay; Shaw, Nancy L; Still, Shannon M

    2017-06-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R 2  = 0.79, marginal R 2  = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. Clinical review: Genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed.

    PubMed

    Hsu, Yi-Hsiang; Kiel, Douglas P

    2012-10-01

    The primary goals of genome-wide association studies (GWAS) are to discover new molecular and biological pathways involved in the regulation of bone metabolism that can be leveraged for drug development. In addition, the identified genetic determinants may be used to enhance current risk factor profiles. There have been more than 40 published GWAS on skeletal phenotypes, predominantly focused on dual-energy x-ray absorptiometry-derived bone mineral density (BMD) of the hip and spine. Sixty-six BMD loci have been replicated across all the published GWAS, confirming the highly polygenic nature of BMD variation. Only seven of the 66 previously reported genes (LRP5, SOST, ESR1, TNFRSF11B, TNFRSF11A, TNFSF11, PTH) from candidate gene association studies have been confirmed by GWAS. Among 59 novel BMD GWAS loci that have not been reported by previous candidate gene association studies, some have been shown to be involved in key biological pathways involving the skeleton, particularly Wnt signaling (AXIN1, LRP5, CTNNB1, DKK1, FOXC2, HOXC6, LRP4, MEF2C, PTHLH, RSPO3, SFRP4, TGFBR3, WLS, WNT3, WNT4, WNT5B, WNT16), bone development: ossification (CLCN7, CSF1, MEF2C, MEPE, PKDCC, PTHLH, RUNX2, SOX6, SOX9, SPP1, SP7), mesenchymal-stem-cell differentiation (FAM3C, MEF2C, RUNX2, SOX4, SOX9, SP7), osteoclast differentiation (JAG1, RUNX2), and TGF-signaling (FOXL1, SPTBN1, TGFBR3). There are still 30 BMD GWAS loci without prior molecular or biological evidence of their involvement in skeletal phenotypes. Other skeletal phenotypes that either have been or are being studied include hip geometry, bone ultrasound, quantitative computed tomography, high-resolution peripheral quantitative computed tomography, biochemical markers, and fractures such as vertebral, nonvertebral, hip, and forearm. Although several challenges lie ahead as GWAS moves into the next generation, there are prospects of new discoveries in skeletal biology. This review integrates findings from previous GWAS and provides a roadmap for future directions building on current GWAS successes.

  7. Genetic and neurodevelopmental influences in autistic disorder.

    PubMed

    Nicolson, Rob; Szatmari, Peter

    2003-09-01

    In the past, autism was considered to be largely psychogenic. However, research in the last 2 decades indicates that autism is largely caused by genetic factors that lead to abnormal brain development. This article reviews research into the genetic and neurodevelopmental factors underlying autism. We review the findings from genetic and brain-imaging studies of autism over the past 15 years and synthesize these findings as a guide for future research. Genome scans and association studies have suggested potential genomic regions and genes, respectively, that may be involved in the etiology of autism, and there have been some replications of these results. Similarly, the findings that brain volume is exaggerated in autism and corpus callosum size is reduced have also been independently replicated. Unfortunately, studies of other subcortical structures remain inconclusive or contradictory. Overwhelming evidence now supports a neurobiological basis for autism. However, further refinements will be needed to guide future studies, particularly to identify the most informative phenotypes to investigate. Additionally, studies examining the role of genetic factors in the brain abnormalities underlying autism will likely lead to further findings that will enhance our understanding of autism's causes.

  8. Pediatric Autoimmune Disorders Associated with Streptococcal Infections and Tourette's Syndrome in Preclinical Studies

    PubMed Central

    Spinello, Chiara; Laviola, Giovanni; Macrì, Simone

    2016-01-01

    Accumulating evidence suggests that Tourette's Syndrome (TS) – a multifactorial pediatric disorder characterized by the recurrent exhibition of motor tics and/or vocal utterances – can partly depend on immune dysregulation provoked by early repeated streptococcal infections. The natural and adaptive antibody-mediated reaction to streptococcus has been proposed to potentially turn into a pathological autoimmune response in vulnerable individuals. Specifically, in conditions of increased permeability of the blood brain barrier (BBB), streptococcus-induced antibodies have been proposed to: (i) reach neuronal targets located in brain areas responsible for motion control; and (ii) contribute to the exhibition of symptoms. This theoretical framework is supported by indirect evidence indicating that a subset of TS patients exhibit elevated streptococcal antibody titers upon tic relapses. A systematic evaluation of this hypothesis entails preclinical studies providing a proof of concept of the aforementioned pathological sequelae. These studies shall rest upon individuals characterized by a vulnerable immune system, repeatedly exposed to streptococcus, and carefully screened for phenotypes isomorphic to the pathological signs of TS observed in patients. Preclinical animal models may thus constitute an informative, useful tool upon which conducting targeted, hypothesis-driven experiments. In the present review we discuss the available evidence in preclinical models in support of the link between TS and pediatric autoimmune neuropsychiatric disorders associated with streptococcus infections (PANDAS), and the existing gaps that future research shall bridge. Specifically, we report recent preclinical evidence indicating that the immune responses to repeated streptococcal immunizations relate to the occurrence of behavioral and neurological phenotypes reminiscent of TS. By the same token, we discuss the limitations of these studies: limited evidence of behavioral phenotypes isomorphic to tics and scarce knowledge about the immunological phenomena favoring the transition from natural adaptive immunity to pathological outcomes. PMID:27445678

  9. CDKL5 Gene-Related Epileptic Encephalopathy in Estonia: Four Cases, One Novel Mutation Causing Severe Phenotype in a Boy, and Overview of the Literature.

    PubMed

    Lilles, Stella; Talvik, Inga; Noormets, Klari; Vaher, Ulvi; Õunap, Katrin; Reimand, Tiia; Sander, Valentin; Ilves, Pilvi; Talvik, Tiina

    2016-12-01

    Cyclin-dependent kinase-like 5 ( CDKL5 ) gene mutations have mainly been found in females with early infantile epileptic encephalopathy (EIEE), severe intellectual disability, and Rett-like features. To date, only 22 boys have been reported, presenting with far more severe phenotypic features. We report the first cases of CDKL5 gene-related EIEE in Estonia diagnosed using panels of epilepsy-associated genes and describe the phenotype-genotype correlations in three male and one female patient. One of the mutations, identified in a male patient, was a novel de novo hemizygous frameshift mutation (NM_003159.2:c.2225_2228del (p.Glu742Afs*41)) in exon 15 of CDKL5. All boys have a more severe phenotype than the female patient. In boys with early onset of seizures and poor development with absent or poor eye contact, CDKL5 gene-related EIEE can be suspected and epilepsy-associated genes should be analyzed for early etiological diagnosis. Early genetic diagnosis would be the cornerstone in personalized treatment in the future. Georg Thieme Verlag KG Stuttgart · New York.

  10. Surprisal analysis of Glioblastoma Multiform (GBM) microRNA dynamics unveils tumor specific phenotype.

    PubMed

    Zadran, Sohila; Remacle, Francoise; Levine, Raphael

    2014-01-01

    Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer -specific phenotypic state. Utilizing global miRNA microarray expression data of normal and GBM patients tumors, surprisal analysis characterizes a miRNA system response capable of distinguishing GBM samples from normal tissue biopsy samples. We indicate that the miRNAs contributing to this system behavior is a disease phenotypic state specific to GBM and is therefore a unique GBM-specific thermodynamic signature. MiRNAs implicated in the regulation of stochastic signaling processes crucial in the hallmarks of human cancer, dominate this GBM-cancer phenotypic state. With this theory, we were able to distinguish with high fidelity GBM patients solely by monitoring the dynamics of miRNAs present in patients' biopsy samples. We anticipate that the GBM-specific thermodynamic signature will provide a critical translational tool in better characterizing cancer types and in the development of future therapeutics for GBM.

  11. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations

    PubMed Central

    Edwards, Robert R.; Dworkin, Robert H.; Turk, Dennis C.; Angst, Martin S.; Dionne, Raymond; Freeman, Roy; Hansson, Per; Haroutounian, Simon; Arendt-Nielsen, Lars; Attal, Nadine; Baron, Ralf; Brell, Joanna; Bujanover, Shay; Burke, Laurie B.; Carr, Daniel; Chappell, Amy S.; Cowan, Penney; Etropolski, Mila; Fillingim, Roger B.; Gewandter, Jennifer S.; Katz, Nathaniel P.; Kopecky, Ernest A.; Markman, John D.; Nomikos, George; Porter, Linda; Rappaport, Bob A.; Rice, Andrew S.C.; Scavone, Joseph M.; Scholz, Joachim; Simon, Lee S.; Smith, Shannon M.; Tobias, Jeffrey; Tockarshewsky, Tina; Veasley, Christine; Versavel, Mark; Wasan, Ajay D.; Wen, Warren; Yarnitsky, David

    2018-01-01

    There is tremendous inter-patient variability in the response to analgesic therapy (even for efficacious treatments), which can be the source of great frustration in clinical practice. This has led to calls for “precision medicine”, or personalized pain therapeutics (i.e., empirically-based algorithms that determine the optimal treatments, or treatment combinations, for individual patients) that would presumably improve both the clinical care of patients with pain, and the success rates for putative analgesic drugs in Phase 2 and 3 clinical trials. However, before implementing this approach, the characteristics of individual patients or subgroups of patients that increase or decrease the response to a specific treatment need to be identified. The challenge is to identify the measurable phenotypic characteristics of patients that are most predictive of individual variation in analgesic treatment outcomes, and the measurement tools that are best suited to evaluate these characteristics. In this article, we present evidence on the most promising of these phenotypic characteristics for use in future research, including psychosocial factors, symptom characteristics, sleep patterns, responses to noxious stimulation, endogenous pain-modulatory processes, and response to pharmacologic challenge. We provide evidence-based recommendations for core phenotyping domains and recommend measures of each domain. PMID:27152687

  12. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana.

    PubMed

    Ibañez, Carla; Poeschl, Yvonne; Peterson, Tom; Bellstädt, Julia; Denk, Kathrin; Gogol-Döring, Andreas; Quint, Marcel; Delker, Carolin

    2017-07-06

    Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.

  13. High-throughput phenotyping of large wheat breeding nurseries using unmanned aerial system, remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Haghighattalab, Atena

    Wheat breeders are in a race for genetic gain to secure the future nutritional needs of a growing population. Multiple barriers exist in the acceleration of crop improvement. Emerging technologies are reducing these obstacles. Advances in genotyping technologies have significantly decreased the cost of characterizing the genetic make-up of candidate breeding lines. However, this is just part of the equation. Field-based phenotyping informs a breeder's decision as to which lines move forward in the breeding cycle. This has long been the most expensive and time-consuming, though most critical, aspect of breeding. The grand challenge remains in connecting genetic variants to observed phenotypes followed by predicting phenotypes based on the genetic composition of lines or cultivars. In this context, the current study was undertaken to investigate the utility of UAS in assessment field trials in wheat breeding programs. The major objective was to integrate remotely sensed data with geospatial analysis for high throughput phenotyping of large wheat breeding nurseries. The initial step was to develop and validate a semi-automated high-throughput phenotyping pipeline using a low-cost UAS and NIR camera, image processing, and radiometric calibration to build orthomosaic imagery and 3D models. The relationship between plot-level data (vegetation indices and height) extracted from UAS imagery and manual measurements were examined and found to have a high correlation. Data derived from UAS imagery performed as well as manual measurements while exponentially increasing the amount of data available. The high-resolution, high-temporal HTP data extracted from this pipeline offered the opportunity to develop a within season grain yield prediction model. Due to the variety in genotypes and environmental conditions, breeding trials are inherently spatial in nature and vary non-randomly across the field. This makes geographically weighted regression models a good choice as a geospatial prediction model. Finally, with the addition of georeferenced and spatial data integral in HTP and imagery, we were able to reduce the environmental effect from the data and increase the accuracy of UAS plot-level data. The models developed through this research, when combined with genotyping technologies, increase the volume, accuracy, and reliability of phenotypic data to better inform breeder selections. This increased accuracy with evaluating and predicting grain yield will help breeders to rapidly identify and advance the most promising candidate wheat varieties.

  14. Classification of High Intensity Zones of the Lumbar Spine and Their Association with Other Spinal MRI Phenotypes: The Wakayama Spine Study.

    PubMed

    Teraguchi, Masatoshi; Samartzis, Dino; Hashizume, Hiroshi; Yamada, Hiroshi; Muraki, Shigeyuki; Oka, Hiroyuki; Cheung, Jason Pui Yin; Kagotani, Ryohei; Iwahashi, Hiroki; Tanaka, Sakae; Kawaguchi, Hiroshi; Nakamura, Kozo; Akune, Toru; Cheung, Kenneth Man-Chee; Yoshimura, Noriko; Yoshida, Munehito

    2016-01-01

    High intensity zones (HIZ) of the lumbar spine are a phenotype of the intervertebral disc noted on MRI whose clinical relevance has been debated. Traditionally, T2-weighted (T2W) magnetic resonance imaging (MRI) has been utilized to identify HIZ of lumbar discs. However, controversy exists with regards to HIZ morphology, topography, and association with other MRI spinal phenotypes. Moreover, classification of HIZ has not been thoroughly defined in the past and the use of additional imaging parameters (e.g. T1W MRI) to assist in defining this phenotype has not been addressed. A cross-sectional study of 814 (69.8% females) subjects with mean age of 63.6 years from a homogenous Japanese population was performed. T2W and T1W sagittal 1.5T MRI was obtained on all subjects to assess HIZ from L1-S1. We created a morphological and topographical HIZ classification based on disc level, shape type (round, fissure, vertical, rim, and enlarged), location within the disc (posterior, anterior), and signal type on T1W MRI (low, high and iso intensity) in comparison to the typical high intensity on T2W MRI. HIZ was noted in 38.0% of subjects. Of these, the prevalence of posterior, anterior, and both posterior/anterior HIZ in the overall lumbar spine were 47.3%, 42.4%, and 10.4%, respectively. Posterior HIZ was most common, occurring at L4/5 (32.5%) and L5/S1 (47.0%), whereas anterior HIZ was most common at L3/4 (41.8%). T1W iso-intensity type of HIZ was most prevalent (71.8%), followed by T1W high-intensity (21.4%) and T1W low-intensity (6.8%). Of all discs, round types were most prevalent (anterior: 3.6%, posterior: 3.7%) followed by vertical type (posterior: 1.6%). At all affected levels, there was a significant association between HIZ and disc degeneration, disc bulge/protrusion and Modic type II (p<0.01). Posterior HIZ and T1W high-intensity type of HIZ were significantly associated with disc bulge/protrusion and disc degeneration (p<0.01). In addition, posterior HIZ was significantly associated with Modic type II and III. T1W low-intensity type of HIZ was significantly associated with Modic type II. This is the first large-scale study reporting a novel classification scheme of HIZ of the lumbar spine. This study is the first that has utilized T2W and T1W MRIs in differentiating HIZ sub-phenotypes. Specific HIZ sub-phenotypes were found to be more associated with specific MRI degenerative changes. With a more detailed description of the HIZ phenotype, this scheme can be standardized for future clinical and research initiatives.

  15. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia

    PubMed Central

    2013-01-01

    Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312

  16. An ontology for Autism Spectrum Disorder (ASD) to infer ASD phenotypes from Autism Diagnostic Interview-Revised data.

    PubMed

    Mugzach, Omri; Peleg, Mor; Bagley, Steven C; Guter, Stephen J; Cook, Edwin H; Altman, Russ B

    2015-08-01

    Our goal is to create an ontology that will allow data integration and reasoning with subject data to classify subjects, and based on this classification, to infer new knowledge on Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders (NDD). We take a first step toward this goal by extending an existing autism ontology to allow automatic inference of ASD phenotypes and Diagnostic & Statistical Manual of Mental Disorders (DSM) criteria based on subjects' Autism Diagnostic Interview-Revised (ADI-R) assessment data. Knowledge regarding diagnostic instruments, ASD phenotypes and risk factors was added to augment an existing autism ontology via Ontology Web Language class definitions and semantic web rules. We developed a custom Protégé plugin for enumerating combinatorial OWL axioms to support the many-to-many relations of ADI-R items to diagnostic categories in the DSM. We utilized a reasoner to infer whether 2642 subjects, whose data was obtained from the Simons Foundation Autism Research Initiative, meet DSM-IV-TR (DSM-IV) and DSM-5 diagnostic criteria based on their ADI-R data. We extended the ontology by adding 443 classes and 632 rules that represent phenotypes, along with their synonyms, environmental risk factors, and frequency of comorbidities. Applying the rules on the data set showed that the method produced accurate results: the true positive and true negative rates for inferring autistic disorder diagnosis according to DSM-IV criteria were 1 and 0.065, respectively; the true positive rate for inferring ASD based on DSM-5 criteria was 0.94. The ontology allows automatic inference of subjects' disease phenotypes and diagnosis with high accuracy. The ontology may benefit future studies by serving as a knowledge base for ASD. In addition, by adding knowledge of related NDDs, commonalities and differences in manifestations and risk factors could be automatically inferred, contributing to the understanding of ASD pathophysiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis

    PubMed Central

    2012-01-01

    Background Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Methods Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. Results A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. Conclusions This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research. PMID:22849591

  18. Reprint of: The new approach to epilepsy classification: Cognition and behavior in adult epilepsy syndromes.

    PubMed

    Baxendale, Sallie; Thompson, Pamela

    2016-11-01

    The revised terminology and concepts for the organization of seizures and epilepsy proposed by the ILAE Commission on Classification and Terminology in 2010 allows for a number of new opportunities in the study of cognition and behavior in adults. This review examines the literature that has looked for behavioral and cognitive correlates of the newly recognized genetic epilepsies in adults. While some studies report clear cognitive phenotypes associated with specific genetic mutations in adults with epilepsy, others report remarkable clinical heterogeneity. In the second part of this review, we discuss some of the factors that may influence the findings in this literature. Cognitive function is the product of both genetic and environmental influences. Neuropsychological phenotypes under direct genetic influence may be wider and more subtle than specific deficits within discreet cognitive domains and may be reflected in broader, multidimensional measures of cognitive function than those tapped by scores on standardized tests of function. Future studies must be carefully designed to reflect these factors. It is also imperative that studies with negative findings are assigned as much value as those with positive results and published accordingly. This article is part of a Special Issue titled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Vitamin D and the brain: key questions for future research.

