Sample records for phenotypes genetics core

  1. Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection.

    PubMed

    Li, Xiaobai; Yan, Wengui; Agrama, Hesham; Hu, Biaolin; Jia, Limeng; Jia, Melissa; Jackson, Aaron; Moldenhauer, Karen; McClung, Anna; Wu, Dianxing

    2010-12-01

    A rice mini-core collection consisting of 217 accessions has been developed to represent the USDA core and whole collections that include 1,794 and 18,709 accessions, respectively. To improve the efficiency of mining valuable genes and broadening the genetic diversity in breeding, genetic structure and diversity were analyzed using both genotypic (128 molecular markers) and phenotypic (14 numerical traits) data. This mini-core had 13.5 alleles per locus, which is the most among the reported germplasm collections of rice. Similarly, polymorphic information content (PIC) value was 0.71 in the mini-core which is the highest with one exception. The high genetic diversity in the mini-core suggests there is a good possibility of mining genes of interest and selecting parents which will improve food production and quality. A model-based clustering analysis resulted in lowland rice including three groups, aus (39 accessions), indica (71) and their admixtures (5), upland rice including temperate japonica (32), tropical japonica (40), aromatic (6) and their admixtures (12) and wild rice (12) including glaberrima and four other species of Oryza. Group differentiation was analyzed using both genotypic distance Fst from 128 molecular markers and phenotypic (Mahalanobis) distance D(2) from 14 traits. Both dendrograms built by Fst and D(2) reached similar-differentiative relationship among these genetic groups, and the correlation coefficient showed high value 0.85 between Fst matrix and D(2) matrix. The information of genetic and phenotypic differentiation could be helpful for the association mapping of genes of interest. Analysis of genotypic and phenotypic diversity based on genetic structure would facilitate parent selection for broadening genetic base of modern rice cultivars via breeding effort.

  2. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    PubMed Central

    2012-01-01

    Background Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC). Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525). The Shannon-Weaver diversity index (I) and Nei genetic diversity index (h) were higher (I = 0.9537, h = 0.5490) when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218). A mini-core collection (MC) containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%), low variance difference percentage (VD, 22.58%), large variable rate of coefficient of variance (VR, 114.86%), and large coincidence rate of range (CR, 95.76%). For molecular data, the diversity indices and the polymorphism information content (PIC) for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and large VR% and CR% suggested that the MC provides a good representation of the genetic diversity of the original CC. The MC was more genetically diverse with higher diversity indices and a higher PIC value than the CC. A MC may aid in reasonably and efficiently selecting materials for sesame breeding and for genotypic biological studies, and may also be used as a population for association mapping in sesame. PMID:23153260

  3. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection.

    PubMed

    Zhang, Yanxin; Zhang, Xiurong; Che, Zhuo; Wang, Linhai; Wei, Wenliang; Li, Donghua

    2012-11-15

    Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC). Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525). The Shannon-Weaver diversity index (I) and Nei genetic diversity index (h) were higher (I = 0.9537, h = 0.5490) when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218). A mini-core collection (MC) containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%), low variance difference percentage (VD, 22.58%), large variable rate of coefficient of variance (VR, 114.86%), and large coincidence rate of range (CR, 95.76%). For molecular data, the diversity indices and the polymorphism information content (PIC) for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and large VR% and CR% suggested that the MC provides a good representation of the genetic diversity of the original CC. The MC was more genetically diverse with higher diversity indices and a higher PIC value than the CC. A MC may aid in reasonably and efficiently selecting materials for sesame breeding and for genotypic biological studies, and may also be used as a population for association mapping in sesame.

  4. Optimum Selection Age for Wood Density in Loblolly Pine

    Treesearch

    D.P. Gwaze; K.J. Harding; R.C. Purnell; Floyd E. Brigwater

    2002-01-01

    Genetic and phenotypic parameters for core wood density of Pinus taeda L. were estimated for ages ranging from 5 to 25 years at two sites in southern United States. Heritability estimates on an individual-tree basis for core density were lower than expected (0.20-0.31). Age-age genetic correlations were higher than phenotypic correlations,...

  5. Utilization of Molecular, Phenotypic, and Geographical Diversity to Develop Compact Composite Core Collection in the Oilseed Crop, Safflower (Carthamus tinctorius L.) through Maximization Strategy

    PubMed Central

    Kumar, Shivendra; Ambreen, Heena; Variath, Murali T.; Rao, Atmakuri R.; Agarwal, Manu; Kumar, Amar; Goel, Shailendra; Jagannath, Arun

    2016-01-01

    Safflower (Carthamus tinctorius L.) is a dryland oilseed crop yielding high quality edible oil. Previous studies have described significant phenotypic variability in the crop and used geographical distribution and phenotypic trait values to develop core collections. However, the molecular diversity component was lacking in the earlier collections thereby limiting their utility in breeding programs. The present study evaluated the phenotypic variability for 12 agronomically important traits during two growing seasons (2011–12 and 2012–13) in a global reference collection of 531 safflower accessions, assessed earlier by our group for genetic diversity and population structure using AFLP markers. Significant phenotypic variation was observed for all the agronomic traits in the representative collection. Cluster analysis of phenotypic data grouped the accessions into five major clusters. Accessions from the Indian Subcontinent and America harbored maximal phenotypic variability with unique characters for a few traits. MANOVA analysis indicated significant interaction between genotypes and environment for both the seasons. Initially, six independent core collections (CC1–CC6) were developed using molecular marker and phenotypic data for two seasons through POWERCORE and MSTRAT. These collections captured the entire range of trait variability but failed to include complete genetic diversity represented in 19 clusters reported earlier through Bayesian analysis of population structure (BAPS). Therefore, we merged the three POWERCORE core collections (CC1–CC3) to generate a composite core collection, CartC1 and three MSTRAT core collections (CC4–CC6) to generate another composite core collection, CartC2. The mean difference percentage, variance difference percentage, variable rate of coefficient of variance percentage, coincidence rate of range percentage, Shannon's diversity index, and Nei's gene diversity for CartC1 were 11.2, 43.7, 132.4, 93.4, 0.47, and 0.306, respectively while the corresponding values for CartC2 were 9.3, 58.8, 124.6, 95.8, 0.46, and 0.301. Each composite core collection represented the complete range of phenotypic and genetic variability of the crop including 19 BAPS clusters. This is the first report describing development of core collections in safflower using molecular marker data with phenotypic values and geographical distribution. These core collections will facilitate identification of genetic determinants of trait variability and effective utilization of the prevalent diversity in crop improvement programs. PMID:27807441

  6. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans

    PubMed Central

    Saykin, Andrew J.; Shen, Li; Foroud, Tatiana M.; Potkin, Steven G.; Swaminathan, Shanker; Kim, Sungeun; Risacher, Shannon L.; Nho, Kwangsik; Huentelman, Matthew J.; Craig, David W.; Thompson, Paul M.; Stein, Jason L.; Moore, Jason H.; Farrer, Lindsay A.; Green, Robert C.; Bertram, Lars; Jack, Clifford R.; Weiner, Michael W.

    2010-01-01

    The role of the Alzheimer’s Disease Neuroimaging Initiative Genetics Core is to facilitate the investigation of genetic influences on disease onset and trajectory as reflected in structural, functional, and molecular imaging changes; fluid biomarkers; and cognitive status. Major goals include (1) blood sample processing, genotyping, and dissemination, (2) genome-wide association studies (GWAS) of longitudinal phenotypic data, and (3) providing a central resource, point of contact and planning group for genetics within Alzheimer’s Disease Neuroimaging Initiative. Genome-wide array data have been publicly released and updated, and several neuroimaging GWAS have recently been reported examining baseline magnetic resonance imaging measures as quantitative phenotypes. Other preliminary investigations include copy number variation in mild cognitive impairment and Alzheimer’s disease and GWAS of baseline cerebrospinal fluid biomarkers and longitudinal changes on magnetic resonance imaging. Blood collection for RNA studies is a new direction. Genetic studies of longitudinal phenotypes hold promise for elucidating disease mechanisms and risk, development of therapeutic strategies, and refining selection criteria for clinical trials. PMID:20451875

  7. The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies.

    PubMed

    Muñoz-Amatriaín, María; Cuesta-Marcos, Alfonso; Endelman, Jeffrey B; Comadran, Jordi; Bonman, John M; Bockelman, Harold E; Chao, Shiaoman; Russell, Joanne; Waugh, Robbie; Hayes, Patrick M; Muehlbauer, Gary J

    2014-01-01

    New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The genotype data were used to define 'mini-core' sets of accessions capturing the majority of the allelic diversity present in the core collection. These 'mini-core' sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide association studies (GWAS) of 'hull cover', 'spike row number', and 'heading date' demonstrate the utility of the core collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections.

  8. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    PubMed

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (H E  = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (H E  = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic diversity (I = 0.95) and genetic evenness (J' = 0.80), and represented a wider range of phenotypic variation (MD = 9.45 %, CR = 98.40 %). A total of 240 accessions were selected from 3,821 Capsicum accessions based on transcriptome-based 48 SNP markers with genome-wide distribution and 32 traits using a systematic approach. This core collection will be a primary resource for pepper breeders and researchers for further genetic association and functional analyses.

  9. Emergent properties of gene evolution: Species as attractors in phenotypic space

    NASA Astrophysics Data System (ADS)

    Reuveni, Eli; Giuliani, Alessandro

    2012-02-01

    The question how the observed discrete character of the phenotype emerges from a continuous genetic distance metrics is the core argument of two contrasted evolutionary theories: punctuated equilibrium (stable evolution scattered with saltations in the phenotype) and phyletic gradualism (smooth and linear evolution of the phenotype). Identifying phenotypic saltation on the molecular levels is critical to support the first model of evolution. We have used DNA sequences of ∼1300 genes from 6 isolated populations of the budding yeast Saccharomyces cerevisiae. We demonstrate that while the equivalent measure of the genetic distance show a continuum between lineage distance with no evidence of discrete states, the phenotypic space illustrates only two (discrete) possible states that can be associated with a saltation of the species phenotype. The fact that such saltation spans large fraction of the genome and follows by continuous genetic distance is a proof of the concept that the genotype-phenotype relation is not univocal and may have severe implication when looking for disease related genes and mutations. We used this finding with analogy to attractor-like dynamics and show that punctuated equilibrium could be explained in the framework of non-linear dynamics systems.

  10. A novel large deletion in the RYR1 gene in a Belgian family with late-onset and recessive core myopathy.

    PubMed

    Remiche, Gauthier; Kadhim, Hazim; Abramowicz, Marc; Mavroudakis, Nicolas; Monnier, Nicole; Lunardi, Joël

    2015-05-01

    We report a novel and particularly unusual type of mutation, namely, large deletion in the RYR1 gene, in a Belgian family with myopathy: Patients were found to be compound heterozygous and presented a clinico-pathological phenotype characterized by late-onset and recessive myopathy with cores. We depict the clinical, electrophysiological, pathological and molecular genetic characteristics of family members. To date, large deletions in the RYR1 gene have been reported in only two cases. Both involved different mutations and, in sharp contrast to our cases, presented with a very early-onset, neonatal, and a very severe or lethal phenotype. Overview of reported clinico-pathologic phenotypes, also highlights the rarity of combined late-onset/recessive co-occurrence in this group of myopathies with cores. Finally, this report underlines the broadening spectrum in this group of myopathologic disorders and highlights the concept of 'RYR1-associated/related core myopathies'. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple

    PubMed Central

    Chagné, David; Carlisle, Charmaine M; Blond, Céline; Volz, Richard K; Whitworth, Claire J; Oraguzie, Nnadozie C; Crowhurst, Ross N; Allan, Andrew C; Espley, Richard V; Hellens, Roger P; Gardiner, Susan E

    2007-01-01

    Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS) is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs) in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG) 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species. PMID:17608951

  12. Core Hunter 3: flexible core subset selection.

    PubMed

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the strengths of other methods, as it (simultaneously) optimizes a variety of metrics. In addition, CH3 is an improvement over CH2, with the option to use genetic marker data or phenotypic traits, or both, and improved speed. Core Hunter 3 is freely available on http://www.corehunter.org .

  13. Extracting samples of high diversity from thematic collections of large gene banks using a genetic-distance based approach

    PubMed Central

    2010-01-01

    Background Breeding programs are usually reluctant to evaluate and use germplasm accessions other than the elite materials belonging to their advanced populations. The concept of core collections has been proposed to facilitate the access of potential users to samples of small sizes, representative of the genetic variability contained within the gene pool of a specific crop. The eventual large size of a core collection perpetuates the problem it was originally proposed to solve. The present study suggests that, in addition to the classic core collection concept, thematic core collections should be also developed for a specific crop, composed of a limited number of accessions, with a manageable size. Results The thematic core collection obtained meets the minimum requirements for a core sample - maintenance of at least 80% of the allelic richness of the thematic collection, with, approximately, 15% of its size. The method was compared with other methodologies based on the M strategy, and also with a core collection generated by random sampling. Higher proportions of retained alleles (in a core collection of equal size) or similar proportions of retained alleles (in a core collection of smaller size) were detected in the two methods based on the M strategy compared to the proposed methodology. Core sub-collections constructed by different methods were compared regarding the increase or maintenance of phenotypic diversity. No change on phenotypic diversity was detected by measuring the trait "Weight of 100 Seeds", for the tested sampling methods. Effects on linkage disequilibrium between unlinked microsatellite loci, due to sampling, are discussed. Conclusions Building of a thematic core collection was here defined by prior selection of accessions which are diverse for the trait of interest, and then by pairwise genetic distances, estimated by DNA polymorphism analysis at molecular marker loci. The resulting thematic core collection potentially reflects the maximum allele richness with the smallest sample size from a larger thematic collection. As an example, we used the development of a thematic core collection for drought tolerance in rice. It is expected that such thematic collections increase the use of germplasm by breeding programs and facilitate the study of the traits under consideration. The definition of a core collection to study drought resistance is a valuable contribution towards the understanding of the genetic control and the physiological mechanisms involved in water use efficiency in plants. PMID:20576152

  14. An initial investigation of associations between dopamine-linked genetic variation and smoking motives in African Americans.

    PubMed

    Bidwell, L C; McGeary, J E; Gray, J C; Palmer, R H C; Knopik, V S; MacKillop, J

    2015-11-01

    Nicotine dependence (ND) is a heterogeneous phenotype with complex genetic influences that may vary across ethnicities. The use of intermediate phenotypes may clarify genetic influences and reveal specific etiological pathways. Prior work in European Americans has found that the four Primary Dependence Motives (PDM) subscales (Automaticity, Craving, Loss of Control, and Tolerance) of the Wisconsin Inventory of Smoking Motives represent core features of nicotine dependence and are promising intermediate phenotypes for understanding genetic pathways to ND. However, no studies have examined PDM as an intermediate phenotype in African American smokers, an ethnic population that displays unique patterns of smoking and genetic variation. In the current study, 268 African American daily smokers completed a phenotypic assessment and provided a sample of DNA. Associations among haplotypes in the NCAM1-TTC12-ANKK1-DRD2 gene cluster, a dopamine-related gene region associated with ND, PDM intermediate phenotypes, and ND were examined. Dopamine-related genetic variation in the DBH and COMT genes was also considered on an exploratory basis. Mediational analysis was used to test the indirect pathway from genetic variation to smoking motives to nicotine dependence. NCAM1-TTC12-ANKK1-DRD2 region variation was significantly associated with the Automaticity subscale and, further, Automaticity significantly mediated associations among NCAM1-TTC12-ANKK1-DRD2 cluster variants and ND. DBH was also significantly associated with Automaticity, Craving, and Tolerance; Automaticity and Tolerance also served as mediators of the DBH-ND relationship. These results suggest that PDM, Automaticity in particular, may be a viable intermediate phenotype for understanding dopamine-related genetic influences on ND in African American smokers. Findings support a model in which putatively dopaminergic variants exert influence on ND through an effect on patterns of automatic routinized smoking. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Belated Green Revolution for Cannabis: Virtual Genetic Resources to Fast-Track Cultivar Development

    PubMed Central

    Welling, Matthew T.; Shapter, Tim; Rose, Terry J.; Liu, Lei; Stanger, Rhia; King, Graham J.

    2016-01-01

    Cannabis is a predominantly diecious phenotypically diverse domesticated genus with few if any extant natural populations. International narcotics conventions and associated legislation have constrained the establishment, characterization, and use of Cannabis genetic resource collections. This has resulted in the underutilization of genepool variability in cultivar development and has limited the inclusion of secondary genepools associated with genetic improvement strategies of the Green Revolution. The structured screening of ex situ germplasm and the exploitation of locally-adapted intraspecific traits is expected to facilitate the genetic improvement of Cannabis. However, limited attempts have been made to establish the full extent of genetic resources available for pre-breeding. We present a thorough critical review of Cannabis ex situ genetic resources, and discuss recommendations for conservation, pre-breeding characterization, and genetic analysis that will underpin future cultivar development. We consider East Asian germplasm to be a priority for conservation based on the prolonged historical cultivation of Cannabis in this region over a range of latitudes, along with the apparent high levels of genetic diversity and relatively low representation in published genetic resource collections. Seed cryopreservation could improve conservation by reducing hybridization and genetic drift that may occur during Cannabis germplasm regeneration. Given the unique legal status of Cannabis, we propose the establishment of a global virtual core collection based on the collation of consistent and comprehensive provenance meta-data and the adoption of high-throughput DNA sequencing technologies. This would enable representative core collections to be used for systematic phenotyping, and so underpin breeding strategies for the genetic improvement of Cannabis. PMID:27524992

  16. A Belated Green Revolution for Cannabis: Virtual Genetic Resources to Fast-Track Cultivar Development.

    PubMed

    Welling, Matthew T; Shapter, Tim; Rose, Terry J; Liu, Lei; Stanger, Rhia; King, Graham J

    2016-01-01

    Cannabis is a predominantly diecious phenotypically diverse domesticated genus with few if any extant natural populations. International narcotics conventions and associated legislation have constrained the establishment, characterization, and use of Cannabis genetic resource collections. This has resulted in the underutilization of genepool variability in cultivar development and has limited the inclusion of secondary genepools associated with genetic improvement strategies of the Green Revolution. The structured screening of ex situ germplasm and the exploitation of locally-adapted intraspecific traits is expected to facilitate the genetic improvement of Cannabis. However, limited attempts have been made to establish the full extent of genetic resources available for pre-breeding. We present a thorough critical review of Cannabis ex situ genetic resources, and discuss recommendations for conservation, pre-breeding characterization, and genetic analysis that will underpin future cultivar development. We consider East Asian germplasm to be a priority for conservation based on the prolonged historical cultivation of Cannabis in this region over a range of latitudes, along with the apparent high levels of genetic diversity and relatively low representation in published genetic resource collections. Seed cryopreservation could improve conservation by reducing hybridization and genetic drift that may occur during Cannabis germplasm regeneration. Given the unique legal status of Cannabis, we propose the establishment of a global virtual core collection based on the collation of consistent and comprehensive provenance meta-data and the adoption of high-throughput DNA sequencing technologies. This would enable representative core collections to be used for systematic phenotyping, and so underpin breeding strategies for the genetic improvement of Cannabis.

  17. Methods of developing core collections based on the predicted genotypic value of rice ( Oryza sativa L.).

    PubMed

    Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L

    2004-04-01

    The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.

  18. [Care continuity for patients with Prader-Willi syndrome during transition from childhood to adulthood].

    PubMed

    Saitoh, Shinji

    2010-01-01

    Prader-Willi syndrome(PWS) is a complex multisystem genetic disorder, of which characteristic phenotypes include neonatal hypotonia, hyperphagia resulting in obesity, mental retardation, hypogonadism, and behavioral and psychiatric problems. The diagnosis can be obtained as early as during neonatal period thanks to development of genetic testing. Clinical features of PWS will change depending on age, although core phenotypes of hyperphagia, obesity and psychiatric issues stay for lifetime. Therefore, integrated multidisciplinary approach starting from neonatal period is mandatory to ensure optimal management to improve lifelong quality of life. For successful transition from childhood to adulthood, multidisciplinary team need to share clinical information, and should keep the same policy about food, environment and psychiatric issues.

  19. Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.)

    PubMed Central

    You, Frank M.; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D.; Rashid, Khalid Y.; Booker, Helen M.; Cloutier, Sylvie

    2017-01-01

    Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m−2, oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding. PMID:28993783

  20. Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.).

    PubMed

    You, Frank M; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D; Rashid, Khalid Y; Booker, Helen M; Cloutier, Sylvie

    2017-01-01

    Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m -2 , oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding.

  1. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement.

    PubMed

    Cuevas, Hugo E; Rosa-Valentin, Giseiry; Hayes, Chad M; Rooney, William L; Hoffmann, Leo

    2017-01-26

    The USDA Agriculture Research Service National Plant Germplasm System (NPGS) preserves the largest sorghum germplasm collection in the world, which includes 7,217 accessions from the center of diversity in Ethiopia. The characterization of this exotic germplasm at a genome-wide scale will improve conservation efforts and its utilization in research and breeding programs. Therefore, we phenotyped a representative core set of 374 Ethiopian accessions at two locations for agronomic traits and characterized the genomes. Using genotyping-by-sequencing, we identified 148,476 single-nucleotide polymorphism (SNP) markers distributed across the entire genome. Over half of the alleles were rare (frequency < 0.05). The genetic profile of each accession was unique (i.e., no duplicates), and the average genetic distance among accessions was 0.70. Based on population structure and cluster analyses, we separated the collection into 11 populations with pairwise F ST values ranging from 0.11 to 0.47. In total, 198 accessions (53%) were assigned to one of these populations with an ancestry membership coefficient of larger than 0.60; these covered 90% of the total genomic variation. We characterized these populations based on agronomic and seed compositional traits. We performed a cluster analysis with the sorghum association panel based on 26,026 SNPs and determined that nine of the Ethiopian populations expanded the genetic diversity in the panel. Genome-wide association analysis demonstrated that these low-coverage data and the observed population structure could be employed for the genomic dissection of important phenotypes in this core set of Ethiopian sorghum germplasm. The NPGS Ethiopian sorghum germplasm is a genetically and phenotypically diverse collection comprising 11 populations with high levels of admixture. Genetic associations with agronomic traits can be used to improve the screening of exotic germplasm for selection of specific populations. We detected many rare alleles, suggesting that this germplasm contains potentially useful undiscovered alleles, but their discovery and characterization will require extensive effort. The genotypic data available for these accessions provide a valuable resource for sorghum breeders and geneticists to effectively improve crops.

  2. Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection

    PubMed Central

    Bulli, Peter; Zhang, Junli; Chao, Shiaoman; Chen, Xianming; Pumphrey, Michael

    2016-01-01

    Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs. PMID:27226168

  3. Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection.

    PubMed

    Bulli, Peter; Zhang, Junli; Chao, Shiaoman; Chen, Xianming; Pumphrey, Michael

    2016-08-09

    Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs. Copyright © 2016 Bulli et al.

  4. Compound RYR1 heterozygosity resulting in a complex phenotype of malignant hyperthermia susceptibility and a core myopathy.

    PubMed

    Kraeva, N; Heytens, L; Jungbluth, H; Treves, S; Voermans, N; Kamsteeg, E; Ceuterick-de Groote, C; Baets, J; Riazi, S

    2015-07-01

    Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic myopathy triggered by exposure to volatile anesthetics and/or depolarizing muscle relaxants. Susceptibility to MH is primarily associated with dominant mutations in the ryanodine receptor type 1 gene (RYR1). Recent genetic studies have shown that RYR1 variants are the most common cause of dominant and recessive congenital myopathies - central core and multi-minicore disease, congenital fiber type disproportion, and centronuclear myopathy. However, the MH status of many patients, especially with recessive RYR1-related myopathies, remains uncertain. We report the occurrence of a triplet of RYR1 variants, c.4711A>G (p.Ile1571Val), c.10097G>A (p.Arg3366His), c.11798A>G (p.Tyr3933Cys), found in cis in four unrelated families, one from Belgium, one from The Netherlands and two from Canada. Phenotype-genotype correlation analysis indicates that the presence of the triplet allele alone confers susceptibility to MH, and that the presence of this allele in a compound heterozygous state with the MH-associated RYR1 variant c.14545G>A (p.Val4849Ile) results in the MH susceptibility phenotype and a congenital myopathy with cores and rods. Our study underlines the notion that assigning pathogenicity to individual RYR1 variants or combination of variants, and counseling in RYR1-related myopathies may require integration of clinical, histopathological, in vitro contracture testing, MRI and genetic findings. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. eCOMPAGT – efficient Combination and Management of Phenotypes and Genotypes for Genetic Epidemiology

    PubMed Central

    Schönherr, Sebastian; Weißensteiner, Hansi; Coassin, Stefan; Specht, Günther; Kronenberg, Florian; Brandstätter, Anita

    2009-01-01

    Background High-throughput genotyping and phenotyping projects of large epidemiological study populations require sophisticated laboratory information management systems. Most epidemiological studies include subject-related personal information, which needs to be handled with care by following data privacy protection guidelines. In addition, genotyping core facilities handling cooperative projects require a straightforward solution to monitor the status and financial resources of the different projects. Description We developed a database system for an efficient combination and management of phenotypes and genotypes (eCOMPAGT) deriving from genetic epidemiological studies. eCOMPAGT securely stores and manages genotype and phenotype data and enables different user modes with different rights. Special attention was drawn on the import of data deriving from TaqMan and SNPlex genotyping assays. However, the database solution is adjustable to other genotyping systems by programming additional interfaces. Further important features are the scalability of the database and an export interface to statistical software. Conclusion eCOMPAGT can store, administer and connect phenotype data with all kinds of genotype data and is available as a downloadable version at . PMID:19432954

  6. A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii.

    PubMed

    Pineau, Bernard; Girard-Bascou, Jacqueline; Eberhard, Stephan; Choquet, Yves; Trémolières, Antoine; Gérard-Hirne, Catherine; Bennardo-Connan, Annick; Decottignies, Paulette; Gillet, Sylvie; Wollman, Francis-André

    2004-01-01

    Two mutants of Chlamydomonas reinhardtii, mf1 and mf2, characterized by a marked reduction in their phosphatidylglycerol content together with a complete loss in its Delta3-trans hexadecenoic acid-containing form, also lost photosystem II (PSII) activity. Genetic analysis of crosses between mf2 and wild-type strains shows a strict cosegregation of the PSII and lipid deficiencies, while phenotypic analysis of phototrophic revertant strains suggests that one single nuclear mutation is responsible for the pleiotropic phenotype of the mutants. The nearly complete absence of PSII core is due to a severely decreased synthesis of two subunits, D1 and apoCP47, which is not due to a decrease in translation initiation. Trace amounts of PSII cores that were detected in the mutants did not associate with the light-harvesting chlorophyll a/b-binding protein antenna (LHCII). We discuss the possible role of phosphatidylglycerol in the coupled process of cotranslational insertion and assembly of PSII core subunits.

  7. Two families with MYH7 distal myopathy associated with cardiomyopathy and core formations.

    PubMed

    Naddaf, Elie; Waclawik, Andrew J

    2015-03-01

    Laing distal myopathy is caused by MYH7 gene mutations. Multiple families have been reported with varying patterns of skeletal and cardiac involvement as well as histopathological findings. We report 2 families with p.Glu1508del mutation with detailed electrophysiological and muscle pathology findings. All patients displayed the classic phenotype with weakness starting in the anterior compartment of the legs with a "hanging great toe." It was followed by finger extensors involvement, relatively sparing the extensor indicis proprius, giving the appearance of a "pointing index" finger. All the affected individuals had a dilated cardiomyopathy and core formations on muscle biopsy. Unexpectedly, neurogenic changes were also observed in some individuals. Both families were initially misdiagnosed with either central core disease or hereditary neuropathy. Recognizing the classic phenotype, screening for cardiac involvement that may be clinically silent, and determining the mode of inheritance help with selecting the appropriate genetic test.

  8. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen

    PubMed Central

    Adissu, Hibret A.; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M.; Clarke, Kay; Karp, Natasha A.; Project, Sanger Mouse Genetics; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K.; McKerlie, Colin

    2014-01-01

    The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice. PMID:24652767

  9. Advances in autism genetics: on the threshold of a new neurobiology

    PubMed Central

    Abrahams, Brett S.; Geschwind, Daniel H.

    2009-01-01

    Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme. PMID:18414403

  10. Offering to Share: How to Put Heads Together in Autism Neuroimaging

    ERIC Educational Resources Information Center

    Belmonte, Matthew K.; Mazziotta, John C.; Minshew, Nancy J.; Evans, Alan C.; Courchesne, Eric; Dager, Stephen R.; Bookheimer, Susan Y.; Aylward, Elizabeth H.; Amaral, David G.; Cantor, Rita M.; Chugani, Diane C.; Dale, Anders M.; Davatzikos, Christos; Gerig, Guido; Herbert, Martha R.; Lainhart, Janet E.; Murphy, Declan G.; Piven, Joseph; Reiss, Allan L.; Schultz, Robert T.; Zeffiro, Thomas A.; Levi-Pearl, Susan; Lajonchere, Clara; Colamarino, Sophia A.

    2008-01-01

    Data sharing in autism neuroimaging presents scientific, technical, and social obstacles. We outline the desiderata for a data-sharing scheme that combines imaging with other measures of phenotype and with genetics, defines requirements for comparability of derived data and recommendations for raw data, outlines a core protocol including…

  11. Selection and phenotypic characterization of a core collection of Brachypodium distachyon inbred lines.

    PubMed

    Tyler, Ludmila; Fangel, Jonatan U; Fagerström, Alexandra Dotson; Steinwand, Michael A; Raab, Theodore K; Willats, William Gt; Vogel, John P

    2014-01-14

    The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community. The natural variation in this collection can serve as a powerful experimental tool for many areas of inquiry, including investigating biomass traits. We surveyed the phenotypic diversity in a large collection of inbred lines and then selected a core collection of lines for more detailed analysis with an emphasis on traits relevant to the use of grasses as biofuel and grain crops. Phenotypic characters examined included plant height, growth habit, stem density, flowering time, and seed weight. We also surveyed differences in cell wall composition using near infrared spectroscopy (NIR) and comprehensive microarray polymer profiling (CoMPP). In all cases, we observed extensive natural variation including a two-fold variation in stem density, four-fold variation in ferulic acid bound to hemicellulose, and 1.7-fold variation in seed mass. These characterizations can provide the criteria for selecting diverse lines for future investigations of the genetic basis of the observed phenotypic variation.

  12. Genetic Advances in Autism: Heterogeneity and Convergence on Shared Pathways

    PubMed Central

    Bill, Brent R.; Geschwind, Daniel H.

    2009-01-01

    The autism spectrum disorders (ASD) are a heterogeneous set of developmental disorders characterized at their core by deficits in social interaction and communication. Current psychiatric nosology groups this broad set of disorders with strong genetic liability and multiple etiologies into the same diagnostic category. This heterogeneity has challenged genetic analyses. But shared patient resources, genomic technologies, more refined phenotypes, and novel computational approaches have begun to yield dividends in defining the genetic mechanisms at work. Over the last five years, a large number of autism susceptibility loci have emerged, redefining our notion of autism’s etiologies, and reframing how we think about ASD. PMID:19477629

  13. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds.

    PubMed

    Petkau, T L; Hill, A; Leavitt, B R

    2016-02-19

    Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. In this study we evaluated multiple neuropathological endpoints in aged progranulin knockout mice and their wild-type littermates on two different genetic backgrounds: C57Bl/6 and 129/SvImJ. We find that in most brain regions, both strains are susceptible to progranulin-mediated neuropathological phenotypes, including astrogliosis, microgliosis, and highly accelerated deposition of the aging pigment lipofuscin. Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Developing core collections to optimize the management and the exploitation of diversity of the coffee Coffea canephora.

    PubMed

    Leroy, Thierry; De Bellis, Fabien; Legnate, Hyacinthe; Musoli, Pascal; Kalonji, Adrien; Loor Solórzano, Rey Gastón; Cubry, Philippe

    2014-06-01

    The management of diversity for conservation and breeding is of great importance for all plant species and is particularly true in perennial species, such as the coffee Coffea canephora. This species exhibits a large genetic and phenotypic diversity with six different diversity groups. Large field collections are available in the Ivory Coast, Uganda and other Asian, American and African countries but are very expensive and time consuming to establish and maintain in large areas. We propose to improve coffee germplasm management through the construction of genetic core collections derived from a set of 565 accessions that are characterized with 13 microsatellite markers. Core collections of 12, 24 and 48 accessions were defined using two methods aimed to maximize the allelic diversity (Maximization strategy) or genetic distance (Maximum-Length Sub-Tree method). A composite core collection of 77 accessions is proposed for both objectives of an optimal management of diversity and breeding. This core collection presents a gene diversity value of 0.8 and exhibits the totality of the major alleles (i.e., 184) that are present in the initial set. The seven proposed core collections constitute a valuable tool for diversity management and a foundation for breeding programs. The use of these collections for collection management in research centers and breeding perspectives for coffee improvement are discussed.

  15. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder.

    PubMed

    Campbell, Daniel B; Datta, Dibyadeep; Jones, Shaine T; Batey Lee, Evon; Sutcliffe, James S; Hammock, Elizabeth A D; Levitt, Pat

    2011-06-01

    Autism spectrum disorder (ASD) is characterized by core deficits in social behavior, communication, and behavioral flexibility. Several lines of evidence indicate that oxytocin, signaling through its receptor (OXTR), is important in a wide range of social behaviors. In attempts to determine whether genetic variations in the oxytocin signaling system contribute to ASD susceptibility, seven recent reports indicated association of common genetic polymorphisms in the OXTR gene with ASD. Each involved relatively small sample sizes (57 to 436 families) and, where it was examined, failed to identify association of OXTR polymorphisms with measures of social behavior in individuals with ASD. We report genetic association analysis of 25 markers spanning the OXTR locus in 1,238 pedigrees including 2,333 individuals with ASD. Association of three markers previously implicated in ASD susceptibility, rs2268493 (P = 0.043), rs1042778 (P = 0.037), and rs7632287 (P = 0.016), was observed. Further, these genetic markers were associated with multiple core ASD phenotypes, including social domain dysfunction, measured by standardized instruments used to diagnose and describe ASD. The data suggest association of OXTR genetic polymorphisms with ASD, although the results should be interpreted with caution because none of the significant associations would survive appropriate correction for multiple comparisons. However, the current findings of association in a large independent cohort are consistent with previous results, and the biological plausibility of participation of the oxytocin signaling system in modulating social disruptions characteristic of ASD, suggest that functional polymorphisms of OXTR may contribute to ASD risk in a subset of families.

  17. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum

    PubMed Central

    Kumar, Nitin; Lad, Ganesh; Giuntini, Elisa; Kaye, Maria E.; Udomwong, Piyachat; Shamsani, N. Jannah; Young, J. Peter W.; Bailly, Xavier

    2015-01-01

    Biological species may remain distinct because of genetic isolation or ecological adaptation, but these two aspects do not always coincide. To establish the nature of the species boundary within a local bacterial population, we characterized a sympatric population of the bacterium Rhizobium leguminosarum by genomic sequencing of 72 isolates. Although all strains have 16S rRNA typical of R. leguminosarum, they fall into five genospecies by the criterion of average nucleotide identity (ANI). Many genes, on plasmids as well as the chromosome, support this division: recombination of core genes has been largely within genospecies. Nevertheless, variation in ecological properties, including symbiotic host range and carbon-source utilization, cuts across these genospecies, so that none of these phenotypes is diagnostic of genospecies. This phenotypic variation is conferred by mobile genes. The genospecies meet the Mayr criteria for biological species in respect of their core genes, but do not correspond to coherent ecological groups, so periodic selection may not be effective in purging variation within them. The population structure is incompatible with traditional ‘polyphasic taxonomy′ that requires bacterial species to have both phylogenetic coherence and distinctive phenotypes. More generally, genomics has revealed that many bacterial species share adaptive modules by horizontal gene transfer, and we envisage a more consistent taxonomic framework that explicitly recognizes this. Significant phenotypes should be recognized as ‘biovars' within species that are defined by core gene phylogeny. PMID:25589577

  18. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments.

    PubMed

    Veenstra-VanderWeele, Jeremy; Blakely, Randy D

    2012-01-01

    Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder affecting approximately 1% of children. ASD is defined by core symptoms in two domains: negative symptoms of impairment in social and communication function, and positive symptoms of restricted and repetitive behaviors. Available treatments are inadequate for treating both core symptoms and associated conditions. Twin studies indicate that ASD susceptibility has a large heritable component. Genetic studies have identified promising leads, with converging insights emerging from single-gene disorders that bear ASD features, with particular interest in mammalian target of rapamycin (mTOR)-linked synaptic plasticity mechanisms. Mouse models of these disorders are revealing not only opportunities to model behavioral perturbations across species, but also evidence of postnatal rescue of brain and behavioral phenotypes. An intense search for ASD biomarkers has consistently pointed to elevated platelet serotonin (5-HT) levels and a surge in brain growth in the first 2 years of life. Following a review of the diversity of ASD phenotypes and its genetic origins and biomarkers, we discuss opportunities for translation of these findings into novel ASD treatments, focusing on mTor- and 5-HT-signaling pathways, and their possible intersection. Paralleling the progress made in understanding the root causes of rare genetic syndromes that affect cognitive development, we anticipate progress in models systems using bona fide ASD-associated molecular changes that have the potential to accelerate the development of ASD diagnostics and therapeutics.

  19. Networking in Autism: Leveraging Genetic, Biomarker and Model System Findings in the Search for New Treatments

    PubMed Central

    Veenstra-VanderWeele, Jeremy; Blakely, Randy D

    2012-01-01

    Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder affecting approximately 1% of children. ASD is defined by core symptoms in two domains: negative symptoms of impairment in social and communication function, and positive symptoms of restricted and repetitive behaviors. Available treatments are inadequate for treating both core symptoms and associated conditions. Twin studies indicate that ASD susceptibility has a large heritable component. Genetic studies have identified promising leads, with converging insights emerging from single-gene disorders that bear ASD features, with particular interest in mammalian target of rapamycin (mTOR)-linked synaptic plasticity mechanisms. Mouse models of these disorders are revealing not only opportunities to model behavioral perturbations across species, but also evidence of postnatal rescue of brain and behavioral phenotypes. An intense search for ASD biomarkers has consistently pointed to elevated platelet serotonin (5-HT) levels and a surge in brain growth in the first 2 years of life. Following a review of the diversity of ASD phenotypes and its genetic origins and biomarkers, we discuss opportunities for translation of these findings into novel ASD treatments, focusing on mTor- and 5-HT-signaling pathways, and their possible intersection. Paralleling the progress made in understanding the root causes of rare genetic syndromes that affect cognitive development, we anticipate progress in models systems using bona fide ASD-associated molecular changes that have the potential to accelerate the development of ASD diagnostics and therapeutics. PMID:21937981

  20. Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06

    PubMed Central

    2010-01-01

    Background The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally. Results Non-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent. Conclusion The three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed. PMID:21092259

  1. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Phenotypic and mtDNA variation in Philippine Kappaphycus cottonii (Gigartinales, Rhodophyta).

    PubMed

    Dumilag, Richard V; Gallardo, William George M; Garcia, Christian Philip C; You, YeaEun; Chaves, Alyssa Keren G; Agahan, Lance

    2017-11-09

    Members of the carrageenan-producing seaweeds of the genus Kappapphycus have a complicated taxonomic history particularly with regard to species identification. Many taxonomic challenges in this group have been currently addressed with the use of mtDNA sequences. The phylogenetic status and genetic diversity of one of the lesser known species, Kappaphycus cottonii, have repeatedly come into question. This study explored the genetic variation in Philippine K. cottonii using the mtDNA COI-5P gene and cox2-3 spacer sequences. The six phenotypic forms in K. cottonii did not correspond to the observed genetic variability; hinting at the greater involvement of environmental factors in determining changes to the morphology of this alga. Our results revealed that the Philippine K. cottonii has the richest number of haplotypes that have been detected, so far, for any Kappaphycus species. Our inferred phylogenetic trees suggested two lineages: a lineage, which exclusively includes K. cottonii and another lineage comprising the four known Kappaphycus species: K. alvarezii, K. inermis, K. malesianus, and K. striatus. The dichotomy supports the apparent synamorphy for each of these lineages (the strictly terete thalli, lack of protuberances, and the presence of a hyphal central core in the latter group, while the opposite of these morphologies in K. cottonii). These findings shed new light on understanding the evolutionary history of the genus. Assessing the breadth of the phenotypic and genetic variation in K. cottonii has implications for the conservation and management of the overall Kappaphycus genetic resources, especially in the Philippines.

  3. Tumor evolution in space: the effects of competition colonization tradeoffs on tumor invasion dynamics.

    PubMed

    Orlando, Paul A; Gatenby, Robert A; Brown, Joel S

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.

  4. Tumor Evolution in Space: The Effects of Competition Colonization Tradeoffs on Tumor Invasion Dynamics

    PubMed Central

    Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890

  5. Social Communication and Theory of Mind in Boys with Autism and Fragile X Syndrome

    PubMed Central

    Losh, Molly; Martin, Gary E.; Klusek, Jessica; Hogan-Brown, Abigail L.; Sideris, John

    2012-01-01

    Impairments in the social use of language, or pragmatics, constitute a core characteristic of autism. Problems with pragmatic language have also been documented in fragile X syndrome (FXS), a monogenic condition that is the most common known genetic cause of autism. Evidence suggests that social cognitive ability, or theory of mind, may also be impaired in both conditions, and in autism, may importantly relate to pragmatic language ability. Given the substantial overlap observed in autism and FXS, this study aimed to better define those social-communicative phenotypes that overlap in these two conditions by comparing pragmatic language ability and theory of mind in children with idiopathic autism and children with FXS, with and without autism, as well as children with Down syndrome and typically developing controls. We further examined correlations between these cognitive-behavioral phenotypes and molecular genetic variation related to the Fragile X Mental Retardation-1 gene (FMR1) in the FXS group. Results indicated that children with idiopathic autism and those with FXS and autism performed comparably on direct-assessment measures of pragmatic language and theory of mind, whereas those with FXS only did not differ from controls. Theory of mind was related to pragmatic language ability in all groups. Pragmatic language and theory of mind also correlated with genetic variation at the FMR1 locus (Cytosine-Guanine-Guanine repeats and percent methylation). These results point toward substantial overlap in the social and language phenotypes in autism and FXS and suggest a molecular genetic basis to these phenotypic profiles. PMID:22934085

  6. Social communication and theory of mind in boys with autism and fragile x syndrome.

    PubMed

    Losh, Molly; Martin, Gary E; Klusek, Jessica; Hogan-Brown, Abigail L; Sideris, John

    2012-01-01

    Impairments in the social use of language, or pragmatics, constitute a core characteristic of autism. Problems with pragmatic language have also been documented in fragile X syndrome (FXS), a monogenic condition that is the most common known genetic cause of autism. Evidence suggests that social cognitive ability, or theory of mind, may also be impaired in both conditions, and in autism, may importantly relate to pragmatic language ability. Given the substantial overlap observed in autism and FXS, this study aimed to better define those social-communicative phenotypes that overlap in these two conditions by comparing pragmatic language ability and theory of mind in children with idiopathic autism and children with FXS, with and without autism, as well as children with Down syndrome and typically developing controls. We further examined correlations between these cognitive-behavioral phenotypes and molecular genetic variation related to the Fragile X Mental Retardation-1 gene (FMR1) in the FXS group. Results indicated that children with idiopathic autism and those with FXS and autism performed comparably on direct-assessment measures of pragmatic language and theory of mind, whereas those with FXS only did not differ from controls. Theory of mind was related to pragmatic language ability in all groups. Pragmatic language and theory of mind also correlated with genetic variation at the FMR1 locus (Cytosine-Guanine-Guanine repeats and percent methylation). These results point toward substantial overlap in the social and language phenotypes in autism and FXS and suggest a molecular genetic basis to these phenotypic profiles.

  7. Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs.

    PubMed

    vonHoldt, Bridgett M; Shuldiner, Emily; Koch, Ilana Janowitz; Kartzinel, Rebecca Y; Hogan, Andrew; Brubaker, Lauren; Wanser, Shelby; Stahler, Daniel; Wynne, Clive D L; Ostrander, Elaine A; Sinsheimer, Janet S; Udell, Monique A R

    2017-07-01

    Although considerable progress has been made in understanding the genetic basis of morphologic traits (for example, body size and coat color) in dogs and wolves, the genetic basis of their behavioral divergence is poorly understood. An integrative approach using both behavioral and genetic data is required to understand the molecular underpinnings of the various behavioral characteristics associated with domestication. We analyze a 5-Mb genomic region on chromosome 6 previously found to be under positive selection in domestic dog breeds. Deletion of this region in humans is linked to Williams-Beuren syndrome (WBS), a multisystem congenital disorder characterized by hypersocial behavior. We associate quantitative data on behavioral phenotypes symptomatic of WBS in humans with structural changes in the WBS locus in dogs. We find that hypersociability, a central feature of WBS, is also a core element of domestication that distinguishes dogs from wolves. We provide evidence that structural variants in GTF2I and GTF2IRD1 , genes previously implicated in the behavioral phenotype of patients with WBS and contained within the WBS locus, contribute to extreme sociability in dogs. This finding suggests that there are commonalities in the genetic architecture of WBS and canine tameness and that directional selection may have targeted a unique set of linked behavioral genes of large phenotypic effect, allowing for rapid behavioral divergence of dogs and wolves, facilitating coexistence with humans.

  8. Cognitive, Linguistic, and Motor Abilities in a Multigenerational Family with Childhood Apraxia of Speech.

    PubMed

    Carrigg, Bronwyn; Parry, Louise; Baker, Elise; Shriberg, Lawrence D; Ballard, Kirrie J

    2016-10-05

    This study describes the phenotype in a large family with a strong, multigenerational history of severe speech sound disorder (SSD) persisting into adolescence and adulthood in approximately half the cases. Aims were to determine whether a core phenotype, broader than speech, separated persistent from resolved SSD cases; and to ascertain the uniqueness of the phenotype relative to published cases. Eleven members of the PM family (9-55 years) were assessed across cognitive, language, literacy, speech, phonological processing, numeracy, and motor domains. Between group comparisons were made using the Mann-Whitney U-test (p < 0.01). Participant performances were compared to normative data using standardized tests and to the limited published data on persistent SSD phenotypes. Significant group differences were evident on multiple speech, language, literacy, phonological processing, and verbal intellect measures without any overlapping scores. Persistent cases performed within the impaired range on multiple measures. Phonological memory impairment and subtle literacy weakness were present in resolved SSD cases. A core phenotype distinguished persistent from resolved SSD cases that was characterized by a multiple verbal trait disorder, including Childhood Apraxia of Speech. Several phenotypic differences differentiated the persistent SSD phenotype in the PM family from the few previously reported studies of large families with SSD, including the absence of comorbid dysarthria and marked orofacial apraxia. This study highlights how comprehensive phenotyping can advance the behavioral study of disorders, in addition to forming a solid basis for future genetic and neural studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The epilepsy phenome/genome project.

    PubMed

    Abou-Khalil, Bassel; Alldredge, Brian; Bautista, Jocelyn; Berkovic, Sam; Bluvstein, Judith; Boro, Alex; Cascino, Gregory; Consalvo, Damian; Cristofaro, Sabrina; Crumrine, Patricia; Devinsky, Orrin; Dlugos, Dennis; Epstein, Michael; Fahlstrom, Robyn; Fiol, Miguel; Fountain, Nathan; Fox, Kristen; French, Jacqueline; Freyer Karn, Catharine; Friedman, Daniel; Geller, Eric; Glauser, Tracy; Glynn, Simon; Haas, Kevin; Haut, Sheryl; Hayward, Jean; Helmers, Sandra; Joshi, Sucheta; Kanner, Andres; Kirsch, Heidi; Knowlton, Robert; Kossoff, Eric; Kuperman, Rachel; Kuzniecky, Ruben; Lowenstein, Daniel; McGuire, Shannon; Motika, Paul; Nesbitt, Gerard; Novotny, Edward; Ottman, Ruth; Paolicchi, Juliann; Parent, Jack; Park, Kristen; Poduri, Annapurna; Risch, Neil; Sadleir, Lynette; Scheffer, Ingrid; Shellhaas, Renee; Sherr, Elliott; Shih, Jerry J; Shinnar, Shlomo; Singh, Rani; Sirven, Joseph; Smith, Michael; Sullivan, Joe; Thio, Liu Lin; Venkat, Anu; Vining, Eileen; von Allmen, Gretchen; Weisenberg, Judith; Widdess-Walsh, Peter; Winawer, Melodie

    2013-08-01

    Epilepsy is a common neurological disorder that affects approximately 50 million people worldwide. Both risk of epilepsy and response to treatment partly depend on genetic factors, and gene identification is a promising approach to target new prediction, treatment, and prevention strategies. However, despite significant progress in the identification of genes causing epilepsy in families with a Mendelian inheritance pattern, there is relatively little known about the genetic factors responsible for common forms of epilepsy and so-called epileptic encephalopathies. Study design The Epilepsy Phenome/Genome Project (EPGP) is a multi-institutional, retrospective phenotype-genotype study designed to gather and analyze detailed phenotypic information and DNA samples on 5250 participants, including probands with specific forms of epilepsy and, in a subset, parents of probands who do not have epilepsy. EPGP is being executed in four phases: study initiation, pilot, study expansion/establishment, and close-out. This article discusses a number of key challenges and solutions encountered during the first three phases of the project, including those related to (1) study initiation and management, (2) recruitment and phenotyping, and (3) data validation. The study has now enrolled 4223 participants. EPGP has demonstrated the value of organizing a large network into cores with specific roles, managed by a strong Administrative Core that utilizes frequent communication and a collaborative model with tools such as study timelines and performance-payment models. The study also highlights the critical importance of an effective informatics system, highly structured recruitment methods, and expert data review.

  10. Construction of Core Collections Suitable for Association Mapping to Optimize Use of Mediterranean Olive (Olea europaea L.) Genetic Resources

    PubMed Central

    El Bakkali, Ahmed; Haouane, Hicham; Moukhli, Abdelmajid; Costes, Evelyne; Van Damme, Patrick; Khadari, Bouchaib

    2013-01-01

    Phenotypic characterisation of germplasm collections is a decisive step towards association mapping analyses, but it is particularly expensive and tedious for woody perennial plant species. Characterisation could be more efficient if focused on a reasonably sized subset of accessions, or so-called core collection (CC), reflecting the geographic origin and variability of the germplasm. The questions that arise concern the sample size to use and genetic parameters that should be optimized in a core collection to make it suitable for association mapping. Here we investigated these questions in olive (Olea europaea L.), a perennial fruit species. By testing different sampling methods and sizes in a worldwide olive germplasm bank (OWGB Marrakech, Morocco) containing 502 unique genotypes characterized by nuclear and plastid loci, a two-step sampling method was proposed. The Shannon-Weaver diversity index was found to be the best criterion to be maximized in the first step using the Core Hunter program. A primary core collection of 50 entries (CC50) was defined that captured more than 80% of the diversity. This latter was subsequently used as a kernel with the Mstrat program to capture the remaining diversity. 200 core collections of 94 entries (CC94) were thus built for flexibility in the choice of varieties to be studied. Most entries of both core collections (CC50 and CC94) were revealed to be unrelated due to the low kinship coefficient, whereas a genetic structure spanning the eastern and western/central Mediterranean regions was noted. Linkage disequilibrium was observed in CC94 which was mainly explained by a genetic structure effect as noted for OWGB Marrakech. Since they reflect the geographic origin and diversity of olive germplasm and are of reasonable size, both core collections will be of major interest to develop long-term association studies and thus enhance genomic selection in olive species. PMID:23667437

  11. Genetic variants in Alzheimer disease – molecular and brain network approaches

    PubMed Central

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  12. Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era.

    PubMed

    Kim, Tae-Sung; He, Qiang; Kim, Kyu-Won; Yoon, Min-Young; Ra, Won-Hee; Li, Feng Peng; Tong, Wei; Yu, Jie; Oo, Win Htet; Choi, Buung; Heo, Eun-Beom; Yun, Byoung-Kook; Kwon, Soon-Jae; Kwon, Soon-Wook; Cho, Yoo-Hyun; Lee, Chang-Yong; Park, Beom-Seok; Park, Yong-Jin

    2016-05-26

    Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era.

  13. Larval RNA Interference in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Tomoyasu, Yoshinori

    2014-01-01

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting. PMID:25350485

  14. Dosage changes of a segment at 17p13.1 lead to intellectual disability and microcephaly as a result of complex genetic interaction of multiple genes.

