Sample records for phenylacetone monooxygenase pamo

  1. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates.

    PubMed

    Carvalho, Alexandra T P; Dourado, Daniel F A R; Skvortsov, Timofey; de Abreu, Miguel; Ferguson, Lyndsey J; Quinn, Derek J; Moody, Thomas S; Huang, Meilan

    2017-10-11

    Phenylacetone monooxygenase (PAMO) is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenase family, and therefore it is an ideal candidate for the synthesis of industrially relevant compounds. However, its limited substrate scope has largely limited its industrial applications. In the present work, we provide, for the first time, the catalytic mechanism of PAMO for the native substrate phenylacetone as well as for a linear non-native substrate 2-octanone, using molecular dynamics simulations, quantum mechanics and quantum mechanics/molecular mechanics calculations. We provide a theoretical basis for the preference of the enzyme for the native aromatic substrate over non-native linear substrates. Our study provides fundamental atomic-level insights that can be employed in the rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.

  2. Mapping the Substrate Binding Site of Phenylacetone Monooxygenase from Thermobifida fusca by Mutational Analysis▿†

    PubMed Central

    Dudek, Hanna M.; de Gonzalo, Gonzalo; Torres Pazmiño, Daniel E.; Stępniak, Piotr; Wyrwicz, Lucjan S.; Rychlewski, Leszek; Fraaije, Marco W.

    2011-01-01

    Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope. PMID:21724896

  3. A stepwise approach for the reproducible optimization of PAMO expression in Escherichia coli for whole-cell biocatalysis

    PubMed Central

    2012-01-01

    Background Baeyer-Villiger monooxygenases (BVMOs) represent a group of enzymes of considerable biotechnological relevance as illustrated by their growing use as biocatalyst in a variety of synthetic applications. However, due to their increased use the reproducible expression of BVMOs and other biotechnologically relevant enzymes has become a pressing matter while knowledge about the factors governing their reproducible expression is scattered. Results Here, we have used phenylacetone monooxygenase (PAMO) from Thermobifida fusca, a prototype Type I BVMO, as a model enzyme to develop a stepwise strategy to optimize the biotransformation performance of recombinant E. coli expressing PAMO in 96-well microtiter plates in a reproducible fashion. Using this system, the best expression conditions of PAMO were investigated first, including different host strains, temperature as well as time and induction period for PAMO expression. This optimized system was used next to improve biotransformation conditions, the PAMO-catalyzed conversion of phenylacetone, by evaluating the best electron donor, substrate concentration, and the temperature and length of biotransformation. Combining all optimized parameters resulted in a more than four-fold enhancement of the biocatalytic performance and, importantly, this was highly reproducible as indicated by the relative standard deviation of 1% for non-washed cells and 3% for washed cells. Furthermore, the optimized procedure was successfully adapted for activity-based mutant screening. Conclusions Our optimized procedure, which provides a comprehensive overview of the key factors influencing the reproducible expression and performance of a biocatalyst, is expected to form a rational basis for the optimization of miniaturized biotransformations and for the design of novel activity-based screening procedures suitable for BVMOs and other NAD(P)H-dependent enzymes as well. PMID:22720747

  4. [Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering].

    PubMed

    Li, Yang; Zhu, Junge; Wang, Jianjun; Xia, Huanzhang; Wu, Sheng

    2016-01-01

    The phenylacetone monooxygenase, isolated from Thermobifida fusca, mainly catalyzes Baeyer-Villiger oxidation reaction towards aromatic compounds. Met446 plays a vital role in catalytic promiscuity, based on the structure and function of phenylacetone monooxygenase. Mutation in Met446 locus can offer enzyme new catalytic feature to activate C-H bond, oxidizing indole to finally generate indigo and indirubin, but the yield was only 1.89 mg/L. In order to further improve the biosynthesis efficiency of the whole-cell catalyst, metabolic engineering was applied to change glucose metabolism pathway of Escherichia coli. Blocking glucose isomerase gene pgi led to pentose phosphate pathway instead of the glycolytic pathway to become the major metabolic pathways of glucose, which provided more cofactor NADPH needed in enzymatic oxidation of indole. Engineering the host E. coli led to synthesis of indigo and indirubin efficiency further increased to 25 mg/L. Combination of protein and metabolic engineering to design efficient whole-cell catalysts not only improves the synthesis of indigo and indirubin, but also provides a novel strategy for whole-cell catalyst development.

  5. Two Enzymes of a Complete Degradation Pathway for Linear Alkylbenzenesulfonate (LAS) Surfactants: 4-Sulfoacetophenone Baeyer-Villiger Monooxygenase and 4-Sulfophenylacetate Esterase in Comamonas testosteroni KF-1

    PubMed Central

    Weiss, Michael; Denger, Karin; Huhn, Thomas

    2012-01-01

    Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C4-SPC). Second, these SPCs are mineralized. 3-C4-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C4-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria. PMID:23001656

  6. 78 FR 39337 - Importer of Controlled Substances; Notice Of Registration; Mallinckrodt, LLC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... narcotic raw material are not appropriate, 72 FR 3417 (2007). Regarding Phenylacetone (8501), a basic class... Phenylacetone (8501) II Coca Leaves (9040) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company...

  7. 77 FR 70186 - Importer Of Controlled Substances; Notice Of Registration; Cerilliant Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Secobarbital (2315) II Phencyclidine (7471) II Phenylacetone (8501) II Cocaine (9041) II Codeine (9050) II... with United States obligations under international treaties, conventions, or protocols in effect on May...

  8. 76 FR 5827 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Coca Leaves (9040) II... re-registration to import crude opium, poppy straw, concentrate of poppy straw or coca leaves. As...

  9. 75 FR 1812 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... of controlled substances listed in schedule II: Drug Schedule Phenylacetone (8501) II Coca Leaves... registration or re-registration to import crude opium, poppy straw, concentrate of poppy straw or coca leaves...

  10. [Detection and identification of a new metabolite of fenethylline].

    PubMed

    Goenechea, S; Brzezinka, H

    1984-01-01

    Fenetylline is metabolized in humans on two pathways. In addition to previously described degradation to amphetamine and 7-oxyethyltheophylline fenetylline undergoes moreover oxydative N-dealkylation to yield 7-aminoethyltheophylline and phenylacetone.

  11. 76 FR 62448 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... (2315) II Phencyclidine (7471) II Phenylacetone (8501) II Cocaine (9041) II Codeine (9050) II..., or protocols in effect on May 1, 1971. DEA has investigated Lipomed, Inc. to ensure that the company...

  12. 77 FR 60144 - Importer of Controlled Substances; Notice of Registration; United States Pharmacopeial Convention

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ...-piperidine (8333).. II Phenylacetone (8501) II Alphaprodine (9010) II Anileridine (9020) II Cocaine (9041) II... with United States obligations under international treaties, conventions, or protocols in effect on May...

  13. 75 FR 75497 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... (2315) II Phencyclidine (7471) II Phenylacetone (8501) II Cocaine (9041) II Codeine (9050) II..., or protocols in effect on May 1, 1971. DEA has investigated Lipomed, Inc. to ensure that the company...

  14. 76 FR 62447 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... narcotic raw material are not appropriate. With regard to all non-Narcotic Raw Material drugs on this...-phenethyl-4-piperidine (8333)... II Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate...

  15. 75 FR 64743 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Phenylacetone (8501) II Coca Leaves (9040) II Thebaine (9333) II Opium, raw (9600) II Noroxymorphone (9668) II... re-registration to import crude opium, poppy straw, concentrate of poppy straw, and coca leaves. As...

  16. 77 FR 55503 - Importer of Controlled Substances; Notice of Registration; Cambrex Charles City, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). DEA has...-piperidine (8333).. II Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II The...

  17. 76 FR 7234 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances; Notice of... 08066-1742, made application by renewal to the Drug Enforcement Administration (DEA) to be registered as an importer of the following basic classes of controlled substances: Drug Schedule Phenylacetone...

  18. 76 FR 30969 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances; Notice of... renewal to the Drug Enforcement Administration (DEA) to be registered as an importer of the following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Coca Leaves (9040) II...

  19. 77 FR 64142 - Importer of Controlled Substances, Notice of Application, Noramco, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II Tapentadol (9780) II The company plans to import raw Opium (9600) and... substance. Comments and requests for hearings on applications to import narcotic raw material are not...

  20. 77 FR 5846 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... import narcotic raw material are not appropriate, in accordance with 72 FR 3417 (2007). DEA has... basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy... to use it as a base material in the bulk manufacture of another controlled substance. No comments or...

  1. 75 FR 32505 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... 55858), Johnson Matthey, Inc., Pharmaceutical Materials, 2003 Nolte Drive, West Deptford, New Jersey... Phenylacetone (8501) II Coca Leaves (9040) II Thebaine (9333) II Opium, raw (9600) II Noroxymorphone (9668) II Poppy Straw Concentrate (9670) II The company plans to import the listed controlled substances as raw...

  2. 77 FR 31388 - Importer of Controlled Substances; Notice of Application; Noramco, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... material are not appropriate. 72 FR 3417 (2007). In regard to the non-narcotic raw material, any bulk... following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II Tapentadol (9780) II The company plans to import the raw Opium (9600...

  3. 77 FR 43862 - Importer of Controlled Substances; Notice of Registration; Noramco, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy... a controlled substance. Comments and requests for hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). DEA has considered the factors in 21 U.S.C. 823(a) and 952...

  4. 76 FR 35241 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...-Piperidine (8333).. II Phenylacetone (8501) II Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The... Technologies, 72 FR 3417 (2007), comments and requests for hearings on applications to import narcotic raw material are not appropriate. Any bulk manufacturer who is presently, or is applying to be, registered with...

  5. Designation of Alpha-Phenylacetoacetonitrile (APAAN), a Precursor Chemical Used in the Illicit Manufacture of Phenylacetone, Methamphetamine, and Amphetamine, as a List I Chemical. Final rule.

    PubMed

    2017-07-14

    The Drug Enforcement Administration (DEA) is finalizing the designation of the chemical alpha-phenylacetoacetonitrile (APAAN) and its salts, optical isomers, and salts of optical isomers, as a list I chemical under the Controlled Substances Act (CSA). The DEA proposed control of APAAN, due to its use in clandestine laboratories to illicitly manufacture the schedule II controlled substances phenylacetone (also known as phenyl-2-propanone or P2P), methamphetamine, and amphetamine. This rulemaking finalizes, without change, the control of APAAN as a list I chemical. This action does not establish a threshold for domestic and international transactions of APAAN. As such, all transactions involving APAAN, regardless of size, shall be regulated. In addition, chemical mixtures containing APAAN are not exempt from regulatory requirements at any concentration. Therefore, all transactions of chemical mixtures containing any quantity of APAAN shall be regulated pursuant to the CSA. However, manufacturers may submit an application for exemption for those mixtures that do not qualify for automatic exemption.

  6. Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, G.; Martino, M.; Galli, E.

    The toluene/o-xylene monooxygenase cloned from Pseudomonas stutzeri OX1 displays a very broad range of substrates and a very peculiar regioselectivity, because it is able to hydroxylate more than one position on the aromatic ring of several hydrocarbons and phenols. The nucleotide sequence of the gene cluster coding for this enzymatic system has been determined. The sequence analysis revealed the presence of six open reading frames (ORFs) homologous to other genes clustered in operons coding for multicomponent monooxygenases found in benzene- and toluene-degradative pathways cloned from Pseudomonas strains. Significant similarities were also found with multicomponent monooxygenase systems for phenol, methane, alkene,more » and dimethyl sulfide cloned from different bacterial strains. The knockout of each ORF and complementation with the wild-type allele indicated that all six ORFs are essential for the full activity of the toluene/o-xylene monooxygenase in Escherichia coli. This analysis also shows that despite its activity on both hydrocarbons and phenols, toluene/o-xylene monooxygenase belongs to a toluene multicomponent monooxygenase subfamily rather than to the monooxygenases active on phenols.« less

  7. The Origin and Evolution of Baeyer—Villiger Monooxygenases (BVMOs): An Ancestral Family of Flavin Monooxygenases

    PubMed Central

    Mascotti, Maria Laura; Lapadula, Walter Jesús; Juri Ayub, Maximiliano

    2015-01-01

    The Baeyer—Villiger Monooxygenases (BVMOs) are enzymes belonging to the “Class B” of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga) and Haptophyta (Emiliania huxleyi) for the first time. Furthermore, a search for other “Class B” monooxygenases (flavoprotein monooxygenases –FMOs – and N-hydroxylating monooxygenases – NMOs) was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all “Class B” monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA) and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes. PMID:26161776

  8. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains.

    PubMed

    Sharp, Jonathan O; Wood, Thomas K; Alvarez-Cohen, Lisa

    2005-03-05

    The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure. 2005 Wiley Periodicals, Inc.

  9. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b.

    PubMed Central

    Tsien, H C; Brusseau, G A; Hanson, R S; Waclett, L P

    1989-01-01

    The methanotroph Methylosinus trichosporium OB3b, a type II methanotroph, degraded trichloroethylene at rates exceeding 1.2 mmol/h per g (dry weight) following the appearance of soluble methane monooxygenase in continuous and batch cultures. Cells capable oxidizing trichloroethylene contained components of soluble methane monooxygenase as demonstrated by Western blot (immunoblot) analysis with antibodies prepared against the purified enzyme. Growth of cultures in a medium containing 0.25 microM or less copper sulfate caused derepression of the synthesis of soluble methane monooxygenase. In these cultures, the specific rates of methane and methanol oxidation did not change during growth, while trichloroethylene oxidation increased with the appearance of soluble methane monooxygenase. M. trichosporium OB3b cells that contained soluble methane monooxygenase also degraded vinyl chloride, 1,1-dichloroethylene, cis-1,2-dichloroethylene, and trans-1,2-dichloroethylene. Images PMID:2515801

  10. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    EPA Science Inventory

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  11. Flavin-Dependent Redox Transfers by the Two-Component Diketocamphane Monooxygenases of Camphor-Grown Pseudomonas putida NCIMB 10007

    PubMed Central

    Willetts, Andrew; Kelly, David

    2016-01-01

    The progressive titres of key monooxygenases and their requisite native donors of reducing power were used to assess the relative contribution of various camphor plasmid (CAM plasmid)- and chromosome-coded activities to biodegradation of (rac)-camphor at successive stages throughout growth of Pseudomonas putida NCIMB 10007 on the bicylic monoterpenoid. A number of different flavin reductases (FRs) have the potential to supply reduced flavin mononucleotide to both 2,5- and 3,6-diketocamphane monooxygenase, the key isoenzymic two-component monooxygenases that delineate respectively the (+)- and (−)-camphor branches of the convergent degradation pathway. Two different constitutive chromosome-coded ferric reductases able to act as FRs can serve such as role throughout all stages of camphor-dependent growth, whereas Fred, a chromosome-coded inducible FR can only play a potentially significant role in the relatively late stages. Putidaredoxin reductase, an inducible CAM plasmid-coded flavoprotein that serves an established role as a redox intermediate for plasmid-coded cytochrome P450 monooxygenase also has the potential to serve as an important FR for both diketocamphane monooxygenases (DKCMOs) throughout most stages of camphor-dependent growth. PMID:27754389

  12. Reconstitution of active mycobacterial binuclear iron monooxygenase complex in Escherichia coli.

    PubMed

    Furuya, Toshiki; Hayashi, Mika; Kino, Kuniki

    2013-10-01

    Bacterial binuclear iron monooxygenases play numerous physiological roles in oxidative metabolism. Monooxygenases of this type found in actinomycetes also catalyze various useful reactions and have attracted much attention as oxidation biocatalysts. However, difficulties in expressing these multicomponent monooxygenases in heterologous hosts, particularly in Escherichia coli, have hampered the development of engineered oxidation biocatalysts. Here, we describe a strategy to functionally express the mycobacterial binuclear iron monooxygenase MimABCD in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the mimABCD gene expression in E. coli revealed that the oxygenase components MimA and MimC were insoluble. Furthermore, although the reductase MimB was expressed at a low level in the soluble fraction of E. coli cells, a band corresponding to the coupling protein MimD was not evident. This situation rendered the transformed E. coli cells inactive. We found that the following factors are important for functional expression of MimABCD in E. coli: coexpression of the specific chaperonin MimG, which caused MimA and MimC to be soluble in E. coli cells, and the optimization of the mimD nucleotide sequence, which led to efficient expression of this gene product. These two remedies enabled this multicomponent monooxygenase to be actively expressed in E. coli. The strategy described here should be generally applicable to the E. coli expression of other actinomycetous binuclear iron monooxygenases and related enzymes and will accelerate the development of engineered oxidation biocatalysts for industrial processes.

  13. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers.