    PubMed

    Cui, Xiaoying; Gooch, Helen; Groves, Natalie J; Sah, Pankaj; Burne, Thomas H; Eyles, Darryl W; McGrath, John J

    2015-04-01

    Over the last decade a convergent body of evidence has emerged from epidemiology, animal experiments and clinical trials which links low vitamin D status with a range of adverse neuropsychiatric outcomes. This research demonstrates that the timing of exposure to low vitamin D influences the nature of brain phenotypes, as exposures during gestation versus adulthood result in different phenotypes. With respect to early life exposures, there is robust evidence from rodent experiments indicating that transient developmental vitamin D (DVD) deficiency is associated with changes in brain structure, neurochemistry, gene and protein expression and behavior. In particular, DVD deficiency is associated with alterations in the dopaminergic neurotransmitter systems. In contrast, recently published animal experiments indicate that adult vitamin D (AVD) deficiency is associated with more subtle neurochemical and behavioral phenotypes. This paper explores key issues that need to be addressed in future research. There is a need to define the timing and duration of the 'critical window' during which low vitamin D status is associated with differential and adverse brain outcomes. We discuss the role for 'two-hit hypotheses', which propose that adult vitamin D deficiency leaves the brain more vulnerable to secondary adverse exposures, and thus may exacerbate disease progression. Finally, we explore the evidence implicating a role for vitamin D in rapid, non-genomic mechanisms that may involve L-type calcium channels and brain function. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications.

    PubMed

    Alvarez, Mario Moisés; Liu, Julie C; Trujillo-de Santiago, Grissel; Cha, Byung-Hyun; Vishwakarma, Ajaykumar; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-10-28

    Macrophages are key players in many physiological scenarios including tissue homeostasis. In response to injury, typically the balance between macrophage sub-populations shifts from an M1 phenotype (pro-inflammatory) to an M2 phenotype (anti-inflammatory). In tissue engineering scenarios, after implantation of any device, it is desirable to exercise control on this M1-M2 progression and to ensure a timely and smooth transition from the inflammatory to the healing stage. In this review, we briefly introduce the current state of knowledge regarding macrophage function and nomenclature. Next, we discuss the use of controlled release strategies to tune the balance between the M1 and M2 phenotypes in the context of tissue engineering applications. We discuss recent literature related to the release of anti-inflammatory molecules (including nucleic acids) and the sequential release of cytokines to promote a timely M1-M2 shift. In addition, we describe the use of macrophages as controlled release agents upon stimulation by physical and/or mechanical cues provided by scaffolds. Moreover, we discuss current and future applications of "smart" implantable scaffolds capable of controlling the cascade of biochemical events related to healing and vascularization. Finally, we provide our opinion on the current challenges and the future research directions to improve our understanding of the M1-M2 macrophage balance and properly exploit it in tissue engineering and regenerative medicine applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Integrating environmental and genetic effects to predict responses of tree populations to climate.

    PubMed

    Wang, Tongli; O'Neill, Gregory A; Aitken, Sally N

    2010-01-01

    Climate is a major environmental factor affecting the phenotype of trees and is also a critical agent of natural selection that has molded among-population genetic variation. Population response functions describe the environmental effect of planting site climates on the performance of a single population, whereas transfer functions describe among-population genetic variation molded by natural selection for climate. Although these approaches are widely used to predict the responses of trees to climate change, both have limitations. We present a novel approach that integrates both genetic and environmental effects into a single "universal response function" (URF) to better predict the influence of climate on phenotypes. Using a large lodgepole pine (Pinus contorta Dougl. ex Loud.) field transplant experiment composed of 140 populations planted on 62 sites to demonstrate the methodology, we show that the URF makes full use of data from provenance trials to: (1) improve predictions of climate change impacts on phenotypes; (2) reduce the size and cost of future provenance trials without compromising predictive power; (3) more fully exploit existing, less comprehensive provenance tests; (4) quantify and compare environmental and genetic effects of climate on population performance; and (5) predict the performance of any population growing in any climate. Finally, we discuss how the last attribute allows the URF to be used as a mechanistic model to predict population and species ranges for the future and to guide assisted migration of seed for reforestation, restoration, or afforestation and genetic conservation in a changing climate.

  2. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications

    PubMed Central

    Alvarez, Mario Moisés; Liu, Julie C.; Santiago, Grissel Trujillo-de; Cha, Byung-Hyun; Vishwakarma, Ajaykumar; Ghaemmaghami, Amir; Khademhosseini, Ali

    2016-01-01

    Macrophages are key players in many physiological scenarios including tissue homeostasis. In response to injury, typically the balance between macrophage sub-populations shifts from an M1 phenotype (pro-inflammatory) to an M2 phenotype (anti-inflammatory). In tissue engineering scenarios, after implantation of any device, it is desirable to exercise control on this M1-M2 progression and to ensure a timely and smooth transition from the inflammatory to the healing stage. In this review, we briefly introduce the current state of knowledge regarding macrophage function and nomenclature. Next, we discuss the use of controlled release strategies to tune the balance between the M1 and M2 phenotypes in the context of tissue engineering applications. We discuss recent literature related to the release of anti-inflammatory molecules (including nucleic acids) and the sequential release of cytokines to promote a timely M1-M2 shift. In addition, we describe the use of macrophages as controlled release agents upon stimulation by physical and/or mechanical cues provided by scaffolds. Moreover, we discuss current and future applications of “smart” implantable scaffolds capable of controlling the cascade of biochemical events related to healing and vascularization. Finally, we provide our opinion on the current challenges and the future research directions to improve our understanding of the M1-M2 macrophage balance and properly exploit it in tissue engineering and regenerative medicine applications. PMID:26778695

  3. Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies.

    PubMed

    Ene-Iordache, Bogdan; Remuzzi, Andrea

    2017-09-01

    Although our understanding of the failure mechanism of vascular access for hemodialysis has increased substantially, this knowledge has not translated into successful therapies. Despite advances in technology, it is recognized that vascular access is difficult to maintain, due to complications such as intimal hyperplasia. Computational studies have been used to estimate hemodynamic changes induced by vascular access creation. Due to the heterogeneity of patient-specific geometries, and difficulties with obtaining reliable models of access vessels, idealized models were often employed. In this review we analyze the knowledge gained with the use of computational such simplified models. A review of the literature was conducted, considering studies employing a computational fluid dynamics approach to gain insights into the flow field phenotype that develops in idealized models of vascular access. Several important discoveries have originated from idealized model studies, including the detrimental role of disturbed flow and turbulent flow, and the beneficial role of spiral flow in intimal hyperplasia. The general flow phenotype was consistent among studies, but findings were not treated homogeneously since they paralleled achievements in cardiovascular biomechanics which spanned over the last two decades. Computational studies in idealized models are important for studying local blood flow features and evaluating new concepts that may improve the patency of vascular access for hemodialysis. For future studies we strongly recommend numerical modelling targeted at accurately characterizing turbulent flows and multidirectional wall shear disturbances.

  4. Modulation of telomere binding proteins: a future area of research for skin protection and anti-aging target.

    PubMed

    Imbert, Isabelle; Botto, Jean-Marie; Farra, Claude D; Domloge, Nouha

    2012-06-01

    Telomere shortening is considered as one of the main characteristics of cellular aging by limiting cellular division. Besides the fundamental advances through the discoveries of telomere and telomerase, which were recognized by a Nobel Prize, telomere protection remains an essential area of research. Recently, it was evidenced that studying the cross-talks between the proteins associated with telomere should provide a better understanding of the mechanistic basis for telomere-associated aging phenotypes. In this review, we discuss the current knowledge on telomere shortening, telomerase activity, and the essential role of telomere binding proteins in telomere stabilization and telomere-end protection. This review highlights the capacity of telomere binding proteins to limit cellular senescence and to maintain skin tissue homeostasis, which is of key importance to reduce accelerated tissue aging. Future studies addressing telomere protection and limitation of DNA damage response in human skin should include investigations on telomere binding proteins. As little is known about the expression of telomere binding proteins in human skin and modulation of their expression with aging, it remains an interesting field of skin research and a key area for future skin protection and anti-aging developments. © 2012 Wiley Periodicals, Inc.

  5. Custom microarray construction and analysis for determining potential biomarkers of subchronic androgen exposure in the Eastern Mosquitofish (Gambusia holbrooki)

    USGS Publications Warehouse

    Brockmeier, Erica K.; Yu, Fahong; Amador, David Moraga; Bargar, Timothy A.; Denslow, Nancy D.

    2013-01-01

    Coupling microarray data with phenotypic changes driven by androgen exposure in mosquitofish is key for developing this organism into a bioindicator for EDCs. Future studies using this array will enhance knowledge of the biology and toxicological response of this species. This work provides a foundation of molecular knowledge and tools that can be used to delve further into understanding the biology of G. holbrooki and how this organism can be used as a bioindicator organism for endocrine disrupting pollutants in the environment.

  6. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders.

    PubMed

    Gao, R; Penzes, P

    2015-01-01

    Autism Spectrum Disorders (ASD) and Schizophrenia (SCZ) are cognitive disorders with complex genetic architectures but overlapping behavioral phenotypes, which suggests common pathway perturbations. Multiple lines of evidence implicate imbalances in excitatory and inhibitory activity (E/I imbalance) as a shared pathophysiological mechanism. Thus, understanding the molecular underpinnings of E/I imbalance may provide essential insight into the etiology of these disorders and may uncover novel targets for future drug discovery. Here, we review key genetic, physiological, neuropathological, functional, and pathway studies that suggest alterations to excitatory/inhibitory circuits are keys to ASD and SCZ pathogenesis.

  7. Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide.

    PubMed

    Schneider, Gisbert; Reker, Daniel; Chen, Tao; Hauenstein, Kurt; Schneider, Petra; Altmann, Karl-Heinz

    2016-09-26

    The cyclodepsipeptide doliculide is a marine natural product with strong actin-polymerizing and anticancer activities. Evidence for doliculide acting as a potent and subtype-selective antagonist of prostanoid E receptor 3 (EP3) is presented. Computational target prediction suggested that this membrane receptor is a likely macromolecular target and enabled immediate in vitro validation. This proof-of-concept study demonstrates the in silico deorphanization of phenotypic screening hits as a viable concept for future natural-product-inspired chemical biology and drug discovery efforts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multiple Phenotype Association Tests Using Summary Statistics in Genome-Wide Association Studies

    PubMed Central

    Liu, Zhonghua; Lin, Xihong

    2017-01-01

    Summary We study in this paper jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. PMID:28653391

  9. Multiple phenotype association tests using summary statistics in genome-wide association studies.

    PubMed

    Liu, Zhonghua; Lin, Xihong

    2018-03-01

    We study in this article jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. © 2017, The International Biometric Society.

  10. Clinical presentations of 23 half-siblings from a mosaic neurofibromatosis type 1 sperm donor.

    PubMed

    Ejerskov, C; Farholt, S; Skovby, F; Vestergaard, E M; Haagerup, A

    2016-03-01

    The Danish sperm donor number 7042 has fathered several offspring with neurofibromatosis type 1 (NF1) worldwide. NF1 is caused by loss-of-function mutations in the NF1 gene and more than 1000 NF1 mutations are identified. Analysis of the donor sperm demonstrated gonosomal mosaicism with an intragenic deletion involving exons 15-29 in the NF1 gene. At the two Danish reference centres for NF1 patients, we evaluated 23 half-siblings from the donor. Nine were diagnosed with NF1. The severity grade of NF1 progressed from minimal to mild/moderate within 3 years of follow-up. The NF1 phenotype shows great variability in intra- and inter-family expressivity and to date only two NF1 genotype-phenotype correlations have been established. This rare possibility of a long-term follow-up of a cohort of half-siblings with NF1 makes further studies including phenotypic variability and search for modifier genes possible. To achieve this goal, we have initiated The International Donor 7042 NF1 Offspring Registry. Research facilitated via this registry may reveal important new knowledge of clinical characteristics and prognostics for the specific NF1 genotype and thereby contribute to future individualised targeted clinical follow-up and treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Phenotypic analysis of separation-of-function alleles of MEI-41, Drosophila ATM/ATR.

    PubMed Central

    Laurençon, Anne; Purdy, Amanda; Sekelsky, Jeff; Hawley, R Scott; Su, Tin Tin

    2003-01-01

    ATM/ATR kinases act as signal transducers in eukaryotic DNA damage and replication checkpoints. Mutations in ATM/ATR homologs have pleiotropic effects that range from sterility to increased killing by genotoxins in humans, mice, and Drosophila. Here we report the generation of a null allele of mei-41, Drosophila ATM/ATR homolog, and the use of it to document a semidominant effect on a larval mitotic checkpoint and methyl methanesulfonate (MMS) sensitivity. We also tested the role of mei-41 in a recently characterized checkpoint that delays metaphase/anaphase transition after DNA damage in cellular embryos. We then compare five existing mei-41 alleles to the null with respect to known phenotypes (female sterility, cell cycle checkpoints, and MMS resistance). We find that not all phenotypes are affected equally by each allele, i.e., the functions of MEI-41 in ensuring fertility, cell cycle regulation, and resistance to genotoxins are genetically separable. We propose that MEI-41 acts not in a single rigid signal transduction pathway, but in multiple molecular contexts to carry out its many functions. Sequence analysis identified mutations, which, for most alleles, fall in the poorly characterized region outside the kinase domain; this allowed us to tentatively identify additional functional domains of MEI-41 that could be subjected to future structure-function studies of this key molecule. PMID:12807779

  12. Chemokine Involvement in Fetal and Adult Wound Healing

    PubMed Central

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  13. [In vitro generation of blood red cells from stem cells: a sketch of the future].

    PubMed

    Mazurier, Christelle; Douay, Luc

    2016-01-01

    Human adult pluripotent stem cells, stem cells of embryonic origin and induced pluripotent stem cells (iPS) provide cellular sources for new promising regenerative medicine approaches. Because these cells can be patient-specific, they allow considering a personalized medicine appropriate to the diagnosis of each. The generation of cultured red blood cells (cRBC) derived from stem cells is emblematic of personalized medicine. Indeed, these cells have the advantage of being selected according to a blood phenotype of interest and they may provide treatments to patients in situation of impossible transfusion (alloimmunized patients, rare phenotypes). Essential progresses have established proof of concept for this approach, still a concept some years ago. From adult stem cells, all steps of upstream research were successfully achieved, including the demonstration of the feasibility of injection into human. This leads us to believe that Red Blood Cells generated in vitro from stem cells will be the future players of blood transfusion. However, although theoretically ideal, these stem cells raise many biological challenges to overcome, although some tracks are identified. © Société de Biologie, 2016.

  14. Racial influence on the polycystic ovary syndrome phenotype: a black and white case-control study.

    PubMed

    Ladson, Gwinnett; Dodson, William C; Sweet, Stephanie D; Archibong, Anthony E; Kunselman, Allen R; Demers, Laurence M; Williams, Nancy I; Coney, Ponjola; Legro, Richard S

    2011-07-01

    To estimate racial disparities in the polycystic ovary syndrome (PCOS) phenotype between white and black women with PCOS. Case-control study. Two academic medical centers. A total of 242 women not taking confounding medications in otherwise good health. Phenotyping during the follicular phase or anovulation after an overnight fast in women. Biometric, serum hormones, glycemic and metabolic parameters, and body composition by dual-energy x-ray absorptiometry. We studied 77 white and 43 black women with PCOS and 35 white and 87 black controls. Black women with PCOS were similar reproductively to white women with PCOS. Black women with PCOS had lower levels of serum transaminases, higher high-density lipoprotein cholesterol levels (mean difference [MD], 18.2 mg/dL; 95% confidence intervals [CI], 14.3, 22.1 mg/dL), lower triglyceride levels (MD, -43.2 mg/dL; 95% CI, -64.5, -21.9), and enhanced insulinogenic index on the oral glucose tolerance test compared with white women with PCOS. Black women with PCOS had higher bone mineral density (MD, 0.1 g/cm(2); 95% CI, 0.1, 0.2 g/cm(2)), lower percent body fat on dual-energy x-ray absorptiometry (MD, -2.8%; 95% CI, -5.1%, -0.5%), and overall a higher quality of life. Although most of these findings disappeared when the differences with racially matched controls were compared, black women with PCOS compared with black controls had lower estradiol levels than white women with PCOS compared with white controls (MD, -12.9 pg/mL; 95% CI, -24.9, -0.8 pg/mL), higher systolic blood pressure (MD, 9.1 mm Hg; 95% CI, 0.8, 17.4 mm Hg), and lower fasting glucose levels (MD, -12.0 mg/dL; 95% CI, -22.3, -1.7 mg/dL). Racial disparities in PCOS phenotype are minor and mixed. Future studies should explore if race impacts treatment effects. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring

    PubMed Central

    Vallaster, Markus P; Kukreja, Shweta; Bing, Xin Y; Ngolab, Jennifer; Zhao-Shea, Rubing; Gardner, Paul D; Tapper, Andrew R; Rando, Oliver J

    2017-01-01

    Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal ‘quality of life’. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics. DOI: http://dx.doi.org/10.7554/eLife.24771.001 PMID:28196335

  16. Neutral Sphingomyelinase (SMPD3) Deficiency Causes a Novel Form of Chondrodysplasia and Dwarfism That Is Rescued by Col2A1-Driven smpd3 Transgene Expression

    PubMed Central

    Stoffel, Wilhelm; Jenke, Britta; Holz, Barbara; Binczek, Erika; Günter, Robert Heinz; Knifka, Jutta; Koebke, Jürgen; Niehoff, Anja

    2007-01-01

    Neutral sphingomyelinase SMPD3 (nSMase2), a sphingomyelin phosphodiesterase, resides in the Golgi apparatus and is ubiquitously expressed. Gene ablation of smpd3 causes a generalized prolongation of the cell cycle that leads to late embryonic and juvenile hypoplasia because of the SMPD3 deficiency in hypothalamic neurosecretory neurons. We show here that this novel form of combined pituitary hormone deficiency is characterized by the perturbation of the hypothalamus-pituitary growth axis, associated with retarded chondrocyte development and enchondral ossification in the epiphyseal growth plate. To study the contribution by combined pituitary hormone deficiency and by the local SMPD3 deficiency in the epiphyseal growth plate to the skeletal phenotype, we introduced the full-length smpd3 cDNA transgene under the control of the chondrocyte-specific promoter Col2a1. A complete rescue of the smpd3−/− mouse from severe short-limbed skeletal dysplasia was achieved. The smpd3−/− mouse shares its dwarf and chondrodysplasia phenotype with the most common form of human achondrodysplasia, linked to the fibroblast-growth-factor receptor 3 locus, not linked to deficits in the hypothalamic-pituitary epiphyseal growth plate axis. The rescue of smpd3 in vivo has implications for future research into dwarfism and, particularly, growth and development of the skeletal system and for current screening and future treatment of combined dwarfism and chondrodysplasia. PMID:17591962

  17. Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression.