    PubMed

    Carvalho, Claudia M B; Vasanth, Shivakumar; Shinawi, Marwan; Russell, Chad; Ramocki, Melissa B; Brown, Chester W; Graakjaer, Jesper; Skytte, Anne-Bine; Vianna-Morgante, Angela M; Krepischi, Ana C V; Patel, Gayle S; Immken, LaDonna; Aleck, Kyrieckos; Lim, Cynthia; Cheung, Sau Wai; Rosenberg, Carla; Katsanis, Nicholas; Lupski, James R

    2014-11-06

    The 17p13.1 microdeletion syndrome is a recently described genomic disorder with a core clinical phenotype of intellectual disability, poor to absent speech, dysmorphic features, and a constellation of more variable clinical features, most prominently microcephaly. We identified five subjects with copy-number variants (CNVs) on 17p13.1 for whom we performed detailed clinical and molecular studies. Breakpoint mapping and retrospective analysis of published cases refined the smallest region of overlap (SRO) for microcephaly to a genomic interval containing nine genes. Dissection of this phenotype in zebrafish embryos revealed a complex genetic architecture: dosage perturbation of four genes (ASGR1, ACADVL, DVL2, and GABARAP) impeded neurodevelopment and decreased dosage of the same loci caused a reduced mitotic index in vitro. Moreover, epistatic analyses in vivo showed that dosage perturbations of discrete gene pairings induce microcephaly. Taken together, these studies support a model in which concomitant dosage perturbation of multiple genes within the CNV drive the microcephaly and possibly other neurodevelopmental phenotypes associated with rearrangements in the 17p13.1 SRO. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes

    PubMed Central

    Gkogkas, Christos G.; Khoutorsky, Arkady; Cao, Ruifeng; Jafarnejad, Seyed Mehdi; Prager-Khoutorsky, Masha; Giannakas, Nikolaos; Kaminari, Archontia; Fragkouli, Apostolia; Nader, Karim; Price, Theodore J.; Konicek, Bruce W.; Graff, Jeremy R.; Tzinia, Athina K.; Lacaille, Jean-Claude; Sonenberg, Nahum

    2015-01-01

    SUMMARY Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS pheno-types. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1 −/y), we show that phosphorylation of the mRNA 5′ cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1 −/y mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS. PMID:25466251

  16. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species

    PubMed Central

    Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin; Gourdine, J.P.; Jacobsen, Julius O.B.; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E.; NguyenXuan, Jeremy; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Haendel, Melissa A.

    2017-01-01

    The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species. PMID:27899636

  17. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species

    DOE PAGES

    Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; ...

    2016-11-29

    The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Nonhuman organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research datamore » can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.« less

  18. Familial Cortical Myoclonic Tremor and Epilepsy, an Enigmatic Disorder: From Phenotypes to Pathophysiology and Genetics. A Systematic Review

    PubMed Central

    van den Ende, Tom; Sharifi, Sarvi; van der Salm, Sandra M. A.; van Rootselaar, Anne-Fleur

    2018-01-01

    Background Autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE) is characterized by distal tremulous myoclonus, generalized seizures, and signs of cortical reflex myoclonus. FCMTE has been described in over 100 pedigrees worldwide, under several different names and acronyms. Pathological changes have been located in the cerebellum. This systematic review discusses the clinical spectrum, treatment, pathophysiology, and genetic findings. Methods We carried out a PubMed search, using a combination of the following search terms: cortical tremor, myoclonus, epilepsy, benign course, adult onset, familial, and autosomal dominant; this resulted in a total of 77 studies (761 patients; 126 pedigrees) fulfilling the inclusion and exclusion criteria. Results Phenotypic differences across pedigrees exist, possibly related to underlying genetic differences. A “benign” phenotype has been described in several Japanese families and pedigrees linked to 8q (FCMTE1). French patients (5p linkage; FCMTE3) exhibit more severe progression, and in Japanese/Chinese pedigrees (with unknown linkage) anticipation has been suggested. Preferred treatment is with valproate (mind teratogenicity), levetiracetam, and/or clonazepam. Several genes have been identified, which differ in potential pathogenicity. Discussion Based on the core features (above), the syndrome can be considered a distinct clinical entity. Clinical features may also include proximal myoclonus and mild progression with aging. Valproate or levetiracetam, with or without clonazepam, reduces symptoms. FCMTE is a heterogeneous disorder, and likely to include a variety of different conditions with mutations of different genes. Distinct phenotypic traits might reflect different genetic mutations. Genes involved in Purkinje cell outgrowth or those encoding for ion channels or neurotransmitters seem good candidate genes. PMID:29416935

  19. Characterization, design, and function of the mitochondrial proteome: from organs to organisms.

    PubMed

    Lotz, Christopher; Lin, Amanda J; Black, Caitlin M; Zhang, Jun; Lau, Edward; Deng, Ning; Wang, Yueju; Zong, Nobel C; Choi, Jeong H; Xu, Tao; Liem, David A; Korge, Paavo; Weiss, James N; Hermjakob, Henning; Yates, John R; Apweiler, Rolf; Ping, Peipei

    2014-02-07

    Mitochondria are a common energy source for organs and organisms; their diverse functions are specialized according to the unique phenotypes of their hosting environment. Perturbation of mitochondrial homeostasis accompanies significant pathological phenotypes. However, the connections between mitochondrial proteome properties and function remain to be experimentally established on a systematic level. This uncertainty impedes the contextualization and translation of proteomic data to the molecular derivations of mitochondrial diseases. We present a collection of mitochondrial features and functions from four model systems, including two cardiac mitochondrial proteomes from distinct genomes (human and mouse), two unique organ mitochondrial proteomes from identical genetic codons (mouse heart and mouse liver), as well as a relevant metazoan out-group (drosophila). The data, composed of mitochondrial protein abundance and their biochemical activities, capture the core functionalities of these mitochondria. This investigation allowed us to redefine the core mitochondrial proteome from organs and organisms, as well as the relevant contributions from genetic information and hosting milieu. Our study has identified significant enrichment of disease-associated genes and their products. Furthermore, correlational analyses suggest that mitochondrial proteome design is primarily driven by cellular environment. Taken together, these results connect proteome feature with mitochondrial function, providing a prospective resource for mitochondrial pathophysiology and developing novel therapeutic targets in medicine.

  20. The phenotypic manifestations of rare CNVs in schizophrenia.

    PubMed

    Merikangas, Alison K; Segurado, Ricardo; Cormican, Paul; Heron, Elizabeth A; Anney, Richard J L; Moore, Susan; Kelleher, Eric; Hargreaves, April; Anderson-Schmidt, Heike; Gill, Michael; Gallagher, Louise; Corvin, Aiden

    2014-09-01

    There is compelling evidence for the role of copy number variants (CNVs) in schizophrenia susceptibility, and it has been estimated that up to 2-3% of schizophrenia cases may carry rare CNVs. Despite evidence that these events are associated with an increased risk across categorical neurodevelopmental disorders, there is limited understanding of the impact of CNVs on the core features of disorders like schizophrenia. Our objective was to evaluate associations between rare CNVs in differentially brain expressed (BE) genes and the core features and clinical correlates of schizophrenia. The sample included 386 cases of Irish ancestry with a diagnosis of schizophrenia, at least one rare CNV impacting any gene, and a core set of phenotypic measures. Statistically significant associations between deletions in differentially BE genes were found for family history of mental illness (decreased prevalence of all CNVs and deletions, unadjusted and adjusted) and for paternal age (increase in deletions only, unadjusted, among those with later ages at birth of patient). The strong effect of a lack of a family history on BE genes suggests that CNVs may comprise one pathway to schizophrenia, whereas a positive family history could index other genetic mechanisms that increase schizophrenia vulnerability. To our knowledge, this is the first investigation of the association between genome-wide CNVs and risk factors and sub-phenotypic features of schizophrenia beyond cognitive function. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Infrastructure for Personalized Medicine at Partners HealthCare

    PubMed Central

    Weiss, Scott T.; Shin, Meini Sumbada

    2016-01-01

    Partners HealthCare Personalized Medicine (PPM) is a center within the Partners HealthCare system (founded by Massachusetts General Hospital and Brigham and Women’s Hospital) whose mission is to utilize genetics and genomics to improve the care of patients in a cost effective manner. PPM consists of five interconnected components: (1) Laboratory for Molecular Medicine (LMM), a CLIA laboratory performing genetic testing for patients world-wide; (2) Translational Genomics Core (TGC), a core laboratory providing genomic platforms for Partners investigators; (3) Partners Biobank, a biobank of samples (DNA, plasma and serum) for 50,000 Consented Partners patients; (4) Biobank Portal, an IT infrastructure and viewer to bring together genotypes, samples, phenotypes (validated diagnoses, radiology, and clinical chemistry) from the electronic medical record to Partners investigators. These components are united by (5) a common IT system that brings researchers, clinicians, and patients together for optimal research and patient care. PMID:26927187

  2. Autism-like behavioral phenotypes in BTBR T+tf/J mice.

    PubMed

    McFarlane, H G; Kusek, G K; Yang, M; Phoenix, J L; Bolivar, V J; Crawley, J N

    2008-03-01

    Autism is a behaviorally defined neurodevelopmental disorder of unknown etiology. Mouse models with face validity to the core symptoms offer an experimental approach to test hypotheses about the causes of autism and translational tools to evaluate potential treatments. We discovered that the inbred mouse strain BTBR T+tf/J (BTBR) incorporates multiple behavioral phenotypes relevant to all three diagnostic symptoms of autism. BTBR displayed selectively reduced social approach, low reciprocal social interactions and impaired juvenile play, as compared with C57BL/6J (B6) controls. Impaired social transmission of food preference in BTBR suggests communication deficits. Repetitive behaviors appeared as high levels of self-grooming by juvenile and adult BTBR mice. Comprehensive analyses of procedural abilities confirmed that social recognition and olfactory abilities were normal in BTBR, with no evidence for high anxiety-like traits or motor impairments, supporting an interpretation of highly specific social deficits. Database comparisons between BTBR and B6 on 124 putative autism candidate genes showed several interesting single nucleotide polymorphisms (SNPs) in the BTBR genetic background, including a nonsynonymous coding region polymorphism in Kmo. The Kmo gene encodes kynurenine 3-hydroxylase, an enzyme-regulating metabolism of kynurenic acid, a glutamate antagonist with neuroprotective actions. Sequencing confirmed this coding SNP in Kmo, supporting further investigation into the contribution of this polymorphism to autism-like behavioral phenotypes. Robust and selective social deficits, repetitive self-grooming, genetic stability and commercial availability of the BTBR inbred strain encourage its use as a research tool to search for background genes relevant to the etiology of autism, and to explore therapeutics to treat the core symptoms.

  3. Language and Traits of Autism Spectrum Conditions: Evidence of Limited Phenotypic and Etiological Overlap

    PubMed Central

    Taylor, Mark J.; Charman, Tony; Robinson, Elise B.; Hayiou-Thomas, Marianna E.; Happé, Francesca; Dale, Philip S.; Ronald, Angelica

    2015-01-01

    Language difficulties have historically been viewed as integral to autism spectrum conditions (ASC), leading molecular genetic studies to consider whether ASC and language difficulties have overlapping genetic bases. The extent of genetic, and also environmental, overlap between ASC and language is, however, unclear. We hence conducted a twin study of the concurrent association between autistic traits and receptive language abilities. Internet-based language tests were completed by ~3,000 pairs of twins, while autistic traits were assessed via parent ratings. Twin model fitting explored the association between these measures in the full sample, while DeFries-Fulker analysis tested these associations at the extremes of the sample. Phenotypic associations between language ability and autistic traits were modest and negative. The degree of genetic overlap was also negative, indicating that genetic influences on autistic traits lowered language scores in the full sample (mean genetic correlation = −0.13). Genetic overlap was also low at the extremes of the sample (mean genetic correlation = 0.14), indicating that genetic influences on quantitatively defined language difficulties were largely distinct from those on extreme autistic traits. Variation in language ability and autistic traits were also associated with largely different nonshared environmental influences. Language and autistic traits are influenced by largely distinct etiological factors. This has implications for molecular genetic studies of ASC and understanding the etiology of ASC. Additionally, these findings lend support to forthcoming DSM-5 changes to ASC diagnostic criteria that will see language difficulties separated from the core ASC communication symptoms, and instead listed as a clinical specifier. PMID:25088445

  4. Language and traits of autism spectrum conditions: evidence of limited phenotypic and etiological overlap.

    PubMed

    Taylor, Mark J; Charman, Tony; Robinson, Elise B; Hayiou-Thomas, Marianna E; Happé, Francesca; Dale, Philip S; Ronald, Angelica

    2014-10-01

    Language difficulties have historically been viewed as integral to autism spectrum conditions (ASC), leading molecular genetic studies to consider whether ASC and language difficulties have overlapping genetic bases. The extent of genetic, and also environmental, overlap between ASC and language is, however, unclear. We hence conducted a twin study of the concurrent association between autistic traits and receptive language abilities. Internet-based language tests were completed by ~3,000 pairs of twins, while autistic traits were assessed via parent ratings. Twin model fitting explored the association between these measures in the full sample, while DeFries-Fulker analysis tested these associations at the extremes of the sample. Phenotypic associations between language ability and autistic traits were modest and negative. The degree of genetic overlap was also negative, indicating that genetic influences on autistic traits lowered language scores in the full sample (mean genetic correlation = -0.13). Genetic overlap was also low at the extremes of the sample (mean genetic correlation = 0.14), indicating that genetic influences on quantitatively defined language difficulties were largely distinct from those on extreme autistic traits. Variation in language ability and autistic traits were also associated with largely different nonshared environmental influences. Language and autistic traits are influenced by largely distinct etiological factors. This has implications for molecular genetic studies of ASC and understanding the etiology of ASC. Additionally, these findings lend support to forthcoming DSM-5 changes to ASC diagnostic criteria that will see language difficulties separated from the core ASC communication symptoms, and instead listed as a clinical specifier. © 2014 Wiley Periodicals, Inc.

  5. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.

  6. Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality

    PubMed Central

    Lewis, G.J.; Panizzon, M.S.; Eyler, L.; Fennema-Notestine, C.; Chen, C.-H.; Neale, M.C.; Jernigan, T.L.; Lyons, M.J.; Dale, A.M.; Kremen, W.S.; Franz, C.E.

    2015-01-01

    While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean = 55 years) male twins (complete MZ pairs = 120; complete DZ pairs = 84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (rp) and genetic (rg) correlations were observed between left amygdala volume and positive emotionality (rp = .16, p < .01; rg = .23, p < .05, respectively). In addition, after adjusting for mean cortical thickness, genetic and nonshared-environmental correlations (re) between left medial orbitofrontal cortex thickness and negative emotionality were also observed (rg = .34, p < .01; re = −.19, p < .05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation. PMID:25263286

  7. Additive genetic contribution to symptom dimensions in major depressive disorder.

    PubMed

    Pearson, Rahel; Palmer, Rohan H C; Brick, Leslie A; McGeary, John E; Knopik, Valerie S; Beevers, Christopher G

    2016-05-01

    Major depressive disorder (MDD) is a phenotypically heterogeneous disorder with a complex genetic architecture. In this study, genomic-relatedness-matrix restricted maximum-likelihood analysis (GREML) was used to investigate the extent to which variance in depression symptoms/symptom dimensions can be explained by variation in common single nucleotide polymorphisms (SNPs) in a sample of individuals with MDD (N = 1,558) who participated in the National Institute of Mental Health Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. A principal components analysis of items from the Hamilton Rating Scale for Depression (HRSD) obtained prior to treatment revealed 4 depression symptom components: (a) appetite, (b) core depression symptoms (e.g., depressed mood, anhedonia), (c) insomnia, and (d) anxiety. These symptom dimensions were associated with SNP-based heritability (hSNP2) estimates of 30%, 14%, 30%, and 5%, respectively. Results indicated that the genetic contribution of common SNPs to depression symptom dimensions were not uniform. Appetite and insomnia symptoms in MDD had a relatively strong genetic contribution whereas the genetic contribution was relatively small for core depression and anxiety symptoms. While in need of replication, these results suggest that future gene discovery efforts may strongly benefit from parsing depression into its constituent parts. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Defining and quantifying the social phenotype in autism.

    PubMed

    Klin, Ami; Jones, Warren; Schultz, Robert; Volkmar, Fred; Cohen, Donald

    2002-06-01

    Genetic and neurofunctional research in autism has highlighted the need for improved characterization of the core social disorder defining the broad spectrum of syndrome manifestations. This article reviews the advantages and limitations of current methods for the refinement and quantification of this highly heterogeneous social phenotype. The study of social visual pursuit by use of eye-tracking technology is offered as a paradigm for novel tools incorporating these requirements and as a research effort that builds on the emerging synergy of different branches of social neuroscience. Advances in the area will require increased consideration of processes underlying experimental results and a closer approximation of experimental methods to the naturalistic demands inherent in real-life social situations.

  9. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield.

    PubMed

    Ma, Zhiying; He, Shoupu; Wang, Xingfen; Sun, Junling; Zhang, Yan; Zhang, Guiyin; Wu, Liqiang; Li, Zhikun; Liu, Zhihao; Sun, Gaofei; Yan, Yuanyuan; Jia, Yinhua; Yang, Jun; Pan, Zhaoe; Gu, Qishen; Li, Xueyuan; Sun, Zhengwen; Dai, Panhong; Liu, Zhengwen; Gong, Wenfang; Wu, Jinhua; Wang, Mi; Liu, Hengwei; Feng, Keyun; Ke, Huifeng; Wang, Junduo; Lan, Hongyu; Wang, Guoning; Peng, Jun; Wang, Nan; Wang, Liru; Pang, Baoyin; Peng, Zhen; Li, Ruiqiang; Tian, Shilin; Du, Xiongming

    2018-05-07

    Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.

  10. Left or right? Sources of political orientation: the roles of genetic factors, cultural transmission, assortative mating, and personality.

    PubMed

    Kandler, Christian; Bleidorn, Wiebke; Riemann, Rainer

    2012-03-01

    In this study, we used an extended twin family design to investigate the influences of genetic and cultural transmission as well as different sources of nonrandom mating on 2 core aspects of political orientation: acceptance of inequality and rejecting system change. In addition, we studied the sources of phenotypic links between Big Five personality traits and political beliefs using self- and other reports. Data of 1,992 individuals (224 monozygotic and 166 dizygotic twin pairs, 92 unmatched twins, 530 spouses of twins, 268 fathers, and 322 mothers) were analyzed. Genetically informative analyses showed that political attitudes are genetically but not environmentally transmitted from parents to offspring and that a substantial proportion of this genetic variance can be accounted for by genetic variance in personality traits. Beyond genetic effects and genotypic assortative mating, generation-specific environmental sources act to increase twins' and spouses' resemblance in political beliefs. The results suggest multiple sources of political orientations in a modern democracy.

  11. [Behavioral phenotypes of autism spectrum disorder patients and their parents].

    PubMed

    Situ, Mingjing; Hu, Xiao; Cai, Jia; Guo, Kuifang; Huang, Yi

    2015-12-01

    To explore the relationship between the behavior phenotypes of patients with autism spectrum disorder (ASD) and their parents through family study. Forty-five core families with ASD and 30 control families from Chengdu area were examined using Autism Spectrum Quotient (AQ). Descriptive statistical analysis, correlation analysis, and Logistic regression analysis were used to investigate the effect of various factors, especially genetic factors that may affect the pathogenesis of ASD. The social skills factor and communication factor of the father's AQ scale, as well as the mother's age of childbearing and AQ social skills factor are related to whether children with ASD (R were 0.46, 0.39, 0.39 and 0.36, P<0.05). The communication factor of the parents' AQ and mother's attention to detail factor are related to whether children will show developmental anomaly before the age of 36 months (R were 0.55, 0.51 and 0.54, P<0.05). The social skill problems of parents and father's communication problems are risk factors for children with autism. ASD may be influenced by both genetic and environmental factors. The autistic behavior phenotype of parents is a risk factor for ASD and is associated with developmental anomalies of early childhood.

  12. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes.

    PubMed

    Gkogkas, Christos G; Khoutorsky, Arkady; Cao, Ruifeng; Jafarnejad, Seyed Mehdi; Prager-Khoutorsky, Masha; Giannakas, Nikolaos; Kaminari, Archontia; Fragkouli, Apostolia; Nader, Karim; Price, Theodore J; Konicek, Bruce W; Graff, Jeremy R; Tzinia, Athina K; Lacaille, Jean-Claude; Sonenberg, Nahum

    2014-12-11

    Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS phenotypes. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1(-/y)), we show that phosphorylation of the mRNA 5' cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1(-/y) mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype.

    PubMed

    Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab

    2015-09-04

    A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our findings reveal dynamics of developmental gene network evolution in wild populations. This holds important implications: (1) for understanding how phenotypic novelty is generated in the wild; (2) for providing a possible bridge between micro- and macroevolution; and (3) for understanding how development mediates the response of organisms to past, and potentially, future climate change.

  14. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency.

    PubMed

    Lopez, Gerardo; Pallas, Benoît; Martinez, Sébastien; Lauri, Pierre-Éric; Regnard, Jean-Luc; Durel, Charles-Éric; Costes, Evelyne

    2015-01-01

    Water use efficiency (WUE) is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration) in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76) and WUE (0.73) were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water.

  15. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency

    PubMed Central

    Lopez, Gerardo; Pallas, Benoît; Martinez, Sébastien; Lauri, Pierre-Éric; Regnard, Jean-Luc; Durel, Charles-Éric; Costes, Evelyne

    2015-01-01

    Water use efficiency (WUE) is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration) in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76) and WUE (0.73) were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water. PMID:26717192

  16. Looking Beyond the Genes: The Interplay Between Signaling Pathways and Mechanics in the Shaping and Diversification of Epithelial Tissues.

    PubMed

    Urdy, S; Goudemand, N; Pantalacci, S

    2016-01-01

    The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas. © 2016 Elsevier Inc. All rights reserved.

  17. Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: alcohol, smoking and opioid addiction.

    PubMed

    Reyes-Gibby, Cielito C; Yuan, Christine; Wang, Jian; Yeung, Sai-Ching J; Shete, Sanjay

    2015-06-05

    Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction. Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling. Cancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics.

  18. Genetically and Phenotypically Distinct Pseudomonas aeruginosa Cystic Fibrosis Isolates Share a Core Proteomic Signature

    PubMed Central

    Penesyan, Anahit; Kumar, Sheemal S.; Kamath, Karthik; Shathili, Abdulrahman M.; Venkatakrishnan, Vignesh; Krisp, Christoph; Packer, Nicolle H.; Molloy, Mark P.; Paulsen, Ian T.

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such extrapolations may be fraught with peril. PMID:26431321

  19. Assessment of Genetic Diversity and Structure of Large Garlic (Allium sativum) Germplasm Bank, by Diversity Arrays Technology “Genotyping-by-Sequencing” Platform (DArTseq)

    PubMed Central

    Egea, Leticia A.; Mérida-García, Rosa; Kilian, Andrzej; Hernandez, Pilar; Dorado, Gabriel

    2017-01-01

    Garlic (Allium sativum) is used worldwide in cooking and industry, including pharmacology/medicine and cosmetics, for its interesting properties. Identifying redundancies in germplasm blanks to generate core collections is a major concern, mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar appearance and phenotypic plasticity of garlic varieties hinder their morphological classification. Molecular studies are challenging, due to the large and expected complex genome of this species, with asexual reproduction. Classical molecular markers, like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm core-collections for this species. The recent emergence of high-throughput genotyping-by-sequencing (GBS) approaches, like DArTseq, allow to overcome such limitations to characterize and protect genetic diversity. Therefore, such technology was used in this work to: (i) assess genetic diversity and structure of a large garlic-germplasm bank (417 accessions); (ii) create a core collection; (iii) relate genotype to agronomical features; and (iv) describe a cost-effective method to manage genetic diversity in garlic-germplasm banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE showed general consistency, generating three main garlic-groups, mostly determined by variety and geographical origin. In addition, high-resolution genotyping identified 286 unique and 131 redundant accessions, used to select a reduced size germplasm-bank core collection. This demonstrates that DArTseq is a cost-effective method to analyze species with large and expected complex genomes, like garlic. To the best of our knowledge, this is the first report of high-throughput genotyping of a large garlic germplasm. This is particularly interesting for garlic adaptation and improvement, to fight biotic and abiotic stresses, in the current context of climate change and global warming. PMID:28775737

  20. Assessment of Genetic Diversity and Structure of Large Garlic (Allium sativum) Germplasm Bank, by Diversity Arrays Technology "Genotyping-by-Sequencing" Platform (DArTseq).

    PubMed

    Egea, Leticia A; Mérida-García, Rosa; Kilian, Andrzej; Hernandez, Pilar; Dorado, Gabriel

    2017-01-01

    Garlic ( Allium sativum ) is used worldwide in cooking and industry, including pharmacology/medicine and cosmetics, for its interesting properties. Identifying redundancies in germplasm blanks to generate core collections is a major concern, mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar appearance and phenotypic plasticity of garlic varieties hinder their morphological classification. Molecular studies are challenging, due to the large and expected complex genome of this species, with asexual reproduction. Classical molecular markers, like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm core-collections for this species. The recent emergence of high-throughput genotyping-by-sequencing (GBS) approaches, like DArTseq, allow to overcome such limitations to characterize and protect genetic diversity. Therefore, such technology was used in this work to: (i) assess genetic diversity and structure of a large garlic-germplasm bank (417 accessions); (ii) create a core collection; (iii) relate genotype to agronomical features; and (iv) describe a cost-effective method to manage genetic diversity in garlic-germplasm banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE showed general consistency, generating three main garlic-groups, mostly determined by variety and geographical origin. In addition, high-resolution genotyping identified 286 unique and 131 redundant accessions, used to select a reduced size germplasm-bank core collection. This demonstrates that DArTseq is a cost-effective method to analyze species with large and expected complex genomes, like garlic. To the best of our knowledge, this is the first report of high-throughput genotyping of a large garlic germplasm. This is particularly interesting for garlic adaptation and improvement, to fight biotic and abiotic stresses, in the current context of climate change and global warming.

  1. Clinical and Biochemical Pitfalls in the Diagnosis of Peroxisomal Disorders.

    PubMed

    Klouwer, Femke C C; Huffnagel, Irene C; Ferdinandusse, Sacha; Waterham, Hans R; Wanders, Ronald J A; Engelen, Marc; Poll-The, Bwee Tien

    2016-08-01

    Peroxisomal disorders are a heterogeneous group of genetic metabolic disorders, caused by a defect in peroxisome biogenesis or a deficiency of a single peroxisomal enzyme. The peroxisomal disorders include the Zellweger spectrum disorders, the rhizomelic chondrodysplasia punctata spectrum disorders, X-linked adrenoleukodystrophy, and multiple single enzyme deficiencies. There are several core phenotypes caused by peroxisomal dysfunction that clinicians can recognize. The diagnosis is suggested by biochemical testing in blood and urine and confirmed by functional assays in cultured skin fibroblasts, followed by mutation analysis. This review describes the phenotype of the main peroxisomal disorders and possible pitfalls in (laboratory) diagnosis to aid clinicians in the recognition of this group of diseases. Georg Thieme Verlag KG Stuttgart · New York.

  2. Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across Brachypodium distachyon Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments.

    PubMed

    Chochois, Vincent; Vogel, John P; Rebetzke, Gregory J; Watt, Michelle

    2015-07-01

    Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans.

    PubMed

    Smith, Douglas R; Stanley, Christine M; Foss, Theodore; Boles, Richard G; McKernan, Kevin

    2017-01-01

    Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.

  4. Systematic review of autosomal recessive ataxias and proposal for a classification.

    PubMed

    Beaudin, Marie; Klein, Christopher J; Rouleau, Guy A; Dupré, Nicolas

    2017-01-01

    The classification of autosomal recessive ataxias represents a significant challenge because of high genetic heterogeneity and complex phenotypes. We conducted a comprehensive systematic review of the literature to examine all recessive ataxias in order to propose a new classification and properly circumscribe this field as new technologies are emerging for comprehensive targeted gene testing. We searched Pubmed and Embase to identify original articles on recessive forms of ataxia in humans for which a causative gene had been identified. Reference lists and public databases, including OMIM and GeneReviews, were also reviewed. We evaluated the clinical descriptions to determine if ataxia was a core feature of the phenotype and assessed the available evidence on the genotype-phenotype association. Included disorders were classified as primary recessive ataxias, as other complex movement or multisystem disorders with prominent ataxia, or as disorders that may occasionally present with ataxia. After removal of duplicates, 2354 references were reviewed and assessed for inclusion. A total of 130 articles were completely reviewed and included in this qualitative analysis. The proposed new list of autosomal recessive ataxias includes 45 gene-defined disorders for which ataxia is a core presenting feature. We propose a clinical algorithm based on the associated symptoms. We present a new classification for autosomal recessive ataxias that brings awareness to their complex phenotypes while providing a unified categorization of this group of disorders. This review should assist in the development of a consensus nomenclature useful in both clinical and research applications.

  5. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius.

    PubMed

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot Hm; Rengel, Zed

    2016-06-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius

    PubMed Central

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot HM; Rengel, Zed

    2016-01-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. PMID:27049020

  7. Clinical phenotype of ASD-associated DYRK1A haploinsufficiency.

    PubMed

    Earl, Rachel K; Turner, Tychele N; Mefford, Heather C; Hudac, Caitlin M; Gerdts, Jennifer; Eichler, Evan E; Bernier, Raphael A

    2017-01-01

    DYRK1A is a gene recurrently disrupted in 0.1-0.5% of the ASD population. A growing number of case reports with DYRK1A haploinsufficiency exhibit common phenotypic features including microcephaly, intellectual disability, speech delay, and facial dysmorphisms. Phenotypic information from previously published DYRK1A cases ( n  = 51) and participants in an ongoing study at the University of Washington (UW, n  = 10) were compiled. Frequencies of recurrent phenotypic features in this population were compared to features observed in a large sample with idiopathic ASD from the Simons Simplex Collection ( n  = 1981). UW DYRK1A cases were further characterized quantitatively and compared to a randomly subsampled set of idiopathic ASD cases matched on age and gender ( n  = 10) and to cases with an ASD-associated disruptive mutation to CHD8 ( n  = 12). Contribution of familial genetic background to clinical heterogeneity was assessed by comparing head circumference, IQ, and ASD-related symptoms of UW DYRK1A cases to their unaffected parents. DYRK1A haploinsufficiency results in a common phenotypic profile including intellectual disability, speech and motor difficulties, microcephaly, feeding difficulties, and vision abnormalities. Eighty-nine percent of DYRK1A cases ascertained for ASD presented with a constellation of five or more of these symptoms. When compared quantitatively, DYRK1A cases presented with significantly lower IQ and adaptive functioning compared to idiopathic cases and significantly smaller head size compared to both idiopathic and CHD8 cases. Phenotypic variability in parental head circumference, IQ, and ASD-related symptoms corresponded to observed variability in affected child phenotype. Results confirm a core clinical phenotype for DYRK1A disruptions, with a combination of features that is distinct from idiopathic ASD. Cases with DYRK1A mutations are also distinguishable from disruptive mutations to CHD8 by head size. Measurable, quantitative characterization of DYRK1A haploinsufficiency illuminates clinical variability, which may be, in part, due to familial genetic background.

  8. Mutations in chromatin regulators functionally link Cornelia de Lange syndrome and clinically overlapping phenotypes.

    PubMed

    Parenti, Ilaria; Teresa-Rodrigo, María E; Pozojevic, Jelena; Ruiz Gil, Sara; Bader, Ingrid; Braunholz, Diana; Bramswig, Nuria C; Gervasini, Cristina; Larizza, Lidia; Pfeiffer, Lutz; Ozkinay, Ferda; Ramos, Feliciano; Reiz, Benedikt; Rittinger, Olaf; Strom, Tim M; Watrin, Erwan; Wendt, Kerstin; Wieczorek, Dagmar; Wollnik, Bernd; Baquero-Montoya, Carolina; Pié, Juan; Deardorff, Matthew A; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J

    2017-03-01

    The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.

  9. Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins.

    PubMed

    Pang, Z; Zhang, D; Li, S; Duan, H; Hjelmborg, J; Kruse, T A; Kyvik, K O; Christensen, K; Tan, Q

    2010-12-01

    The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese twin data. The aim was to explore the common genetic architecture in the development of these phenotypes in the Chinese population. Three multivariate models including the full saturated Cholesky decomposition model, the common factor independent pathway model and the common factor common pathway model were fitted to 695 pairs of Chinese twins representing six phenotypes including BMI, total cholesterol, total triacylglycerol, fasting glucose, HDL and LDL. Performances of the nested models were compared with that of the full Cholesky model. Cross-phenotype correlation coefficients gave clear indication of common genetic or environmental backgrounds in the phenotypes. Decomposition of phenotypic correlation by the Cholesky model revealed that the observed phenotypic correlation among lipid phenotypes had genetic and unique environmental backgrounds. Both pathway models suggest a common genetic architecture for lipid phenotypes, which is distinct from that of the non-lipid phenotypes. The declining performance with model restriction indicates biological heterogeneity in development among some of these phenotypes. Our multivariate analyses revealed common genetic and environmental backgrounds for the studied lipid phenotypes in Chinese twins. Model performance showed that physiologically distinct endophenotypes may follow different genetic regulations.

  10. [Genotype/phenotype correlation in autism: genetic models and phenotypic characterization].

    PubMed

    Bonnet-Brilhault, F

    2011-02-01

    Autism spectrum disorders are a class of conditions categorized by communication problems, ritualistic behaviors, and deficits in social behaviors. This class of disorders merges a heterogeneous group of neurodevelopmental disorders regarding some phenotypic and probably physiopathological aspects. Genetic basis is well admitted, however, considering phenotypic and genotypic heterogeneity, correspondences between genotype and phenotype have yet to be established. To better identify such correspondences, genetic models have to be identified and phenotypic markers have to be characterized. Recent insights show that a variety of genetic mechanisms may be involved in autism spectrum disorders, i.e. single gene disorders, copy number variations and polygenic mechanisms. These current genetic models are described. Regarding clinical aspects, several approaches can be used in genetic studies. Nosographical approach, especially with the concept of autism spectrum disorders, merges a large group of disorders with clinical heterogeneity and may fail to identify clear genotype/phenotype correlations. Dimensional approach referred in genetic studies to the notion of "Broad Autism Phenotype" related to a constellation of language, personality, and social-behavioral features present in relatives that mirror the symptom domains of autism, but are much milder in expression. Studies of this broad autism phenotype may provide a potentially important complementary approach for detecting the genes involved in these domains. However, control population used in those studies need to be well characterized too. Identification of endophenotypes seems to offer more promising results. Endophenotypes, which are supposed to be more proximal markers of gene action in the same biological pathway, linking genes and complex clinical symptoms, are thought to be less genetically complex than the broader disease phenotype, indexing a limited aspect of genetic risk for the disorder as a whole. However, strategies useful to characterize such phenotypic markers (for example, electrophysiological markers) have to take into account that autism is an early neurodevelopmental disorder occurring during childhood when brain development and maturation are in process. Recent genetic results have improved our knowledge in genetic basis in autism. Nevertheless, correspondences with phenotypic markers remain challenging according to phenotypic and genotypic heterogeneity. Copyright © 2010 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  11. Rett-like phenotypes: expanding the genetic heterogeneity to the KCNA2 gene and first familial case of CDKL5-related disease.

    PubMed

    Allou, L; Julia, S; Amsallem, D; El Chehadeh, S; Lambert, L; Thevenon, J; Duffourd, Y; Saunier, A; Bouquet, P; Pere, S; Moustaïne, A; Ruaud, L; Roth, V; Jonveaux, P; Philippe, C

    2017-03-01

    Several genes have been implicated in Rett syndrome (RTT) in its typical and variant forms. We applied next-generation sequencing (NGS) to evaluate for mutations in known or new candidate genes in patients with variant forms of Rett or Rett-like phenotypes of unknown molecular aetiology. In the first step, we used NGS with a custom panel including MECP2, CDKL5, FOXG1, MEF2C and IQSEC2. In addition to a FOXG1 mutation in a patient with all core features of the congenital variant of RTT, we identified a missense (p.Ser240Thr) in CDKL5 in a patient who appeared to be seizure free. This missense was maternally inherited with opposite allele expression ratios in the proband and her mother. In the asymptomatic mother, the mutated copy of the CDKL5 gene was inactivated in 90% of blood cells. We also identified a premature stop codon (p.Arg926*) in IQSEC2 in a patient with a Rett-like phenotype. Finally, exome sequencing enabled us to characterize a heterozygous de novo missense (p.Val408Ala) in KCNA2 encoding the potassium channel Kv 1.2 in a girl with infantile-onset seizures variant of RTT. Our study expands the genetic heterogeneity of RTT and RTT-like phenotypes. Moreover, we report the first familial case of CDKL5-related disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics

    PubMed Central

    Hernandez, Leanna M; Rudie, Jeffrey D; Green, Shulamite A; Bookheimer, Susan; Dapretto, Mirella

    2015-01-01

    Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data. PMID:25011468

  13. On the nosology and pathogenesis of Wolf-Hirschhorn syndrome: genotype-phenotype correlation analysis of 80 patients and literature review.

    PubMed

    Zollino, Marcella; Murdolo, Marina; Marangi, Giuseppe; Pecile, Vanna; Galasso, Cinzia; Mazzanti, Laura; Neri, Giovanni

    2008-11-15

    Based on genotype-phenotype correlation analysis of 80 Wolf-Hirschhorn syndrome (WHS) patients, as well as on review of relevant literature, we add further insights to the following aspects of WHS: (1) clinical delineation and phenotypic categories; (2) characterization of the basic genomic defect, mechanisms of origin and familiarity; (3) identification of prognostic factors for mental retardation; (4) chromosome mapping of the distinctive clinical signs, in an effort to identify pathogenic genes. Clinically, we consider that minimal diagnostic criteria for WHS, defining a "core" phenotype, are typical facial appearance, mental retardation, growth delay and seizures (or EEG anomalies). Three different categories of the WHS phenotype were defined, generally correlating with the extent of the 4p deletion. The first one comprises a small deletion not exceeding 3.5 Mb, that is usually associated with a mild phenotype, lacking major malformations. This category is likely under-diagnosed. The second and by far the more frequent category is identified by large deletions, averaging between 5 and 18 Mb, and causes the widely recognizable WHS phenotype. The third clinical category results from a very large deletion exceeding 22-25 Mb causing a severe phenotype, that can hardly be defined as typical WHS. Genetically, de novo chromosome abnormalities in WHS include pure deletions but also complex rearrangements, mainly unbalanced translocations. With the exception of t(4p;8p), WHS-associated chromosome abnormalities are neither mediated by segmental duplications, nor associated with a parental inversion polymorphism on 4p16.3. Factors involved in prediction of prognosis include the extent of the deletion, the occurrence of complex chromosome anomalies, and the severity of seizures. We found that the core phenotype maps within the terminal 1.9 Mb region of chromosome 4p. Therefore, WHSCR-2 should be considered the critical region for this condition. We also confirmed that the pathogenesis of WHS is multigenic. Specific and independent chromosome regions were characterized for growth delay and seizures, as well as for the additional clinical signs that characterize this condition. With the exception of parental balanced translocations, familial recurrence is uncommon.

  14. Multi-system Component Phenotypes of Bipolar Disorder for Genetic Investigations of Extended Pedigrees

    PubMed Central

    Fears, Scott C.; Service, Susan K.; Kremeyer, Barbara; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Franco, Juliana; Lopez, Maria C.; Montoya, Gabriel; Montoya, Patricia; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Ericson, Marissa; Jalbrzikowski, Maria; Luykx, Jurjen J.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier; Glahn, David C.; Ospina-Duque, Jorge; Risch, Neil; Ruiz-Linares, Andrés; Thompson, Paul M.; Cantor, Rita M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Freimer, Nelson B.; Bearden, Carrie E.

    2014-01-01

    IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), yet its pathogenesis remains poorly understood. A focus on measuring multi-system quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that impact on BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomic phenotypes that appear heritable and associated with severe bipolar disorder (BP-I), and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN Multi-generational pedigree study in two closely related, genetically isolated populations: the Central Valley of Costa Rica (CVCR) and Antioquia, Colombia (ANT). PARTICIPANTS 738 individuals, all from CVCR and ANT pedigrees, of whom 181 are affected with BP-I. MAIN OUTCOME MEASURE Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) phenotypes. RESULTS Seventy-five percent (126) of the phenotypes investigated were significantly heritable, and 31% (53) were associated with BP-I. About 1/4 of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions, and volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND RELEVANCE This is the most extensive investigation of BP-relevant component phenotypes to date. Our results identify brain and behavioral quantitative traits that appear to be genetically influenced and show a pattern of BP-I-association within families that is consistent with expectations from case-control studies. Together these phenotypes provide a basis for identifying loci contributing to BP-I risk and for genetic dissection of the disorder. PMID:24522887

  15. Stochastic loss and gain of symmetric divisions in the C. elegans epidermis perturbs robustness of stem cell number

    PubMed Central

    Katsanos, Dimitris; Koneru, Sneha L.; Mestek Boukhibar, Lamia; Gritti, Nicola; Ghose, Ritobrata; Appleford, Peter J.; Doitsidou, Maria; Woollard, Alison; van Zon, Jeroen S.; Poole, Richard J.

    2017-01-01

    Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens. PMID:29108019

  16. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.

    PubMed

    Lande, Russell

    2009-07-01

    Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.

  17. Investigating the Genetic Architecture of the PR Interval Using Clinical Phenotypes.

    PubMed

    Mosley, Jonathan D; Shoemaker, M Benjamin; Wells, Quinn S; Darbar, Dawood; Shaffer, Christian M; Edwards, Todd L; Bastarache, Lisa; McCarty, Catherine A; Thompson, Will; Chute, Christopher G; Jarvik, Gail P; Crosslin, David R; Larson, Eric B; Kullo, Iftikhar J; Pacheco, Jennifer A; Peissig, Peggy L; Brilliant, Murray H; Linneman, James G; Witte, John S; Denny, Josh C; Roden, Dan M

    2017-04-01

    One potential use for the PR interval is as a biomarker of disease risk. We hypothesized that quantifying the shared genetic architectures of the PR interval and a set of clinical phenotypes would identify genetic mechanisms contributing to PR variability and identify diseases associated with a genetic predictor of PR variability. We used ECG measurements from the ARIC study (Atherosclerosis Risk in Communities; n=6731 subjects) and 63 genetically modulated diseases from the eMERGE network (Electronic Medical Records and Genomics; n=12 978). We measured pairwise genetic correlations (rG) between PR phenotypes (PR interval, PR segment, P-wave duration) and each of the 63 phenotypes. The PR segment was genetically correlated with atrial fibrillation (rG=-0.88; P =0.0009). An analysis of metabolic phenotypes in ARIC also showed that the P wave was genetically correlated with waist circumference (rG=0.47; P =0.02). A genetically predicted PR interval phenotype based on 645 714 single-nucleotide polymorphisms was associated with atrial fibrillation (odds ratio=0.89 per SD change; 95% confidence interval, 0.83-0.95; P =0.0006). The differing pattern of associations among the PR phenotypes is consistent with analyses that show that the genetic correlation between the P wave and PR segment was not significantly different from 0 (rG=-0.03 [0.16]). The genetic architecture of the PR interval comprises modulators of atrial fibrillation risk and obesity. © 2017 American Heart Association, Inc.

  18. How MAP kinase modules function as robust, yet adaptable, circuits.

    PubMed

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.

  19. How MAP kinase modules function as robust, yet adaptable, circuits

    PubMed Central

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution. PMID:25483189

  20. Multiple Phenotype Association Tests Using Summary Statistics in Genome-Wide Association Studies

    PubMed Central

    Liu, Zhonghua; Lin, Xihong

    2017-01-01

    Summary We study in this paper jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. PMID:28653391

  1. Multiple phenotype association tests using summary statistics in genome-wide association studies.

    PubMed

    Liu, Zhonghua; Lin, Xihong

    2018-03-01

    We study in this article jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. © 2017, The International Biometric Society.

  2. A Comprehensive Analysis of High School Genetics Standards: Are States Keeping Pace with Modern Genetics?

    PubMed Central

    Dougherty, M.J.; Pleasants, C.; Solow, L.; Wong, A.; Zhang, H.

    2011-01-01

    Science education in the United States will increasingly be driven by testing and accountability requirements, such as those mandated by the No Child Left Behind Act, which rely heavily on learning outcomes, or “standards,” that are currently developed on a state-by-state basis. Those standards, in turn, drive curriculum and instruction. Given the importance of standards to teaching and learning, we investigated the quality of life sciences/biology standards with respect to genetics for all 50 states and the District of Columbia, using core concepts developed by the American Society of Human Genetics as normative benchmarks. Our results indicate that the states’ genetics standards, in general, are poor, with more than 85% of the states receiving overall scores of Inadequate. In particular, the standards in virtually every state have failed to keep pace with changes in the discipline as it has become genomic in scope, omitting concepts related to genetic complexity, the importance of environment to phenotypic variation, differential gene expression, and the differences between inherited and somatic genetic disease. Clearer, more comprehensive genetics standards are likely to benefit genetics instruction and learning, help prepare future genetics researchers, and contribute to the genetic literacy of the U.S. citizenry. PMID:21885828

  3. Beyond mean allelic effects: A locus at the major color gene MC1R associates also with differing levels of phenotypic and genetic (co)variance for coloration in barn owls.

    PubMed

    San-Jose, Luis M; Ducret, Valérie; Ducrest, Anne-Lyse; Simon, Céline; Roulin, Alexandre

    2017-10-01

    The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin-1-receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba. The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense

    PubMed Central

    Joseph, Bindu; Corwin, Jason A.; Kliebenstein, Daniel J.

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype. PMID:25569687

  5. Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense.

    PubMed

    Joseph, Bindu; Corwin, Jason A; Kliebenstein, Daniel J

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype.

  6. Topology and Dynamics of the Zebrafish Segmentation Clock Core Circuit

    PubMed Central

    Schröter, Christian; Isakova, Alina; Hens, Korneel; Soroldoni, Daniele; Gajewski, Martin; Jülicher, Frank; Maerkl, Sebastian J.; Deplancke, Bart; Oates, Andrew C.

    2012-01-01

    During vertebrate embryogenesis, the rhythmic and sequential segmentation of the body axis is regulated by an oscillating genetic network termed the segmentation clock. We describe a new dynamic model for the core pace-making circuit of the zebrafish segmentation clock based on a systematic biochemical investigation of the network's topology and precise measurements of somitogenesis dynamics in novel genetic mutants. We show that the core pace-making circuit consists of two distinct negative feedback loops, one with Her1 homodimers and the other with Her7:Hes6 heterodimers, operating in parallel. To explain the observed single and double mutant phenotypes of her1, her7, and hes6 mutant embryos in our dynamic model, we postulate that the availability and effective stability of the dimers with DNA binding activity is controlled in a “dimer cloud” that contains all possible dimeric combinations between the three factors. This feature of our model predicts that Hes6 protein levels should oscillate despite constant hes6 mRNA production, which we confirm experimentally using novel Hes6 antibodies. The control of the circuit's dynamics by a population of dimers with and without DNA binding activity is a new principle for the segmentation clock and may be relevant to other biological clocks and transcriptional regulatory networks. PMID:22911291

  7. Neuropathic pain phenotyping by international consensus (NeuroPPIC) for genetic studies: a NeuPSIG systematic review, Delphi survey, and expert panel recommendations

    PubMed Central

    van Hecke, Oliver; Kamerman, Peter R.; Attal, Nadine; Baron, Ralf; Bjornsdottir, Gyda; Bennett, David L.H.; Bennett, Michael I.; Bouhassira, Didier; Diatchenko, Luda; Freeman, Roy; Freynhagen, Rainer; Haanpää, Maija; Jensen, Troels S.; Raja, Srinivasa N.; Rice, Andrew S.C.; Seltzer, Ze'ev; Thorgeirsson, Thorgeir E.; Yarnitsky, David; Smith, Blair H.

    2015-01-01

    Abstract For genetic research to contribute more fully to furthering our knowledge of neuropathic pain, we require an agreed, valid, and feasible approach to phenotyping, to allow collaboration and replication in samples of sufficient size. Results from genetic studies on neuropathic pain have been inconsistent and have met with replication difficulties, in part because of differences in phenotypes used for case ascertainment. Because there is no consensus on the nature of these phenotypes, nor on the methods of collecting them, this study aimed to provide guidelines on collecting and reporting phenotypes in cases and controls for genetic studies. Consensus was achieved through a staged approach: (1) systematic literature review to identify all neuropathic pain phenotypes used in previous genetic studies; (2) Delphi survey to identify the most useful neuropathic pain phenotypes and their validity and feasibility; and (3) meeting of experts to reach consensus on the optimal phenotype(s) to be collected from patients with neuropathic pain for genetic studies. A basic “entry level” set of phenotypes was identified for any genetic study of neuropathic pain. This set identifies cases of “possible” neuropathic pain, and controls, and includes: (1) a validated symptom-based questionnaire to determine whether any pain is likely to be neuropathic; (2) body chart or checklist to identify whether the area of pain distribution is neuroanatomically logical; and (3) details of pain history (intensity, duration, any formal diagnosis). This NeuroPPIC “entry level” set of phenotypes can be expanded by more extensive and specific measures, as determined by scientific requirements and resource availability. PMID:26469320

  8. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.

    PubMed

    Spanagel, Rainer

    2013-01-01

    Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.

  9. Predicting Phenotypes from Genetic Crosses: A Mathematical Concept to Help Struggling Biology Students

    ERIC Educational Resources Information Center

    Baurhoo, Neerusha; Darwish, Shireef

    2012-01-01

    Predicting phenotypic outcomes from genetic crosses is often very difficult for biology students, especially those with learning disabilities. With our mathematical concept, struggling students in inclusive biology classrooms are now better equipped to solve genetic problems and predict phenotypes, because of improved understanding of dominance…

  10. Low genetic diversity contrasts with high phenotypic variability in heptaploid Spartina densiflora populations invading the Pacific Coast of North America

    USDA-ARS?s Scientific Manuscript database

    Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions such as through...

  11. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  12. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  13. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.

  14. Heritability of tic disorders: a twin-family study.

    PubMed

    Zilhão, N R; Olthof, M C; Smit, D J A; Cath, D C; Ligthart, L; Mathews, C A; Delucchi, K; Boomsma, D I; Dolan, C V

    2017-04-01

    Genetic-epidemiological studies that estimate the contributions of genetic factors to variation in tic symptoms are scarce. We estimated the extent to which genetic and environmental influences contribute to tics, employing various phenotypic definitions ranging between mild and severe symptomatology, in a large population-based adult twin-family sample. In an extended twin-family design, we analysed lifetime tic data reported by adult mono- and dizygotic twins (n = 8323) and their family members (n = 7164; parents and siblings) from 7311 families in the Netherlands Twin Register. We measured tics by the abbreviated version of the Schedule for Tourette and Other Behavioral Syndromes. Heritability was estimated by genetic structural equation modeling for four tic disorder definitions: three dichotomous and one trichotomous phenotype, characterized by increasingly strictly defined criteria. Prevalence rates of the different tic disorders in our sample varied between 0.3 and 4.5% depending on tic disorder definition. Tic frequencies decreased with increasing age. Heritability estimates varied between 0.25 and 0.37, depending on phenotypic definitions. None of the phenotypes showed evidence of assortative mating, effects of shared environment or non-additive genetic effects. Heritabilities of mild and severe tic phenotypes were estimated to be moderate. Overlapping confidence intervals of the heritability estimates suggest overlapping genetic liabilities between the various tic phenotypes. The most lenient phenotype (defined only by tic characteristics, excluding criteria B, C and D of DSM-IV) rendered sufficiently reliable heritability estimates. These findings have implications in phenotypic definitions for future genetic studies.

  15. Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations.

    PubMed

    Ehinger, Martine O; Croll, Daniel; Koch, Alexander M; Sanders, Ian R

    2012-11-01

    Arbuscular mycorrhizal fungi (AMF) are highly successful plant symbionts. They reproduce clonally producing multinucleate spores. It has been suggested that some AMF harbor genetically different nuclei. However, recent advances in sequencing the Glomus irregulare genome have indicated very low within-fungus polymorphism. We tested the null hypothesis that, with no genetic differences among nuclei, no significant genetic or phenotypic variation would occur among clonal single spore lines generated from one initial AMF spore. Furthermore, no additional variation would be expected in the following generations of single spore lines. Genetic diversity contained in one initial spore repeatedly gave rise to genetically different variants of the fungus with novel phenotypes. The genetic changes represented quantitative changes in allele frequencies, most probably as a result of changes in the frequency of genetic variation partitioned on different nuclei. The genetic and phenotypic variation is remarkable, given that it arose repeatedly from one clonal individual. Our results highlight the dynamic nature of AMF genetics. Even though within-fungus genetic variation is low, some is probably partitioned among nuclei and potentially causes changes in the phenotype. Our results are important for understanding AMF genetics, as well as for researchers and biotechnologists hoping to use AMF genetic diversity for the improvement of AMF inoculum. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Dynamic genetic linkage of intermediate blood pressure phenotypes during postural adaptations in a founder population

    PubMed Central

    Arenas, I. A.; Tremblay, J.; Deslauriers, B.; Sandoval, J.; Šeda, O.; Gaudet, D.; Merlo, E.; Kotchen, T.; Cowley, A. W.