    PubMed Central

    Bédard, C; Knowles, R

    1989-01-01

    Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two groups of organisms to the metabolism of CO, CH4, and NH4+ in various environments are not known. In the ammonia oxidizers, ammonia monooxygenase, the enzyme responsible for the conversion of NH4+ to NH2OH, also catalyzes the oxidation of CH4 to CH3OH. Ammonia monooxygenase also mediates the transformation of CH3OH to CO2 and cell carbon, but the pathway by which this is done is not known. At least one species of ammonia oxidizer, Nitrosococcus oceanus, exhibits a Km for CH4 oxidation similar to that of methanotrophs. However, the highest rate of CH4 oxidation recorded in an ammonia oxidizer is still five times lower than rates in methanotrophs, and ammonia oxidizers are apparently unable to grow on CH4. Methanotrophs oxidize NH4+ to NH2OH via methane monooxygenase and NH4+ to NH2OH via methane monooxygenase and NH2OH to NO2- via an NH2OH oxidase which may resemble the enzyme found in ammonia oxidizers. Maximum rates of NH4+ oxidation are considerably lower than in ammonia oxidizers, and the affinity for NH4+ is generally lower than in ammonia oxidizers. NH4+ does not apparently support growth in methanotrophs. Both ammonia monooxygenase and methane monooxygenase oxidize CO to CO2, but CO cannot support growth in either ammonia oxidizers or methanotrophs. These organisms have affinities for CO which are comparable to those for their growth substrates and often higher than those in carboxydobacteria. The methane monooxygenases of methanotrophs exist in two forms: a soluble form and a particulate form. The soluble form is well characterized and appears unrelated to the particulate. Ammonia monooxygenase and the particulate methane monooxygenase share a number of similarities. Both enzymes contain copper and are membrane bound. They oxidize a variety of inorganic and organic compounds, and their inhibitor profiles are similar. Inhibitors thought to be specific to ammonia oxidizers have been used in environmental studies of nitrification. However, almost all of the numerous compounds found to inhibit ammonia oxidizers also inhibit methanotrophs, and most of the inhibitors act upon the monooxygenases. Many probably exert their effect by chelating copper, which is essential to the proper functioning of some monooxygenases. The lack of inhibitors specific for one or the other of the two groups of bacteria hampers the determination of their relative roles in nature. PMID:2496288

  14. Purification and Characterization of EDTA Monooxygenase from the EDTA-Degrading Bacterium BNC1

    PubMed Central

    Payne, Jason W.; Bolton, Harvey; Campbell, James A.; Xun, Luying

    1998-01-01

    The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were present. The degradative enzyme system was separated into two different enzymes, EDTA monooxygenase and an FMN reductase. EDTA monooxygenase oxidized EDTA to glyoxylate and ethylenediaminetriacetate (ED3A), with the coconsumption of FMNH2 and O2. The FMN reductase provided EDTA monooxygenase with FMNH2 by reducing FMN with NADH. The FMN reductase was successfully substituted in the assay mixture by other FMN reductases. EDTA monooxygenase was purified to greater than 95% homogeneity and had a single polypeptide with a molecular weight of 45,000. The enzyme oxidized both EDTA complexed with various metal ions and uncomplexed EDTA. The optimal conditions for activity were pH 7.8 and 35°C. Kms were 34.1 μM for uncomplexed EDTA and 8.5 μM for MgEDTA2−; this difference in Km indicates that the enzyme has greater affinity for MgEDTA2−. The enzyme also catalyzed the release of glyoxylate from nitrilotriacetate and diethylenetriaminepentaacetate. EDTA monooxygenase belongs to a small group of FMNH2-utilizing monooxygenases that attack carbon-nitrogen, carbon-sulfur, and carbon-carbon double bonds. PMID:9683478

  15. Identification of Biomarker Genes To Predict Biodegradation of 1,4-Dioxane

    PubMed Central

    Gedalanga, Phillip B.; Pornwongthong, Peerapong; Mora, Rebecca; Chiang, Sheau-Yun Dora; Baldwin, Brett; Ogles, Dora

    2014-01-01

    Bacterial multicomponent monooxygenase gene targets in Pseudonocardia dioxanivorans CB1190 were evaluated for their use as biomarkers to identify the potential for 1,4-dioxane biodegradation in pure cultures and environmental samples. Our studies using laboratory pure cultures and industrial activated sludge samples suggest that the presence of genes associated with dioxane monooxygenase, propane monooxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase are promising indicators of 1,4-dioxane biotransformation; however, gene abundance was insufficient to predict actual biodegradation. A time course gene expression analysis of dioxane and propane monooxygenases in Pseudonocardia dioxanivorans CB1190 and mixed communities in wastewater samples revealed important associations with the rates of 1,4-dioxane removal. In addition, transcripts of alcohol dehydrogenase and aldehyde dehydrogenase genes were upregulated during biodegradation, although only the aldehyde dehydrogenase was significantly correlated with 1,4-dioxane concentrations. Expression of the propane monooxygenase demonstrated a time-dependent relationship with 1,4-dioxane biodegradation in P. dioxanivorans CB1190, with increased expression occurring after over 50% of the 1,4-dioxane had been removed. While the fraction of P. dioxanivorans CB1190-like bacteria among the total bacterial population significantly increased with decrease in 1,4-dioxane concentrations in wastewater treatment samples undergoing active biodegradation, the abundance and expression of monooxygenase-based biomarkers were better predictors of 1,4-dioxane degradation than taxonomic 16S rRNA genes. This study illustrates that specific bacterial monooxygenase and dehydrogenase gene targets together can serve as effective biomarkers for 1,4-dioxane biodegradation in the environment. PMID:24632253

  16. Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT.

    PubMed Central

    Haigler, B E; Suen, W C; Spain, J C

    1996-01-01

    4-Methyl-5-nitrocatechol (MNC) is an intermediate in the degradation of 2,4-dinitrotoluene by Burkholderia sp. strain DNT. In the presence of NADPH and oxygen, MNC monooxygenase catalyzes the removal of the nitro group from MNC to form 2-hydroxy-5-methylquinone. The gene (dntB) encoding MNC monooxygenase has been previously cloned and characterized. In order to examine the properties of MNC monooxygenase and to compare it with other enzymes, we sequenced the gene encoding the MNC monooxygenase and purified the enzyme from strain DNT. dntB was localized within a 2.2-kb ApaI DNA fragment. Sequence analysis of this fragment revealed an open reading frame of 1,644 bp with an N-terminal amino acid sequence identical to that of purified MNC monooxygenase from strain DNT. Comparison of the derived amino acid sequences with those of other genes showed that DntB contains the highly conserved ADP and flavin adenine dinucleotide (FAD) binding motifs characteristic of flavoprotein hydroxylases. MNC monooxygenase was purified to homogeneity from strain DNT by anion exchange and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein with a molecular weight of 60,200, which is consistent with the size determined from the gene sequence. The native molecular weight determined by gel filtration was 65,000, which indicates that the native enzyme is a monomer. It used either NADH or NADPH as electron donors, and NADPH was the preferred cofactor. The purified enzyme contained 1 mol of FAD per mol of protein, which is also consistent with the detection of an FAD binding motif in the amino acid sequence of DntB. MNC monooxygenase has a narrow substrate specificity. MNC and 4-nitrocatechol are good substrates whereas 3-methyl-4-nitrophenol, 3-methyl-4-nitrocatechol, 4-nitrophenol, 3-nitrophenol, and 4-chlorocatechol were not. These studies suggest that MNC monooxygenase is a flavoprotein that shares some properties with previously studied nitrophenol oxygenases. PMID:8830701

  17. Antifungal activity of biogenic tellurium nanoparticles against Candida albicans and its effects on squalene monooxygenase gene expression.

    PubMed

    Zare, Bijan; Sepehrizadeh, Zargham; Faramarzi, Mohammad Ali; Soltany-Rezaee-Rad, Mohammad; Rezaie, Sassan; Shahverdi, Ahmad Reza

    2014-01-01

    In this study, we evaluated the antifungal activity of biogenic tellurium nanoparticles (Te NPs) against Candida albicans (ATCC14053). In addition, the effect of these biogenic NPs on squalene monooxygenase activity and the squalene monooxygenase gene (ERG1) expression level was evaluated. Squalene monooxygenase is an important enzyme involved in the synthesis of ergosterol, cholesterol, and phytosterols. Because of the importance of the noted compound, the squalene monooxygenase gene could be considered a good antifungal target. Results showed that biogenic Te NPs had antifungal effect against C. albicans. The minimal fungicidal concentration-minimal inhibitory concentration ratios of the biogenic Te NPs revealed that these NPs exhibited fungicidal effects against the test strain. The results of an enzyme assay using quantitative high-performance liquid chromatography showed squalene accumulation in C. albicans cells because of enzyme inhibition. Real-time PCR analysis showed an increase in the expression of the ERG1 gene in C. albicans cells, which were treated with Te NPs (0.2 mg/mL). It is conclution that Te NPs can inhibit the squalene monooxygenase enzyme, and, as a result, this inhibition phenomenon can cause an increase in the expression level of the ERG1 gene. This is the first report of the anti-Candida effect of biogenic Te NPs and its possible mechanisms. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. Cytochrome P450 and contaminant concentrations in nestling black-crowned night-herons and their interrelation with sibling embryos

    USGS Publications Warehouse

    Rattner, Barnett A.; Melancon, Mark J.; Custer, Thomas W.; Hothem, Roger L.

    1996-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-d-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to Chincoteague National Wildlife Refuge, VA, USA) and three contaminated sites (Cat Island, Green Bay, WI, USA; Bair Island, San Francisco Bay, CA, USA; and West Marin Island, San Francisco Bay, CA, USA). Arylhydrocarbon hydroxylase and benzyloxyresorufin-O-dealkylase activities of nestlings from contaminated sites were only slightly elevated (less than threefold) compared with the reference site. Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations in nestlings were greatest at contaminated sites, although much lower than found in concurrently collected eggs and pipping embryos. Pollutant concentrations of nestlings were rarely associated with monooxygenase activity. In contrast, concurrently collected pipping heron embryos (often siblings of the nestlings) exhibited pronounced monooxygenase induction (means at contaminated sites were elevated up to sevenfold and values of some embryos exceeded 25-fold induction). Furthermore, monooxygenase activity of pipping embryos was significantly correlated with total PCBs, arylhydrocarbon receptor-active PCB congeners, and toxic equivalents. The modest monooxygenase responses of heron nestlings suggest that this biomarker may have only limited value during this rapid-growth life stage.

  19. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain.

    PubMed Central

    Ensign, S A; Hyman, M R; Arp, D J

    1992-01-01

    Propylene-grown Xanthobacter cells (strain Py2) degraded several chlorinated alkenes of environmental concern, including trichloroethylene, 1-chloroethylene (vinyl chloride), cis- and trans-1,2-dichloroethylene, 1,3-dichloropropylene, and 2,3-dichloropropylene. 1,1-Dichloroethylene was not degraded efficiently, while tetrachloroethylene was not degraded. The role of alkene monooxygenase in catalyzing chlorinated alkene degradations was established by demonstrating that glucose-grown cells which lack alkene monooxygenase and propylene-grown cells in which alkene monooxygenase was selectively inactivated by propyne were unable to degrade the compounds. C2 and C3 chlorinated alkanes were not oxidized by alkene monooxygenase, but a number of these compounds were inhibitors of propylene and ethylene oxidation, suggesting that they compete for binding to the enzyme. A number of metabolites enhanced the rate of degradation of chlorinated alkenes, including propylene oxide, propionaldehyde, and glucose. Propylene stimulated chlorinated alkene oxidation slightly when present at a low concentration but became inhibitory at higher concentrations. Toxic effects associated with chlorinated alkene oxidations were determined by measuring the propylene oxidation and propylene oxide-dependent O2 uptake rates of cells previously incubated with chlorinated alkenes. Compounds which were substrates for alkene monooxygenase exhibited various levels of toxicity, with 1,1-dichloroethylene and trichloroethylene being the most potent inactivators of propylene oxidation and 1,3- and 2,3-dichloropropylene being the most potent inactivators of propylene oxide-dependent O2 uptake. No toxic effects were seen when cells were incubated with chlorinated alkenes anaerobically, indicating that the product(s) of chlorinated alkene oxidation mediates toxicity. PMID:1444418

  20. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases

    PubMed Central

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2014-01-01

    N-hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and mycobacteria. NMOs catalyze the hydroxylation of lysine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of l-kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington’s and Alzheimer’s diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin monooxygenases. Fluorescently-labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a Kd value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with Kd values of 2.1 ± 0.2 μM and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we showed that this assay can be used to identify inhibitors of NMOs. A Z’-factor of 0.77 was calculated and we show that the assay exhibits good tolerance to temperature, incubation time, and DMSO concentration. PMID:22410281

  1. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.

    PubMed

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2012-06-01

    N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases.

    PubMed

    Basij, M; Talebi, K; Ghadamyari, M; Hosseininaveh, V; Salami, S A

    2017-02-01

    Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC 50 ) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l -1 ) and acetamiprid (4.96 to 865 mg l -1 ). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR = 205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.

  3. Crystallization and initial crystallographic characterization of the Corynebacterium glutamicum nitrilotriacetate monooxygenase component A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-Jin, E-mail: kkj@postech.ac.kr; Kim, Sujin; Lee, Sujin

    2006-11-01

    The Corynebacterium glutamicum NTA monooxygenase component A protein, which plays the central role in NTA biodegradation, was crystallized. The initial X-ray crystallographic characterization is reported. Safety and environmental concerns have recently dictated the proper disposal of nitrilotriacetate (NTA). Biodegradation of NTA is initiated by NTA monooxygenase, which is composed of two proteins: component A and component B. The NTA monooxygenase component A protein from Corynebacterium glutamicum was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium sulfate as the precipitant. X-ray diffraction data were collected to a maximum resolution of 2.5 Å on a synchrotron beamline. The crystalmore » belongs to the monoclinic space group C2, with unit-cell parameters a = 111.04, b = 98.51, c = 171.61 Å, β = 101.94°. The asymmetric unit consists of four molecules, corresponding to a packing density of 2.3 Å{sup 3} Da{sup −1}. The structure was solved by molecular replacement. Structure refinement is in progress.« less

  4. Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from the camphor metabolizing Pseudomonas putida strain NCIMB 10007

    PubMed Central

    2011-01-01

    Three different Baeyer-Villiger monooxygenases (BVMOs) were reported to be involved in the camphor metabolism by Pseudomonas putida NCIMB 10007. During (+)-camphor degradation, 2,5-diketocamphane is formed serving as substrate for the 2,5-diketocamphane 1,2-monooxygenase. This enzyme is encoded on the CAM plasmid and depends on the cofactors FMN and NADH and hence belongs to the group of type II BVMOs. We have cloned and recombinantly expressed the oxygenating subunit of the 2,5-diketocamphane 1,2-monooxygenase (2,5-DKCMO) in E. coli followed by His-tag-based affinity purification. A range of compounds representing different BVMO substrate classes were then investigated, but only bicyclic ketones were converted by 2,5-DKCMO used as crude cell extract or after purification. Interestingly, also (-)-camphor was oxidized, but conversion was about 3-fold lower compared to (+)-camphor. Moreover, activity of purified 2,5-DKCMO was observed in the absence of an NADH-dehydrogenase subunit. PMID:21906366

  5. Daily fluctuation of hepatic P450 monooxygenase activities in male rats is controlled by the suprachiasmatic nucleus but remains unaffected by adrenal hormones.

    PubMed

    Furukawa, T; Manabe, S; Watanabe, T; Sehata, S; Sharyo, S; Okada, T; Mori, Y

    1999-09-01

    Hepatic P450 monooxygenase activities, which strongly influence the efficacy and/or toxicity of drugs, are known to fluctuate daily. We also know that the P450 activities assessed by measurement of 7-alkoxycoumarin O-dealkylase (ACD) activities fluctuate daily, with apparently high values during the dark period in male rats. However, there is little knowledge about the factors that regulate daily fluctuation of P450 monooxygenase activities. In the present study using rats, we induced lesions in the suprachiasmatic nucleus (SCN) of the brain, the known site of the body's internal clock, and examined the effects on the daily fluctuation of the ACD activities to clarify the relationship between the SCN and the daily fluctuation of P450 monooxygenase activities. In addition, adrenalectomy was performed to re-evaluate the influence of adrenal hormones on the P450 activities. Our results indicated that daily fluctuations of the hepatic ACD activities were completely eliminated in the SCN-lesioned rats. However, the ACD activities in the adrenalectomized rats showed apparent daily fluctuations with high values during the dark period and low values during the light period. Therefore, this study demonstrated that the daily fluctuation of the hepatic P450 monooxygenase activities in male rats is controlled by the SCN but remains unaffected by the adrenal hormones.

  6. Characterization of a Novel Rieske-Type Alkane Monooxygenase System in Pusillimonas sp. Strain T7-7

    PubMed Central

    Li, Ping; Wang, Lei

    2013-01-01

    The cold-tolerant bacterium Pusillimonas sp. strain T7-7 is able to utilize diesel oils (C5 to C30 alkanes) as a sole carbon and energy source. In the present study, bioinformatics, proteomics, and real-time reverse transcriptase PCR approaches were used to identify the alkane hydroxylation system present in this bacterium. This system is composed of a Rieske-type monooxygenase, a ferredoxin, and an NADH-dependent reductase. The function of the monooxygenase, which consists of one large (46.711 kDa) and one small (15.355 kDa) subunit, was further studied using in vitro biochemical analysis and in vivo heterologous functional complementation tests. The purified large subunit of the monooxygenase was able to oxidize alkanes ranging from pentane (C5) to tetracosane (C24) using NADH as a cofactor, with greatest activity on the C15 substrate. The large subunit also showed activity on several alkane derivatives, including nitromethane and methane sulfonic acid, but it did not act on any aromatic hydrocarbons. The optimal reaction condition of the large subunit is pH 7.5 at 30°C. Fe2+ can enhance the activity of the enzyme evidently. This is the first time that an alkane monooxygenase system belonging to the Rieske non-heme iron oxygenase family has been identified in a bacterium. PMID:23417490

  7. OnpA, an Unusual Flavin-Dependent Monooxygenase Containing a Cytochrome b5 Domain

    PubMed Central

    Xiao, Yi; Liu, Ting-Ting; Dai, Hui; Zhang, Jun-Jie; Liu, Hong; Tang, Huiru; Leak, David J.

    2012-01-01

    ortho-Nitrophenol 2-monooxygenase (EC 1.14.13.31) from Alcaligenes sp. strain NyZ215 catalyzes monooxygenation of ortho-nitrophenol to form catechol via ortho-benzoquinone. Sequence analysis of this onpA-encoded enzyme revealed that it contained a flavin-binding monooxygenase domain and a heme-binding cytochrome b5 domain. OnpA was purified to homogeneity as a His-tagged protein and was considered a monomer, as determined by gel filtration. FAD and heme were identified by high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (HPLC-MS) as cofactors in this enzyme, and quantitative analysis indicated that 1 mol of the purified recombinant OnpA contained 0.66 mol of FAD and 0.20 mol of heme. However, the enzyme activity of OnpA was increased by 60% and 450% after addition of FAD and hemin, respectively, suggesting that the optimal stoichiometry was 1:1:1. In addition, site-directed mutagenesis experiments confirmed that two highly conserved histidines located in the cytochrome b5 domain were associated with binding of the heme, and the cytochrome b5 domain was involved in the OnpA activity. These results indicate that OnpA is an unusual FAD-dependent monooxygenase containing a fused cytochrome b5 domain that is essential for its activity. Therefore, we here demonstrate a link between cytochrome b5 and flavin-dependent monooxygenases. PMID:22267507

  8. Biotransformation and induction: implications for toxicity, bioaccumulation and monitoring of environmental xenobiotics in fish.

    PubMed Central

    Kleinow, K M; Melancon, M J; Lech, J J

    1987-01-01

    Biotransformation of xenobiotics in fish occurs by many of the same reactions as in mammals. These reactions have been shown to affect the bioaccumulation, persistence, residue dynamics, and toxicity of select chemicals in fish. P-450-dependent monooxygenase activity of fish can be induced by polycyclic aromatic hydrocarbons, but phenobarbital-type agents induce poorly, if at all. Fish monooxygenase activity exhibits ideal temperature compensation and sex-related variation. Induction of monooxygenase activity by polycyclic aromatic hydrocarbons can result in qualitative as well as quantitative changes in the metabolic profile of a chemical. Induction can also alter toxicity. In addition, multiple P-450 isozymes have been described for several fish species. The biotransformation products of certain chemicals have been related to specific P-450 isozymes, and the formation of these products can be influenced by induction. Exposure of fish to low levels of certain environmental contaminants has resulted in induction of specific monooxygenase activities and monitoring of such activities has been suggested as a means of identifying areas of pollutant exposure in the wild. PMID:3297653

  9. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, DA; Bertolani, SJ; Siegel, JB

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  10. Tolerance to Acetaminophen Hepatotoxicity in the Mouse Model of Autoprotection is Associated with Induction of Flavin-containing Monooxygenase-3 (FMO3) in Hepatocytes

    EPA Science Inventory

    Acetaminophen (APAP) pretreatment with a low hepatotoxic dose in mice results in resistance to a second, higher dose of APAP (APAP autoprotection). Recent microarray work by our group showed a drastic induction of liver flavin containing monooxygenase-3 (Fmo3) mRNA expression in...