    PubMed

    Stoffel, Wilhelm; Jenke, Britta; Holz, Barbara; Binczek, Erika; Günter, Robert Heinz; Knifka, Jutta; Koebke, Jürgen; Niehoff, Anja

    2007-07-01

    Neutral sphingomyelinase SMPD3 (nSMase2), a sphingomyelin phosphodiesterase, resides in the Golgi apparatus and is ubiquitously expressed. Gene ablation of smpd3 causes a generalized prolongation of the cell cycle that leads to late embryonic and juvenile hypoplasia because of the SMPD3 deficiency in hypothalamic neurosecretory neurons. We show here that this novel form of combined pituitary hormone deficiency is characterized by the perturbation of the hypothalamus-pituitary growth axis, associated with retarded chondrocyte development and enchondral ossification in the epiphyseal growth plate. To study the contribution by combined pituitary hormone deficiency and by the local SMPD3 deficiency in the epiphyseal growth plate to the skeletal phenotype, we introduced the full-length smpd3 cDNA transgene under the control of the chondrocyte-specific promoter Col2a1. A complete rescue of the smpd3(-/-) mouse from severe short-limbed skeletal dysplasia was achieved. The smpd3(-/-) mouse shares its dwarf and chondrodysplasia phenotype with the most common form of human achondrodysplasia, linked to the fibroblast-growth-factor receptor 3 locus, not linked to deficits in the hypothalamic-pituitary epiphyseal growth plate axis. The rescue of smpd3 in vivo has implications for future research into dwarfism and, particularly, growth and development of the skeletal system and for current screening and future treatment of combined dwarfism and chondrodysplasia.

  18. Dynamics of phenotypic switching of bacterial cells with temporal fluctuations in pressure

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    2018-05-01

    Phenotypic switching is one of the mechanisms by which bacteria thrive in ever changing environmental conditions around them. Earlier studies have shown that the application of steady high hydrostatic pressure leads to stochastic switching of mesophilic bacteria from a cellular phenotype having a normal cell cycle to another phenotype lacking cell division. Here, we have studied the dynamics of this phenotypic switching with fluctuating periodic pressure using a set of experiments and a theoretical model. Our results suggest that the phenotypic switching rate from high-pressure phenotype to low-pressure phenotype in the reversible regime is larger as compared to the switching rate from low-pressure phenotype to high-pressure phenotype. Furthermore, we find that even though the cell division and elongation are presumably regulated by a large number of genes the underlying physics of the dynamics of stochastic switching at high pressure is captured reasonably well by a simple two-state model.

  19. Tuberculate fruit gene Tu encodes a C2 H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.).

    PubMed

    Yang, Xuqin; Zhang, Weiwei; He, Huanle; Nie, Jingtao; Bie, Beibei; Zhao, Junlong; Ren, Guoliang; Li, Yue; Zhang, Dabing; Pan, Junsong; Cai, Run

    2014-06-01

    Cucumber fruits that have tubercules and spines (trichomes) are known to possess a warty (Wty) phenotype. In this study, the tuberculate fruit gene Tu was identified by map-based cloning, and was found to encode a transcription factor (TF) with a single C2 H2 zinc finger domain. Tu was identified in all 38 Wty lines examined, and was completely absent from all 56 non-warty (nWty) lines. Cucumber plants transgenic for Tu (TCP) revealed that Tu was required for the Wty fruit phenotype. Subcellular localization showed that the fusion protein GFP-Tu was localized mainly to the nucleus. Based on analyses of semi-quantitative and quantitative reverse transcription polymerase chain reaction (RT-PCR), and mRNA in situ hybridization, we found that Tu was expressed specifically in fruit spine cells during development of fruit tubercules. Moreover, cytokinin (CTK) content measurements and cytological observations in Wty and nWty fruits revealed that the Wty fruit phenotype correlated with high endogenous CTK concentrations. As a result of further analyses on the transcriptomic profile of the nWty fruit epidermis and TCP fruit warts, expression of CTK-associated genes, and hormone content in nWty fruit epidermis, Wty fruit warts and epidermis, and TCP fruit warts and epidermis, we found that Tu probably promoted CTK biosynthesis in fruit warts. Here we show that Tu could not be expressed in the glabrous and tubercule-free mutant line gl that contained Tu, this result that futher confirmed the epistatic effect of the trichome (spine) gene Gl over Tu. Taken together, these data led us to propose a genetic pathway for the Wty fruit trait that could guide future mechanistic studies. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    PubMed

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  1. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Diane R.; Wolfrum, Edward J.; Virk, Parminder

    Rice plants ( Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, establishedmore » an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. Lastly, we find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice.« less

  2. CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity

    PubMed Central

    Blaisdell, Carol J; Howard, Timothy D; Stern, Augustus; Bamford, Penelope; Bleecker, Eugene R; Stine, O Colin

    2004-01-01

    Background Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. Methods The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). Results PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. Conclusions CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity. PMID:15507145

  3. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells.

    PubMed

    Testa, Ugo; Castelli, Germana; Pelosi, Elvira

    2017-11-20

    Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells.

  4. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice

    PubMed Central

    Wang, Diane R.; Wolfrum, Edward J.; Virk, Parminder; Ismail, Abdelbagi; Greenberg, Anthony J.; McCouch, Susan R.

    2016-01-01

    Rice plants (Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, established an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. We find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice. PMID:27707775

  5. Identification of Arcanobacterium pyogenes isolated by post mortem examinations of a bearded dragon and a gecko by phenotypic and genotypic properties

    PubMed Central

    Ülbegi-Mohyla, H.; Hijazin, M.; Alber, J.; Hassan, A. A.; Abdulmawjood, A.; Prenger-Berninghoff, E.; Weiß, R.; Zschöck, M.

    2010-01-01

    The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens. PMID:20706035

  6. The spatial patterns of directional phenotypic selection.

    PubMed

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  7. Maternal body-mass index and cord blood circulating endothelial colony-forming cells.

    PubMed

    Moreno-Luna, Rafael; Muñoz-Hernandez, Rocio; Lin, Ruei-Zeng; Miranda, Maria L; Vallejo-Vaz, Antonio J; Stiefel, Pablo; Praena-Fernández, Juan M; Bernal-Bermejo, Jose; Jimenez-Jimenez, Luis M; Villar, Jose; Melero-Martin, Juan M

    2014-03-01

    Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that are particularly abundant in umbilical cord blood. We sought to determine whether ECFC abundance in cord blood is associated with maternal body-mass index (BMI) in nonpathologic pregnancies. We measured the level of ECFCs in the cord blood of neonates (n = 27) born from non-obese healthy mothers with nonpathologic pregnancies and examined whether ECFC abundance correlated with maternal BMI. We also examined the effect of maternal BMI on ECFC phenotype and function using angiogenic and vasculogenic assays. We observed variation in ECFC abundance among subjects and found a positive correlation between prepregnancy maternal BMI and ECFC content (r = 0.51, P = .007), which was independent of other obstetric factors. Despite this variation, ECFC phenotype and functionality were deemed normal and highly similar between subjects with maternal BMI <25 kg/m(2) and BMI between 25-30 kg/m(2), including the ability to form vascular networks in vivo. This study underlines the need to consider maternal BMI as a potential confounding factor for cord blood levels of ECFCs in future comparative studies between healthy and pathologic pregnancies. Copyright © 2014 Mosby, Inc. All rights reserved.

  8. Revealing phenotype-associated functional differences by genome-wide scan of ancient haplotype blocks

    PubMed Central

    Onuki, Ritsuko; Yamaguchi, Rui; Shibuya, Tetsuo; Kanehisa, Minoru; Goto, Susumu

    2017-01-01

    Genome-wide scans for positive selection have become important for genomic medicine, and many studies aim to find genomic regions affected by positive selection that are associated with risk allele variations among populations. Most such studies are designed to detect recent positive selection. However, we hypothesize that ancient positive selection is also important for adaptation to pathogens, and has affected current immune-mediated common diseases. Based on this hypothesis, we developed a novel linkage disequilibrium-based pipeline, which aims to detect regions associated with ancient positive selection across populations from single nucleotide polymorphism (SNP) data. By applying this pipeline to the genotypes in the International HapMap project database, we show that genes in the detected regions are enriched in pathways related to the immune system and infectious diseases. The detected regions also contain SNPs reported to be associated with cancers and metabolic diseases, obesity-related traits, type 2 diabetes, and allergic sensitization. These SNPs were further mapped to biological pathways to determine the associations between phenotypes and molecular functions. Assessments of candidate regions to identify functions associated with variations in incidence rates of these diseases are needed in the future. PMID:28445522

  9. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice

    DOE PAGES

    Wang, Diane R.; Wolfrum, Edward J.; Virk, Parminder; ...

    2016-10-05

    Rice plants ( Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, establishedmore » an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. Lastly, we find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice.« less

  10. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation?

    PubMed Central

    Xin, Frances; Susiarjo, Martha; Bartolomei, Marisa S.

    2015-01-01

    Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of an individual. Moreover, recent studies have revealed that early life perturbations can affect the health of subsequent generations. Hypothesized mechanisms of multi- and transgenerational inheritance of abnormal developmental phenotypes include epigenetic misregulation in germ cells. In this review, we will focus on the available data demonstrating the ability of endocrine disrupting chemicals (EDCs), including bisphenol A (BPA), phthalates, and parabens, to alter epigenetic marks in rodents and humans. These epigenetic marks include DNA methylation, histone post-translational modifications, and non-coding RNAs. We also review the current evidence for multi- and transgenerational inheritance of abnormal developmental changes in the offspring following EDC exposure. Based on published results, we conclude that EDC exposure can alter the mouse and human epigenome, with variable tissue susceptibilities. Although increasing data suggest that exposure to EDCs is linked to transgenerational inheritance of reproductive, metabolic, or neurological phenotypes, more studies are needed to validate these observations and to elucidate further whether these developmental changes are directly associated with the relevant epigenetic alterations. PMID:26026600

  11. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells

    PubMed Central

    Castelli, Germana; Pelosi, Elvira

    2017-01-01

    Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells. PMID:29156643

  12. An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors.

    PubMed

    Pagano, Nicholas; Teriete, Peter; Mattmann, Margrith E; Yang, Li; Snyder, Beth A; Cai, Zhaohui; Heil, Marintha L; Cosford, Nicholas D P

    2017-12-01

    Continuous flow (microfluidic) chemistry was employed to prepare a small focused library of dihydropyrimidinone (DHPM) derivatives. Compounds in this class have been reported to exhibit activity against the human immunodeficiency virus (HIV), but their molecular target had not been identified. We tested the initial set of DHPMs in phenotypic assays providing a hit (1i) that inhibited the replication of the human immunodeficiency virus HIV in cells. Flow chemistry-driven optimization of 1i led to the identification of HIV replication inhibitors such as 1l with cellular potency comparable with the clinical drug nevirapine (NVP). Mechanism of action (MOA) studies using cellular and biochemical assays coupled with 3D fingerprinting and in silico modeling demonstrated that these drug-like probe compounds exert their effects by inhibiting the viral reverse transcriptase polymerase (RT). This led to the design and synthesis of the novel DHPM 1at that inhibits the replication of drug resistant strains of HIV. Our work demonstrates that combining flow chemistry-driven analogue refinement with phenotypic assays, in silico modeling and MOA studies is a highly effective strategy for hit-to-lead optimization applicable to the discovery of future therapeutic agents. Copyright © 2017. Published by Elsevier Ltd.

  13. Unraveling the resistance of microbial biofilms: has proteomics been helpful?

    PubMed

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Wong, Sarah S W; Herath, Thanuja D K; Samaranayake, Lakshman P

    2012-02-01

    Biofilms are surface-attached, matrix-encased, structured microbial communities which display phenotypic features that are dramatically different from those of their free-floating, or planktonic, counterparts. Biofilms seem to be the preferred mode of growth of microorganisms in nature, and at least 65% of all human infections are associated with biofilms. The most notable and clinically relevant property of biofilms is their greater resistance to antimicrobials compared with their planktonic counterparts. Although both bacterial and fungal biofilms display this phenotypic feature, the exact mechanisms underlying their increased drug resistance are yet to be determined. Advances in proteomics techniques during the past decade have facilitated in-depth analysis of the possible mechanisms underpinning increased drug resistance in biofilms. These studies have demonstrated the ability of proteomics techniques to unravel new targets for combating microbial biofilms. In this review, we discuss the putative drug resistance mechanisms of microbial biofilms that have been uncovered by proteomics and critically evaluate the possible contribution of the new knowledge to future development in the field. We also summarize strategic uses of novel proteomics technologies in studies related to drug resistance mechanisms of microbial biofilms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Generating Phenotypical Erroneous Human Behavior to Evaluate Human-automation Interaction Using Model Checking

    PubMed Central

    Bolton, Matthew L.; Bass, Ellen J.; Siminiceanu, Radu I.

    2012-01-01

    Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human-automation interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring. We discuss how our method could be used to evaluate larger applications and recommend future paths of development. PMID:23105914

  15. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis.

    PubMed

    Weber, Thomas J; Magnaldo, Thierry; Xiong, Yijia

    2014-09-11

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.

  16. Home-cage anxiety levels in a transgenic rat model for Spinocerebellar ataxia type 17 measured by an approach-avoidance task: The light spot test.

    PubMed

    Kyriakou, Elisavet I; Nguyen, Huu Phuc; Homberg, Judith R; Van der Harst, Johanneke E

    2018-04-15

    Measuring anxiety in a reliable manner is essential for behavioural phenotyping of rodent models such as the rat model for Spinocerebellar ataxia type 17 (SCA17) where anxiety is reported in patients. An automated tool for assessing anxiety within the home cage can minimize human intervention, stress of handling, transportation and novelty. We applied the anxiety test "light spot" (LS) (white led directed at the food-hopper) to our transgenic SCA17 rat model in the PhenoTyper 4500 ® to extend the knowledge of this automated tool for behavioural phenotyping and to verify an anxiety-like phenotype at three different disease stages for use in future therapeutic studies. Locomotor activity was increased in SCA17 rats at 6 and 9 months during the first 15min of the LS, potentially reflecting increased risk assessment. Both genotypes responded to the test with lower duration in the LS zone and higher time spent inside the shelter compared to baseline. We present the first data of a rat model subjected to the LS. The LS can be considered more biologically relevant than a traditional test as it measures anxiety in a familiar situation. The LS successfully evoked avoidance and shelter-seeking in rats. SCA17 rats showed a stronger approach-avoidance conflict reflected by increased activity in the area outside the LS. This home cage test, continuously monitoring pre- and post-effects, provides the opportunity for in-depth analysis, making it a potentially useful tool for detecting subtle or complex anxiety-related traits in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage.

    PubMed

    Ando, Wataru; Kutcher, Josh J; Krawetz, Roman; Sen, Arindom; Nakamura, Norimasa; Frank, Cyril B; Hart, David A

    2014-06-01

    Previous studies have demonstrated that porcine synovial membrane stem cells can adhere to a cartilage defect in vivo through the use of a tissue-engineered construct approach. To optimize this model, we wanted to compare effectiveness of tissue sources to determine whether porcine synovial fluid, synovial membrane, bone marrow and skin sources replicate our understanding of synovial fluid mesenchymal stromal cells or mesenchymal progenitor cells from humans both at the population level and the single-cell level. Synovial fluid clones were subsequently isolated and characterized to identify cells with a highly characterized optimal phenotype. The chondrogenic, osteogenic and adipogenic potentials were assessed in vitro for skin, bone marrow, adipose, synovial fluid and synovial membrane-derived stem cells. Synovial fluid cells then underwent limiting dilution analysis to isolate single clonal populations. These clonal populations were assessed for proliferative and differentiation potential by use of standardized protocols. Porcine-derived cells demonstrated the same relationship between cell sources as that demonstrated previously for humans, suggesting that the pig may be an ideal preclinical animal model. Synovial fluid cells demonstrated the highest chondrogenic potential that was further characterized, demonstrating the existence of a unique clonal phenotype with enhanced chondrogenic potential. Porcine stem cells demonstrate characteristics similar to those in human-derived mesenchymal stromal cells from the same sources. Synovial fluid-derived stem cells contain an inherent phenotype that may be optimal for cartilage repair. This must be more fully investigated for future use in the in vivo tissue-engineered construct approach in this physiologically relevant preclinical porcine model. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. The MAPP research network: design, patient characterization and operations

    PubMed Central

    2014-01-01

    Background The “Multidisciplinary Approach to the Study of Chronic Pelvic Pain” (MAPP) Research Network was established by the NIDDK to better understand the pathophysiology of urologic chronic pelvic pain syndromes (UCPPS), to inform future clinical trials and improve clinical care. The evolution, organization, and scientific scope of the MAPP Research Network, and the unique approach of the network’s central study and common data elements are described. Methods The primary scientific protocol for the Trans-MAPP Epidemiology/Phenotyping (EP) Study comprises a multi-site, longitudinal observational study, including bi-weekly internet-based symptom assessments, following a comprehensive in-clinic deep-phenotyping array of urological symptoms, non-urological symptoms and psychosocial factors to evaluate men and women with UCPPS. Healthy controls, matched on sex and age, as well as “positive” controls meeting the non-urologic associated syndromes (NUAS) criteria for one or more of the target conditions of Fibromyalgia (FM), Chronic Fatigue Syndrome (CFS) or Irritable Bowel Syndrome (IBS), were also evaluated. Additional, complementary studies addressing diverse hypotheses are integrated into the Trans-MAPP EP Study to provide a systemic characterization of study participants, including biomarker discovery studies of infectious agents, quantitative sensory testing, and structural and resting state neuroimaging and functional neurobiology studies. A highly novel effort to develop and assess clinically relevant animal models of UCPPS was also undertaken to allow improved translation between clinical and mechanistic studies. Recruitment into the central study occurred at six Discovery Sites in the United States, resulting in a total of 1,039 enrolled participants, exceeding the original targets. The biospecimen collection rate at baseline visits reached nearly 100%, and 279 participants underwent common neuroimaging through a standardized protocol. An extended follow-up study for 161 of the UCPPS participants is ongoing. Discussion The MAPP Research Network represents a novel, comprehensive approach to the study of UCPPS, as well as other concomitant NUAS. Findings are expected to provide significant advances in understanding UCPPS pathophysiology that will ultimately inform future clinical trials and lead to improvements in patient care. Furthermore, the structure and methodologies developed by the MAPP Network provide the foundation upon which future studies of other urologic or non-urologic disorders can be based. Trial registration ClinicalTrials.gov identifier: NCT01098279 “Chronic Pelvic Pain Study of Individuals with Diagnoses or Symptoms of Interstitial Cystitis and/or Chronic Prostatitis (MAPP-EP)”. http://clinicaltrials.gov/show/NCT01098279 PMID:25085119

  19. Neuropathic pain phenotyping by international consensus (NeuroPPIC) for genetic studies: a NeuPSIG systematic review, Delphi survey, and expert panel recommendations

    PubMed Central

    van Hecke, Oliver; Kamerman, Peter R.; Attal, Nadine; Baron, Ralf; Bjornsdottir, Gyda; Bennett, David L.H.; Bennett, Michael I.; Bouhassira, Didier; Diatchenko, Luda; Freeman, Roy; Freynhagen, Rainer; Haanpää, Maija; Jensen, Troels S.; Raja, Srinivasa N.; Rice, Andrew S.C.; Seltzer, Ze'ev; Thorgeirsson, Thorgeir E.; Yarnitsky, David; Smith, Blair H.