    2013-01-01

    Blood pressure (BP) is a dynamic phenotype that varies rapidly to adjust to changing environmental conditions. Standing upright is a recent evolutionary trait, and genetic factors that influence postural adaptations may contribute to BP variability. We studied the effect of posture on the genetics of BP and intermediate BP phenotypes. We included 384 sib-pairs in 64 sib-ships from families ascertained by early-onset hypertension and dyslipidemia. Blood pressure, three hemodynamic and seven neuroendocrine intermediate BP phenotypes were measured with subjects lying supine and standing upright. The effect of posture on estimates of heritability and genetic covariance was investigated in full pedigrees. Linkage was conducted on 196 candidate genes by sib-pair analyses, and empirical estimates of significance were obtained. A permutation algorithm was implemented to study the postural effect on linkage. ADRA1A, APO, CAST, CORIN, CRHR1, EDNRB, FGF2, GC, GJA1, KCNB2, MMP3, NPY, NR3C2, PLN, TGFBR2, TNFRSF6, and TRHR showed evidence of linkage with any phenotype in the supine position and not upon standing, whereas AKR1B1, CD36, EDNRA, F5, MMP9, PKD2, PON1, PPARG, PPARGC1A, PRKCA, and RET were specifically linked to standing phenotypes. Genetic profiling was undertaken to show genetic interactions among intermediate BP phenotypes and genes specific to each posture. When investigators perform genetic studies exclusively on a single posture, important genetic components of BP are missed. Supine and standing BPs have distinct genetic signatures. Standardized maneuvers influence the results of genetic investigations into BP, thus reflecting its dynamic regulation. PMID:23269701

  18. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance

    PubMed Central

    Andersson, Dan I

    2017-01-01

    Abstract Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success. PMID:28333270

  19. Phenotypic and Genetic Associations between Reading Comprehension, Decoding Skills, and ADHD Dimensions: Evidence from Two Population-Based Studies

    ERIC Educational Resources Information Center

    Plourde, Vickie; Boivin, Michel; Forget-Dubois, Nadine; Brendgen, Mara; Vitaro, Frank; Marino, Cecilia; Tremblay, Richard T.; Dionne, Ginette

    2015-01-01

    Background: The phenotypic and genetic associations between decoding skills and ADHD dimensions have been documented but less is known about the association with reading comprehension. The aim of the study is to document the phenotypic and genetic associations between reading comprehension and ADHD dimensions of inattention and…

  20. A Review of Selected Candidate Endophenotypes for Depression

    PubMed Central

    Goldstein, Brandon L.; Klein, Daniel N.

    2014-01-01

    Endophenotypes are proposed to occupy an intermediate position in the pathway between genotype and phenotype in genetically complex disorders such as depression. To be considered an endophenotype, a construct must meet a set of criteria proposed by Gottesman and Gould (2003). In this qualitative review, we summarize evidence for each criterion for several putative endophenotypes for depression: neuroticism, morning cortisol, frontal asymmetry of cortical electrical activity, reward learning, and biases of attention and memory. Our review indicates that while there is strong support for some depression endophenotypes, other putative endophenotypes lack data or have inconsistent findings for core criteria. PMID:25006008

  1. Frontotemporal Dementia

    PubMed Central

    Olney, Nicholas T.; Spina, Salvatore; Miller, Bruce L.

    2017-01-01

    Frontotemporal Dementia (FTD) is a heterogeneous disorder with distinct clinical phenotypes associated with multiple neuropathologic entities. Presently, the term FTD encompasses clinical disorders that include changes in behavior, language, executive control and often motor symptoms. The core FTD spectrum disorders include: behavioral variant FTD (bvFTD), nonfluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA). Related FTD disorders include frontotemporal dementia with motor neuron disease (FTD-MND), progressive supranuclear palsy syndrome (PSP-S) and corticobasal syndrome (CBS). In this chapter we will discuss the clinic presentation, diagnostic criteria, neuropathology, genetics and treatments of these disorders. PMID:28410663

  2. Prader-Willi syndrome and autism spectrum disorders: an evolving story.

    PubMed

    Dykens, Elisabeth M; Lee, Evon; Roof, Elizabeth

    2011-09-01

    Prader-Willi syndrome (PWS) is well-known for its genetic and phenotypic complexities. Caused by a lack of paternally derived imprinted material on chromosome 15q11-q13, individuals with PWS have mild to moderate intellectual disabilities, repetitive and compulsive behaviors, skin picking, tantrums, irritability, hyperphagia, and increased risks of obesity. Many individuals also have co-occurring autism spectrum disorders (ASDs), psychosis, and mood disorders. Although the PWS 15q11-q13 region confers risks for autism, relatively few studies have assessed autism symptoms in PWS or directly compared social, behavioral, and cognitive functioning across groups with autism or PWS. This article identifies areas of phenotypic overlap and difference between PWS and ASD in core autism symptoms and in such comorbidities as psychiatric disorders, and dysregulated sleep and eating. Though future studies are needed, PWS provides a promising alternative lens into specific symptoms and comorbidities of autism.

  3. Heritability of Tic Disorders: a Twin-Family Study

    PubMed Central

    Zilhao, Nuno R.; Olthof, Maria C.; Smit, Dirk J.A.; Cath, Danielle C.; Ligthart, Lannie; Mathews, Carol A.; Delucchi, Kevin; Boomsma, Dorret I.; Dolan, Conor V.

    2017-01-01

    Background Genetic-epidemiological studies that estimate the contributions of genetic factors to variation in tic symptoms are scarce. We estimated the extent to which genetic and environmental influences contribute to tics, employing various phenotypic definitions ranging between mild and severe symptomatology, in a large population-based adult twin-family sample. Methods In an extended twin-family design, we analyzed lifetime tic data reported by adult mono- and dizygotic twins (n= 8,323) and their family members (n=7,164; parents and siblings) from 7,311 families in the Netherlands Twin Register (NTR). We measured tics by the abbreviated version of the Schedule for Tourette and Other Behavioral Syndromes (STOBS) (TSAICG, 2007). Heritability was estimated by genetic Structural Equation Modeling (SEM) for four tic disorder definitions: three dichotomous and one trichotomous phenotype, characterized by increasingly strictly defined criteria. Results Prevalence rates of the different tic disorders in our sample varied between 0.3 and 4.5% depending on tic disorder definition. Tic frequencies decreased with increasing age. Heritability estimates varied between .25 and .37, depending on phenotypic definitions. None of the phenotypes showed evidence of assortative mating, effects of shared environment, or non-additive genetic effects. Conclusions Heritabilities of mild and severe tic phenotypes were estimated to be moderate. Overlapping confidence intervals of the heritability estimates suggest overlapping genetic liabilities between the various tic phenotypes. The most lenient phenotype (defined only by tic characteristics, excluding criteria B, C and D of DSMIV) rendered sufficiently reliable heritability estimates. These findings have implications in phenotypic definitions for future genetic studies. PMID:27974054

  4. Genetic and Morphometric Divergence of an Invasive Bird: The Introduced House Sparrow (Passer domesticus) in Brazil

    PubMed Central

    Lima, Marcos R.; Macedo, Regina H. F.; Martins, Thaís L. F.; Schrey, Aaron W.; Martin, Lynn B.; Bensch, Staffan

    2012-01-01

    Introduced species are interesting systems for the study of contemporary evolution in new environments because of their spatial and temporal scales. For this study we had three aims: (i) to determine how genetic diversity and genetic differentiation of introduced populations of the house sparrow (Passer domesticus) in Brazil varies with range expansion, (ii) to determine how genetic diversity and differentiation in Brazil compares to ancestral European populations; and (iii) to determine whether selection or genetic drift has been more influential on phenotypic divergence. We used six microsatellite markers to genotype six populations from Brazil and four populations from Europe. We found slightly reduced levels of genetic diversity in Brazilian compared to native European populations. However, among introduced populations of Brazil, we found no association between genetic diversity and time since introduction. Moreover, overall genetic differentiation among introduced populations was low indicating that the expansion took place from large populations in which genetic drift effects would likely have been weak. We found significant phenotypic divergence among sites in Brazil. Given the absence of a spatial genetic pattern, divergent selection and not genetic drift seems to be the main force behind most of the phenotypic divergence encountered. Unravelling whether microevolution (e.g., allele frequency change), phenotypic plasticity, or both mediated phenotypic divergence is challenging and will require experimental work (e.g., common garden experiments or breeding programs). PMID:23285283

  5. Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric Threespine Stickleback.

    PubMed

    Conte, Gina L; Arnegard, Matthew E; Best, Jacob; Chan, Yingguang Frank; Jones, Felicity C; Kingsley, David M; Schluter, Dolph; Peichel, Catherine L

    2015-11-01

    How predictable is the genetic basis of phenotypic adaptation? Answering this question begins by estimating the repeatability of adaptation at the genetic level. Here, we provide a comprehensive estimate of the repeatability of the genetic basis of adaptive phenotypic evolution in a natural system. We used quantitative trait locus (QTL) mapping to discover genomic regions controlling a large number of morphological traits that have diverged in parallel between pairs of threespine stickleback (Gasterosteus aculeatus species complex) in Paxton and Priest lakes, British Columbia. We found that nearly half of QTL affected the same traits in the same direction in both species pairs. Another 40% influenced a parallel phenotypic trait in one lake but not the other. The remaining 10% of QTL had phenotypic effects in opposite directions in the two species pairs. Similarity in the proportional contributions of all QTL to parallel trait differences was about 0.4. Surprisingly, QTL reuse was unrelated to phenotypic effect size. Our results indicate that repeated use of the same genomic regions is a pervasive feature of parallel phenotypic adaptation, at least in sticklebacks. Identifying the causes of this pattern would aid prediction of the genetic basis of phenotypic evolution. Copyright © 2015 by the Genetics Society of America.

  6. Joint analysis of phenotypic and molecular diversity provides new insights on the genetic variability of the Brazilian physic nut germplasm bank

    PubMed Central

    Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião

    2013-01-01

    The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought. PMID:24130445

  7. Joint analysis of phenotypic and molecular diversity provides new insights on the genetic variability of the Brazilian physic nut germplasm bank.

    PubMed

    Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião

    2013-09-01

    The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.

  8. Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni.

    PubMed

    Sternes, Peter R; Borneman, Anthony R

    2016-04-27

    Oenococcus oeni is a lactic acid bacterium that is specialised for growth in the ecological niche of wine, where it is noted for its ability to perform the secondary, malolactic fermentation that is often required for many types of wine. Expanding the understanding of strain-dependent genetic variations in its small and streamlined genome is important for realising its full potential in industrial fermentation processes. Whole genome comparison was performed on 191 strains of O. oeni; from this rich source of genomic information consensus pan-genome assemblies of the invariant (core) and variable (flexible) regions of this organism were established. Genetic variation in amino acid biosynthesis and sugar transport and utilisation was found to be common between strains. Furthermore, we characterised previously-unreported intra-specific genetic variations in the natural competence of this microbe. By assembling a consensus pan-genome from a large number of strains, this study provides a tool for researchers to readily compare protein-coding genes across strains and infer functional relationships between genes in conserved syntenic regions. This establishes a foundation for further genetic, and thus phenotypic, research of this industrially-important species.

  9. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  10. Quantitative genetics of circulating Hyaluronic Acid (HA) and its correlation with hand osteoarthritis and obesity-related phenotypes in a community-based sample.

    PubMed

    Prakash, Jai; Gabdulina, Gulzhan; Trofimov, Svetlana; Livshits, Gregory

    2017-09-01

    One of the potential molecular biomarkers of osteoarthritis (OA) is hyaluronic acid (HA). HA levels may be related to the severity and progression of OA. However, little is known about the contribution of major risk factors for osteoarthritis, e.g. obesity-related phenotypes and genetics to HA variation. To clarify the quantitative effect of these factors on HA. An ethnically homogeneous sample of 911 apparently healthy European-derived individuals, assessed for radiographic hand osteoarthritis (RHOA), HA, leptin, adiponectin, and several anthropometrical measures of obesity-related phenotypes was studied. Model-based quantitative genetic analysis was used to reveal genetic and shared environmental factors affecting the variation of the study's phenotypes. The HA levels significantly correlated with the age, RHOA, adiponectin, obesity-related phenotypes, and the waist-to-hip ratio. The putative genetic effects contributed significantly to the variation of HA (66.2 ± 9.3%) and they were also significant factors in the variations of all the other studied phenotypes, with the heritability estimate ranging between 0.122 ± 4.4% (WHR) and 45.7 ± 2.2% (joint space narrowing). This is the first study to report heritability estimates of HA variation and its correlation with obesity-related phenotypes, ADP and RHOA. However, the nature of genetic effects on HA and its correlation with other study phenotypes require further clarification.

  11. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks.

    PubMed

    Morozova, Tatiana V; Goldman, David; Mackay, Trudy F C; Anholt, Robert R H

    2012-02-20

    Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.

  12. Phenotypic divergence despite low genetic differentiation in house sparrow populations.

    PubMed

    Ben Cohen, Shachar; Dor, Roi

    2018-01-10

    Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.

  13. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks

    PubMed Central

    2012-01-01

    Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms. PMID:22348705

  14. Regulation of flower development in Arabidopsis by SCF complexes.

    PubMed

    Ni, Weimin; Xie, Daoxin; Hobbie, Lawrence; Feng, Baomin; Zhao, Dazhong; Akkara, Joseph; Ma, Hong

    2004-04-01

    SCF complexes are the largest and best studied family of E3 ubiquitin protein ligases that facilitate the ubiquitylation of proteins targeted for degradation. The SCF core components Skp1, Cul1, and Rbx1 serve in multiple SCF complexes involving different substrate-specific F-box proteins that are involved in diverse processes including cell cycle and development. In Arabidopsis, mutations in the F-box gene UNUSUAL FLORAL ORGANS (UFO) result in a number of defects in flower development. However, functions of the core components Cul1 and Rbx1 in flower development are poorly understood. In this study we analyzed floral phenotypes caused by altering function of Cul1 or Rbx1, as well as the effects of mutations in ASK1 and ASK2. Plants homozygous for a point mutation in the AtCUL1 gene showed reduced floral organ number and several defects in each of the four whorls. Similarly, plants with reduced AtRbx1 expression due to RNA interference also exhibited floral morphological defects. In addition, compared to the ask1 mutant, plants homozygous for ask1 and heterozygous for ask2 displayed enhanced reduction of B function, as well as other novel defects of flower development, including carpelloid sepals and an inhibition of petal development. Genetic analyses demonstrate that AGAMOUS (AG) is required for the novel phenotypes observed in the first and second whorls. Furthermore, the genetic interaction between UFO and AtCUL1 supports the idea that UFO regulates multiple aspects of flower development as a part of SCF complexes. These results suggest that SCF complexes regulate several aspects of floral development in Arabidopsis.

  15. Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2014-01-01

    Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289

  16. Characterization of a Stable, Metronidazole-Resistant Clostridium difficile Clinical Isolate

    PubMed Central

    Lynch, Tarah; Chong, Patrick; Zhang, Jason; Hizon, Romeo; Du, Tim; Graham, Morag R.; Beniac, Daniel R.; Booth, Timothy F.; Kibsey, Pamela; Miller, Mark; Gravel, Denise; Mulvey, Michael R.

    2013-01-01

    Background Clostridium difficile are Gram-positive, spore forming anaerobic bacteria that are the leading cause of healthcare-associated diarrhea, usually associated with antibiotic usage. Metronidazole is currently the first-line treatment for mild to moderate C. difficile diarrhea however recurrence occurs at rates of 15–35%. There are few reports of C. difficile metronidazole resistance in the literature, and when observed, the phenotype has been transient and lost after storage or exposure of the bacteria to freeze/thaw cycles. Owing to the unstable nature of the resistance phenotype in the laboratory, clinical significance and understanding of the resistance mechanisms is lacking. Methodology/Principal Findings Genotypic and phenotypic characterization was performed on a metronidazole resistant clinical isolate of C. difficile. Whole-genome sequencing was used to identify potential genetic contributions to the phenotypic variation observed with molecular and bacteriological techniques. Phenotypic observations of the metronidazole resistant strain revealed aberrant growth in broth and elongated cell morphology relative to a metronidazole-susceptible, wild type NAP1 strain. Comparative genomic analysis revealed single nucleotide polymorphism (SNP) level variation within genes affecting core metabolic pathways such as electron transport, iron utilization and energy production. Conclusions/Significance This is the first characterization of stable, metronidazole resistance in a C. difficile isolate. The study provides an in-depth genomic and phenotypic analysis of this strain and provides a foundation for future studies to elucidate mechanisms conferring metronidazole resistance in C. difficile that have not been previously described. PMID:23349739

  17. Morphological and Genetic Analysis of Four Color Morphs of Bean Leaf Beetle.

    PubMed

    Tiroesele, Bamphitlhi; Skoda, Steven R; Hunt, Thomas E; Lee, Donald J; Ullah, Muhammad Irfan; Molina-Ochoa, Jaime; Foster, John E

    2018-03-01

    Bean leaf beetle (BLB), Cerotoma trifurcata (Forster; Coleoptera: Chrysomelidae), exhibits considerable color variation but little is known about the underlying genetic structure and gene flow among color phenotypes. Genetic and morphological variation among four color phenotypes-green with spots (G+S), green without spots (G-S), red with spots (R+S) and red without spots (R-S)-were analyzed using amplified fragment length polymorphisms (AFLP) and morphometrics, respectively. AFLP generated 175 markers that showed ≥80% polymorphism. Analysis of molecular variance (AMOVA) indicated that genetic variation was greatest within phenotypes (82.6-84.0%); gene flow among the four phenotypes was relatively high (Nm = 3.82). The dendrogram and STRUCTURE analysis indicated some population divergence of G-S from the other phenotypes. Morphological parameters were similar among phenotypes except that R+S showed significant differences in weight and body-length. Canonical variables 1 and 2, based on average morphometric characters, accounted for 98% of the total variation; some divergence was indicated between G+S and R+S from each other and from the G-S/R-S BLB color morphs. The pattern of genetic variation indicated potential divergence of G-S and G+S from each other and from R-S and R+S. Although these results indicate that the four different color morphs are not genetically or reproductively isolated, there is some genetic differentiation/structure and morphological dissimilarity suggesting weak/incomplete isolation.

  18. Etiological influences on the stability of autistic traits from childhood to early adulthood: evidence from a twin study.

    PubMed

    Taylor, Mark J; Gillberg, Christopher; Lichtenstein, Paul; Lundström, Sebastian

    2017-01-01

    Autism spectrum disorders (ASD) are persistent and lifelong conditions. Despite this, almost all twin studies focus on childhood. This twin study investigated the stability of autistic traits from childhood to early adulthood and explored the degree to which any stability could be explained by genetic or environmental factors. Parents of over 2500 twin pairs completed questionnaires assessing autistic traits when twins were aged either 9 or 12 years and again when twins were aged 18. Bivariate twin analysis assessed the degree of phenotypic and etiological stability in autistic traits across this period. Genetic overlap in autistic traits across development was also tested in individuals displaying a broad ASD phenotype, defined as scoring within the highest 5% of the sample. Autistic traits displayed moderate phenotypic stability ( r  = .39). The heritability of autistic traits was 76-77% in childhood and 60-62% in adulthood. A moderate degree of genetic influences on childhood autistic traits were carried across into adulthood (genetic correlation = .49). The majority (85%) of the stability in autistic traits was attributable to genetic factors. Genetic influences on autistic traits were moderately stable from childhood to early adulthood at the extremes (genetic correlation = .64). Broad autistic traits display moderate phenotypic and etiological stability from childhood to early adulthood. Genetic factors accounted for almost all phenotypic stability, although there was some phenotypic and etiological instability in autistic traits. Thus, autistic traits in adulthood are influenced by a combination of enduring and unique genetic factors.

  19. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.

    PubMed

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-13

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of cellular diversity for genetic and phenotypic features

    PubMed Central

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293

  1. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    DOE PAGES

    Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...

    2014-02-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less

  2. An integrative, translational approach to understanding rare and orphan genetically based diseases

    PubMed Central

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2013-01-01

    PhenomeNet is an approach for integrating phenotypes across species and identifying candidate genes for genetic diseases based on the similarity between a disease and animal model phenotypes. In contrast to ‘guilt-by-association’ approaches, PhenomeNet relies exclusively on the comparison of phenotypes to suggest candidate genes, and can, therefore, be applied to study the molecular basis of rare and orphan diseases for which the molecular basis is unknown. In addition to disease phenotypes from the Online Mendelian Inheritance in Man (OMIM) database, we have now integrated the clinical signs from Orphanet into PhenomeNet. We demonstrate that our approach can efficiently identify known candidate genes for genetic diseases in Orphanet and OMIM. Furthermore, we find evidence that mutations in the HIP1 gene might cause Bassoe syndrome, a rare disorder with unknown genetic aetiology. Our results demonstrate that integration and computational analysis of human disease and animal model phenotypes using PhenomeNet has the potential to reveal novel insights into the pathobiology underlying genetic diseases. PMID:23853703

  3. Environmental stress, inbreeding, and the nature of phenotypic and genetic variance in Drosophila melanogaster.

    PubMed Central

    Fowler, Kevin; Whitlock, Michael C

    2002-01-01

    Fifty-two lines of Drosophila melanogaster founded by single-pair population bottlenecks were used to study the effects of inbreeding and environmental stress on phenotypic variance, genetic variance and survivorship. Cold temperature and high density cause reduced survivorship, but these stresses do not cause repeatable changes in the phenotypic variance of most wing morphological traits. Wing area, however, does show increased phenotypic variance under both types of environmental stress. This increase is no greater in inbred than in outbred lines, showing that inbreeding does not increase the developmental effects of stress. Conversely, environmental stress does not increase the extent of inbreeding depression. Genetic variance is not correlated with environmental stress, although the amount of genetic variation varies significantly among environments and lines vary significantly in their response to environmental change. Drastic changes in the environment can cause changes in phenotypic and genetic variance, but not in a way reliably predicted by the notion of 'stress'. PMID:11934358

  4. Defining a Contemporary Ischemic Heart Disease Genetic Risk Profile Using Historical Data.

    PubMed

    Mosley, Jonathan D; van Driest, Sara L; Wells, Quinn S; Shaffer, Christian M; Edwards, Todd L; Bastarache, Lisa; McCarty, Catherine A; Thompson, Will; Chute, Christopher G; Jarvik, Gail P; Crosslin, David R; Larson, Eric B; Kullo, Iftikhar J; Pacheco, Jennifer A; Peissig, Peggy L; Brilliant, Murray H; Linneman, James G; Denny, Josh C; Roden, Dan M

    2016-12-01

    Continued reductions in morbidity and mortality attributable to ischemic heart disease (IHD) require an understanding of the changing epidemiology of this disease. We hypothesized that we could use genetic correlations, which quantify the shared genetic architectures of phenotype pairs and extant risk factors from a historical prospective study to define the risk profile of a contemporary IHD phenotype. We used 37 phenotypes measured in the ARIC study (Atherosclerosis Risk in Communities; n=7716, European ancestry subjects) and clinical diagnoses from an electronic health record (EHR) data set (n=19 093). All subjects had genome-wide single-nucleotide polymorphism genotyping. We measured pairwise genetic correlations (rG) between the ARIC and EHR phenotypes using linear mixed models. The genetic correlation estimates between the ARIC risk factors and the EHR IHD were modestly linearly correlated with hazards ratio estimates for incident IHD in ARIC (Pearson correlation [r]=0.62), indicating that the 2 IHD phenotypes had differing risk profiles. For comparison, this correlation was 0.80 when comparing EHR and ARIC type 2 diabetes mellitus phenotypes. The EHR IHD phenotype was most strongly correlated with ARIC metabolic phenotypes, including total:high-density lipoprotein cholesterol ratio (rG=-0.44, P=0.005), high-density lipoprotein (rG=-0.48, P=0.005), systolic blood pressure (rG=0.44, P=0.02), and triglycerides (rG=0.38, P=0.02). EHR phenotypes related to type 2 diabetes mellitus, atherosclerotic, and hypertensive diseases were also genetically correlated with these ARIC risk factors. The EHR IHD risk profile differed from ARIC and indicates that treatment and prevention efforts in this population should target hypertensive and metabolic disease. © 2016 American Heart Association, Inc.

  5. Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency

    PubMed Central

    Bone, William P.; Washington, Nicole L.; Buske, Orion J.; Adams, David R.; Davis, Joie; Draper, David; Flynn, Elise D.; Girdea, Marta; Godfrey, Rena; Golas, Gretchen; Groden, Catherine; Jacobsen, Julius; Köhler, Sebastian; Lee, Elizabeth M. J.; Links, Amanda E.; Markello, Thomas C.; Mungall, Christopher J.; Nehrebecky, Michele; Robinson, Peter N.; Sincan, Murat; Soldatos, Ariane G.; Tifft, Cynthia J.; Toro, Camilo; Trang, Heather; Valkanas, Elise; Vasilevsky, Nicole; Wahl, Colleen; Wolfe, Lynne A.; Boerkoel, Cornelius F.; Brudno, Michael; Haendel, Melissa A.; Gahl, William A.; Smedley, Damian

    2016-01-01

    Purpose: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. Genet Med 18 6, 608–617. Methods: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease–gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein–protein association neighbors. Genet Med 18 6, 608–617. Results: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease–gene associations and ranked the correct seeded variant in up to 87% when detectable disease–gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. Genet Med 18 6, 608–617. Conclusion: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders. Genet Med 18 6, 608–617. PMID:26562225

  6. Novel throughput phenotyping platforms in plant genetic studies.

    PubMed

    Montes, Juan M; Melchinger, Albrecht E; Reif, Jochen C

    2007-10-01

    Unraveling the genetic basis of complex traits in plants is limited by the lack of appropriate phenotyping platforms that enable high-throughput screening of many genotypes in multilocation field trials. Near-infrared spectroscopy on agricultural harvesters and spectral reflectance of plant canopies have recently been reported as promising components of novel phenotyping platforms. Understanding the genetic basis of complex traits is now within reach with the use of these new techniques.

  7. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    PubMed

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  8. Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability?

    PubMed

    Docherty, Anna R; Hagler, Donald J; Panizzon, Matthew S; Neale, Michael C; Eyler, Lisa T; Fennema-Notestine, Christine; Franz, Carol E; Jak, Amy; Lyons, Michael J; Rinker, Daniel A; Thompson, Wesley K; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2015-02-01

    The phenotypic and genetic relationship between global cortical size and general cognitive ability (GCA) appears to be driven by surface area (SA) and not cortical thickness (CT). Gyrification (cortical folding) is an important property of the cortex that helps to increase SA within a finite space, and may also improve connectivity by reducing distance between regions. Hence, gyrification may be what underlies the SA-GCA relationship. In previous phenotypic studies, a 3-dimensional gyrification index (3DGI) has been positively associated with cognitive ability and negatively associated with mild cognitive impairment, Alzheimer's disease, and psychiatric disorders affecting cognition. However, the differential genetic associations of 3DGI and SA with GCA are still unclear. We examined the heritability of 3DGI, and the phenotypic, genetic, and environmental associations of 3DGI with SA and GCA in a large sample of adult male twins (N = 512). Nearly 85% of the variance in 3DGI was due to genes, and 3DGI had a strong phenotypic and genetic association with SA. Both 3DGI and total SA had positive phenotypic correlations with GCA. However, the SA-GCA correlation remained significant after controlling for 3DGI, but not the other way around. There was also significant genetic covariance between SA and GCA, but not between 3DGI and GCA. Thus, despite the phenotypic and genetic associations between 3DGI and SA, our results do not support the hypothesis that gyrification underlies the association between SA and GCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Combinatorial Roles of Heparan Sulfate Proteoglycans and Heparan Sulfates in Caenorhabditis elegans Neural Development

    PubMed Central

    Kinnunen, Tarja K.

    2014-01-01

    Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease. PMID:25054285

  10. Contrasting evolutionary genome dynamics between domesticated and wild yeasts

    PubMed Central

    Yue, Jia-Xing; Li, Jing; Aigrain, Louise; Hallin, Johan; Persson, Karl; Oliver, Karen; Bergström, Anders; Coupland, Paul; Warringer, Jonas; Lagomarsino, Marco Consentino; Fischer, Gilles; Durbin, Richard; Liti, Gianni

    2017-01-01

    Structural rearrangements have long been recognized as an important source of genetic variation with implications in phenotypic diversity and disease, yet their detailed evolutionary dynamics remain elusive. Here, we use long-read sequencing to generate end-to-end genome assemblies for 12 strains representing major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus. These population-level high-quality genomes with comprehensive annotation allow for the first time a precise definition of chromosomal boundaries between cores and subtelomeres and a high-resolution view of evolutionary genome dynamics. In chromosomal cores, S. paradoxus exhibits faster accumulation of balanced rearrangements (inversions, reciprocal translocations and transpositions) whereas S. cerevisiae accumulates unbalanced rearrangements (novel insertions, deletions and duplications) more rapidly. In subtelomeres, both species show extensive interchromosomal reshuffling, with a higher tempo in S. cerevisiae. Such striking contrasts between wild and domesticated yeasts likely reflect the influence of human activities on structural genome evolution. PMID:28416820

  11. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments.

    PubMed

    Rubio de Casas, R; Vargas, P; Pérez-Corona, E; Cano, E; Manrique, E; García-Verdugo, C; Balaguer, L

    2009-05-01

    Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and beta-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors.

  12. Testing evolutionary hypotheses for phenotypic divergence using landscape genetics.

    PubMed

    Funk, W Chris; Murphy, Melanie A

    2010-02-01

    Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence (Garant et al. 2007) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation (Coyne & Orr 2004). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica (Fig. 1). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation-by-distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.

  13. Development of resources and tools for mapping genetic sources of phenotypic variation

    USDA-ARS?s Scientific Manuscript database

    Commercial and experimental genetic resources were established and investigated for a range of reproductive and disease susceptibility phenotypes. The phenotyping efforts were accompanied with RNA and whole genome sequencing and novel assemblies of the swine genome. The efforts were complemented wit...

  14. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    PubMed Central

    Hernández-Terán, Alejandra; Wegier, Ana; Benítez, Mariana; Lira, Rafael; Escalante, Ana E.

    2017-01-01

    Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest consequences of genetic modification beyond the target trait(s). PMID:29259610

  15. Drosophila Genetic Resource and Stock Center; The National BioResource Project.

    PubMed

    Yamamoto, Masa-Toshi

    2010-01-01

    The fruit fly, Drosophila melanogaster, is not categorized as a laboratory animal, but it is recognised as one of the most important model organisms for basic biology, life science, and biomedical research. This tiny fly continues to occupy a core place in genetics and genomic approaches to studies of biology and medicine. The basic principles of genetics, including the variations of phenotypes, mutations, genetic linkage, meiotic chromosome segregation, chromosome aberrations, recombination, and precise mapping of genes by genetic as well as cytological means, were all derived from studies of Drosophila. Recombinant DNA technology was developed in the 1970s and Drosophila DNA was the first among multicellular organisms to be cloned. It provided a detailed characterization of genes in combination of classical cytogenetic data. Drosophila thus became the pioneering model organism for various fields of life science research into multicellular organisms. Here, I briefly describe the history of Drosophila research and provide a few examples of the application of the abundant genetic resources of Drosophila to basic biology and medical investigations. A Japanese national project, the National BioResource Project (NBRP) for collection, maintainance, and provision of Drosophila resources, that is well known and admired by researchers in other countries as an important project, is also briefly described.

  16. Phenotype analysis of congenital and neurodevelopmental disorders in the next generation sequencing era.

    PubMed

    Carey, John C

    2017-09-01

    The designation, phenotype, was proposed as a term by Wilhelm Johannsen in 1909. The word is derived from the Greek, phano (showing) and typo (type), phanotypos. Phenotype has become a widely recognized term, even outside of the genetics community, in recent years with the ongoing identification of human disease genes. The term has been defined as the observable constitution of an organism, but sometimes refers to a condition when a person has a particular clinical presentation. Analysis of phenotype is a timely theme because advances in the understanding of the genetic basis of human disease and the emergence of next generation sequencing have spurred a renewed interest in phenotype and the proposal to establish a "Human Phenome Project." This article summarizes the principles of phenotype analysis that are important in medical genetics and describes approaches to comprehensive phenotype analysis in the investigation of patients with human disorders. I discuss the various elements related to disease phenotypes and highlight neurofibromatosis type 1 and the Elements of Morphology Project as illustrations of the principles. In recent years, the notion of "deep phenotyping" has emerged. Currently there are now a number of proposed strategies and resources to approach this concept. Not since the 1960s and 1970s has there been such an exciting time in the history of medicine surrounding the analysis of phenotype in genetic disorders. © 2017 Wiley Periodicals, Inc.

  17. Autism Spectrum and Obsessive–Compulsive Disorders: OC Behaviors, Phenotypes and Genetics

    PubMed Central

    Jacob, Suma; Landeros-Weisenberger, Angeli; Leckman, James F.

    2014-01-01

    Autism spectrum disorders (ASDs) are a phenotypically and etiologically heterogeneous set of disorders that include obsessive–compulsive behaviors (OCB) that partially overlap with symptoms associated with obsessive–compulsive disorder (OCD). The OCB seen in ASD vary depending on the individual’s mental and chronological age as well as the etiology of their ASD. Although progress has been made in the measurement of the OCB associated with ASD, more work is needed including the potential identification of heritable endophenotypes. Likewise, important progress toward the understanding of genetic influences in ASD has been made by greater refinement of relevant phenotypes using a broad range of study designs, including twin and family-genetic studies, parametric and nonparametric linkage analyses, as well as candidate gene studies and the study of rare genetic variants. These genetic analyses could lead to the refinement of the OCB phenotypes as larger samples are studied and specific associations are replicated. Like ASD, OCB are likely to prove to be multidimensional and polygenic. Some of the vulnerability genes may prove to be generalist genes influencing the phenotypic expression of both ASD and OCD while others will be specific to subcomponents of the ASD phenotype. In order to discover molecular and genetic mechanisms, collaborative approaches need to generate shared samples, resources, novel genomic technologies, as well as more refined phenotypes and innovative statistical approaches. There is a growing need to identify the range of molecular pathways involved in OCB related to ASD in order to develop novel treatment interventions. PMID:20029829

  18. Phenotypes from ancient DNA: approaches, insights and prospects.

    PubMed

    Fortes, Gloria G; Speller, Camilla F; Hofreiter, Michael; King, Turi E

    2013-08-01

    The great majority of phenotypic characteristics are complex traits, complicating the identification of the genes underlying their expression. However, both methodological and theoretical progress in genome-wide association studies have resulted in a much better understanding of the underlying genetics of many phenotypic traits, including externally visible characteristics (EVCs) such as eye and hair color. Consequently, it has become possible to predict EVCs from human samples lacking phenotypic information. Predicting EVCs from genetic evidence is clearly appealing for forensic applications involving the personal identification of human remains. Now, a recent paper has reported the genetic determination of eye and hair color in samples up to 800 years old. The ability to predict EVCs from ancient human remains opens up promising perspectives for ancient DNA research, as this could allow studies to directly address archaeological and evolutionary questions related to the temporal and geographical origins of the genetic variants underlying phenotypes. © 2013 WILEY Periodicals, Inc.

  19. Chromosome 15q25.1 genetic markers associated with level of response to alcohol in humans.

    PubMed

    Joslyn, Geoff; Brush, Gerry; Robertson, Margaret; Smith, Tom L; Kalmijn, Jelger; Schuckit, Marc; White, Raymond L

    2008-12-23

    As with other genetically complex common psychiatric and medical conditions, multiple genetic and environmental components contribute to alcohol use disorders (AUDs), which can confound attempts to identify genetic components. Intermediate phenotypes are often more closely correlated with underlying biology and have often proven invaluable in genetic studies. Level of response (LR) to alcohol is an intermediate phenotype for AUDs, and individuals with a low LR are at increased risk. A high rate of concurrent alcohol and nicotine use and dependence suggests that these conditions may share biochemical and genetic mechanisms. Genetic association studies indicate that a genetic locus, which includes the CHRNA5-CHRNA3-CHRNB4 gene cluster, plays a role in nicotine consumption and dependence. Genetic association with alcohol dependence was also recently shown. We show here that two of the markers from the nicotine studies also show an association (multiple testing corrected P < 0.025) with several LR phenotypes in a sample of 367 siblings. Additional markers in the region were analyzed and shown to be located in a 250-kb expanse of high linkage disequilibrium containing three additional genes. These findings indicate that LR intermediate phenotypes have utility in genetic approaches to AUDs and will prove valuable in the identification of other genetic loci conferring susceptibility to AUDs.

  20. Genetic Determinants of Thrombin Generation and Their Relation to Venous Thrombosis: Results from the GAIT-2 Project

    PubMed Central

    Martin-Fernandez, Laura; Ziyatdinov, Andrey; Carrasco, Marina; Millon, Juan Antonio; Martinez-Perez, Angel; Vilalta, Noelia; Brunel, Helena; Font, Montserrat; Hamsten, Anders; Souto, Juan Carlos; Soria, José Manuel

    2016-01-01

    Background Venous thromboembolism (VTE) is a common disease where known genetic risk factors explain only a small portion of the genetic variance. Then, the analysis of intermediate phenotypes, such as thrombin generation assay, can be used to identify novel genetic risk factors that contribute to VTE. Objectives To investigate the genetic basis of distinct quantitative phenotypes of thrombin generation and its relationship to the risk of VTE. Patients/Methods Lag time, thrombin peak and endogenous thrombin potential (ETP) were measured in the families of the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT-2) Project. This sample consisted of 935 individuals in 35 extended families selected through a proband with idiopathic thrombophilia. We performed also genome wide association studies (GWAS) with thrombin generation phenotypes. Results The results showed that 67% of the variation in the risk of VTE is attributable to genetic factors. The heritabilities of lag time, thrombin peak and ETP were 49%, 54% and 52%, respectively. More importantly, we demonstrated also the existence of positive genetic correlations between thrombin peak or ETP and the risk of VTE. Moreover, the major genetic determinant of thrombin generation was the F2 gene. However, other suggestive signals were observed. Conclusions The thrombin generation phenotypes are strongly genetically determined. The thrombin peak and ETP are significantly genetically correlated with the risk of VTE. In addition, F2 was identified as a major determinant of thrombin generation. We reported suggestive signals that might increase our knowledge to explain the variability of this important phenotype. Validation and functional studies are required to confirm GWAS results. PMID:26784699

  1. Genetic and Environmental Regulation on Longitudinal Change of Metabolic Phenotypes in Danish and Chinese Adult Twins

    PubMed Central

    Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang; Zhang, Dongfeng; Duan, Haiping; Tan, Qihua; Hjelmborg, Jacob; Kruse, Torben; Dalgård, Christine

    2016-01-01

    Objective The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic, cultural, social-economic backgrounds and geographical environments. Materials and Methods The study covered a relatively large sample of 502 pairs of Danish adult twins followed up for a long period of 12 years with a mean age at intake of 38 years (range: 18–65) and a total of 181 Chinese adult twin pairs traced for about 7 years with a mean baseline age of 39.5 years (range: 23–64). The classical twin models were fitted to the longitudinal change in each phenotype (Δphenotype) to estimate the genetic and environmental contributions to the variation in Δphenotype. Results Moderate to high contributions by the unique environment were estimated for all phenotypes in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycerides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins; low to moderate genetic components were estimated for long-term change in most of the phenotypes in Danish twins except for triglycerides and hip circumference. Compared with Danish twins, the Chinese twins tended to have higher genetic control over the longitudinal changes in lipids (except high density lipoprotein cholesterol) and glucose, higher unique environmental contribution to blood pressure but no genetic contribution to longitudinal change in body mass traits. Conclusion Our results emphasize the major contribution of unique environment to the observed intra-individual variation in all metabolic phenotypes in both samples, and meanwhile reveal differential patterns of genetic and common environmental regulation on changes over time in metabolic phenotypes across the two samples. PMID:26862898

  2. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    ERIC Educational Resources Information Center

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  3. A review of selected candidate endophenotypes for depression.

    PubMed

    Goldstein, Brandon L; Klein, Daniel N

    2014-07-01

    Endophenotypes are proposed to occupy an intermediate position in the pathway between genotype and phenotype in genetically complex disorders such as depression. To be considered an endophenotype, a construct must meet a set of criteria proposed by Gottesman and Gould (2003). In this qualitative review, we summarize evidence for each criterion for several putative endophenotypes for depression: neuroticism, morning cortisol, frontal asymmetry of cortical electrical activity, reward learning, and biases of attention and memory. Our review indicates that while there is strong support for some depression endophenotypes, other putative endophenotypes lack data or have inconsistent findings for core criteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density.

    PubMed

    Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.

  5. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions.

    PubMed

    Lacivita, Enza; Perrone, Roberto; Margari, Lucia; Leopoldo, Marcello

    2017-11-22

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.

  6. A genome-wide association study of autism using the Simons Simplex Collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity?

    PubMed

    Chaste, Pauline; Klei, Lambertus; Sanders, Stephan J; Hus, Vanessa; Murtha, Michael T; Lowe, Jennifer K; Willsey, A Jeremy; Moreno-De-Luca, Daniel; Yu, Timothy W; Fombonne, Eric; Geschwind, Daniel; Grice, Dorothy E; Ledbetter, David H; Mane, Shrikant M; Martin, Donna M; Morrow, Eric M; Walsh, Christopher A; Sutcliffe, James S; Lese Martin, Christa; Beaudet, Arthur L; Lord, Catherine; State, Matthew W; Cook, Edwin H; Devlin, Bernie

    2015-05-01

    Phenotypic heterogeneity in autism has long been conjectured to be a major hindrance to the discovery of genetic risk factors, leading to numerous attempts to stratify children based on phenotype to increase power of discovery studies. This approach, however, is based on the hypothesis that phenotypic heterogeneity closely maps to genetic variation, which has not been tested. Our study examines the impact of subphenotyping of a well-characterized autism spectrum disorder (ASD) sample on genetic homogeneity and the ability to discover common genetic variants conferring liability to ASD. Genome-wide genotypic data of 2576 families from the Simons Simplex Collection were analyzed in the overall sample and phenotypic subgroups defined on the basis of diagnosis, IQ, and symptom profiles. We conducted a family-based association study, as well as estimating heritability and evaluating allele scores for each phenotypic subgroup. Association analyses revealed no genome-wide significant association signal. Subphenotyping did not increase power substantially. Moreover, allele scores built from the most associated single nucleotide polymorphisms, based on the odds ratio in the full sample, predicted case status in subsets of the sample equally well and heritability estimates were very similar for all subgroups. In genome-wide association analysis of the Simons Simplex Collection sample, reducing phenotypic heterogeneity had at most a modest impact on genetic homogeneity. Our results are based on a relatively small sample, one with greater homogeneity than the entire population; if they apply more broadly, they imply that analysis of subphenotypes is not a productive path forward for discovering genetic risk variants in ASD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. The AVRDC - The World Vegetable Center mungbean (Vigna radiata) core and mini core collections.

    PubMed

    Schafleitner, Roland; Nair, Ramakrishnan Madhavan; Rathore, Abhishek; Wang, Yen-wei; Lin, Chen-yu; Chu, Shu-hui; Lin, Pin-yun; Chang, Jian-Cheng; Ebert, Andreas W

    2015-04-29

    Large ex situ germplasm collections generally harbor a wide range of crop diversity. AVRDC--The World Vegetable Center is holding in trust the world's second largest mungbean (Vigna radiata) germplasm collection with more than 6,700 accessions. Screening large collections for traits of interest is laborious and expensive. To enhance the access of breeders to the diversity of the crop, mungbean core and mini core collections have been established. The core collection of 1,481 entries has been built by random selection of 20% of the accessions after geographical stratification and subsequent cluster analysis of eight phenotypic descriptors in the whole collection. Summary statistics, especially the low differences of means, equal variance of the traits in both the whole and core collection and the visual inspection of quantile-quantile plots comparing the variation of phenotypic traits present in both collections indicated that the core collection well represented the pattern of diversity of the whole collection. The core collection was genotyped with 20 simple sequence repeat markers and a mini core set of 289 accessions was selected, which depicted the allele and genotype diversity of the core collection. The mungbean core and mini core collections plus their phenotypic and genotypic data are available for distribution to breeders. It is expected that these collections will enhance the access to biodiverse mungbean germplasm for breeding.

  8. Effect of genetic background on the dystrophic phenotype in mdx mice

    PubMed Central

    Coley, William D.; Bogdanik, Laurent; Vila, Maria Candida; Yu, Qing; Van Der Meulen, Jack H.; Rayavarapu, Sree; Novak, James S.; Nearing, Marie; Quinn, James L.; Saunders, Allison; Dolan, Connor; Andrews, Whitney; Lammert, Catherine; Austin, Andrew; Partridge, Terence A.; Cox, Gregory A.; Lutz, Cathleen; Nagaraju, Kanneboyina

    2016-01-01

    Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits. PMID:26566673

  9. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240

  10. Phenotypic and genetic characterization of Piscirickettsia salmonis from Chilean and Canadian salmonids.

    PubMed

    Otterlei, Alexander; Brevik, Øyvind J; Jensen, Daniel; Duesund, Henrik; Sommerset, Ingunn; Frost, Petter; Mendoza, Julio; McKenzie, Peter; Nylund, Are; Apablaza, Patricia

    2016-03-15

    The study presents the phenotypic and genetic characterization of selected P. salmonis isolates from Atlantic salmon and rainbow trout suffering from SRS (salmonid rickettsial septicemia) in Chile and in Canada. The phenotypic characterization of the P. salmonis isolates were based on growth on different agar media (including a newly developed medium), different growth temperatures, antibiotics susceptibility and biochemical tests. This is the first study differentiating Chilean P. salmonis isolates into two separate genetic groups. Genotyping, based on 16S rRNA-ITS and concatenated housekeeping genes grouped the selected isolates into two clades, constituted by the Chilean strains, while the Canadian isolates form a branch in the phylogenetic tree. The latter consisted of two isolates that were different in both genetic and phenotypic characteristics. The phylogenies and the MLST do not reflect the origin of the isolates with respect to host species. The isolates included were heterogeneous in phenotypic tests. The genotyping methods developed in this study provided a tool for separation of P. salmonis isolates into distinct clades. The SRS outbreaks in Chile are caused by minimum two different genetic groups of P. salmonis. This heterogeneity should be considered in future development of vaccines against this bacterium in Chile. Two different strains of P. salmonis, in regards to genetic and phenotypic characteristics, can occur in the same contemporary outbreak of SRS.

  11. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology.

    PubMed

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view.

  12. GlobAl Distribution of GEnetic Traits (GADGET) web server: polygenic trait scores worldwide.

    PubMed

    Chande, Aroon T; Wang, Lu; Rishishwar, Lavanya; Conley, Andrew B; Norris, Emily T; Valderrama-Aguirre, Augusto; Jordan, I King

    2018-05-18

    Human populations from around the world show striking phenotypic variation across a wide variety of traits. Genome-wide association studies (GWAS) are used to uncover genetic variants that influence the expression of heritable human traits; accordingly, population-specific distributions of GWAS-implicated variants may shed light on the genetic basis of human phenotypic diversity. With this in mind, we developed the GlobAl Distribution of GEnetic Traits web server (GADGET http://gadget.biosci.gatech.edu). The GADGET web server provides users with a dynamic visual platform for exploring the relationship between worldwide genetic diversity and the genetic architecture underlying numerous human phenotypes. GADGET integrates trait-implicated single nucleotide polymorphisms (SNPs) from GWAS, with population genetic data from the 1000 Genomes Project, to calculate genome-wide polygenic trait scores (PTS) for 818 phenotypes in 2504 individual genomes. Population-specific distributions of PTS are shown for 26 human populations across 5 continental population groups, with traits ordered based on the extent of variation observed among populations. Users of GADGET can also upload custom trait SNP sets to visualize global PTS distributions for their own traits of interest.

  13. Striatal response to reward anticipation: evidence for a systems-level intermediate phenotype for schizophrenia.

    PubMed

    Grimm, Oliver; Heinz, Andreas; Walter, Henrik; Kirsch, Peter; Erk, Susanne; Haddad, Leila; Plichta, Michael M; Romanczuk-Seiferth, Nina; Pöhland, Lydia; Mohnke, Sebastian; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Schäfer, Axel; Cichon, Sven; Nöthen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas

    2014-05-01

    Attenuated ventral striatal response during reward anticipation is a core feature of schizophrenia that is seen in prodromal, drug-naive, and chronic schizophrenic patients. Schizophrenia is highly heritable, raising the possibility that this phenotype is related to the genetic risk for the disorder. To examine a large sample of healthy first-degree relatives of schizophrenic patients and compare their neural responses to reward anticipation with those of carefully matched controls without a family psychiatric history. To further support the utility of this phenotype, we studied its test-retest reliability, its potential brain structural contributions, and the effects of a protective missense variant in neuregulin 1 (NRG1) linked to schizophrenia by meta-analysis (ie, rs10503929). Examination of a well-established monetary reward anticipation paradigm during functional magnetic resonance imaging at a university hospital; voxel-based morphometry; test-retest reliability analysis of striatal activations in an independent sample of 25 healthy participants scanned twice with the same task; and imaging genetics analysis of the control group. A total of 54 healthy first-degree relatives of schizophrenic patients and 80 controls matched for demographic, psychological, clinical, and task performance characteristics were studied. Blood oxygen level-dependent response during reward anticipation, analysis of intraclass correlations of functional contrasts, and associations between striatal gray matter volume and NRG1 genotype. Compared with controls, healthy first-degree relatives showed a highly significant decrease in ventral striatal activation during reward anticipation (familywise error-corrected P < .03 for multiple comparisons across the whole brain). Supplemental analyses confirmed that the identified systems-level functional phenotype is reliable (with intraclass correlation coefficients of 0.59-0.73), independent of local gray matter volume (with no corresponding group differences and no correlation to function, and with all uncorrected P values >.05), and affected by the NRG1 genotype (higher striatal responses in controls with the protective rs10503929 C allele; familywise error-corrected P < .03 for ventral striatal response). Healthy first-degree relatives of schizophrenic patients show altered striatal activation during reward anticipation in a directionality and localization consistent with prior patient findings. This provides evidence for a functional neural system mechanism related to familial risk. The phenotype can be assessed reliably, is independent of alterations in striatal structure, and is influenced by a schizophrenia candidate gene variant in NRG1. These data encourage us to further investigate the genetic and molecular contributions to this phenotype.

  14. Causal Genetic Variation Underlying Metabolome Differences.

    PubMed

    Swain-Lenz, Devjanee; Nikolskiy, Igor; Cheng, Jiye; Sudarsanam, Priya; Nayler, Darcy; Staller, Max V; Cohen, Barak A

    2017-08-01

    An ongoing challenge in biology is to predict the phenotypes of individuals from their genotypes. Genetic variants that cause disease often change an individual's total metabolite profile, or metabolome. In light of our extensive knowledge of metabolic pathways, genetic variants that alter the metabolome may help predict novel phenotypes. To link genetic variants to changes in the metabolome, we studied natural variation in the yeast Saccharomyces cerevisiae We used an untargeted mass spectrometry method to identify dozens of metabolite Quantitative Trait Loci (mQTL), genomic regions containing genetic variation that control differences in metabolite levels between individuals. We mapped differences in urea cycle metabolites to genetic variation in specific genes known to regulate amino acid biosynthesis. Our functional assays reveal that genetic variation in two genes, AUA1 and ARG81 , cause the differences in the abundance of several urea cycle metabolites. Based on knowledge of the urea cycle, we predicted and then validated a new phenotype: sensitivity to a particular class of amino acid isomers. Our results are a proof-of-concept that untargeted mass spectrometry can reveal links between natural genetic variants and metabolome diversity. The interpretability of our results demonstrates the promise of using genetic variants underlying natural differences in the metabolome to predict novel phenotypes from genotype. Copyright © 2017 by the Genetics Society of America.

  15. Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations

    PubMed Central

    Miner, Brooks E.; Kerr, Benjamin

    2011-01-01

    Understanding the historical processes that generated current patterns of phenotypic diversity in nature is particularly challenging in subdivided populations. Populations often exhibit heritable genetic differences that correlate with environmental variables, but the non-independence among neighbouring populations complicates statistical inference of adaptation. To understand the relative influence of adaptive and non-adaptive processes in generating phenotypes requires joint evaluation of genetic and phenotypic divergence in an integrated and statistically appropriate analysis. We investigated phenotypic divergence, population-genetic structure and potential fitness trade-offs in populations of Daphnia melanica inhabiting neighbouring subalpine ponds of widely differing transparency to ultraviolet radiation (UVR). Using a combination of experimental, population-genetic and statistical techniques, we separated the effects of shared population ancestry and environmental variables in predicting phenotypic divergence among populations. We found that native water transparency significantly predicted divergence in phenotypes among populations even after accounting for significant population structure. This result demonstrates that environmental factors such as UVR can at least partially account for phenotypic divergence. However, a lack of evidence for a hypothesized trade-off between UVR tolerance and growth rates in the absence of UVR prevents us from ruling out the possibility that non-adaptive processes are partially responsible for phenotypic differentiation in this system. PMID:20943691

  16. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes.

    PubMed

    Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I

    2015-10-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P<5×10(-8)) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations.

  17. Genome-wide Association Study Identifies HLA 8.1 Ancestral Haplotype Alleles as Major Genetic Risk Factors for Myositis Phenotypes

    PubMed Central

    Miller, Frederick W.; Chen, Wei; O’Hanlon, Terrance P.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy R.; Isenberg, David A.; Chinoy, Hector; Ollier, William E.R.; Scheet, Paul; Peng, Bo; Lee, Annette; Byun, Jinyoung; Lamb, Janine A.; Gregersen, Peter K.; Amos, Christopher I.

    2016-01-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis; 473 juvenile dermatomyositis; 532 polymyositis; and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P < 5 × 10−8) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1haplotype comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations. PMID:26291516

  18. Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.

    PubMed

    Rubin, Ilan N; Doebeli, Michael

    2017-12-21

    Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into the evolutionary dynamics, effectively guaranteeing eventual branching. Large mutations allow the second order disruptive selection to dominate the first order selection toward phenotypic heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Contemporary and historical evolutionary processes interact to shape patterns of within-lake phenotypic divergences in polyphenic pumpkinseed sunfish, Lepomis gibbosus.

    PubMed

    Weese, Dylan J; Ferguson, Moira M; Robinson, Beren W

    2012-03-01

    Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.

  20. Contrasting geographic patterns of genetic differentiation in body size and development time with reproductive isolation in Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Ryan R. Bracewell; Michael E. Pfrender; Karen E. Mock; Barbara J. Bentz

    2013-01-01

    Body size and development time are two critical phenotypic traits that can be highly adaptive in insects. Recent population genetic analyses and crossing experiments with the mountain pine beetle (Dendroctonus ponderosae Hopkins) have described substantial levels of neutral molecular genetic differentiation, genetic differences in phenotypic traits, and reproductive...