  11. Expression of recombinant human flavin monooxygenase and moclobemide-N-oxide synthesis on multi-mg scale.

    PubMed

    Hanlon, Steven P; Camattari, Andrea; Abad, Sandra; Glieder, Anton; Kittelmann, Matthias; Lütz, Stephan; Wirz, Beat; Winkler, Margit

    2012-06-18

    A panel of human flavin monooxygenases were heterologously expressed in E. coli to obtain ready-to-use biocatalysts for the in vitro preparation of human drug metabolites. Moclobemide-N-oxide (65 mg) was the first high-priced metabolite prepared with recombinant hFMO3 on the multi-milligram scale.

  12. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    PubMed

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  13. Psychopathological symptoms, social skills, and personality traits: a study with adolescents.

    PubMed

    Landazabal, Maite Garaigordobil

    2006-11-01

    The purpose of this study is two-fold: (a) to study the concomitant relationships between psychopathological symptoms, cooperation, social skills, and other personality traits; and (b) to identify the predictive variables of psychopathological symptoms. The sample consists of 322 adolescents aged 14 to 17 years old. This study uses correlational methodology. In order to assess psychopathological symptoms, cooperation, social skills, and personality traits, the following scales are used: the Symptom Checklist (SCL-90-R; Derogatis, 1983), the Cooperativeness Scale (CS; Rigby, Cox, and Black, 1997), the MESSY social skills scale (Matson, Rotatori, and Helsel, 1983), and the TPT Personality Test (Corral, Pamos, Pereña, and& Seisdedos, 2002). Pearson coefficients suggest that adolescents with many psychopathological symptoms have low levels of cooperative behaviors and social skills. They also score high in inappropriate assertiveness, impulsiveness, overconfidence, and jealousy-withdrawal and have low levels of emotional stability, sociability, and responsibility. Through multiple regression analyses, the following variables were identified as predictors of psychopathological symptoms: jealousy-withdrawal, low social integration, impulsiveness, and low self-concept. The role played by intervention programs promoting socio-emotional development to prevent psychopathological symptoms and enhance mental health is discussed.

  14. Chronic alcohol intake up-regulates hepatic expressions of carotenoid cleavage enzymes and peroxisomal proliferator-activated receptors in rats

    USDA-ARS?s Scientific Manuscript database

    Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism.Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15’-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9910’-monooxygenase 2 (CMO2)...

  15. EXPRESSION OF BRANCHIAL FLAVIN-CONTAINING MONOOXYGENASE IS DIRECTLY CORRELATED WITH SALINITY-INDUCED ALDICARB TOXICITY IN THE EURYHALINE FISH (ORYZIAS LATIPES). (R826109)

    EPA Science Inventory

    Abstract

    Earlier studies in our laboratory have demonstrated a reduction of flavin-containing monooxygenase (FMO) activity when salt-water adapted euryhaline fish were transferred to water of less salinity. Since FMOs have been shown to be responsible for the bioact...

  16. Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes

    PubMed Central

    Hyman, Michael R.; Murton, Ian B.; Arp, Daniel J.

    1988-01-01

    Ammonia monooxygenase of Nitrosomonas europaea catalyzes the oxidation of alkanes (up to C8) to alcohols and alkenes (up to C5) to epoxides and alcohols in the presence of ammonium ions. Straight-chain, N-terminal alkynes (up to C10) all exhibited a time-dependent inhibition of ammonia oxidation without effects on hydrazine oxidation. PMID:16347810

  17. Inter-relation of cytochrome P450 and contaminants burdens in sibling heron embryos and nestlings

    USGS Publications Warehouse

    Rattner, B.; Melancon, M.; Custer, T.; Hothem, R.

    1995-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-day-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to the Chincoteague National Wildlife Refuge, Virginia) and three polluted sites (Cat Island, Green Bay, Lake Michigan, Wisconsin; Bair Island, San Francisco Bay, California; West Marin Island, San Francisco Bay, California). Activities of arylhydrocarbon hydroxylase (AHH) and benzyl-oxyresorufin-O-dealkylase (BROD) weremodestly elevated (

  18. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.

    PubMed

    Wang, Vincent C-C; Maji, Suman; Chen, Peter P-Y; Lee, Hung Kay; Yu, Steve S-F; Chan, Sunney I

    2017-07-12

    Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O 2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.

  19. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isupov, Michail N.; Schröder, Ewald; Gibson, Robert P.

    The first crystal structure of a type II Baeyer–Villiger monooxygenase reveals a different ring orientation of its FMN cofactor compared with other related bacterial luciferase-family enzymes. The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer–Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model.more » The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.« less

  20. A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1

    PubMed Central

    Chu, Cui-Wei; Liu, Bin; Li, Na; Yao, Shi-Gang; Cheng, Dan; Zhao, Jia-Dong; Qiu, Ji-Guo; Yan, Xin; He, Jian

    2017-01-01

    ABSTRACT Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C—S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi, and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C—S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7,129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD+ as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C—S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism. PMID:28939603

  1. A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1.

    PubMed

    Chu, Cui-Wei; Liu, Bin; Li, Na; Yao, Shi-Gang; Cheng, Dan; Zhao, Jia-Dong; Qiu, Ji-Guo; Yan, Xin; He, Qin; He, Jian

    2017-12-01

    Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S -acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum , alkanesulfonate monooxygenase from Pseudomonas savastanoi , and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC , was located 7,129 bp downstream of tmoAB , and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD + as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N -deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C-S bond, producing diethylcarbamothioic S -acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism. Copyright © 2017 American Society for Microbiology.

  2. The Structure of the Antibiotic Deactivating, N-hydroxylating Rifampicin Monooxygenase*

    PubMed Central

    Liu, Li-Kai; Abdelwahab, Heba; Martin Del Campo, Julia S.; Mehra-Chaudhary, Ritcha; Sobrado, Pablo; Tanner, John J.

    2016-01-01

    Rifampicin monooxygenase (RIFMO) catalyzes the N-hydroxylation of the natural product antibiotic rifampicin (RIF) to 2′-N-hydroxy-4-oxo-rifampicin, a metabolite with much lower antimicrobial activity. RIFMO shares moderate sequence similarity with well characterized flavoprotein monooxygenases, but the protein has not been isolated and characterized at the molecular level. Herein, we report crystal structures of RIFMO from Nocardia farcinica, the determination of the oligomeric state in solution with small angle x-ray scattering, and the spectrophotometric characterization of substrate binding. The structure identifies RIFMO as a class A flavoprotein monooxygenase and is similar in fold and quaternary structure to MtmOIV and OxyS, which are enzymes in the mithramycin and oxytetracycline biosynthetic pathways, respectively. RIFMO is distinguished from other class A flavoprotein monooxygenases by its unique middle domain, which is involved in binding RIF. Small angle x-ray scattering analysis shows that RIFMO dimerizes via the FAD-binding domain to form a bell-shaped homodimer in solution with a maximal dimension of 110 Å. RIF binding was monitored using absorbance at 525 nm to determine a dissociation constant of 13 μm. Steady-state oxygen consumption assays show that NADPH efficiently reduces the FAD only when RIF is present, implying that RIF binds before NADPH in the catalytic scheme. The 1.8 Å resolution structure of RIFMO complexed with RIF represents the precatalytic conformation that occurs before formation of the ternary E-RIF-NADPH complex. The RIF naphthoquinone blocks access to the FAD N5 atom, implying that large conformational changes are required for NADPH to reduce the FAD. A model for these conformational changes is proposed. PMID:27557658

  3. Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier ProteinTethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus

    DOE PAGES

    Chang, Chin -Yuan; Lohman, Jeremy; Cao, Hongnan; ...

    2016-08-25

    C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-beta-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-beta-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 A resolution, respectively. SgcE6 shares a similar β-barrel fold withmore » the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few, other known FADH 2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. In conclusion, the crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH 2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.« less

  4. Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2.

    PubMed Central

    Ensign, S A

    1996-01-01

    The inducible nature of the alkene oxidation system of Xanthobacter strain Py2 has been investigated. Cultures grown with glucose as the carbon source did not contain detectable levels of alkene monooxygenase or epoxidase, two key enzymes of alkene and epoxide metabolism. Upon addition of propylene to glucose-grown cultures, alkene monooxygenase and epoxidase activities increased and after an 11-h induction period reached levels of specific activity comparable to those in propylene-grown cells. Addition of chloramphenicol or rifampin prevented the increase in the enzyme activities. Comparison of the banding patterns of proteins present in cell extracts revealed that polypeptides with molecular masses of 43, 53, and 57 kDa accumulate in propylene-grown but not glucose-grown cells. Pulse-labeling of glucose-grown cells with [35S]methionine and [35S]cysteine revealed that the 43-, 53-, and 57-kDa proteins, as well as two additional polypeptides with molecular masses of 12 and 21 kDa, were newly synthesized upon exposure of cells to propylene or propylene oxide. The addition to glucose-grown cells of a variety of other aliphatic and chlorinated alkenes and epoxides, including ethylene, vinyl chloride (1-chloroethylene), cis- and trans-1,2-dichloroethylene, 1-chloropropylene, 1,3-dichloropropylene, 1-butylene, trans-2-butylene, isobutylene, ethylene oxide, epichlorohydrin (3-chloro-1,2-epoxypropane), 1,2-epoxybutane, cis- and trans-2,3-epoxybutane, and isobutylene oxide stimulated the synthesis of the five propylene-inducible polypeptides as well as increases in alkene monooxygenase and epoxidase activities. In contrast, acetylene, and a range of aliphatic and chlorinated alkanes, did not stimulate the synthesis of the propylene-inducible polypeptides or the increase in alkene monooxygenase and epoxidase activities. PMID:8572713

  5. CLK-1/Coq7p is a DMQ mono-oxygenase and a new member of the di-iron carboxylate protein family.

    PubMed

    Rea, S

    2001-12-14

    Strains of Caenorhabditis elegans mutant for clk-1 exhibit a 20-40% increase in mean lifespan. clk-1 encodes a mitochondrial protein thought to be either an enzyme or regulatory molecule acting within the ubiquinone biosynthesis pathway. Here CLK-1 is shown to be related to the ubiquinol oxidase, alternative oxidase, and belong to the functionally diverse di-iron-carboxylate protein family which includes bacterioferritin and methane mono-oxygenase. Construction and analysis of a homology model indicates CLK-1 is a 2-polyprenyl-3-methyl-6-methoxy-1,4-benzoquinone mono-oxygenase as originally predicted. Analysis of known CLK-1/Coq7p mutations also supports this notion. These findings raise the possibility of developing CLK-1-specific inhibitors to test for lifespan extension in higher organisms.

  6. tRNA-modifying MiaE protein from Salmonella typhimurium is a nonheme diiron monooxygenase

    PubMed Central

    Mathevon, Carole; Pierrel, Fabien; Oddou, Jean-Louis; Garcia-Serres, Ricardo; Blondin, Geneviève; Latour, Jean-Marc; Ménage, Stéphane; Gambarelli, Serge; Fontecave, Marc; Atta, Mohamed

    2007-01-01

    MiaE catalyzes the posttranscriptional allylic hydroxylation of 2-methylthio-N-6-isopentenyl adenosine in tRNAs. The Salmonella typhimurium enzyme was heterologously expressed in Escherichia coli. The purified enzyme is a monomer with two iron atoms and displays activity in in vitro assays. The type and properties of the iron center were investigated by using a combination of UV-visible absorption, EPR, HYSCORE, and Mössbauer spectroscopies which demonstrated that the MiaE enzyme contains a nonheme dinuclear iron cluster, similar to that found in the hydroxylase component of methane monooxygenase. This is the first example of an enzyme from this important class of diiron monooxygenases to be involved in the hydroxylation of a biological macromolecule and the second example of a redox metalloenzyme participating in tRNA modification. PMID:17679698

  7. Cytochrome P450 monooxygenases: perspectives for synthetic application.

    PubMed

    Urlacher, Vlada B; Eiben, Sabine

    2006-07-01

    Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.

  8. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    DOE PAGES

    Musumeci, Matias A.; Lozada, Mariana; Rial, Daniela V.; ...

    2017-04-09

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putativemore » monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. As a result, this work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.« less

  9. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, Matias A.; Lozada, Mariana; Rial, Daniela V.

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putativemore » monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. As a result, this work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.« less

  10. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach.

    PubMed

    Musumeci, Matías A; Lozada, Mariana; Rial, Daniela V; Mac Cormack, Walter P; Jansson, Janet K; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M

    2017-04-09

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.

  11. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    PubMed Central

    Musumeci, Matías A.; Lozada, Mariana; Rial, Daniela V.; Mac Cormack, Walter P.; Jansson, Janet K.; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M.

    2017-01-01

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer–Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments. PMID:28397770

  12. Determination of the human cytochrome P450 monooxygenase catalyzing the enantioselective oxidation of 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183).

    PubMed

    Nagayoshi, Haruna; Kakimoto, Kensaku; Konishi, Yoshimasa; Kajimura, Keiji; Nakano, Takeshi

    2017-10-17

    2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183) possess axial chirality and form the aS and aR enantiomers. The enantiomers of these congeners have been reported to accumulate in the human body enantioselectively via unknown mechanisms. In this study, we determined the cytochrome P450 (CYP) monooxygenase responsible for the enantioselective oxidization of PCB 95 and PCB 183, using a recombinant human CYP monooxygenase. We evaluated 13 CYP monooxygenases, namely CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, and aromatase (CYP19), and revealed that CYP2A6 preferably oxidizes aS-PCB 95 enantioselectively; however, it did not oxidize PCB 183. The enantiomer composition was elevated from 0.5 (racemate) to 0.54. In addition, following incubation with CYP2A6, the enantiomer fraction (EF) of PCB 95 demonstrated a time-dependent increase.

  13. An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation

    DOE PAGES

    Binda, Claudia; Robinson, Reeder M.; Martin del Campo, Julia S.; ...

    2015-03-23

    N-hydroxylating monooxygenases (NMOs) are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines, such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on D-Lys although it binds L-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producingmore » more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the FAD domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. We discuss the biological implications of these findings.« less

  14. Dioxin effects on wood duck (Aix sponsa) embryos from sites near paper mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeman, D.K.; Melancon, M.J.; Fleming, W.J.

    Biological and biochemical variables were studied in wood duck embryos from four dioxin-contaminated sites near paper mills in the Southeastern United States and three reference sites. Sites were selected based on a history of dioxin contamination in both sediments and fish. In addition, wood duck embryos collected downstream from an Arkansas Superfund site with demonstrated dioxin-induced reproductive impairment served as positive controls. Whole clutches of eggs were collected from the wild after fifteen days of incubation and mechanically incubated. Two embryos per clutch were sacrificed at pipping and liver monooxygenase activities (BROD, EROD and MROD) were quantified. Hatching success wasmore » determined for the remainder of the nest. Preliminary results indicate no difference in monooxygenase activities across sites even though the authors have previously demonstrated induction of monooxygenase activity in wood duck embryos in laboratory studies. In addition, there were no differences in weight at pipping, liver weight and liver weight to body weight ratios. No differences were seen in hatching success or weight at hatch nor were there any gross morphological abnormalities. This may indicate that exposure of wood ducks nesting near these pulp paper mills is below those which cause elevated monooxygenase activities and reproductive impairment.« less

  15. Mechanism of Rifampicin Inactivation in Nocardia farcinica

    PubMed Central

    Abdelwahab, Heba; Martin Del Campo, Julia S.; Dai, Yumin; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo

    2016-01-01

    A novel mechanism of rifampicin (Rif) resistance has recently been reported in Nocardia farcinica. This new mechanism involves the activity of rifampicin monooxygenase (RifMO), a flavin-dependent monooxygenase that catalyzes the hydroxylation of Rif, which is the first step in the degradation pathway. Recombinant RifMO was overexpressed and purified for biochemical analysis. Kinetic characterization revealed that Rif binding is necessary for effective FAD reduction. RifMO exhibits only a 3-fold coenzyme preference for NADPH over NADH. RifMO catalyzes the incorporation of a single oxygen atom forming an unstable intermediate that eventually is converted to 2′-N-hydroxy-4-oxo-Rif. Stable C4a-hydroperoxyflavin was not detected by rapid kinetics methods, which is consistent with only 30% of the activated oxygen leading to product formation. These findings represent the first reported detailed biochemical characterization of a flavin-monooxygenase involved in antibiotic resistance. PMID:27706151

  16. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less

  17. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

    DOE PAGES

    O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora

    2016-12-22

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less

  18. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress

    PubMed Central

    He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei

    2015-01-01

    Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182

  19. Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453.

    PubMed Central

    Taylor, D G; Trudgill, P W

    1986-01-01

    The oxygenating component of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453 was purified to homogeneity by a combination of ammonium sulfate fractionation and chromatography on DEAE-cellulose and polyanion SI-17 columns. It had an Mr of 78,000, bound one molecule of nonautooxidizable flavin mononucleotide (FMN), consisted of two subunits of equal molecular weight, and existed in two electrophoretically distinguishable active forms. The oxygenating complex was constructed from equimolecular amounts of an NADH oxidase, which could be purified separately (Mr, 36,000), and the oxygenating component. Most of the NADH oxidase dissociated from the oxygenating component during purification, although traces remained, to give the final preparation of the oxygenating component significant oxygenase activity. FMN did not dissociate significantly from the oxygenating component during purification, but it was not covalently bound and could be removed under a variety of conditions. Binding between the two proteins that made up the active complex was fairly weak and freely reversible. It probably occurred through the FMN which was strongly bound to the oxygenating component and for which the NADH had a weak binding site. Iron was not present at a significant level in the oxygenating component, and in common with other characterized Baeyer Villiger monooxygenases, 2,5-diketocamphane 1,2-monooxygenase was found to be a simple flavoprotein. Images PMID:3944058

  20. Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453.

    PubMed

    Taylor, D G; Trudgill, P W

    1986-02-01

    The oxygenating component of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453 was purified to homogeneity by a combination of ammonium sulfate fractionation and chromatography on DEAE-cellulose and polyanion SI-17 columns. It had an Mr of 78,000, bound one molecule of nonautooxidizable flavin mononucleotide (FMN), consisted of two subunits of equal molecular weight, and existed in two electrophoretically distinguishable active forms. The oxygenating complex was constructed from equimolecular amounts of an NADH oxidase, which could be purified separately (Mr, 36,000), and the oxygenating component. Most of the NADH oxidase dissociated from the oxygenating component during purification, although traces remained, to give the final preparation of the oxygenating component significant oxygenase activity. FMN did not dissociate significantly from the oxygenating component during purification, but it was not covalently bound and could be removed under a variety of conditions. Binding between the two proteins that made up the active complex was fairly weak and freely reversible. It probably occurred through the FMN which was strongly bound to the oxygenating component and for which the NADH had a weak binding site. Iron was not present at a significant level in the oxygenating component, and in common with other characterized Baeyer Villiger monooxygenases, 2,5-diketocamphane 1,2-monooxygenase was found to be a simple flavoprotein.