    2015-01-01

    Abstract For genetic research to contribute more fully to furthering our knowledge of neuropathic pain, we require an agreed, valid, and feasible approach to phenotyping, to allow collaboration and replication in samples of sufficient size. Results from genetic studies on neuropathic pain have been inconsistent and have met with replication difficulties, in part because of differences in phenotypes used for case ascertainment. Because there is no consensus on the nature of these phenotypes, nor on the methods of collecting them, this study aimed to provide guidelines on collecting and reporting phenotypes in cases and controls for genetic studies. Consensus was achieved through a staged approach: (1) systematic literature review to identify all neuropathic pain phenotypes used in previous genetic studies; (2) Delphi survey to identify the most useful neuropathic pain phenotypes and their validity and feasibility; and (3) meeting of experts to reach consensus on the optimal phenotype(s) to be collected from patients with neuropathic pain for genetic studies. A basic “entry level” set of phenotypes was identified for any genetic study of neuropathic pain. This set identifies cases of “possible” neuropathic pain, and controls, and includes: (1) a validated symptom-based questionnaire to determine whether any pain is likely to be neuropathic; (2) body chart or checklist to identify whether the area of pain distribution is neuroanatomically logical; and (3) details of pain history (intensity, duration, any formal diagnosis). This NeuroPPIC “entry level” set of phenotypes can be expanded by more extensive and specific measures, as determined by scientific requirements and resource availability. PMID:26469320

  20. CKD Self-management: Phenotypes and Associations With Clinical Outcomes.

    PubMed

    Schrauben, Sarah J; Hsu, Jesse Y; Rosas, Sylvia E; Jaar, Bernard G; Zhang, Xiaoming; Deo, Rajat; Saab, Georges; Chen, Jing; Lederer, Swati; Kanthety, Radhika; Hamm, L Lee; Ricardo, Ana C; Lash, James P; Feldman, Harold I; Anderson, Amanda H

    2018-03-24

    To slow chronic kidney disease (CKD) progression and its complications, patients need to engage in self-management behaviors. The objective of this study was to classify CKD self-management behaviors into phenotypes and assess the association of these phenotypes with clinical outcomes. Prospective cohort study. Adults with mild to moderate CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study. 3,939 participants in the CRIC Study recruited between 2003 and 2008 served as the derivation cohort and 1,560 participants recruited between 2013 and 2015 served as the validation cohort. CKD self-management behavior phenotypes. CKD progression, atherosclerotic events, heart failure events, death from any cause. Latent class analysis stratified by diabetes was used to identify CKD self-management phenotypes based on measures of body mass index, diet, physical activity, blood pressure, smoking status, and hemoglobin A 1c concentration (if diabetic); Cox proportional hazards models. 3 identified phenotypes varied according to the extent of implementation of recommended CKD self-management behaviors: phenotype I characterized study participants with the most recommended behaviors; phenotype II, participants with a mixture of recommended and not recommended behaviors; and phenotype III, participants with minimal recommended behaviors. In multivariable-adjusted models for those with and without diabetes, phenotype III was strongly associated with CKD progression (HRs of 1.82 and 1.49), death (HRs of 1.95 and 4.14), and atherosclerotic events (HRs of 2.54 and 1.90; each P < 0.05). Phenotype II was associated with atherosclerotic events and death among those with and without diabetes. No consensus definition of CKD self-management; limited to baseline behavior data. There are potentially 3 CKD self-management behavior phenotypes that distinguish risk for clinical outcomes. These phenotypes may inform the development of studies and guidelines regarding optimal self-management. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management.

    PubMed

    Woodruff, Prescott G; Agusti, Alvar; Roche, Nicolas; Singh, Dave; Martinez, Fernando J

    2015-05-02

    Chronic obstructive pulmonary disease (COPD) is a common, complex, and heterogeneous disorder that is responsible for substantial and growing morbidity, mortality, and health-care expense worldwide. Of imperative importance to decipher the complexity of COPD is to identify groups of patients with similar clinical characteristics, prognosis, or therapeutic needs, the so-called clinical phenotypes. This strategy is logical for research but might be of little clinical value because clinical phenotypes can overlap in the same patient and the same clinical phenotype could result from different biological mechanisms. With the goal to match assessment with treatment choices, the latest iteration of guidelines from the Global Initiative for Chronic Obstructive Lung Disease reorganised treatment objectives into two categories: to improve symptoms (ie, dyspnoea and health status) and to decrease future risk (as predicted by forced expiratory volume in 1 s level and exacerbations history). This change thus moves treatment closer to individualised medicine with available bronchodilators and anti-inflammatory drugs. Yet, future treatment options are likely to include targeting endotypes that represent subtypes of patients defined by a distinct pathophysiological mechanism. Specific biomarkers of these endotypes would be particularly useful in clinical practice, especially in patients in which clinical phenotype alone is insufficient to identify the underlying endotype. A few series of potential COPD endotypes and biomarkers have been suggested. Empirical knowledge will be gained from proof-of-concept trials in COPD with emerging drugs that target specific inflammatory pathways. In every instance, specific endotype and biomarker efforts will probably be needed for the success of these trials, because the pathways are likely to be operative in only a subset of patients. Network analysis of human diseases offers the possibility to improve understanding of disease pathobiological complexity and to help with the development of new treatment alternatives and, importantly, a reclassification of complex diseases. All these developments should pave the way towards personalised treatment of patients with COPD in the clinic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Pedigree- and SNP-Associated Genetics and Recent Environment are the Major Contributors to Anthropometric and Cardiometabolic Trait Variation.

    PubMed

    Xia, Charley; Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Hastie, Nicholas D; Hayward, Caroline; Vitart, Veronique; Navarro, Pau; Haley, Chris S

    2016-02-01

    Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.

  3. Genetic landscape of populations along the Silk Road: admixture and migration patterns.

    PubMed

    Mezzavilla, Massimo; Vozzi, Diego; Pirastu, Nicola; Girotto, Giorgia; d'Adamo, Pio; Gasparini, Paolo; Colonna, Vincenza

    2014-12-05

    The ancient Silk Road has been a trading route between Europe and Central Asia from the 2(nd) century BCE to the 15(th) century CE. While most populations on this route have been characterized, the genetic background of others remains poorly understood, and little is known about past migration patterns. The scientific expedition "Marco Polo" has recently collected genetic and phenotypic data in six regions (Georgia, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, Tajikistan) along the Silk Road to study the genetics of a number of phenotypes. We characterized the genetic structure of these populations within a worldwide context. We observed a West-East subdivision albeit the existence of a genetic component shared within Central Asia and nearby populations from Europe and Near East. We observed a contribution of up to 50% from Europe and Asia to most of the populations that have been analyzed. The contribution from Asia dates back to ~25 generations and is limited to the Eastern Silk Road. Time and direction of this contribution are consistent with the Mongolian expansion era. We clarified the genetic structure of six populations from Central Asia and suggested a complex pattern of gene flow among them. We provided a map of migration events in time and space and we quantified exchanges among populations. Altogether these novel findings will support the future studies aimed at understanding the genetics of the phenotypes that have been collected during the Marco Polo campaign, they will provide insights into the history of these populations, and they will be useful to reconstruct the developments and events that have shaped modern Eurasians genomes.

  4. Effects of GWAS-Associated Genetic Variants on lncRNAs within IBD and T1D Candidate Loci

    PubMed Central

    Brorsson, Caroline A.; Pociot, Flemming

    2014-01-01

    Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs. PMID:25144376

  5. Global transcriptional profiling reveals similarities and differences between human stem cell-derived cardiomyocyte clusters and heart tissue.

    PubMed

    Synnergren, Jane; Améen, Caroline; Jansson, Andreas; Sartipy, Peter

    2012-02-27

    It is now well documented that human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes. These cells constitute a promising source of material for use in drug development, toxicity testing, and regenerative medicine. To assess their utility as replacement or complement to existing models, extensive phenotypic characterization of the cells is required. In the present study, we used microarrays and analyzed the global transcription of hESC-derived cardiomyocyte clusters (CMCs) and determined similarities as well as differences compared with reference samples from fetal and adult heart tissue. In addition, we performed a focused analysis of the expression of cardiac ion channels and genes involved in the Ca(2+)-handling machinery, which in previous studies have been shown to be immature in stem cell-derived cardiomyocytes. Our results show that hESC-derived CMCs, on a global level, have a highly similar gene expression profile compared with human heart tissue, and their transcriptional phenotype was more similar to fetal than to adult heart. Despite the high similarity to heart tissue, a number of significantly differentially expressed genes were identified, providing some clues toward understanding the molecular difference between in vivo sourced tissue and stem cell derivatives generated in vitro. Interestingly, some of the cardiac-related ion channels and Ca(2+)-handling genes showed differential expression between the CMCs and heart tissues. These genes may represent candidates for future genetic engineering to create hESC-derived CMCs that better mimic the phenotype of the cardiomyocytes present in the adult human heart.

  6. Obese fathers lead to an altered metabolism and obesity in their children in adulthood: review of experimental and human studies.

    PubMed

    Ornellas, Fernanda; Carapeto, Priscila V; Mandarim-de-Lacerda, Carlos A; Aguila, Marcia B

    To discuss the recent literature on paternal obesity, focusing on the possible mechanisms of transmission of the phenotypes from the father to the children. A non-systematic review in the PubMed database found few publications in which paternal obesity was implicated in the adverse transmission of characteristics to offspring. Specific articles on epigenetics were also evaluated. As the subject is recent and still controversial, all articles were considered regardless of year of publication. Studies in humans and animals have established that paternal obesity impairs their hormones, metabolism, and sperm function, which can be transmitted to their offspring. In humans, paternal obesity results in insulin resistance/type 2 diabetes and increased levels of cortisol in umbilical cord blood, which increases the risk factors for cardiovascular disease. Notably, there is an association between body fat in parents and the prevalence of obesity in their daughters. In animals, paternal obesity led to offspring alterations on glucose-insulin homeostasis, hepatic lipogenesis, hypothalamus/feeding behavior, kidney of the offspring; it also impairs the reproductive potential of male offspring with sperm oxidative stress and mitochondrial dysfunction. An explanation for these observations (human and animal) is epigenetics, considered the primary tool for the transmission of phenotypes from the father to offspring, such as DNA methylation, histone modifications, and non-coding RNA. Paternal obesity can induce programmed phenotypes in offspring through epigenetics. Therefore, it can be considered a public health problem, affecting the children's future life. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  7. Integrating Ecological and Evolutionary Context in the Study of Maternal Stress.

    PubMed

    Sheriff, Michael J; Bell, Alison; Boonstra, Rudy; Dantzer, Ben; Lavergne, Sophia G; McGhee, Katie E; MacLeod, Kirsty J; Winandy, Laurane; Zimmer, Cedric; Love, Oliver P

    2017-09-01

    Maternal stress can prenatally influence offspring phenotypes and there are an increasing number of ecological studies that are bringing to bear biomedical findings to natural systems. This is resulting in a shift from the perspective that maternal stress is unanimously costly, to one in which maternal stress may be beneficial to offspring. However, this adaptive perspective is in its infancy with much progress to still be made in understanding the role of maternal stress in natural systems. Our aim is to emphasize the importance of the ecological and evolutionary context within which adaptive hypotheses of maternal stress can be evaluated. We present five primary research areas where we think future research can make substantial progress: (1) understanding maternal and offspring control mechanisms that modulate exposure between maternal stress and subsequent offspring phenotype response; (2) understanding the dynamic nature of the interaction between mothers and their environment; (3) integrating offspring phenotypic responses and measuring both maternal and offspring fitness outcomes under real-life (either free-living or semi-natural) conditions; (4) empirically testing these fitness outcomes across relevant spatial and temporal environmental contexts (both pre- and post-natal environments); (5) examining the role of maternal stress effects in human-altered environments-i.e., do they limit or enhance fitness. To make progress, it is critical to understand the role of maternal stress in an ecological context and to do that, we must integrate across physiology, behavior, genetics, and evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Adverse metabolic phenotype of female offspring exposed to preeclampsia in utero: a characterization of the BPH/5 mouse in postnatal life

    PubMed Central

    Sutton, Elizabeth F.; Lob, Heinrich E.; Song, Jiunn; Xia, YunWei; Butler, Scott; Liu, Chin-Chi; Redman, Leanne M.

    2017-01-01

    Preeclampsia (PE) is a devastating disorder of pregnancy that classically presents with maternal hypertension and proteinuria after 20 wk of gestation. In addition to being a leading cause of maternal and fetal morbidity/mortality, epidemiological and prospective studies have revealed long-term consequences for both the mother and baby of preeclamptic pregnancies, including chronic hypertension as well as other cardiovascular diseases and metabolic derangements. To better understand the effect of in utero exposure of PE on offspring, we utilized the BPH/5 mouse, a spontaneous model of the maternal and fetal PE syndrome. We hypothesized that young BPH/5 offspring would have altered metabolic and cardiovascular phenotypes. Indeed, BPH/5 growth-restricted offspring showed excess catch-up growth by early adulthood due to hyperphagia and increased white adipose tissue (WAT) accumulation, with inflammation markers isolated to the reproductive WAT depot only. Both excessive WAT accumulation and the inflammatory WAT phenotype were corrected by pair-feeding young BPH/5 female mice. We also found that young BPH/5 female mice showed evidence of leptin resistance. Indeed, chronic hyperleptinemia has been shown to characterize other rodent models of PE; however, the maternal metabolic profile before pregnancy has not been fully understood. Furthermore, we found that these mice show signs of cardiovascular anomalies (hypertension and cardiomegaly) and altered signaling within the reproductive axis in early life. Future studies will involve challenging the physiological metabolic state of BPH/5 mice through pair-feeding to reduce WAT before pregnancy and determining its causal role in adverse pregnancy outcomes. PMID:28122721

  9. Insights from human genetic studies of lung and organ fibrosis.

    PubMed

    Garcia, Christine Kim

    2018-01-02

    Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.

  10. Application of resequencing to rice genomics, functional genomics and evolutionary analysis

    PubMed Central

    2014-01-01

    Rice is a model system used for crop genomics studies. The completion of the rice genome draft sequences in 2002 not only accelerated functional genome studies, but also initiated a new era of resequencing rice genomes. Based on the reference genome in rice, next-generation sequencing (NGS) using the high-throughput sequencing system can efficiently accomplish whole genome resequencing of various genetic populations and diverse germplasm resources. Resequencing technology has been effectively utilized in evolutionary analysis, rice genomics and functional genomics studies. This technique is beneficial for both bridging the knowledge gap between genotype and phenotype and facilitating molecular breeding via gene design in rice. Here, we also discuss the limitation, application and future prospects of rice resequencing. PMID:25006357

  11. Environmental Impact on DNA Methylation in the Germline: State of the Art and Gaps of Knowledge

    PubMed Central

    Pacchierotti, Francesca; Spanò, Marcello

    2015-01-01

    The epigenome consists of chemical changes in DNA and chromatin that without modifying the DNA sequence modulate gene expression and cellular phenotype. The epigenome is highly plastic and reacts to changing external conditions with modifications that can be inherited to daughter cells and across generations. Whereas this innate plasticity allows for adaptation to a changing environment, it also implies the potential of epigenetic derailment leading to so-called epimutations. DNA methylation is the most studied epigenetic mark. DNA methylation changes have been associated with cancer, infertility, cardiovascular, respiratory, metabolic, immunologic, and neurodegenerative pathologies. Experiments in rodents demonstrate that exposure to a variety of chemical stressors, occurring during the prenatal or the adult life, may induce DNA methylation changes in germ cells, which may be transmitted across generations with phenotypic consequences. An increasing number of human biomonitoring studies show environmentally related DNA methylation changes mainly in blood leukocytes, whereas very few data have been so far collected on possible epigenetic changes induced in the germline, even by the analysis of easily accessible sperm. In this paper, we review the state of the art on factors impinging on DNA methylation in the germline, highlight gaps of knowledge, and propose priorities for future studies. PMID:26339587

  12. Recent advances in acute myeloid leukemia stem cell biology.

    PubMed

    Horton, Sarah J; Huntly, Brian J P

    2012-07-01

    The existence of cancer stem cells has long been postulated, but was proven less than 20 years ago following the demonstration that only a small sub-fraction of leukemic cells from acute myeloid leukemia patients were able to propagate the disease in xenografts. These cells were termed leukemic stem cells since they exist at the apex of a loose hierarchy, possess extensive self-renewal and the ability to undergo limited differentiation into leukemic blasts. Acute myeloid leukemia is a heterogeneous condition at both the phenotypic and molecular level with a variety of distinct genetic alterations giving rise to the disease. Recent studies have highlighted that this heterogeneity extends to the leukemic stem cell, with this dynamic compartment evolving to overcome various selection pressures imposed upon it during disease progression. The result is a complex situation in which multiple pools of leukemic stem cells may exist within individual patients which differ both phenotypically and molecularly. Since leukemic stem cells are thought to be resistant to current chemotherapeutic regimens and mediate disease relapse, their study also has potentially profound clinical implications. Numerous studies have generated important recent advances in the field, including the identification of novel leukemic stem cell-specific cell surface antigens and gene expression signatures. These tools will no doubt prove invaluable for the rational design of targeted therapies in the future.