  1. Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility

    USDA-ARS?s Scientific Manuscript database

    Phenotypes from the August 2015 US national genetic evaluation were used to compute phenotypic effects of cholesterol deficiency (CD) and 17 other recessive haplotypes in Ayrshire (AY; n=1), Brown Swiss (BS; n = 5), Holstein (HO; n = 10), and Jersey (JE; n = 2) cattle on milk, fat, and protein yield...

  2. Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease.

    PubMed

    Feinberg, Andrew P; Irizarry, Rafael A

    2010-01-26

    Neo-Darwinian evolutionary theory is based on exquisite selection of phenotypes caused by small genetic variations, which is the basis of quantitative trait contribution to phenotype and disease. Epigenetics is the study of nonsequence-based changes, such as DNA methylation, heritable during cell division. Previous attempts to incorporate epigenetics into evolutionary thinking have focused on Lamarckian inheritance, that is, environmentally directed epigenetic changes. Here, we propose a new non-Lamarckian theory for a role of epigenetics in evolution. We suggest that genetic variants that do not change the mean phenotype could change the variability of phenotype; and this could be mediated epigenetically. This inherited stochastic variation model would provide a mechanism to explain an epigenetic role of developmental biology in selectable phenotypic variation, as well as the largely unexplained heritable genetic variation underlying common complex disease. We provide two experimental results as proof of principle. The first result is direct evidence for stochastic epigenetic variation, identifying highly variably DNA-methylated regions in mouse and human liver and mouse brain, associated with development and morphogenesis. The second is a heritable genetic mechanism for variable methylation, namely the loss or gain of CpG dinucleotides over evolutionary time. Finally, we model genetically inherited stochastic variation in evolution, showing that it provides a powerful mechanism for evolutionary adaptation in changing environments that can be mediated epigenetically. These data suggest that genetically inherited propensity to phenotypic variability, even with no change in the mean phenotype, substantially increases fitness while increasing the disease susceptibility of a population with a changing environment.

  3. Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents.

    PubMed

    O'Loughlin, Jennifer; Sylvestre, Marie-Pierre; Labbe, Aurélie; Low, Nancy C; Roy-Gagnon, Marie-Hélène; Dugas, Erika N; Karp, Igor; Engert, James C

    2014-01-01

    While the heritability of cigarette smoking and nicotine dependence (ND) is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs) that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes. In a prospective study of 1294 adolescents aged 12-13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7-8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs) in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator). The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1)) were associated with at least one phenotype with a p-value <0.01 using linear mixed models. After permutation and FDR adjustment, none of the associations remained statistically significant, although the p-values for the association between rs557748 in OPRM1 and the ND/craving and self-medication phenotypes were both 0.076. Because the genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3). Dopaminergic pathways may be salient during early smoking and the development of ND.

  4. Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    PubMed Central

    Brown, Euan R.; Leccia, Nicola I.; Squarzoni, Paola; Tarallo, Raffaella; Alfano, Christian; Caputi, Luigi; D'Ambrosio, Palmira; Daniele, Paola; D'Aniello, Enrico; D'Aniello, Salvatore; Maiella, Sylvie; Miraglia, Valentina; Russo, Monia Teresa; Sorrenti, Gerarda; Branno, Margherita; Cariello, Lucio; Cirino, Paola; Locascio, Annamaria; Spagnuolo, Antonietta; Zanetti, Laura; Ristoratore, Filomena

    2008-01-01

    Background The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. Methodology/Principal Findings Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. Conclusions/Significance Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity. PMID:18523552

  5. A comprehensive global genotype-phenotype database for rare diseases.

    PubMed

    Trujillano, Daniel; Oprea, Gabriela-Elena; Schmitz, Yvonne; Bertoli-Avella, Aida M; Abou Jamra, Rami; Rolfs, Arndt

    2017-01-01

    The ability to discover genetic variants in a patient runs far ahead of the ability to interpret them. Databases with accurate descriptions of the causal relationship between the variants and the phenotype are valuable since these are critical tools in clinical genetic diagnostics. Here, we introduce a comprehensive and global genotype-phenotype database focusing on rare diseases. This database (CentoMD ® ) is a browser-based tool that enables access to a comprehensive, independently curated system utilizing stringent high-quality criteria and a quickly growing repository of genetic and human phenotype ontology (HPO)-based clinical information. Its main goals are to aid the evaluation of genetic variants, to enhance the validity of the genetic analytical workflow, to increase the quality of genetic diagnoses, and to improve evaluation of treatment options for patients with hereditary diseases. The database software correlates clinical information from consented patients and probands of different geographical backgrounds with a large dataset of genetic variants and, when available, biomarker information. An automated follow-up tool is incorporated that informs all users whenever a variant classification has changed. These unique features fully embedded in a CLIA/CAP-accredited quality management system allow appropriate data quality and enhanced patient safety. More than 100,000 genetically screened individuals are documented in the database, resulting in more than 470 million variant detections. Approximately, 57% of the clinically relevant and uncertain variants in the database are novel. Notably, 3% of the genetic variants identified and previously reported in the literature as being associated with a particular rare disease were reclassified, based on internal evidence, as clinically irrelevant. The database offers a comprehensive summary of the clinical validity and causality of detected gene variants with their associated phenotypes, and is a valuable tool for identifying new disease genes through the correlation of novel genetic variants with specific, well-defined phenotypes.

  6. On the value of the phenotypes in the genomic era.

    PubMed

    Gonzalez-Recio, O; Coffey, M P; Pryce, J E

    2014-12-01

    Genetic improvement programs around the world rely on the collection of accurate phenotypic data. These phenotypes have an inherent value that can be estimated as the contribution of an additional record to genetic gain. Here, the contribution of phenotypes to genetic gain was calculated using traditional progeny testing (PT) and 2 genomic selection (GS) strategies that, for simplicity, included either males or females in the reference population. A procedure to estimate the theoretical economic contribution of a phenotype to a breeding program is described for both GS and PT breeding programs through the increment in genetic gain per unit of increase in estimated breeding value reliability obtained when an additional phenotypic record is added. The main factors affecting the value of a phenotype were the economic value of the trait, the number of phenotypic records already available for the trait, and its heritability. Furthermore, the value of a phenotype was affected by several other factors, including the cost of establishing the breeding program and the cost of phenotyping and genotyping. The cost of achieving a reliability of 0.60 was assessed for different reference populations for GS. Genomic reference populations of more sires with small progeny group sizes (e.g., 20 equivalent daughters) had a lower cost than those reference populations with either large progeny group sizes for fewer genotyped sires, or female reference populations, unless the heritability was large and the cost of phenotyping exceeded a few hundred dollars; then, female reference populations were preferable from an economic perspective. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers.

    PubMed

    Liu, Xiao Bin; Li, Jing; Yang, Zhu L

    2018-01-01

    A core collection is a subset of an entire collection that represents as much of the genetic diversity of the entire collection as possible. The establishment of a core collection for crops is practical for efficient management and use of germplasm. However, the establishment of a core collection of mushrooms is still in its infancy, and no established core collection of the economically important species Flammulina velutipes has been reported. We established the first core collection of F. velutipes , containing 32 strains based on 81 genetically different F. veltuipes strains. The allele retention proportion of the core collection for the entire collection was 100%. Moreover, the genetic diversity parameters (the effective number of alleles, Nei's expected heterozygosity, the number of observed heterozygosity, and Shannon's information index) of the core collection showed no significant differences from the entire collection ( p  > 0.01). Thus, the core collection is representative of the genetic diversity of the entire collection. Genetic structure analyses of the core collection revealed that the 32 strains could be clustered into 6 groups, among which groups 1 to 3 were cultivars and groups 4 to 6 were wild strains. The wild strains from different locations harbor their own specific alleles, and were clustered stringently in accordance with their geographic origins. Genetic diversity analyses of the core collection revealed that the wild strains possessed greater genetic diversity than the cultivars. We established the first core collection of F. velutipes in China, which is an important platform for efficient breeding of this mushroom in the future. In addition, the wild strains in the core collection possess favorable agronomic characters and produce unique bioactive compounds, adding value to the platform. More attention should be paid to wild strains in further strain breeding.

  8. Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks

    PubMed Central

    Slonim, Noam; Elemento, Olivier; Tavazoie, Saeed

    2006-01-01

    Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene–phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines. PMID:16732191

  9. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha

    PubMed Central

    2010-01-01

    Background Many butterfly species have been experiencing the northward range expansion and physiological adaptation, probably due to climate warming. Here, we document an extraordinary field case of a species of lycaenid butterfly, Zizeeria maha, for which plastic phenotypes of wing color-patterns were revealed at the population level in the course of range expansion. Furthermore, we examined whether this outbreak of phenotypic changes was able to be reproduced in a laboratory. Results In the recently expanded northern range margins of this species, more than 10% of the Z. maha population exhibited characteristic color-pattern modifications on the ventral wings for three years. We physiologically reproduced similar phenotypes by an artificial cold-shock treatment of a normal southern population, and furthermore, we genetically reproduced a similar phenotype after selective breeding of a normal population for ten generations, demonstrating that the cold-shock-induced phenotype was heritable and partially assimilated genetically in the breeding line. Similar genetic process might have occurred in the previous and recent range-margin populations as well. Relatively minor modifications expressed in the tenth generation of the breeding line together with other data suggest a role of founder effect in this field case. Conclusions Our results support the notion that the outbreak of the modified phenotypes in the recent range-margin population was primed by the revelation of plastic phenotypes in response to temperature stress and by the subsequent genetic process in the previous range-margin population, followed by migration and temporal establishment of genetically unstable founders in the recent range margins. This case presents not only an evolutionary role of phenotypic plasticity in the field but also a novel evolutionary aspect of range expansion at the species level. PMID:20718993

  10. TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies

    PubMed Central

    van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.

    2013-01-01

    To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524

  11. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system.

    PubMed

    Hur, Matthew; Gistelinck, Charlotte A; Huber, Philippe; Lee, Jane; Thompson, Marjorie H; Monstad-Rios, Adrian T; Watson, Claire J; McMenamin, Sarah K; Willaert, Andy; Parichy, David M; Coucke, Paul; Kwon, Ronald Y

    2017-09-08

    Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.

  12. Primer in Genetics and Genomics, Article 5-Further Defining the Concepts of Genotype and Phenotype and Exploring Genotype-Phenotype Associations.

    PubMed

    Wright, Fay; Fessele, Kristen

    2017-10-01

    As nurses begin to incorporate genetic and genomic sciences into clinical practice, education, and research, it is essential that they have a working knowledge of the terms foundational to the science. The first article in this primer series provided brief definitions of the basic terms (e.g., genetics and genomics) and introduced the concept of phenotype during the discussion of Mendelian inheritance. These terms, however, are inconsistently used in publications and conversations, and the linkage between genotype and phenotype requires clarification. The goal of this fifth article in the series is to elucidate these terms, provide an overview of the research methods used to determine genotype-phenotype associations, and discuss their significance to nursing through examples from the current nursing literature.

  13. Dominance Genetic Variance for Traits Under Directional Selection in Drosophila serrata

    PubMed Central

    Sztepanacz, Jacqueline L.; Blows, Mark W.

    2015-01-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. PMID:25783700

  14. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    PubMed Central

    Yee, Jaeyong; Kwon, Min-Seok; Park, Taesung; Park, Mira

    2015-01-01

    A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait. PMID:26339620

  15. A specific pathway can be identified between genetic characteristics and behaviour profiles in Prader-Willi syndrome via cognitive, environmental and physiological mechanisms.

    PubMed

    Woodcock, K A; Oliver, C; Humphreys, G W

    2009-06-01

    Behavioural phenotypes associated with genetic syndromes have been extensively investigated in order to generate rich descriptions of phenomenology, determine the degree of specificity of behaviours for a particular syndrome, and examine potential interactions between genetic predispositions for behaviour and environmental influences. However, relationships between different aspects of behavioural phenotypes have been less frequently researched and although recent interest in potential cognitive phenotypes or endophenotypes has increased, these are frequently studied independently of the behavioural phenotypes. Taking Prader-Willi syndrome (PWS) as an example, we discuss evidence suggesting specific relationships between apparently distinct aspects of the PWS behavioural phenotype and relate these to specific endophenotypic characteristics. The framework we describe progresses through biological, cognitive, physiological and behavioural levels to develop a pathway from genetic characteristics to behaviour with scope for interaction with the environment at any stage. We propose this multilevel approach as useful in setting out hypotheses in order to structure research that can more rapidly advance theory.

  16. Hemiclonal analysis of interacting phenotypes in male and female Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background Identifying the sources of variation in mating interactions between males and females is important because this variation influences the strength and/or the direction of sexual selection that populations experience. While the origins and effects of variation in male attractiveness and ornamentation have received much scrutiny, the causes and consequences of intraspecific variation in females have been relatively overlooked. We used cytogenetic cloning techniques developed for Drosophila melanogaster to create “hemiclonal” males and females with whom we directly observed sexual interaction between individuals of different known genetic backgrounds and measured subsequent reproductive outcomes. Using this approach, we were able to quantify the genetic contribution of each mate to the observed phenotypic variation in biologically important traits including mating speed, copulation duration, and subsequent offspring production, as well as measure the magnitude and direction of intersexual genetic correlation between female choosiness and male attractiveness. Results We found significant additive genetic variation contributing to mating speed that can be attributed to male genetic identity, female genetic identity, but not their interaction. Furthermore we found that phenotypic variation in copulation duration had a significant male-associated genetic component. Female genetic identity and the interaction between male and female genetic identity accounted for a substantial amount of the observed phenotypic variation in egg size. Although previous research predicts a trade-off between egg size and fecundity, this was not evident in our results. We found a strong negative genetic correlation between female choosiness and male attractiveness, a result that suggests a potentially important role for sexually antagonistic alleles in sexual selection processes in our population. Conclusion These results further our understanding of sexual selection because they identify that genetic identity plays a significant role in phenotypic variation in female behaviour and fecundity. This variation may be potentially due to ongoing sexual conflict found between the sexes for interacting phenotypes. Our unexpected observation of a negative correlation between female choosiness and male attractiveness highlights the need for more explicit theoretical models of genetic covariance to investigate the coevolution of female choosiness and male attractiveness. PMID:24884361

  17. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution.

    PubMed

    Hlusko, Leslea J; Schmitt, Christopher A; Monson, Tesla A; Brasil, Marianne F; Mahaney, Michael C

    2016-08-16

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.

  18. Dominance genetic variance for traits under directional selection in Drosophila serrata.

    PubMed

    Sztepanacz, Jacqueline L; Blows, Mark W

    2015-05-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait-fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. Copyright © 2015 by the Genetics Society of America.

  19. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons.

    PubMed

    Specchia, Valeria; Piacentini, Lucia; Tritto, Patrizia; Fanti, Laura; D'Alessandro, Rosalba; Palumbo, Gioacchino; Pimpinelli, Sergio; Bozzetti, Maria P

    2010-02-04

    The canalization concept describes the resistance of a developmental process to phenotypic variation, regardless of genetic and environmental perturbations, owing to the existence of buffering mechanisms. Severe perturbations, which overcome such buffering mechanisms, produce altered phenotypes that can be heritable and can themselves be canalized by a genetic assimilation process. An important implication of this concept is that the buffering mechanism could be genetically controlled. Recent studies on Hsp90, a protein involved in several cellular processes and development pathways, indicate that it is a possible molecular mechanism for canalization and genetic assimilation. In both flies and plants, mutations in the Hsp90-encoding gene induce a wide range of phenotypic abnormalities, which have been interpreted as an increased sensitivity of different developmental pathways to hidden genetic variability. Thus, Hsp90 chaperone machinery may be an evolutionarily conserved buffering mechanism of phenotypic variance, which provides the genetic material for natural selection. Here we offer an additional, perhaps alternative, explanation for proposals of a concrete mechanism underlying canalization. We show that, in Drosophila, functional alterations of Hsp90 affect the Piwi-interacting RNA (piRNA; a class of germ-line-specific small RNAs) silencing mechanism leading to transposon activation and the induction of morphological mutants. This indicates that Hsp90 mutations can generate new variation by transposon-mediated 'canonical' mutagenesis.

  20. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    NASA Astrophysics Data System (ADS)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  1. Genetic architecture and phenotypic plasticity of thermally-regulated traits in an eruptive species, Dendroctonus ponderosae

    Treesearch

    Barbara J. Bentz; Ryan B. Bracewell; Karen E. Mock; Michael E. Pfrender

    2011-01-01

    Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic...

  2. Genetic specificity of face recognition.

    PubMed

    Shakeshaft, Nicholas G; Plomin, Robert

    2015-10-13

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities.

  3. Genetic specificity of face recognition

    PubMed Central

    Shakeshaft, Nicholas G.; Plomin, Robert

    2015-01-01

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities. PMID:26417086

  4. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria.

    PubMed

    Dorman, Charles J

    2014-09-01

    Horizontal gene transfer plays an important role in the evolution of bacterial species, conferring new genetic traits on the recipient bacterium that extend its range of phenotypes and plasmids make important contributions to this process. However, the inappropriate expression of newly acquired genes may lead to a loss of competitive fitness, resulting in the elimination of the new gene-bacterium combination. It is thought that transcriptional silencing of horizontally acquired genes offers a route out of this dilemma and that nucleoid-associated proteins, especially those related to the H-NS protein, play a particularly important role in the silencing process. The discovery that many plasmids express orthologues of nucleoid-associated proteins adds an interesting dimension to current models of regulatory integration following lateral transfer of DNA. Other horizontally acquired genetic elements, such as genomic islands, also express nucleoid-associated proteins of their own. Here the interactions of H-NS-like nucleoid-associated proteins encoded by the core genome, genomic islands and plasmids are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Identification of Genetic Markers of the Invasive Phenotype in Human Breast Cancer

    DTIC Science & Technology

    2001-10-01

    Genetic Markers of the Invasive Phenotype in Human Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Peter Watson CONTRACTING ORGANIZATION: University of...Markers of the Invasive Phenotype DAMD17-97-1-7320 in Human Breast Cancer 6. AUTHOR(S) Dr. Peter Watson 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...markers of the invasive phenotype in human breast cancer" Dr Peter H. Watson INTRODUCTION. The acquisition of the ability to invade is the single most

  6. Genetic Architecture of Nest Building in Mice LG/J × SM/J

    PubMed Central

    Sauce, Bruno; de Brito, Reinaldo Alves; Peripato, Andrea Cristina

    2012-01-01

    Maternal care is critical to offspring growth and survival, which is greatly improved by building an effective nest. Some suggest that genetic variation and underlying genetic effects differ between fitness-related traits and other phenotypes. We investigated the genetic architecture of a fitness-related trait, nest building, in F2 female mice intercrossed from inbred strains SM/J and LG/J using a QTL analysis for six related nest phenotypes (Presence and Structure pre- and postpartum, prepartum Material Used and postpartum Temperature). We found 15 direct-effect QTLs explaining from 4 to 13% of the phenotypic variation in nest building, mostly with non-additive effect. Epistatic analyses revealed 71 significant epistatic interactions which together explain from 28.4 to 75.5% of the variation, indicating an important role for epistasis in the adaptive process of nest building behavior in mice. Our results suggest a genetic architecture with small direct effects and a larger number of epistatic interactions as expected for fitness-related phenotypes. PMID:22654894

  7. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders

    PubMed Central

    Amberger, Joanna S.; Bocchini, Carol A.; Schiettecatte, François; Scott, Alan F.; Hamosh, Ada

    2015-01-01

    Online Mendelian Inheritance in Man, OMIM®, is a comprehensive, authoritative and timely research resource of curated descriptions of human genes and phenotypes and the relationships between them. The new official website for OMIM, OMIM.org (http://omim.org), was launched in January 2011. OMIM is based on the published peer-reviewed biomedical literature and is used by overlapping and diverse communities of clinicians, molecular biologists and genome scientists, as well as by students and teachers of these disciplines. Genes and phenotypes are described in separate entries and are given unique, stable six-digit identifiers (MIM numbers). OMIM entries have a structured free-text format that provides the flexibility necessary to describe the complex and nuanced relationships between genes and genetic phenotypes in an efficient manner. OMIM also has a derivative table of genes and genetic phenotypes, the Morbid Map. OMIM.org has enhanced search capabilities such as genome coordinate searching and thesaurus-enhanced search term options. Phenotypic series have been created to facilitate viewing genetic heterogeneity of phenotypes. Clinical synopsis features are enhanced with UMLS, Human Phenotype Ontology and Elements of Morphology terms and image links. All OMIM data are available for FTP download and through an API. MIMmatch is a novel outreach feature to disseminate updates and encourage collaboration. PMID:25428349

  8. Genetic and environmental relationships of metabolic and weight phenotypes to metabolic syndrome and diabetes: the healthy twin study.

    PubMed

    Song, Yun-Mi; Sung, Joohon; Lee, Kayoung

    2015-02-01

    We aimed to examine the relationships, including genetic and environmental correlations, between metabolic and weight phenotypes and factors related to diabetes and metabolic syndrome. Participants of the Healthy Twin Study without diabetes (n=2687; 895 monozygotic and 204 dizygotic twins, and 1588 nontwin family members; mean age, 42.5±13.1 years) were stratified according to body mass index (BMI) (<25 vs. ≥25 kg/m(2)) and metabolic syndrome categories at baseline. The metabolic traits, namely diabetes and metabolic syndrome, metabolic syndrome components, glycated hemoglobin (HbA1c) level, and homeostasis model assessment of insulin resistance (HOMA-IR), were assessed after 2.5±2.1 years. In a multivariate-adjusted model, those who had metabolic syndrome or overweight phenotypes at baseline were more likely to have higher HbA1C and HOMA-IR levels and abnormal metabolic syndrome components at follow-up as compared to the metabolically healthy normal weight subgroup. The incidence of diabetes was 4.4-fold higher in the metabolically unhealthy but normal weight individuals and 3.3-fold higher in the metabolically unhealthy and overweight individuals as compared with the metabolically healthy normal weight individuals. The heritability of the metabolic syndrome/weight phenotypes was 0.40±0.03. Significant genetic and environmental correlations were observed between the metabolic syndrome/weight phenotypes at baseline and the metabolic traits at follow-up, except for incident diabetes, which only had a significant common genetic sharing with the baseline phenotypes. The genetic and environmental relationships between the metabolic and weight phenotypes at baseline and the metabolic traits at follow-up suggest pleiotropic genetic mechanisms and the crucial role of lifestyle and behavioral factors.

  9. Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype.

    PubMed

    Loland, Sigmund

    2015-09-01

    New insights into the genetics of sport performance lead to new areas of application. One area is the use of genetic tests to identify athletic talent. Athletic performances involve a high number of complex phenotypical traits. Based on the ACCE model (review of Analytic and Clinical validity, Clinical utility, and Ethical, legal and social implications), a critique is offered of the lack of validity and predictive power of genetic tests for talent. Based on the ideal of children's right to an open future, a moral argument is given against such tests on children and young athletes. A possible role of genetic tests in sport is proposed in terms of identifying predisposition for injury. In meeting ACCE requirements, such tests could improve individualised injury prevention and increase athlete health. More generally, limitations of science are discussed in the identification of talent and in the understanding of complex human performance phenotypes. An alternative approach to talent identification is proposed in terms of ethically sensitive, systematic and evidence-based holistic observation over time of relevant phenotypical traits by experienced observers. Talent identification in sport should be based on the primacy of the phenotype.

  10. Heritability and genetic covariation of sensitivity to PROP, SOA, quinine HCl, and caffeine.

    PubMed

    Hansen, Jonathan L; Reed, Danielle R; Wright, Margaret J; Martin, Nicholas G; Breslin, Paul A S

    2006-06-01

    The perceived bitterness intensity for bitter solutions of propylthiouracil (PROP), sucrose octa-acetate (SOA), quinine HCl and caffeine were examined in a genetically informative sample of 392 females and 313 males (mean age of 17.8 +/- 3.1 years), including 62 monozygotic and 131 dizygotic twin pairs and 237 sib pairs. Broad-sense heritabilities were estimated at 0.72, 0.28, 0.34, and 0.30 for PROP, SOA, quinine, and caffeine, respectively, for perceived intensity measures. Modeling showed 1) a group factor which explained a large amount of the genetic variation in SOA, quinine, and caffeine (22-28% phenotypic variation), 2) a factor responsible for all the genetic variation in PROP (72% phenotypic variation), which only accounted for 1% and 2% of the phenotypic variation in SOA and caffeine, respectively, and 3) a modest specific genetic factor for quinine (12% phenotypic variation). Unique environmental influences for all four compounds were due to a single factor responsible for 7-22% of phenotypic variation. The results suggest that the perception of PROP and the perception of SOA, quinine, and caffeine are influenced by two distinct sets of genes.

  11. Heritability and Genetic Covariation of Sensitivity to PROP, SOA, Quinine HCl, and Caffeine

    PubMed Central

    Hansen, Jonathan L.; Reed, Danielle R.; Wright, Margaret J.; Martin, Nicholas G.; Breslin, Paul A. S.

    2006-01-01

    The perceived bitterness intensity for bitter solutions of propylthiouracil (PROP), sucrose octa-acetate (SOA), quinine HCl and caffeine were examined in a genetically informative sample of 392 females and 313 males (mean age of 17.8 ± 3.1 years), including 62 MZ and 131 DZ twin pairs and 237 sib pairs. Broad-sense heritabilities were estimated at 0.72, 0.28, 0.34, and 0.30 for PROP, SOA, quinine, and caffeine, respectively, for perceived intensity measures. Modeling showed 1) a group factor which explained a large amount of the genetic variation in SOA, quinine, and caffeine (22–28% phenotypic variation), 2) a factor responsible for all the genetic variation in PROP (72% phenotypic variation), which only accounted for 1% and 2% of the phenotypic variation in SOA and caffeine, respectively, and 3) a modest specific genetic factor for quinine (12% phenotypic variation). Unique environmental influences for all four compounds were due to a single factor responsible for 7–22% of phenotypic variation. The results suggest that the perception of PROP and the perception of SOA, quinine, and caffeine are influenced by two distinct sets of genes. PMID:16527870

  12. The ecology and evolution of animal medication: genetically fixed response versus phenotypic plasticity.

    PubMed

    Choisy, Marc; de Roode, Jacobus C

    2014-08-01

    Animal medication against parasites can occur either as a genetically fixed (constitutive) or phenotypically plastic (induced) behavior. Taking the tritrophic interaction between the monarch butterfly Danaus plexippus, its protozoan parasite Ophryocystis elektroscirrha, and its food plant Asclepias spp. as a test case, we develop a game-theory model to identify the epidemiological (parasite prevalence and virulence) and environmental (plant toxicity and abundance) conditions that predict the evolution of genetically fixed versus phenotypically plastic forms of medication. Our model shows that the relative benefits (the antiparasitic properties of medicinal food) and costs (side effects of medicine, the costs of searching for medicine, and the costs of plasticity itself) crucially determine whether medication is genetically fixed or phenotypically plastic. Our model suggests that animals evolve phenotypic plasticity when parasite risk (a combination of virulence and prevalence and thus a measure of the strength of parasite-mediated selection) is relatively low to moderately high and genetically fixed medication when parasite risk becomes very high. The latter occurs because at high parasite risk, the costs of plasticity are outweighed by the benefits of medication. Our model provides a simple and general framework to study the conditions that drive the evolution of alternative forms of animal medication.

  13. Fanconi anemia: causes and consequences of genetic instability.

    PubMed

    Kalb, R; Neveling, K; Nanda, I; Schindler, D; Hoehn, H

    2006-01-01

    Fanconi anemia (FA) is a rare recessive disease that reflects the cellular and phenotypic consequences of genetic instability: growth retardation, congenital malformations, bone marrow failure, high risk of neoplasia, and premature aging. At the cellular level, manifestations of genetic instability include chromosomal breakage, cell cycle disturbance, and increased somatic mutation rates. FA cells are exquisitely sensitive towards oxygen and alkylating drugs such as mitomycin C or diepoxybutane, pointing to a function of FA genes in the defense against reactive oxygen species and other DNA damaging agents. FA is caused by biallelic mutations in at least 12 different genes which appear to function in the maintenance of genomic stability. Eight of the FA proteins form a nuclear core complex with a catalytic function involving ubiquitination of the central FANCD2 protein. The posttranslational modification of FANCD2 promotes its accumulation in nuclear foci, together with known DNA maintenance proteins such as BRCA1, BRCA2, and the RAD51 recombinase. Biallelic mutations in BRCA2 cause a severe FA-like phenotype, as do biallelic mutations in FANCD2. In fact, only leaky or hypomorphic mutations in this central group of FA genes appear to be compatible with life birth and survival. The newly discovered FANCJ (= BRIP1) and FANCM (= Hef ) genes correspond to known DNA-maintenance genes (helicase resp. helicase-associated endonuclease for fork-structured DNA). These genes provide the most convincing evidence to date of a direct involvement of FA genes in DNA repair functions associated with the resolution of DNA crosslinks and stalled replication forks. Even though genetic instability caused by mutational inactivation of the FANC genes has detrimental effects for the majority of FA patients, around 20% of patients appear to benefit from genetic instability since genetic instability also increases the chance of somatic reversion of their constitutional mutations. Intragenic crossover, gene conversion, back mutation and compensating mutations in cis have all been observed in revertant, and, consequently, mosaic FA-patients, leading to improved bone marrow function. There probably is no other experiment of nature in our species in which causes and consequences of genetic instability, including the role of reactive oxygen species, can be better documented and explored than in FA.

  14. Integrating Multiple Correlated Phenotypes for Genetic Association Analysis by Maximizing Heritability

    PubMed Central

    Zhou, Jin J.; Cho, Michael H.; Lange, Christoph; Lutz, Sharon; Silverman, Edwin K.; Laird, Nan M.

    2015-01-01

    Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing power to detect causal genetic variants. One approach involves assessing the relationship between each phenotype and each single nucleotide polymorphism (SNP) individually and using a Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a multivariate regression or a dimension reduction technique, such as principal component analysis (PCA), and test for the association with the principal components (PC) of the phenotypes rather than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to maximize heritability at individual SNPs, in this paper, we propose to construct a maximally heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-heritability. The heritability and co-heritability only need to be estimated once, therefore our method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the individual phenotypes with increased heritability and power over the phenotypes being combined. Simulations show that the heritability and power achieved agree well with the theory for large samples and two phenotypes. We compare our approach with commonly used methods and assess both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for how to choose the phenotypes for combination. An application of our approach to a COPD genome-wide association study shows the practical relevance. PMID:26111731

  15. Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis

    PubMed Central

    Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, Jose’ N

    2015-01-01

    Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT). PMID:26627083

  16. Genetic mapping reveals a dominant awn-inhibiting gene related to differentiation of the variety anathera in the wild diploid wheat Aegilops tauschii.

    PubMed

    Nishijima, Ryo; Ikeda, Tatsuya M; Takumi, Shigeo

    2018-02-01

    Aegilops tauschii, a wild wheat relative, is the D-genome donor of common wheat. Subspecies and varieties of Ae. tauschii are traditionally classified based on differences in their inflorescence architecture. However, the genetic information for their diversification has been quite limited in the wild wheat relatives. The variety anathera has no awn on the lemma, but the genetic basis for this diagnostic character is unknown. Wide variations in awn length traits at the top and middle spikes were found in the Ae. tauschii core collection, and the awn length at the middle spike was significantly smaller in the eastward-dispersed sublineage than in those in other sublineages. To clarify loci controlling the awnless phenotype of var. anathera, we measured awn length of an intervariety F 2 mapping population, and found that the F 2 individuals could be divided into two groups mainly based on the awn length at the middle of spike, namely short and long awn groups, significantly fitting a 3:1 segregation ratio, which indicated that a single locus controls the awnless phenotype. The awnless locus, Anathera (Antr), was assigned to the distal region of the short arm of chromosome 5D. Quantitative trait locus analysis using the awn length data of each F 2 individual showed that only one major locus was at the same chromosomal position as Antr. These results suggest that a single dominant allele determines the awnless diagnostic character in the variety anathera. The Antr dominant allele is a novel gene inhibiting awn elongation in wheat and its relatives.

  17. [Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments].

    PubMed

    Afonnikov, D A; Genaev, M A; Doroshkov, A V; Komyshev, E G; Pshenichnikova, T A

    2016-07-01

    Phenomics is a field of science at the junction of biology and informatics which solves the problems of rapid, accurate estimation of the plant phenotype; it was rapidly developed because of the need to analyze phenotypic characteristics in large scale genetic and breeding experiments in plants. It is based on using the methods of computer image analysis and integration of biological data. Owing to automation, new approaches make it possible to considerably accelerate the process of estimating the characteristics of a phenotype, to increase its accuracy, and to remove a subjectivism (inherent to humans). The main technologies of high-throughput plant phenotyping in both controlled and field conditions, their advantages and disadvantages, and also the prospects of their use for the efficient solution of problems of plant genetics and breeding are presented in the review.

  18. Flow Cytometry Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture

  19. Comprehensive detection of genes causing a phenotype using phenotype sequencing and pathway analysis.

    PubMed

    Harper, Marc; Gronenberg, Luisa; Liao, James; Lee, Christopher

    2014-01-01

    Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome.

  20. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental disturbances, is also proposed, together with a simulation example. PMID:23515190

  1. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology.

    PubMed

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental disturbances, is also proposed, together with a simulation example.

  2. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity

    PubMed Central

    2014-01-01

    Background Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. Results In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. Conclusions Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed. PMID:24773920

  3. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296

  4. Heritability of brain activity related to response inhibition: A longitudinal genetic study in adolescent twins.

    PubMed

    Anokhin, Andrey P; Golosheykin, Simon; Grant, Julia D; Heath, Andrew C

    2017-05-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Heritability of brain activity related to response inhibition: a longitudinal genetic study in adolescent twins

    PubMed Central

    Anokhin, Andrey P.; Golosheykin, Simon; Grant, Julia D.; Heath, Andrew C.

    2017-01-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. PMID:28300615

  6. Phenotypic, genetic, and environmental relationships between self-reported talents and measured intelligence.

    PubMed

    Schermer, Julie Aitken; Johnson, Andrew M; Jang, Kerry L; Vernon, Philip A

    2015-02-01

    The relationship between self-report abilities and measured intelligence was examined at both the phenotypic (zero-order) level as well as at the genetic and environmental levels. Twins and siblings (N = 516) completed a timed intelligence test and a self-report ability questionnaire, which has previously been found to produce 10 factors, including: politics, interpersonal relationships, practical tasks, intellectual pursuits, academic skills, entrepreneur/business, domestic skills, vocal abilities, and creativity. At the phenotypic level, the correlations between the ability factor scores and intelligence ranged from 0.01 to 0.42 (between self-report academic abilities and verbal intelligence). Further analyses found that some of the phenotypic relationships between self-report ability scores and measured intelligence also had significant correlations at the genetic and environmental levels, suggesting that some of the observed relationships may be due to common genetic and/or environmental factors.

  7. Phenotypic and genetic associations between the big five and trait emotional intelligence.

    PubMed

    Vernon, Philip A; Villani, Vanessa C; Schermer, Julie Aitken; Petrides, K V

    2008-10-01

    This study reports the first behavioral genetic investigation of the extent to which genetic and/or environmental factors contribute to the relationship between the Big Five personality factors and trait emotional intelligence. 213 pairs of adult monozygotic twins and 103 pairs of same-sex dizygotic twins completed the NEO-PI-R and the Trait Emotional Intelligence Questionnaire (TEIQue). Replicating previous non-twin studies, many significant phenotypic correlations were found between the Big Five factors - especially Neuroticism, Extraversion, and Conscientiousness - and the facets, factors, and global scores derived from the TEIQue. Bivariate behavioral genetic model-fitting analyses revealed that these phenotypic correlations were primarily attributable to correlated genetic factors and secondarily to correlated non-shared environmental factors. The results support the feasibility of incorporating EI as a trait within existing personality taxonomies.

  8. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype

    PubMed Central

    Ceccarelli, Fulvia; Perricone, Carlo; Borgiani, Paola; Ciccacci, Cinzia; Rufini, Sara; Cipriano, Enrica; Alessandri, Cristiano; Spinelli, Francesca Romana; Sili Scavalli, Antonio; Novelli, Giuseppe; Valesini, Guido; Conti, Fabrizio

    2015-01-01

    Genetic factors exert an important role in determining Systemic Lupus Erythematosus (SLE) susceptibility, interplaying with environmental factors. Several genetic studies in various SLE populations have identified numerous susceptibility loci. From a clinical point of view, SLE is characterized by a great heterogeneity in terms of clinical and laboratory manifestations. As widely demonstrated, specific laboratory features are associated with clinical disease subset, with different severity degree. Similarly, in the last years, an association between specific phenotypes and genetic variants has been identified, allowing the possibility to elucidate different mechanisms and pathways accountable for disease manifestations. However, except for Lupus Nephritis (LN), no studies have been designed to identify the genetic variants associated with the development of different phenotypes. In this review, we will report data currently known about this specific association. PMID:26798662

  9. Genetic differences based on a beef terminal index are reflected in future phenotypic performance differences in commercial beef cattle.

    PubMed

    Connolly, S M; Cromie, A R; Berry, D P

    2016-05-01

    The increased demand for animal-derived protein and energy for human consumption will have to be achieved through a combination of improved animal genetic merit and better management strategies. The objective of the present study was to quantify whether differences in genetic merit among animals materialised into phenotypic differences in commercial herds. Carcass phenotypes on 156 864 animals from 7301 finishing herds were used, which included carcass weight (kg), carcass conformation score (scale 1 to 15), carcass fat score (scale 1 to 15) at slaughter as well as carcass price. The price per kilogram and the total carcass value that the producer received for the animal at slaughter was also used. A terminal index, calculated in the national genetic evaluations, was obtained for each animal. The index was based on pedigree index for calving performance, feed intake and carcass traits from the national genetic evaluations. Animals were categorised into four terminal index groups on the basis of genetic merit estimates that were derived before the expression of the phenotypic information by the validation animals. The association between terminal index and phenotypic performance at slaughter was undertaken using mixed models; whether the association differed by gender (i.e. young bulls, steers and heifers) or by early life experiences (animals born in a dairy herd or beef herd) was also investigated. The regression coefficient of phenotypic carcass weight, carcass conformation and carcass fat on their respective estimated breeding values (EBVs) was 0.92 kg, 1.08 units and 0.79 units, respectively, which is close to the expectation of one. Relative to animals in the lowest genetic merit group, animals in the highest genetic merit group had, on average, a 38.7 kg heavier carcass, with 2.21 units greater carcass conformation, and 0.82 units less fat. The superior genetic merit animals were, on average, slaughtered 6 days younger than their inferior genetic merit contemporaries. The superior carcass characteristics of the genetically elite animals materialised in carcasses worth €187 more than those of the lowest genetic merit animals. Although the phenotypic difference in carcass traits of animals divergent in terminal index differed statistically by animal gender and early life experience, the detected interactions were generally biologically small. This study clearly indicates that selection on an appropriate terminal index will produce higher performing animals and this was consistent across all production systems investigated.

  10. Developmental plasticity and the origin of species differences

    PubMed Central

    West-Eberhard, Mary Jane

    2005-01-01

    Speciation is the origin of reproductive isolation and divergence between populations, according to the “biological species concept” of Mayr. Studies of reproductive isolation have dominated research on speciation, leaving the origin of species differences relatively poorly understood. Here, I argue that the origin of species differences, and of novel phenotypes in general, involves the reorganization of ancestral phenotypes (developmental recombination) followed by the genetic accommodation of change. Because selection acts on phenotypes, not directly on genotypes or genes, novel traits can originate by environmental induction as well as mutation, then undergo selection and genetic accommodation fueled by standing genetic variation or by subsequent mutation and genetic recombination. Insofar as phenotypic novelties arise from adaptive developmental plasticity, they are not “random” variants, because their initial form reflects adaptive responses with an evolutionary history, even though they are initiated by mutations or novel environmental factors that are random with respect to (future) adaptation. Change in trait frequency involves genetic accommodation of the threshold or liability for expression of a novel trait, a process that follows rather than directs phenotypic change. Contrary to common belief, environmentally initiated novelties may have greater evolutionary potential than mutationally induced ones. Thus, genes are probably more often followers than leaders in evolutionary change. Species differences can originate before reproductive isolation and contribute to the process of speciation itself. Therefore, the genetics of speciation can profit from studies of changes in gene expression as well as changes in gene frequency and genetic isolation. PMID:15851679

  11. Heritability of Neuropsychological Measures in Schizophrenia and Nonpsychiatric Populations: A Systematic Review and Meta-analysis.

    PubMed

    Blokland, Gabriëlla A M; Mesholam-Gately, Raquelle I; Toulopoulou, Timothea; Del Re, Elisabetta C; Lam, Max; DeLisi, Lynn E; Donohoe, Gary; Walters, James T R; Seidman, Larry J; Petryshen, Tracey L

    2017-07-01

    Schizophrenia is characterized by neuropsychological deficits across many cognitive domains. Cognitive phenotypes with high heritability and genetic overlap with schizophrenia liability can help elucidate the mechanisms leading from genes to psychopathology. We performed a meta-analysis of 170 published twin and family heritability studies of >800 000 nonpsychiatric and schizophrenia subjects to accurately estimate heritability across many neuropsychological tests and cognitive domains. The proportion of total variance of each phenotype due to additive genetic effects (A), shared environment (C), and unshared environment and error (E), was calculated by averaging A, C, and E estimates across studies and weighting by sample size. Heritability ranged across phenotypes, likely due to differences in genetic and environmental effects, with the highest heritability for General Cognitive Ability (32%-67%), Verbal Ability (43%-72%), Visuospatial Ability (20%-80%), and Attention/Processing Speed (28%-74%), while the lowest heritability was observed for Executive Function (20%-40%). These results confirm that many cognitive phenotypes are under strong genetic influences. Heritability estimates were comparable in nonpsychiatric and schizophrenia samples, suggesting that environmental factors and illness-related moderators (eg, medication) do not substantially decrease heritability in schizophrenia samples, and that genetic studies in schizophrenia samples are informative for elucidating the genetic basis of cognitive deficits. Substantial genetic overlap between cognitive phenotypes and schizophrenia liability (average rg = -.58) in twin studies supports partially shared genetic etiology. It will be important to conduct comparative studies in well-powered samples to determine whether the same or different genes and genetic variants influence cognition in schizophrenia patients and the general population. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Effect of Inherited Genetic Information on Stochastic Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Duda, Artur; Dyś, Paweł; Nowicka, Alekandra; Dudek, Mirosław R.

    We discuss the Lotka-Volterra dynamics of two populations, preys and predators, in the case when the predators posses a genetic information. The genetic information is inherited according to the rules of the Penna model of genetic evolution. Each individual of the predator population is uniquely determined by sex, genotype and phenotype. In our case, the genes are represented by 8-bit integers and the phenotypes are defined with the help of the 8-state Potts model Hamiltonian. We showed that during time evolution, the population of the predators can experience a series of dynamical phase transitions which are connected with the different types of the dominant phenotypes present in the population.

  13. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  14. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  15. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    PubMed Central

    2011-01-01

    Background Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains. Conclusions In conclusions, the extended comparative genomics approach revealed a variable subset of genes and regulons that may contribute to the symbiotic diversity. PMID:21569405

  16. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galardini, Marco; Mengoni, Alessio; Brilli, Matteo

    Background: Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results: With sizes of 7.14 Mbp andmore » 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains.« less

  17. Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes

    DTIC Science & Technology

    2013-03-14

    SUPPLEMENTARY NOTES 14. ABSTRACT Autism is an extremely common and heterogeneous neurodevelopmental disorder. While genetic factors are known to play...AFRL-SA-WP-TR-2013-0013 Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes...Genetic Mapping for the Discovery of Autism Susceptibility Genes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6

  18. Humanity in a Dish: Population Genetics with iPSCs.

    PubMed

    Warren, Curtis R; Cowan, Chad A

    2018-01-01

    Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype. Recent publications have described iPSC cohort studies of common genetic variants and their effects on gene expression and cellular phenotypes. These in vitro quantitative trait locus (QTL) studies are the first experiments in a new paradigm with great potential: iPSC-based functional population genetic studies. iPSC collections from large cohorts are currently under development to facilitate the next wave of these studies, which have the potential to discover the effects of common genetic variants on cellular phenotypes and to uncover the molecular basis of common genetic diseases. Here, we describe the recent advances in this developing field, and provide a road map for future in vitro functional population genetic studies and trial-in-a-dish experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Local adaptation within a hybrid species

    PubMed Central

    Eroukhmanoff, F; Hermansen, J S; Bailey, R I; Sæther, S A; Sætre, G-P

    2013-01-01

    Ecological divergence among populations may be strongly influenced by their genetic background. For instance, genetic admixture through introgressive hybridization or hybrid speciation is likely to affect the genetic variation and evolvability of phenotypic traits. We studied geographic variation in two beak dimensions and three other phenotypic traits of the Italian sparrow (Passer italiae), a young hybrid species formed through interbreeding between house sparrows (P. domesticus) and Spanish sparrows (P. hispaniolensis). We found that beak morphology was strongly influenced by precipitation regimes and that it appeared to be the target of divergent selection within Italian sparrows. Interestingly, however, the degree of parental genetic contribution in the hybrid species had no effect on phenotypic beak variation. Moreover, beak height divergence may mediate genetic differentiation between populations, consistent with isolation-by-adaptation within this hybrid species. The study illustrates how hybrid species may be relatively unconstrained by their admixed genetic background, allowing them to adapt rapidly to environmental variation. PMID:23695379

  20. Dilute passage promotes expression of genetic and phenotypic variants of human immunodeficiency virus type 1 in cell culture.

    PubMed Central

    Sánchez-Palomino, S; Rojas, J M; Martínez, M A; Fenyö, E M; Nájera, R; Domingo, E; López-Galíndez, C

    1993-01-01

    We have studied the extent of genetic and phenotypic diversification of human immunodeficiency virus type 1 (HIV-1) upon 15 serial passages of clonal viral populations in MT-4 cell cultures. Several genetic and phenotypic modifications previously noted during evolution of HIV-1 in infected humans were also observed upon passages of the virus in cell culture. Notably, the transition from non-syncytium-inducing to syncytium-inducing phenotype (previously observed during disease progression) and fixation of amino acid substitutions at the main antigenic loop V3 of gp120 were observed in the course of replication of the virus in MT-4 cell cultures in the absence of immune selection. Interestingly, most genetic and phenotypic alterations occurred upon passage of the virus at a low multiplicity of infection (0.001 infectious particles per cell) rather than at a higher multiplicity of infection (0.1 infectious particles per cell). The degree of genetic diversification attained by HIV-1, estimated by the RNase A mismatch cleavage method and by nucleotide sequencing, is of about 0.03% of genomic sites mutated after 15 serial passages. This value is not significantly different from previous estimates for foot-and-mouth disease virus when subjected to a similar process and analysis. We conclude that several genetic and phenotypic modifications of HIV-1 previously observed in vivo occur also in the constant environment provided by a cell culture system. Dilute passage promotes in a highly significant way the expression of deviant HIV-1 genomes. Images PMID:8474182

  1. [Genetic and environmental factors of asthma and allergy: Results of the EGEA study].

    PubMed

    Bouzigon, E; Nadif, R; Le Moual, N; Dizier, M-H; Aschard, H; Boudier, A; Bousquet, J; Chanoine, S; Donnay, C; Dumas, O; Gormand, F; Jacquemin, B; Just, J; Margaritte-Jeannin, P; Matran, R; Pison, C; Rage, E; Rava, M; Sarnowski, C; Smit, L A M; Temam, S; Varraso, R; Vignoud, L; Lathrop, M; Pin, I; Demenais, F; Kauffmann, F; Siroux, V

    2015-10-01

    The EGEA study (epidemiological study on the genetics and environment of asthma, bronchial hyperresponsiveness and atopy), which combines a case-control and a family-based study of asthma case (n=2120 subjects) with three surveys over 20 years, aims to identify environmental and genetic factors associated with asthma and asthma-related phenotypes. We summarize the results of the phenotypic characterization and the investigation of environmental and genetic factors of asthma and asthma-related phenotypes obtained since 2007 in the EGEA study (42 articles). Both epidemiological and genetic results confirm the heterogeneity of asthma. These results strengthen the role of the age of disease onset, the allergic status and the level of disease activity in the identification of the different phenotypes of asthma. The deleterious role of active smoking, exposure to air pollution, occupational asthmogenic agents and cleaning products on the prevalence and/or activity of asthma has been confirmed. Accounting for gene-environment interactions allowed the identification of new genetic factors underlying asthma and asthma-related traits and better understanding of their mode of action. The EGEA study is contributing to the advances in respiratory research at the international level. The new phenotypic, environmental and biological data available in EGEA study will help characterizing the long-term evolution of asthma and the factors associated to this evolution. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  2. Quantifying male attractiveness.

    PubMed Central

    McNamara, John M; Houston, Alasdair I; Marques Dos Santos, Miguel; Kokko, Hanna; Brooks, Rob

    2003-01-01

    Genetic models of sexual selection are concerned with a dynamic process in which female preference and male trait values coevolve. We present a rigorous method for characterizing evolutionary endpoints of this process in phenotypic terms. In our phenotypic characterization the mate-choice strategy of female population members determines how attractive females should find each male, and a population is evolutionarily stable if population members are actually behaving in this way. This provides a justification of phenotypic explanations of sexual selection and the insights into sexual selection that they provide. Furthermore, the phenotypic approach also has enormous advantages over a genetic approach when computing evolutionarily stable mate-choice strategies, especially when strategies are allowed to be complex time-dependent preference rules. For simplicity and clarity our analysis deals with haploid mate-choice genetics and a male trait that is inherited phenotypically, for example by vertical cultural transmission. The method is, however, easily extendible to other cases. An example illustrates that the sexy son phenomenon can occur when there is phenotypic inheritance of the male trait. PMID:14561306

  3. Genomic scan as a tool for assessing the genetic component of phenotypic variance in wild populations.

    PubMed

    Herrera, Carlos M

    2012-01-01

    Methods for estimating quantitative trait heritability in wild populations have been developed in recent years which take advantage of the increased availability of genetic markers to reconstruct pedigrees or estimate relatedness between individuals, but their application to real-world data is not exempt from difficulties. This chapter describes a recent marker-based technique which, by adopting a genomic scan approach and focusing on the relationship between phenotypes and genotypes at the individual level, avoids the problems inherent to marker-based estimators of relatedness. This method allows the quantification of the genetic component of phenotypic variance ("degree of genetic determination" or "heritability in the broad sense") in wild populations and is applicable whenever phenotypic trait values and multilocus data for a large number of genetic markers (e.g., amplified fragment length polymorphisms, AFLPs) are simultaneously available for a sample of individuals from the same population. The method proceeds by first identifying those markers whose variation across individuals is significantly correlated with individual phenotypic differences ("adaptive loci"). The proportion of phenotypic variance in the sample that is statistically accounted for by individual differences in adaptive loci is then estimated by fitting a linear model to the data, with trait value as the dependent variable and scores of adaptive loci as independent ones. The method can be easily extended to accommodate quantitative or qualitative information on biologically relevant features of the environment experienced by each sampled individual, in which case estimates of the environmental and genotype × environment components of phenotypic variance can also be obtained.

  4. Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication.

    PubMed

    Doust, Andrew N; Lukens, Lewis; Olsen, Kenneth M; Mauro-Herrera, Margarita; Meyer, Ann; Rogers, Kimberly

    2014-04-29

    Domestication is a multifaceted evolutionary process, involving changes in individual genes, genetic interactions, and emergent phenotypes. There has been extensive discussion of the phenotypic characteristics of plant domestication, and recent research has started to identify the specific genes and mutational mechanisms that control domestication traits. However, there is an apparent disconnect between the simple genetic architecture described for many crop domestication traits, which should facilitate rapid phenotypic change under selection, and the slow rate of change reported from the archeobotanical record. A possible explanation involves the middle ground between individual genetic changes and their expression during development, where gene-by-gene (epistatic) and gene-by-environment interactions can modify the expression of phenotypes and opportunities for selection. These aspects of genetic architecture have the potential to significantly slow the speed of phenotypic evolution during crop domestication and improvement. Here we examine whether epistatic and gene-by-environment interactions have shaped how domestication traits have evolved. We review available evidence from the literature, and we analyze two domestication-related traits, shattering and flowering time, in a mapping population derived from a cross between domesticated foxtail millet and its wild progenitor. We find that compared with wild progenitor alleles, those favored during domestication often have large phenotypic effects and are relatively insensitive to genetic background and environmental effects. Consistent selection should thus be able to rapidly change traits during domestication. We conclude that if phenotypic evolution was slow during crop domestication, this is more likely due to cultural or historical factors than epistatic or environmental constraints.