  1. Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae.

    PubMed

    Nazir, K H M Nazmul Hussain; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2011-05-01

    A functional library of cytochrome P450 monooxygenases from Aspergillus oryzae (AoCYPs) was constructed in which 121 isoforms were coexpressed with yeast NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. Using this functional library, novel catalytic functions of AoCYPs, such as catalytic potentials of CYP57B3 against genistein, were elucidated for the first time. Comprehensive functional screening promises rapid characterization of catalytic potentials and utility of AoCYPs.

  2. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri.

    PubMed

    Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael

    2016-06-01

    Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.

  3. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase.

    PubMed

    Isupov, Michail N; Schröder, Ewald; Gibson, Robert P; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A; McGhie, Emma J; Sayer, Christopher; Davenport, Colin F; Lau, Peter C; Hasegawa, Yoshie; Iwaki, Hiroaki; Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T; Bourenkov, Gleb; Littlechild, Jennifer A

    2015-11-01

    The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.

  4. Inactivation of peptidylglycine α-hydroxylating monooxygenase by cinnamic acid analogs

    PubMed Central

    McIntyre, Neil R.; Lowe, Edward W.; Battistini, Matthew R.; Leahy, James W.; Merkler, David J.

    2016-01-01

    Peptidylglycine α-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the final reaction in the maturation of α-amidated peptide hormones. Peptidylglycine α-hydroxylating monooxygenase (PHM) is the PAM domain responsible for the copper-, ascorbate- and O2-dependent hydroxylation of a glycine-extended peptide. Peptidylamidoglycolate lyase is the PAM domain responsible for the Zn(II)-dependent dealkylation of the α-hydroxyglycine-containing precursor to the final α-amidated peptide. We report herein that cinnamic acid and cinnamic acid analogs are inhibitors or inactivators of PHM. The inactivation chemistry exhibited by the cinnamates exhibits all the attributes of a suicide-substrate. However, we find no evidence for the formation of an irreversible linkage between cinnamate and PHM in the inactivated enzyme. Our data support the reversible formation of a Michael adduct between an active site nucleophile and cinnamate that leads to inactive enzyme. Our data are of significance given that cinnamates are found in foods, perfumes, cosmetics and pharmaceuticals. PMID:26024288

  5. Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster.

    PubMed

    Okamoto, Susumu; Taguchi, Takaaki; Ochi, Kozo; Ichinose, Koji

    2009-02-27

    All known benzoisochromanequinone (BIQ) biosynthetic gene clusters carry a set of genes encoding a two-component monooxygenase homologous to the ActVA-ORF5/ActVB system for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Here, we conducted molecular genetic and biochemical studies of this enzyme system. Inactivation of actVA-ORF5 yielded a shunt product, actinoperylone (ACPL), apparently derived from 6-deoxy-dihydrokalafungin. Similarly, deletion of actVB resulted in accumulation of ACPL, indicating a critical role for the monooxygenase system in C-6 oxygenation, a biosynthetic step common to all BIQ biosyntheses. Furthermore, in vitro, we showed a quinone-forming activity of the ActVA-ORF5/ActVB system in addition to that of a known C-6 monooxygenase, ActVA-ORF6, by using emodinanthrone as a model substrate. Our results demonstrate that the act gene cluster encodes two alternative routes for quinone formation by C-6 oxygenation in BIQ biosynthesis.

  6. The P450 Monooxygenase BcABA1 Is Essential for Abscisic Acid Biosynthesis in Botrytis cinerea

    PubMed Central

    Siewers, Verena; Smedsgaard, Jørn; Tudzynski, Paul

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids but involves direct cyclization of farnesyl diphosphate and subsequent oxidation steps. We present here evidence that this “direct” pathway is indeed the only one used by an ABA-overproducing strain of B. cinerea. Targeted inactivation of the gene bccpr1 encoding a cytochrome P450 oxidoreductase reduced the ABA production significantly, proving the involvement of P450 monooxygenases in the pathway. Expression analysis of 28 different putative P450 monooxygenase genes revealed two that were induced under ABA biosynthesis conditions. Targeted inactivation showed that one of these, bcaba1, is essential for ABA biosynthesis: ΔBcaba1 mutants contained no residual ABA. Thus, bcaba1 represents the first identified fungal ABA biosynthetic gene. PMID:15240257

  7. Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium.

    PubMed

    Subramanian, Venkataramanan; Yadav, Jagjit S

    2009-09-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (approximately 75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant.

  8. Identification of in vitro cytochrome P450 modulators to detect induction by prototype inducers in the mallard duckling (Anas platyrhynchos

    USGS Publications Warehouse

    Renauld, A.E.; Melancon, M.J.; Sordillo, L.M.

    1999-01-01

    Seven modulators of mammalian monooxygenase activity were screened for their ability to selectively stimulate or inhibit in vitro monooxygenase activities of hepatic microsomes from mallard ducklings treated with phenobarbital, β-naphthoflavone, 3,3′,4,4′,5-pentachlorobiphenyl or vehicle. Microsomes were assayed fluorometrically for four monooxygenases: benzyloxy-, ethoxy-, methoxy-, and pentoxyresorufin-O-dealkylase, in combination with each of the seven modulators. Four combinations: α-naphthoflavone and 2-methylbenzimidazole with benzyloxyresorufin, and Proadifen with methoxy- and ethoxyresorufin, respectively, were evaluated further. β-Naphthoflavone-treated groups were clearly distinguished from the corn oil vehicle control group by all of the assays and by the effects of the modulators in three of the four assay/modulator combinations. Enzyme activities of the phenobarbital and saline groups were statistically similar (P≥0.05) when assayed without modulator added, but each assay/modulator combination distinguished between these groups. The PCB-treated group was distinguished from the corn oil vehicle control group only for BROD activity, with or without the presence of modulator. Graphing of per cent modulation of BROD activity versus initial BROD activity provided the clearest distinction between all of the study groups. Identification of these selective in vitro modulators may improve detection and measurement of low level cytochrome P450 induction in avian species. Also, both the monooxygenase activities induced and the impacts of the modulators indicated differences between mammalian and avian cytochromes P450.

  9. Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus Phanerochaete chrysosporium▿

    PubMed Central

    Subramanian, Venkataramanan; Yadav, Jagjit S.

    2009-01-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (∼75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant. PMID:19542331

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chin -Yuan; Lohman, Jeremy; Cao, Hongnan

    C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-beta-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-beta-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 A resolution, respectively. SgcE6 shares a similar β-barrel fold withmore » the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few, other known FADH 2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. In conclusion, the crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH 2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.« less

  11. Initial Reaction(s) in Biotransformation of CL-20 Is Catalyzed by Salicylate 1-Monooxygenase from Pseudomonas sp. Strain ATCC 29352

    PubMed Central

    Bhushan, Bharat; Halasz, Annamaria; Spain, Jim C.; Hawari, Jalal

    2004-01-01

    CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) (C6H6N12O12), a future-generation high-energy explosive, is biodegradable by Pseudomonas sp. strain FA1 and Agrobacterium sp. strain JS71; however, the nature of the enzyme(s) involved in the process was not understood. In the present study, salicylate 1-monooxygenase, a flavin adenine dinucleotide (FAD)-containing purified enzyme from Pseudomonas sp. strain ATCC 29352, biotransformed CL-20 at rates of 0.256 ± 0.011 and 0.043 ± 0.003 nmol min−1 mg of protein−1 under anaerobic and aerobic conditions, respectively. The disappearance of CL-20 was accompanied by the release of nitrite ions. Using liquid chromatography/mass spectrometry in the negative electrospray ionization mode, we detected a metabolite with a deprotonated mass ion [M − H]− at 345 Da, corresponding to an empirical formula of C6H6N10O8, produced as a result of two sequential N denitration steps on the CL- 20 molecule. We also detected two isomeric metabolites with [M − H]− at 381 Da corresponding to an empirical formula of C6H10N10O10. The latter was a hydrated product of the metabolite C6H6N10O8 with addition of two H2O molecules, as confirmed by tests using 18O-labeled water. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.7 nitrite ions, 3.2 molecules of nitrous oxide, 1.5 molecules of formic acid, and 0.6 ammonium ion. Diphenyliodonium-mediated inhibition of salicylate 1-monooxygenase and a comparative study between native, deflavo, and reconstituted enzyme(s) showed that FAD site of the enzyme was involved in the biotransformation of CL-20 catalyzed by salicylate 1-monooxygenase. The data suggested that salicylate 1-monooxygenase catalyzed two oxygen-sensitive single-electron transfer steps necessary to release two nitrite ions from CL-20 and that this was followed by the secondary decomposition of this energetic chemical. PMID:15240281

  12. Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain ATCC 29352.

    PubMed

    Bhushan, Bharat; Halasz, Annamaria; Spain, Jim C; Hawari, Jalal

    2004-07-01

    CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) (C(6)H(6)N(12)O(12)), a future-generation high-energy explosive, is biodegradable by Pseudomonas sp. strain FA1 and Agrobacterium sp. strain JS71; however, the nature of the enzyme(s) involved in the process was not understood. In the present study, salicylate 1-monooxygenase, a flavin adenine dinucleotide (FAD)-containing purified enzyme from Pseudomonas sp. strain ATCC 29352, biotransformed CL-20 at rates of 0.256 +/- 0.011 and 0.043 +/- 0.003 nmol min(-1) mg of protein(-1) under anaerobic and aerobic conditions, respectively. The disappearance of CL-20 was accompanied by the release of nitrite ions. Using liquid chromatography/mass spectrometry in the negative electrospray ionization mode, we detected a metabolite with a deprotonated mass ion [M - H](-) at 345 Da, corresponding to an empirical formula of C(6)H(6)N(10)O(8), produced as a result of two sequential N denitration steps on the CL- 20 molecule. We also detected two isomeric metabolites with [M - H](-) at 381 Da corresponding to an empirical formula of C(6)H(10)N(10)O(10). The latter was a hydrated product of the metabolite C(6)H(6)N(10)O(8) with addition of two H(2)O molecules, as confirmed by tests using (18)O-labeled water. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.7 nitrite ions, 3.2 molecules of nitrous oxide, 1.5 molecules of formic acid, and 0.6 ammonium ion. Diphenyliodonium-mediated inhibition of salicylate 1-monooxygenase and a comparative study between native, deflavo, and reconstituted enzyme(s) showed that FAD site of the enzyme was involved in the biotransformation of CL-20 catalyzed by salicylate 1-monooxygenase. The data suggested that salicylate 1-monooxygenase catalyzed two oxygen-sensitive single-electron transfer steps necessary to release two nitrite ions from CL-20 and that this was followed by the secondary decomposition of this energetic chemical.

  13. Identification of the intermediates of in vivo oxidation of 1 ,4-dioxane by monooxygenase-containing bacteria.

    PubMed

    Mahendra, Shaily; Petzold, Christopher J; Baidoo, Edward E; Keasling, Jay D; Alvarez-Cohen, Lisa

    2007-11-01

    1,4-dioxane is a probable human carcinogen and an emerging water contaminant. Monooxygenase-expressing bacteria have been shown to degrade dioxane via growth-supporting as well as cometabolic mechanisms. In this study, the intermediates of dioxane degradation by monooxygenase-expressing bacteria were determined by triple quadrupole-mass spectrometry and Fourier transform ion cyclotron resonance-mass spectrometry. The major intermediates were identified as 2-hydroxyethoxyacetic acid (HEAA), ethylene glycol, glycolate, and oxalate. Studies with uniformly labeled 14C dioxane showed that over 50% of the dioxane was mineralized to CO2 by CB1190, while 5% became biomass-associated after 48 h. Volatile organic acids and non-volatiles, respectively, accounted for 20 and 11% of the radiolabeled carbon. Although strains cometabolizing dioxane exhibited limited transformation capacities, nearly half of the initial dioxane was recovered as CO2. On the basis of these analytical results, we propose a pathway for dioxane oxidation by monooxygenase-expressing cells in which dioxane is first converted to 2-hydroxy-1,4-dioxane, which is spontaneously oxidized to HEAA. During a second monooxygenation step, HEAA is further hydroxylated, resulting in a mixture of dihydroxyethoxyacetic acids with a hydroxyl group at the ortho or para position. After cleavage of the second ether bond, small organic molecules such as ethylene glycol, glycolate, glyoxalate, and oxalate are progressively formed, which are then mineralized to CO2 via common cellular metabolic pathways. Bioremediation of dioxane via this pathway is not expected to cause an accumulation of toxic compounds in the environment.

  14. Monooxygenase activity and contaminant burdens of pipping heron embryos in Virginia, the Great Lakes and San Francisco Bay

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.

    1991-01-01

    Black-crowned night-heron (Nvcticorax nvcticorax) pipping embryos were studied from undisturbed (Chincoteague National Wildl ife Refuge, VA) and industrialized (Cat Island, Green Bay WI, and Bair and W. Marin Islands, San Francisco Bay, CA) locations. Hepatic aryl hydrocarbon hydroxylase (AHH) , ethoxyresorufin-O-dealkylase, (EROD), benzyloxyROD (BROD), pentoxyROD (PROD) and ethoxycoumarinOD (ECOD) activities and burdens of organochlorines (embryo + yolk sac - liver) were quantified. AHH, BROD, ECOD and EROD were induced up to 100-fold (P<.O5) in embryos from Cat Island compared to the other sites. Greatest burdens of total PCBs and p,p?DDE were detected in Cat Island embryos. Monooxygenase activities (AHH, BROD, ECOD and EROD) and PCB concentrations were significantly correlated (r=O.50 to 0.72). These and other data indicate that monooxygenases may be rapid and inexpensive biomarkers of exposure to some PCB congeners. Current efforts include determination of PCB congeners and other contaminants in these embryos, additional characterization of the induced P-450 isozymes, and expanding the study to include heron embryos and nestlings at other estuaries.

  15. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium.

    PubMed

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-11-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system, mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosproium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed.

  16. An Inducible Propane Monooxygenase Is Responsible for N-Nitrosodimethylamine Degradation by Rhodococcus sp. Strain RHA1▿

    PubMed Central

    Sharp, Jonathan O.; Sales, Christopher M.; LeBlanc, Justin C.; Liu, Jie; Wood, Thomas K.; Eltis, Lindsay D.; Mohn, William W.; Alvarez-Cohen, Lisa

    2007-01-01

    Rhodococci are common soil heterotrophs that possess diverse functional enzymatic activities with economic and ecological significance. In this study, the correlation between gene expression and biological removal of the water contaminant N-nitrosodimethylamine (NDMA) is explored. NDMA is a hydrophilic, potent carcinogen that has gained recent notoriety due to its environmental persistence and emergence as a widespread micropollutant in the subsurface environment. In this study, we demonstrate that Rhodococcus sp. strain RHA1 can constitutively degrade NDMA and that activity toward this compound is enhanced by approximately 500-fold after growth on propane. Transcriptomic analysis of RHA1 and reverse transcriptase quantitative PCR assays demonstrate that growth on propane elicits the upregulation of gene clusters associated with (i) the oxidation of propane and (ii) the oxidation of substituted benzenes. Deletion mutagenesis of prmA, the gene encoding the large hydroxylase component of propane monooxygenase, abolished both growth on propane and removal of NDMA. These results demonstrate that propane monooxygenase is responsible for NDMA degradation by RHA1 and explain the enhanced cometabolic degradation of NDMA in the presence of propane. PMID:17873074

  17. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans

    PubMed Central

    Graminha, Marcia A. S.; Rocha, Eleusa M. F.; Prade, Rolf A.; Martinez-Rossi, Nilce M.

    2004-01-01

    Resistance to antifungal agents is a recurring and growing problem among patients with systemic fungal infections. UV-induced Aspergillus nidulans mutants resistant to terbinafine have been identified, and we report here the characterization of one such gene. A sib-selected, 6.6-kb genomic DNA fragment encodes a salicylate 1-monooxygenase (salA), and a fatty acid synthase subunit (fasC) confers terbinafine resistance upon transformation of a sensitive strain. Subfragments carrying salA but not fasC confer terbinafine resistance. salA is present as a single-copy gene on chromosome VI and encodes a protein of 473 amino acids that is homologous to salicylate 1-monooxygenase, a well-characterized naphthalene-degrading enzyme in bacteria. salA transcript accumulation analysis showed terbinafine-dependent induction in the wild type and the UV-induced mutant Terb7, as well as overexpression in a strain containing the salA subgenomic DNA fragment, probably due to the multicopy effect caused by the transformation event. Additional naphthalene degradation enzyme-coding genes are present in fungal genomes, suggesting that resistance could follow degradation of the naphthalene ring contained in terbinafine. PMID:15328121

  18. Investigation of the enzymology and pharmacology of novel substrates and inhibitors of dopamine beta-monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, S.F.

    1987-01-01

    Dopamine beta-monooxygenase (DBM) was shown to catalyze the selenoxidation of 2-(phenylseleno)ethylamines, selenium-containing analogues of dopamine, by the normal monooxygenase pathway. The compounds 2-(phenylseleno)-ethylamine (PAESe), 2-(4'-hydroxyphenylseleno)ethylamine (pOH PAESe), and 1-(phenylseleno)-2-propylamine (Me PAESe) were synthesized and fully characterized as DBM substrates. Two other classes of compounds were investigated as potential alternate substrates for DBM. The possibility of stereoselective sulfonylation of 2-(phenylsulfenyl)- ethylamine (PAESO) was considered. A unique class of compounds, 2-(phenylthio)ethanols were designed and synthesized as DBM substrates but were found to be a novel class of potent competitive inhibitors of DBM with respect to tyramine. Preliminary experiments were also performed inmore » an effort to demonstrate that the potent antihypertensive and indirect-acting sympathomimetic activity of 2-(phenylthio)ethylamine (PAES) was a result of DBM-oxygenation of this compound in vivo. The specific reserpine-sensitive uptake of (/sup 3/H)-norepinephrine into rat brain synaptosomes was demonstrated as was the synaptosomal conversion of (/sup 3/H)-dopamine to (/sup 3/H)-norepinephrine.« less

  19. Competition between Metals for Binding to Methanobactin Enables Expression of Soluble Methane Monooxygenase in the Presence of Copper

    PubMed Central

    Kalidass, Bhagyalakshmi; Ul-Haque, Muhammad Farhan; Baral, Bipin S.; DiSpirito, Alan A.

    2014-01-01

    It is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that in Methylosinus trichosporium OB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced by M. trichosporium OB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and active in situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin. PMID:25416758

  20. Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida.