  13. Social selection parapatry in Afrotropical sunbirds.

    PubMed

    McEntee, Jay P; Peñalba, Joshua V; Werema, Chacha; Mulungu, Elia; Mbilinyi, Maneno; Moyer, David; Hansen, Louis; Fjeldså, Jon; Bowie, Rauri C K

    2016-06-01

    The extent of range overlap of incipient and recent species depends on the type and magnitude of phenotypic divergence that separates them, and the consequences of phenotypic divergence on their interactions. Signal divergence by social selection likely initiates many speciation events, but may yield niche-conserved lineages predisposed to limit each others' ranges via ecological competition. Here, we examine this neglected aspect of social selection speciation theory in relation to the discovery of a nonecotonal species border between sunbirds. We find that Nectarinia moreaui and Nectarinia fuelleborni meet in a ∼6 km wide contact zone, as estimated by molecular cline analysis. These species exploit similar bioclimatic niches, but sing highly divergent learned songs, consistent with divergence by social selection. Cline analyses suggest that within-species stabilizing social selection on song-learning predispositions maintains species differences in song despite both hybridization and cultural transmission. We conclude that ecological competition between moreaui and fuelleborni contributes to the stabilization of the species border, but that ecological competition acts in conjunction with reproductive interference. The evolutionary maintenance of learned song differences in a hybrid zone recommend this study system for future studies on the mechanisms of learned song divergence and its role in speciation. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  14. Influence of individual body size and variable thresholds on the incidence of a sneaker male reproductive tactic in Atlantic salmon.

    PubMed

    Aubin-Horth, Nadia; Dodson, Julian J

    2004-01-01

    In the conditional strategy model, divergence in reproductive phenotypes depends on whether the individual's condition is above or below a genetically determined threshold. The relative contribution of the genetic and environmental components that lead to the expression of a reproductive tactic by an individual is not well understood. In the present field study, we determined when condition diverged between males that develop the mature parr phenotype and those that do not in Atlantic salmon (Salmo salar). We also investigated the uniformity of the threshold value in the population. We sampled mature parr and immature males at age one, of the same population at six different sites for four consecutive years. Our study provides an example of the interaction of genotype and environment on the expression of a reproductive tactic. Size was significantly greater for future mature parr than for future immature males as early as 20 days after hatching (emergence), suggesting that there may be a parental effect component in the tactic adopted, since no exogenous feeding takes place before this time. Size advantage at emergence was maintained through the next spring at age one to different degrees depending on the year, thus suggesting the presence of an environmental component of tactic expression. Our results support the contention that within the conditional strategy, the environment faced by a male and his condition at the moment of reproduction consistently predicts neither the environment faced by his offspring nor the fitness they will obtain by expressing the same tactic as their father. Furthermore, higher mean size at a site did not always translate into a higher proportion of mature parr, therefore supporting the hypothesis that thresholds vary across habitats within the same population.

  15. A statistical analysis of murine incisional and excisional acute wound models.

    PubMed

    Ansell, David M; Campbell, Laura; Thomason, Helen A; Brass, Andrew; Hardman, Matthew J

    2014-01-01

    Mice represent the most commonly used species for preclinical in vivo research. While incisional and excisional acute murine wound models are both frequently employed, there is little agreement on which model is optimum. Moreover, current lack of standardization of wounding procedure, analysis time point(s), method of assessment, and the use of individual wounds vs. individual animals as replicates makes it difficult to compare across studies. Here we have profiled secondary intention healing of incisional and excisional wounds within the same animal, assessing multiple parameters to determine the optimal methodology for future studies. We report that histology provides the least variable assessment of healing. Furthermore, histology alone (not planimetry) is able to detect accelerated healing in a castrated mouse model. Perhaps most importantly, we find virtually no correlation between wounds within the same animal, suggesting that use of wound (not animal) biological replicates is perfectly acceptable. Overall, these findings should guide and refine future studies, increasing the likelihood of detecting novel phenotypes while reducing the numbers of animals required for experimentation. © 2014 by the Wound Healing Society.

  16. A statistical analysis of murine incisional and excisional acute wound models

    PubMed Central

    Ansell, David M; Campbell, Laura; Thomason, Helen A; Brass, Andrew; Hardman, Matthew J

    2014-01-01

    Mice represent the most commonly used species for preclinical in vivo research. While incisional and excisional acute murine wound models are both frequently employed, there is little agreement on which model is optimum. Moreover, current lack of standardization of wounding procedure, analysis time point(s), method of assessment, and the use of individual wounds vs. individual animals as replicates makes it difficult to compare across studies. Here we have profiled secondary intention healing of incisional and excisional wounds within the same animal, assessing multiple parameters to determine the optimal methodology for future studies. We report that histology provides the least variable assessment of healing. Furthermore, histology alone (not planimetry) is able to detect accelerated healing in a castrated mouse model. Perhaps most importantly, we find virtually no correlation between wounds within the same animal, suggesting that use of wound (not animal) biological replicates is perfectly acceptable. Overall, these findings should guide and refine future studies, increasing the likelihood of detecting novel phenotypes while reducing the numbers of animals required for experimentation. PMID:24635179

  17. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.

    PubMed

    Barkla, Bronwyn J; Castellanos-Cervantes, Thelma; de León, José L Diaz; Matros, Andrea; Mock, Hans-Peter; Perez-Alfocea, Francisco; Salekdeh, Ghasem H; Witzel, Katja; Zörb, Christian

    2013-06-01

    Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Scandinavian epidemiological research in gastroenterology and hepatology.

    PubMed

    Björnsson, Einar S; Ekbom, Anders

    2015-06-01

    In the last decades, a large number of epidemiological studies in gastroenterology and hepatology have originated from the Scandinavian countries. With the help of large health databases, with good validity and other registries related to patient outcomes, researchers from the Scandinavian countries have been able to make some very important contributions to the field. These countries, Sweden, Norway, Finland, Denmark and Iceland, have all universal access to health care and have shown to be ideal for epidemiological research. Population-based studies have been frequent and follow-up studies have been able to describe the temporal trends and changes in phenotypes. Our ability in Scandinavia to follow up defined groups of patients over time has been crucial to learn the natural history of many gastrointestinal and liver diseases and often in a population-based setting. Patient-related outcomes measures will probably gain increasing importance in the future, but Scandinavian gastroenterologists and surgeons are likely to have a better infrastructure for such endeavors compared to most other populations. Thus, there is a bright future for international competitive research within the field of gastrointestinal and liver diseases in Scandinavia.

  19. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification

    PubMed Central

    Bell, Rayna C.; Mason, Nicholas A.

    2016-01-01

    Almost 30 y ago, the field of intraspecific phylogeography laid the foundation for spatially explicit and genealogically informed studies of population divergence. With new methods and markers, the focus in phylogeography shifted to previously unrecognized geographic genetic variation, thus reducing the attention paid to phenotypic variation in those same diverging lineages. Although phenotypic differences among lineages once provided the main data for studies of evolutionary change, the mechanisms shaping phenotypic differentiation and their integration with intraspecific genetic structure have been underexplored in phylogeographic studies. However, phenotypes are targets of selection and play important roles in species performance, recognition, and diversification. Here, we focus on three questions. First, how can phenotypes elucidate mechanisms underlying concordant or idiosyncratic responses of vertebrate species evolving in shared landscapes? Second, what mechanisms underlie the concordance or discordance of phenotypic and phylogeographic differentiation? Third, how can phylogeography contribute to our understanding of functional phenotypic evolution? We demonstrate that the integration of phenotypic data extends the reach of phylogeography to explain the origin and maintenance of biodiversity. Finally, we stress the importance of natural history collections as sources of high-quality phenotypic data that span temporal and spatial axes. PMID:27432983

  20. A Novel Lung Disease Phenotype Adjusted for Mortality Attrition for Cystic Fibrosis Genetic Modifier Studies

    PubMed Central

    Taylor, Chelsea; Commander, Clayton W.; Collaco, Joseph M.; Strug, Lisa J.; Li, Weili; Wright, Fred A.; Webel, Aaron D.; Pace, Rhonda G.; Stonebraker, Jaclyn R.; Naughton, Kathleen; Dorfman, Ruslan; Sandford, Andrew; Blackman, Scott M.; Berthiaume, Yves; Paré, Peter; Drumm, Mitchell L.; Zielenski, Julian; Durie, Peter; Cutting, Garry R.; Knowles, Michael R.; Corey, Mary

    2011-01-01

    SUMMARY Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment. Using data from the North American Cystic Fibrosis Modifier Consortium (Canadian Consortium for CF Genetic Studies, Johns Hopkins University CF Twin and Sibling Study, and University of North Carolina/Case Western Reserve University Gene Modifier Study), the authors calculated age-specific CF percentile values of FEV1 which were adjusted for CF age-specific mortality data. The phenotype was computed for 2061 patients representing the Canadian CF population, 1137 extreme phenotype patients in the UNC/Case Western study, and 1323 patients from multiple CF sib families in the CF Twin and Sibling Study. Despite differences in ascertainment and median age, our phenotype score was distributed in all three samples in a manner consistent with ascertainment differences, reflecting the lung disease severity of each individual in the underlying population. The new phenotype score was highly correlated with the previously recommended complex phenotype, but the new phenotype is more robust for shorter follow-up and for extreme ages. A disease progression and mortality adjusted phenotype reduces the need for stratification or additional covariates, increasing statistical power and avoiding possible distortions. This approach will facilitate large scale genetic and environmental epidemiological studies which will provide targeted therapeutic pathways for the clinical benefit of patients with CF. PMID:21462361

  1. Recurrent postural vasovagal syncope: sympathetic nervous system phenotypes.

    PubMed

    Vaddadi, Gautam; Guo, Ling; Esler, Murray; Socratous, Florentia; Schlaich, Markus; Chopra, Reena; Eikelis, Nina; Lambert, Gavin; Trauer, Thomas; Lambert, Elisabeth

    2011-10-01

    The pathophysiology of vasovagal syncope is poorly understood, and the treatment usually ineffective. Our clinical experience is that patients with vasovagal syncope fall into 2 groups, based on their supine systolic blood pressure, which is either normal (>100 mm Hg) or low (70-100 mm Hg). We investigated neural circulatory control in these 2 phenotypes. Sympathetic nervous testing was at 3 levels: electric, measuring sympathetic nerve firing (microneurography); neurochemical, quantifying norepinephrine spillover to plasma; and cellular, with Western blot analysis of sympathetic nerve proteins. Testing was done during head-up tilt (HUT), simulating the gravitational stress of standing, in 18 healthy control subjects and 36 patients with vasovagal syncope, 15 with the low blood pressure phenotype and 21 with normal blood pressure. Microneurography and norepinephrine spillover increased significantly during HUT in healthy subjects. The microneurography response during HUT was normal in normal blood pressure and accentuated in low blood pressure phenotype (P=0.05). Norepinephrine spillover response was paradoxically subnormal during HUT in both patient groups (P=0.001), who thus exhibited disjunction between nerve firing and neurotransmitter release; this lowered norepinephrine availability, impairing the neural circulatory response. Subnormal norepinephrine spillover in low blood pressure phenotype was linked to low tyrosine hydroxylase (43.7% normal, P=0.001), rate-limiting in norepinephrine synthesis, and in normal blood pressure to increased levels of the norepinephrine transporter (135% normal, P=0.019), augmenting transmitter reuptake. Patients with recurrent vasovagal syncope, when phenotyped into 2 clinical groups based on their supine blood pressure, show unique sympathetic nervous system abnormalities. It is predicted that future therapy targeting the specific mechanisms identified in the present report should translate into more effective treatment.

  2. Volatile organic compounds as non-invasive markers for plant phenotyping.

    PubMed

    Niederbacher, B; Winkler, J B; Schnitzler, J P

    2015-09-01

    Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Structure-function characterization of the crinkle-leaf peach wood phenotype: a future model system for wood properties research?

    USDA-ARS?s Scientific Manuscript database

    Variations in wood features of two genotypes of Prunus persica L. trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Trees from three vigor classes (low, average, and high) of each genotype were sampled. No meaningful tendency of dissimilarit...

  4. Reproductive strategies in snakes.

    PubMed Central

    Shine, Richard

    2003-01-01

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies. PMID:12803888

  5. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound.

    PubMed

    Ojwang, Leonnard O; Yang, Liyi; Dykes, Linda; Awika, Joseph

    2013-08-15

    Proanthocyanidin (PA) profile and content can have important nutritional and health implications on plant foods. Six diverse cowpea phenotypes (black, red, green, white, light-brown and golden-brown) were investigated for PA composition using normal-phase HPLC and reversed-phase UPLC-TQD-MS. Catechin and (epi)afzelechin were the major flavan-3-ol units. Unusual composition was observed in all cowpea phenotypes with significant degrees of glycosylation in the monomers and dimers. The PA content of cowpea (dry basis) ranged between 2.2 and 6.3 mg/g. Monomeric flavan-3-ols were the largest group of PA (36-69%) in cowpea, with catechin-7-O-glucoside accounting for most (about 88%) of the monomers. The oligomers with degree of polymerization (DP) 2-4 ranged from 0.41 to 1.3 mg/g (15-20%), whereas DP>10 polymers accounted for only 13.5% of PA. Future studies that highlight the impact of the unusual cowpea PA profile on nutritional and bioactive properties of this important legume are warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ustekinumab in Pediatric Crohn Disease Patients.

    PubMed

    Bishop, Casey; Simon, Hayley; Suskind, David; Lee, Dale; Wahbeh, Ghassan

    2016-09-01

    We describe the use of ustekinumab for 4 patients with pediatric Crohn disease treated at the Seattle Children's Hospital Inflammatory Bowel Disease Center. A retrospective chart review was done to identify patients' clinical data, disease phenotype, treatment history, and laboratory and growth parameters before treatment with ustekinumab and at last follow-up. Adverse events while on ustekinumab were also recorded. Four adolescent patients with Crohn disease at our center received ustekinumab. All had previously received corticosteroids, methotrexate, azathioprine/6-mercaptopurine, and both infliximab and adalimumab. Patients had varying disease phenotypes. Ages at ustekinumab initiation were 12, 13, 16, and 17 years. Weight ranged from 40.5 to 57.8 kg, mean 49.5 kg. Two patients showed clinical response and remain on ustekinumab. Two patients discontinued therapy because of continued symptoms and disease complications and required multiple hospitalizations. Ustekinumab was used in 4 children with pediatric Crohn disease with 2 of 4 patients showing clinical response (1 with persistently elevated C-reactive protein). A prospective study is needed to define its efficacy, safety, and placement in managing pediatric Crohn disease in the future.

  7. Characterization of culturable anaerobic bacteria from the forestomach of an eastern grey kangaroo, Macropus giganteus.

    PubMed

    Ouwerkerk, D; Klieve, A V; Forster, R J; Templeton, J M; Maguire, A J

    2005-01-01

    To determine the culturable biodiversity of anaerobic bacteria isolated from the forestomach contents of an eastern grey kangaroo, Macropus giganteus, using phenotypic characterization and 16S rDNA sequence analysis. Bacteria from forestomach contents of an eastern grey kangaroo were isolated using anaerobic media containing milled curly Mitchell grass (Astrebla lappacea). DNA was extracted and the 16S rDNA sequenced for phylogenetic analysis. Forty bacterial isolates were obtained and placed in 17 groups based on phenotypic characteristics and restriction enzyme digestion of 16S rDNA PCR products. DNA sequencing revealed that the 17 groups comprised five known species (Clostridium butyricum, Streptococcus bovis, Clostridium sporogenes, Clostridium paraputrificum and Enterococcus avium) and 12 groups apparently representing new species, all within the phylum Firmicutes. Foregut contents from Australian macropod marsupials contain a microbial ecosystem with a novel bacterial biodiversity comprising a high percentage of previously unrecognized species. This study adds to knowledge of Australia's unique biodiversity, which may provide a future bioresource of genetic information and bacterial species of benefit to agriculture.

  8. Gene–Environment Interactions and Intermediate Phenotypes: Early Trauma and Depression

    PubMed Central

    Hornung, Orla P.; Heim, Christine M.

    2013-01-01

    This review focuses on current research developments in the study of gene by early life stress (ELS) interactions and depression. ELS refers to aversive experiences during childhood and adolescence such as sexual, physical or emotional abuse, emotional or physical neglect as well as parental loss. Previous research has focused on investigating and characterizing the specific role of ELS within the pathogenesis of depression and linking these findings to neurobiological changes of the brain, especially the stress response system. The latest findings highlight the role of genetic factors that increase vulnerability or, likewise, promote resilience to depression after childhood trauma. Considering intermediate phenotypes has further increased our understanding of the complex relationship between early trauma and depression. Recent findings with regard to epigenetic changes resulting from adverse environmental events during childhood promote current endeavors to identify specific target areas for prevention and treatment schemes regarding the long-term impact of ELS. Taken together, the latest research findings have underscored the essential role of genotypes and epigenetic processes within the development of depression after childhood trauma, thereby building the basis for future research and clinical interventions. PMID:24596569

  9. Splitting or lumping? A conservation dilemma exemplified by the critically endangered dama gazelle (Nanger dama).

    PubMed

    Senn, Helen; Banfield, Lisa; Wacher, Tim; Newby, John; Rabeil, Thomas; Kaden, Jennifer; Kitchener, Andrew C; Abaigar, Teresa; Silva, Teresa Luísa; Maunder, Mike; Ogden, Rob

    2014-01-01

    Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions.

  10. Reproductive strategies in snakes.

    PubMed

    Shine, Richard

    2003-05-22

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies.

  11. Splitting or Lumping? A Conservation Dilemma Exemplified by the Critically Endangered Dama Gazelle (Nanger dama)

    PubMed Central

    Senn, Helen; Banfield, Lisa; Wacher, Tim; Newby, John; Rabeil, Thomas; Kaden, Jennifer; Kitchener, Andrew C.; Abaigar, Teresa; Silva, Teresa Luísa; Maunder, Mike; Ogden, Rob

    2014-01-01

    Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions. PMID:24956104

  12. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    PubMed

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  13. Hormone signaling and phenotypic plasticity in nematode development and evolution.

    PubMed

    Sommer, Ralf J; Ogawa, Akira

    2011-09-27

    Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Epigenetics in comparative biology: why we should pay attention.

    PubMed

    Burggren, Warren W; Crews, David

    2014-07-01

    The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat "old wine in new bottles" and represents a reformulation of the old debate of preformationism versus epigenesis-one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which "true" epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., "the epigenetics of cancer"). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret "sunsetting" of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic modification of phenotype (molecular, cellular, morphological, physiological, and behavioral) can be highly variable depending upon ancestral environmental exposure and can contribute to apparent "random" noise in collected datasets. Thus, future research should go beyond the study of epigenetic mechanisms at the level of the gene and devote additional investigation of epigenetic outcomes at the level of both the individual organism and how it affects the evolution of populations. This review is the first of seven in this special issue of Integrative and Comparative Biology that addresses in detail these and other key topics in the study of epigenetics. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. An omnibus test for family-based association studies with multiple SNPs and multiple phenotypes.