  5. Joubert syndrome: A model for untangling recessive disorders with extreme genetic heterogeneity

    PubMed Central

    R, Bachmann-Gagescu; JC, Dempsey; IG, Phelps; BJ, O’Roak; DM, Knutzen; TC, Rue; GE, Ishak; CR, Isabella; N, Gorden; J, Adkins; EA, Boyle; N, de Lacy; D, O’Day; A, Alswaid; AR, Devi; L, Lingappa; C, Lourenço; L, Martorell; À, Garcia-Cazorla; H, Ozyürek; G, Haliloğlu; B, Tuysuz; M, Topçu; P, Chance; MA, Parisi; I, Glass; J, Shendure; D, Doherty

    2016-01-01

    Background Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, cognitive impairment, abnormal eye movements, respiratory control disturbances, and a distinctive mid-hindbrain malformation. JS demonstrates substantial phenotypic variability and genetic heterogeneity. This study provides a comprehensive view of the current genetic basis, phenotypic range and gene-phenotype associations in JS. Methods We sequenced 27 JS-associated genes in 440 affected individuals (375 families) from a cohort of 532 individuals (440 families) with JS, using molecular inversion probe-based targeted capture and next generation sequencing. Variant pathogenicity was defined using the Combined Annotation Dependent Depletion (CADD) algorithm with an optimized score cut-off. Results We identified presumed causal variants in 62% of pedigrees, including the first B9D2 mutations associated with JS. 253 different mutations in 23 genes highlight the extreme genetic heterogeneity of JS. Phenotypic analysis revealed that only 34% of individuals have a “pure JS” phenotype. Retinal disease is present in 30% of individuals, renal disease in 25%, coloboma in 17%, polydactyly in 15%, liver fibrosis in 14% and encephalocele in 8%. Loss of CEP290 function is associated with retinal dystrophy, while loss of TMEM67 function is associated with liver fibrosis and coloboma, but we observe no clear-cut distinction between JS-subtypes. Conclusion This work illustrates how combining advanced sequencing techniques with phenotypic data addresses extreme genetic heterogeneity to provide diagnostic and carrier testing, guide medical monitoring for progressive complications, facilitate interpretation of genome-wide sequencing results in individuals with a variety of phenotypes, and enable gene-specific treatments in the future. PMID:26092869

  6. Interactions of allele E of the MC1R gene with FM and mutations in the MLPH gene cause the five-gray phenotype in the Anyi tile-like gray chicken.

    PubMed

    Xu, J G; Xie, M G; Zou, S Y; Liu, X F; Li, X H; Xie, J F; Zhang, X Q

    2016-04-26

    The Anyi tile-like gray chicken is a Chinese indigenous breed with a gray dilution phenotype, having gray feathers, comb, skin, shanks, and beak, which is valuable for genetic research on pigmentation. However, the genetic basis of the gray dilution phenotype remains unknown. The objective of this study was to investigate the genetic basis of the gray dilution phenotype in the Anyi tile-like gray chicken. We found that all Anyi tile-like gray chickens tested in this study carried at least one E allele, which is responsible for the appearance of black feathers, and some of them carried the FM allele, which is responsible for the black skin phenotype. A single nucleotide polymorphism (C.1909A>G) was identified within the melanophilin (MLPH) gene and was significantly associated with the gray dilution phenotype. Our findings suggest that the E and FM alleles act together to cause the development of the "five-black" phenotype (black feather, comb, skin, shank, and beak), whereas the MLPH mutation results in defective melanosome transport, leading to the development of the "five-gray" phenotype.

  7. A unified genetic association test robust to latent population structure for a count phenotype.

    PubMed

    Song, Minsun

    2018-06-04

    Confounding caused by latent population structure in genome-wide association studies has been a big concern despite the success of genome-wide association studies at identifying genetic variants associated with complex diseases. In particular, because of the growing interest in association mapping using count phenotype data, it would be interesting to develop a testing framework for genetic associations that is immune to population structure when phenotype data consist of count measurements. Here, I propose a solution for testing associations between single nucleotide polymorphisms and a count phenotype in the presence of an arbitrary population structure. I consider a classical range of models for count phenotype data. Under these models, a unified test for genetic associations that protects against confounding was derived. An algorithm was developed to efficiently estimate the parameters that are required to fit the proposed model. I illustrate the proposed approach using simulation studies and an empirical study. Both simulated and real-data examples suggest that the proposed method successfully corrects population structure. Copyright © 2018 John Wiley & Sons, Ltd.

  8. A Novel Lung Disease Phenotype Adjusted for Mortality Attrition for Cystic Fibrosis Genetic Modifier Studies

    PubMed Central

    Taylor, Chelsea; Commander, Clayton W.; Collaco, Joseph M.; Strug, Lisa J.; Li, Weili; Wright, Fred A.; Webel, Aaron D.; Pace, Rhonda G.; Stonebraker, Jaclyn R.; Naughton, Kathleen; Dorfman, Ruslan; Sandford, Andrew; Blackman, Scott M.; Berthiaume, Yves; Paré, Peter; Drumm, Mitchell L.; Zielenski, Julian; Durie, Peter; Cutting, Garry R.; Knowles, Michael R.; Corey, Mary

    2011-01-01

    SUMMARY Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment. Using data from the North American Cystic Fibrosis Modifier Consortium (Canadian Consortium for CF Genetic Studies, Johns Hopkins University CF Twin and Sibling Study, and University of North Carolina/Case Western Reserve University Gene Modifier Study), the authors calculated age-specific CF percentile values of FEV1 which were adjusted for CF age-specific mortality data. The phenotype was computed for 2061 patients representing the Canadian CF population, 1137 extreme phenotype patients in the UNC/Case Western study, and 1323 patients from multiple CF sib families in the CF Twin and Sibling Study. Despite differences in ascertainment and median age, our phenotype score was distributed in all three samples in a manner consistent with ascertainment differences, reflecting the lung disease severity of each individual in the underlying population. The new phenotype score was highly correlated with the previously recommended complex phenotype, but the new phenotype is more robust for shorter follow-up and for extreme ages. A disease progression and mortality adjusted phenotype reduces the need for stratification or additional covariates, increasing statistical power and avoiding possible distortions. This approach will facilitate large scale genetic and environmental epidemiological studies which will provide targeted therapeutic pathways for the clinical benefit of patients with CF. PMID:21462361

  9. NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus

    PubMed Central

    Sutter, Carrie Hayes; Olesen, Kristin M; Kensler, Thomas W

    2018-01-01

    Diurnal oscillation of intracellular redox potential is known to couple metabolism with the circadian clock, yet the responsible mechanisms are not well understood. We show here that chemical activation of NRF2 modifies circadian gene expression and rhythmicity, with phenotypes similar to genetic NRF2 activation. Loss of Nrf2 function in mouse fibroblasts, hepatocytes and liver also altered circadian rhythms, suggesting that NRF2 stoichiometry and/or timing of expression are important to timekeeping in some cells. Consistent with this concept, activation of NRF2 at a circadian time corresponding to the peak generation of endogenous oxidative signals resulted in NRF2-dependent reinforcement of circadian amplitude. In hepatocytes, activated NRF2 bound specific enhancer regions of the core clock repressor gene Cry2, increased Cry2 expression and repressed CLOCK/BMAL1-regulated E-box transcription. Together these data indicate that NRF2 and clock comprise an interlocking loop that integrates cellular redox signals into tissue-specific circadian timekeeping. PMID:29481323

  10. Cytoscape: a software environment for integrated models of biomolecular interaction networks.

    PubMed

    Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey

    2003-11-01

    Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

  11. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.

    PubMed

    Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle

    2016-07-01

    Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.

  12. Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.

    PubMed

    Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason; Ng, Cherie T; Krogan, Nevan; Sharan, Roded; Ideker, Trey

    2016-02-24

    Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.

  13. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    USGS Publications Warehouse

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.

  14. Genetics and intelligence differences: five special findings.

    PubMed

    Plomin, R; Deary, I J

    2015-02-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for 'positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century-Genome-wide Complex Trait Analysis (GCTA)-which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture of intelligence that are relevant to attempts to narrow the 'missing heritability' gap.

  15. Genetics and intelligence differences: five special findings

    PubMed Central

    Plomin, R; Deary, I J

    2015-01-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for ‘positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century—Genome-wide Complex Trait Analysis (GCTA)—which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture of intelligence that are relevant to attempts to narrow the ‘missing heritability' gap. PMID:25224258

  16. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.

    PubMed

    Amberger, Joanna S; Bocchini, Carol A; Schiettecatte, François; Scott, Alan F; Hamosh, Ada

    2015-01-01

    Online Mendelian Inheritance in Man, OMIM(®), is a comprehensive, authoritative and timely research resource of curated descriptions of human genes and phenotypes and the relationships between them. The new official website for OMIM, OMIM.org (http://omim.org), was launched in January 2011. OMIM is based on the published peer-reviewed biomedical literature and is used by overlapping and diverse communities of clinicians, molecular biologists and genome scientists, as well as by students and teachers of these disciplines. Genes and phenotypes are described in separate entries and are given unique, stable six-digit identifiers (MIM numbers). OMIM entries have a structured free-text format that provides the flexibility necessary to describe the complex and nuanced relationships between genes and genetic phenotypes in an efficient manner. OMIM also has a derivative table of genes and genetic phenotypes, the Morbid Map. OMIM.org has enhanced search capabilities such as genome coordinate searching and thesaurus-enhanced search term options. Phenotypic series have been created to facilitate viewing genetic heterogeneity of phenotypes. Clinical synopsis features are enhanced with UMLS, Human Phenotype Ontology and Elements of Morphology terms and image links. All OMIM data are available for FTP download and through an API. MIMmatch is a novel outreach feature to disseminate updates and encourage collaboration. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    PubMed Central

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  18. The pleiotropic phenotype of Apc mutations in the mouse: allele specificity and effects of the genetic background.

    PubMed

    Halberg, Richard B; Chen, Xiaodi; Amos-Landgraf, James M; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C; Dove, William F

    2008-09-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes.

  19. The genetics of anxiety-related negative valence system traits.

    PubMed

    Savage, Jeanne E; Sawyers, Chelsea; Roberson-Nay, Roxann; Hettema, John M

    2017-03-01

    NIMH's Research Domain Criteria (RDoC) domain of negative valence systems (NVS) captures constructs of negative affect such as fear and distress traditionally subsumed under the various internalizing disorders. Through its aims to capture dimensional measures that cut across diagnostic categories and are linked to underlying neurobiological systems, a large number of phenotypic constructs have been proposed as potential research targets. Since "genes" represent a central "unit of analysis" in the RDoC matrix, it is important for studies going forward to apply what is known about the genetics of these phenotypes as well as fill in the gaps of existing knowledge. This article reviews the extant genetic epidemiological data (twin studies, heritability) and molecular genetic association findings for a broad range of putative NVS phenotypic measures. We find that scant genetic epidemiological data is available for experimentally derived measures such as attentional bias, peripheral physiology, or brain-based measures of threat response. The molecular genetic basis of NVS phenotypes is in its infancy, since most studies have focused on a small number of candidate genes selected for putative association to anxiety disorders (ADs). Thus, more research is required to provide a firm understanding of the genetic aspects of anxiety-related NVS constructs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. The Genetics of Anxiety-Related Negative Valence System Traits

    PubMed Central

    Savage, Jeanne E.; Sawyers, Chelsea; Roberson-Nay, Roxann; Hettema, John M.

    2017-01-01

    NIMH’s Research Domain Criteria (RDoC) domain of negative valence systems (NVS) captures constructs of negative affect such as fear and distress traditionally subsumed under the various internalizing disorders. Through its aims to capture dimensional measures that cut across diagnostic categories and are linked to underlying neurobiological systems, a large number of phenotypic constructs have been proposed as potential research targets. Since “genes” represent a central “unit of analysis” in the RDoC matrix, it is important for studies going forward to apply what is known about the genetics of these phenotypes as well as fill in the gaps of existing knowledge. This article reviews the extant genetic epidemiological data (twin studies, heritability) and molecular genetic association findings for a broad range of putative NVS phenotypic measures. We find that scant genetic epidemiological data is available for experimentally-derived measures such as attentional bias, peripheral physiology, or brain-based measures of threat response. The molecular genetic basis of NVS phenotypes is in its infancy, since most studies have focused on a small number of candidate genes selected for putative association to anxiety disorders (ADs). Thus, more research is required to provide a firm understanding of the genetic aspects of anxiety-related NVS constructs. PMID:27196537

  1. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus.

    PubMed

    Jensen, Anders; Scholz, Christian F P; Kilian, Mogens

    2016-11-01

    The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.

  2. SSR-based genetic diversity and structure of garlic accessions from Brazil.

    PubMed

    da Cunha, Camila Pinto; Resende, Francisco Vilela; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2014-10-01

    Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.

  3. Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations.

    PubMed

    Gupta, Mayetri; Cheung, Ching-Lung; Hsu, Yi-Hsiang; Demissie, Serkalem; Cupples, L Adrienne; Kiel, Douglas P; Karasik, David

    2011-06-01

    Genome-wide association studies (GWAS) using high-density genotyping platforms offer an unbiased strategy to identify new candidate genes for osteoporosis. It is imperative to be able to clearly distinguish signal from noise by focusing on the best phenotype in a genetic study. We performed GWAS of multiple phenotypes associated with fractures [bone mineral density (BMD), bone quantitative ultrasound (QUS), bone geometry, and muscle mass] with approximately 433,000 single-nucleotide polymorphisms (SNPs) and created a database of resulting associations. We performed analysis of GWAS data from 23 phenotypes by a novel modification of a block clustering algorithm followed by gene-set enrichment analysis. A data matrix of standardized regression coefficients was partitioned along both axes--SNPs and phenotypes. Each partition represents a distinct cluster of SNPs that have similar effects over a particular set of phenotypes. Application of this method to our data shows several SNP-phenotype connections. We found a strong cluster of association coefficients of high magnitude for 10 traits (BMD at several skeletal sites, ultrasound measures, cross-sectional bone area, and section modulus of femoral neck and shaft). These clustered traits were highly genetically correlated. Gene-set enrichment analyses indicated the augmentation of genes that cluster with the 10 osteoporosis-related traits in pathways such as aldosterone signaling in epithelial cells, role of osteoblasts, osteoclasts, and chondrocytes in rheumatoid arthritis, and Parkinson signaling. In addition to several known candidate genes, we also identified PRKCH and SCNN1B as potential candidate genes for multiple bone traits. In conclusion, our mining of GWAS results revealed the similarity of association results between bone strength phenotypes that may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in identifying novel genes and pathways that underlie several correlated phenotypes, as well as in deciphering genetic and phenotypic modularity underlying osteoporosis risk. Copyright © 2011 American Society for Bone and Mineral Research.

  4. Introduction to Focus Issue: Genetic Interactions

    NASA Astrophysics Data System (ADS)

    Segrè, Daniel; Marx, Christopher J.

    2010-06-01

    The perturbation of a gene in an organism's genome often causes changes in the organism's observable properties or phenotypes. It is not obvious a priori whether the simultaneous perturbation of two genes produces a phenotypic change that is easily predictable from the changes caused by individual perturbations. In fact, this is often not the case: the nonlinearity and interdependence between genetic variants in determining phenotypes, also known as epistasis, is a prevalent phenomenon in biological systems. This focus issue presents recent developments in the study of epistasis and genetic interactions, emphasizing the broad implications of this phenomenon in evolutionary biology, functional genomics, and human diseases.

  5. The influence of gene flow and drift on genetic and phenotypic divergence in two species of Zosterops in Vanuatu

    PubMed Central

    Clegg, Sonya M.; Phillimore, Albert B.

    2010-01-01

    Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago. PMID:20194170

  6. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy.

    PubMed

    Li, Jingyun; Zhang, Yuan; Zhang, Luo

    2015-02-01

    Allergic rhinitis and allergy are complex conditions, in which both genetic and environmental factors contribute to the pathogenesis. Genome-wide association studies (GWASs) employing common single-nucleotide polymorphisms have accelerated the search for novel and interesting genes, and also confirmed the role of some previously described genes which may be involved in the cause of allergic rhinitis and allergy. The aim of this review is to provide an overview of the genetic basis of allergic rhinitis and the associated allergic phenotypes, with particular focus on GWASs. The last decade has been marked by the publication of more than 20 GWASs of allergic rhinitis and the associated allergic phenotypes. Allergic diseases and traits have been shown to share a large number of genetic susceptibility loci, of which IL33/IL1RL1, IL-13-RAD50 and C11orf30/LRRC32 appear to be important for more than two allergic phenotypes. GWASs have further reflected the genetic heterogeneity underlying allergic phenotypes. Large-scale genome-wide association strategies are underway to discover new susceptibility variants for allergic rhinitis and allergic phenotypes. Characterization of the underlying genetics provides us with an insight into the potential targets for future studies and the corresponding interventions.

  7. Genetic and environmental continuity in personality development: a meta-analysis.

    PubMed

    Briley, Daniel A; Tucker-Drob, Elliot M

    2014-09-01

    The longitudinal stability of personality is low in childhood but increases substantially into adulthood. Theoretical explanations for this trend differ in the emphasis placed on intrinsic maturation and socializing influences. To what extent does the increasing stability of personality result from the continuity and crystallization of genetically influenced individual differences, and to what extent does the increasing stability of life experiences explain increases in personality trait stability? Behavioral genetic studies, which decompose longitudinal stability into sources associated with genetic and environmental variation, can help to address this question. We aggregated effect sizes from 24 longitudinal behavioral genetic studies containing information on a total of 21,057 sibling pairs from 6 types that varied in terms of genetic relatedness and ranged in age from infancy to old age. A combination of linear and nonlinear meta-analytic regression models were used to evaluate age trends in levels of heritability and environmentality, stabilities of genetic and environmental effects, and the contributions of genetic and environmental effects to overall phenotypic stability. Both the genetic and environmental influences on personality increase in stability with age. The contribution of genetic effects to phenotypic stability is moderate in magnitude and relatively constant with age, in part because of small-to-moderate decreases in the heritability of personality over child development that offset increases in genetic stability. In contrast, the contribution of environmental effects to phenotypic stability increases from near zero in early childhood to moderate in adulthood. The life-span trend of increasing phenotypic stability, therefore, predominantly results from environmental mechanisms. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Genetic and Environmental Continuity in Personality Development: A Meta-Analysis

    PubMed Central

    Briley, Daniel A.; Tucker-Drob, Elliot M.

    2014-01-01

    The longitudinal stability of personality is low in childhood, but increases substantially into adulthood. Theoretical explanations for this trend differ in the emphasis placed on intrinsic maturation and socializing influences. To what extent does the increasing stability of personality result from the continuity and crystallization of genetically influenced individual differences, and to what extent does the increasing stability of life experiences explain increases in personality trait stability? Behavioral genetic studies, which decompose longitudinal stability into sources associated with genetic and environmental variation, can help to address this question. We aggregated effect sizes from 24 longitudinal behavioral genetic studies containing information on a total of 21,057 sibling pairs from six types that varied in terms of genetic relatedness and ranged in age from infancy to old age. A combination of linear and nonlinear meta-analytic regression models were used to evaluate age-trends in levels of heritability and environmentality, stabilities of genetic and environmental effects, and the contributions of genetic and environmental effects to overall phenotypic stability. Both the genetic and environmental influences on personality increase in stability with age. The contribution of genetic effects to phenotypic stability is moderate in magnitude and relatively constant with age, in part because of small-to-moderate decreases in the heritability of personality over child development that offset increases in genetic stability. In contrast, the contribution of environmental effects to phenotypic stability increases from near-zero in early childhood to moderate in adulthood. The lifespan trend of increasing phenotypic stability, therefore, predominantly results from environmental mechanisms. PMID:24956122

  9. When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments.

    PubMed

    Ergon, T; Ergon, R

    2017-03-01

    Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  10. A Network of Genes Antagonistic to the LIN-35 Retinoblastoma Protein of Caenorhabditis elegans

    PubMed Central

    Polley, Stanley R. G.; Fay, David S.

    2012-01-01

    The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene. PMID:22542970

  11. Relationship between polycystic ovary syndrome and ancestry in European Americans.

    PubMed

    Bjonnes, Andrew C; Saxena, Richa; Welt, Corrine K

    2016-12-01

    To determine whether European Americans with polycystic ovary syndrome (PCOS) exhibit genetic differences associated with PCOS status and phenotypic features. Case-control association study in European Americans. Academic center. Women with PCOS diagnosed with the use of the National Institutes of Health criteria (n = 532) and control women with regular menstrual cycles and no evidence of hyperandrogenism (n = 432). Blood was drawn for measurement of sex steroids, metabolic parameters, and genotyping. Associations among PCOS status, phenotype, and genetic background identified with the use of principal component analysis. Principal component analysis identified five principal components (PCs). PC1 captured northwest-to-southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, and larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east-to-west European genetic variation and cholesterol levels. These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. The Relationship Between Polycystic Ovary Syndrome and Ancestry in European Americans

    PubMed Central

    Bjonnes, Andrew C.; Saxena, Richa; Welt, Corrine K.

    2016-01-01

    Objective To determine whether European Americans with PCOS would exhibit genetic differences associated with PCOS status and phenotypic features. Design The study was a case-control association study in European Americans. Setting Subjects were studied in an academic center. Subjects Women with PCOS diagnosed using the NIH criteria (n=532) and controls with regular menstrual cycles and no evidence of hyperandrogenism (n=432) were studied. Interventions Blood was drawn for measurement of sex steroids, metabolic parameters and genotyping. Main outcome measure Associations were identified between PCOS status, phenotype and genetic background determined using principal components. Results Principal component analysis identified 5 principal components (PCs). PC1 captured northwest to southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, while larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east to west European genetic variation and cholesterol levels. Conclusions These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. PMID:27666562

  13. No boundaries: genomes, organisms, and ecological interactions responsible for divergence and reproductive isolation.

    PubMed

    Etges, William J

    2014-01-01

    Revealing the genetic basis of traits that cause reproductive isolation, particularly premating or sexual isolation, usually involves the same challenges as most attempts at genotype-phenotype mapping and so requires knowledge of how these traits are expressed in different individuals, populations, and environments, particularly under natural conditions. Genetic dissection of speciation phenotypes thus requires understanding of the internal and external contexts in which underlying genetic elements are expressed. Gene expression is a product of complex interacting factors internal and external to the organism including developmental programs, the genetic background including nuclear-cytotype interactions, epistatic relationships, interactions among individuals or social effects, stochasticity, and prevailing variation in ecological conditions. Understanding of genomic divergence associated with reproductive isolation will be facilitated by functional expression analysis of annotated genomes in organisms with well-studied evolutionary histories, phylogenetic affinities, and known patterns of ecological variation throughout their life cycles. I review progress and prospects for understanding the pervasive role of host plant use on genetic and phenotypic expression of reproductive isolating mechanisms in cactophilic Drosophila mojavensis and suggest how this system can be used as a model for revealing the genetic basis for species formation in organisms where speciation phenotypes are under the joint influences of genetic and environmental factors. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Revealing plant cryptotypes: defining meaningful phenotypes among infinite traits.

    PubMed

    Chitwood, Daniel H; Topp, Christopher N

    2015-04-01

    The plant phenotype is infinite. Plants vary morphologically and molecularly over developmental time, in response to the environment, and genetically. Exhaustive phenotyping remains not only out of reach, but is also the limiting factor to interpreting the wealth of genetic information currently available. Although phenotyping methods are always improving, an impasse remains: even if we could measure the entirety of phenotype, how would we interpret it? We propose the concept of cryptotype to describe latent, multivariate phenotypes that maximize the separation of a priori classes. Whether the infinite points comprising a leaf outline or shape descriptors defining root architecture, statistical methods to discern the quantitative essence of an organism will be required as we approach measuring the totality of phenotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Laboratory Estimates of Heritabilities and Genetic Correlations in Nature

    PubMed Central

    Riska, B.; Prout, T.; Turelli, M.

    1989-01-01

    A lower bound on heritability in a natural environment can be determined from the regression of offspring raised in the laboratory on parents raised in nature. An estimate of additive genetic variance in the laboratory is also required. The estimated lower bounds on heritabilities can sometimes be used to demonstrate a significant genetic correlation between two traits in nature, if their genetic and phenotypic correlations in nature have the same sign, and if sample sizes are large, and heritabilities and phenotypic and genetic correlations are high. PMID:2515111

  16. Quantitative genetic methods depending on the nature of the phenotypic trait.

    PubMed

    de Villemereuil, Pierre

    2018-01-24

    A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.

  17. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    NASA Astrophysics Data System (ADS)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  18. Identifying Multimodal Intermediate Phenotypes between Genetic Risk Factors and Disease Status in Alzheimer’s Disease

    PubMed Central

    Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Zhang, Daoqiang; Shen, Li

    2016-01-01

    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer’s disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494

  19. Genetic and environmental determinants of violence risk in psychotic disorders: a multivariate quantitative genetic study of 1.8 million Swedish twins and siblings.

    PubMed

    Sariaslan, A; Larsson, H; Fazel, S

    2016-09-01

    Patients diagnosed with psychotic disorders (for example, schizophrenia and bipolar disorder) have elevated risks of committing violent acts, particularly if they are comorbid with substance misuse. Despite recent insights from quantitative and molecular genetic studies demonstrating considerable pleiotropy in the genetic architecture of these phenotypes, there is currently a lack of large-scale studies that have specifically examined the aetiological links between psychotic disorders and violence. Using a sample of all Swedish individuals born between 1958 and 1989 (n=3 332 101), we identified a total of 923 259 twin-sibling pairs. Patients were identified using the National Patient Register using validated algorithms based on International Classification of Diseases (ICD) 8-10. Univariate quantitative genetic models revealed that all phenotypes (schizophrenia, bipolar disorder, substance misuse, and violent crime) were highly heritable (h(2)=53-71%). Multivariate models further revealed that schizophrenia was a stronger predictor of violence (r=0.32; 95% confidence interval: 0.30-0.33) than bipolar disorder (r=0.23; 0.21-0.25), and large proportions (51-67%) of these phenotypic correlations were explained by genetic factors shared between each disorder, substance misuse, and violence. Importantly, we found that genetic influences that were unrelated to substance misuse explained approximately a fifth (21%; 20-22%) of the correlation with violent criminality in bipolar disorder but none of the same correlation in schizophrenia (Pbipolar disorder<0.001; Pschizophrenia=0.55). These findings highlight the problems of not disentangling common and unique sources of covariance across genetically similar phenotypes as the latter sources may include aetiologically important clues. Clinically, these findings underline the importance of assessing risk of different phenotypes together and integrating interventions for psychiatric disorders, substance misuse, and violence.

  20. The Second Report on the State of the World's Animal Genetic Resources for Food and Agriculture, Part 4, The State of the Art: Box 4A4: A digital enumeration method for collecting phenotypic data for genome association

    USDA-ARS?s Scientific Manuscript database

    Consistent data across animal populations are required to inform genomic science aimed at finding important adaptive genetic variations. The ADAPTMap Digital Phenotype Collection- Prototype Method will yield a new procedure to provide consistent phenotypic data by digital enumeration of categorical ...

  1. Modern spandrels: the roles of genetic drift, gene flow and natural selection in the evolution of parallel clines.

    PubMed

    Santangelo, James S; Johnson, Marc T J; Ness, Rob W

    2018-05-16

    Urban environments offer the opportunity to study the role of adaptive and non-adaptive evolutionary processes on an unprecedented scale. While the presence of parallel clines in heritable phenotypic traits is often considered strong evidence for the role of natural selection, non-adaptive evolutionary processes can also generate clines, and this may be more likely when traits have a non-additive genetic basis due to epistasis. In this paper, we use spatially explicit simulations modelled according to the cyanogenesis (hydrogen cyanide, HCN) polymorphism in white clover ( Trifolium repens ) to examine the formation of phenotypic clines along urbanization gradients under varying levels of drift, gene flow and selection. HCN results from an epistatic interaction between two Mendelian-inherited loci. Our results demonstrate that the genetic architecture of this trait makes natural populations susceptible to decreases in HCN frequencies via drift. Gradients in the strength of drift across a landscape resulted in phenotypic clines with lower frequencies of HCN in strongly drifting populations, giving the misleading appearance of deterministic adaptive changes in the phenotype. Studies of heritable phenotypic change in urban populations should generate null models of phenotypic evolution based on the genetic architecture underlying focal traits prior to invoking selection's role in generating adaptive differentiation. © 2018 The Author(s).

  2. Sports genetics moving forward: lessons learned from medical research.

    PubMed

    Mattsson, C Mikael; Wheeler, Matthew T; Waggott, Daryl; Caleshu, Colleen; Ashley, Euan A

    2016-03-01

    Sports genetics can take advantage of lessons learned from human disease genetics. By righting past mistakes and increasing scientific rigor, we can magnify the breadth and depth of knowledge in the field. We present an outline of challenges facing sports genetics in the light of experiences from medical research. Sports performance is complex, resulting from a combination of a wide variety of different traits and attributes. Improving sports genetics will foremost require analyses based on detailed phenotyping. To find widely valid, reproducible common variants associated with athletic phenotypes, study sample sizes must be dramatically increased. One paradox is that in order to confirm relevance, replications in specific populations must be undertaken. Family studies of athletes may facilitate the discovery of rare variants with large effects on athletic phenotypes. The complexity of the human genome, combined with the complexity of athletic phenotypes, will require additional metadata and biological validation to identify a comprehensive set of genes involved. Analysis of personal genetic and multiomic profiles contribute to our conceptualization of precision medicine; the same will be the case in precision sports science. In the refinement of sports genetics it is essential to evaluate similarities and differences between sexes and among ethnicities. Sports genetics to date have been hampered by small sample sizes and biased methodology, which can lead to erroneous associations and overestimation of effect sizes. Consequently, currently available genetic tests based on these inherently limited data cannot predict athletic performance with any accuracy. Copyright © 2016 the American Physiological Society.

  3. Repint of "Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity".

    PubMed

    Tordjman, S; Cohen, D; Anderson, G M; Botbol, M; Canitano, R; Coulon, N; Roubertoux, P L

    2018-06-01

    Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism. Copyright © 2018. Published by Elsevier Ltd.

  4. Elucidation of the Metabolic Network of Helicobacter pylori J99 and Malaysian Clinical Strains by Phenotype Microarray.

    PubMed

    Lee, Woon Ching; Goh, Khean Lee; Loke, Mun Fai; Vadivelu, Jamuna

    2017-02-01

    Helicobacter pylori colonizes almost half of the human population worldwide. H. pylori strains are genetically diverse, and the specific genotypes are associated with various clinical manifestations including gastric adenocarcinoma, peptic ulcer disease (PUD), and nonulcer dyspepsia (NUD). However, our current knowledge of the H. pylori metabolism is limited. To understand the metabolic differences among H. pylori strains, we investigated four Malaysian H. pylori clinical strains, which had been previously sequenced, and a standard strain, H. pylori J99, at the phenotypic level. The phenotypes of the H. pylori strains were profiled using the Biolog Phenotype Microarray system to corroborate genomic data. We initiated the analyses by predicting carbon and nitrogen metabolic pathways from the H. pylori genomic data from the KEGG database. Biolog PM aided the validation of the prediction and provided a more intensive analysis of the H. pylori phenomes. We have identified a core set of metabolic nutrient sources that was utilized by all strains tested and another set that was differentially utilized by only the local strains. Pentose sugars are the preferred carbon nutrients utilized by H. pylori. The amino acids l-aspartic acid, d-alanine, and l-asparagine serve as both carbon and nitrogen sources in the metabolism of the bacterium. The phenotypic profile based on this study provides a better understanding on the survival of H. pylori in its natural host. Our data serve as a foundation for future challenges in correlating interstrain metabolic differences in H. pylori. © 2016 The Authors. Helicobacter Published by John Wiley & Sons Ltd.

  5. The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland.

    PubMed

    Magalhaes, Isabel S; D'Agostino, Daniele; Hohenlohe, Paul A; MacColl, Andrew D C

    2016-09-01

    There has been a large focus on the genetics of traits involved in adaptation, but knowledge of the environmental variables leading to adaptive changes is surprisingly poor. Combined use of environmental data with morphological and genomic data should allow us to understand the extent to which patterns of phenotypic and genetic diversity within a species can be explained by the structure of the environment. Here, we analyse the variation of populations of three-spined stickleback from 27 freshwater lakes on North Uist, Scotland, that vary greatly in their environment, to understand how environmental and genetic constraints contribute to phenotypic divergence. We collected 35 individuals per population and 30 abiotic and biotic environmental parameters to characterize variation across lakes and analyse phenotype-environment associations. Additionally, we used RAD sequencing to estimate the genetic relationships among a subset of these populations. We found a large amount of phenotypic variation among populations, most prominently in armour and spine traits. Despite large variation in the abiotic environment, namely in ion composition, depth and dissolved organic Carbon, more phenotypic variation was explained by the biotic variables (presence of predators and density of predator and competitors), than by associated abiotic variables. Genetic structure among populations was partly geographic, with closer populations being more similar. Altogether, our results suggest that differences in body shape among stickleback populations are the result of both canalized genetic and plastic responses to environmental factors, which shape fish morphology in a predictable direction regardless of their genetic starting point. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. Genotypic and phenotypic evaluation of off-type grasses in hybrid Bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] putting greens using genotyping-by-sequencing and morphological characterization.

    PubMed

    Reasor, Eric H; Brosnan, James T; Staton, Margaret E; Lane, Thomas; Trigiano, Robert N; Wadl, Phillip A; Conner, Joann A; Schwartz, Brian M

    2018-01-01

    Interspecific hybrid bermudagrass [ Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] is one of the most widely used grasses on golf courses, with cultivars derived from 'Tifgreen' or 'Tifdwarf' particularly used for putting greens. Many bermudagrass cultivars established for putting greens can be genetically unstable and lead to the occurrence of undesirable off-type grasses that vary in phenotype. The objective of this research was to genetically and phenotypically differentiate off-type grasses and hybrid cultivars. Beginning in 2013, off-type and desirable hybrid bermudagrass samples were collected from golf course putting greens in the southeastern United States and genetically and phenotypically characterized using genotyping-by-sequencing and morphology. Genotyping-by-sequencing determined that 11% (5) of off-type and desirable samples from putting greens were genetically divergent from standard cultivars such as Champion, MiniVerde, Tifdwarf, TifEagle, and Tifgreen. In addition, genotyping-by-sequencing was unable to genetically distinguish all standard cultivars from one another due to their similar origin and clonal propagation; however, over 90,000 potentially informative nucleotide variants were identified among the triploid hybrid cultivars. Although few genetic differences were found in this research, samples harvested from golf course putting greens had variable morphology and were clustered into three distinct phenotypic groups. The majority of off-type grasses in hybrid bermudagrass putting greens were genetically similar with variable morphological traits. Off-type grasses within golf course putting greens have the potential to compromise putting surface functionality and aesthetics.

  7. Applying Quantitative Genetic Methods to Primate Social Behavior

    PubMed Central

    Brent, Lauren J. N.

    2013-01-01

    Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839

  8. Phenotypic mutant library: potential for gene discovery

    USDA-ARS?s Scientific Manuscript database

    The rapid development of high throughput and affordable Next- Generation Sequencing (NGS) techniques has renewed interest in gene discovery using forward genetics. The conventional forward genetic approach starts with isolation of mutants with a phenotype of interest, mapping the mutation within a s...

  9. Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis.

    PubMed

    Axelsson, E Petter; Iason, Glenn R; Julkunen-Tiitto, Riitta; Whitham, Thomas G

    2015-01-01

    A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community level. The existence of community phenotypes has not been evaluated in the crowns of boreal forest trees. In this study we address the influence of tree genetics on needle chemistry and genetic x environment interactions on two gall-inducing adelgid aphids (Adelges spp. and Sacchiphantes spp.) that share the same elongating bud/shoot niche. We examine the hypothesis that the canopies of different genotypes of Norway spruce (Picea abies L.) support different community phenotypes. Three patterns emerged. First, the two gallers show clear differences in their response to host genetics and environment. Whereas genetics significantly affected the abundance of Adelges spp. galls, Sacchiphantes spp. was predominately affected by the environment suggesting that the genetic influence is stronger in Adelges spp. Second, the among family variation in genetically controlled resistance was large, i.e. fullsib families differed as much as 10 fold in susceptibility towards Adelges spp. (0.57 to 6.2 galls/branch). Also, the distribution of chemical profiles was continuous, showing both overlap as well as examples of significant differences among fullsib families. Third, despite the predicted effects of host chemistry on galls, principal component analyses using 31 different phenolic substances showed only limited association with galls and a similarity test showed that trees with similar phenolic chemical characteristics, did not host more similar communities of gallers. Nonetheless, the large genetic variation in trait expression and clear differences in how community members respond to host genetics supports our hypothesis that the canopies of Norway spruce differ in their community phenotypes.

  10. Sleep and rhythm consequences of a genetically induced loss of serotonin.

    PubMed

    Leu-Semenescu, Smaranda; Arnulf, Isabelle; Decaix, Caroline; Moussa, Fathi; Clot, Fabienne; Boniol, Camille; Touitou, Yvan; Levy, Richard; Vidailhet, Marie; Roze, Emmanuel

    2010-03-01

    A genetic deficiency in sepiapterin reductase leads to a combined deficit of serotonin and dopamine. The motor phenotype is characterized by a dopa-responsive fluctuating generalized dystonia-parkinsonism. The non-motor symptoms are poorly recognized. In particular, the effects of brain serotonin deficiency on sleep have not been thoroughly studied. We examine the sleep, sleep-wake rhythms, CSF neurotransmitters, and melatonin profile in a patient with sepiapterin reductase deficiency. The patient was a 28-year-old man with fluctuating generalized dystonia-parkinsonism caused by sepiapterin reductase deficiency. A sleep interview, wrist actigraphy, sleep log over 14 days, 48-h continuous sleep and core temperature monitoring, and measurement of CSF neurotransmitters and circadian serum melatonin and cortisol levels before and after treatment with 5-hydroxytryptophan (the precursor of serotonin) and levodopa were performed. Before treatment, the patient had mild hypersomnia with long sleep time (704 min), ultradian sleep-wake rhythm (sleep occurred every 11.8 +/- 5.3 h), organic hyperphagia, attentionlexecutive dysfunction, and no depression. The serotonin metabolism in the CSF was reduced, and the serum melatonin profile was flat, while cortisol and core temperature profiles were normal. Supplementation with 5-hydroxytryptophan, but not with levodopa, normalized serotonin metabolism in the CSF, reduced sleep time to 540 min, normalized the eating disorder and the melatonin profile, restored a circadian sleep-wake rhythm (sleep occurred every 24 +/- 1.7 h, P < 0.0001), and improved cognition. In this unique genetic paradigm, the melatonin deficiency (caused by a lack of its substrate, serotonin) may cause the ultradian sleep-wake rhythm.

  11. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial genetic networks that would implement a more general theoretical model of phenotypic switching. We will use a new cloning strategy in order to systematically assemble a large number of genetic features, such as site-specific recombination components from the R64 plasmid, which invert several coexisting DNA segments. The inversion of these segments would lead to discrete phenotypic transitions inside a living cell. These artificial phenotypic switches can be controlled precisely in experiments and may serve as a benchmark for their natural counterparts.

  12. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    ERIC Educational Resources Information Center

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  13. Fuzzy boundaries: color and gene flow patterns among parapatric lineages of the western shovel-nosed snake and taxonomic implication

    USGS Publications Warehouse

    Wood, Dustin A.; Fisher, Robert N.; Vandergast, Amy G.

    2014-01-01

    Accurate delineation of lineage diversity is increasingly important, as species distributions are becoming more reduced and threatened. During the last century, the subspecies category was often used to denote phenotypic variation within a species range and to provide a framework for understanding lineage differentiation, often considered incipient speciation. While this category has largely fallen into disuse, previously recognized subspecies often serve as important units for conservation policy and management when other information is lacking. In this study, we evaluated phenotypic subspecies hypotheses within shovel-nosed snakes on the basis of genetic data and considered how evolutionary processes such as gene flow influenced possible incongruence between phenotypic and genetic patterns. We used both traditional phylogenetic and Bayesian clustering analyses to infer range-wide genetic structure and spatially explicit analyses to detect possible boundary locations of lineage contact. Multilocus analyses supported three historically isolated groups with low to moderate levels of contemporary gene exchange. Genetic data did not support phenotypic subspecies as exclusive groups, and we detected patterns of discordance in areas where three subspecies are presumed to be in contact. Based on genetic and phenotypic evidence, we suggested that species-level diversity is underestimated in this group and we proposed that two species be recognized, Chionactis occipitalis and C. annulata. In addition, we recommend retention of two subspecific designations within C. annulata (C. a. annulata and C. a. klauberi) that reflect regional shifts in both genetic and phenotypic variation within the species. Our results highlight the difficultly in validating taxonomic boundaries within lineages that are evolving under a time-dependent, continuous process.

  14. Fuzzy boundaries: color and gene flow patterns among parapatric lineages of the western shovel-nosed snake and taxonomic implication.

    PubMed

    Wood, Dustin A; Fisher, Robert N; Vandergast, Amy G

    2014-01-01

    Accurate delineation of lineage diversity is increasingly important, as species distributions are becoming more reduced and threatened. During the last century, the subspecies category was often used to denote phenotypic variation within a species range and to provide a framework for understanding lineage differentiation, often considered incipient speciation. While this category has largely fallen into disuse, previously recognized subspecies often serve as important units for conservation policy and management when other information is lacking. In this study, we evaluated phenotypic subspecies hypotheses within shovel-nosed snakes on the basis of genetic data and considered how evolutionary processes such as gene flow influenced possible incongruence between phenotypic and genetic patterns. We used both traditional phylogenetic and Bayesian clustering analyses to infer range-wide genetic structure and spatially explicit analyses to detect possible boundary locations of lineage contact. Multilocus analyses supported three historically isolated groups with low to moderate levels of contemporary gene exchange. Genetic data did not support phenotypic subspecies as exclusive groups, and we detected patterns of discordance in areas where three subspecies are presumed to be in contact. Based on genetic and phenotypic evidence, we suggested that species-level diversity is underestimated in this group and we proposed that two species be recognized, Chionactis occipitalis and C. annulata. In addition, we recommend retention of two subspecific designations within C. annulata (C. a. annulata and C. a. klauberi) that reflect regional shifts in both genetic and phenotypic variation within the species. Our results highlight the difficultly in validating taxonomic boundaries within lineages that are evolving under a time-dependent, continuous process.

  15. Fuzzy Boundaries: Color and Gene Flow Patterns among Parapatric Lineages of the Western Shovel-Nosed Snake and Taxonomic Implication

    PubMed Central

    Wood, Dustin A.; Fisher, Robert N.; Vandergast, Amy G.

    2014-01-01

    Accurate delineation of lineage diversity is increasingly important, as species distributions are becoming more reduced and threatened. During the last century, the subspecies category was often used to denote phenotypic variation within a species range and to provide a framework for understanding lineage differentiation, often considered incipient speciation. While this category has largely fallen into disuse, previously recognized subspecies often serve as important units for conservation policy and management when other information is lacking. In this study, we evaluated phenotypic subspecies hypotheses within shovel-nosed snakes on the basis of genetic data and considered how evolutionary processes such as gene flow influenced possible incongruence between phenotypic and genetic patterns. We used both traditional phylogenetic and Bayesian clustering analyses to infer range-wide genetic structure and spatially explicit analyses to detect possible boundary locations of lineage contact. Multilocus analyses supported three historically isolated groups with low to moderate levels of contemporary gene exchange. Genetic data did not support phenotypic subspecies as exclusive groups, and we detected patterns of discordance in areas where three subspecies are presumed to be in contact. Based on genetic and phenotypic evidence, we suggested that species-level diversity is underestimated in this group and we proposed that two species be recognized, Chionactis occipitalis and C. annulata. In addition, we recommend retention of two subspecific designations within C. annulata (C. a. annulata and C. a. klauberi) that reflect regional shifts in both genetic and phenotypic variation within the species. Our results highlight the difficultly in validating taxonomic boundaries within lineages that are evolving under a time-dependent, continuous process. PMID:24848638

  16. The Quantitative Nature of Autistic Social Impairment

    PubMed Central

    Constantino, John N.

    2011-01-01

    Autism, like intellectual disability, represents the severe end of a continuous distribution of developmental impairments that occur in nature, that are highly inherited, and that are orthogonally related to other parameters of development. A paradigm shift in understanding the core social abnormality of autism as a quantitative trait rather than as a categorically-defined condition has key implications for diagnostic classification, the measurement of change over time, the search for underlying genetic and neurobiologic mechanisms, and public health efforts to identify and support affected children. Here a recent body of research in genetics and epidemiology is presented to examine a dimensional reconceptualization of autistic social impairment—as manifested in clinical autistic syndromes, the broader autism phenotype, and normal variation in the general population. It illustrates how traditional categorical approaches to diagnosis may lead to misclassification of subjects (especially girls and mildly affected boys in multiple-incidence autism families), which can be particularly damaging to biological studies, and proposes continued efforts to derive a standardized quantitative system by which to characterize this family of conditions. PMID:21289537

  17. Advanced complex trait analysis.

    PubMed

    Gray, A; Stewart, I; Tenesa, A

    2012-12-01

    The Genome-wide Complex Trait Analysis (GCTA) software package can quantify the contribution of genetic variation to phenotypic variation for complex traits. However, as those datasets of interest continue to increase in size, GCTA becomes increasingly computationally prohibitive. We present an adapted version, Advanced Complex Trait Analysis (ACTA), demonstrating dramatically improved performance. We restructure the genetic relationship matrix (GRM) estimation phase of the code and introduce the highly optimized parallel Basic Linear Algebra Subprograms (BLAS) library combined with manual parallelization and optimization. We introduce the Linear Algebra PACKage (LAPACK) library into the restricted maximum likelihood (REML) analysis stage. For a test case with 8999 individuals and 279,435 single nucleotide polymorphisms (SNPs), we reduce the total runtime, using a compute node with two multi-core Intel Nehalem CPUs, from ∼17 h to ∼11 min. The source code is fully available under the GNU Public License, along with Linux binaries. For more information see http://www.epcc.ed.ac.uk/software-products/acta. a.gray@ed.ac.uk Supplementary data are available at Bioinformatics online.

  18. Observ-OM and Observ-TAB: Universal syntax solutions for the integration, search, and exchange of phenotype and genotype information.

    PubMed

    Adamusiak, Tomasz; Parkinson, Helen; Muilu, Juha; Roos, Erik; van der Velde, Kasper Joeri; Thorisson, Gudmundur A; Byrne, Myles; Pang, Chao; Gollapudi, Sirisha; Ferretti, Vincent; Hillege, Hans; Brookes, Anthony J; Swertz, Morris A

    2012-05-01

    Genetic and epidemiological research increasingly employs large collections of phenotypic and molecular observation data from high quality human and model organism samples. Standardization efforts have produced a few simple formats for exchange of these various data, but a lightweight and convenient data representation scheme for all data modalities does not exist, hindering successful data integration, such as assignment of mouse models to orphan diseases and phenotypic clustering for pathways. We report a unified system to integrate and compare observation data across experimental projects, disease databases, and clinical biobanks. The core object model (Observ-OM) comprises only four basic concepts to represent any kind of observation: Targets, Features, Protocols (and their Applications), and Values. An easy-to-use file format (Observ-TAB) employs Excel to represent individual and aggregate data in straightforward spreadsheets. The systems have been tested successfully on human biobank, genome-wide association studies, quantitative trait loci, model organism, and patient registry data using the MOLGENIS platform to quickly setup custom data portals. Our system will dramatically lower the barrier for future data sharing and facilitate integrated search across panels and species. All models, formats, documentation, and software are available for free and open source (LGPLv3) at http://www.observ-om.org. © 2012 Wiley Periodicals, Inc.

  19. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes.

    PubMed

    Gunter, Helen M; Schneider, Ralf F; Karner, Immanuel; Sturmbauer, Christian; Meyer, Axel

    2017-12-01

    Adaptive radiations are characterized by adaptive diversification intertwined with rapid speciation within a lineage resulting in many ecologically specialized, phenotypically diverse species. It has been proposed that adaptive radiations can originate from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, facilitating ecologically driven phenotypic diversification that is ultimately fixed through genetic assimilation of gene regulatory regions. This study aimed to investigate how phenotypic plasticity is reflected in gene expression patterns in the trophic apparatus of several lineages of East African cichlid fishes, and whether the observed patterns support genetic assimilation. This investigation used a split brood experimental design to compare adaptive plasticity in species from within and outside of adaptive radiations. The plastic response was induced in the crushing pharyngeal jaws through feeding individuals either a hard or soft diet. We find that nonradiating, basal lineages show higher levels of adaptive morphological plasticity than the derived, radiated lineages, suggesting that these differences have become partially genetically fixed during the formation of the adaptive radiations. Two candidate genes that may have undergone genetic assimilation, gif and alas1, were identified, in addition to alterations in the wiring of LPJ patterning networks. Taken together, our results suggest that genetic assimilation may have dampened the inducibility of plasticity related genes during the adaptive radiations of East African cichlids, flattening the reaction norms and canalizing their feeding phenotypes, driving adaptation to progressively more narrow ecological niches. © 2017 John Wiley & Sons Ltd.

  20. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects

    PubMed Central

    Choi, Lin; DeNieu, Michael; Sonnenschein, Anne; Hummel, Kristen; Marier, Christian; Victory, Andrew; Porter, Cody; Mammel, Anna; Holms, Julie; Sivaratnam, Gayatri

    2017-01-01

    For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis. PMID:29166655

  1. Common Psychiatric Disorders and Caffeine Use, Tolerance, and Withdrawal: An Examination of Shared Genetic and Environmental Effects

    PubMed Central

    Bergin, Jocilyn E.; Kendler, Kenneth S.

    2012-01-01

    Background Previous studies examined caffeine use and caffeine dependence and risk for the symptoms, or diagnosis, of psychiatric disorders. The current study aimed to determine if generalized anxiety disorder (GAD), panic disorder, phobias, major depressive disorder (MDD), anorexia nervosa (AN), or bulimia nervosa (BN) shared common genetic or environmental factors with caffeine use, caffeine tolerance, or caffeine withdrawal. Method Using 2,270 women from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, bivariate Cholesky decomposition models were used to determine if any of the psychiatric disorders shared genetic or environmental factors with caffeine use phenotypes. Results GAD, phobias, and MDD shared genetic factors with caffeine use, with genetic correlations estimated to be 0.48, 0.25, and 0.38, respectively. Removal of the shared genetic and environmental parameter for phobias and caffeine use resulted in a significantly worse fitting model. MDD shared unique environmental factors (environmental correlation = 0.23) with caffeine tolerance; the genetic correlation between AN and caffeine tolerance and BN and caffeine tolerance were 0.64 and 0.49, respectively. Removal of the genetic and environmental correlation parameters resulted in significantly worse fitting models for GAD, phobias, MDD, AN, and BN, which suggested that there was significant shared liability between each of these phenotypes and caffeine tolerance. GAD had modest genetic correlations with caffeine tolerance, 0.24, and caffeine withdrawal, 0.35. Conclusions There was suggestive evidence of shared genetic and environmental liability between psychiatric disorders and caffeine phenotypes. This might inform us about the etiology of the comorbidity between these phenotypes. PMID:22854069

  2. Common psychiatric disorders and caffeine use, tolerance, and withdrawal: an examination of shared genetic and environmental effects.

    PubMed

    Bergin, Jocilyn E; Kendler, Kenneth S

    2012-08-01

    Previous studies examined caffeine use and caffeine dependence and risk for the symptoms, or diagnosis, of psychiatric disorders. The current study aimed to determine if generalized anxiety disorder (GAD), panic disorder, phobias, major depressive disorder (MDD), anorexia nervosa (AN), or bulimia nervosa (BN) shared common genetic or environmental factors with caffeine use, caffeine tolerance, or caffeine withdrawal. Using 2,270 women from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, bivariate Cholesky decomposition models were used to determine if any of the psychiatric disorders shared genetic or environmental factors with caffeine use phenotypes. GAD, phobias, and MDD shared genetic factors with caffeine use, with genetic correlations estimated to be 0.48, 0.25, and 0.38, respectively. Removal of the shared genetic and environmental parameter for phobias and caffeine use resulted in a significantly worse fitting model. MDD shared unique environmental factors (environmental correlation=0.23) with caffeine tolerance; the genetic correlation between AN and caffeine tolerance and BN and caffeine tolerance were 0.64 and 0.49, respectively. Removal of the genetic and environmental correlation parameters resulted in significantly worse fitting models for GAD, phobias, MDD, AN, and BN, which suggested that there was significant shared liability between each of these phenotypes and caffeine tolerance. GAD had modest genetic correlations with caffeine tolerance, 0.24, and caffeine withdrawal, 0.35. There was suggestive evidence of shared genetic and environmental liability between psychiatric disorders and caffeine phenotypes. This might inform us about the etiology of the comorbidity between these phenotypes.

  3. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype.

    PubMed

    Dowling, Damian K

    2014-04-01

    Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2013. Published by Elsevier B.V.

  4. Phenotypic approaches to drought in cassava: review

    PubMed Central

    Okogbenin, Emmanuel; Setter, Tim L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2012-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12–18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID:23717282

  5. Genetic aspects of autism spectrum disorders: insights from animal models

    PubMed Central

    Banerjee, Swati; Riordan, Maeveen; Bhat, Manzoor A.

    2014-01-01

    Autism spectrum disorders (ASDs) are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development, and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy, and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute toward the formation, stabilization, and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD. PMID:24605088

  6. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density

    PubMed Central

    Wasson, Anton P.; Chiu, Grace S.; Zwart, Alexander B.; Binns, Timothy R.

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly “above ground,” little progress has been made “below ground”; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity. PMID:28303148

  7. Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.

    PubMed

    Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst

    2016-09-01

    The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.

  8. Genetic and environmental pathways to complex diseases.

    PubMed

    Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J

    2009-05-05

    Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.

  9. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes

    PubMed Central

    Edmunds, Richard C.; Su, Baofeng; Balhoff, James P.; Eames, B. Frank; Dahdul, Wasila M.; Lapp, Hilmar; Lundberg, John G.; Vision, Todd J.; Dunham, Rex A.; Mabee, Paula M.; Westerfield, Monte

    2016-01-01

    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251

  10. Text-based phenotypic profiles incorporating biochemical phenotypes of inborn errors of metabolism improve phenomics-based diagnosis.