    PubMed Central

    Ougham, H J; Taylor, D G; Trudgill, P W

    1983-01-01

    Previously, Pseudomonas putida was shown to degrade (+)-camphor, and cleavage of the first ring of the bicyclic structure involved two monooxygenases (a hydroxylase and a ring oxygen-inserting enzyme), a dehydrogenase, and spontaneous cleavage of an unstable oxygenation product (lactone). Cleavage of the second ring was not demonstrated but was assumed also to occur by ring oxygen insertion, since the predicted oxygenation product was extracted from whole-cell incubation systems. Our investigation established that metabolism of the first ring cleavage intermediate, 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid, occurred through the sequential action of two inducible enzymes, a coenzyme A ester synthetase and an oxygenase. The oxygenase was purified to homogeneity and had a molecular weight of 106,000. This enzyme carried a single molecule of flavin adenine dinucleotide and consisted of two identical subunits. Iron was not present at a significant level. The oxygenase was specific for NADPH as the electron donor and absolutely specific for the coenzyme A ester of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid as the substrate. The reaction stoichiometry was compatible with this enzyme being a monooxygenase, and a mass spectral analysis of the methyl ester of the product confirmed the insertion of a single oxygen atom. The enzyme appeared to be analogous to, although distinct from. 2,5-diketocamphane 1,2-monooxygenase in catalyzing a "biological Baeyer-Villiger" reaction with the formation of a lactone. Structural analogy suggested that this lactone, like the first, was also unstable and susceptible to spontaneous ring opening, although this was not experimentally established. Images PMID:6848481

  1. Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders.

    PubMed

    Erhardt, Sophie; Pocivavsek, Ana; Repici, Mariaelena; Liu, Xi-Cong; Imbeault, Sophie; Maddison, Daniel C; Thomas, Marian A R; Smalley, Joshua L; Larsson, Markus K; Muchowski, Paul J; Giorgini, Flaviano; Schwarcz, Robert

    2017-11-15

    Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia. In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo -/- ) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia. Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo -/- mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo -/- mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo -/- mice showed potentiated horizontal activity in the open field paradigm. Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders. Copyright © 2016. Published by Elsevier Inc.

  2. Optofluidic Single-Cell Genome Amplification of Sub-micron Bacteria in the Ocean Subsurface

    PubMed Central

    Landry, Zachary C.; Vergin, Kevin; Mannenbach, Christopher; Block, Stephen; Yang, Qiao; Blainey, Paul; Carlson, Craig; Giovannoni, Stephen

    2018-01-01

    Optofluidic single-cell genome amplification was used to obtain genome sequences from sub-micron cells collected from the euphotic and mesopelagic zones of the northwestern Sargasso Sea. Plankton cells were visually selected and manually sorted with an optical trap, yielding 20 partial genome sequences representing seven bacterial phyla. Two organisms, E01-9C-26 (Gammaproteobacteria), represented by four single cell genomes, and Opi.OSU.00C, an uncharacterized Verrucomicrobia, were the first of their types retrieved by single cell genome sequencing and were studied in detail. Metagenomic data showed that E01-9C-26 is found throughout the dark ocean, while Opi.OSU.00C was observed to bloom transiently in the nutrient-depleted euphotic zone of the late spring and early summer. The E01-9C-26 genomes had an estimated size of 4.76–5.05 Mbps, and contained “O” and “W”-type monooxygenase genes related to methane and ammonium monooxygenases that were previously reported from ocean metagenomes. Metabolic reconstruction indicated E01-9C-26 are likely versatile methylotrophs capable of scavenging C1 compounds, methylated compounds, reduced sulfur compounds, and a wide range of amines, including D-amino acids. The genome sequences identified E01-9C-26 as a source of “O” and “W”-type monooxygenase genes related to methane and ammonium monooxygenases that were previously reported from ocean metagenomes, but are of unknown function. In contrast, Opi.OSU.00C genomes encode genes for catabolizing carbohydrate compounds normally associated with eukaryotic phytoplankton. This exploration of optofluidics showed that it was effective for retrieving diverse single-cell bacterioplankton genomes and has potential advantages in microbiology applications that require working with small sample volumes or targeting cells by their morphology.

  3. Molecular Analysis of a Novel Methanesulfonic Acid Monooxygenase from the Methylotroph Methylosulfonomonas methylovora

    PubMed Central

    de Marco, Paolo; Moradas-Ferreira, Pedro; Higgins, Timothy P.; McDonald, Ian; Kenna, Elizabeth M.; Murrell, J. Colin

    1999-01-01

    Methylosulfonomonas methylovora M2 is an unusual gram-negative methylotrophic bacterium that can grow on methanesulfonic acid (MSA) as the sole source of carbon and energy. Oxidation of MSA by this bacterium is carried out by a multicomponent MSA monooxygenase (MSAMO). Cloning and sequencing of a 7.5-kbp SphI fragment of chromosomal DNA revealed four tightly linked genes encoding this novel monooxygenase. Analysis of the deduced MSAMO polypeptide sequences indicated that the enzyme contains a two-component hydroxylase of the mononuclear-iron-center type. The large subunit of the hydroxylase, MsmA (48 kDa), contains a typical Rieske-type [2Fe–2S] center with an unusual iron-binding motif and, together with the small subunit of the hydroxylase, MsmB (20 kDa), showed a high degree of identity with a number of dioxygenase enzymes. However, the other components of the MSAMO, MsmC, the ferredoxin component, and MsmD, the reductase, more closely resemble those found in other classes of oxygenases. MsmC has a high degree of identity to ferredoxins from toluene and methane monooxygenases, which are enzymes characterized by possessing hydroxylases containing μ-oxo bridge binuclear iron centers. MsmD is a reductase of 38 kDa with a typical chloroplast-like [2Fe–2S] center and conserved flavin adenine dinucleotide- and NAD-binding motifs and is similar to a number of mono- and dioxygenase reductase components. Preliminary analysis of the genes encoding MSAMO from a marine MSA-degrading bacterium, Marinosulfonomonas methylotropha, revealed the presence of msm genes highly related to those found in Methylosulfonomonas, suggesting that MSAMO is a novel type of oxygenase that may be conserved in all MSA-utilizing bacteria. PMID:10094704

  4. Analysis of Substrate Access to Active Sites in Bacterial Multicomponent Monooxygenase Hydroxylases: X-ray Crystal Structure of Xenon-Pressurized Phenol Hydroxylase from Pseudomonas sp. OX1†,‡

    PubMed Central

    McCormick, Michael S.; Lippard, Stephen J.

    2011-01-01

    In all structurally characterized bacterial multicomponent monooxygenase (BMM) hydroxylase proteins, a series of hydrophobic cavities in the α-subunit trace a conserved path from the protein exterior to the carboxylate-bridged diiron active site. The present study examines these cavities as a potential route for dioxygen transport to the active site by crystallographic characterization of a xenon-pressurized sample of the hydroxylase component of phenol hydroxylase from Pseudomonas sp. OX1. Computational analyses of the hydrophobic cavities in the hydroxylase α-subunits of phenol hydroxylase (PHH), toluene/o-xylene monooxygenase (ToMOH), and soluble methane monooxygenase (sMMOH) are also presented. The results, together with previous findings from crystallographic studies of xenon-pressurized sMMO hydroxylase, clearly identify the propensity for these cavities to bind hydrophobic gas molecules in the protein interior. This proposed functional role is supported by recent stopped flow kinetic studies of ToMOH variants (Song, et al., 2011). In addition to information about the Xe sites, the structure determination revealed significantly reduced regulatory protein binding to the hydroxylase in comparison to the previously reported structure of PHH, as well as the presence of a newly identified metal binding site in the α-subunit that adopts a linear coordination environment consistent with Cu(I), and a glycerol molecule bound to Fe1 in a fashion that is unique among hydrocarbon-diiron site adducts reported to date in BMM hydroxylase structures. Finally, a comparative analysis of the α-subunit structures of MMOH, ToMOH, and PHH details proposed routes for the other three BMM substrates, the hydrocarbon, electrons, and protons, comprising cavities, channels, hydrogen-bonding networks, and pores in the structures of their α-subunits. PMID:22136180

  5. Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida.

    PubMed

    Ougham, H J; Taylor, D G; Trudgill, P W

    1983-01-01

    Previously, Pseudomonas putida was shown to degrade (+)-camphor, and cleavage of the first ring of the bicyclic structure involved two monooxygenases (a hydroxylase and a ring oxygen-inserting enzyme), a dehydrogenase, and spontaneous cleavage of an unstable oxygenation product (lactone). Cleavage of the second ring was not demonstrated but was assumed also to occur by ring oxygen insertion, since the predicted oxygenation product was extracted from whole-cell incubation systems. Our investigation established that metabolism of the first ring cleavage intermediate, 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid, occurred through the sequential action of two inducible enzymes, a coenzyme A ester synthetase and an oxygenase. The oxygenase was purified to homogeneity and had a molecular weight of 106,000. This enzyme carried a single molecule of flavin adenine dinucleotide and consisted of two identical subunits. Iron was not present at a significant level. The oxygenase was specific for NADPH as the electron donor and absolutely specific for the coenzyme A ester of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid as the substrate. The reaction stoichiometry was compatible with this enzyme being a monooxygenase, and a mass spectral analysis of the methyl ester of the product confirmed the insertion of a single oxygen atom. The enzyme appeared to be analogous to, although distinct from. 2,5-diketocamphane 1,2-monooxygenase in catalyzing a "biological Baeyer-Villiger" reaction with the formation of a lactone. Structural analogy suggested that this lactone, like the first, was also unstable and susceptible to spontaneous ring opening, although this was not experimentally established.

  6. Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper.

    PubMed

    Kalidass, Bhagyalakshmi; Ul-Haque, Muhammad Farhan; Baral, Bipin S; DiSpirito, Alan A; Semrau, Jeremy D

    2015-02-01

    It is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that in Methylosinus trichosporium OB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced by M. trichosporium OB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and active in situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007.

    PubMed

    Willetts, Andrew; Masters, Pamela; Steadman, Carol

    2018-05-07

    For the first time, the differential rates of synthesis of all the key monooxygenases involved in the catabolism by Pseudomonas putida NCIMB 10007 of bicyclic ( rac )-camphor to ∆ 2,5 -3,4,4-trimethylpimelyl-CoA, the first aliphatic pathway intermediate, have been determined to help establish the relevant induction profile of each of the oxygen-dependent enzymes. The efficacy of both relevant substrates and pathway metabolites as inducers has been established. Further, inhibitors with characterised functionality have been used to indicate that the pertinent regulatory controls operate at the level of transcription of the corresponding genes.

  8. Assessing and Modulating Kynurenine Pathway Dynamics in Huntington's Disease: Focus on Kynurenine 3-Monooxygenase.

    PubMed

    Sathyasaikumar, Korrapati V; Breda, Carlo; Schwarcz, Robert; Giorgini, Flaviano

    2018-01-01

    The link between disturbances in kynurenine pathway (KP) metabolism and Huntington's disease (HD) pathogenesis has been explored for a number of years. Several novel genetic and pharmacological tools have recently been developed to modulate key regulatory steps in the KP such as the reaction catalyzed by the enzyme kynurenine 3-monooxygenase (KMO). This insight has offered new options for exploring the mechanistic link between this metabolic pathway and HD, and provided novel opportunities for the development of candidate drug-like compounds. Here, we present an overview of the field, focusing on some novel approaches for interrogating the pathway experimentally.

  9. Production of the catalytic core of human peptidylglycine α-hydroxylating monooxygenase (hPHMcc) in Escherichia coli

    PubMed Central

    Handa, Sumit; Spradling, Tyler J.; Dempsey, Daniel R.; Merkler, David J.

    2013-01-01

    Most mammalian bioactive peptides possess a C-terminal amino acid amide moiety. The presence of the C-terminal amide is a significant impediment to the recombinant production of α-amidated peptides. α-Amidated peptides are produced in vivo by the enzymatic cleavage of a precursor with a C-terminal glycine residue. Peptidylglycine α-hydroxylating monooxygenase catalyzes the key step in the oxidation of the glycine-extended precursors to the α-amidated peptide. Herein, we detail the production of the catalytic core of human peptidylglycine α-hydroxylating monooxygenase (hPHMcc) in Escherichia coli possessing a N-terminal fusion to thioredoxin (Trx). Trx was fused to hPHMcc to enhance the yield of the resulting 52 kDa protein as a soluble and catalytically active enzyme. The Trx-hPHMcc-His6 fusion was purified to homogeneity and exhibited steady-state kinetic parameters that were similar to purified rat PHMcc. The bacterial production of recombinant hPHMcc will foster efforts to generate α-amidated peptides by the co-expression of hPHMcc and the α-amidated peptide precursors in E. coli or the in vitro amidation of recombinantly expressed α-amidated peptide precursors. PMID:22554821

  10. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.

    PubMed

    Pierce, Brian C; Agger, Jane Wittrup; Zhang, Zhenghong; Wichmann, Jesper; Meyer, Anne S

    2017-09-08

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes was evaluated in combination with endoglucanase and beta-glucosidase. Two enzymes (TrCel61A and Aspte6) showed the ability to release more than 36% of the pretreated soy spent flake glucose - a greater than 75% increase over the same treatment without LPMO addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bacillus subtilis Fur represses one of two paralogous haem-degrading monooxygenases

    PubMed Central

    Gaballa, Ahmed

    2011-01-01

    Identification of genes regulated by the ferric uptake regulator (Fur) protein has provided insights into the diverse mechanisms of adaptation to iron limitation. In the soil bacterium Bacillus subtilis, Fur senses iron sufficiency and represses genes that enable iron uptake, including biosynthetic and transport genes for the siderophore bacillibactin and uptake systems for siderophores produced by other organisms. We here demonstrate that Fur regulates hmoA (formerly yetG), which encodes a haem monooxygenase. HmoA is the first characterized member of a divergent group of putative monooxygenases that cluster separately from the well-characterized IsdG family. B. subtilis also encodes an IsdG family protein designated HmoB (formerly YhgC). Unlike hmoA, hmoB is constitutively expressed and not under Fur control. HmoA and HmoB both bind haemin in vitro with approximately 1 : 1 stoichiometry and degrade haemin in the presence of an electron donor. Mutational and spectroscopic analyses indicate that HmoA and HmoB have distinct active site architectures and interact differently with haem. We further show that B. subtilis can use haem as an iron source, but that this ability is independent of HmoA and HmoB. PMID:21873409

  12. Oxidation of Benzene to Phenol, Catechol, and 1,2,3-Trihydroxybenzene by Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 and Toluene 3-Monooxygenase of Ralstonia pickettii PKO1

    PubMed Central

    Tao, Ying; Fishman, Ayelet; Bentley, William E.; Wood, Thomas K.

    2004-01-01

    Aromatic hydroxylations are important bacterial metabolic processes but are difficult to perform using traditional chemical synthesis, so to use a biological catalyst to convert the priority pollutant benzene into industrially relevant intermediates, benzene oxidation was investigated. It was discovered that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1, and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 convert benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by successive hydroxylations. At a concentration of 165 μM and under the control of a constitutive lac promoter, Escherichia coli TG1/pBS(Kan)T4MO expressing T4MO formed phenol from benzene at 19 ± 1.6 nmol/min/mg of protein, catechol from phenol at 13.6 ± 0.3 nmol/min/mg of protein, and 1,2,3-trihydroxybenzene from catechol at 2.5 ± 0.5nmol/min/mg of protein. The catechol and 1,2,3-trihydroxybenzene products were identified by both high-pressure liquid chromatography and mass spectrometry. When analogous plasmid constructs were used, E. coli TG1/pBS(Kan)T3MO expressing T3MO formed phenol, catechol, and 1,2,3-trihydroxybenzene at rates of 3 ± 1, 3.1 ± 0.3, and 0.26 ± 0.09 nmol/min/mg of protein, respectively, and E. coli TG1/pBS(Kan)TOM expressing TOM formed 1,2,3-trihydroxybenzene at a rate of 1.7 ± 0.3 nmol/min/mg of protein (phenol and catechol formation rates were 0.89 ± 0.07 and 1.5 ± 0.3 nmol/min/mg of protein, respectively). Hence, the rates of synthesis of catechol by both T3MO and T4MO and the 1,2,3-trihydroxybenzene formation rate by TOM were found to be comparable to the rates of oxidation of the natural substrate toluene for these enzymes (10.0 ± 0.8, 4.0 ± 0.6, and 2.4 ± 0.3 nmol/min/mg of protein for T4MO, T3MO, and TOM, respectively, at a toluene concentration of 165 μM). PMID:15240250

  13. First molecular modeling report on novel arylpyrimidine kynurenine monooxygenase inhibitors through multi-QSAR analysis against Huntington's disease: A proposal to chemists!

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun; Gayen, Shovanlal

    2016-12-01

    Huntington's disease (HD) is caused by mutation of huntingtin protein (mHtt) leading to neuronal cell death. The mHtt induced toxicity can be rescued by inhibiting the kynurenine monooxygenase (KMO) enzyme. Therefore, KMO is a promising drug target to address the neurodegenerative disorders such as Huntington's diseases. Fiftysix arylpyrimidine KMO inhibitors are structurally explored through regression and classification based multi-QSAR modeling, pharmacophore mapping and molecular docking approaches. Moreover, ten new compounds are proposed and validated through the modeling that may be effective in accelerating Huntington's disease drug discovery efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆

    PubMed Central

    Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

    2014-01-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

  15. [Association of kynurenine-3-monooxygenase gene with schizophrenia].

    PubMed

    Golimbet, V E; Lezheiko, T V; Alfimova, M V; Abramova, L I; Kondrat'ev, N V

    2014-06-01

    Neurotoxic products produced during tryptophan metabolism via the kynurenine pathway could be involved in schizophrenia pathogenesis. It has been shown that kynurenine-3-monooxygenase (KMO) is indirectly involved in these products' formation. KMO polymorphic loci rs2275163 (C/T) and rs1053230 (A/G) were examined in 187 schizophrenia patients and 229 healthy subjects. A genetic combination of allele T and genotype GG was observed more often in a patient group compared with healthy controls (p = 0.003, OR 2.0 (95% CI 1.2-2.9). In the latter group, this combination was associated with schizophrenia endophenotype (p = 0.04), which manifested in a higher expression of schizotypal personality traits assessed using the MMPI test.

  16. Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.

    PubMed

    Beigi, Maryam; Gauchenova, Ekaterina; Walter, Lydia; Waltzer, Simon; Bonina, Fabrizio; Stillger, Thomas; Rother, Dörte; Pohl, Martina; Müller, Michael

    2016-09-19

    The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Coq6 Is Responsible for the C4-deamination Reaction in Coenzyme Q Biosynthesis in Saccharomyces cerevisiae*

    PubMed Central

    Ozeir, Mohammad; Pelosi, Ludovic; Ismail, Alexandre; Mellot-Draznieks, Caroline; Fontecave, Marc; Pierrel, Fabien

    2015-01-01

    The yeast Saccharomyces cerevisiae is able to use para-aminobenzoic acid (pABA) in addition to 4-hydroxybenzoic acid as a precursor of coenzyme Q, a redox lipid essential to the function of the mitochondrial respiratory chain. The biosynthesis of coenzyme Q from pABA requires a deamination reaction at position C4 of the benzene ring to substitute the amino group with an hydroxyl group. We show here that the FAD-dependent monooxygenase Coq6, which is known to hydroxylate position C5, also deaminates position C4 in a reaction implicating molecular oxygen, as demonstrated with labeling experiments. We identify mutations in Coq6 that abrogate the C4-deamination activity, whereas preserving the C5-hydroxylation activity. Several results support that the deletion of Coq9 impacts Coq6, thus explaining the C4-deamination defect observed in Δcoq9 cells. The vast majority of flavin monooxygenases catalyze hydroxylation reactions on a single position of their substrate. Coq6 is thus a rare example of a flavin monooxygenase that is able to act on two different carbon atoms of its C4-aminated substrate, allowing its deamination and ultimately its conversion into coenzyme Q by the other proteins constituting the coenzyme Q biosynthetic pathway. PMID:26260787

  18. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  19. Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4.