    PubMed

    Lasky-Su, Jessica; Murphy, Amy; McQueen, Matthew B; Weiss, Scott; Lange, Christoph

    2010-06-01

    We propose an omnibus family-based association test (MFBAT) that can be applied to multiple markers and multiple phenotypes and that has only one degree of freedom. The proposed test statistic extends current FBAT methodology to incorporate multiple markers as well as multiple phenotypes. Using simulation studies, power estimates for the proposed methodology are compared with the standard methodologies. On the basis of these simulations, we find that MFBAT substantially outperforms other methods, including haplotypic approaches and doing multiple tests with single single-nucleotide polymorphisms (SNPs) and single phenotypes. The practical relevance of the approach is illustrated by an application to asthma in which SNP/phenotype combinations are identified and reach overall significance that would not have been identified using other approaches. This methodology is directly applicable to cases in which there are multiple SNPs, such as candidate gene studies, cases in which there are multiple phenotypes, such as expression data, and cases in which there are multiple phenotypes and genotypes, such as genome-wide association studies that incorporate expression profiles as phenotypes. This program is available in the PBAT analysis package.

  16. Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori

    NASA Astrophysics Data System (ADS)

    Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun

    2015-07-01

    The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.

  17. Identification of glia phenotype modulators based on select glial function regulatory signaling pathways.

    PubMed

    Lee, Sun-Hwa; Suk, Kyoungho

    2018-04-20

    Despite the considerable social and economic burden on the healthcare system worldwide due to neurodegenerative diseases, there are currently few disease-altering treatment options for many of these conditions. Therefore, new approaches for both prevention and intervention for neurodegenerative diseases are urgently required. Microglia-mediated neurotoxicity is one of the pathologic hallmarks common to Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Current therapeutic approaches to target microglia-mediated neurotoxicity are focused on the identification of glia phenotype modulators (GPMs), which can inhibit the 'classical' pro-inflammatory and neurotoxic phenotypes of microglia. Areas covered: This article reviews selected microglial molecular targets and pathways involved in either neurotoxicity or neuroprotection and how their identification. Expert opinion: Microglial activation and their signaling pathways have important implications in the neurotoxicity and brain disorders. Pharmacological modulation of microglial activation may serve as a potential therapeutic approach for targeting microglia-mediated neurotoxicity. However, given that microglia change their activation states depending on the timing, stage, and severity of disease, and even aging, the appropriate window should be considered for this approach to be clinically effective. In the future, the identification of unknown extracellular signals and intracellular molecular switches that control phenotypic shifts may facilitate the development of novel therapeutics targeting microglia-mediated neurotoxicity.

  18. Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori

    PubMed Central

    Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun

    2015-01-01

    The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future. PMID:26198671

  19. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.

    PubMed

    Kayser, Manfred

    2015-09-01

    Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies?

    PubMed

    Birch, Jodie; Passos, João F

    2017-05-01

    Anti-senescence therapies, such as drugs that specifically kill senescent cells, to stave off ageing are currently under investigation. While these interventions show promise, their potential pitfalls are discussed herein. We have shown that the mitochondria are essential for development of senescence and many of the associated phenotypes, including the often detrimental senescence-associated secretory phenotype (SASP). Here, we disentangle many ways in which the mitochondria may influence senescence and development of the SASP and focus on possible pathways that could be exploited for future generation of anti-senescence therapies with a clear aim; to specifically eliminate the problematic features of senescent cells, while maintaining their beneficial characteristics. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  1. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis.

    PubMed

    Goutman, Stephen A; Chen, Kevin S; Paez-Colasante, Ximena; Feldman, Eva L

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Sex differences and within-family associations in the broad autism phenotype.

    PubMed

    Klusek, Jessica; Losh, Molly; Martin, Gary E

    2014-02-01

    While there is a strong sex bias in the presentation of autism, it is unknown whether this bias is also present in subclinical manifestations of autism among relatives, or the broad autism phenotype. This study examined this question and investigated patterns of co-occurrence of broad autism phenotype traits within families of individuals with autism. Pragmatic language and personality features of the broad autism phenotype were studied in 42 fathers and 50 mothers of individuals with autism using direct assessment tools used in prior family studies of the broad autism phenotype. Higher rates of aloof personality style were detected among fathers, while no sex differences were detected for other broad autism phenotype traits. Within individuals, pragmatic language features were associated with the social personality styles of the broad autism phenotype in mothers but not in fathers. A number of broad autism phenotype features were correlated within spousal pairs. Finally, the associations were detected between paternal broad autism phenotype characteristics and the severity of children's autism symptoms in all three domains (social, communication, and repetitive behaviors). Mother-child correlations were detected for aspects of communication only. Together, the findings suggest that most features of the broad autism phenotype express comparably in males and females and raise some specific questions about how such features might inform studies of the genetic basis of autism.

  3. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture.

    PubMed

    Macqueen, Daniel J; Primmer, Craig R; Houston, Ross D; Nowak, Barbara F; Bernatchez, Louis; Bergseth, Steinar; Davidson, William S; Gallardo-Escárate, Cristian; Goldammer, Tom; Guiguen, Yann; Iturra, Patricia; Kijas, James W; Koop, Ben F; Lien, Sigbjørn; Maass, Alejandro; Martin, Samuel A M; McGinnity, Philip; Montecino, Martin; Naish, Kerry A; Nichols, Krista M; Ólafsson, Kristinn; Omholt, Stig W; Palti, Yniv; Plastow, Graham S; Rexroad, Caird E; Rise, Matthew L; Ritchie, Rachael J; Sandve, Simen R; Schulte, Patricia M; Tello, Alfredo; Vidal, Rodrigo; Vik, Jon Olav; Wargelius, Anna; Yáñez, José Manuel

    2017-06-27

    We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.

  4. Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network

    PubMed Central

    Pendergrass, Sarah A.; Brown-Gentry, Kristin; Dudek, Scott; Frase, Alex; Torstenson, Eric S.; Goodloe, Robert; Ambite, Jose Luis; Avery, Christy L.; Buyske, Steve; Bůžková, Petra; Deelman, Ewa; Fesinmeyer, Megan D.; Haiman, Christopher A.; Heiss, Gerardo; Hindorff, Lucia A.; Hsu, Chu-Nan; Jackson, Rebecca D.; Kooperberg, Charles; Le Marchand, Loic; Lin, Yi; Matise, Tara C.; Monroe, Kristine R.; Moreland, Larry; Park, Sungshim L.; Reiner, Alex; Wallace, Robert; Wilkens, Lynn R.; Crawford, Dana C.; Ritchie, Marylyn D.

    2013-01-01

    Using a phenome-wide association study (PheWAS) approach, we comprehensively tested genetic variants for association with phenotypes available for 70,061 study participants in the Population Architecture using Genomics and Epidemiology (PAGE) network. Our aim was to better characterize the genetic architecture of complex traits and identify novel pleiotropic relationships. This PheWAS drew on five population-based studies representing four major racial/ethnic groups (European Americans (EA), African Americans (AA), Hispanics/Mexican-Americans, and Asian/Pacific Islanders) in PAGE, each site with measurements for multiple traits, associated laboratory measures, and intermediate biomarkers. A total of 83 single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) were genotyped across two or more PAGE study sites. Comprehensive tests of association, stratified by race/ethnicity, were performed, encompassing 4,706 phenotypes mapped to 105 phenotype-classes, and association results were compared across study sites. A total of 111 PheWAS results had significant associations for two or more PAGE study sites with consistent direction of effect with a significance threshold of p<0.01 for the same racial/ethnic group, SNP, and phenotype-class. Among results identified for SNPs previously associated with phenotypes such as lipid traits, type 2 diabetes, and body mass index, 52 replicated previously published genotype–phenotype associations, 26 represented phenotypes closely related to previously known genotype–phenotype associations, and 33 represented potentially novel genotype–phenotype associations with pleiotropic effects. The majority of the potentially novel results were for single PheWAS phenotype-classes, for example, for CDKN2A/B rs1333049 (previously associated with type 2 diabetes in EA) a PheWAS association was identified for hemoglobin levels in AA. Of note, however, GALNT2 rs2144300 (previously associated with high-density lipoprotein cholesterol levels in EA) had multiple potentially novel PheWAS associations, with hypertension related phenotypes in AA and with serum calcium levels and coronary artery disease phenotypes in EA. PheWAS identifies associations for hypothesis generation and exploration of the genetic architecture of complex traits. PMID:23382687

  5. Asthma phenotypes in childhood.

    PubMed

    Reddy, Monica B; Covar, Ronina A

    2016-04-01

    This review describes the literature over the past 18 months that evaluated childhood asthma phenotypes, highlighting the key aspects of these studies, and comparing these studies to previous ones in this area. Recent studies on asthma phenotypes have identified new phenotypes on the basis of statistical analyses (using cluster analysis and latent class analysis methodology) and have evaluated the outcomes and associated risk factors of previously established early childhood asthma phenotypes that are based on asthma onset and patterns of wheezing illness. There have also been investigations focusing on immunologic, physiologic, and genetic correlates of various phenotypes, as well as identification of subphenotypes of severe childhood asthma. Childhood asthma remains a heterogeneous condition, and investigations into these various presentations, risk factors, and outcomes are important since they can offer therapeutic and prognostic relevance. Further investigation into the immunopathology and genetic basis underlying childhood phenotypes is important so therapy can be tailored accordingly.

  6. MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions.

    PubMed

    Blank, Carrine E; Cui, Hong; Moore, Lisa R; Walls, Ramona L

    2016-01-01

    MicrO is an ontology of microbiological terms, including prokaryotic qualities and processes, material entities (such as cell components), chemical entities (such as microbiological culture media and medium ingredients), and assays. The ontology was built to support the ongoing development of a natural language processing algorithm, MicroPIE (or, Microbial Phenomics Information Extractor). During the MicroPIE design process, we realized there was a need for a prokaryotic ontology which would capture the evolutionary diversity of phenotypes and metabolic processes across the tree of life, capture the diversity of synonyms and information contained in the taxonomic literature, and relate microbiological entities and processes to terms in a large number of other ontologies, most particularly the Gene Ontology (GO), the Phenotypic Quality Ontology (PATO), and the Chemical Entities of Biological Interest (ChEBI). We thus constructed MicrO to be rich in logical axioms and synonyms gathered from the taxonomic literature. MicrO currently has ~14550 classes (~2550 of which are new, the remainder being microbiologically-relevant classes imported from other ontologies), connected by ~24,130 logical axioms (5,446 of which are new), and is available at (http://purl.obolibrary.org/obo/MicrO.owl) and on the project website at https://github.com/carrineblank/MicrO. MicrO has been integrated into the OBO Foundry Library (http://www.obofoundry.org/ontology/micro.html), so that other ontologies can borrow and re-use classes. Term requests and user feedback can be made using MicrO's Issue Tracker in GitHub. We designed MicrO such that it can support the ongoing and future development of algorithms that can leverage the controlled vocabulary and logical inference power provided by the ontology. By connecting microbial classes with large numbers of chemical entities, material entities, biological processes, molecular functions, and qualities using a dense array of logical axioms, we intend MicrO to be a powerful new tool to increase the computing power of bioinformatics tools such as the automated text mining of prokaryotic taxonomic descriptions using natural language processing. We also intend MicrO to support the development of new bioinformatics tools that aim to develop new connections between microbial phenotypes and genotypes (i.e., the gene content in genomes). Future ontology development will include incorporation of pathogenic phenotypes and prokaryotic habitats.

  7. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene.

    PubMed

    Fishman, G A; Stone, E M; Grover, S; Derlacki, D J; Haines, H L; Hockey, R R

    1999-04-01

    To report the spectrum of ophthalmic findings in patients with Stargardt dystrophy or fundus flavimaculatus who have a specific sequence variation in the ABCR gene. Twenty-nine patients with Stargardt dystrophy or fundus flavimaculatus from different pedigrees were identified with possible disease-causing sequence variations in the ABCR gene from a group of 66 patients who were screened for sequence variations in this gene. Patients underwent a routine ocular examination, including slitlamp biomicroscopy and a dilated fundus examination. Fluorescein angiography was performed on 22 patients, and electroretinographic measurements were obtained on 24 of 29 patients. Kinetic visual fields were measured with a Goldmann perimeter in 26 patients. Single-strand conformation polymorphism analysis and DNA sequencing were used to identify variations in coding sequences of the ABCR gene. Three clinical phenotypes were observed among these 29 patients. In phenotype I, 9 of 12 patients had a sequence change in exon 42 of the ABCR gene in which the amino acid glutamic acid was substituted for glycine (Gly1961Glu). In only 4 of these 9 patients was a second possible disease-causing mutation found on the other ABCR allele. In addition to an atrophic-appearing macular lesion, phenotype I was characterized by localized perifoveal yellowish white flecks, the absence of a dark choroid, and normal electroretinographic amplitudes. Phenotype II consisted of 10 patients who showed a dark choroid and more diffuse yellowish white flecks in the fundus. None exhibited the Gly1961Glu change. Phenotype III consisted of 7 patients who showed extensive atrophic-appearing changes of the retinal pigment epithelium. Electroretinographic cone and rod amplitudes were reduced. One patient showed the Gly1961Glu change. A wide variation in clinical phenotype can occur in patients with sequence changes in the ABCR gene. In individual patients, a certain phenotype seems to be associated with the presence of a Gly1961Glu change in exon 42 of the ABCR gene. The identification of correlations between specific mutations in the ABCR gene and clinical phenotypes will better facilitate the counseling of patients on their visual prognosis. This information will also likely be important for future therapeutic trials in patients with Stargardt dystrophy.

  8. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome.

    PubMed

    Aziz, Nadine M; Guedj, Faycal; Pennings, Jeroen L A; Olmos-Serrano, Jose Luis; Siegel, Ashley; Haydar, Tarik F; Bianchi, Diana W

    2018-06-12

    Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  9. A Phenotypic Screen for Functional Mutants of Human Adenosine Deaminase Acting on RNA 1.

    PubMed

    Wang, Yuru; Havel, Jocelyn; Beal, Peter A

    2015-11-20

    Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. ADAR1 and ADAR2 are two members of the family that have been shown to be catalytically active. Earlier, we reported a phenotypic screen for the study of human ADAR2 using budding yeast S. cerevisiae as the host system. While this screen has been successfully applied to the study of ADAR2, it failed with ADAR1. Here, we report a new reporter that uses a novel editing substrate and is suitable for the study of ADAR1. We screened plasmid libraries with randomized codons for two important residues in human ADAR1 (G1007 and E1008). The screening results combined with in vitro deamination assays led to the identification of mutants that are more active than the wild type protein. Furthermore, a screen of the ADAR1 E1008X library with a reporter construct bearing an A•G mismatch at the editing site suggests one role for the residue at position 1008 is to sense the identity of the base pairing partner for the editing site adenosine. This work has provided a starting point for future in vitro evolution studies of ADAR1 and led to new insight into ADAR's editing site selectivity.

  10. Clinical diagnostic exome evaluation for an infant with a lethal disorder: genetic diagnosis of TARP syndrome and expansion of the phenotype in a patient with a newly reported RBM10 alteration.

    PubMed

    Powis, Zöe; Hart, Alexa; Cherny, Sara; Petrik, Igor; Palmaer, Erika; Tang, Sha; Jones, Carolyn

    2017-06-02

    Diagnostic Exome Sequencing (DES) has been shown to be an effective tool for diagnosis individuals with suspected genetic conditions. We report a male infant born with multiple anomalies including bilateral dysplastic kidneys, cleft palate, bilateral talipes, and bilateral absence of thumbs and first toes. Prenatal testing including chromosome analysis and microarray did not identify a cause for the multiple congenital anomalies. Postnatal diagnostic exome studies (DES) were utilized to find a molecular diagnosis for the patient. Exome sequencing of the proband, mother, and father showed a previously unreported maternally inherited RNA binding motif protein 10 (RBM10) c.1352_1353delAG (p.E451Vfs*66) alteration. Mutations in RBM10 are associated with TARP syndrome, an X-linked recessive disorder originally described with cardinal features of talipes equinovarus, atrial septal defect, Robin sequence, and persistent left superior vena cava. DES established a molecular genetic diagnosis of TARP syndrome for a neonatal patient with a poor prognosis in whom traditional testing methods were uninformative and allowed for efficient diagnosis and future reproductive options for the parents. Other reported cases of TARP syndrome demonstrate significant variability in clinical phenotype. The reported features in this infant including multiple hemivertebrae, imperforate anus, aplasia of thumbs and first toes have not been reported in previous patients, thus expanding the clinical phenotype for this rare disorder.

  11. Overexpression of mutant HSP27 causes axonal neuropathy in mice.

    PubMed

    Lee, Jinho; Jung, Sung-Chul; Joo, Jaesoon; Choi, Yu-Ri; Moon, Hyo Won; Kwak, Geon; Yeo, Ha Kyung; Lee, Ji-Su; Ahn, Hye-Jee; Jung, Namhee; Hwang, Sunhee; Rheey, Jingeun; Woo, So-Youn; Kim, Ji Yon; Hong, Young Bin; Choi, Byung-Ok

    2015-06-19

    Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects. Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F.

  12. The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry

    PubMed Central

    Nooner, Kate Brody; Colcombe, Stanley J.; Tobe, Russell H.; Mennes, Maarten; Benedict, Melissa M.; Moreno, Alexis L.; Panek, Laura J.; Brown, Shaquanna; Zavitz, Stephen T.; Li, Qingyang; Sikka, Sharad; Gutman, David; Bangaru, Saroja; Schlachter, Rochelle Tziona; Kamiel, Stephanie M.; Anwar, Ayesha R.; Hinz, Caitlin M.; Kaplan, Michelle S.; Rachlin, Anna B.; Adelsberg, Samantha; Cheung, Brian; Khanuja, Ranjit; Yan, Chaogan; Craddock, Cameron C.; Calhoun, Vincent; Courtney, William; King, Margaret; Wood, Dylan; Cox, Christine L.; Kelly, A. M. Clare; Di Martino, Adriana; Petkova, Eva; Reiss, Philip T.; Duan, Nancy; Thomsen, Dawn; Biswal, Bharat; Coffey, Barbara; Hoptman, Matthew J.; Javitt, Daniel C.; Pomara, Nunzio; Sidtis, John J.; Koplewicz, Harold S.; Castellanos, Francisco Xavier; Leventhal, Bennett L.; Milham, Michael P.