    PubMed

    Lee, Jessica J Y; Gottlieb, Michael M; Lever, Jake; Jones, Steven J M; Blau, Nenad; van Karnebeek, Clara D M; Wasserman, Wyeth W

    2018-05-01

    Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contributions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.

  11. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities

    PubMed Central

    Chong, Jessica X.; Buckingham, Kati J.; Jhangiani, Shalini N.; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D.; Harrell, Tanya M.; McMillin, Margaret J.; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H.; Doheny, Kimberly; Scott, Alan F.; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P. Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E.; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V. Reid; Tabor, Holly K.; Leal, Suzanne M.; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A.; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R.; Lifton, Richard P.; Valle, David; Nickerson, Deborah A.; Bamshad, Michael J.

    2015-01-01

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. PMID:26166479

  12. Genetics and child psychiatry: I Advances in quantitative and molecular genetics.

    PubMed

    Rutter, M; Silberg, J; O'Connor, T; Simonoff, E

    1999-01-01

    Advances in quantitative psychiatric genetics as a whole are reviewed with respect to conceptual and methodological issues in relation to statistical model fitting, new genetic designs, twin and adoptee studies, definition of the phenotype, pervasiveness of genetic influences, pervasiveness of environmental influences, shared and nonshared environmental effects, and nature-nurture interplay. Advances in molecular genetics are discussed in relation to the shifts in research strategies to investigate multifactorial disorders (affected relative linkage designs, association strategies, and quantitative trait loci studies); new techniques and identified genetic mechanisms (expansion of trinucleotide repeats, genomic imprinting, mitochondrial DNA, fluorescent in-situ hybridisation, behavioural phenotypes, and animal models); and the successful localisation of genes.

  13. Gene Mutations and Genomic Rearrangements in the Mouse as a Result of Transposon Mobilization from Chromosomal Concatemers

    PubMed Central

    Geurts, Aron M; Collier, Lara S; Geurts, Jennifer L; Oseth, Leann L; Bell, Matthew L; Mu, David; Lucito, Robert; Godbout, Susan A; Green, Laura E; Lowe, Scott W; Hirsch, Betsy A; Leinwand, Leslie A; Largaespada, David A

    2006-01-01

    Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes. PMID:17009875

  14. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication

    PubMed Central

    vonHoldt, Bridgett M.; Pollinger, John P.; Lohmueller, Kirk E.; Han, Eunjung; Parker, Heidi G.; Quignon, Pascale; Degenhardt, Jeremiah D.; Boyko, Adam R.; Earl, Dent A.; Auton, Adam; Reynolds, Andy; Bryc, Kasia; Brisbin, Abra; Knowles, James C.; Mosher, Dana S.; Spady, Tyrone C.; Elkahloun, Abdel; Geffen, Eli; Pilot, Malgorzata; Jedrzejewski, Wlodzimierz; Greco, Claudia; Randi, Ettore; Bannasch, Danika; Wilton, Alan; Shearman, Jeremy; Musiani, Marco; Cargill, Michelle; Jones, Paul G.; Qian, Zuwei; Huang, Wei; Ding, Zhao-Li; Zhang, Ya-ping; Bustamante, Carlos D.; Ostrander, Elaine A.; Novembre, John; Wayne, Robert K.

    2010-01-01

    Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication1,2. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data3. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity. PMID:20237475

  15. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication.

    PubMed

    Vonholdt, Bridgett M; Pollinger, John P; Lohmueller, Kirk E; Han, Eunjung; Parker, Heidi G; Quignon, Pascale; Degenhardt, Jeremiah D; Boyko, Adam R; Earl, Dent A; Auton, Adam; Reynolds, Andy; Bryc, Kasia; Brisbin, Abra; Knowles, James C; Mosher, Dana S; Spady, Tyrone C; Elkahloun, Abdel; Geffen, Eli; Pilot, Malgorzata; Jedrzejewski, Wlodzimierz; Greco, Claudia; Randi, Ettore; Bannasch, Danika; Wilton, Alan; Shearman, Jeremy; Musiani, Marco; Cargill, Michelle; Jones, Paul G; Qian, Zuwei; Huang, Wei; Ding, Zhao-Li; Zhang, Ya-Ping; Bustamante, Carlos D; Ostrander, Elaine A; Novembre, John; Wayne, Robert K

    2010-04-08

    Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.

  16. From psychiatric disorders to animal models: a bidirectional and dimensional approach

    PubMed Central

    Donaldson, Zoe. R.; Hen, René

    2014-01-01

    Psychiatric genetics research is bidirectional in nature, with human and animal studies becoming more closely integrated as techniques for genetic manipulations allow for more subtle exploration of disease phenotypes. This synergy, however, highlights the importance of considering the way in which we approach the genotype-phenotype relationship. In particular, the nosological divide of psychiatric illness, while clinically relevant, is not directly translatable in animal models. For instance, mice will never fully re-capitulate the broad criteria for many psychiatric disorders; nor will they have guilty ruminations, suicidal thoughts, or rapid speech. Instead, animal models have been and continue to provide a means to explore dimensions of psychiatric disorders in order to identify neural circuits and mechanisms underlying disease-relevant phenotypes. Thus, the genetic investigation of psychiatric illness will yield the greatest insights if efforts continue to identify and utilize biologically valid phenotypes across species. In this review we discuss the progress to date and the future efforts that will enhance translation between human and animal studies, including the identification of intermediate phenotypes that can be studied across species, as well as the importance of refined modeling of human disease-associated genetic variation in mice and other animal models. PMID:24650688

  17. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  18. A strategy to apply quantitative epistasis analysis on developmental traits.

    PubMed

    Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei

    2017-05-15

    Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.

  19. Selection against canine hip dysplasia: success or failure?

    PubMed

    Wilson, Bethany; Nicholas, Frank W; Thomson, Peter C

    2011-08-01

    Canine hip dysplasia (CHD) is a multifactorial skeletal disorder which is very common in pedigree dogs and represents a huge concern for canine welfare. Control schemes based on selective breeding have been in operation for decades. The aim of these schemes is to reduce the impact of CHD on canine welfare by selecting for reduced radiographic evidence of CHD pathology as assessed by a variety of phenotypes. There is less information regarding the genotypic correlation between these phenotypes and the impact of CHD on canine welfare. Although the phenotypes chosen as the basis for these control schemes have displayed heritable phenotypic variation in many studies, success in achieving improvement in the phenotypes has been mixed. There is significant room for improvement in the current schemes through the use of estimated breeding values (EBVs), which can combine a dog's CHD phenotype with CHD phenotypes of relatives, other phenotypes as they are proven to be genetically correlated with CHD (especially elbow dysplasia phenotypes), and information from genetic tests for population-relevant DNA markers, as such tests become available. Additionally, breed clubs should be encouraged and assisted to formulate rational, evidenced-based breeding recommendations for CHD which suit their individual circumstances and dynamically to adjust the breeding recommendations based on continuous tracking of CHD genetic trends. These improvements can assist in safely and effectively reducing the impact of CHD on pedigree dog welfare. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population.

    PubMed

    Aykanat, Tutku; Johnston, Susan E; Orell, Panu; Niemelä, Eero; Erkinaro, Jaakko; Primmer, Craig R

    2015-10-01

    Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high-resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)-based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine-scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST  = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late-maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence. © 2015 John Wiley & Sons Ltd.

  1. Hsp90 and environmental stress transform the adaptive value of natural genetic variation.

    PubMed

    Jarosz, Daniel F; Lindquist, Susan

    2010-12-24

    How can species remain unaltered for long periods yet also undergo rapid diversification? By linking genetic variation to phenotypic variation via environmental stress, the Hsp90 protein-folding reservoir might promote both stasis and change. However, the nature and adaptive value of Hsp90-contingent traits remain uncertain. In ecologically and genetically diverse yeasts, we find such traits to be both common and frequently adaptive. Most are based on preexisting variation, with causative polymorphisms occurring in coding and regulatory sequences alike. A common temperature stress alters phenotypes similarly. Both selective inhibition of Hsp90 and temperature stress increase correlations between genotype and phenotype. This system broadly determines the adaptive value of standing genetic variation and, in so doing, has influenced the evolution of current genomes.

  2. Model Invariance across Genders of the Broad Autism Phenotype Questionnaire

    ERIC Educational Resources Information Center

    Broderick, Neill; Wade, Jordan L.; Meyer, J. Patrick; Hull, Michael; Reeve, Ronald E.

    2015-01-01

    ASD is one of the most heritable neuropsychiatric disorders, though comprehensive genetic liability remains elusive. To facilitate genetic research, researchers employ the concept of the broad autism phenotype (BAP), a milder presentation of traits in undiagnosed relatives. Research suggests that the BAP Questionnaire (BAPQ) demonstrates…

  3. Mining natural variation for maize improvement: Selection on phenotypes and genes

    USDA-ARS?s Scientific Manuscript database

    Maize is highly genetically and phenotypically diverse. Tropical maize and teosinte are important genetic resources that harbor unique alleles not found in temperate maize hybrids. To access these resources, breeders must be able to extract favorable unique alleles from tropical maize and teosinte f...

  4. Disease Modeling via Large-Scale Network Analysis

    DTIC Science & Technology

    2015-05-20

    SECURITY CLASSIFICATION OF: A central goal of genetics is to learn how the genotype of an organism determines its phenotype. We address the implicit...guarantees for the methods. In the past, we have developed predictive methods general enough to apply to potentially any genetic trait, varying from... genetics is to learn how the genotype of an organism determines its phenotype. We address the implicit problem of predicting the association of genes with

  5. Shell shape variation of queen conch Strombus gigas (Mesograstropoda: Strombidae) from Southwest Caribbean.

    PubMed

    Márquez, Edna Judith; Restrepo-Escobar, Natalia; Montoya-Herrera, Francisco Luis

    2016-12-01

    The endangered species Strombus gigas is a marine gastropod of significant economic importance through the Greater Caribbean region. In contrast to phenotypic plasticity, the role of genetics on shell variations in S. gigas has not been addressed so far, despite its importance in evolution, management and conservation of this species. This work used geometric morphometrics to investigate the phenotypic variation of 219 shells of S. gigas from eight sites of the Colombian Southwest Caribbean. Differences in mean size between sexes and among sites were contrasted by analysis of variance. Allometry was tested by multivariate regression and the hypothesis of common slope was contrasted by covariance multivariate analysis. Differences in the shell shape among sites were analyzed by principal component analysis. Sexual size dimorphism was not significant, whereas sexual shape dimorphism was significant and variable across sites. Differences in the shell shape among sites were concordant with genetic differences based on microsatellite data, supporting its genetic background. Besides, differences in the shell shape between populations genetically similar suggest a role of phenotypic plasticity in the morphometric variation of the shell shape. These outcomes evidence the role of genetic background and phenotypic plasticity in the shell shape of S. gigas. Thus, geometric morphometrics of shell shape may constitute a complementary tool to explore the genetic diversity of this species.

  6. The effect of loss of O-antigen ligase on phagocytic susceptibility of motile and non-motile Pseudomonas aeruginosa.

    PubMed

    Demirdjian, Sally; Schutz, Kristin; Wargo, Matthew J; Lam, Joseph S; Berwin, Brent

    2017-12-01

    The bacterial pathogen Pseudomonas aeruginosa undergoes adaptation and selection over the course of chronic respiratory tract infections which results in repeatedly-observed phenotypic changes that are proposed to enable its persistence. Two of the clinically significant P. aeruginosa phenotypic changes are loss of flagellar motility and modifications to LPS structure, including loss of O-antigen expression. The effect of loss of O-antigen, frequently described as conversion from smooth to rough LPS, and the combined effect of loss of motility and O-antigen on phagocytic susceptibility by immune cells remain unknown. To address this, we generated genetic deletion mutants of waaL, which encodes the O-antigen ligase responsible for linking O-antigen to lipid A-core oligosaccharide, in both motile and non-motile P. aeruginosa strains. With the use of these bacterial strains we provide the first demonstration that, despite a progressive selection for P. aeruginosa with rough LPS during chronic pulmonary infections, loss of the LPS O-antigen does not confer phagocytic resistance in vitro. However, use of the waaLmotABmotCD mutant revealed that loss of motility confers resistance to phagocytosis regardless of the smooth or rough LPS phenotype. These findings reveal how the O-antigen of P. aeruginosa can influence bacterial clearance during infection and expand our current knowledge about the impact of bacterial phenotypic changes during chronic infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Core questions in domestication research

    PubMed Central

    Zeder, Melinda A.

    2015-01-01

    The domestication of plants and animals is a key transition in human history, and its profound and continuing impacts are the focus of a broad range of transdisciplinary research spanning the physical, biological, and social sciences. Three central aspects of domestication that cut across and unify this diverse array of research perspectives are addressed here. Domestication is defined as a distinctive coevolutionary, mutualistic relationship between domesticator and domesticate and distinguished from related but ultimately different processes of resource management and agriculture. The relative utility of genetic, phenotypic, plastic, and contextual markers of evolving domesticatory relationships is discussed. Causal factors are considered, and two leading explanatory frameworks for initial domestication of plants and animals, one grounded in optimal foraging theory and the other in niche-construction theory, are compared. PMID:25713127

  8. Common genetic variation drives molecular heterogeneity in human iPSCs.

    PubMed

    Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J

    2017-06-15

    Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.

  9. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  10. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  11. Common genetic variation drives molecular heterogeneity in human iPSCs

    PubMed Central

    Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard

    2017-01-01

    Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study outlines the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of rare, genomic copy number mutations that are repeatedly observed in iPSC reprogramming and present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells. PMID:28489815

  12. Abnormal Neural Activation to Faces in the Parents of Children with Autism

    PubMed Central

    Yucel, G. H.; Belger, A.; Bizzell, J.; Parlier, M.; Adolphs, R.; Piven, J.

    2015-01-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the “Broad Autism Phenotype ” (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality (“BAP+”). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP. PMID:25056573

  13. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

    PubMed Central

    Kim, Ki Chan; Gonzales, Edson Luck; Lázaro, María T.; Choi, Chang Soon; Bahn, Geon Ho; Yoo, Hee Jeong; Shin, Chan Young

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance. PMID:27133257

  14. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  15. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa.

    PubMed

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M

    2017-09-01

    The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.

  16. Identification of Genetic Markers of the Invasive Phenotype in Human Breast Cancer

    DTIC Science & Technology

    2000-10-01

    Mandinova A, Atar D, Schafer BW, Spiess M, Aebi U, Heizmann CW: J, Schnitt S, Livingston DM: Location of BRCA1 in human breast and Distinct...Genetic Markers of the Invasive Phenotype in Human Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Peter H. Watson CONTRACTING ORGANIZATION: University of...Markers of the Invasive Phenotype DAMD17-97-1-7320 in Human Breast Cancer 6. AUTHOR(S) Dr. Peter H. Watson 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS

  17. Quantitative genetics of human morphology and obesity-related phenotypes in nuclear families from the Greater Bilbao (Spain): comparison with other populations.

    PubMed

    Jelenkovic, Aline; Poveda, Alaitz; Rebato, Esther

    2011-07-01

    It is well established that variation of soft-tissue traits is less influenced by the genetic component than skeletal traits. However, it is still unclear whether heritabilities (h(2)) of obesity-related phenotypes present a common pattern across populations. To estimate familial resemblance and heritability of body size, shape and composition phenotypes and to compare these results with those from other populations. The subject group consisted of 533 nuclear families living in Greater Bilbao and included 1702 individuals aged 2-61 years. Familial correlations and h(2) were estimated for 29 anthropometric phenotypes (19 simple measures, three derived factors, four obesity indices and the three Heath-Carter somatotype components) using MAN and SOLAR programmes. All phenotypes were influenced by additive genetic factors with narrow sense heritabilities ranging from 0.28-0.69. In general, skeletal traits exhibited the highest h(2), whereas phenotypes defining the amount of adipose tissue, particularly central fat, were less determined by genetic factors. Familial correlations and heritability estimates of body morphology and composition from the Greater Bilbao sample were within the range observed in other studies. The lower heritability detected for central fat has also been found in some other populations, but further investigations in different populations using the same anthropometric traits and estimation methods are needed in order to obtain more robust conclusions.

  18. Phenome-Wide Association Studies as a Tool to Advance Precision Medicine

    PubMed Central

    Denny, Joshua C.; Bastarache, Lisa; Roden, Dan M.

    2017-01-01

    Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records (EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and phenotypes) using only data collected as a by-product of typical health care. In addition to disease and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and developing reverse genetics approaches such as phenome-wide association studies (PheWASs). PheWASs are designed to survey which of many phenotypes may be associated with a given genetic variant. PheWAS methods have been validated through replication of hundreds of known genotype-phenotype associations, and their use has differentiated between true pleiotropy and clinical comorbidity, added context to genetic discoveries, and helped define disease subtypes, and may also help repurpose medications. PheWAS methods have also proven to be useful with research-collected data. Future efforts that integrate broad, robust collection of phenotype data (e.g., EHR data) with purpose-collected research data in combination with a greater understanding of EHR data will create a rich resource for increasingly more efficient and detailed genome-phenome analysis to usher in new discoveries in precision medicine. PMID:27147087

  19. Adaptation and colonization history affect the evolution of clines in two introduced species.

    PubMed

    Keller, Stephen R; Sowell, Dexter R; Neiman, Maurine; Wolfe, Lorne M; Taylor, Douglas R

    2009-08-01

    Phenotypic and genetic clines have long been synonymous with adaptive evolution. However, other processes (for example, migration, range expansion, invasion) may generate clines in traits or loci across geographical and environmental gradients. It is therefore important to distinguish between clines that represent adaptive evolution and those that result from selectively neutral demographic or genetic processes. We tested for the differentiation of phenotypic traits along environmental gradients using two species in the genus Silene, whilst statistically controlling for colonization history and founder effects. We sampled seed families from across the native and introduced ranges, genotyped individuals and estimated phenotypic differentiation in replicated common gardens. The results suggest that post-glacial expansion of S. vulgaris and S. latifolia involved both neutral and adaptive genetic differentiation (clines) of life history traits along major axes of environmental variation in Europe and North America. Phenotypic clines generally persisted when tested against the neutral expectation, although some clines disappeared (and one cline emerged) when the effects of genetic ancestry were statistically removed. Colonization history, estimated using genetic markers, is a useful null model for tests of adaptive trait divergence, especially during range expansion and invasion when selection and gene flow may not have reached equilibrium.

  20. Maintenance of Genetic Variability under Strong Stabilizing Selection: A Two-Locus Model

    PubMed Central

    Gavrilets, S.; Hastings, A.

    1993-01-01

    We study a two locus model with additive contributions to the phenotype to explore the relationship between stabilizing selection and recombination. We show that if the double heterozygote has the optimum phenotype and the contributions of the loci to the trait are different, then any symmetric stabilizing selection fitness function can maintain genetic variability provided selection is sufficiently strong relative to linkage. We present results of a detailed analysis of the quadratic fitness function which show that selection need not be extremely strong relative to recombination for the polymorphic equilibria to be stable. At these polymorphic equilibria the mean value of the trait, in general, is not equal to the optimum phenotype, there exists a large level of negative linkage disequilibrium which ``hides'' additive genetic variance, and different equilibria can be stable simultaneously. We analyze dependence of different characteristics of these equilibria on the location of optimum phenotype, on the difference in allelic effect, and on the strength of selection relative to recombination. Our overall result that stabilizing selection does not necessarily eliminate genetic variability is compatible with some experimental results where the lines subject to strong stabilizing selection did not have significant reductions in genetic variability. PMID:8514145

  1. Differential detection of genetic Loci underlying stem and root lignin content in Populus.

    PubMed

    Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Sykes, Robert; Davis, Mark; Wullschleger, Stan D; Tuskan, Gerald A

    2010-11-22

    In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.

  2. Motor impairment: a new ethanol withdrawal phenotype in mice

    PubMed Central

    Philibin, Scott D.; Cameron, Andy J.; Metten, Pamela; Crabbe, John C.

    2015-01-01

    Alcoholism is a complex disorder with genetic and environmental risk factors. The presence of withdrawal symptoms is one criterion for alcohol dependence. Genetic animal models have followed a reductionist approach by quantifying various effects of ethanol withdrawal separately. Different ethanol withdrawal symptoms may have distinct genetic etiologies, and therefore differentiating distinct neurobiological mechanisms related to separate signs of withdrawal would increase our understanding of various aspects of the complex phenotype. This study establishes motor incoordination as a new phenotype of alcohol withdrawal in mice. Mice were made physically dependent on ethanol by exposure to ethanol vapor for 72 h. The effects of ethanol withdrawal in mice from different genetic backgrounds were measured on the accelerating rotarod, a simple motor task. Ethanol withdrawal disrupted accelerating rotarod behavior in mice. The disruptive effects of withdrawal suggest a performance rather than a learning deficit. Inbred strain comparisons suggest genetic differences in magnitude of this withdrawal phenotype. The withdrawal-induced deficits were not correlated with the selection response difference in handling convulsion severity in selectively bred Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant lines. The accelerating rotarod seems to be a simple behavioral measure of ethanol withdrawal that is suitable for comparing genotypes. PMID:18690115

  3. Aberrant Proteostasis of BMAL1 Underlies Circadian Abnormalities in a Paradigmatic mTOR-opathy.

    PubMed

    Lipton, Jonathan O; Boyle, Lara M; Yuan, Elizabeth D; Hochstrasser, Kevin J; Chifamba, Fortunate F; Nathan, Ashwin; Tsai, Peter T; Davis, Fred; Sahin, Mustafa

    2017-07-25

    Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder characterized by mutations in either the TSC1 or TSC2 genes, whose products form a critical inhibitor of the mechanistic target of rapamycin (mTOR). Loss of TSC1/2 gene function renders an mTOR-overactivated state. Clinically, TSC manifests with epilepsy, intellectual disability, autism, and sleep dysfunction. Here, we report that mouse models of TSC have abnormal circadian rhythms. We show that mTOR regulates the proteostasis of the core clock protein BMAL1, affecting its translation, degradation, and subcellular localization. This results in elevated levels of BMAL1 and a dysfunctional clock that displays abnormal timekeeping under constant conditions and exaggerated responses to phase resetting. Genetically lowering the dose of BMAL1 rescues circadian behavioral phenotypes in TSC mouse models. These findings indicate that BMAL1 deregulation is a feature of the mTOR-activated state and suggest a molecular mechanism for mitigating circadian phenotypes in a neurodevelopmental disorder. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model

    PubMed Central

    Sojod, Bouchra; Chateau, Danielle; Mueller, Christopher G.; Babajko, Sylvie; Berdal, Ariane; Lézot, Frédéric; Castaneda, Beatriz

    2017-01-01

    Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg) and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases. PMID:28596739

  5. Extending the ‘cross-disorder’ relevance of executive functions to dimensional neuropsychiatric traits in youth

    PubMed Central

    McGrath, Lauren M.; Braaten, Ellen B.; Doty, Nathan D.; Willoughby, Brian L.; Wilson, H. Kent; O’Donnell, Ellen H.; Colvin, Mary K.; Ditmars, Hillary L.; Blais, Jessica E.; Hill, Erin N.; Metzger, Aaron; Perlis, Roy H.; Willcutt, Erik G.; Smoller, Jordan W.; Waldman, Irwin D.; Faraone, Stephen V.; Seidman, Larry J.; Doyle, Alysa E.

    2016-01-01

    Background Evidence that different neuropsychiatric conditions share genetic liability has increased interest in phenotypes with ‘cross-disorder’ relevance, as they may contribute to revised models of psychopathology. Cognition is a promising construct for study; yet, evidence that the same cognitive functions are impaired across different forms of psychopathology comes primarily from separate studies of individual categorical diagnoses versus controls. Given growing support for dimensional models that cut across traditional diagnostic boundaries, we aimed to determine, within a single cohort, whether performance on measures of executive functions (EFs) predicted dimensions of different psychopathological conditions known to share genetic liability. Methods Data are from 393 participants, ages 8 to 17, consecutively enrolled in the Longitudinal Study of Genetic Influences on Cognition (LOGIC). This project is conducting deep phenotyping and genomic analyses in youth referred for neuropsychiatric evaluation. Using structural equation modeling, we examined whether EFs predicted variation in core dimensions of autism spectrum disorder, bipolar illness and schizophrenia, including social responsiveness, mania/emotion regulation, and positive symptoms of psychosis, respectively. Results We modeled three cognitive factors (working memory, shifting, and executive processing speed) that loaded on a second-order EF factor. The EF factor predicted variation in our three target traits but not in a negative control (somatization). Moreover, this EF factor was primarily associated with the overlapping (rather than unique) variance across the three outcome measures, suggesting it related to a general increase in psychopathology symptoms across those dimensions. Conclusions Findings extend support for the relevance of cognition to neuropsychiatric conditions that share underlying genetic risk. They suggest that higher-order cognition, including EFs, relate to the dimensional spectrum of each of these disorders and not just the clinical diagnoses. Moreover, results have implications for bottom-up models linking genes, cognition, and a general psychopathology liability. PMID:26411927

  6. Phenotypic characterization and genetic diversity of Flavobacterium columnare isolated from red tilapia, Oreochromis sp. in Thailand

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the etiologic agent of columnaris disease and severely affects various freshwater aquaculture fish species worldwide. The objectives of this study were to determine the phenotypic characteristics and genetic variability among F. columnare isolates isolated from red tilapi...

  7. Logistics for Working Together to Facilitate Genomic/Quantitative Genetic Prediction

    USDA-ARS?s Scientific Manuscript database

    The incorporation of DNA tests into the national cattle evaluation system will require estimation of variances of and covariances among the additive genetic components of the DNA tests and the phenotypic traits they are intended to predict. Populations with both DNA test results and phenotypes will ...

  8. Naturally occurring variation in tadpole morphology and performance linked to predator regime

    Treesearch

    James B. Johnson; Daniel Saenz; Cory K. Adams; Toby J. Hibbitts

    2015-01-01

    Divergent natural selection drives a considerable amount of the phenotypic and genetic variation observed in natural populations. For example, variation in the predator community can generate conflicting selection on behavioral, life-history, morphological, and performance traits. Differences in predator regime can subsequently increase phenotypic and genetic...

  9. Environmental change, phenotypic plasticity, and genetic compensation.

    PubMed

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  10. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement.

    PubMed

    Cobb, Joshua N; Declerck, Genevieve; Greenberg, Anthony; Clark, Randy; McCouch, Susan

    2013-04-01

    More accurate and precise phenotyping strategies are necessary to empower high-resolution linkage mapping and genome-wide association studies and for training genomic selection models in plant improvement. Within this framework, the objective of modern phenotyping is to increase the accuracy, precision and throughput of phenotypic estimation at all levels of biological organization while reducing costs and minimizing labor through automation, remote sensing, improved data integration and experimental design. Much like the efforts to optimize genotyping during the 1980s and 1990s, designing effective phenotyping initiatives today requires multi-faceted collaborations between biologists, computer scientists, statisticians and engineers. Robust phenotyping systems are needed to characterize the full suite of genetic factors that contribute to quantitative phenotypic variation across cells, organs and tissues, developmental stages, years, environments, species and research programs. Next-generation phenotyping generates significantly more data than previously and requires novel data management, access and storage systems, increased use of ontologies to facilitate data integration, and new statistical tools for enhancing experimental design and extracting biologically meaningful signal from environmental and experimental noise. To ensure relevance, the implementation of efficient and informative phenotyping experiments also requires familiarity with diverse germplasm resources, population structures, and target populations of environments. Today, phenotyping is quickly emerging as the major operational bottleneck limiting the power of genetic analysis and genomic prediction. The challenge for the next generation of quantitative geneticists and plant breeders is not only to understand the genetic basis of complex trait variation, but also to use that knowledge to efficiently synthesize twenty-first century crop varieties.

  11. The Genetic Overlap of Attention-Deficit/Hyperactivity Disorder and Autistic-like Traits: an Investigation of Individual Symptom Scales and Cognitive markers.

    PubMed

    Pinto, Rebecca; Rijsdijk, Fruhling; Ronald, Angelica; Asherson, Philip; Kuntsi, Jonna

    2016-02-01

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASDs) frequently co-occur. However, due to previous exclusionary diagnostic criteria, little is known about the underlying causes of this covariation. Twin studies assessing ADHD symptoms and autistic-like traits (ALTs) suggest substantial genetic overlap, but have largely failed to take into account the genetic heterogeneity of symptom subscales. This study aimed to clarify the phenotypic and genetic relations between ADHD and ASD by distinguishing between symptom subscales that characterise the two disorders. Moreover, we aimed to investigate whether ADHD-related cognitive impairments show a relationship with ALT symptom subscales; and whether potential shared cognitive impairments underlie the genetic risk shared between the ADHD and ALT symptoms. Multivariate structural equation modelling was conducted on a population-based sample of 1312 twins aged 7-10. Social-communication ALTs correlated moderately with both ADHD symptom domains (phenotypic correlations around 0.30) and showed substantial genetic overlap with both inattention and hyperactivity-impulsivity (genetic correlation = 0.52 and 0.44, respectively). In addition to previously reported associations with ADHD traits, reaction time variability (RTV) showed significant phenotypic (0.18) and genetic (0.32) association with social-communication ALTs. RTV captured a significant proportion (24 %) of the genetic influences shared between inattention and social-communication ALTs. Our findings suggest that social-communication ALTs underlie the previously observed phenotypic and genetic covariation between ALTs and ADHD symptoms. RTV is not specific to ADHD symptoms, but is also associated with social-communication ALTs and can, in part, contribute to an explanation of the co-occurrence of ASD and ADHD.

  12. Asthma phenotypes in childhood.

    PubMed

    Reddy, Monica B; Covar, Ronina A

    2016-04-01

    This review describes the literature over the past 18 months that evaluated childhood asthma phenotypes, highlighting the key aspects of these studies, and comparing these studies to previous ones in this area. Recent studies on asthma phenotypes have identified new phenotypes on the basis of statistical analyses (using cluster analysis and latent class analysis methodology) and have evaluated the outcomes and associated risk factors of previously established early childhood asthma phenotypes that are based on asthma onset and patterns of wheezing illness. There have also been investigations focusing on immunologic, physiologic, and genetic correlates of various phenotypes, as well as identification of subphenotypes of severe childhood asthma. Childhood asthma remains a heterogeneous condition, and investigations into these various presentations, risk factors, and outcomes are important since they can offer therapeutic and prognostic relevance. Further investigation into the immunopathology and genetic basis underlying childhood phenotypes is important so therapy can be tailored accordingly.

  13. Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits.

    PubMed

    Feltus, F Alex

    2014-06-01

    Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence.

    PubMed

    Herrera, Carlos M; Medrano, Mónica; Bazaga, Pilar

    2017-08-16

    Epigenetic variation can play a role in local adaptation; thus, there should be associations among epigenetic variation, environmental variation, and functional trait variation across populations. This study examines these relationships in the perennial herb Helleborus foetidus (Ranunculaceae). Plants from 10 subpopulations were characterized genetically (AFLP, SSR markers), epigenetically (MSAP markers), and phenotypically (20 functional traits). Habitats were characterized using six environmental variables. Isolation-by-distance (IBD) and isolation-by-environment (IBE) patterns of genetic and epigenetic divergence were assessed, as was the comparative explanatory value of geographical and environmental distance as predictors of epigenetic, genetic, and functional differentiation. Subpopulations were differentiated genetically, epigenetically, and phenotypically. Genetic differentiation was best explained by geographical distance, while epigenetic differentiation was best explained by environmental distance. Divergence in functional traits was correlated with environmental and epigenetic distances, but not with geographical and genetic distances. Results are compatible with the hypothesis that epigenetic IBE and functional divergence reflected responses to environmental variation. Spatial analyses simultaneously considering epigenetic, genetic, phenotypic and environmental information provide a useful tool to evaluate the role of environmental features as drivers of natural epigenetic variation between populations. © 2017 Botanical Society of America.

  15. Defining a genetic ideotype for crop improvement.

    PubMed

    Trethowan, Richard M

    2014-01-01

    While plant breeders traditionally base selection on phenotype, the development of genetic ideotypes can help focus the selection process. This chapter provides a road map for the establishment of a refined genetic ideotype. The first step is an accurate definition of the target environment including the underlying constraints, their probability of occurrence, and impact on phenotype. Once the environmental constraints are established, the wealth of information on plant physiological responses to stresses, known gene information, and knowledge of genotype ×environment and gene × environment interaction help refine the target ideotype and form a basis for cross prediction.Once a genetic ideotype is defined the challenge remains to build the ideotype in a plant breeding program. A number of strategies including marker-assisted recurrent selection and genomic selection can be used that also provide valuable information for the optimization of genetic ideotype. However, the informatics required to underpin the realization of the genetic ideotype then becomes crucial. The reduced cost of genotyping and the need to combine pedigree, phenotypic, and genetic data in a structured way for analysis and interpretation often become the rate-limiting steps, thus reducing genetic gain. Systems for managing these data and an example of ideotype construction for a defined environment type are discussed.

  16. Pangenesis as a source of new genetic information. The history of a now disproven theory.

    PubMed

    Bergman, Gerald

    2006-01-01

    Evolution is based on natural selection of existing biological phenotypic traits. Natural selection can only eliminate traits. It cannot create new ones, requiring a theory to explain the origin of new genetic information. The theory of pangenesis was a major attempt to explain the source of new genetic information required to produce phenotypic variety. This theory, advocated by Darwin as the main source of genetic variety, has now been empirically disproved. It is currently a theory mainly of interest to science historians.

  17. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease.

    PubMed

    2017-12-01

    Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variant's cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.

  18. Unisexual and Heterosexual Meiotic Reproduction Generate Aneuploidy and Phenotypic Diversity De Novo in the Yeast Cryptococcus neoformans

    PubMed Central

    Li, Wenjun; Floyd-Averette, Anna; Mieczkowski, Piotr; Dietrich, Fred S.; Heitman, Joseph

    2013-01-01

    Aneuploidy is known to be deleterious and underlies several common human diseases, including cancer and genetic disorders such as trisomy 21 in Down's syndrome. In contrast, aneuploidy can also be advantageous and in fungi confers antifungal drug resistance and enables rapid adaptive evolution. We report here that sexual reproduction generates phenotypic and genotypic diversity in the human pathogenic yeast Cryptococcus neoformans, which is globally distributed and commonly infects individuals with compromised immunity, such as HIV/AIDS patients, causing life-threatening meningoencephalitis. C. neoformans has a defined a-α opposite sexual cycle; however, >99% of isolates are of the α mating type. Interestingly, α cells can undergo α-α unisexual reproduction, even involving genotypically identical cells. A central question is: Why would cells mate with themselves given that sex is costly and typically serves to admix preexisting genetic diversity from genetically divergent parents? In this study, we demonstrate that α-α unisexual reproduction frequently generates phenotypic diversity, and the majority of these variant progeny are aneuploid. Aneuploidy is responsible for the observed phenotypic changes, as chromosome loss restoring euploidy results in a wild-type phenotype. Other genetic changes, including diploidization, chromosome length polymorphisms, SNPs, and indels, were also generated. Phenotypic/genotypic changes were not observed following asexual mitotic reproduction. Aneuploidy was also detected in progeny from a-α opposite-sex congenic mating; thus, both homothallic and heterothallic sexual reproduction can generate phenotypic diversity de novo. Our study suggests that the ability to undergo unisexual reproduction may be an evolutionary strategy for eukaryotic microbial pathogens, enabling de novo genotypic and phenotypic plasticity and facilitating rapid adaptation to novel environments. PMID:24058295

  19. Phenotype-loci associations in networks of patients with rare disorders: application to assist in the diagnosis of novel clinical cases.

    PubMed

    Bueno, Anibal; Rodríguez-López, Rocío; Reyes-Palomares, Armando; Rojano, Elena; Corpas, Manuel; Nevado, Julián; Lapunzina, Pablo; Sánchez-Jiménez, Francisca; Ranea, Juan A G

    2018-06-26

    Copy number variations (CNVs) are genomic structural variations (deletions, duplications, or translocations) that represent the 4.8-9.5% of human genome variation in healthy individuals. In some cases, CNVs can also lead to disease, being the etiology of many known rare genetic/genomic disorders. Despite the last advances in genomic sequencing and diagnosis, the pathological effects of many rare genetic variations remain unresolved, largely due to the low number of patients available for these cases, making it difficult to identify consistent patterns of genotype-phenotype relationships. We aimed to improve the identification of statistically consistent genotype-phenotype relationships by integrating all the genetic and clinical data of thousands of patients with rare genomic disorders (obtained from the DECIPHER database) into a phenotype-patient-genotype tripartite network. Then we assessed how our network approach could help in the characterization and diagnosis of novel cases in clinical genetics. The systematic approach implemented in this work is able to better define the relationships between phenotypes and specific loci, by exploiting large-scale association networks of phenotypes and genotypes in thousands of rare disease patients. The application of the described methodology facilitated the diagnosis of novel clinical cases, ranking phenotypes by locus specificity and reporting putative new clinical features that may suggest additional clinical follow-ups. In this work, the proof of concept developed over a set of novel clinical cases demonstrates that this network-based methodology might help improve the precision of patient clinical records and the characterization of rare syndromes.

  20. Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner

    PubMed Central

    Hocher, Berthold; Haumann, Hannah; Rahnenführer, Jan; Reichetzeder, Christoph; Kalk, Philipp; Pfab, Thiemo; Tsuprykov, Oleg; Winter, Stefan; Hofmann, Ute; Li, Jian; Püschel, Gerhard P.; Lang, Florian; Schuppan, Detlef; Schwab, Matthias; Schaeffeler, Elke

    2016-01-01

    ABSTRACT Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood. PMID:27175980

  1. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection.

    PubMed

    Huang, Jing; Guo, Na; Li, Yinghui; Sun, Jutao; Hu, Guanjun; Zhang, Haipeng; Li, Yanfei; Zhang, Xing; Zhao, Jinming; Xing, Han; Qiu, Lijuan

    2016-06-18

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious diseases affecting soybean (Glycine max (L.) Merr.) production all over the world. The most economical and environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties. We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei, Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently, association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP) markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL) regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes related to resistance. This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection, which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate genes may be useful for exploring the mechanism underlying P. sojae resistance.

  2. New phenotypes for new breeding goals in pigs.

    PubMed

    Merks, J W M; Mathur, P K; Knol, E F

    2012-04-01

    Pig breeders in the past have adopted their breeding goals according to the needs of the producers, processors and consumers and have made remarkable genetic improvements in the traits of interest. However, it is becoming more and more challenging to meet the market needs and expectations of consumers and in general of the citizens. In view of the current and future trends, the breeding goals have to include several additional traits and new phenotypes. These phenotypes include (a) vitality from birth to slaughter, (b) uniformity at different levels of production, (c) robustness, (d) welfare and health and (e) phenotypes to reduce carbon footprint. Advancements in management, genomics, statistical models and other technologies provide opportunities for recording these phenotypes. These new developments also provide opportunities for making effective use of the new phenotypes for faster genetic improvement to meet the newly adapted breeding goals.

  3. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice

    PubMed Central

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Duan, Lingfeng; Chen, Guoxing; Jiang, Ni; Fang, Wei; Feng, Hui; Xie, Weibo; Lian, Xingming; Wang, Gongwei; Luo, Qingming; Zhang, Qifa; Liu, Qian; Xiong, Lizhong

    2014-01-01

    Even as the study of plant genomics rapidly develops through the use of high-throughput sequencing techniques, traditional plant phenotyping lags far behind. Here we develop a high-throughput rice phenotyping facility (HRPF) to monitor 13 traditional agronomic traits and 2 newly defined traits during the rice growth period. Using genome-wide association studies (GWAS) of the 15 traits, we identify 141 associated loci, 25 of which contain known genes such as the Green Revolution semi-dwarf gene, SD1. Based on a performance evaluation of the HRPF and GWAS results, we demonstrate that high-throughput phenotyping has the potential to replace traditional phenotyping techniques and can provide valuable gene identification information. The combination of the multifunctional phenotyping tools HRPF and GWAS provides deep insights into the genetic architecture of important traits. PMID:25295980

  4. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    PubMed Central

    2011-01-01

    Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models. PMID:21791118

  5. Huntington's Disease: Relationship Between Phenotype and Genotype.

    PubMed

    Sun, Yi-Min; Zhang, Yan-Bin; Wu, Zhi-Ying

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease with the typical manifestations of involuntary movements, psychiatric and behavior disorders, and cognitive impairment. It is caused by the dynamic mutation in CAG triplet repeat number in exon 1 of huntingtin (HTT) gene. The symptoms of HD especially the age at onset are related to the genetic characteristics, both the CAG triplet repeat and the modified factors. Here, we reviewed the recent advancement on the genotype-phenotype relationship of HD, mainly focus on the characteristics of different expanded CAG repeat number, genetic modifiers, and CCG repeat number in the 3' end of CAG triplet repeat and their effects on the phenotype. We also reviewed the special forms of HD (juvenile HD, atypical onset HD, and homozygous HD) and their phenotype-genotype correlations. The review will aid clinicians to predict the onset age and disease course of HD, give the genetic counseling, and accelerate research into the HD mechanism.

  6. Integrating modelling and phenotyping approaches to identify and screen complex traits - Illustration for transpiration efficiency in cereals.

    PubMed

    Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L

    2018-02-21

    Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.

  7. Genetic and environmental determinants of violence risk in psychotic disorders: a multivariate quantitative genetic study of 1.8 million Swedish twins and siblings

    PubMed Central

    Sariaslan, A; Larsson, H; Fazel, S

    2016-01-01

    Patients diagnosed with psychotic disorders (for example, schizophrenia and bipolar disorder) have elevated risks of committing violent acts, particularly if they are comorbid with substance misuse. Despite recent insights from quantitative and molecular genetic studies demonstrating considerable pleiotropy in the genetic architecture of these phenotypes, there is currently a lack of large-scale studies that have specifically examined the aetiological links between psychotic disorders and violence. Using a sample of all Swedish individuals born between 1958 and 1989 (n=3 332 101), we identified a total of 923 259 twin-sibling pairs. Patients were identified using the National Patient Register using validated algorithms based on International Classification of Diseases (ICD) 8–10. Univariate quantitative genetic models revealed that all phenotypes (schizophrenia, bipolar disorder, substance misuse, and violent crime) were highly heritable (h2=53–71%). Multivariate models further revealed that schizophrenia was a stronger predictor of violence (r=0.32; 95% confidence interval: 0.30–0.33) than bipolar disorder (r=0.23; 0.21–0.25), and large proportions (51–67%) of these phenotypic correlations were explained by genetic factors shared between each disorder, substance misuse, and violence. Importantly, we found that genetic influences that were unrelated to substance misuse explained approximately a fifth (21% 20–22%) of the correlation with violent criminality in bipolar disorder but none of the same correlation in schizophrenia (Pbipolar disorder<0.001; Pschizophrenia=0.55). These findings highlight the problems of not disentangling common and unique sources of covariance across genetically similar phenotypes as the latter sources may include aetiologically important clues. Clinically, these findings underline the importance of assessing risk of different phenotypes together and integrating interventions for psychiatric disorders, substance misuse, and violence. PMID:26666206

  8. Etiologies of the Relationships Among Body Mass Index and Cold-Heat Patterns: A Twin Study.

    PubMed

    Hur, Yoon-Mi; Jin, Hee-Jeong; Lee, Siwoo

    2018-06-01

    The phenotypic relationships between body mass index (BMI) and cold-heat patterns have been frequently reported, but the etiology of these relationships remains unknown. We previously demonstrated that the cold pattern (CP) and the heat pattern (HP) were heritable traits. In the present study, we explored underlying genetic and environmental structures of the relationships among BMI and the CP and the HP. Twins (N = 1,752) drawn from the South Korean twin registry completed a cold-heat pattern questionnaire via a telephone interview. The phenotypic correlations among the three phenotypes were moderate but significant. Cross-twin, cross-trait correlations among BMI and the CP and the HP were consistently greater in monozygotic than in dizygotic twins, suggesting the presence of genetic effects on the relationships between BMI and the two patterns. A trivariate Cholesky model was applied to the raw data. The results indicated that the phenotypic relationship between the HP and BMI was completely determined by common genetic influences, while the relationship between the CP and BMI was explained by both common genetic and common individual-specific environmental influences. The genetic correlation between the HP and the CP was not significant, suggesting that the two patterns may be genetically independent from each other. Genetic correlations were 0.31 between the HP and BMI, and -0.22 between the CP and BMI. The individual-specific environmental correlation was -0.22 between HP and CP, and between CP and BMI.

  9. The genetic architecture of a complex ecological trait: host plant use in the specialist moth, HELIOTHIS SUBFLEXA

    USDA-ARS?s Scientific Manuscript database

    The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...

  10. Genetic markers that influence feed efficiency phenotypes also affect cattle temperament as measured by flight speed

    USDA-ARS?s Scientific Manuscript database

    The measure of flight speed for cattle has been shown to be a predictive indicator of temperament and has also been associated with feed efficiency phenotypes, thus, genetic markers associated with both traits may assist with the selection of animals with calmer disposition and economic value. Chrom...

  11. Identification of Genetic Loci Underlying the Phenotypic Constructs of Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Liu, Xiao-Qing; Georgiades, Stelios; Duku, Eric; Thompson, Ann; Devlin, Bernie; Cook, Edwin H.; Wijsman, Ellen M.; Paterson, Andrew D.; Szatmari, Peter

    2011-01-01

    Objective: To investigate the underlying phenotypic constructs in autism spectrum disorders (ASD) and to identify genetic loci that are linked to these empirically derived factors. Method: Exploratory factor analysis was applied to two datasets with 28 selected Autism Diagnostic Interview-Revised (ADI-R) algorithm items. The first dataset was from…

  12. Brief Report: No Association between Premorbid Adjustment in Adult-Onset Schizophrenia and Genetic Variation in Dysbindin

    ERIC Educational Resources Information Center

    Schirmbeck, Frederike; Georgi, Alexander; Strohmaier, Jana; Schmael, Christine; Boesshenz, Katja V.; Muhleisen, Thomas W.; Herms, Stefan; Hoffmann, Per; Jamra, Rami Abou; Schumacher, Johannes; Maier, Wolfgang; Propping, Peter; Nothen, Markus M.; Cichon, Sven; Rietschel, Marcella; Schulze, Thomas G.

    2008-01-01

    Whereas "Dysbindin" is considered a schizophrenia vulnerability gene, there is no consistency of findings. Phenotype refinement approaches may help to increase the genetic homogeneity and thus reconcile conflicting results. Premorbid adjustment (PMA) has been suggested to aid the phenotypic dissection. Gornick et al. ("J Autism Dev…

  13. Getting ready for the Human Phenome Project: the 2012 forum of the Human Variome Project.

    PubMed

    Oetting, William S; Robinson, Peter N; Greenblatt, Marc S; Cotton, Richard G; Beck, Tim; Carey, John C; Doelken, Sandra C; Girdea, Marta; Groza, Tudor; Hamilton, Carol M; Hamosh, Ada; Kerner, Berit; MacArthur, Jacqueline A L; Maglott, Donna R; Mons, Barend; Rehm, Heidi L; Schofield, Paul N; Searle, Beverly A; Smedley, Damian; Smith, Cynthia L; Bernstein, Inge Thomsen; Zankl, Andreas; Zhao, Eric Y

    2013-04-01

    A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was "Getting Ready for the Human Phenome Project." Understanding the genetic contribution to both rare single-gene "Mendelian" disorders and more complex common diseases will require integration of research efforts among many fields and better defined phenotypes. The HVP is dedicated to bringing together researchers and research populations throughout the world to provide the resources to investigate the impact of genetic variation on disease. To this end, there needs to be a greater sharing of phenotype and genotype data. For this to occur, many databases that currently exist will need to become interoperable to allow for the combining of cohorts with similar phenotypes to increase statistical power for studies attempting to identify novel disease genes or causative genetic variants. Improved systems and tools that enhance the collection of phenotype data from clinicians are urgently needed. This meeting begins the HVP's effort toward this important goal. © 2013 Wiley Periodicals, Inc.

  14. Short-range phenotypic divergence among genetically distinct parapatric populations of an Australian funnel-web spider.

    PubMed

    Wong, Mark K L; Woodman, James D; Rowell, David M

    2017-07-01

    Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.

  15. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations1[OPEN

    PubMed Central

    Pan, Qingchun; Xu, Yuancheng; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin

    2017-01-01

    Plant architecture is a key factor affecting planting density and grain yield in maize (Zea mays). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3, has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. PMID:28838954

  16. Allele-specific gene expression in a wild nonhuman primate population

    PubMed Central

    Tung, J.; Akinyi, M. Y.; Mutura, S.; Altmann, J.; Wray, G. A.; Alberts, S. C.

    2015-01-01

    Natural populations hold enormous potential for evolutionary genetic studies, especially when phenotypic, genetic and environmental data are all available on the same individuals. However, untangling the genotype-phenotype relationship in natural populations remains a major challenge. Here, we describe results of an investigation of one class of phenotype, allele-specific gene expression (ASGE), in the well-studied natural population of baboons of the Amboseli basin, Kenya. ASGE measurements identify cases in which one allele of a gene is overexpressed relative to the alternative allele of the same gene, within individuals, thus providing a control for background genetic and environmental effects. Here, we characterize the incidence of ASGE in the Amboseli baboon population, focusing on the genetic and environmental contributions to ASGE in a set of eleven genes involved in immunity and defence. Within this set, we identify evidence for common ASGE in four genes. We also present examples of two relationships between cis-regulatory genetic variants and the ASGE phenotype. Finally, we identify one case in which this relationship is influenced by a novel gene-environment interaction. Specifically, the dominance rank of an individual’s mother during its early life (an aspect of that individual’s social environment) influences the expression of the gene CCL5 via an interaction with cis-regulatory genetic variation. These results illustrate how environmental and ecological data can be integrated into evolutionary genetic studies of functional variation in natural populations. They also highlight the potential importance of early life environmental variation in shaping the genetic architecture of complex traits in wild mammals. PMID:21226779

  17. [Population genetics study of functional brain asymmetry in the native and immigrant populations of northeastern USSR. I. Sex-age distribution and familial data].

    PubMed

    Solovenchuk, L L; Arshavskiĭ, V V

    1988-05-01

    Clearly definable polymorphism of hemisphere interrelations represented by three phenotypes was established by the method of EEG cross-correlation analysis. Each phenotype of the three, representing polymorphism, is characterized by marked specificity of perception and the processing of information, which determines certain integral physiological characteristics of individuals. Phenotype frequencies in aboriginal and new-come populations of the North-East of the USSR differ significantly. In comparison with the inhabitants, Moscow Russians of Magadan are significantly closer to aboriginal population, judging by their frequency distribution, and this may be due to the strategy specificity in adaptation of populations to environmental conditions. Significant difference in phenotype frequencies is shown in representatives of both sexes, this being more pronounced in the aboriginal population. The establishment of interhemispheric reaction type by approx. 10th year of individual's life is confirmed. Phenotype frequency correlations, depending on parental phenotype, were analyzed in children. The role of genetic and environmental factors in manifestation of the hemisphere relationship type is discussed. Rationality of the population analysis of hemisphere asymmetry types is grounded, according to the study of behavioural genetics and population adaptation.

  18. Innate immunity and the new forward genetics.

    PubMed

    Beutler, Bruce

    2016-12-01

    As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many "new" proteins needed for innate immune function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Innate immunity and the new forward genetics

    PubMed Central

    Beutler, Bruce

    2016-01-01

    As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many “new” proteins needed for innate immune function. PMID:27890263

  20. Phenotypic and genetic overlap between autistic traits at the extremes of the general population.

    PubMed

    Ronald, Angelica; Happé, Francesca; Price, Thomas S; Baron-Cohen, Simon; Plomin, Robert

    2006-10-01

    To investigate children selected from a community sample for showing extreme autistic-like traits and to assess the degree to which these individual traits--social impairments (SIs), communication impairments (CIs), and restricted repetitive behaviors and interests (RRBIs)--are caused by genes and environments, whether all of them are caused by the same genes and environments, and how often they occur together (as required by an autism diagnosis). The most extreme-scoring 5% were selected from 3,419 8-year-old pairs in the Twins Early Development Study assessed on the Childhood Asperger Syndrome Test. Phenotypic associations between extreme traits were compared with associations among the full-scale scores. Genetic associations between extreme traits were quantified using bivariate DeFries-Fulker extremes analysis. Phenotypic relationships between extreme SIs, CIs, and RRBIs were modest. There was a degree of genetic overlap between them, but also substantial genetic specificity. This first twin study assessing the links between extreme individual autistic-like traits (SIs, CIs, and RRBIs) found that all are highly heritable but show modest phenotypic and genetic overlap. This finding concurs with that of an earlier study from the same cohort that showed that a total autistic symptoms score at the extreme showed high heritability and that SIs, CIs, and RRBIs show weak links in the general population. This new finding has relevance for both clinical models and future molecular genetic studies.