    PubMed

    Gibson, D T; Resnick, S M; Lee, K; Brand, J M; Torok, D S; Wackett, L P; Schocken, M J; Haigler, B E

    1995-05-01

    The stereospecific oxidation of indan and indene was examined with mutant and recombinant strains expressing naphthalene dioxygenase of Pseudomonas sp. strain 9816-4. Pseudomonas sp. strain 9816/11 and Escherichia coli JM109(DE3)[pDTG141] oxidized indan to (+)-(1S)-indanol, (+)-cis-(1R,2S)-indandiol, (+)-(1S)-indenol, and 1-indanone. The same strains oxidized indene to (+)-cis-(1R,2S)-indandiol and (+)-(1S)-indenol. Purified naphthalene dioxygenase oxidized indan to the same four products formed by strains 9816/11 and JM109(DE3)[pDTG141]. In addition, indene was identified as an intermediate in indan oxidation. The major products formed from indene by purified naphthalene dioxygenase were (+)-(1S)-indenol and (+)-(1R,2S)-indandiol. The results show that naphthalene dioxygenase catalyzes the enantiospecific monooxygenation of indan to (+)-(1S)-indanol and the desaturation of indan to indene, which then serves as a substrate for the formation of (+)-(1R,2S)-indandiol and (+)-(1S)-indenol. The relationship of the desaturase, monooxygenase, and dioxygenase activities of naphthalene dioxygenase is discussed with reference to reactions catalyzed by toluene dioxygenase, plant desaturases, cytochrome P-450, methane monooxygenase, and other bacterial monooxygenases.

  20. Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4.

    PubMed Central

    Gibson, D T; Resnick, S M; Lee, K; Brand, J M; Torok, D S; Wackett, L P; Schocken, M J; Haigler, B E

    1995-01-01

    The stereospecific oxidation of indan and indene was examined with mutant and recombinant strains expressing naphthalene dioxygenase of Pseudomonas sp. strain 9816-4. Pseudomonas sp. strain 9816/11 and Escherichia coli JM109(DE3)[pDTG141] oxidized indan to (+)-(1S)-indanol, (+)-cis-(1R,2S)-indandiol, (+)-(1S)-indenol, and 1-indanone. The same strains oxidized indene to (+)-cis-(1R,2S)-indandiol and (+)-(1S)-indenol. Purified naphthalene dioxygenase oxidized indan to the same four products formed by strains 9816/11 and JM109(DE3)[pDTG141]. In addition, indene was identified as an intermediate in indan oxidation. The major products formed from indene by purified naphthalene dioxygenase were (+)-(1S)-indenol and (+)-(1R,2S)-indandiol. The results show that naphthalene dioxygenase catalyzes the enantiospecific monooxygenation of indan to (+)-(1S)-indanol and the desaturation of indan to indene, which then serves as a substrate for the formation of (+)-(1R,2S)-indandiol and (+)-(1S)-indenol. The relationship of the desaturase, monooxygenase, and dioxygenase activities of naphthalene dioxygenase is discussed with reference to reactions catalyzed by toluene dioxygenase, plant desaturases, cytochrome P-450, methane monooxygenase, and other bacterial monooxygenases. PMID:7751268

  1. [Effect of bemethyl on cytochrome P-450-dependent monoxygenases in the human liver and lymphocytes].

    PubMed

    Sorokina, E A; Sibiriak, S V; Sergeeva, S A

    2002-01-01

    Effects of the actoprotector bemithyl (50 mg/kg, p.o.) upon a single or five-fold administration on the cytochrome P-450 and b5 content and the isoform-specific and nonspecific monooxygenase activity [aminopyrine-N-demethylase, aniline-p-hydroxylase, 4-nitroanisole-o-demethylase,2,5-diphenyloxazole-p-hydroxylase, 7-ethoxyresorufin-o-deethylase (EROD), benzyloxyresorufin-o-debenzylase (BROD)] in rat liver were evaluated. In addition, the influence of bemithyl (0.(1)-100 microM) on the development of EROD and BROD activity was studied on the mitogen-stimulated human lymphocytes in vitro. Administered in rats, bemithyl exhibited the properties of a cytochrome P-450 inductor of the mixed type, which was manifested by an increase in the total cytochrome P-450 content in liver microsomes and in the monooxygenase activity related to both Ah-receptor-dependent and -independent isoforms (except for the aniline-p-hydroxylase activity). The induction of the monooxygenase activity realized by Ah-receptor-dependent isoforms (4-nitroanisole-o-demethylase, 2,5-diphenyloxazole-p-hydroxylase, and EROD activity) was more pronounced, reaching maximum upon a single drug administration. Acting upon the human lymphocytes in vitro, high concentrations of bemithyl increased expression of the EROD activity, while low drug concentrations stimulated the BROD activity.

  2. Cloning, Baeyer-Villiger Biooxidations, and Structures of the Camphor Pathway 2-Oxo-Δ3-4,5,5-Trimethylcyclopentenylacetyl-Coenzyme A Monooxygenase of Pseudomonas putida ATCC 17453

    PubMed Central

    Leisch, Hannes; Shi, Rong; Grosse, Stephan; Morley, Krista; Bergeron, Hélène; Cygler, Miroslaw; Iwaki, Hiroaki; Hasegawa, Yoshie

    2012-01-01

    A dimeric Baeyer-Villiger monooxygenase (BVMO) catalyzing the lactonization of 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A (CoA), a key intermediate in the metabolism of camphor by Pseudomonas putida ATCC 17453, had been initially characterized in 1983 by Ougham and coworkers (H. J. Ougham, D. G. Taylor, and P. W. Trudgill, J. Bacteriol. 153:140–152, 1983). Here we cloned and overexpressed the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) in Escherichia coli and determined its three-dimensional structure with bound flavin adenine dinucleotide (FAD) at a 1.95-Å resolution as well as with bound FAD and NADP+ at a 2.0-Å resolution. OTEMO represents the first homodimeric type 1 BVMO structure bound to FAD/NADP+. A comparison of several crystal forms of OTEMO bound to FAD and NADP+ revealed a conformational plasticity of several loop regions, some of which have been implicated in contributing to the substrate specificity profile of structurally related BVMOs. Substrate specificity studies confirmed that the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetic acid coenzyme A ester is preferred over the free acid. However, the catalytic efficiency (kcat/Km) favors 2-n-hexyl cyclopentanone (4.3 × 105 M−1 s−1) as a substrate, although its affinity (Km = 32 μM) was lower than that of the CoA-activated substrate (Km = 18 μM). In whole-cell biotransformation experiments, OTEMO showed a unique enantiocomplementarity to the action of the prototypical cyclohexanone monooxygenase (CHMO) and appeared to be particularly useful for the oxidation of 4-substituted cyclohexanones. Overall, this work extends our understanding of the molecular structure and mechanistic complexity of the type 1 family of BVMOs and expands the catalytic repertoire of one of its original members. PMID:22267661

  3. Ligand complex structures of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change.

    PubMed

    Im, Dohyun; Matsui, Daisuke; Arakawa, Takatoshi; Isobe, Kimiyasu; Asano, Yasuhisa; Fushinobu, Shinya

    2018-03-01

    l-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 (l-AAO/MOG) catalyzes both the oxidative deamination and oxidative decarboxylation of the α-group of l-Lys to produce a keto acid and amide, respectively. l-AAO/MOG exhibits limited specificity for l-amino acid substrates with a basic side chain. We previously determined its ligand-free crystal structure and identified a key residue for maintaining the dual activities. Here, we determined the structures of l-AAO/MOG complexed with l-Lys, l-ornithine, and l-Arg and revealed its substrate recognition. Asp238 is located at the ceiling of a long hydrophobic pocket and forms a strong interaction with the terminal, positively charged group of the substrates. A mutational analysis on the D238A mutant indicated that the interaction is critical for substrate binding but not for catalytic control between the oxidase/monooxygenase activities. The catalytic activities of the D238E mutant unexpectedly increased, while the D238F mutant exhibited altered substrate specificity to long hydrophobic substrates. In the ligand-free structure, there are two channels connecting the active site and solvent, and a short region located at the dimer interface is disordered. In the l-Lys complex structure, a loop region is displaced to plug the channels. Moreover, the disordered region in the ligand-free structure forms a short helix in the substrate complex structures and creates the second binding site for the substrate. It is assumed that the amino acid substrate enters the active site of l-AAO/MOG through this route. The atomic coordinates and structure factors (codes 5YB6, 5YB7, and 5YB8) have been deposited in the Protein Data Bank (http://wwpdb.org/). 1.4.3.2 (l-amino acid oxidase), 1.13.12.2 (lysine 2-monooxygenase).

  4. Flavin-containing monooxygenases in plants: looking beyond detox.

    PubMed

    Schlaich, Nikolaus L

    2007-09-01

    Flavin-containing monooxygenases (FMOs) are known in bacteria, yeast and mammals where they catalyze the transfer of one atom of molecular O(2) to low molecular weight substrates. The predominant physiological function of animal FMOs appears to be detoxification of a vast spectrum of xenobiotics but until recently very little was known about the function of FMOs in plants. In the last two to three years, genetic and biochemical characterization has shown that plant FMOs can catalyze specific steps in the biosynthesis of auxin or in the metabolism of glucosinolates, and, furthermore, have a role in pathogen defence. Thus, plant FMOs hint that further FMO functions might be identified also in non-plant organisms and could stimulate novel research in this area.

  5. [Development of immunologic deficiency conditions and sensitization in industrial workers and methodologic approach to their detection and evaluation].

    PubMed

    Dueva, L A; Ivanova, L A; Pavlova, T A

    1989-01-01

    The principal mechanisms forming the basis of detoxication abnormalities have been analysed using the data of research into the status of the hepatic monooxygenase enzyme system, which is responsible for the liver detoxication potential, and the literature reports. Irrespective of the pathology, a similar depression of the monooxygenase enzyme system of hepatocytes was revealed in acute stercoraceous peritonitis, acute ileus, burn disease, acute renal failure, and pyo-inflammatory conditions in the maxillofacial region. A pathogenetic model is proposed, which explains the mechanism of hepatic detoxication dysfunction in endogenous intoxications of different etiology. New approaches to the therapy of detoxication abnormalities in the conditions attended with endotoxemic syndrome are discussed proceeding from the pathogenetic mechanisms.

  6. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    PubMed

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Development of a Series of Kynurenine 3-Monooxygenase Inhibitors Leading to a Clinical Candidate for the Treatment of Acute Pancreatitis.

    PubMed

    Walker, Ann L; Ancellin, Nicolas; Beaufils, Benjamin; Bergeal, Marylise; Binnie, Margaret; Bouillot, Anne; Clapham, David; Denis, Alexis; Haslam, Carl P; Holmes, Duncan S; Hutchinson, Jonathan P; Liddle, John; McBride, Andrew; Mirguet, Olivier; Mowat, Christopher G; Rowland, Paul; Tiberghien, Nathalie; Trottet, Lionel; Uings, Iain; Webster, Scott P; Zheng, Xiaozhong; Mole, Damian J

    2017-04-27

    Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.

  8. Development of LC/MS/MS, high-throughput enzymatic and cellular assays for the characterization of compounds that inhibit kynurenine monooxygenase (KMO).

    PubMed

    Winkler, Dirk; Beconi, Maria; Toledo-Sherman, Leticia M; Prime, Michael; Ebneth, Andreas; Dominguez, Celia; Muñoz-Sanjuan, Ignacio

    2013-09-01

    Kynurenine monooxygenase (KMO) catalyzes the conversion of kynurenine to 3-hydroxykynurenine. Modulation of KMO activity has been implicated in several neurodegenerative diseases, including Huntington disease. Our goal is to develop potent and selective small-molecule KMO inhibitors with suitable pharmacokinetic characteristics for in vivo proof-of-concept studies and subsequent clinical development. We developed a comprehensive panel of biochemical and cell-based assays that use liquid chromatography/tandem mass spectrometry to quantify unlabeled kynurenine and 3-hydroxykynurenine. We describe assays to measure KMO inhibition in cell and tissue extracts, as well as cellular assays including heterologous cell lines and primary rat microglia and human peripheral blood mononuclear cells.

  9. Development of a series of aryl pyrimidine kynurenine monooxygenase inhibitors as potential therapeutic agents for the treatment of Huntington's disease.

    PubMed

    Toledo-Sherman, Leticia M; Prime, Michael E; Mrzljak, Ladislav; Beconi, Maria G; Beresford, Alan; Brookfield, Frederick A; Brown, Christopher J; Cardaun, Isabell; Courtney, Stephen M; Dijkman, Ulrike; Hamelin-Flegg, Estelle; Johnson, Peter D; Kempf, Valerie; Lyons, Kathy; Matthews, Kimberly; Mitchell, William L; O'Connell, Catherine; Pena, Paula; Powell, Kendall; Rassoulpour, Arash; Reed, Laura; Reindl, Wolfgang; Selvaratnam, Suganathan; Friley, Weslyn Ward; Weddell, Derek A; Went, Naomi E; Wheelan, Patricia; Winkler, Christin; Winkler, Dirk; Wityak, John; Yarnold, Christopher J; Yates, Dawn; Munoz-Sanjuan, Ignacio; Dominguez, Celia

    2015-02-12

    We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system.

  10. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase

    PubMed Central

    Schlömann, Michael; van Berkel, Willem J.H.; Gassner, George T.

    2013-01-01

    StyA2B represents a new class of styrene monooxygenases that integrates flavin-reductase and styrene-epoxidase activities into a single polypeptide. This naturally-occurring fusion protein offers new avenues for studying and engineering biotechnologically relevant enantioselective biochemical epoxidation reactions. Stopped-flow kinetic studies of StyA2B reported here identify reaction intermediates similar to those reported for the separate reductase and epoxidase components of related two-component systems. Our studies identify substrate epoxidation and elimination of water from the FAD C(4a)-hydroxide as rate-limiting steps in the styrene epoxidation reaction. Efforts directed at accelerating these reaction steps are expected to greatly increase catalytic efficiency and the value of StyA2B as biocatalyst. PMID:24157359

  11. Copper-Hydroperoxo Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monoxygenases

    PubMed Central

    Maiti, Debabrata; Narducci Sarjeant, Amy A.; Karlin, Kenneth D.

    2008-01-01

    Substantial oxidative N-debenzylation reaction along with PhCH=O formation occurs from a hydroperoxo copper(II) complex which has a dibenzylamino substrate (-N(CH2Ph)2 appended as a substituent on one pyridyl group of its tripodal tetradentate TMPA {≡ TPA ≡ tris(2-pyridylmethyl)amine)} ligand framework. During the course of the (LN(CH2Ph)2)CuII(−OOH) reactivity, formation of a substrate and −OOH (an oxygen atom) derived alkoxo CuII(−OR) complex occurs. The observation that the same CuII(−OR) species occurs from CuI/PhIO chemistry suggests the possibility that a copper-oxo (cupryl) reactive intermediate forms during alkoxo species formation, and new ESI-MS data obtained provides some further support for this high-valent intermediate. Net H-atom abstraction chemistry is proposed, based on kinetic isotope effect studies provided here and that previously published for a closely related CuII(−OOH) species incorporating dimethylamine (-N(CH3)2) as the internal substrate (J. Am. Chem. Soc. 2007, 129, 6720-6721); the CuI/PhIO reactivity, with similar isotope effect results, provides further support. The reactivity of these chemical systems closely resembles proposed oxidative N-dealkylation mechanisms effected by the copper-monooxygenases dopamine β-monooxygenase (DβM) or peptidylglycine-α-hydroxylating monooxygenase (PHM). PMID:18783212

  12. Mixed-function oxygenases, oxidative stress, and chromosomal damage measured in lesser scaup wintering on the Indiana Harbor Canal

    USGS Publications Warehouse

    Custer, T.W.; Custer, Christine M.; Hines, R.K.; Sparks, D.W.; Melancon, M.J.; Hoffman, D.J.; Bickham, J.W.; Wickliffe, J.K.

    2000-01-01

    During the winter of 1993-1994, male lesser scaup (Aythya affinis) were collected on the heavily polluted Indiana Harbor Canal, East Chicago, Indiana, and examined for several bioindicators of chemical exposure. Livers were analyzed for activities of three cytochrome P450-associated monooxygenases and four measures of oxidative stress. Blood and spleen were analyzed by flow cytometry for chromosomal damage. In a concurrent study, scaup tissues were analyzed for organic and inorganic contaminants. Ethoxyresorufin-O-dealkylase (EROD) activity in livers of scaup collected in January 1994 was significantly higher than in livers of scaup collected in March 1994 or in livers of reference birds. Three hepatic monooxygenase activities were each significantly correlated with polycyclic aromatic hydrocarbon (PAH) concentrations in scaup carcasses. Thiobarbituric acid (TBA) activity in scaup livers was positively correlated with iron, boron, and lead concentrations in livers and polychlorinated biphenyl concentrations in carcasses. TBA activity was negatively correlated with protein-bound thiol activity and mercury concentrations in livers. The coefficient of variation of DNA content in scaup blood cells was correlated with PAH concentrations in scaup carcasses. This is the first field study with birds to demonstrate a correlation between liver monooxygenase activity and carcass PAH concentrations and to show a direct correlation between PAH concentrations in tissues and somatic chromosomal damage in blood.

  13. Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol.

    PubMed

    Hristova, Krassimira R; Schmidt, Radomir; Chakicherla, Anu Y; Legler, Tina C; Wu, Janice; Chain, Patrick S; Scow, Kate M; Kane, Staci R

    2007-11-01

    High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.

  14. Structural basis of kynurenine 3-monooxygenase inhibition.

    PubMed

    Amaral, Marta; Levy, Colin; Heyes, Derren J; Lafite, Pierre; Outeiro, Tiago F; Giorgini, Flaviano; Leys, David; Scrutton, Nigel S

    2013-04-18

    Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (that is, kynurenine pathway), leads to amelioration of Huntington's-disease-relevant phenotypes in yeast, fruitfly and mouse models, as well as in a mouse model of Alzheimer's disease. KMO is a flavin adenine dinucleotide (FAD)-dependent monooxygenase and is located in the outer mitochondrial membrane where it converts l-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders, as well as cancer and several peripheral inflammatory conditions. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained unknown. Here we report the first crystal structure of Saccharomyces cerevisiae KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active-site structure, preventing productive binding of the substrate l-kynurenine. Functional assays and targeted mutagenesis reveal that the active-site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO-UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases.