    2012-01-01

    The National Institute of Mental Health strategic plan for advancing psychiatric neuroscience calls for an acceleration of discovery and the delineation of developmental trajectories for risk and resilience across the lifespan. To attain these objectives, sufficiently powered datasets with broad and deep phenotypic characterization, state-of-the-art neuroimaging, and genetic samples must be generated and made openly available to the scientific community. The enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) is a response to this need. NKI-RS is an ongoing, institutionally centered endeavor aimed at creating a large-scale (N > 1000), deeply phenotyped, community-ascertained, lifespan sample (ages 6–85 years old) with advanced neuroimaging and genetics. These data will be publically shared, openly, and prospectively (i.e., on a weekly basis). Herein, we describe the conceptual basis of the NKI-RS, including study design, sampling considerations, and steps to synchronize phenotypic and neuroimaging assessment. Additionally, we describe our process for sharing the data with the scientific community while protecting participant confidentiality, maintaining an adequate database, and certifying data integrity. The pilot phase of the NKI-RS, including challenges in recruiting, characterizing, imaging, and sharing data, is discussed while also explaining how this experience informed the final design of the enhanced NKI-RS. It is our hope that familiarity with the conceptual underpinnings of the enhanced NKI-RS will facilitate harmonization with future data collection efforts aimed at advancing psychiatric neuroscience and nosology. PMID:23087608

  13. Extensive Local Gene Duplication and Functional Divergence among Paralogs in Atlantic Salmon

    PubMed Central

    Warren, Ian A.; Ciborowski, Kate L.; Casadei, Elisa; Hazlerigg, David G.; Martin, Sam; Jordan, William C.; Sumner, Seirian

    2014-01-01

    Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle. PMID:24951567

  14. Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks.

    PubMed

    Polchow, Bianca; Kebbel, Kati; Schmiedeknecht, Gerno; Reichardt, Anne; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora

    2012-05-16

    In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student's t-test. Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC. Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority.

  15. Early management of patients with acute heart failure: state of the art and future directions. A consensus document from the society for academic emergency medicine/heart failure society of America acute heart failure working group.

    PubMed

    Collins, Sean; Storrow, Alan B; Albert, Nancy M; Butler, Javed; Ezekowitz, Justin; Felker, G Michael; Fermann, Gregory J; Fonarow, Gregg C; Givertz, Michael M; Hiestand, Brian; Hollander, Judd E; Lanfear, David E; Levy, Phillip D; Pang, Peter S; Peacock, W Frank; Sawyer, Douglas B; Teerlink, John R; Lenihan, Daniel J

    2015-01-01

    Heart failure (HF) afflicts nearly 6 million Americans, resulting in one million emergency department (ED) visits and over one million annual hospital discharges. An aging population and improved survival from cardiovascular diseases is expected to further increase HF prevalence. Emergency providers play a significant role in the management of patients with acute heart failure (AHF). It is crucial that emergency physicians and other providers involved in early management understand the latest developments in diagnostic testing, therapeutics and alternatives to hospitalization. Further, clinical trials must be conducted in the ED in order to improve the evidence base and drive optimal initial therapy for AHF. Should ongoing and future studies suggest early phenotype-driven therapy improves in-hospital and post-discharge outcomes, ED treatment decisions will need to evolve accordingly. The potential impact of future studies which incorporate risk-stratification into ED disposition decisions cannot be underestimated. Predictive instruments that identify a cohort of patients safe for ED discharge, while simultaneously addressing barriers to successful outpatient management, have the potential to significantly impact quality of life and resource expenditures. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. SNP-associations and phenotype predictions from hundreds of microbial genomes without genome alignments.

    PubMed

    Hall, Barry G

    2014-01-01

    SNP-association studies are a starting point for identifying genes that may be responsible for specific phenotypes, such as disease traits. The vast bulk of tools for SNP-association studies are directed toward SNPs in the human genome, and I am unaware of any tools designed specifically for such studies in bacterial or viral genomes. The PPFS (Predict Phenotypes From SNPs) package described here is an add-on to kSNP , a program that can identify SNPs in a data set of hundreds of microbial genomes. PPFS identifies those SNPs that are non-randomly associated with a phenotype based on the χ² probability, then uses those diagnostic SNPs for two distinct, but related, purposes: (1) to predict the phenotypes of strains whose phenotypes are unknown, and (2) to identify those diagnostic SNPs that are most likely to be causally related to the phenotype. In the example illustrated here, from a set of 68 E. coli genomes, for 67 of which the pathogenicity phenotype was known, there were 418,500 SNPs. Using the phenotypes of 36 of those strains, PPFS identified 207 diagnostic SNPs. The diagnostic SNPs predicted the phenotypes of all of the genomes with 97% accuracy. It then identified 97 SNPs whose probability of being causally related to the pathogenic phenotype was >0.999. In a second example, from a set of 116 E. coli genome sequences, using the phenotypes of 65 strains PPFS identified 101 SNPs that predicted the source host (human or non-human) with 90% accuracy.

  17. Determining Multiple Sclerosis Phenotype from Electronic Medical Records.

    PubMed

    Nelson, Richard E; Butler, Jorie; LaFleur, Joanne; Knippenberg, Kristin; C Kamauu, Aaron W; DuVall, Scott L

    2016-12-01

    Multiple sclerosis (MS), a central nervous system disease in which nerve signals are disrupted by scarring and demyelination, is classified into phenotypes depending on the patterns of cognitive or physical impairment progression: relapsing-remitting MS (RRMS), primary-progressive MS (PPMS), secondary-progressive MS (SPMS), or progressive-relapsing MS (PRMS). The phenotype is important in managing the disease and determining appropriate treatment. The ICD-9-CM code 340.0 is uninformative about MS phenotype, which increases the difficulty of studying the effects of phenotype on disease. To identify MS phenotype using natural language processing (NLP) techniques on progress notes and other clinical text in the electronic medical record (EMR). Patients with at least 2 ICD-9-CM codes for MS (340.0) from 1999 through 2010 were identified from nationwide EMR data in the Department of Veterans Affairs. Clinical experts were interviewed for possible keywords and phrases denoting MS phenotype in order to develop a data dictionary for NLP. For each patient, NLP was used to search EMR clinical notes, since the first MS diagnosis date for these keywords and phrases. Presence of phenotype-related keywords and phrases were analyzed in context to remove mentions that were negated (e.g., "not relapsing-remitting") or unrelated to MS (e.g., "RR" meaning "respiratory rate"). One thousand mentions of MS phenotype were validated, and all records of 150 patients were reviewed for missed mentions. There were 7,756 MS patients identified by ICD-9-CM code 340.0. MS phenotype was identified for 2,854 (36.8%) patients, with 1,836 (64.3%) of those having just 1 phenotype mentioned in their EMR clinical notes: 1,118 (39.2%) RRMS, 325 (11.4%) PPMS, 374 (13.1%) SPMS, and 19 (0.7%) PRMS. A total of 747 patients (26.2%) had 2 phenotypes, the most common being 459 patients (16.1%) with RRMS and SPMS. A total of 213 patients (7.5%) had 3 phenotypes, and 58 patients (2.0%) had 4 phenotypes mentioned in their EMR clinical notes. Positive predictive value of phenotype identification was 93.8% with sensitivity of 94.0%. Phenotype was documented for slightly more than one third of MS patients, an important but disappointing finding that sets a limit on studying the effects of phenotype on MS in general. However, for cases where the phenotype was documented, NLP accurately identified the phenotypes. Having multiple phenotypes documented is consistent with disease progression. The most common misidentification was because of ambiguity while clinicians were trying to determine phenotype. This study brings attention to the need for care providers to document MS phenotype more consistently and provides a solution for capturing phenotype from clinical text. This study was funded by Anolinx and F. Hoffman-La Roche. Nelson serves as a consultant for Anolinx. Kamauu is owner of Anolinx, which has received multiple research grants from pharmaceutical and biotechnology companies. LaFleur has received a Novartis grant for ongoing work. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the U.S. government. Study concept and design were contributed by Butler, LaFleur, Kamauu, DuVall, and Nelson. DuVall collected the data, and interpretation was performed by Nelson, DuVall, and Kamauu, along with Butler, LaFleur, and Knippenberg. The manuscript was written primarily by Nelson, along with Knippenberg and assisted by the other authors, and revised by Knippenberg, Nelson, and DuVall, along with the other authors.

  18. Bridging Animal and Human Models

    PubMed Central

    Barkley-Levenson, Amanda M.; Crabbe, John C.

    2012-01-01

    Genetics play an important role in the development and course of alcohol abuse, and understanding genetic contributions to this disorder may lead to improved preventative and therapeutic strategies in the future. Studies both in humans and in animal models are necessary to fully understand the neurobiology of alcoholism from the molecular to the cognitive level. By dissecting the complex facets of alcoholism into discrete, well-defined phenotypes that are measurable in both human populations and animal models of the disease, researchers will be better able to translate findings across species and integrate the knowledge obtained from various disciplines. Some of the key areas of alcoholism research where consilience between human and animal studies is possible are alcohol withdrawal severity, sensitivity to rewards, impulsivity, and dysregulated alcohol consumption. PMID:23134048

  19. Maternal choline supplementation: a nutritional approach for improving offspring health?

    PubMed

    Jiang, Xinyin; West, Allyson A; Caudill, Marie A

    2014-05-01

    The modulatory role of choline on the fetal epigenome and the impact of in utero choline supply on fetal programming and health are of great interest. Studies in animals and/or humans suggest that maternal choline supplementation during pregnancy benefits important physiologic systems such as offspring cognitive function, response to stress, and cerebral inhibition. Because alterations in offspring phenotype frequently coincide with epigenetic modifications and changes in gene expression, maternal choline supplementation may be a nutritional strategy to improve lifelong health of the child. Future studies are warranted to elucidate further the effect of choline on the fetal epigenome and to determine the level of maternal choline intake required for optimal offspring physiologic function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes

    PubMed Central

    Senni, Michele; Paulus, Walter J.; Gavazzi, Antonello; Fraser, Alan G.; Díez, Javier; Solomon, Scott D.; Smiseth, Otto A.; Guazzi, Marco; Lam, Carolyn S. P.; Maggioni, Aldo P.; Tschöpe, Carsten; Metra, Marco; Hummel, Scott L.; Edelmann, Frank; Ambrosio, Giuseppe; Stewart Coats, Andrew J.; Filippatos, Gerasimos S.; Gheorghiade, Mihai; Anker, Stefan D.; Levy, Daniel; Pfeffer, Marc A.; Stough, Wendy Gattis; Pieske, Burkert M.

    2014-01-01

    The management of heart failure with reduced ejection fraction (HF-REF) has improved significantly over the last two decades. In contrast, little or no progress has been made in identifying evidence-based, effective treatments for heart failure with preserved ejection fraction (HF-PEF). Despite the high prevalence, mortality, and cost of HF-PEF, large phase III international clinical trials investigating interventions to improve outcomes in HF-PEF have yielded disappointing results. Therefore, treatment of HF-PEF remains largely empiric, and almost no acknowledged standards exist. There is no single explanation for the negative results of past HF-PEF trials. Potential contributors include an incomplete understanding of HF-PEF pathophysiology, the heterogeneity of the patient population, inadequate diagnostic criteria, recruitment of patients without true heart failure or at early stages of the syndrome, poor matching of therapeutic mechanisms and primary pathophysiological processes, suboptimal study designs, or inadequate statistical power. Many novel agents are in various stages of research and development for potential use in patients with HF-PEF. To maximize the likelihood of identifying effective therapeutics for HF-PEF, lessons learned from the past decade of research should be applied to the design, conduct, and interpretation of future trials. This paper represents a synthesis of a workshop held in Bergamo, Italy, and it examines new and emerging therapies in the context of specific, targeted HF-PEF phenotypes where positive clinical benefit may be detected in clinical trials. Specific considerations related to patient and endpoint selection for future clinical trials design are also discussed. PMID:25104786

  1. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  2. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  3. Phenotypic variation in California populations of valley oak (Quercus lobata Née) sampled along elevational gradients

    Treesearch

    Ana L. Albarrán-Lara; Jessica W. Wright; Paul F. Gugger; Annette Delfino-Mix; Juan Manuel Peñaloza-Ramírez; Victoria L. Sork

    2015-01-01

    California oaks exhibit tremendous phenotypic variation throughout their range. This variation reflects phenotypic plasticity in tree response to local environmental conditions as well as genetic differences underlying those phenotypes. In this study, we analyze phenotypic variation in leaf traits for valley oak adults sampled along three elevational transects and in...

  4. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis.

    PubMed

    Ljubicic, Vladimir; Burt, Matthew; Lunde, John A; Jasmin, Bernard J

    2014-07-01

    Slower, more oxidative muscle fibers are more resistant to the dystrophic pathology in Duchenne muscular dystrophy (DMD) patients as well as in the preclinical mdx mouse model of DMD. Therefore, one therapeutic strategy for DMD focuses on promoting expression of the slow, oxidative myogenic program. In the current study, we explored the therapeutic potential of stimulating the slow, oxidative phenotype in mdx mice by feeding 6-wk-old animals with the natural phenol resveratrol (RSV; ~100 mg·kg(-1)·day(-1)) for 6 wk. Sirtuin 1 (SIRT1) activity and protein levels increased significantly, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) activity, in the absence of alterations in AMPK signaling. These adaptations occurred concomitant with evidence of a fast, glycolytic, to slower, more oxidative fiber type conversion, including mitochondrial biogenesis and increased expression of slower myosin heavy chain isoforms. These positive findings raised the question of whether increased exposure to RSV would result in greater therapeutic benefits. We discovered that an elevated RSV dose of ~500 mg·kg(-1)·day(-1) across a duration of 12 wk was clearly less effective at muscle remodeling in mdx mice. This treatment protocol failed to influence SIRT1 or AMPK signaling and did not result in a shift towards a slower, more oxidative phenotype. Taken together, this study demonstrates that RSV can stimulate SIRT1 and PGC-1α activation, which in turn may promote expression of the slow, oxidative myogenic program in mdx mouse muscle. The data also highlight the importance of selecting an appropriate dosage regimen of RSV to maximize its potential therapeutic effectiveness for future application in DMD patients. Copyright © 2014 the American Physiological Society.

  5. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis

    PubMed Central

    Ljubicic, Vladimir; Burt, Matthew; Lunde, John A.

    2014-01-01

    Slower, more oxidative muscle fibers are more resistant to the dystrophic pathology in Duchenne muscular dystrophy (DMD) patients as well as in the preclinical mdx mouse model of DMD. Therefore, one therapeutic strategy for DMD focuses on promoting expression of the slow, oxidative myogenic program. In the current study, we explored the therapeutic potential of stimulating the slow, oxidative phenotype in mdx mice by feeding 6-wk-old animals with the natural phenol resveratrol (RSV; ∼100 mg·kg−1·day−1) for 6 wk. Sirtuin 1 (SIRT1) activity and protein levels increased significantly, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) activity, in the absence of alterations in AMPK signaling. These adaptations occurred concomitant with evidence of a fast, glycolytic, to slower, more oxidative fiber type conversion, including mitochondrial biogenesis and increased expression of slower myosin heavy chain isoforms. These positive findings raised the question of whether increased exposure to RSV would result in greater therapeutic benefits. We discovered that an elevated RSV dose of ∼500 mg·kg−1·day−1 across a duration of 12 wk was clearly less effective at muscle remodeling in mdx mice. This treatment protocol failed to influence SIRT1 or AMPK signaling and did not result in a shift towards a slower, more oxidative phenotype. Taken together, this study demonstrates that RSV can stimulate SIRT1 and PGC-1α activation, which in turn may promote expression of the slow, oxidative myogenic program in mdx mouse muscle. The data also highlight the importance of selecting an appropriate dosage regimen of RSV to maximize its potential therapeutic effectiveness for future application in DMD patients. PMID:24760981

  6. Malformations among 289,365 Births Attributed to Mutations with Autosomal Dominant and Recessive and X-Linked Inheritance.