  1. Association of Genetic Risk for Schizophrenia With Nonparticipation Over Time in a Population-Based Cohort Study.

    PubMed

    Martin, Joanna; Tilling, Kate; Hubbard, Leon; Stergiakouli, Evie; Thapar, Anita; Davey Smith, George; O'Donovan, Michael C; Zammit, Stanley

    2016-06-15

    Progress has recently been made in understanding the genetic basis of schizophrenia and other psychiatric disorders. Longitudinal studies are complicated by participant dropout, which could be related to the presence of psychiatric problems and associated genetic risk. We tested whether common genetic variants implicated in schizophrenia were associated with study nonparticipation among 7,867 children and 7,850 mothers from the Avon Longitudinal Study of Parents and Children (ALSPAC; 1991-2007), a longitudinal population cohort study. Higher polygenic risk scores for schizophrenia were consistently associated with noncompletion of questionnaires by study mothers and children and nonattendance at data collection throughout childhood and adolescence (ages 1-15 years). These associations persisted after adjustment for other potential correlates of nonparticipation. Results suggest that persons at higher genetic risk for schizophrenia are likely to be underrepresented in cohort studies, which will underestimate risk of this and related psychiatric, cognitive, and behavioral phenotypes in the population. Statistical power to detect associations with these phenotypes will be reduced, while analyses of schizophrenia-related phenotypes as outcomes may be biased by the nonrandom missingness of these phenotypes, even if multiple imputation is used. Similarly, in complete-case analyses, collider bias may affect associations between genetic risk and other factors associated with missingness. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  2. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Hu, X H; Wang, M H; Tan, T; Li, J R; Yang, H; Leach, L; Zhang, R M; Luo, Z W

    2007-03-01

    Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.

  3. Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.

    PubMed

    Rittschof, C C; Robinson, G E

    2016-01-01

    The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike. © 2016 Elsevier Inc. All rights reserved.

  4. Exome Sequencing in the Clinical Diagnosis of Sporadic or Familial Cerebellar Ataxia

    PubMed Central

    Fogel, Brent L.; Lee, Hane; Deignan, Joshua L.; Strom, Samuel P.; Kantarci, Sibel; Wang, Xizhe; Quintero-Rivera, Fabiola; Vilain, Eric; Grody, Wayne W.; Perlman, Susan; Geschwind, Daniel H.; Nelson, Stanley F.

    2015-01-01

    IMPORTANCE Cerebellar ataxias are a diverse collection of neurologic disorders with causes ranging from common acquired etiologies to rare genetic conditions. Numerous genetic disorders have been associated with chronic progressive ataxia and this consequently presents a diagnostic challenge for the clinician regarding how to approach and prioritize genetic testing in patients with such clinically heterogeneous phenotypes. Additionally, while the value of genetic testing in early-onset and/or familial cases seems clear, many patients with ataxia present sporadically with adult onset of symptoms and the contribution of genetic variation to the phenotype of these patients has not yet been established. OBJECTIVE To investigate the contribution of genetic disease in a population of patients with predominantly adult- and sporadic-onset cerebellar ataxia. DESIGN, SETTING, AND PARTICIPANTS We examined a consecutive series of 76 patients presenting to a tertiary referral center for evaluation of chronic progressive cerebellar ataxia. MAIN OUTCOMES AND MEASURES Next-generation exome sequencing coupled with comprehensive bioinformatic analysis, phenotypic analysis, and clinical correlation. RESULTS We identified clinically relevant genetic information in more than 60% of patients studied (n = 46), including diagnostic pathogenic gene variants in 21% (n = 16), a notable yield given the diverse genetics and clinical heterogeneity of the cerebellar ataxias. CONCLUSIONS AND RELEVANCE This study demonstrated that clinical exome sequencing in patients with adult-onset and sporadic presentations of ataxia is a high-yield test, providing a definitive diagnosis in more than one-fifth of patients and suggesting a potential diagnosis in more than one-third to guide additional phenotyping and diagnostic evaluation. Therefore, clinical exome sequencing is an appropriate consideration in the routine genetic evaluation of all patients presenting with chronic progressive cerebellar ataxia. PMID:25133958

  5. Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2006-08-01

    The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.

  6. Phenotypic and genetic associations between reading and attention-deficit/hyperactivity disorder dimensions in adolescence.

    PubMed

    Plourde, Vickie; Boivin, Michel; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette

    2017-10-01

    Multiple studies have shown that reading abilities and attention-deficit/hyperactivity disorder symptoms, mainly inattention symptoms, are phenotypically and genetically associated during childhood. However, few studies have looked at these associations during adolescence to investigate possible developmental changes. The aim of the study is to examine the genetic and environmental etiology of the associations between inattention and hyperactivity reported by parents, and reading accuracy, reading speed, and word reading in a population-based twin sample (Quebec Newborn Twin Study). Participants were between 14 and 15 years of age at the time of testing (N = 668-837). Phenotypic results showed that when nonverbal and verbal abilities were controlled, inattention, but not hyperactivity/impulsivity, was a modest and significant predictor of reading accuracy, reading speed, and word reading. The associations between inattention and all reading abilities were partly explained by genetic and unique environmental factors. However, the genetic correlations were no longer significant after controlling for verbal abilities. In midadolescence, inattention is the attention-deficit/hyperactivity disorder dimension associated with reading abilities, but they could also share genetic factors with general verbal skills.

  7. Genetic and Environmental Architecture of Changes in Episodic Memory from Middle to Late Middle Age

    PubMed Central

    Panizzon, Matthew S.; Neale, Michael C.; Docherty, Anna R.; Franz, Carol E.; Jacobson, Kristen C.; Toomey, Rosemary; Xian, Hong; Vasilopoulos, Terrie; Rana, Brinda K.; McKenzie, Ruth M.; Lyons, Michael J.; Kremen, William S.

    2015-01-01

    Episodic memory is a complex construct at both the phenotypic and genetic level. Ample evidence supports age-related cognitive stability and change being accounted for by general and domain-specific factors. We hypothesized that general and specific factors would underlie change even within this single cognitive domain. We examined six measures from three episodic memory tests in a narrow age cohort at middle and late middle age. The factor structure was invariant across occasions. At both timepoints two of three test-specific factors (story recall, design recall) had significant genetic influences independent of the general memory factor. Phenotypic stability was moderate to high, and primarily accounted for by genetic influences, except for one test-specific factor (list learning). Mean change over time was nonsignificant for one test-level factor; one declined; one improved. The results highlight the phenotypic and genetic complexity of memory and memory change, and shed light on an understudied period of life. PMID:25938244

  8. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design

    PubMed Central

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Petrill, Stephen A.; Plomin, Robert

    2013-01-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years. PMID:24319294

  9. Genetic and environmental architecture of changes in episodic memory from middle to late middle age.

    PubMed

    Panizzon, Matthew S; Neale, Michael C; Docherty, Anna R; Franz, Carol E; Jacobson, Kristen C; Toomey, Rosemary; Xian, Hong; Vasilopoulos, Terrie; Rana, Brinda K; McKenzie, Ruth; Lyons, Michael J; Kremen, William S

    2015-06-01

    Episodic memory is a complex construct at both the phenotypic and genetic level. Ample evidence supports age-related cognitive stability and change being accounted for by general and domain-specific factors. We hypothesized that general and specific factors would underlie change even within this single cognitive domain. We examined 6 measures from 3 episodic memory tests in a narrow age cohort at middle and late middle age. The factor structure was invariant across occasions. At both timepoints 2 of 3 test-specific factors (story recall, design recall) had significant genetic influences independent of the general memory factor. Phenotypic stability was moderate to high, and primarily accounted for by genetic influences, except for 1 test-specific factor (list learning). Mean change over time was nonsignificant for 1 test-level factor; 1 declined; 1 improved. The results highlight the phenotypic and genetic complexity of memory and memory change, and shed light on an understudied period of life. (c) 2015 APA, all rights reserved.

  10. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design.

    PubMed

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Petrill, Stephen A; Plomin, Robert

    2012-08-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years.

  11. Social Cognition, Social Skill, and the Broad Autism Phenotype

    ERIC Educational Resources Information Center

    Sasson, Noah J.; Nowlin, Rachel B.; Pinkham, Amy E.

    2013-01-01

    Social-cognitive deficits differentiate parents with the "broad autism phenotype" from non-broad autism phenotype parents more robustly than other neuropsychological features of autism, suggesting that this domain may be particularly informative for identifying genetic and brain processes associated with the phenotype. The current study…

  12. Retrospective genotype-phenotype analysis in a 305 patient cohort referred for testing of a targeted epilepsy panel.

    PubMed

    Hesse, Andrew N; Bevilacqua, Jennifer; Shankar, Kritika; Reddi, Honey V

    2018-05-16

    Epilepsy is a diverse neurological condition with extreme genetic and phenotypic heterogeneity. The introduction of next-generation sequencing into the clinical laboratory has made it possible to investigate hundreds of associated genes simultaneously for a patient, even in the absence of a clearly defined syndrome. This has resulted in the detection of rare and novel mutations at a rate well beyond our ability to characterize their effects. This retrospective study reviews genotype data in the context of available phenotypic information on 305 patients spanning the epileptic spectrum to identify established and novel patterns of correlation. Our epilepsy panel comprising 377 genes was used to sequence 305 patients referred for genetic testing. Qualifying variants were annotated with phenotypic data obtained from either the test requisition form or supporting clinical documentation. Observed phenotypes were compared with established phenotypes in OMIM, published literature and the ILAEs 2010 report on genetic testing to assess congruity with known gene aberrations. We identified a number of novel and recognized genetic variants consistent with established epileptic phenotypes. Forty-one pathogenic or predicted deleterious variants were detected in 39 patients with accompanying clinical documentation. Twenty-five of these variants across 15 genes were novel. Furthermore, evaluation of phenotype data for 194 patients with variants of unknown significance in genes with autosomal dominant and X-linked disease inheritance elucidated potentially disease-causing variants that were not currently characterized in the literature. Assessment of key genotype-phenotype correlations from our cohort provide insight into variant classification, as well as the importance of including ILAE recommended genes as part of minimum panel content for comprehensive epilepsy tests. Many of the reported VUSs are likely genuine pathogenic variants driving the observed phenotypes, but not enough evidence is available for assertive classifications. Similar studies will provide more utility via mounting independent genotype-phenotype data from unrelated patients. The possible outcome would be a better molecular diagnostic product, with fewer indeterminate reports containing only VUSs. Copyright © 2018. Published by Elsevier B.V.

  13. How Reliable Are the Reported Genetic Associations in Disc Degeneration?: The Influence of Phenotypes, Age, Population Size, and Inclusion Sequence in 809 Patients.

    PubMed

    Rajasekaran, S; Kanna, Rishi Mugesh; Reddy, Ranjani Raja; Natesan, Senthil; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Kao, Patrick Y P; Yee, Anita; Shetty, Ajoy Prasad

    2016-11-01

    Prospective genetic association study. The aim of this study was to document the variations in the genetic associations, when different magnetic resonance imaging (MRI) phenotypes, age stratification, cohort size, and sequence of cohort inclusion are varied in the same study population. Genetic associations with disc degeneration have shown high inconsistency, generally attributed to hereditary factors and ethnic variations. However, the effect of different phenotypes, size of the study population, age of the cohort, etc have not been documented clearly. Seventy-one single-nucleotide polymorphisms (SNPs) of 41 candidate genes were correlated to six MRI markers of disc degeneration (annular tears, Pfirmann grading, Schmorl nodes, Modic changes, Total Endplate Damage score, and disc bulge) in 809 patients with back pain and/or sciatica. In the same study group, the correlations were then retested for different age groups, different sample, size and sequence of subject inclusion (first 404 and the second 405) and the differences documented. The mean age of population (M: 455, F: 354) was 36.7 ± 10.8 years. Different genetic associations were found with different phenotypes: disc bulge with three SNPs of CILP; annular tears with rs2249350 of ADAMTS5 and rs11247361 IGF1R; modic changes with VDR and MMP20; Pfirmann grading with three SNPs of MMP20 and Schmorl node with SNPs of CALM1 and FN1 and none with Total End Plate Score.Subgroup analysis based on three age groups and dividing the total population into two groups also completely changed the associations for all the six radiographic parameters. In the same study population, SNP associations completely change with different phenotypes. Variations in age, inclusion sequence, and sample size resulted in change of genetic associations. Our study questions the validity of previous studies and necessitates the need for standardizing the description of disc degeneration, phenotype selection, study sample size, age, and other variables in future studies. 4.

  14. Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population.

    PubMed

    Camacho, Carlos; Canal, David; Potti, Jaime

    2016-08-08

    Habitat selection may have profound evolutionary consequences, but they strongly depend on the underlying preference mechanism, including genetically-determined, natal habitat and phenotype-dependent preferences. It is known that different mechanisms may operate at the same time, yet their relative contribution to population differentiation remains largely unexplored empirically mainly because of the difficulty of finding suitable study systems. Here, we investigate the role of early experience and genetic background in determining the outcome of settlement by pied flycatchers (Ficedula hypoleuca) breeding in two habitat patches between which dispersal and subsequent reproductive performance is influenced by phenotype (body size). For this, we conducted a cross-fostering experiment in a two-patch system: an oakwood and a conifer plantation separated by only 1 km. Experimental birds mostly returned to breed in the forest patch where they were raised, whether it was that of their genetic or their foster parents, indicating that decisions on where to settle are determined by individuals' experience in their natal site, rather than by their genetic background. Nevertheless, nearly a third (27.6 %) moved away from the rearing habitat and, as previously observed in unmanipulated individuals, dispersal between habitats was phenotype-dependent. Pied flycatchers breeding in the oak and the pine forests are differentiated by body size, and analyses of genetic variation at microsatellite loci now provide evidence of subtle genetic differentiation between the two populations. This suggests that phenotype-dependent dispersal may contribute to population structure despite the short distance and widespread exchange of birds between the study plots. Taken together, the current and previous findings that pied flycatchers do not always settle in the habitat to which they are best suited suggest that their strong tendency to return to the natal patch regardless of their body size might lead to maladaptive settlement decisions and thus constrain the potential of phenotype-dependent dispersal to promote microgeographic adaptation.

  15. GenoCore: A simple and fast algorithm for core subset selection from large genotype datasets.

    PubMed

    Jeong, Seongmun; Kim, Jae-Yoon; Jeong, Soon-Chun; Kang, Sung-Taeg; Moon, Jung-Kyung; Kim, Namshin

    2017-01-01

    Selecting core subsets from plant genotype datasets is important for enhancing cost-effectiveness and to shorten the time required for analyses of genome-wide association studies (GWAS), and genomics-assisted breeding of crop species, etc. Recently, a large number of genetic markers (>100,000 single nucleotide polymorphisms) have been identified from high-density single nucleotide polymorphism (SNP) arrays and next-generation sequencing (NGS) data. However, there is no software available for picking out the efficient and consistent core subset from such a huge dataset. It is necessary to develop software that can extract genetically important samples in a population with coherence. We here present a new program, GenoCore, which can find quickly and efficiently the core subset representing the entire population. We introduce simple measures of coverage and diversity scores, which reflect genotype errors and genetic variations, and can help to select a sample rapidly and accurately for crop genotype dataset. Comparison of our method to other core collection software using example datasets are performed to validate the performance according to genetic distance, diversity, coverage, required system resources, and the number of selected samples. GenoCore selects the smallest, most consistent, and most representative core collection from all samples, using less memory with more efficient scores, and shows greater genetic coverage compared to the other software tested. GenoCore was written in R language, and can be accessed online with an example dataset and test results at https://github.com/lovemun/Genocore.

  16. Phenotypic variation in California populations of valley oak (Quercus lobata Née) sampled along elevational gradients

    Treesearch

    Ana L. Albarrán-Lara; Jessica W. Wright; Paul F. Gugger; Annette Delfino-Mix; Juan Manuel Peñaloza-Ramírez; Victoria L. Sork

    2015-01-01

    California oaks exhibit tremendous phenotypic variation throughout their range. This variation reflects phenotypic plasticity in tree response to local environmental conditions as well as genetic differences underlying those phenotypes. In this study, we analyze phenotypic variation in leaf traits for valley oak adults sampled along three elevational transects and in...

  17. Novel Synthesis and Phenotypic Analysis of Mutant Clouds for Hepatitis E Virus Genotype 1.

    PubMed

    Agarwal, Shubhra; Baccam, Prasith; Aggarwal, Rakesh; Veerapu, Naga Suresh

    2018-02-15

    Many RNA viruses exist as an ensemble of genetically diverse, replicating populations known as a mutant cloud. The genetic diversity (cloud size) and composition of this mutant cloud may influence several important phenotypic features of the virus, including its replication capacity. We applied a straightforward, bacterium-free approach using error-prone PCR coupled with reverse genetics to generate infectious mutant RNA clouds with various levels of genetic diversity from a genotype 1 strain of hepatitis E virus (HEV). Cloning and sequencing of a genomic fragment encompassing 70% of open reading frame 1 ( ORF1 ) or of the full genome from variants in the resultant clouds showed the occurrence of nucleotide mutations at a frequency on the order of 10 -3 per nucleotide copied and the existence of marked genetic diversity, with a high normalized Shannon entropy value. The mutant clouds showed transient replication in cell culture, while wild-type HEV did not. Cross-sectional data from these cell cultures supported the existence of differential effects of clouds of various sizes and compositions on phenotypic characteristics, such as the replication level of (+)-RNA progeny, the amounts of double-stranded RNA (a surrogate for the rate of viral replication) and ORF1 protein, and the expression of interferon-stimulated genes. Since mutant cloud size and composition influenced the viral phenotypic properties, a better understanding of this relationship may help to provide further insights into virus evolution and prediction of emerging viral diseases. IMPORTANCE Several biological or practical limitations currently prevent the study of phenotypic behavior of a mutant cloud in vitro We developed a simple and rapid method for synthesizing mutant clouds of hepatitis E virus (HEV), a single-stranded (+)-RNA [ss(+) RNA] virus, with various and controllable levels of genetic diversity, which could then be used in a cell culture system to study the effects of cloud size and composition on viral phenotype. In a cross-sectional analysis, we demonstrated that a particular mutant cloud which had an extremely high genetic diversity had a replication rate exceeding that of wild-type HEV. This method should thus provide a useful model for understanding the phenotypic behavior of ss(+) RNA viruses. Copyright © 2018 American Society for Microbiology.

  18. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    PubMed Central

    Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J.; Turner, Charles H.; Foroud, Tatiana

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high-resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from 5 of the 8 progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. PMID:21334473

  19. Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.

    PubMed

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana

    2011-05-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Obstructive Sleep Apnea Syndrome: From Phenotype to Genetic Basis

    PubMed Central

    Casale, M; Pappacena, M; Rinaldi, V; Bressi, F; Baptista, P; Salvinelli, F

    2009-01-01

    Obstructive sleep apnea syndrome (OSAS) is a complex chronic clinical syndrome, characterized by snoring, periodic apnea, hypoxemia during sleep, and daytime hypersomnolence. It affects 4-5% of the general population. Racial studies and chromosomal mapping, familial studies and twin studies have provided evidence for the possible link between the OSAS and genetic factors and also most of the risk factors involved in the pathogenesis of OSAS are largely genetically determined. A percentage of 35-40% of its variance can be attributed to genetic factors. It is likely that genetic factors associated with craniofacial structure, body fat distribution and neural control of the upper airway muscles interact to produce the OSAS phenotype. Although the role of specific genes that influence the development of OSAS has not yet been identified, current researches, especially in animal model, suggest that several genetic systems may be important. In this chapter, we will first define the OSAS phenotype, the pathogenesis and the risk factors involved in the OSAS that may be inherited, then, we will review the current progress in the genetics of OSAS and suggest a few future perspectives in the development of therapeutic agents for this complex disease entity. PMID:19794884

  1. The differential view of genotype–phenotype relationships

    PubMed Central

    Orgogozo, Virginie; Morizot, Baptiste; Martin, Arnaud

    2015-01-01

    An integrative view of diversity and singularity in the living world requires a better understanding of the intricate link between genotypes and phenotypes. Here we re-emphasize the old standpoint that the genotype–phenotype (GP) relationship is best viewed as a connection between two differences, one at the genetic level and one at the phenotypic level. As of today, predominant thinking in biology research is that multiple genes interact with multiple environmental variables (such as abiotic factors, culture, or symbionts) to produce the phenotype. Often, the problem of linking genotypes and phenotypes is framed in terms of genotype and phenotype maps, and such graphical representations implicitly bring us away from the differential view of GP relationships. Here we show that the differential view of GP relationships is a useful explanatory framework in the context of pervasive pleiotropy, epistasis, and environmental effects. In such cases, it is relevant to view GP relationships as differences embedded into differences. Thinking in terms of differences clarifies the comparison between environmental and genetic effects on phenotypes and helps to further understand the connection between genotypes and phenotypes. PMID:26042146

  2. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians.

    PubMed

    Ma, Kun

    2013-12-01

    A fundamental question in developmental biology is how a chimeric animal such as a bilateral gynandromorphic animal can have different phenotypes confined to different lateral body halves, and how mutation-induced phenotypes, such as genetic diseases, can be confined to one lateral body half in patients. Here, I propose that embryos of many, if not all, bilaterian animals are divided into left and right halves at a very early stage (which may vary among different types of animals), after which the descendants of the left-sided and right-sided cells will almost exclusively remain on their original sides, respectively, throughout the remaining development. This embryonic left-right separation mechanism allows (1) mutations and the mutation-induced phenotypes to be strictly confined to one lateral body half in animals and humans; (2) mothers with bilateral hereditary primary breast cancer to transmit their disease to their offspring at twofold of the rate compared to mothers with unilateral hereditary breast cancer; and (3) a mosaic embryo carrying genetic or epigenetic mutations to develop into either an individual with the mutation-induced phenotype confined unilaterally, or a pair of twins displaying complete, partial, or mirror-image discordance for the phenotype. Further, this left-right separation mechanism predicts that the two lateral halves of a patient carrying a unilateral genetic disease can each serve as a case and an internal control, respectively, for genetic and epigenetic comparative studies to identify the disease causations. © 2013 Wiley Periodicals, Inc.

  3. New Technologies for the Identification of Novel Genetic Markers of Disorders of Sex Development (DSD)

    PubMed Central

    Bashamboo, A.; Ledig, S.; Wieacker, P.; Achermann, J.; McElreavey, K.

    2010-01-01

    Although the genetic basis of human sexual determination and differentiation has advanced considerably in recent years, the fact remains that in most subjects with disorders of sex development (DSD) the underlying genetic cause is unknown. Where pathogenic mutations have been identified, the phenotype can be highly variable, even within families, suggesting that other genetic variants are influencing the expression of the phenotype. This situation is likely to change, as more powerful and affordable tools become widely available for detailed genetic analyses. Here, we describe recent advances in comparative genomic hybridisation, sequencing by hybridisation and next generation sequencing, and we describe how these technologies will have an impact on our understanding of the genetic causes of DSD. PMID:20820110

  4. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.

    PubMed

    Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E

    2017-02-14

    Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Imprinting center analysis in Prader-Willi and Angelman syndrome patients with typical and atypical phenotypes.

    PubMed

    Camprubí, Cristina; Coll, Maria Dolors; Villatoro, Sergi; Gabau, Elisabeth; Kamli, Amine; Martínez, Maria Jesus; Poyatos, David; Guitart, Miriam

    2007-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are genetic disorders caused by a deficiency of imprinted gene expression from the paternal or maternal chromosome 15, respectively. This deficiency is due to the deletion of the 15q11-q13 region, parental uniparental disomy of the chromosome 15, or imprinting defect (ID). Mutation of the UBE3A gene causes approximately 10% of AS cases. In this present study, we describe the molecular analysis and phenotypes of two PWS patients and four AS patients with ID. One of the PWS patients has a non-familial imprinting center (IC) deletion and displayed a severe phenotype with an atypical PWS appearance, hyperactivity and psychiatric vulnerability. The other PWS and AS patients did not present genetic abnormalities in the IC, suggesting an epimutation as the genetic cause. The methylation pattern of two AS patients showed a faint maternal band corresponding to a mosaic ID. One of these mosaic patients displayed a mild AS phenotype while the other displayed a PWS-like phenotype.

  6. Neurocognitive Allied Phenotypes for Schizophrenia and Bipolar Disorder

    PubMed Central

    Hill, S. Kristian; Harris, Margret S. H.; Herbener, Ellen S.; Pavuluri, Mani; Sweeney, John A.

    2008-01-01

    Psychiatric disorders are genetically complex and represent the end product of multiple biological and social factors. Links between genes and disorder-related abnormalities can be effectively captured via assessment of phenotypes that are both associated with genetic effects and potentially contributory to behavioral abnormalities. Identifying intermediate or allied phenotypes as a strategy for clarifying genetic contributions to disorders has been successful in other areas of medicine and is a promising strategy for identifying susceptibility genes in complex psychiatric disorders. There is growing evidence that schizophrenia and bipolar disorder, rather than being wholly distinct disorders, share genetic risk at several loci. Further, there is growing evidence of similarity in the pattern of cognitive and neurobiological deficits in these groups, which may be the result of the effects of these common genetic factors. This review was undertaken to identify patterns of performance on neurocognitive and affective tasks across probands with schizophrenia and bipolar disorder as well as unaffected family members, which warrant further investigation as potential intermediate trait markers. Available evidence indicates that measures of attention regulation, working memory, episodic memory, and emotion processing offer potential for identifying shared and illness-specific allied neurocognitive phenotypes for schizophrenia and bipolar disorder. However, very few studies have evaluated neurocognitive dimensions in bipolar probands or their unaffected relatives, and much work in this area is needed. PMID:18448479

  7. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection.

    PubMed

    Lind, Martin I; Yarlett, Kylie; Reger, Julia; Carter, Mauricio J; Beckerman, Andrew P

    2015-10-07

    Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments. © 2015 The Authors.

  8. Parallel Patterns of Host-Specific Morphology and Genetic Admixture in Sister Lineages of a Commensal Barnacle.

    PubMed

    Ewers-Saucedo, Christine; Chan, Benny K K; Zardus, John D; Wares, John P

    2017-06-01

    Symbiotic relationships are often species specific, allowing symbionts to adapt to their host environments. Host generalists, on the other hand, have to cope with diverse environments. One coping strategy is phenotypic plasticity, defined by the presence of host-specific phenotypes in the absence of genetic differentiation. Recent work indicates that such host-specific phenotypic plasticity is present in the West Pacific lineage of the commensal barnacle Chelonibia testudinaria (Linnaeus, 1758). We investigated genetic and morphological host-specific structure in the genetically distinct Atlantic sister lineage of C. testudinaria. We collected adult C. testudinaria from loggerhead sea turtles, horseshoe crabs, and blue crabs along the eastern U.S. coast between Delaware and Florida and in the Gulf of Mexico off Mississippi. We find that shell morphology, especially shell thickness, is host specific and comparable in similar host species between the Atlantic and West Pacific lineages. We did not detect significant genetic differentiation related to host species when analyzing data from 11 nuclear microsatellite loci and mitochondrial sequence data, which is comparable to findings for the Pacific lineage. The most parsimonious explanation for these parallel patterns between distinct lineages of C. testudinaria is that C. testudinaria maintained phenotypic plasticity since the lineages diverged 4-5 mya.

  9. Expression of the Broad Autism Phenotype in Simplex Autism Families from the Simons Simplex Collection

    ERIC Educational Resources Information Center

    Davidson, Julie; Goin-Kochel, Robin P.; Green-Snyder, Lee Anne; Hundley, Rachel J.; Warren, Zachary; Peters, Sarika U.

    2014-01-01

    The broad autism phenotype (BAP) refers to the phenotypic expression of an underlying genetic liability to autism, manifest in non-autistic relatives. This study examined the relationship among the "Broad Autism Phenotype Questionnaire" (BAPQ), "Social Responsiveness Scale: Adult Research Version" (SRS:ARV), and "Family…

  10. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations.

    PubMed

    Bricout, M; Grévent, D; Lebre, A S; Rio, M; Desguerre, I; De Lonlay, P; Valayannopoulos, V; Brunelle, F; Rötig, A; Munnich, A; Boddaert, N

    2014-07-01

    Mitochondrial diseases are characterised by a broad clinical and genetic heterogeneity that makes diagnosis difficult. Owing to the wide pattern of symptoms in mitochondrial disorders and the constantly growing number of disease genes, their genetic diagnosis is difficult and genotype/phenotype correlations remain elusive. Brain MRI appears as a useful tool for genotype/phenotype correlations. Here, we summarise the various combinations of MRI lesions observed in the most frequent mitochondrial respiratory chain deficiencies so as to direct molecular genetic test in patients at risk of such diseases. We believe that the combination of brain MRI features is of value to support respiratory chain deficiency and direct molecular genetic tests. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant

    PubMed Central

    Austerlitz, Frédéric; Gleiser, Gabriela; Teixeira, Sara; Bernasconi, Giorgina

    2012-01-01

    Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion. PMID:21561968

  12. The Low-Renin Hypertension Phenotype: Genetics and the Role of the Mineralocorticoid Receptor.

    PubMed

    Baudrand, Rene; Vaidya, Anand

    2018-02-11

    A substantial proportion of patients with hypertension have a low or suppressed renin. This phenotype of low-renin hypertension (LRH) may be the manifestation of inherited genetic syndromes, acquired somatic mutations, or environmental exposures. Activation of the mineralocorticoid receptor is a common final mechanism for the development of LRH. Classically, the individual causes of LRH have been considered to be rare diseases; however, recent advances suggest that there are milder and "non-classical" variants of many LRH-inducing conditions. In this regard, our understanding of the underlying genetics and mechanisms accounting for LRH, and therefore, potentially the pathogenesis of a large subset of essential hypertension, is evolving. This review will discuss the potential causes of LRH, with a focus on implicated genetic mechanisms, the expanding recognition of non-classical variants of conditions that induce LRH, and the role of the mineralocorticoid receptor in determining this phenotype.

  13. Exome sequence analysis suggests genetic burden contributes to phenotypic variability and complex neuropathy

    PubMed Central

    Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.

    2015-01-01

    Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172

  14. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome.

    PubMed

    Bénit, P; Slama, A; Cartault, F; Giurgea, I; Chretien, D; Lebon, S; Marsac, C; Munnich, A; Rötig, A; Rustin, P

    2004-01-01

    Respiratory chain complex I deficiency represents a genetically heterogeneous group of diseases resulting from mutations in mitochondrial or nuclear genes. Mutations have been reported in 13 of the 14 subunits encoding the core of complex I (seven mitochondrial and six nuclear genes) and these result in Leigh or Leigh-like syndromes or cardiomyopathy. In this study, a combination of denaturing high performance liquid chromatography and sequence analysis was used to study the NDUFS3 gene in a series of complex I deficient patients. Mutations found in this gene (NADH dehydrogenase iron-sulphur protein 3), coding for the seventh and last subunit of complex I core, were shown to cause late onset Leigh syndrome, optic atrophy, and complex I deficiency. A biochemical diagnosis of complex I deficiency on cultured amniocytes from a later pregnancy was confirmed through the identification of disease causing NDUFS3 mutations in these cells. While mutations in the NDUFS3 gene thus result in Leigh syndrome, a dissimilar clinical phenotype is observed in mutations in the NDUFV2 and NDUFS2 genes, resulting in encephalomyopathy and cardiomyopathy. The reasons for these differences are uncertain.

  15. Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila.

    PubMed

    Bowman, G R; Turkewitz, A P

    2001-12-01

    The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.

  16. Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila.

    PubMed Central

    Bowman, G R; Turkewitz, A P

    2001-01-01

    The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation. PMID:11779800

  17. Genetic Characterization of a Sinorhizobium meliloti Chromosomal Region Involved in Lipopolysaccharide Biosynthesis

    PubMed Central

    Lagares, Antonio; Hozbor, Daniela F.; Niehaus, Karsten; Otero, Augusto J. L. Pich; Lorenzen, Jens; Arnold, Walter; Pühler, Alfred

    2001-01-01

    The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a “nonnitrogen” promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae. PMID:11157937

  18. Identification of genetic elements in metabolism by high-throughput mouse phenotyping.

    PubMed

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin

    2018-01-18

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.

  19. Diversity captured in the USDA-ARS National Plant Germplasm System apple core collection

    USDA-ARS?s Scientific Manuscript database

    Core collections have been used widely in genetic resources to provide a representative and compact sample to use in breeding evaluation. In the 1990s a core set was developed by the USDA-ARS Plant Genetic Resources Unit (PGRU) in Geneva, NY. Using data available at the time, a core set was develo...

  20. Comparative aerial- and ground-based high-throughput phenotyping for the genetic dissection of NDVI as a proxy for drought-adaptive traits in durum wheat

    USDA-ARS?s Scientific Manuscript database

    High-throughput phenotyping platforms (HTPPs) provide novel opportunities to more effectively dissect the genetic basis of drought-adaptive traits. This genome-wide association study (GWAS) compares the results obtained with two Unmanned Aerial Vehicles (UAVs) and a ground-based platform used to mea...

  1. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2017-11-01

    Integration Theory of intelligence (Jung and Haier, Behave Brain Sci, 2007...predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are heritable and highly sensitive to both normal and...pathological aging processes. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity

  2. Blue Genes: An Integrative Laboratory to Differentiate Genetic Transformation from Gene Mutation for Underclassmen

    ERIC Educational Resources Information Center

    Militello, Kevin T.; Chang, Ming-Mei; Simon, Robert D.; Lazatin, Justine C.

    2016-01-01

    The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by…

  3. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    EPA Science Inventory

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to
    Cadmium-Induced Testicular Injury in Mice

    Jie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2
    and Curtis D. Klaassen1

    ABSTRACT

    Parenteral administrati...

  4. Elderly Onset of Weakness in Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Fee, Dominic B.

    2012-01-01

    A 77-year-old male is presented. He had onset of proximal weakness 10 years earlier. His course was slowly progressive. Despite having phenotypic features of facioscapulohumeral muscular dystrophy (FSH), genetic testing for this was delayed because of his age of onset, lack of family history, and benign appearing muscle biopsy. This case is one of the oldest onset of weakness in genetically confirmed FSH and highlights the recognized expansion in phenotype that has occurred since the advent of genetic testing. PMID:23024867

  5. Elderly onset of weakness in facioscapulohumeral muscular dystrophy.

    PubMed

    Fee, Dominic B

    2012-01-01

    A 77-year-old male is presented. He had onset of proximal weakness 10 years earlier. His course was slowly progressive. Despite having phenotypic features of facioscapulohumeral muscular dystrophy (FSH), genetic testing for this was delayed because of his age of onset, lack of family history, and benign appearing muscle biopsy. This case is one of the oldest onset of weakness in genetically confirmed FSH and highlights the recognized expansion in phenotype that has occurred since the advent of genetic testing.

  6. Markers of Psychological Differences and Social and Health Inequalities: Possible Genetic and Phenotypic Overlaps.

    PubMed

    Mõttus, René; Marioni, Riccardo; Deary, Ian J

    2017-02-01

    Associations between markers of ostensible psychological characteristics and social and health inequalities are pervasive but difficult to explain. In some cases, there may be causal influence flowing from social and health inequalities to psychological differences, whereas sometimes it may be the other way around. Here, we focus on the possibility that some markers that we often consider as indexing different domains of individual differences may in fact reflect at least partially overlapping genetic and/or phenotypic bases. For example, individual differences in cognitive abilities and educational attainment appear to reflect largely overlapping genetic influences, whereas cognitive abilities and health literacy may be almost identical phenomena at the phenotypic, never mind genetic, level. We make the case for employing molecular genetic data and quantitative genetic techniques to better understand the associations of psychological individual differences with social and health inequalities. We illustrate these arguments by using published findings from the Lothian Birth Cohort and the Generation Scotland studies. We also present novel findings pertaining to longitudinal stability and change in older age personality traits and some correlates of the change, molecular genetic data-based heritability estimates of Neuroticism and Extraversion, and the genetic correlations of these personality traits with markers of social and health inequalities. © 2015 The Authors. Journal of Personality published by Wiley Periodicals, Inc.

  7. Genotype-Phenotype Characterization of Novel Variants in Six Italian Patients with Familial Exudative Vitreoretinopathy.

    PubMed

    Iarossi, Giancarlo; Bertelli, Matteo; Maltese, Paolo Enrico; Gusson, Elena; Marchini, Giorgio; Bruson, Alice; Benedetti, Sabrina; Volpetti, Sabrina; Catena, Gino; Buzzonetti, Luca; Ziccardi, Lucia

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7-19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4 , LRP5 , TSPAN12 , and NDP . Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands ( NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family.

  8. Genotype-Phenotype Characterization of Novel Variants in Six Italian Patients with Familial Exudative Vitreoretinopathy

    PubMed Central

    Marchini, Giorgio; Volpetti, Sabrina; Catena, Gino

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7–19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4, LRP5, TSPAN12, and NDP. Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands (NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family. PMID:28758032

  9. Genetics and genomics of reproductive performance in dairy and beef cattle.

    PubMed

    Berry, D P; Wall, E; Pryce, J E

    2014-05-01

    Excellent reproductive performance in both males and females is fundamental to profitable dairy and beef production systems. In this review we undertook a meta-analysis of genetic parameters for female reproductive performance across 55 dairy studies or populations and 12 beef studies or populations as well as across 28 different studies or populations for male reproductive performance. A plethora of reproductive phenotypes exist in dairy and beef cattle and a meta-analysis of the literature suggests that most of the female reproductive traits in dairy and beef cattle tend to be lowly heritable (0.02 to 0.04). Reproductive-related phenotypes in male animals (e.g. semen quality) tend to be more heritable than female reproductive phenotypes with mean heritability estimates of between 0.05 and 0.22 for semen-related traits with the exception of scrotal circumference (0.42) and field non-return rate (0.001). The low heritability of reproductive traits, in females in particular, does not however imply that genetic selection cannot alter phenotypic performance as evidenced by the decline until recently in dairy cow reproductive performance attributable in part to aggressive selection for increased milk production. Moreover, the antagonistic genetic correlations among reproductive traits and both milk (dairy cattle) and meat (beef cattle) yield is not unity thereby implying that simultaneous genetic selection for both increased (milk and meat) yield and reproductive performance is indeed possible. The required emphasis on reproductive traits within a breeding goal to halt deterioration will vary based on the underlying assumptions and is discussed using examples for Ireland, the United Kingdom and Australia as well as quantifying the impact on genetic gain for milk production. Advancements in genomic technologies can aid in increasing the accuracy of selection for especially reproductive traits and thus genetic gain. Elucidation of the underlying genomic mechanisms for reproduction could also aid in resolving genetic antagonisms. Past breeding programmes have contributed to the deterioration in reproductive performance of dairy and beef cattle. The tools now exist, however, to reverse the genetic trends in reproductive performance underlying the observed phenotypic trends.

  10. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed by the environment and HGT.

  11. CoCoa: a software tool for estimating the coefficient of coancestry from multilocus genotype data.

    PubMed

    Maenhout, Steven; De Baets, Bernard; Haesaert, Geert

    2009-10-15

    Phenotypic data collected in breeding programs and marker-trait association studies are often analyzed by means of linear mixed models. In these models, the covariance between the genetic background effects of all genotypes under study is modeled by means of pairwise coefficients of coancestry. Several marker-based coancestry estimation procedures allow to estimate this covariance matrix, but generally introduce a certain amount of bias when the examined genotypes are part of a breeding program. CoCoa implements the most commonly used marker-based coancestry estimation procedures and as such, allows to select the best fitting covariance structure for the phenotypic data at hand. This better model fit translates into an increased power and improved type I error control in association studies and an improved accuracy in phenotypic prediction studies. The presented software package also provides an implementation of the new Weighted Alikeness in State (WAIS) estimator for use in hybrid breeding programs. Besides several matrix manipulation tools, CoCoa implements two different bending heuristics, in case the inverse of an ill-conditioned coancestry matrix estimate is needed. The software package CoCoa is freely available at http://webs.hogent.be/cocoa. Source code, manual, binaries for 32 and 64-bit Linux systems and an installer for Microsoft Windows are provided. The core components of CoCoa are written in C++, while the graphical user interface is written in Java.

  12. Lessons learned from the dog genome.

    PubMed

    Wayne, Robert K; Ostrander, Elaine A

    2007-11-01

    Extensive genetic resources and a high-quality genome sequence position the dog as an important model species for understanding genome evolution, population genetics and genes underlying complex phenotypic traits. Newly developed genomic resources have expanded our understanding of canine evolutionary history and dog origins. Domestication involved genetic contributions from multiple populations of gray wolves probably through backcrossing. More recently, the advent of controlled breeding practices has segregated genetic variability into distinct dog breeds that possess specific phenotypic traits. Consequently, genome-wide association and selective sweep scans now allow the discovery of genes underlying breed-specific characteristics. The dog is finally emerging as a novel resource for studying the genetic basis of complex traits, including behavior.

  13. Applying remote sensing expertise to crop improvement: progress and challenges to scale up high throughput field phenotyping from research to industry

    NASA Astrophysics Data System (ADS)

    Gouache, David; Beauchêne, Katia; Mini, Agathe; Fournier, Antoine; de Solan, Benoit; Baret, Fred; Comar, Alexis

    2016-05-01

    Digital and image analysis technologies in greenhouses have become commonplace in plant science research and started to move into the plant breeding industry. However, the core of plant breeding work takes place in fields. We will present successive technological developments that have allowed the migration and application of remote sensing approaches at large into the field of crop genetics and physiology research, with a number of projects that have taken place in France. These projects have allowed us to develop combined sensor plus vector systems, from tractor mounted and UAV (unmanned aerial vehicle) mounted spectroradiometry to autonomous vehicle mounted spectroradiometry, RGB (red-green-blue) imagery and Lidar. We have tested these systems for deciphering the genetics of complex plant improvement targets such as the robustness to nitrogen and water deficiency of wheat and maize. Our results from wheat experiments indicate that these systems can be used both to screen genetic diversity for nitrogen stress tolerance and to decipher the genetics behind this diversity. We will present our view on the next critical steps in terms of technology and data analysis that will be required to reach cost effective implementation in industrial plant breeding programs. If this can be achieved, these technologies will largely contribute to resolving the equation of increasing food supply in the resource limited world that lies ahead.

  14. Insulin-Like Growth Factor II Targets the mTOR Pathway to Reverse Autism-Like Phenotypes in Mice.

    PubMed

    Steinmetz, Adam B; Stern, Sarah A; Kohtz, Amy S; Descalzi, Giannina; Alberini, Cristina M

    2018-01-24

    Autism spectrum disorder (ASD) is a developmental disability characterized by impairments in social interaction and repetitive behavior, and is also associated with cognitive deficits. There is no current treatment that can ameliorate most of the ASD symptomatology; thus, identifying novel therapies is urgently needed. We used male BTBR T + Itpr3 tf /J (BTBR) mice, a model that reproduces most of the core behavioral phenotypes of ASD, to test the effects of systemic administration of insulin-like growth factor II (IGF-II), a polypeptide that crosses the blood-brain barrier and acts as a cognitive enhancer. We show that systemic IGF-II treatments reverse the typical defects in social interaction, cognitive/executive functions, and repetitive behaviors reflective of ASD-like phenotypes. In BTBR mice, IGF-II, via IGF-II receptor, but not via IGF-I receptor, reverses the abnormal levels of the AMPK-mTOR-S6K pathway and of active translation at synapses. Thus, IGF-II may represent a novel potential therapy for ASD. SIGNIFICANCE STATEMENT Currently, there is no effective treatment for autism spectrum disorder (ASD), a developmental disability affecting a high number of children. Using a mouse model that expresses most of the key core as well as associated behavioral deficits of ASD, that are, social, cognitive, and repetitive behaviors, we report that a systemic administration of the polypeptide insulin-like growth factor II (IGF-II) reverses all these deficits. The effects of IGF-II occur via IGF-II receptors, and not IGF-I receptors, and target both basal and learning-dependent molecular abnormalities found in several ASD mice models, including those of identified genetic mutations. We suggest that IGF-II represents a potential novel therapeutic target for ASD. Copyright © 2018 the authors 0270-6474/18/371015-15$15.00/0.

  15. PheProb: probabilistic phenotyping using diagnosis codes to improve power for genetic association studies.

    PubMed

    Sinnott, Jennifer A; Cai, Fiona; Yu, Sheng; Hejblum, Boris P; Hong, Chuan; Kohane, Isaac S; Liao, Katherine P

    2018-05-17

    Standard approaches for large scale phenotypic screens using electronic health record (EHR) data apply thresholds, such as ≥2 diagnosis codes, to define subjects as having a phenotype. However, the variation in the accuracy of diagnosis codes can impair the power of such screens. Our objective was to develop and evaluate an approach which converts diagnosis codes into a probability of a phenotype (PheProb). We hypothesized that this alternate approach for defining phenotypes would improve power for genetic association studies. The PheProb approach employs unsupervised clustering to separate patients into 2 groups based on diagnosis codes. Subjects are assigned a probability of having the phenotype based on the number of diagnosis codes. This approach was developed using simulated EHR data and tested in a real world EHR cohort. In the latter, we tested the association between low density lipoprotein cholesterol (LDL-C) genetic risk alleles known for association with hyperlipidemia and hyperlipidemia codes (ICD-9 272.x). PheProb and thresholding approaches were compared. Among n = 1462 subjects in the real world EHR cohort, the threshold-based p-values for association between the genetic risk score (GRS) and hyperlipidemia were 0.126 (≥1 code), 0.123 (≥2 codes), and 0.142 (≥3 codes). The PheProb approach produced the expected significant association between the GRS and hyperlipidemia: p = .001. PheProb improves statistical power for association studies relative to standard thresholding approaches by leveraging information about the phenotype in the billing code counts. The PheProb approach has direct applications where efficient approaches are required, such as in Phenome-Wide Association Studies.

  16. The developmental genetics of biological robustness

    PubMed Central

    Mestek Boukhibar, Lamia; Barkoulas, Michalis

    2016-01-01

    Background Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype–phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. Scope and Conclusions Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved. PMID:26292993

  17. Genomic Study of Cardiovascular Continuum Comorbidity.

    PubMed

    Makeeva, O A; Sleptsov, A A; Kulish, E V; Barbarash, O L; Mazur, A M; Prokhorchuk, E B; Chekanov, N N; Stepanov, V A; Puzyrev, V P

    2015-01-01

    Comorbidity or a combination of several diseases in the same individual is a common and widely investigated phenomenon. However, the genetic background for non-random disease combinations is not fully understood. Modern technologies and approaches to genomic data analysis enable the investigation of the genetic profile of patients burdened with several diseases (polypathia, disease conglomerates) and its comparison with the profiles of patients with single diseases. An association study featuring three groups of patients with various combinations of cardiovascular disorders and a control group of relatively healthy individuals was conducted. Patients were selected as follows: presence of only one disease, ischemic heart disease (IHD); a combination of two diseases, IHD and arterial hypertension (AH); and a combination of several diseases, including IHD, AH, type 2 diabetes mellitus (T2DM), and hypercholesterolemia (HC). Genotyping was performed using the "My Gene" genomic service (www.i-gene.ru). An analysis of 1,400 polymorphic genetic variants and their associations with the studied phenotypes are presented. A total of 14 polymorphic variants were associated with the phenotype "IHD only," including those in the APOB, CD226, NKX2-5, TLR2, DPP6, KLRB1, VDR, SCARB1, NEDD4L, and SREBF2 genes, and intragenic variants rs12487066, rs7807268, rs10896449, and rs944289. A total of 13 genetic markers were associated with the "IHD and AH" phenotype, including variants in the BTNL2, EGFR, CNTNAP2, SCARB1, and HNF1A genes, and intragenic polymorphisms rs801114, rs10499194, rs13207033, rs2398162, rs6501455, and rs1160312. A total of 14 genetic variants were associated with a combination of several diseases of cardiovascular continuum (CVC), including those in the TAS2R38, SEZ6L, APOA2, KLF7, CETP, ITGA4, RAD54B, LDLR, and MTAP genes, along with intragenic variants rs1333048, rs1333049, and rs6501455. One common genetic marker was identified for the "IHD only" and "IHD and AH" phenotypes: rs4765623 in the SCARB1 gene; two common genetic markers, rs663048 in SEZ6L and intragenic rs6501455, were identified for the "IHD and AH" phenotype and a combination of several diseases (syntropy); there were no common genetic markers for the "syntropy" and "IHD only" phenotypes. Classificatory analysis of the relationships between the associated genes and metabolic pathways revealed that lipid-metabolizing genes are involved in the development of all three CVC variants, whereas immunity-response genes are specific to the "IHD only" phenotype. The study demonstrated that comorbidity presents additional challenges in association studies of disease predisposition, since the genetic profile of combined forms of pathology can be markedly different from those for isolated "single" forms of a disease.

  18. Text-mined phenotype annotation and vector-based similarity to improve identification of similar phenotypes and causative genes in monogenic disease patients.

    PubMed

    Saklatvala, Jake R; Dand, Nick; Simpson, Michael A

    2018-05-01

    The genetic diagnosis of rare monogenic diseases using exome/genome sequencing requires the true causal variant(s) to be identified from tens of thousands of observed variants. Typically a virtual gene panel approach is taken whereby only variants in genes known to cause phenotypes resembling the patient under investigation are considered. With the number of known monogenic gene-disease pairs exceeding 5,000, manual curation of personalized virtual panels using exhaustive knowledge of the genetic basis of the human monogenic phenotypic spectrum is challenging. We present improved probabilistic methods for estimating phenotypic similarity based on Human Phenotype Ontology annotation. A limitation of existing methods for evaluating a disease's similarity to a reference set is that reference diseases are typically represented as a series of binary (present/absent) observations of phenotypic terms. We evaluate a quantified disease reference set, using term frequency in phenotypic text descriptions to approximate term relevance. We demonstrate an improved ability to identify related diseases through the use of a quantified reference set, and that vector space similarity measures perform better than established information content-based measures. These improvements enable the generation of bespoke virtual gene panels, facilitating more accurate and efficient interpretation of genomic variant profiles from individuals with rare Mendelian disorders. These methods are available online at https://atlas.genetics.kcl.ac.uk/~jake/cgi-bin/patient_sim.py. © 2018 Wiley Periodicals, Inc.

  19. A Molecular Perspective on Systematics, Taxonomy and Classification Amazonian Discus Fishes of the Genus Symphysodon

    PubMed Central

    Amado, Manuella Villar; Farias, Izeni P.; Hrbek, Tomas

    2011-01-01

    With the goal of contributing to the taxonomy and systematics of the Neotropical cichlid fishes of the genus Symphysodon, we analyzed 336 individuals from 24 localities throughout the entire distributional range of the genus. We analyzed variation at 13 nuclear microsatellite markers, and subjected the data to Bayesian analysis of genetic structure. The results indicate that Symphysodon is composed of four genetic groups: group PURPLE—phenotype Heckel and abacaxi; group GREEN—phenotype green; group RED—phenotype blue and brown; and group PINK—populations of Xingú and Cametá. Although the phenotypes blue and brown are predominantly biological group RED, they also have substantial contributions from other biological groups, and the patterns of admixture of the two phenotypes are different. The two phenotypes are further characterized by distinct and divergent mtDNA haplotype groups, and show differences in mean habitat use measured as pH and conductivity. Differences in mean habitat use is also observed between most other biological groups. We therefore conclude that Symphysodon comprises five evolutionary significant units: Symphysodon discus (Heckel and abacaxi phenotypes), S. aequifasciatus (brown phenotype), S. tarzoo (green phenotype), Symphysodon sp. 1 (blue phenotype) and Symphysodon sp. 2 (Xingú group). PMID:21811676

  20. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification

    PubMed Central

    Bell, Rayna C.; Mason, Nicholas A.

    2016-01-01

    Almost 30 y ago, the field of intraspecific phylogeography laid the foundation for spatially explicit and genealogically informed studies of population divergence. With new methods and markers, the focus in phylogeography shifted to previously unrecognized geographic genetic variation, thus reducing the attention paid to phenotypic variation in those same diverging lineages. Although phenotypic differences among lineages once provided the main data for studies of evolutionary change, the mechanisms shaping phenotypic differentiation and their integration with intraspecific genetic structure have been underexplored in phylogeographic studies. However, phenotypes are targets of selection and play important roles in species performance, recognition, and diversification. Here, we focus on three questions. First, how can phenotypes elucidate mechanisms underlying concordant or idiosyncratic responses of vertebrate species evolving in shared landscapes? Second, what mechanisms underlie the concordance or discordance of phenotypic and phylogeographic differentiation? Third, how can phylogeography contribute to our understanding of functional phenotypic evolution? We demonstrate that the integration of phenotypic data extends the reach of phylogeography to explain the origin and maintenance of biodiversity. Finally, we stress the importance of natural history collections as sources of high-quality phenotypic data that span temporal and spatial axes. PMID:27432983

  1. The Logic of Circadian Organization in Drosophila

    PubMed Central

    Dissel, Stephane; Hansen, Celia N.; Özkaya, Özge; Hemsley, Matthew; Kyriacou, Charalambos P.; Rosato, Ezio

    2014-01-01

    Summary Background In the fruit fly Drosophila melanogaster, interlocked negative transcription/translation feedback loops provide the core of the circadian clock that generates rhythmic phenotypes. Although the current molecular model portrays the oscillator as cell autonomous, cross-talk among clock neurons is essential for robust cycling behavior. Nevertheless, the functional organization of the neuronal network remains obscure. Results Here we show that shortening or lengthening of the circadian period of locomotor activity can be obtained either by targeting different groups of clock cells with the same genetic manipulation or by challenging the same group of cells with activators and repressors of neuronal excitability. Conclusions Based on these observations we interpret circadian rhythmicity as an emerging property of the circadian network and we propose an initial model for its architectural design. PMID:25220056

  2. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data.