  15. Dual role of the carboxyl-terminal region of pig liver L-kynurenine 3-monooxygenase: mitochondrial-targeting signal and enzymatic activity.

    PubMed

    Hirai, Kumiko; Kuroyanagi, Hidehito; Tatebayashi, Yoshitaka; Hayashi, Yoshitaka; Hirabayashi-Takahashi, Kanako; Saito, Kuniaki; Haga, Seiich; Uemura, Tomihiko; Izumi, Susumu

    2010-12-01

    l-kynurenine 3-monooxygenase (KMO) is an NAD(P)H-dependent flavin monooxygenase that catalyses the hydroxylation of l-kynurenine to 3-hydroxykynurenine, and is localized as an oligomer in the mitochondrial outer membrane. In the human brain, KMO may play an important role in the formation of two neurotoxins, 3-hydroxykynurenine and quinolinic acid, both of which provoke severe neurodegenerative diseases. In mosquitos, it plays a role in the formation both of eye pigment and of an exflagellation-inducing factor (xanthurenic acid). Here, we present evidence that the C-terminal region of pig liver KMO plays a dual role. First, it is required for the enzymatic activity. Second, it functions as a mitochondrial targeting signal as seen in monoamine oxidase B (MAO B) or outer membrane cytochrome b(5). The first role was shown by the comparison of the enzymatic activity of two mutants (C-terminally FLAG-tagged KMO and carboxyl-terminal truncation form, KMOΔC50) with that of the wild-type enzyme expressed in COS-7 cells. The second role was demonstrated with fluorescence microscopy by the comparison of the intracellular localization of the wild-type, three carboxyl-terminal truncated forms (ΔC20, ΔC30 and ΔC50), C-terminally FLAG-tagged wild-type and a mutant KMO, where two arginine residues, Arg461-Arg462, were replaced with Ser residues.

  16. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b

    DOE PAGES

    Gu, Wenyu; Farhan Ul Haque, Muhammad; DiSpirito, Alan A.; ...

    2016-05-12

    It is well-known that M. trichosporium OB3b has two forms of methane monooxygenase responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase (sMMO) and a membrane-associated (particulate) methane monooxygenase (pMMO) and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-MeDH and Xox-MeDH, and the expression of these two forms is regulated by the availability of the rare earth element, cerium. Here we extend these studies and show that lanthanum, praseodymium, neodymium andmore » samarium also regulate expression of alternative forms of MeDH. The effect of these rare earth elements on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b where the Mxa-MeDH was knocked out was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. In conclusion, collectively these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b but that copper overrides the effect of other metals by an as yet unknown mechanism.« less

  17. Assessment of Changes in Microbial Community Structure during Operation of an Ammonia Biofilter with Molecular Tools

    PubMed Central

    Sakano, Y.; Kerkhof, L.

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria. PMID:9835577

  18. The purification, crystallization and preliminary structural characterization of FAD-dependent monooxygenase PhzS, a phenazine-modifying enzyme from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohain, Neelakshi; Thomashow, Linda S.; USDA Agricultural Research Service, Root Disease and Biological Control Research Unit, Pullman, Washington 99164-6430

    2006-10-01

    PhzS, an FAD-dependent monooxygenase that catalyzes a reaction involved in the biosynthesis of the virulence factor pyocyanin in P. aeruginosa, was cloned, overexpressed and crystallized. Data collection from native and seleno-l-methionine-labelled crystals is reported. The blue chloroform-soluble bacterial metabolite pyocyanin (1-hydroxy-5-methyl-phenazine) contributes to the survival and virulence of Pseudomonas aeruginosa, an important Gram-negative opportunistic pathogen of humans and animals. Little is known about the two enzymes, designated PhzM and PhzS, that function in the synthesis of pyocyanin from phenazine-1-carboxylic acid. In this study, the FAD-dependent monooxygenase PhzS was purified and crystallized from lithium sulfate/ammonium sulfate/sodium citrate pH 5.5. Native crystalsmore » belong to space group C2, with unit-cell parameters a = 144.2, b = 96.2, c = 71.7 Å, α = γ = 90, β = 110.5°. They contain two monomers of PhzS in the asymmetric unit and diffract to a resolution of 2.4 Å. Seleno-l-methionine-labelled PhzS also crystallizes in space group C2, but the unit-cell parameters change to a = 70.6, b = 76.2, c = 80.2 Å, α = γ = 90, β = 110.5° and the diffraction limit is 2.7 Å.« less

  19. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.

    PubMed

    Inoue, Daisuke; Tsunoda, Tsubasa; Sawada, Kazuko; Yamamoto, Norifumi; Saito, Yuji; Sei, Kazunari; Ike, Michihiko

    2016-11-01

    In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855 T , which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343 T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707 T and Pseudonocardia asaccharolytica JCM 10410 T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.

  20. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  1. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools

    NASA Technical Reports Server (NTRS)

    Sakano, Y.; Kerkhof, L.; Janes, H. W. (Principal Investigator)

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria.

  2. Elucidation of the mechanism of N-demethylation catalyzed by cytochrome P450 monooxygenase is facilitated by exploiting nitrogen-15 heavy isotope effects.

    PubMed

    Kwiecień, Renata A; Molinié, Roland; Paneth, Piotr; Silvestre, Virginie; Lebreton, Jacques; Robins, Richard J

    2011-06-01

    (15)N heavy isotope effects are especially useful when detail is sought pertaining to the reaction mechanism for the cleavage of a C-N bond. Their potential in assisting to describe the mechanism of N-demethylation of tertiary amines by the action of cytochrome P450 monooxygenase has been investigated. As a working model for the first step, oxidation of the N-methyl group to N-methoxyl, tropine and a cytochrome P450 monooxygenase reaction centre composed of a truncated heme with sulfhydryl as the axial ligand were used. It is apparent that this first step of the reaction proceeds via a hydrogen atom transfer mechanism. Transition states for this step are described for both the high spin ((4)TS(H)) and low spin ((2)TS(H)) pathways in both gas and solvation states. Hence, overall normal secondary (15)N KIE could be calculated for the reaction path modeled in the low spin state, and inverse for the reaction modeled in the high spin state. This partial reaction has been identified as the probable rate limiting step. The model for the second step, fission of the C-N bond, consisted of N-methoxylnortropine and two molecules of water. A transition state described for this step, TS(CN), gives a strongly inverse overall theoretical (15)N KIE. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Regulated methionine oxidation by monooxygenases

    PubMed Central

    Manta, Bruno; Gladyshev, Vadim N.

    2017-01-01

    Protein function can be regulated via post-translational modifications by numerous enzymatic and non-enzymatic mechanisms, including oxidation of cysteine and methionine residues. Redox-dependent regulatory mechanisms have been identified for nearly every cellular process, but the major paradigm has been that cellular components are oxidized (damaged) by reactive oxygen species (ROS) in a relatively unspecific way, and then reduced (repaired) by designated reductases. While this scheme may work with cysteine, it cannot be ascribed to other residues, such as methionine, whose reaction with ROS is too slow to be biologically relevant. However, methionine is clearly oxidized in vivo and enzymes for its stereoselective reduction are present in all three domains of life. Here, we revisit the chemistry and biology of methionine oxidation, with emphasis on its generation by enzymes from the monooxygenase family. Particular attention is placed on MICALs, a recently discovered family of proteins that harbor an unusual flavin-monooxygenase domain with an NADPH-dependent methionine sulfoxidase activity. Based on the structural and kinetic information we provide a rational framework to explain MICAL mechanism, inhibition, and regulation. Methionine residues that are targeted by MICALs are reduced back by methionine sulfoxide reductases, suggesting that reversible methionine oxidation may be a general mechanism analogous to the regulation by phosphorylation by kinases/phosphatases. The identification of new enzymes that catalyze the oxidation of methionine will open a new area of research at the forefront of redox signaling. PMID:28229915

  4. [The drop in toxicity and the rise in the effectiveness of antineoplastic chemotherapy by correcting the activity of liver monooxygenases: from the experiment to the clinical practice].

    PubMed

    Bogush, T A; Bogush, E A; Durnov, L A; Syrkin, A B

    2002-01-01

    The paper reviews both the data available in the literature and the authors' own results of long-term experimental and clinical investigations of the involvement of hepatic monooxygenases (HMO) in the biological activity of antitumor drugs. It reports data of evaluation of HMO activity in pediatric and adult cancer patients, which has shown a decrease in HMO activity in one third of patients without clinical signs of hepatopathy and two thirds of those with toxic hepatic damages after prior chemotherapy. Decreased HMO activity has been found to be stimulated with the enzyme inductor zyxorin. Altered biochemical parameters, such as total bilirubin, ALT and AST, can be corrected with HNO, even if they show a 10-fold deviation from the normal physiological level. The efficacy of zyxorin was tested in patients with advanced cancer and concomitant toxic or viral hepatic disorders (grades II-IV by the WHO classification). Stimulation of inhibited HMO activity allows both decrease and prevention of the manifestations of hepatic toxicity due to anticancer chemotherapy providing a beneficial effect, the dose of cytostatics being not reduced. The authors concluded that the findings provide strong evidence for their assumption that the efficiency of antitumor chemotherapy can be enhanced in patients with concurrent hepatic abnormality by stimulating monooxygenases whose activity is diminished in the majority of these patients.

  5. Mixed-function oxygenases, oxidative stress, and chromosomal damage measured in lesser scaup wintering on the Indiana Harbor Canal

    USGS Publications Warehouse

    Custer, T.W.; Custer, Christine M.; Hines, R.K.; Sparks, D.W.; Melancon, M.J.; Hoffman, D.J.; Bickham, J.W.; Wickliffe, J.K.

    2000-01-01

    During the winter of 1993-1994, male lesser scaup (Aythya alfinis) were collected on the heavily polluted Indiana Harbor Canal, East Chicago, Indiana, and examined for several bioindicators of chemical exposure. Livers were analyzed for activities of three cytochrome P450-associated monooxygenases and four measures of oxidative stress. Blood and spleen were analyzed by flow cytometry for chromosomal damage. In a concurrent study, scaup tissues were analyzed for organic and inorganic contaminants. Ethoxyresomfm-O-dealkylase (EROD) activity in livers of scaup collected in January 1994 was significantly higher than in livers of scaup collected in March 1994 or in livers of reference birds. Three hepatic monooxygenase activities were each significantly correlated with polycyclic aromatic hydrocarbon (PAH) concentrations in scaup carcasses. Thiobarbituric acid (TBA) activity in scaup livers was positively correlated with iron, boron, and lead concentrations in livers and polychlorinated biphenyl concentrations in carcasses. TBA activity was negatively correlated with protein-bound thiol activity and mercury concentrations in livers. The coefficient of variation of DNA content in scaup blood cells was correlated with PAH concentrations in scaup carcasses. This is the first field study with birds to demonstrate a correlation between liver monooxygenase activity and carcass PAH concentrations and to show a direct correlation between PAH concentrations in tissues and somatic chromosomal damage in blood.

  6. Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis.

    PubMed

    Kong, Chuixing; Huang, Hezhou; Xue, Ying; Liu, Yiqi; Peng, Qiangqiang; Liu, Qi; Xu, Qin; Zhu, Qiaoyun; Yin, Ying; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2018-02-01

    Terreic acid is a potential anticancer drug as it inhibits Bruton's tyrosine kinase; however, its biosynthetic molecular steps remain unclear. In this work, the individual reactions of terreic acid biosynthesis were determined by stepwise pathway assembly in a heterologous host, Pichia pastoris, on the basis of previous knockout studies in a native host, Aspergillus terreus. Polyketide synthase AtX was found to catalyze the formation of partially reduced polyketide 6-methylsalicylic acid, followed by 3-methylcatechol synthesis by salicylate 1-monooxygenase AtA-mediated decarboxylative hydroxylation of 6-methylsalicylic acid. Our results show that cytochrome P450 monooxygenase AtE hydroxylates 3-methylcatechol, thus producing the next product, 3-methyl-1,2,4-benzenetriol. A smaller putative cytochrome P450 monooxygenase, AtG, assists with this step. Then, AtD causes epoxidation and hydroxyl oxidation of 3-methyl-1,2,4-benzenetriol and produces a compound terremutin, via which the previously unknown function of AtD was identified as cyclooxygenation. The final step involves an oxidation reaction of a hydroxyl group by a glucose-methanol-choline oxidoreductase, AtC, which leads to the final product: terreic acid. Functions of AtD and AtG were determined for the first time. All the genes were reanalyzed and all intermediates and final products were isolated and identified. Our model fully defines the molecular steps and corrects previous results from the literature.

  7. Clinical value of miR-452-5p expression in lung adenocarcinoma: A retrospective quantitative real-time polymerase chain reaction study and verification based on The Cancer Genome Atlas and Gene Expression Omnibus databases.

    PubMed

    Gan, Xiao-Ning; Luo, Jie; Tang, Rui-Xue; Wang, Han-Lin; Zhou, Hong; Qin, Hui; Gan, Ting-Qing; Chen, Gang

    2017-05-01

    The role and mechanism of miR-452-5p in lung adenocarcinoma remain unclear. In this study, we performed a systematic study to investigate the clinical value of miR-452-5p expression in lung adenocarcinoma. The expression of miR-452-5p in 101 lung adenocarcinoma patients was detected by quantitative real-time polymerase chain reaction. The Cancer Genome Atlas and Gene Expression Omnibus databases were joined to verify the expression level of miR-452-5p in lung adenocarcinoma. Via several online prediction databases and bioinformatics software, pathway and network analyses of miR-452-5p target genes were performed to explore its prospective molecular mechanism. The expression of miR-452-5p in lung adenocarcinoma in house was significantly lower than that in adjacent tissues (p < 0.001). Additionally, the expression level of miR-452-5p was negatively correlated with several clinicopathological parameters including the tumor size (p = 0.014), lymph node metastasis (p = 0.032), and tumor-node-metastasis stage (p = 0.036). Data from The Cancer Genome Atlas also confirmed the low expression of miR-452 in lung adenocarcinoma (p < 0.001). Furthermore, reduced expression of miR-452-5p in lung adenocarcinoma (standard mean deviations = -0.393, 95% confidence interval: -0.774 to -0.011, p = 0.044) was validated by a meta-analysis. Five hub genes targeted by miR-452-5p, including SMAD family member 4, SMAD family member 2, cyclin-dependent kinase inhibitor 1B, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta, were significantly enriched in the cell-cycle pathway. In conclusion, low expression of miR-452-5p tends to play an essential role in lung adenocarcinoma. Bioinformatics analysis might be beneficial to reveal the potential mechanism of miR-452-5p in lung adenocarcinoma.

  8. Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah

    A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less

  9. Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors.

    PubMed

    Smith, Jason R; Jamie, Joanne F; Guillemin, Gilles J

    2016-02-01

    Kynurenine monooxygenase (KMO) is an enzyme of the kynurenine (Kyn) pathway (KP), which is the major catabolic route of tryptophan. Kyn represents a branch point of the KP, being converted into the neurotoxin 3-hydroxykynurenine via KMO, neuroprotectant kynurenic acid, and anthranilic acid. As a result of this branch point, KMO is an attractive drug target for several neurodegenerative and/or neuroinflammatory diseases, especially Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases. Although a neurological target, administration of KMO inhibitors in the periphery has demonstrated promising pharmacological results. In light of a recent crystal structure release and reports of preclinical candidates, here we provide a concise yet comprehensive update on the current state of research into the enzymology of KMO and related drug discovery efforts, highlighting areas where further work is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation

    DOE PAGES

    Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah; ...

    2017-05-08

    A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less

  11. Identification of the Lomofungin Biosynthesis Gene Cluster and Associated Flavin-Dependent Monooxygenase Gene in Streptomyces lomondensis S015

    PubMed Central

    Zhang, Chunxiao; Sheng, Chaolan; Wang, Wei; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-01-01

    Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces. PMID:26305803

  12. Monooxygenase, a Novel Beta-Cypermethrin Degrading Enzyme from Streptomyces sp

    PubMed Central

    Xiao, Ying; Deng, Yinyue; Chang, Changqing; Zhong, Guohua; Hu, Meiying; Zhang, Lian-Hui

    2013-01-01

    The widely used insecticide beta-cypermethrin has become a public concern because of its environmental contamination and toxic effects on mammals. In this study, a novel beta-cypermethrin degrading enzyme designated as CMO was purified to apparent homogeneity from a Streptomyces sp. isolate capable of utilizing beta-cypermethrin as a growth substrate. The native enzyme showed a monomeric structure with a molecular mass of 41 kDa and pI of 5.4. The enzyme exhibited the maximal activity at pH 7.5 and 30°C. It was fairly stable in the pH range from 6.5–8.5 and at temperatures below 10°C. The enzyme activity was significantly stimulated by Fe2+, but strongly inhibited by Ag+, Al3+, and Cu2+. The enzyme catalyzed the degradation of beta-cypermethrin to form five products via hydroxylation and diaryl cleavage. A novel beta-cypermethrin detoxification pathway was proposed based on analysis of these products. The purified enzyme was identified as a monooxygenase by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis (MALDI-TOF-MS) and N-terminal protein sequencing. Given that all the characterized pyrethroid-degrading enzymes are the members of hydrolase family, CMO represents the first pyrethroid-degrading monooxygenase identified from environmental microorganisms. Taken together, our findings depict a novel pyrethroid degradation mechanism and indicate that the purified enzyme may be a promising candidate for detoxification of beta-cypermethrin and environmental protection. PMID:24098697

  13. Structural basis of kynurenine 3-monooxygenase inhibition

    PubMed Central

    Amaral, Marta; Levy, Colin; Heyes, Derren J.; Lafite, Pierre; Outeiro, Tiago F.; Giorgini, Flaviano; Leys, David; Scrutton, Nigel S.

    2013-01-01

    Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (i.e. kynurenine pathway), leads to amelioration of Huntington’s disease-relevant phenotypes in yeast, fruit fly, and mouse models1–5, as well as a mouse model of Alzheimer’s disease3. KMO is a FAD-dependent monooxygenase, and is located in the outer mitochondrial membrane where it converts L-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders6, as well as cancer7,8, and several peripheral inflammatory conditions9. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained hitherto unknown. Here we report the first crystal structure of KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active site structure, preventing productive binding of the substrate kynurenine. Functional assays and targeted mutagenesis revealed that the active site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO:UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington’s, Alzheimer’s, and Parkinson’s diseases. PMID:23575632

  14. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b.

    PubMed

    Gu, Wenyu; Farhan Ul Haque, Muhammad; DiSpirito, Alan A; Semrau, Jeremy D

    2016-07-01

    It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-MeDH), and the expression of these two forms is regulated by the availability of the rare earth element (REE), cerium. Here, we extend these studies and show that lanthanum, praseodymium, neodymium and samarium also regulate expression of alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-MeDH was knocked out, was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet unknown mechanism. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Characterization of the role of copCD in copper uptake and the 'copper-switch' in Methylosinus trichosporium OB3b.