    PubMed

    Toufaily, M Hassan; Westgate, Marie-Noel; Nasri, Hanah; Holmes, Lewis B

    2018-01-01

    The number of malformations attributed to mutations with autosomal or X-linked patterns of inheritance has increased steadily since the cataloging began in the 1960s. These diagnoses have been based primarily on the pattern of phenotypic features among close relatives. A malformations surveillance program conducted in consecutive pregnancies can identify both known and "new" hereditary disorders. The Active Malformations Surveillance Program was carried out among 289,365 births over 41 years (1972-2012) at Brigham and Women's Hospital in Boston. The findings recorded by examining pediatricians and all consultants were reviewed by study clinicians to establish the most likely diagnoses. The findings in laboratory testing in the newborn period were reviewed, as well. One hundred ninety-six (0.06%) infants among 289,365 births had a malformation or malformation syndrome that was attributed to Mendelian inheritance. A total of 133 (68%) of the hereditary malformations were attributed to autosomal dominant inheritance, with 94 (71%) attributed to apparent spontaneous mutations. Forty-six (23%) were attributed to mutations with autosomal recessive inheritance, 17 associated with consanguinity. Seventeen (9%) were attributed to X-linked inheritance. Fifteen novel familial phenotypes were identified. The family histories showed that most (53 to 71%) of the affected infants were born, as a surprise, to healthy, unaffected parents. It is important for clinicians to discuss with surprised healthy parents how they can have an infant with an hereditary condition. Future studies, using DNA samples from consecutive populations of infants with malformations and whole genome sequencing, will identify many more mutations in loci associated with mendelizing phenotypes. Birth Defects Research 110:92-97, 2018.© 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  7. Autism Spectrum Disorders and Race, Ethnicity, and Nativity: A Population-Based Study

    PubMed Central

    Becerra, Tracy A.; von Ehrenstein, Ondine S.; Heck, Julia E.; Olsen, Jorn; Arah, Onyebuchi A.; Jeste, Shafali S.; Rodriguez, Michael

    2014-01-01

    OBJECTIVE: Our understanding of the influence of maternal race/ethnicity and nativity and childhood autistic disorder (AD) in African Americans/blacks, Asians, and Hispanics in the United States is limited. Phenotypic differences in the presentation of childhood AD in minority groups may indicate etiologic heterogeneity or different thresholds for diagnosis. We investigated whether the risk of developing AD and AD phenotypes differed according to maternal race/ethnicity and nativity. METHODS: Children born in Los Angeles County with a primary AD diagnosis at ages 3 to 5 years during 1998–2009 were identified and linked to 1995–2006 California birth certificates (7540 children with AD from a cohort of 1 626 354 births). We identified a subgroup of children with AD and a secondary diagnosis of mental retardation and investigated heterogeneity in language and behavior. RESULTS: We found increased risks of being diagnosed with AD overall and specifically with comorbid mental retardation in children of foreign-born mothers who were black, Central/South American, Filipino, and Vietnamese, as well as among US-born Hispanic and African American/black mothers, compared with US-born whites. Children of US African American/black and foreign-born black, foreign-born Central/South American, and US-born Hispanic mothers were at higher risk of exhibiting an AD phenotype with both severe emotional outbursts and impaired expressive language than children of US-born whites. CONCLUSIONS: Maternal race/ethnicity and nativity are associated with offspring’s AD diagnosis and severity. Future studies need to examine factors related to nativity and migration that may play a role in the etiology as well as identification and diagnosis of AD in children. PMID:24958588

  8. ACTN3 R577X Gene Variant Is Associated With Muscle-Related Phenotypes in Elite Chinese Sprint/Power Athletes.

    PubMed

    Yang, Ruoyu; Shen, Xunzhang; Wang, Yubin; Voisin, Sarah; Cai, Guang; Fu, Yongnan; Xu, Wangyu; Eynon, Nir; Bishop, David J; Yan, Xu

    2017-04-01

    Yang, R, Shen, X, Wang, Y, Voisin, S, Cai, G, Fu, Y, Xu, W, Eynon, N, Bishop, DJ, and Yan, X. ACTN3 R577X gene variant is associated with muscle-related phenotypes in elite Chinese sprint/power athletes. J Strength Cond Res 31(4): 1107-1115, 2017-The ACTN3 R577X polymorphism (rs1815739) has been shown to influence athletic performance. The aim of this study was to investigate the prevalence of this polymorphism in elite Chinese track and field athletes, and to explore its effects on athletes' level of competition and lower-extremity power. We compared the ACTN3 R577X genotypes and allele frequencies in 59 elite sprint/power athletes, 44 elite endurance athletes, and 50 healthy controls from Chinese Han origin. We then subcategorized the athletes into international level and national level and investigated the effects of ACTN3 genotype on lower-extremity power. Genotype distribution of the sprint/power athletes was significantly different from endurance athletes (p = 0.001) and controls (p < 0.001). The frequency of the RR genotype was significantly higher in international-level than that in the national-level sprint/power athletes (p = 0.004), with no international-level sprint/power athletes with XX genotype. The best standing long jump and standing vertical jump results of sprint/power athletes were better in the RR than those in the RX + XX genotypes (p = 0.004 and p = 0.001, respectively). In conclusion, the ACTN3 R577X polymorphism influences the level of competition and lower-extremity power of elite Chinese sprint/power athletes. Including relevant phenotypes such as muscle performance in future studies is important to further understand the effects of gene variants on elite athletic performance.

  9. Lennox-Gastaut syndrome of unknown cause: phenotypic characteristics of patients in the Epilepsy Phenome/Genome Project.

    PubMed

    Widdess-Walsh, Peter; Dlugos, Dennis; Fahlstrom, Robyn; Joshi, Sucheta; Shellhaas, Renée; Boro, Alex; Sullivan, Joseph; Geller, Eric

    2013-11-01

    Lennox-Gastaut syndrome (LGS) is a devastating childhood-onset epilepsy syndrome. The cause is unknown in 25% of cases. Little has been described about the specific clinical or electroencephalography (EEG) features of LGS of unknown or genetic cause (LGS(u)). The Epilepsy Phenome/Genome Project (EPGP) aims to characterize LGS(u) by phenotypic analysis of patients with LGS(u) and their parents. One hundred thirty-five patients with LGS with no known etiology and their parents were enrolled from 19 EPGP centers in the United States and Australia. Clinical data from medical records, standardized questionnaires, imaging, and EEG were collected with use of online informatics systems developed for EPGP. LGS(u) in the EPGP cohort had a broad range of onset of epilepsy from 1 to 13 years, was male predominant (p < 0.0002), and was associated with normal development prior to seizure onset in 59.2% of patients. Despite the diagnosis, almost half of the adult patients with LGS(u) completed secondary school. Parents were cognitively normal. All subjects had EEG recordings with generalized epileptiform abnormalities with a spike wave frequency range of 1-5 Hz (median 2 Hz), whereas 8.1% of subjects had EEG studies with a normal posterior dominant rhythm. Almost 12% of patients evolved from West syndrome. LGS(u) has distinctive characteristics including a broad age range of onset, male predominance, and often normal development prior to the onset of seizures. Cognitive achievements such as completion of secondary school were possible in half of adult patients. Our phenotypic description of LGS(u) coupled with future genetic studies will advance our understanding of this epilepsy syndrome. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  10. Phenotyping at hot spots and tagging of QTLs conferring spot blotch resistance in bread wheat.

    PubMed

    Singh, Virender; Singh, Gyanendra; Chaudhury, A; Ojha, Ashish; Tyagi, B S; Chowdhary, A K; Sheoran, Sonia

    2016-11-01

    Spot blotch is a major foliar disease of wheat caused by Bipolaris sorokiniana in warm and humid environments of the world including South Asian countries. In India, it has a larger impact in Indo-Gangetic plains of the country. Therefore, the present study was undertaken to phenotype a mapping population at different hot spots of India and to detect quantitative trait loci (QTL) for resistance to spot blotch in wheat. For this study, 209 single seed descent (SSD) derived F 8 , F 9 , F 10 recombinant inbred lines (RILs) of the cross 'Sonalika' (an Indian susceptible cultivar)/'BH 1146' (a Brazilian resistant cultivar) were assessed for spot blotch resistance at two hot spot locations (Coochbehar and Kalyani) for three years and for two years under controlled conditions in the polyhouse (Karnal). The population showed large variation in spot blotch reaction for disease severity in all the environments indicating polygenic nature of the disease. Microsatellite markers were used to create the linkage maps. Joint and/or individual year analysis by composite interval mapping (CIM) and likelihood of odds ratio (LOD) >2.1, detected two consistent QTLs mapped on chromosome 7BL and 7DL and these explained phenotypic variation of 11.4 percent and 9.5 percent over the years and locations, respectively. The resistance at these loci was contributed by the parent 'BH 1146' and shown to be independent of plant height and earliness. Besides, association of some agro-morphological traits has also been observed with percent disease severity. These identified genomic regions may be used in future wheat breeding programs through marker assisted selection for developing spot blotch resistant cultivars.

  11. Adverse metabolic phenotype of female offspring exposed to preeclampsia in utero: a characterization of the BPH/5 mouse in postnatal life.

    PubMed

    Sutton, Elizabeth F; Lob, Heinrich E; Song, Jiunn; Xia, YunWei; Butler, Scott; Liu, Chin-Chi; Redman, Leanne M; Sones, Jenny L

    2017-04-01

    Preeclampsia (PE) is a devastating disorder of pregnancy that classically presents with maternal hypertension and proteinuria after 20 wk of gestation. In addition to being a leading cause of maternal and fetal morbidity/mortality, epidemiological and prospective studies have revealed long-term consequences for both the mother and baby of preeclamptic pregnancies, including chronic hypertension as well as other cardiovascular diseases and metabolic derangements. To better understand the effect of in utero exposure of PE on offspring, we utilized the BPH/5 mouse, a spontaneous model of the maternal and fetal PE syndrome. We hypothesized that young BPH/5 offspring would have altered metabolic and cardiovascular phenotypes. Indeed, BPH/5 growth-restricted offspring showed excess catch-up growth by early adulthood due to hyperphagia and increased white adipose tissue (WAT) accumulation, with inflammation markers isolated to the reproductive WAT depot only. Both excessive WAT accumulation and the inflammatory WAT phenotype were corrected by pair-feeding young BPH/5 female mice. We also found that young BPH/5 female mice showed evidence of leptin resistance. Indeed, chronic hyperleptinemia has been shown to characterize other rodent models of PE; however, the maternal metabolic profile before pregnancy has not been fully understood. Furthermore, we found that these mice show signs of cardiovascular anomalies (hypertension and cardiomegaly) and altered signaling within the reproductive axis in early life. Future studies will involve challenging the physiological metabolic state of BPH/5 mice through pair-feeding to reduce WAT before pregnancy and determining its causal role in adverse pregnancy outcomes. Copyright © 2017 the American Physiological Society.

  12. Autism spectrum disorders and race, ethnicity, and nativity: a population-based study.

    PubMed

    Becerra, Tracy A; von Ehrenstein, Ondine S; Heck, Julia E; Olsen, Jorn; Arah, Onyebuchi A; Jeste, Shafali S; Rodriguez, Michael; Ritz, Beate

    2014-07-01

    Our understanding of the influence of maternal race/ethnicity and nativity and childhood autistic disorder (AD) in African Americans/blacks, Asians, and Hispanics in the United States is limited. Phenotypic differences in the presentation of childhood AD in minority groups may indicate etiologic heterogeneity or different thresholds for diagnosis. We investigated whether the risk of developing AD and AD phenotypes differed according to maternal race/ethnicity and nativity. Children born in Los Angeles County with a primary AD diagnosis at ages 3 to 5 years during 1998-2009 were identified and linked to 1995-2006 California birth certificates (7540 children with AD from a cohort of 1,626,354 births). We identified a subgroup of children with AD and a secondary diagnosis of mental retardation and investigated heterogeneity in language and behavior. We found increased risks of being diagnosed with AD overall and specifically with comorbid mental retardation in children of foreign-born mothers who were black, Central/South American, Filipino, and Vietnamese, as well as among US-born Hispanic and African American/black mothers, compared with US-born whites. Children of US African American/black and foreign-born black, foreign-born Central/South American, and US-born Hispanic mothers were at higher risk of exhibiting an AD phenotype with both severe emotional outbursts and impaired expressive language than children of US-born whites. Maternal race/ethnicity and nativity are associated with offspring's AD diagnosis and severity. Future studies need to examine factors related to nativity and migration that may play a role in the etiology as well as identification and diagnosis of AD in children. Copyright © 2014 by the American Academy of Pediatrics.

  13. Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits.

    PubMed

    Aliloo, Hassan; Pryce, Jennie E; González-Recio, Oscar; Cocks, Benjamin G; Hayes, Ben J

    2016-02-01

    Dominance effects may contribute to genetic variation of complex traits in dairy cattle, especially for traits closely related to fitness such as fertility. However, traditional genetic evaluations generally ignore dominance effects and consider additive genetic effects only. Availability of dense single nucleotide polymorphisms (SNPs) panels provides the opportunity to investigate the role of dominance in quantitative variation of complex traits at both the SNP and animal levels. Including dominance effects in the genomic evaluation of animals could also help to increase the accuracy of prediction of future phenotypes. In this study, we estimated additive and dominance variance components for fertility and milk production traits of genotyped Holstein and Jersey cows in Australia. The predictive abilities of a model that accounts for additive effects only (additive), and a model that accounts for both additive and dominance effects (additive + dominance) were compared in a fivefold cross-validation. Estimates of the proportion of dominance variation relative to phenotypic variation that is captured by SNPs, for production traits, were up to 3.8 and 7.1 % in Holstein and Jersey cows, respectively, whereas, for fertility, they were equal to 1.2 % in Holstein and very close to zero in Jersey cows. We found that including dominance in the model was not consistently advantageous. Based on maximum likelihood ratio tests, the additive + dominance model fitted the data better than the additive model, for milk, fat and protein yields in both breeds. However, regarding the prediction of phenotypes assessed with fivefold cross-validation, including dominance effects in the model improved accuracy only for fat yield in Holstein cows. Regression coefficients of phenotypes on genetic values and mean squared errors of predictions showed that the predictive ability of the additive + dominance model was superior to that of the additive model for some of the traits. In both breeds, dominance effects were significant (P < 0.01) for all milk production traits but not for fertility. Accuracy of prediction of phenotypes was slightly increased by including dominance effects in the genomic evaluation model. Thus, it can help to better identify highly performing individuals and be useful for culling decisions.

  14. Hindlimb unloading-induced muscle atrophy and phenotype transition is attenuated in Smad3+/- mice

    NASA Astrophysics Data System (ADS)

    Chen, X. P.; Zhang, P.; Liu, S. H.; Wang, F.; Ge, X.; Wu, Y.; Fan, M.

    Currently it has been well defined that the microgravity-induced muscle disuse characterized by atrophy and slow-to-fast phenotype transition of the postural muscles such as soleus muscle but the basic mechanism underlying the atrophy and phenotype transition of soleus muscle is still unclear To investigate the developmental mechanisms of muscle atrophy and its phenotype transition under microgravity the soleus muscle of Smad3 and Smad3 - mice after 14 days hindlimb unloading was examined Using histology and immunohistochemistry assay we found that the soleus muscle volume and fiber number appeared a remarkable increases in Smad3 - mice compared to those in Smad3 control In addition Western blot analysis showed that the expression level of myosin heavy chain MHC -slow myofiber specific protein in soleus muscle was visibly higher in Smad3 - mice than in Smad3 mice In contrast the expression level of MHC-fast myofiber specific protein in soleus muscle was visibly lower in Smad3 - mice than in Smad3 mice Furthermore RT-PCR revealed that the expression of Smad3 and myogenic regulatory factor MRF mRNA was inversely regulated Finally we determined that either Smad3 mRNA or Smad3 protein were selectively distributed in quiescent satellite cells in vivo and in reserve cells in vitro Therefore our findings suggested that Smad3 might be a key transcriptional factor for soleus muscle atrophy and slow-to-fast phenotype transition of the slow muscle under microgravity In the future an agent that regulates Smad3 expression may be used to prevent

  15. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.

    PubMed

    Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K

    2016-10-01

    Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.

  16. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia

    PubMed Central

    Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568

  17. Pathophysiological mechanisms of neuropathic pain: comparison of sensory phenotypes in patients and human surrogate pain models.

    PubMed

    Vollert, Jan; Magerl, Walter; Baron, Ralf; Binder, Andreas; Enax-Krumova, Elena K; Geisslinger, Gerd; Gierthmühlen, Janne; Henrich, Florian; Hüllemann, Philipp; Klein, Thomas; Lötsch, Jörn; Maier, Christoph; Oertel, Bruno; Schuh-Hofer, Sigrid; Tölle, Thomas R; Treede, Rolf-Detlef

    2018-06-01

    As an indirect approach to relate previously identified sensory phenotypes of patients suffering from peripheral neuropathic pain to underlying mechanisms, we used a published sorting algorithm to estimate the prevalence of denervation, peripheral and central sensitization in 657 healthy subjects undergoing experimental models of nerve block (NB) (compression block and topical lidocaine), primary hyperalgesia (PH) (sunburn and topical capsaicin), or secondary hyperalgesia (intradermal capsaicin and electrical high-frequency stimulation), and in 902 patients suffering from neuropathic pain. Some of the data have been previously published. Randomized split-half analysis verified a good concordance with a priori mechanistic sensory profile assignment in the training (79%, Cohen κ = 0.54, n = 265) and the test set (81%, Cohen κ = 0.56, n = 279). Nerve blocks were characterized by pronounced thermal and mechanical sensory loss, but also mild pinprick hyperalgesia and paradoxical heat sensations. Primary hyperalgesia was characterized by pronounced gain for heat, pressure and pinprick pain, and mild thermal sensory loss. Secondary hyperalgesia was characterized by pronounced pinprick hyperalgesia and mild thermal sensory loss. Topical lidocaine plus topical capsaicin induced a combined phenotype of NB plus PH. Topical menthol was the only model with significant cold hyperalgesia. Sorting of the 902 patients into these mechanistic phenotypes led to a similar distribution as the original heuristic clustering (65% identity, Cohen κ = 0.44), but the denervation phenotype was more frequent than in heuristic clustering. These data suggest that sorting according to human surrogate models may be useful for mechanism-based stratification of neuropathic pain patients for future clinical trials, as encouraged by the European Medicines Agency.

  18. Genome-Wide Architecture of Disease Resistance Genes in Lettuce

    PubMed Central

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K.; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W.

    2015-01-01

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. PMID:26449254

  19. HIV coreceptor phenotyping in the clinical setting.

    PubMed

    Low, Andrew J; Swenson, Luke C; Harrigan, P Richard

    2008-01-01

    The introduction of CCR5 antagonists increases the options available for constructing antiretroviral regimens. However, this option is coupled with the caveat that patients should be tested for HIV coreceptor tropism prior to initiating CCR5 antagonist-based therapy. Failure to screen for CXCR4 usage increases the risk of using an ineffective drug, thus reducing the likelihood of viral suppression and increasing their risk for developing antiretroviral resistance. This review discusses current and future methods of determining HIV tropism, with a focus on their utility in the clinical setting for screening purposes. Some of these methods include recombinant phenotypic tests, such as the Monogram Trofile assay, as well as genotype-based predictors, heteroduplex tracking assays, and flow cytometry based methods. Currently, the best evidence supports the use of phenotypic methods, although other methods of screening for HIV coreceptor usage prior to the administration of CCR5 antagonists may reduce costs and increase turnaround time over phenotypic methods. The presence of low levels of X4 virus is a challenge to all assay methods, resulting in reduced sensitivity in clinical, patient-derived samples when compared to clonally derived samples. Gaining a better understanding of the output of these assays and correlating them with clinical progression and therapy response will provide some indication on how both genotype-based, and phenotypic assays for determining HIV coreceptor usage can be improved. In addition, leveraging new technologies capable of detecting low-level minority species may provide the most significant advances in ensuring that individuals with low levels of dual/mixed tropic virus are not inadvertently prescribed CCR5 antagonists.

  20. Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study.

    PubMed

    Loza, Matthew J; Djukanovic, Ratko; Chung, Kian Fan; Horowitz, Daniel; Ma, Keying; Branigan, Patrick; Barnathan, Elliot S; Susulic, Vedrana S; Silkoff, Philip E; Sterk, Peter J; Baribaud, Frédéric

    2016-12-15

    Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED. Fuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13. Four phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was "mild, good lung function, early onset", with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a "moderate, hyper-responsive, eosinophilic" phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a "mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a "severe uncontrolled, severe reversible obstruction, mixed granulocytic" phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort. Focusing on the biology of the four clinical independently-validated easy-to-assess ADEPT asthma phenotypes will help understanding the unmet need and will aid in developing tailored therapies. NCT01274507 (ADEPT), registered October 28, 2010 and NCT01982162 (U-BIOPRED), registered October 30, 2013.

Top