    PubMed Central

    Orr, H A

    1998-01-01

    Evolutionary biologists have long sought a way to determine whether a phenotypic difference between two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I propose a sign test that compares the observed number of plus and minus alleles in the "high line" with that expected under neutrality, conditioning on the known phenotypic difference between the taxa. Rejection of the null hypothesis implies a role for directional natural selection. This test is applicable to any character in any organism in which QTL analysis can be performed. PMID:9691061

  3. Characterization and mapping of complementary lesion-mimic genes lm1 and lm2 in common wheat.

    PubMed

    Yao, Qin; Zhou, Ronghua; Fu, Tihua; Wu, Weiren; Zhu, Zhendong; Li, Aili; Jia, Jizeng

    2009-10-01

    A lesion-mimic phenotype appeared in a segregating population of common wheat cross Yanzhan 1/Zaosui 30. The parents had non-lesion normal phenotypes. Shading treatment and histochemical analyses showed that the lesions were caused by light-dependent cell death and were not associated with pathogens. Studies over two cropping seasons showed that some lines with more highly expressed lesion-mimic phenotypes exhibited significantly lower grain yields than those with the normal phenotype, but there were no significant effects in the lines with weakly expressed lesion-mimic phenotypes. Among yield traits, one-thousand grain weight was the most affected by lesion-mimic phenotypes. Genetic analysis indicated that this was a novel type of lesion mimic, which was caused by interaction of recessive genes derived from each parent. The lm1 (lesion mimic 1) locus from Zaosui 30 was flanked by microsatellite markers Xwmc674 and Xbarc133/Xbarc147 on chromosome 3BS, at genetic distances of 1.2 and 3.8 cM, respectively, whereas lm2 from Yanzhan 1 was mapped between microsatellite markers Xgwm513 and Xksum154 on chromosome 4BL, at genetic distances of 1.5 and 3 cM, respectively. The linked microsatellite makers identified in this study might be useful for evaluating whether potential parents with normal phenotype are carriers of lesion-mimic alleles.

  4. Phenotype-genotype correlations in Leigh syndrome: new insights from a multicentre study of 96 patients.

    PubMed

    Sofou, Kalliopi; de Coo, Irenaeus F M; Ostergaard, Elsebet; Isohanni, Pirjo; Naess, Karin; De Meirleir, Linda; Tzoulis, Charalampos; Uusimaa, Johanna; Lönnqvist, Tuula; Bindoff, Laurence Albert; Tulinius, Már; Darin, Niklas

    2018-01-01

    Leigh syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder. While some genetic defects are associated with well-described phenotypes, phenotype-genotype correlations in Leigh syndrome are not fully explored. We aimed to identify phenotype-genotype correlations in Leigh syndrome in a large cohort of systematically evaluated patients. We studied 96 patients with genetically confirmed Leigh syndrome diagnosed and followed in eight European centres specialising in mitochondrial diseases. We found that ataxia, ophthalmoplegia and cardiomyopathy were more prevalent among patients with mitochondrial DNA defects. Patients with mutations in MT-ND and NDUF genes with complex I deficiency shared common phenotypic features, such as early development of central nervous system disease, followed by high occurrence of cardiac and ocular manifestations. The cerebral cortex was affected in patients with NDUF mutations significantly more often than the rest of the cohort. Patients with the m.8993T>G mutation in MT-ATP6 gene had more severe clinical and radiological manifestations and poorer disease outcome compared with patients with the m.8993T>C mutation. Our study provides new insights into phenotype-genotype correlations in Leigh syndrome and particularly in patients with complex I deficiency and with defects in the mitochondrial ATP synthase. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.

    PubMed

    Pan, Qingchun; Xu, Yuancheng; Li, Kun; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin; Yan, Jianbing

    2017-10-01

    Plant architecture is a key factor affecting planting density and grain yield in maize ( Zea mays ). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3 , has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia?

    PubMed

    Gandal, M J; Anderson, R L; Billingslea, E N; Carlson, G C; Roberts, T P L; Siegel, S J

    2012-08-01

    Reduced NMDA-receptor (NMDAR) function has been implicated in the pathophysiology of neuropsychiatric disease, most strongly in schizophrenia but also recently in autism spectrum disorders (ASD). To determine the direct contribution of NMDAR dysfunction to disease phenotypes, a mouse model with constitutively reduced expression of the obligatory NR1 subunit has been developed and extensively investigated. Adult NR1(neo-/-) mice show multiple abnormal behaviors, including reduced social interactions, locomotor hyperactivity, self-injury, deficits in prepulse inhibition (PPI) and sensory hypersensitivity, among others. Whereas such phenotypes have largely been interpreted in the context of schizophrenia, these behavioral abnormalities are rather non-specific and are frequently present across models of diseases characterized by negative symptom domains. This study investigated auditory electrophysiological and behavioral paradigms relevant to autism, to determine whether NMDAR hypofunction may be more consistent with adult ASD-like phenotypes. Indeed, transgenic mice showed behavioral deficits relevant to all core ASD symptoms, including decreased social interactions, altered ultrasonic vocalizations and increased repetitive behaviors. NMDAR disruption recapitulated clinical endophenotypes including reduced PPI, auditory-evoked response N1 latency delay and reduced gamma synchrony. Auditory electrophysiological abnormalities more closely resembled those seen in clinical studies of autism than schizophrenia. These results suggest that NMDAR hypofunction may be associated with a continuum of neuropsychiatric diseases, including schizophrenia and autism. Neural synchrony abnormalities suggest an imbalance of glutamatergic and GABAergic coupling and may provide a target, along with behavioral phenotypes, for preclinical screening of novel therapeutics. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  7. Heritable Environmental Variance Causes Nonlinear Relationships Between Traits: Application to Birth Weight and Stillbirth of Pigs

    PubMed Central

    Mulder, Herman A.; Hill, William G.; Knol, Egbert F.

    2015-01-01

    There is recent evidence from laboratory experiments and analysis of livestock populations that not only the phenotype itself, but also its environmental variance, is under genetic control. Little is known about the relationships between the environmental variance of one trait and mean levels of other traits, however. A genetic covariance between these is expected to lead to nonlinearity between them, for example between birth weight and survival of piglets, where animals of extreme weights have lower survival. The objectives were to derive this nonlinear relationship analytically using multiple regression and apply it to data on piglet birth weight and survival. This study provides a framework to study such nonlinear relationships caused by genetic covariance of environmental variance of one trait and the mean of the other. It is shown that positions of phenotypic and genetic optima may differ and that genetic relationships are likely to be more curvilinear than phenotypic relationships, dependent mainly on the environmental correlation between these traits. Genetic correlations may change if the population means change relative to the optimal phenotypes. Data of piglet birth weight and survival show that the presence of nonlinearity can be partly explained by the genetic covariance between environmental variance of birth weight and survival. The framework developed can be used to assess effects of artificial and natural selection on means and variances of traits and the statistical method presented can be used to estimate trade-offs between environmental variance of one trait and mean levels of others. PMID:25631318

  8. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence.

    PubMed

    Hill, W D; Marioni, R E; Maghzian, O; Ritchie, S J; Hagenaars, S P; McIntosh, A M; Gale, C R; Davies, G; Deary, I J

    2018-01-11

    Intelligence, or general cognitive function, is phenotypically and genetically correlated with many traits, including a wide range of physical, and mental health variables. Education is strongly genetically correlated with intelligence (r g  = 0.70). We used these findings as foundations for our use of a novel approach-multi-trait analysis of genome-wide association studies (MTAG; Turley et al. 2017)-to combine two large genome-wide association studies (GWASs) of education and intelligence, increasing statistical power and resulting in the largest GWAS of intelligence yet reported. Our study had four goals: first, to facilitate the discovery of new genetic loci associated with intelligence; second, to add to our understanding of the biology of intelligence differences; third, to examine whether combining genetically correlated traits in this way produces results consistent with the primary phenotype of intelligence; and, finally, to test how well this new meta-analytic data sample on intelligence predicts phenotypic intelligence in an independent sample. By combining datasets using MTAG, our functional sample size increased from 199,242 participants to 248,482. We found 187 independent loci associated with intelligence, implicating 538 genes, using both SNP-based and gene-based GWAS. We found evidence that neurogenesis and myelination-as well as genes expressed in the synapse, and those involved in the regulation of the nervous system-may explain some of the biological differences in intelligence. The results of our combined analysis demonstrated the same pattern of genetic correlations as those from previous GWASs of intelligence, providing support for the meta-analysis of these genetically-related phenotypes.

  9. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds.

    PubMed

    Webster, Matthew T; Kamgari, Nona; Perloski, Michele; Hoeppner, Marc P; Axelsson, Erik; Hedhammar, Åke; Pielberg, Gerli; Lindblad-Toh, Kerstin

    2015-06-23

    The domestic dog is a rich resource for mapping the genetic components of phenotypic variation due to its unique population history involving strong artificial selection. Genome-wide association studies have revealed a number of chromosomal regions where genetic variation associates with morphological characters that typify dog breeds. A region on chromosome 10 is among those with the highest levels of genetic differentiation between dog breeds and is associated with body mass and ear morphology, a common motif of animal domestication. We characterised variation in this region to uncover haplotype structure and identify candidate functional variants. We first identified SNPs that strongly associate with body mass and ear type by comparing sequence variation in a 3 Mb region between 19 breeds with a variety of phenotypes. We next genotyped a subset of 123 candidate SNPs in 288 samples from 46 breeds to identify the variants most highly associated with phenotype and infer haplotype structure. A cluster of SNPs that associate strongly with the drop ear phenotype is located within a narrow interval downstream of the gene MSRB3, which is involved in human hearing. These SNPs are in strong genetic linkage with another set of variants that correlate with body mass within the gene HMGA2, which affects human height. In addition we find evidence that this region has been under selection during dog domestication, and identify a cluster of SNPs within MSRB3 that are highly differentiated between dogs and wolves. We characterise genetically linked variants that potentially influence ear type and body mass in dog breeds, both key traits that have been modified by selective breeding that may also be important for domestication. The finding that variants on long haplotypes have effects on more than one trait suggests that genetic linkage can be an important determinant of the phenotypic response to selection in domestic animals.

  10. Biopsychosocial influence on exercise-induced injury: genetic and psychological combinations are predictive of shoulder pain phenotypes.

    PubMed

    George, Steven Z; Parr, Jeffrey J; Wallace, Margaret R; Wu, Samuel S; Borsa, Paul A; Dai, Yunfeng; Fillingim, Roger B

    2014-01-01

    Chronic pain is influenced by biological, psychological, social, and cultural factors. The current study investigated potential roles for combinations of genetic and psychological factors in the development and/or maintenance of chronic musculoskeletal pain. An exercise-induced shoulder injury model was used, and a priori selected genetic (ADRB2, COMT, OPRM1, AVPR1 A, GCH1, and KCNS1) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, and kinesiophobia) factors were included as predictors. Pain phenotypes were shoulder pain intensity (5-day average and peak reported on numerical rating scale), upper extremity disability (5-day average and peak reported on the QuickDASH), and shoulder pain duration (in days). After controlling for age, sex, and race, the genetic and psychological predictors were entered as main effects and interaction terms in separate regression models for the different pain phenotypes. Results from the recruited cohort (N = 190) indicated strong statistical evidence for interactions between the COMT diplotype and 1) pain catastrophizing for 5-day average upper extremity disability and 2) depressive symptoms for pain duration. There was moderate statistical evidence for interactions for other shoulder pain phenotypes between additional genes (ADRB2, AVPR1 A, and KCNS1) and depressive symptoms, pain catastrophizing, or kinesiophobia. These findings confirm the importance of the combined predictive ability of COMT with psychological distress and reveal other novel combinations of genetic and psychological factors that may merit additional investigation in other pain cohorts. Interactions between genetic and psychological factors were investigated as predictors of different exercise-induced shoulder pain phenotypes. The strongest statistical evidence was for interactions between the COMT diplotype and pain catastrophizing (for upper extremity disability) or depressive symptoms (for pain duration). Other novel genetic and psychological combinations were identified that may merit further investigation. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans.

    PubMed

    Voruganti, V Saroja; Lopez-Alvarenga, Juan C; Nath, Subrata D; Rainwater, David L; Bauer, Richard; Cole, Shelley A; Maccluer, Jean W; Blangero, John; Comuzzie, Anthony G

    2008-03-01

    Insulin resistance is a major biochemical defect underlying the pathogenesis of cardiovascular disease (CVD). Mexican-Americans are known to have an unfavorable cardiovascular profile. Thus, the aim of this study was to investigate the genetic effect on variation in HOMA-IR and to evaluate its genetic correlations with other phenotypes related to risk of CVD in Mexican-Americans. The homeostatic model assessment method (HOMA-IR) is one of several approaches that are used to measure insulin resistance and was used here to generate a quantitative phenotype for genetic analysis. For 644 adults who had participated in the San Antonio Family Heart Study (SAFHS), estimates of genetic contribution were computed using a variance components method implemented in SOLAR. Traits that exhibited significant heritabilities were body mass index (BMI) (h (2) = 0.43), waist circumference (h (2) = 0.48), systolic blood pressure (h (2) = 0.30), diastolic blood pressure (h (2) = 0.21), pulse pressure (h (2) = 0.32), triglycerides (h (2) = 0.51), LDL cholesterol (h (2) = 0.31), HDL cholesterol (h (2) = 0.24), C-reactive protein (h (2) = 0.17), and HOMA-IR (h (2) = 0.33). A genome-wide scan for HOMA-IR revealed significant evidence of linkage on chromosome 12q24 (close to PAH (phenylalanine hydroxylase), LOD = 3.01, p < 0.001). Bivariate analyses demonstrated significant genetic correlations (p < 0.05) of HOMA-IR with BMI (rho (G) = 0.36), waist circumference (rho (G) = 0.47), pulse pressure (rho (G) = 0.39), and HDL cholesterol (rho (G) = -0.18). Identification of significant linkage for HOMA-IR on chromosome 12q replicates previous family-based studies reporting linkage of phenotypes associated with type 2 diabetes in the same chromosomal region. Significant genetic correlations between HOMA-IR and phenotypes related to CVD risk factors suggest that a common set of gene(s) influence the regulation of these phenotypes.

  12. Genetic abnormalities in bicuspid aortic valve root phenotype: preliminary results.

    PubMed

    Girdauskas, Evaldas; Geist, Lisa; Disha, Kushtrim; Kazakbaev, Iliaz; Groß, Tatiana; Schulz, Solveig; Ungelenk, Martin; Kuntze, Thomas; Reichenspurner, Hermann; Kurth, Ingo

    2017-07-01

    Genetic defects associated with bicuspid aortopathy have been infrequently analysed. Our goal was to examine the prevalence of rare genetic variants in patients with a bicuspid aortic valve (BAV) with a root phenotype using next-generation sequencing technology. We investigated a total of 124 patients with BAV with a root dilatation phenotype who underwent aortic valve ± proximal aortic surgery at a single institution (BAV database, n  = 812) during a 20-year period (1995-2015). Cross-sectional follow-up revealed 63 (51%) patients who were still alive and willing to participate. Systematic follow-up visits were scheduled from March to December 2015 and included aortic imaging as well as peripheral blood sampling for genetic testing. Next-generation sequencing libraries were prepared using a custom-made HaloPlex HS gene panel and included 20 candidate genes known to be associated with aortopathy and BAV. The primary end-point was the prevalence of genetic defects in our study cohort. A total of 63 patients (mean age 46 ± 10 years, 92% men) with BAV root phenotype and mean post-aortic valve replacement follow-up of 10.3 ± 4.9 years were included. Our genetic analysis yielded a wide spectrum of rare, potentially or likely pathogenic variants in 19 (30%) patients, with NOTCH1 variants being the most common ( n  = 6). Moreover, deleterious variants were revealed in AXIN1 ( n  = 3), NOS3 ( n  = 3), ELN ( n  = 2), FBN1 ( n  = 2) , FN1 ( n  = 2) and rarely in other candidate genes. Our preliminary study demonstrates a high prevalence and a wide spectrum of rare genetic variants in patients with the BAV root phenotype, indicative of the potentially congenital origin of associated aortopathy in this specific BAV cohort. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Genetic architecture of the Delis-Kaplan Executive Function System Trail Making Test: evidence for distinct genetic influences on executive function.

    PubMed

    Vasilopoulos, Terrie; Franz, Carol E; Panizzon, Matthew S; Xian, Hong; Grant, Michael D; Lyons, Michael J; Toomey, Rosemary; Jacobson, Kristen C; Kremen, William S

    2012-03-01

    To examine how genes and environments contribute to relationships among Trail Making Test (TMT) conditions and the extent to which these conditions have unique genetic and environmental influences. Participants included 1,237 middle-aged male twins from the Vietnam Era Twin Study of Aging. The Delis-Kaplan Executive Function System TMT included visual searching, number and letter sequencing, and set-shifting components. Phenotypic correlations among TMT conditions ranged from 0.29 to 0.60, and genes accounted for the majority (58-84%) of each correlation. Overall heritability ranged from 0.34 to 0.62 across conditions. Phenotypic factor analysis suggested a single factor. In contrast, genetic models revealed a single common genetic factor but also unique genetic influences separate from the common factor. Genetic variance (i.e., heritability) of number and letter sequencing was completely explained by the common genetic factor while unique genetic influences separate from the common factor accounted for 57% and 21% of the heritabilities of visual search and set shifting, respectively. After accounting for general cognitive ability, unique genetic influences accounted for 64% and 31% of those heritabilities. A common genetic factor, most likely representing a combination of speed and sequencing, accounted for most of the correlation among TMT 1-4. Distinct genetic factors, however, accounted for a portion of variance in visual scanning and set shifting. Thus, although traditional phenotypic shared variance analysis techniques suggest only one general factor underlying different neuropsychological functions in nonpatient populations, examining the genetic underpinnings of cognitive processes with twin analysis can uncover more complex etiological processes.

  14. Markov Logic Networks in the Analysis of Genetic Data

    PubMed Central

    Sakhanenko, Nikita A.

    2010-01-01

    Abstract Complex, non-additive genetic interactions are common and can be critical in determining phenotypes. Genome-wide association studies (GWAS) and similar statistical studies of linkage data, however, assume additive models of gene interactions in looking for genotype-phenotype associations. These statistical methods view the compound effects of multiple genes on a phenotype as a sum of influences of each gene and often miss a substantial part of the heritable effect. Such methods do not use any biological knowledge about underlying mechanisms. Modeling approaches from the artificial intelligence (AI) field that incorporate deterministic knowledge into models to perform statistical analysis can be applied to include prior knowledge in genetic analysis. We chose to use the most general such approach, Markov Logic Networks (MLNs), for combining deterministic knowledge with statistical analysis. Using simple, logistic regression-type MLNs we can replicate the results of traditional statistical methods, but we also show that we are able to go beyond finding independent markers linked to a phenotype by using joint inference without an independence assumption. The method is applied to genetic data on yeast sporulation, a complex phenotype with gene interactions. In addition to detecting all of the previously identified loci associated with sporulation, our method identifies four loci with smaller effects. Since their effect on sporulation is small, these four loci were not detected with methods that do not account for dependence between markers due to gene interactions. We show how gene interactions can be detected using more complex models, which can be used as a general framework for incorporating systems biology with genetics. PMID:20958249

  15. Gene flow does not prevent personality and morphological differentiation between two blue tit populations.

    PubMed

    Dubuc-Messier, Gabrielle; Caro, Samuel P; Perrier, Charles; van Oers, Kees; Réale, Denis; Charmantier, Anne

    2018-05-23

    Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to five years. We then compared adult phenotypes between the two populations, as well as trait-specific Q st and F st . Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. Q st - F st comparisons revealed that the traits divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a Q st - F st comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. High-Density Genetic Mapping Identifies New Susceptibility Variants in Sarcoidosis Phenotypes and Shows Genomic-driven Phenotypic Differences

    PubMed Central

    Ronninger, Marcus; Shchetynsky, Klementy; Franke, Andre; Nöthen, Markus M.; Müller-Quernheim, Joachim; Schreiber, Stefan; Adrianto, Indra; Karakaya, Bekir; van Moorsel, Coline H. M.; Navratilova, Zdenka; Kolek, Vitezslav; Rybicki, Benjamin A.; Iannuzzi, Michael C.; Petrek, Martin; Grutters, Jan C.; Montgomery, Courtney; Fischer, Annegret; Eklund, Anders; Padyukov, Leonid; Grunewald, Johan

    2016-01-01

    Rationale: Sarcoidosis is a multisystem disease of unknown cause. Löfgren’s syndrome (LS) is a characteristic subgroup of sarcoidosis that is associated with a good prognosis in sarcoidosis. However, little is known about its genetic architecture or its broader phenotype, non-LS sarcoidosis. Objectives: To address the genetic architecture of sarcoidosis phenotypes, LS and non-LS. Methods: An association study in a white Swedish cohort of 384 LS, 664 non-LS, and 2,086 control subjects, totaling 3,134 subjects using a fine-mapping genotyping platform was conducted. Replication was performed in four independent cohorts, three of white European descent (Germany, n = 4,975; the Netherlands, n = 613; and Czech Republic, n = 521), and one of black African descent (United States, n = 1,657), totaling 7,766 subjects. Measurements and Main Results: A total of 727 LS-associated variants expanding throughout the extended major histocompatibility complex (MHC) region and 68 non-LS–associated variants located in the MHC class II region were identified and confirmed. A shared overlap between LS and non-LS defined by 17 variants located in the MHC class II region was found. Outside the MHC region, two LS-associated loci, in ADCY3 and between CSMD1 and MCPH1, were observed and replicated. Conclusions: Comprehensive and integrative analyses of genetics, transcription, and pathway modeling on LS and non-LS indicates that these sarcoidosis phenotypes have different genetic susceptibility, genomic distributions, and cellular activities, suggesting distinct molecular mechanisms in pathways related to immune response with a common region. PMID:26651848

  17. Association of genetic and phenotypic variability with geography and climate in three southern California oaks.

    PubMed

    Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L

    2016-01-01

    Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.

  18. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal

    PubMed Central

    2013-01-01

    Background The genus Limonium Miller comprises annual and perennial halophytes that can produce sexual and/or asexual seeds (apomixis). Genetic and epigenetic (DNA methylation) variation patterns were investigated in populations of three phenotypically similar putative sexual diploid species (L. nydeggeri, L. ovalifolium, L. lanceolatum), one sexual tetraploid species (L. vulgare) and two apomict tetraploid species thought to be related (L. dodartii, L. multiflorum). The extent of morphological differentiation between these species was assessed using ten diagnostic morphometric characters. Results A discriminant analysis using the morphometric variables reliably assigns individuals into their respective species groups. We found that only modest genetic and epigenetic differentiation was revealed between species by Methylation Sensitive Amplification Polymorphism (MSAP). However, whilst there was little separation possible between ploidy levels on the basis of genetic profiles, there was clear and pronounced interploidy discrimination on the basis of epigenetic profiles. Here we investigate the relative contribution of genetic and epigenetic factors in explaining the complex phenotypic variability seen in problematic taxonomic groups such as Limonium that operate both apomixis and sexual modes of reproduction. Conclusions Our results suggest that epigenetic variation might be one of the drivers of the phenotypic divergence between diploid and tetraploid taxa and discuss that intergenome silencing offers a plausible mechanistic explanation for the observed phenotypic divergence between these microspecies. These results also suggest that epigenetic profiling offer an additional tool to infer ploidy level in stored specimens and that stable epigenetic change may play an important role in apomict evolution and species recognition. PMID:24314092

  19. Genetic influences of sports participation in Portuguese families.

    PubMed

    Seabra, André F; Mendonça, Denisa M; Göring, Harald H H; Thomis, Martine A; Maia, José A

    2014-01-01

    To estimate familial aggregation and quantify the genetic and environmental contribution to the phenotypic variation on sports participation (SP) among Portuguese families. The sample consisted of 2375 nuclear families (parents and two offspring each) from different regions of Portugal with a total of 9500 subjects. SP assessment was based on a psychometrically established questionnaire. Phenotypes used were based on the participation in sports (yes/no), intensity of sport, weekly amount of time in SP and the proportion of the year in which a sport was regularly played. Familial correlations were calculated using family correlations (FCOR) in the SAGE software. Heritability was estimated using variance-components methods implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR) software. Subjects of the same generation tend to be more similar in their SP habits than the subjects of different generations. In all SP phenotypes studied, adjusted for the effects of multiple covariates, the proportion of phenotypic variance due to additive genetic factors ranged between 40% and 50%. The proportion of variance attributable to environmental factors ranged from 50% for the participation in sports to 60% for intensity of sport. In this large population-based family study, there was significant familial aggregation on SP. These results highlight that the variation on SP phenotypes have a significant genetic contribution although environmental factors are also important in the familial resemblance of SP.

  20. Most Colorful Example of Genetic Assimilation? Exploring the Evolutionary Destiny of Recurrent Phenotypic Accommodation.

    PubMed

    Badyaev, Alexander V; Potticary, Ahva L; Morrison, Erin S

    2017-08-01

    Evolution of adaptation requires both generation of novel phenotypic variation and retention of a locally beneficial subset of this variation. Such retention can be facilitated by genetic assimilation, the accumulation of genetic and molecular mechanisms that stabilize induced phenotypes and assume progressively greater control over their reliable production. A particularly strong inference into genetic assimilation as an evolutionary process requires a system where it is possible to directly evaluate the extent to which an induced phenotype is progressively incorporated into preexisting developmental pathways. Evolution of diet-dependent pigmentation in birds-where external carotenoids are coopted into internal metabolism to a variable degree before being integrated with a feather's developmental processes-provides such an opportunity. Here we combine a metabolic network view of carotenoid evolution with detailed empirical study of feather modifications to show that the effect of physical properties of carotenoids on feather structure depends on their metabolic modification, their environmental recurrence, and biochemical redundancy, as predicted by the genetic assimilation hypothesis. Metabolized carotenoids caused less stochastic variation in feather structure and were more closely integrated with feather growth than were dietary carotenoids of the same molecular weight. These patterns were driven by the recurrence of organism-carotenoid associations: commonly used dietary carotenoids and biochemically redundant derived carotenoids caused less stochastic variation in feather structure than did rarely used or biochemically unique compounds. We discuss implications of genetic assimilation processes for the evolutionary diversification of diet-dependent animal coloration.

  1. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  2. Phenotypic and Genetic Effects of Contrasting Ethanol Environments on Physiological and Developmental Traits in Drosophila melanogaster

    PubMed Central

    Castañeda, Luis E.; Nespolo, Roberto F.

    2013-01-01

    A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster. PMID:23505567

  3. Contingency, convergence and hyper-astronomical numbers in biological evolution.

    PubMed

    Louis, Ard A

    2016-08-01

    Counterfactual questions such as "what would happen if you re-run the tape of life?" turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype-phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance.

    PubMed

    Reis, Vanda Renata; Antonangelo, Ana Teresa Burlamaqui Faraco; Bassi, Ana Paula Guarnieri; Colombi, Débora; Ceccato-Antonini, Sandra Regina

    Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti

    PubMed Central

    Walker, Graham C.; Finan, Turlough M.; Mengoni, Alessio; Griffitts, Joel S.

    2018-01-01

    Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone. PMID:29672509

  6. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data.

    PubMed

    Lasko, Thomas A; Denny, Joshua C; Levy, Mia A

    2013-01-01

    Inferring precise phenotypic patterns from population-scale clinical data is a core computational task in the development of precision, personalized medicine. The traditional approach uses supervised learning, in which an expert designates which patterns to look for (by specifying the learning task and the class labels), and where to look for them (by specifying the input variables). While appropriate for individual tasks, this approach scales poorly and misses the patterns that we don't think to look for. Unsupervised feature learning overcomes these limitations by identifying patterns (or features) that collectively form a compact and expressive representation of the source data, with no need for expert input or labeled examples. Its rising popularity is driven by new deep learning methods, which have produced high-profile successes on difficult standardized problems of object recognition in images. Here we introduce its use for phenotype discovery in clinical data. This use is challenging because the largest source of clinical data - Electronic Medical Records - typically contains noisy, sparse, and irregularly timed observations, rendering them poor substrates for deep learning methods. Our approach couples dirty clinical data to deep learning architecture via longitudinal probability densities inferred using Gaussian process regression. From episodic, longitudinal sequences of serum uric acid measurements in 4368 individuals we produced continuous phenotypic features that suggest multiple population subtypes, and that accurately distinguished (0.97 AUC) the uric-acid signatures of gout vs. acute leukemia despite not being optimized for the task. The unsupervised features were as accurate as gold-standard features engineered by an expert with complete knowledge of the domain, the classification task, and the class labels. Our findings demonstrate the potential for achieving computational phenotype discovery at population scale. We expect such data-driven phenotypes to expose unknown disease variants and subtypes and to provide rich targets for genetic association studies.

  7. Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data

    PubMed Central

    Lasko, Thomas A.; Denny, Joshua C.; Levy, Mia A.

    2013-01-01

    Inferring precise phenotypic patterns from population-scale clinical data is a core computational task in the development of precision, personalized medicine. The traditional approach uses supervised learning, in which an expert designates which patterns to look for (by specifying the learning task and the class labels), and where to look for them (by specifying the input variables). While appropriate for individual tasks, this approach scales poorly and misses the patterns that we don’t think to look for. Unsupervised feature learning overcomes these limitations by identifying patterns (or features) that collectively form a compact and expressive representation of the source data, with no need for expert input or labeled examples. Its rising popularity is driven by new deep learning methods, which have produced high-profile successes on difficult standardized problems of object recognition in images. Here we introduce its use for phenotype discovery in clinical data. This use is challenging because the largest source of clinical data – Electronic Medical Records – typically contains noisy, sparse, and irregularly timed observations, rendering them poor substrates for deep learning methods. Our approach couples dirty clinical data to deep learning architecture via longitudinal probability densities inferred using Gaussian process regression. From episodic, longitudinal sequences of serum uric acid measurements in 4368 individuals we produced continuous phenotypic features that suggest multiple population subtypes, and that accurately distinguished (0.97 AUC) the uric-acid signatures of gout vs. acute leukemia despite not being optimized for the task. The unsupervised features were as accurate as gold-standard features engineered by an expert with complete knowledge of the domain, the classification task, and the class labels. Our findings demonstrate the potential for achieving computational phenotype discovery at population scale. We expect such data-driven phenotypes to expose unknown disease variants and subtypes and to provide rich targets for genetic association studies. PMID:23826094

  8. Color Code: Using Hair Color to Make a Clear Connection between Genotype and Phenotype

    ERIC Educational Resources Information Center

    Bonner, J. Jose

    2011-01-01

    Students may wonder why they look the way they do. The answer lies in genetics, the branch of biology that deals with heredity and the variation of inherited traits. However, understanding how an organism's genetic code (i.e., genotype) affects its characteristics (i.e., phenotype) is more than a matter of idle curiosity: It's essential for…

  9. Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research.

    PubMed

    Manolio, Teri A; Fowler, Douglas M; Starita, Lea M; Haendel, Melissa A; MacArthur, Daniel G; Biesecker, Leslie G; Worthey, Elizabeth; Chisholm, Rex L; Green, Eric D; Jacob, Howard J; McLeod, Howard L; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S; Cooper, Gregory M; Cox, Nancy J; Herman, Gail E; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A; Nussbaum, Robert L; Ordovas, Jose M; Ramos, Erin M; Robinson, Peter N; Rubinstein, Wendy S; Seidman, Christine; Stranger, Barbara E; Wang, Haoyi; Westerfield, Monte; Bult, Carol

    2017-03-23

    Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. Published by Elsevier Inc.

  10. Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research

    PubMed Central

    Manolio, Teri A.; Fowler, Douglas M.; Starita, Lea M.; Haendel, Melissa A.; MacArthur, Daniel G.; Biesecker, Leslie G.; Worthey, Elizabeth; Chisholm, Rex L.; Green, Eric D.; Jacob, Howard J.; McLeod, Howard L.; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S.; Cooper, Gregory M.; Cox, Nancy J.; Herman, Gail E.; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A.; Nussbaum, Robert L.; Ordovas, Jose M.; Ramos, Erin M.; Robinson, Peter N.; Rubinstein, Wendy S.; Seidman, Christine; Stranger, Barbara E.; Wang, Haoyi; Westerfield, Monte; Bult, Carol

    2017-01-01

    Summary Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. PMID:28340351

  11. Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to evaluate the effect of 68 SNP previously associated with genetic merit for fertility and production on phenotype for reproductive and productive traits in a population of Holstein cows. In addition, we determined which SNP had repeated effects across three studie...

  12. Genetic Mechanisms Involved in the Phenotype of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2007-01-01

    Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA…

  13. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection

    USDA-ARS?s Scientific Manuscript database

    Growth, feed intake, and temperament indicator data, collected over 5 yr on a total of 1,141 to 1,183 mixed-breed steers, were used to estimate genetic and phenotypic parameters. All steers had a portion of either Hereford or Angus or both plus varying percentages also of Simmental, Charolais, Limo...

  14. Identification of mutant phenotypes associated with loss of individual microRNAs in sensitized genetic backgrounds in Caenorhabditis elegans

    PubMed Central

    Brenner, John L.; Jasiewicz, Kristen L.; Fahley, Alisha F.; Kemp, Benedict J.; Abbott, Allison L.

    2010-01-01

    Summary MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the translation and/or the stability of their mRNA targets. Previous work showed that for most miRNA genes of C. elegans, single gene knockouts did not result in detectable mutant phenotypes [1]. This may be due, in part, to functional redundancy between miRNAs. However, in most cases, worms carrying deletions of all members of a miRNA family do not display strong mutant phenotypes [2]. They may function together with unrelated miRNAs or with non-miRNA genes in regulatory networks, possibly to ensure the robustness of developmental mechanisms. To test this, we examined worms lacking individual miRNAs in genetically sensitized backgrounds. These include genetic backgrounds with reduced processing and activity of all miRNAs or with reduced activity of a wide array of regulatory pathways [3]. Using these two approaches, mutant phenotypes were identified for 25 out of 31 miRNAs included in this analysis. Our findings describe biological roles for individual miRNAs and suggest that use of sensitized genetic backgrounds provides an efficient approach for miRNA functional analysis. PMID:20579881

  15. Multiple testing and power calculations in genetic association studies.

    PubMed

    So, Hon-Cheong; Sham, Pak C

    2011-01-01

    Modern genetic association studies typically involve multiple single-nucleotide polymorphisms (SNPs) and/or multiple genes. With the development of high-throughput genotyping technologies and the reduction in genotyping cost, investigators can now assay up to a million SNPs for direct or indirect association with disease phenotypes. In addition, some studies involve multiple disease or related phenotypes and use multiple methods of statistical analysis. The combination of multiple genetic loci, multiple phenotypes, and multiple methods of evaluating associations between genotype and phenotype means that modern genetic studies often involve the testing of an enormous number of hypotheses. When multiple hypothesis tests are performed in a study, there is a risk of inflation of the type I error rate (i.e., the chance of falsely claiming an association when there is none). Several methods for multiple-testing correction are in popular use, and they all have strengths and weaknesses. Because no single method is universally adopted or always appropriate, it is important to understand the principles, strengths, and weaknesses of the methods so that they can be applied appropriately in practice. In this article, we review the three principle methods for multiple-testing correction and provide guidance for calculating statistical power.

  16. Getting Ready for the Human Phenome Project: The 2012 Forum of the Human Variome Project

    PubMed Central

    Oetting, William S.; Robinson, Peter N.; Greenblatt, Marc S.; Cotton, Richard G.; Beck, Tim; Carey, John C.; Doelken, Sandra C.; Girdea, Marta; Groza, Tudor; Hamilton, Carol M.; Hamosh, Ada; Kerner, Berit; MacArthur, Jacqueline A. L.; Maglott, Donna R.; Mons, Barend; Rehm, Heidi L.; Schofield, Paul N.; Searle, Beverly A.; Smedley, Damian; Smith, Cynthia L.; Bernstein, Inge Thomsen; Zankl, Andreas; Zhao, Eric Y.

    2014-01-01

    A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was “Getting Ready for the Human Phenome Project.” Understanding the genetic contribution to both rare single-gene “Mendelian” disorders and more complex common diseases will require integration of research efforts among many fields and better defined phenotypes. The HVP is dedicated to bringing together researchers and research populations throughout the world to provide the resources to investigate the impact of genetic variation on disease. To this end, there needs to be a greater sharing of phenotype and genotype data. For this to occur, many databases that currently exist will need to become interoperable to allow for the combining of cohorts with similar phenotypes to increase statistical power for studies attempting to identify novel disease genes or causative genetic variants. Improved systems and tools that enhance the collection of phenotype data from clinicians are urgently needed. This meeting begins the HVP’s effort toward this important goal. PMID:23401191

  17. Immunological characteristics and response to lipopolysaccharide of mouse lines selectively bred with natural and acquired immunities.

    PubMed

    Narahara, Hiroki; Sakai, Eri; Katayama, Masafumi; Ohtomo, Yukiko; Yamamoto, Kanako; Takemoto, Miki; Aso, Hisashi; Ohwada, Shyuichi; Mohri, Yasuaki; Nishimori, Katsuhiko; Isogai, Emiko; Yamaguchi, Takahiro; Fukuda, Tomokazu

    2012-05-01

    Genetic improvement of resistance to infectious diseases is a challenging goal in animal breeding. Infection resistance involves multiple immunological characteristics, including natural and acquired immunity. In the present study, we developed an experimental model based on genetic selection, to improve immunological phenotypes. We selectively established three mouse lines based on phagocytic activity, antibody production and the combination of these two phenotypes. We analyzed the immunological characteristics of these lines using a lipopolysaccharide (LPS), which is one of the main components of Gram-negative bacteria. An intense immunological reaction was induced in each of the three mouse lines. Severe loss of body weight and liver damage were observed, and a high level of cytokine messenger RNA was detected in the liver tissue. The mouse line established using a combination of the two selection standards showed unique characteristics relative to the mouse lines selected on the basis of a single phenotype. Our results indicate that genetic selection and breeding is effective, even for immunological phenotypes with a relatively low heritability. Thus, it may be possible to improve resistance to infectious diseases by means of genetic selection. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  18. The genetics of alcoholism: identifying specific genes through family studies.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2006-09-01

    Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.

  19. Division of labour and the evolution of multicellularity

    PubMed Central

    Ispolatov, Iaroslav; Ackermann, Martin; Doebeli, Michael

    2012-01-01

    Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors when the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level owing to mechanisms present in unicellular ancestors and does not require any genetic predisposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modelled as evolution of a hereditary parameter: the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily owing to the fitness advantage generated by the division of labour between cells in an aggregate. PMID:22158952

  20. To the core of porcine matter: evaluating arguments against producing transgenic pigs.

    PubMed

    Ravelingien, A; Braeckman, J

    2004-07-01

    The production of transgenic pigs for xenotransplantation is based on an urgent human need for transplantable organs. Although the particular genetic modifications are small and do not alter the organism phenotypically, several authors consider it to be morally problematic. In this paper we attempt to establish if there are genuine reasons to refrain from producing 'humanized' pigs. We distinguish between two types of ethical arguments against transgenesis often confused in debating the matter: consequentialist and inherent arguments. Whereas the first type of argument pertains to the potentially negative effects of the procedure, the second type claims that genetic engineering of animals is 'inherently' wrong; that the action itself regardless of the effects - is to be considered immoral. If this is the case, then the discussion need not be taken further. If not, then these arguments do not stand in evaluating the procedure. We demonstrate that none of the claims asserting inherent wrongness of transgenesis is valid as such. Sound resistance to producing transgenic pigs is restricted to concerns regarding the concrete effects of the applications.

  1. Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years.

    PubMed

    Berlin, Sofia; Hallingbäck, Henrik R; Beyer, Friderike; Nordh, Nils-Erik; Weih, Martin; Rönnberg-Wästljung, Ann-Christin

    2017-07-01

    Phenotypic plasticity can affect the geographical distribution of taxa and greatly impact the productivity of crops across contrasting and variable environments. The main objectives of this study were to identify genotype-phenotype associations in key biomass and phenology traits and the strength of phenotypic plasticity of these traits in a short-rotation coppice willow population across multiple years and contrasting environments to facilitate marker-assisted selection for these traits. A hybrid Salix viminalis  × ( S. viminalis × Salix schwerinii ) population with 463 individuals was clonally propagated and planted in three common garden experiments comprising one climatic contrast between Sweden and Italy and one water availability contrast in Italy. Several key phenotypic traits were measured and phenotypic plasticity was estimated as the trait value difference between experiments. Quantitative trait locus (QTL) mapping analyses were conducted using a dense linkage map and phenotypic effects of S. schwerinii haplotypes derived from detected QTL were assessed. Across the climatic contrast, clone predictor correlations for biomass traits were low and few common biomass QTL were detected. This indicates that the genetic regulation of biomass traits was sensitive to environmental variation. Biomass QTL were, however, frequently shared across years and across the water availability contrast. Phenology QTL were generally shared between all experiments. Substantial phenotypic plasticity was found among the hybrid offspring, that to a large extent had a genetic origin. Individuals carrying influential S. schwerinii haplotypes generally performed well in Sweden but less well in Italy in terms of biomass production. The results indicate that specific genetic elements of S. schwerinii are more suited to Swedish conditions than to those of Italy. Therefore, selection should preferably be conducted separately for such environments in order to maximize biomass production in admixed S. viminalis × S. schwerinii populations. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation.

    PubMed

    Conover, David O; Duffy, Tara A; Hice, Lyndie A

    2009-06-01

    Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.

  3. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.

    PubMed

    Storz, Jay F; Scott, Graham R; Cheviron, Zachary A

    2010-12-15

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.

  4. Identification of Multiple QTL Hotspots in Sockeye Salmon (Oncorhynchus nerka) Using Genotyping-by-Sequencing and a Dense Linkage Map.

    PubMed

    Larson, Wesley A; McKinney, Garrett J; Limborg, Morten T; Everett, Meredith V; Seeb, Lisa W; Seeb, James E

    2016-03-01

    Understanding the genetic architecture of phenotypic traits can provide important information about the mechanisms and genomic regions involved in local adaptation and speciation. Here, we used genotyping-by-sequencing and a combination of previously published and newly generated data to construct sex-specific linkage maps for sockeye salmon (Oncorhynchus nerka). We then used the denser female linkage map to conduct quantitative trait locus (QTL) analysis for 4 phenotypic traits in 3 families. The female linkage map consisted of 6322 loci distributed across 29 linkage groups and was 4082 cM long, and the male map contained 2179 loci found on 28 linkage groups and was 2291 cM long. We found 26 QTL: 6 for thermotolerance, 5 for length, 9 for weight, and 6 for condition factor. QTL were distributed nonrandomly across the genome and were often found in hotspots containing multiple QTL for a variety of phenotypic traits. These hotspots may represent adaptively important regions and are excellent candidates for future research. Comparing our results with studies in other salmonids revealed several regions with overlapping QTL for the same phenotypic trait, indicating these regions may be adaptively important across multiple species. Altogether, our study demonstrates the utility of genomic data for investigating the genetic basis of important phenotypic traits. Additionally, the linkage map created here will enable future research on the genetic basis of phenotypic traits in salmon. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Genome wide selection in Citrus breeding.

    PubMed

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq TM (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  6. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates

    PubMed Central

    Storz, Jay F.; Scott, Graham R.; Cheviron, Zachary A.

    2010-01-01

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change. PMID:21112992

  7. Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae).

    PubMed

    Marten, Andreas; Kaib, Manfred; Brandl, Roland

    2009-05-01

    In several termite species, distinct differences in the composition of cuticular hydrocarbons among colonies correspond to high genetic divergence of mitochondrial DNA sequences. These observations suggest that hydrocarbon phenotypes represent cryptic species. Different cuticular hydrocarbon phenotypes also are found among colonies of fungus-growing termites of the genus Macrotermes. To determine if these hydrocarbon differences in Macrotermes also indicate cryptic species, we sequenced the mitochondrial CO I gene from species in West and East Africa. Among individuals of a supposed species but belonging to different cuticular hydrocarbon phenotypes, the genetic distances are much smaller than distances between species. Unlike what has been observed in other termites, Macrotermes hydrocarbon phenotypes do not represent cryptic species. Our findings suggest fundamental differences in the evolution and/or function of cuticular hydrocarbons among different termite lineages.

  8. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells.

    PubMed

    Drawnel, Faye M; Boccardo, Stefano; Prummer, Michael; Delobel, Frédéric; Graff, Alexandra; Weber, Michael; Gérard, Régine; Badi, Laura; Kam-Thong, Tony; Bu, Lei; Jiang, Xin; Hoflack, Jean-Christophe; Kiialainen, Anna; Jeworutzki, Elena; Aoyama, Natsuyo; Carlson, Coby; Burcin, Mark; Gromo, Gianni; Boehringer, Markus; Stahlberg, Henning; Hall, Benjamin J; Magnone, Maria Chiara; Kolaja, Kyle; Chien, Kenneth R; Bailly, Jacques; Iacone, Roberto

    2014-11-06

    Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Quantitative genetic models of sexual conflict based on interacting phenotypes.

    PubMed

    Moore, Allen J; Pizzari, Tommaso

    2005-05-01

    Evolutionary conflict arises between reproductive partners when alternative reproductive opportunities are available. Sexual conflict can generate sexually antagonistic selection, which mediates sexual selection and intersexual coevolution. However, despite intense interest, the evolutionary implications of sexual conflict remain unresolved. We propose a novel theoretical approach to study the evolution of sexually antagonistic phenotypes based on quantitative genetics and the measure of social selection arising from male-female interactions. We consider the phenotype of one sex as both a genetically influenced evolving trait as well as the (evolving) social environment in which the phenotype of the opposite sex evolves. Several important points emerge from our analysis, including the relationship between direct selection on one sex and indirect effects through selection on the opposite sex. We suggest that the proposed approach may be a valuable tool to complement other theoretical approaches currently used to study sexual conflict. Most importantly, our approach highlights areas where additional empirical data can help clarify the role of sexual conflict in the evolutionary process.

  10. Neurogenetics of Depression: A Focus on Reward Processing and Stress Sensitivity

    PubMed Central

    Bogdan, Ryan; Nikolova, Yuliya S.; Pizzagalli, Diego A.

    2013-01-01

    Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions. PMID:22659304

  11. Implementation of genomic recursions in single-step genomic best linear unbiased predictor for US Holsteins with a large number of genotyped animals.

    PubMed

    Masuda, Y; Misztal, I; Tsuruta, S; Legarra, A; Aguilar, I; Lourenco, D A L; Fragomeni, B O; Lawlor, T J

    2016-03-01

    The objectives of this study were to develop and evaluate an efficient implementation in the computation of the inverse of genomic relationship matrix with the recursion algorithm, called the algorithm for proven and young (APY), in single-step genomic BLUP. We validated genomic predictions for young bulls with more than 500,000 genotyped animals in final score for US Holsteins. Phenotypic data included 11,626,576 final scores on 7,093,380 US Holstein cows, and genotypes were available for 569,404 animals. Daughter deviations for young bulls with no classified daughters in 2009, but at least 30 classified daughters in 2014 were computed using all the phenotypic data. Genomic predictions for the same bulls were calculated with single-step genomic BLUP using phenotypes up to 2009. We calculated the inverse of the genomic relationship matrix GAPY(-1) based on a direct inversion of genomic relationship matrix on a small subset of genotyped animals (core animals) and extended that information to noncore animals by recursion. We tested several sets of core animals including 9,406 bulls with at least 1 classified daughter, 9,406 bulls and 1,052 classified dams of bulls, 9,406 bulls and 7,422 classified cows, and random samples of 5,000 to 30,000 animals. Validation reliability was assessed by the coefficient of determination from regression of daughter deviation on genomic predictions for the predicted young bulls. The reliabilities were 0.39 with 5,000 randomly chosen core animals, 0.45 with the 9,406 bulls, and 7,422 cows as core animals, and 0.44 with the remaining sets. With phenotypes truncated in 2009 and the preconditioned conjugate gradient to solve mixed model equations, the number of rounds to convergence for core animals defined by bulls was 1,343; defined by bulls and cows, 2,066; and defined by 10,000 random animals, at most 1,629. With complete phenotype data, the number of rounds decreased to 858, 1,299, and at most 1,092, respectively. Setting up GAPY(-1) for 569,404 genotyped animals with 10,000 core animals took 1.3h and 57 GB of memory. The validation reliability with APY reaches a plateau when the number of core animals is at least 10,000. Predictions with APY have little differences in reliability among definitions of core animals. Single-step genomic BLUP with APY is applicable to millions of genotyped animals. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Genetic Modifiers of Sickle Cell Disease

    PubMed Central

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  13. Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids.

    PubMed

    Liu, Chao; Wang, Mingbo; Wang, Lingli; Guo, Qigao; Liang, Guolu

    2018-04-24

    We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.

  14. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    PubMed

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  15. Genetic correlations between endo-parasite phenotypes and economically important traits in dairy and beef cattle.

    PubMed

    Twomey, Alan J; Carroll, Rebecca I; Doherty, Michael L; Byrne, Noel; Graham, David A; Sayers, Riona G; Blom, Astrid; Berry, Donagh P

    2018-03-06

    Parasitic diseases have economic consequences in cattle production systems. Although breeding for parasite resistance can complement current control practices to reduce the prevalence globally, there is little knowledge of the implications of such a strategy on other performance traits. Records on individual animal antibody responses to Fasciola hepatica, Ostertagia ostertagi, and Neospora caninum were available from cows in 68 dairy herds (study herds); national abattoir data on F. hepatica-damaged livers were also available from dairy and beef cattle. After data edits, 9,271 dairy cows remained in the study herd dataset, whereas 19,542 dairy cows and 68,048 young dairy and beef animals had a record for the presence or absence of F. hepatica-damaged liver in the national dataset. Milk, reproductive, and carcass phenotypes were also available for a proportion of these animals as well as their contemporaries. Linear mixed models were used to estimate variance components of antibody responses to the three parasites; covariance components were estimated between the parasite phenotypes and economically important traits. Heritability of antibody responses to the different parasites, when treated as a continuous trait, ranged from 0.07 (O. ostertagi) to 0.13 (F. hepatica), whereas the coefficient of genetic variation ranged from 4% (O. ostertagi) to 20% (F. hepatica). The antibody response to N. caninum was genetically correlated with the antibody response to both F. hepatica (-0.29) and O. ostertagi (-0.67); a moderately positive genetic correlation existed between the antibody response to F. hepatica and O. ostertagi (0.66). Genetic correlations between the parasite phenotypes and the milk production traits were all close to zero (-0.14 to 0.10), as were the genetic correlations between F. hepatica-damaged livers and the carcass traits of carcass weight, conformation, and fat score evaluated in cows and young animals (0.00 to 0.16). The genetic correlation between F. hepatica-damaged livers in cows and milk somatic cell score was 0.32 (SE = 0.20). Antibody responses to F. hepatica and O. ostertagi had favorable genetic correlations with fertility traits, but conversely, antibody response to N. caninum and F. hepatica-damaged livers were unfavorably genetically correlated with fertility. This study provides the necessary information to undertake national multitrait genetic evaluations for parasite phenotypes.

  16. Heritabilities and genetic correlations in the same traits across different strata of herds created according to continuous genomic, genetic, and phenotypic descriptors.

    PubMed

    Yin, Tong; König, Sven

    2018-03-01

    The most common approach in dairy cattle to prove genotype by environment interactions is a multiple-trait model application, and considering the same traits in different environments as different traits. We enhanced such concepts by defining continuous phenotypic, genetic, and genomic herd descriptors, and applying random regression sire models. Traits of interest were test-day traits for milk yield, fat percentage, protein percentage, and somatic cell score, considering 267,393 records from 32,707 first-lactation Holstein cows. Cows were born in the years 2010 to 2013, and kept in 52 large-scale herds from 2 federal states of north-east Germany. The average number of genotyped cows per herd (45,613 single nucleotide polymorphism markers per cow) was 133.5 (range: 45 to 415 genotyped cows). Genomic herd descriptors were (1) the level of linkage disequilibrium (r 2 ) within specific chromosome segments, and (2) the average allele frequency for single nucleotide polymorphisms in close distance to a functional mutation. Genetic herd descriptors were the (1) intra-herd inbreeding coefficient, and (2) the percentage of daughters from foreign sires. Phenotypic herd descriptors were (1) herd size, and (2) the herd mean for nonreturn rate. Most correlations among herd descriptors were close to 0, indicating independence of genomic, genetic, and phenotypic characteristics. Heritabilities for milk yield increased with increasing intra-herd linkage disequilibrium, inbreeding, and herd size. Genetic correlations in same traits between adjacent levels of herd descriptors were close to 1, but declined for descriptor levels in greater distance. Genetic correlation declines were more obvious for somatic cell score, compared with test-day traits with larger heritabilities (fat percentage and protein percentage). Also, for milk yield, alterations of herd descriptor levels had an obvious effect on heritabilities and genetic correlations. By trend, multiple trait model results (based on created discrete herd classes) confirmed the random regression estimates. Identified alterations of breeding values in dependency of herd descriptors suggest utilization of specific sires for specific herd structures, offering new possibilities to improve sire selection strategies. Regarding genomic selection designs and genetic gain transfer into commercial herds, cow herds for the utilization in cow training sets should reflect the genomic, genetic, and phenotypic pattern of the broad population. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    PubMed

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease.

    PubMed

    Thein, Swee Lay

    2017-01-01

    β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α 2 γ 2 ).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.

  19. Genetic Forms of Epilepsies and other Paroxysmal Disorders

    PubMed Central

    Olson, Heather E.; Poduri, Annapurna; Pearl, Phillip L.

    2016-01-01

    Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including Tuberous Sclerosis Complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of singe gene causes or susceptibility factors associated with several epilepsy syndromes, including the early onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look towards the future of epilepsy genetics. PMID:25192505

  20. Associating mapping of stigma characteristics using the USDA rice core collection

    USDA-ARS?s Scientific Manuscript database

    A mini-core from the USDA rice core collection was phenotyped for nine traits of stigma and spikelet and genotyped with 109 DNA markers. Marker-trait association mapping was used to identify the regions associated with the nine traits. Resulting associations were adjusted using false discovery rate ...

Top