    PubMed

    Gu, Wenyu; Farhan Ul Haque, Muhammad; Semrau, Jeremy D

    2017-05-01

    Methanotrophs or methane-oxidizing bacteria exhibit a unique 'copper-switch' where expression of two forms of methane monooxygenase (MMO) is controlled by the availability of copper. In the absence of copper, a cytoplasmic or soluble methane monooxygenase (sMMO) is expressed. In the presence of copper, a membrane-bound or particulate methane monooxygenase (pMMO) is expressed. These two forms of MMO have very different properties, and elucidation of the basis of the copper-switch is of significant interest as methanotrophs are becoming increasingly popular for the valorization of methane. Recently, it was suggested via characterization of a mutant of Methylosinus trichosporium OB3b that expresses sMMO in the presence of copper (smmoC mutant) that the copper-switch may be based on copCD. These genes encode for a periplasmic copper-binding protein and an inner membrane protein, respectively, and are used by other bacteria for copper uptake. Specific knockouts of copCD in M. trichosporium OB3b wild type, however, show that these genes are not part of the copper-switch in methanotrophs, nor do they appear to be critical for copper uptake. Rather, it appears that the constitutive expression of sMMO in the smmoC mutant of M. trichosporium OB3b may be due to multiple lesions as smmoC was generated via random chemical mutagenesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Discovery and characterization of a new family of lytic polysaccharide monooxygenases.

    PubMed

    Hemsworth, Glyn R; Henrissat, Bernard; Davies, Gideon J; Walton, Paul H

    2014-02-01

    Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They are attracting considerable attention owing to their potential use in biomass conversion, notably in the production of biofuels. Previous studies have identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here, we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the three-dimensional structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active center featuring the 'histidine brace' active site, but is distinct in terms of its active site details and its EPR spectroscopy. The newly characterized AA11 family expands the LPMO clan, potentially broadening both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs.

  17. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dell, William B.; Swartz, Paul D.; Weiss, Kevin L.

    Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bondsviaan oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 fromNeurospora crassa(NcPMO-2) was heterologously expressed inPichia pastoristo facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressingNcPMO-2 from a glycoengineered strain ofP. pastorisand by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 Å) X-ray diffraction data collection at 100 K and themore » production of a largeNcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 Å resolution.« less

  18. Printable enzyme-embedded materials for methane to methanol conversion

    DOE PAGES

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; ...

    2016-06-15

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  19. Plasma peptidylglycine alpha-amidating monooxygenase (PAM) and ceruloplasmin are affected by age and copper status in rats and mice

    PubMed Central

    Prohaska, Joseph R.; Broderius, Margaret

    2009-01-01

    In an attempt to identify a sensitive and improved marker of mammalian copper status during neonatal development experiments compared two plasma cuproenzymes, peptidylglycine α-amidating monooxygenase (PAM ), an enzyme involved in peptide posttranslational activation, to ceruloplasmin (Cp), a ferroxidase involved in iron mobilization. Dietary Cu deficiency (Cu−) was studied in dams and offspring at postnatal age 3 (P3), P12, and P28. Rodent Cp activity rose during lactation whereas PAM activity fell. Reduction in Cp activity was more severe than reduction in PAM activity in Cu− offspring and dams. Cp activity was greater in rats than mice whereas PAM activity was similar in adults but greater in mouse than rat pups. Both cuproenzymes changed during neonatal development and when dietary copper was limiting. With proper controls, each enzyme can be used to assess copper status. PMID:16448835

  20. Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, R.K.; Spain, J.C.; Dreisbach, J.H.

    1994-08-01

    The degradation of p-nitrophenol (PNP) by Moraxella and Pseudomonas spp. involves an initial monooxygenase-catalyzed removal of the nitro group. The resultant hydroquinone is subject to ring fission catalyzed by a dioxygenase enzyme. A strain of an Arthrobacter sp. JS443, capable of degrading PNP with stoichiometric release of nitrite has been isolated. During induction of the enzymes required for growth on PNP, 1,2,4-benzenetriol was identified as an intermediate by gas chromatography-mass spectroscopy and radiotracer studies. 1,2,4-Benzenetriol was converted to maleylacetic acid, which was further degraded by the beta-ketoadipate pathway. Conversion of PNP to 1,2,4-benzenetriol is catalyzed by a monooxygenase system inmore » strain JS443 through the formation of 4-nitrocatechol, 4-nitroresorcinol, or both. Results clearly indicate the existence of an alternative pathway for the biodegradation of PNP. 15 refs, 2 figs., 2 tabs.« less

  1. Association study between kynurenine 3-monooxygenase gene and schizophrenia in the Japanese population.

    PubMed

    Aoyama, N; Takahashi, N; Saito, S; Maeno, N; Ishihara, R; Ji, X; Miura, H; Ikeda, M; Suzuki, T; Kitajima, T; Yamanouchi, Y; Kinoshita, Y; Yoshida, K; Iwata, N; Inada, T; Ozaki, N

    2006-06-01

    Several lines of evidence suggest that metabolic changes in the kynurenic acid (KYNA) pathway are related to the etiology of schizophrenia. The inhibitor of kynurenine 3-monooxygenase (KMO) is known to increase KYNA levels, and the KMO gene is located in the chromosome region associated with schizophrenia, 1q42-q44. Single-marker and haplotype analyses for 6-tag single nucleotide polymorphisms (SNPs) of KMO were performed (cases = 465, controls = 440). Significant association of rs2275163 with schizophrenia was observed by single-marker comparisons (P = 0.032) and haplotype analysis including this SNP (P = 0.0049). Significant association of rs2275163 and haplotype was not replicated using a second, independent set of samples (cases = 480, controls = 448) (P = 0.706 and P = 0.689, respectively). These results suggest that the KMO is unlikely to be related to the development of schizophrenia in Japanese.

  2. Development of a Rapid Fluorescence-Based High-Throughput Screening Assay to Identify Novel Kynurenine 3-Monooxygenase Inhibitor Scaffolds.

    PubMed

    Jacobs, K R; Guillemin, G J; Lovejoy, D B

    2018-02-01

    Kynurenine 3-monooxygenase (KMO) is a well-validated therapeutic target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). This work reports a facile fluorescence-based KMO assay optimized for high-throughput screening (HTS) that achieves a throughput approximately 20-fold higher than the fastest KMO assay currently reported. The screen was run with excellent performance (average Z' value of 0.80) from 110,000 compounds across 341 plates and exceeded all statistical parameters used to describe a robust HTS assay. A subset of molecules was selected for validation by ultra-high-performance liquid chromatography, resulting in the confirmation of a novel hit with an IC 50 comparable to that of the well-described KMO inhibitor Ro-61-8048. A medicinal chemistry program is currently underway to further develop our novel KMO inhibitor scaffolds.

  3. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls.

    PubMed

    Holtze, Maria; Saetre, Peter; Engberg, Göran; Schwieler, Lilly; Werge, Thomas; Andreassen, Ole A; Hall, Håkan; Terenius, Lars; Agartz, Ingrid; Jönsson, Erik G; Schalling, Martin; Erhardt, Sophie

    2012-01-01

    Patients with schizophrenia show increased brain and cerebrospinal fluid (CSF) concentrations of the endogenous N-methyl-D-aspartate receptor antagonist kynurenic acid (KYNA). This compound is an end-metabolite of the kynurenine pathway, and its formation indirectly depends on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were selected covering KMO and were analyzed in UNPHASED. We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA. Given the limited sample size, the results are tentative until replication. Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA.

  4. Printable enzyme-embedded materials for methane to methanol conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  5. Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathogenicity.

    PubMed

    Yin, Chuntao; Park, Jeong-Jin; Gang, David R; Hulbert, Scot H

    2014-03-01

    The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.

  6. Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type.

    PubMed

    Chabbert, Brigitte; Habrant, Anouck; Herbaut, Mickaël; Foulon, Laurence; Aguié-Béghin, Véronique; Garajova, Sona; Grisel, Sacha; Bennati-Granier, Chloé; Gimbert-Herpoël, Isabelle; Jamme, Frédéric; Réfrégiers, Matthieu; Sandt, Christophe; Berrin, Jean-Guy; Paës, Gabriel

    2017-12-19

    Lignocellulosic biomass bioconversion is hampered by the structural and chemical complexity of the network created by cellulose, hemicellulose and lignin. Biological conversion of lignocellulose involves synergistic action of a large array of enzymes including the recently discovered lytic polysaccharide monooxygenases (LPMOs) that perform oxidative cleavage of cellulose. Using in situ imaging by synchrotron UV fluorescence, we have shown that the addition of AA9 LPMO (from Podospora anserina) to cellulases cocktail improves the progression of enzymes in delignified Miscanthus x giganteus as observed at tissular levels. In situ chemical monitoring of cell wall modifications performed by synchrotron infrared spectroscopy during enzymatic hydrolysis demonstrated that the boosting effect of the AA9 LPMO was dependent on the cellular type indicating contrasted recalcitrance levels in plant tissues. Our study provides a useful strategy for investigating enzyme dynamics and activity in plant cell wall to improve enzymatic cocktails aimed at expanding lignocelluloses biorefinery.

  7. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase.

    PubMed

    Kim, Nam-Hee; Kim, Yeong-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2008-01-01

    The formation of beta-carotene detergent micelles and their conversion into retinal by recombinant human beta,beta-carotene 15,15'-monooxygenase was optimized under aqueous conditions. Toluene was the most hydrophobic among the organic solvents tested; thus, it was used to dissolve beta-carotene, which is a hydrophobic compound. Tween 80 was selected as the detergent because it supported the highest level of retinal production among all of the detergents tested. The maximum production of retinal was achieved in detergent micelles containing 200 mg/L of beta-carotene and 2.4% (w/v) Tween 80. Under these conditions, the recombinant enzyme produced 97 mg/L of retinal after 16 h with a conversion yield of 48.5% (w/w). The amount of retinal produced, which is the highest ever reported, is a result of the ability of our system to dissolve large amounts of beta-carotene.

  8. Printable enzyme-embedded materials for methane to methanol conversion

    PubMed Central

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.

    2016-01-01

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions. PMID:27301270

  9. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    PubMed Central

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  10. Rox, a Rifamycin Resistance Enzyme with an Unprecedented Mechanism of Action.

    PubMed

    Koteva, Kalinka; Cox, Georgina; Kelso, Jayne K; Surette, Matthew D; Zubyk, Haley L; Ejim, Linda; Stogios, Peter; Savchenko, Alexei; Sørensen, Dan; Wright, Gerard D

    2018-04-19

    Rifamycin monooxygenases (Rox) are present in a variety of environmental bacteria and are associated with decomposition of the clinically utilized antibiotic rifampin. Here we report the structure and function of a drug-inducible rox gene from Streptomyces venezuelae, which encodes a class A flavoprotein monooxygenase that inactivates a broad range of rifamycin antibiotics. Our findings describe a mechanism of rifamycin inactivation initiated by monooxygenation of the 2-position of the naphthyl group, which subsequently results in ring opening and linearization of the antibiotic. The result is an antibiotic that no longer adopts the basket-like structure essential for binding to the RNA exit tunnel of the target RpoB, thereby providing the molecular logic of resistance. This unique mechanism of enzymatic inactivation underpins the broad spectrum of rifamycin resistance mediated by Rox enzymes and presents a new antibiotic resistance mechanism not yet seen in microbial antibiotic detoxification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Thermodynamics of interactions between mammalian cytochromes P450 and b5.

    PubMed

    Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis

    2017-04-01

    Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mutations of Toluene-4-Monooxygenase That Alter Regiospecificity of Indole Oxidation and Lead to Production of Novel Indigoid Pigments

    PubMed Central

    McClay, Kevin; Boss, Corinne; Keresztes, Ivan; Steffan, Robert J.

    2005-01-01

    Broad-substrate-range monooygenase enzymes, including toluene-4-monooxygenase (T4MO), can catalyze the oxidation of indole. The indole oxidation products can then condense to form the industrially important dye indigo. Site-directed mutagenesis of T4MO resulted in the creation of T4MO isoforms with altered pigment production phenotypes. High-pressure liquid chromatography, thin-layer chromatography, and nuclear magnetic resonance analysis of the indole oxidation products generated by the mutant T4MO isoforms revealed that the phenotypic differences were primarily due to changes in the regiospecificity of indole oxidation. Most of the mutations described in this study changed the ratio of the primary indole oxidation products formed (indoxyl, 2-oxindole, and isatin), but some mutations, particularly those involving amino acid G103 of tmoA, allowed for the formation of additional products, including 7-hydroxyindole and novel indigoid pigments. For example, mutant G103L converted 17% of added indole to 7-hydroxyindole and 29% to indigoid pigments including indigo and indirubin and two other structurally related pigments. The double mutant G103L:A107G converted 47% of indole to 7-hydroxyindole, but no detectable indigoid pigments were formed, similar to the product distribution observed with the toluene-2-monooxygenase (T2MO) of Burkholderia cepacia G4. These results demonstrate that modification of the tmoA active site can change the products produced by the enzyme and lead to the production of novel pigments and other indole oxidation products with potential commercial and medicinal utility. PMID:16151140

  13. Imino-Oxy Acetic Acid Dealkylation as Evidence for an Inner-Sphere Alcohol Intermediate in the Reaction Catalyzed by Peptidylglycine α-Hydroxylating Monooxygenase (PHM)

    PubMed Central

    McIntyre, Neil R.; Lowe, Edward W.; Merkler, David J.

    2009-01-01

    Peptidylglycine α-hydroxylating monooxygenase (PHM, EC 1.14.17.3) catalyzes the stereospecific hydroxylation of a glycyl α-carbon in a reaction that requires O2 and ascorbate. Subsequent dealkylation of the α-hydroxyglycine by another enzyme, peptidylamidoglycolate lyase (PAL. EC 4.3.2.5), yields a bioactive amide and glyoxylate. PHM is a non-coupled, type II dicopper monooxygenase which activates O2 at only a single copper atom, CuM. In this study, the PHM mechanism was probed using a non-natural substrate, benzaldehyde imino-oxy acetic acid (BIAA). PHM catalyzes the O-oxidative dealkylation of BIAA to benzaldoxime and glyoxylate with no involvement of PAL. The minimal kinetic mechanism for BIAA was shown to be steady-state ordered using primary deuterium kinetic isotope effects. The D(V/K)APPARENT, BIAA decreased from 14.7 ± 1.0 as [O2] → 0 to 1.0 ± 0.2 as [O2] → ∞ suggesting the dissociation rate constant from the PHM·BIAA complex decreases as [O2] increases; thereby, reducing the steady-state concentration of [PHM]free. BIAA was further used to differentiate between potential oxidative Cu/O species using a QM/MM reaction coordinate simulation to determine which species could yield product O-dealkylation that matched our experimental data. The results of this study provided compelling evidence for the presence of a covalently linked CuII-alkoxide intermediate with a quartet spin state responsible BIAA oxidation. PMID:19569683

  14. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.

    PubMed

    van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2010-08-01

    Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.

  15. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

    PubMed

    Jeon, Hyunwoo; Durairaj, Pradeepraj; Lee, Dowoo; Ahsan, Md Murshidul; Yun, Hyungdon

    2016-12-28

    Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19 +FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

  16. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem

    PubMed Central

    Minerdi, Daniela; Zgrablic, Ivan; Castrignanò, Silvia; Catucci, Gianluca; Medana, Claudio; Terlizzi, Maria Elena; Gribaudo, Giorgio; Gilardi, Gianfranco

    2015-01-01

    Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance. PMID:26459905

  17. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem.

    PubMed

    Minerdi, Daniela; Zgrablic, Ivan; Castrignanò, Silvia; Catucci, Gianluca; Medana, Claudio; Terlizzi, Maria Elena; Gribaudo, Giorgio; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase▿

    PubMed Central

    Perry, Lynda L.; Zylstra, Gerben J.

    2007-01-01

    The npd gene cluster, which encodes the enzymes of a p-nitrophenol catabolic pathway from Arthrobacter sp. strain JS443, was cloned and sequenced. Three genes, npdB, npdA1, and npdA2, were independently expressed in Escherichia coli in order to confirm the identities of their gene products. NpdA2 is a p-nitrophenol monooxygenase belonging to the two-component flavin-diffusible monooxygenase family of reduced flavin-dependent monooxygenases. NpdA1 is an NADH-dependent flavin reductase, and NpdB is a hydroxyquinol 1,2-dioxygenase. The npd gene cluster also includes a putative maleylacetate reductase gene, npdC. In an in vitro assay containing NpdA2, an E. coli lysate transforms p-nitrophenol stoichiometrically to hydroquinone and hydroxyquinol. It was concluded that the p-nitrophenol catabolic pathway in JS443 most likely begins with a two-step transformation of p-nitrophenol to hydroxy-1,4-benzoquinone, catalyzed by NpdA2. Hydroxy-1,4-benzoquinone is reduced to hydroxyquinol, which is degraded through the hydroxyquinol ortho cleavage pathway. The hydroquinone detected in vitro is a dead-end product most likely resulting from chemical or enzymatic reduction of the hypothetical intermediate 1,4-benzoquinone. NpdA2 hydroxylates a broad range of chloro- and nitro-substituted phenols, resorcinols, and catechols. Only p-nitro- or p-chloro-substituted phenols are hydroxylated twice. Other substrates are hydroxylated once, always at a position para to a hydroxyl group. PMID:17720792

  19. Hydroxylamine addition impact to Nitrosomonas europaea activity in the presence of monochloramine

    EPA Science Inventory

    In drinking water, monochloramine may promote ammonia–oxidizing bacteria (AOB) growth because of concurrent ammonia presence. AOB use (i) ammonia monooxygenase for biological ammonia oxidation to hydroxylamine and (ii) hydroxylamine oxidoreductase for hydroxylamine oxidation to ...

  20. SmoXYB1C1Z of Mycobacterium sp. Strain NBB4: a Soluble Methane Monooxygenase (sMMO)-Like Enzyme, Active on C2 to C4 Alkanes and Alkenes

    PubMed Central

    Martin, Kiri E.; Ozsvar, Jazmin

    2014-01-01

    Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc2-155. Cells of mc2-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc2-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc2-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc2-155(pSmo) provides a new model for studying sMMO-like monooxygenases. PMID:25015887

  1. Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources

    PubMed Central

    Knapp, Charles W.; Fowle, David A.; Kulczycki, Ezra; Roberts, Jennifer A.; Graham, David W.

    2007-01-01

    Methane is a major greenhouse gas linked to global warming; however, patterns of in situ methane oxidation by methane-oxidizing bacteria (methanotrophs), nature's main biological mechanism for methane suppression, are often inconsistent with laboratory predictions. For example, one would expect a strong relationship between methanotroph ecology and Cu level because methanotrophs require Cu to sustain particulate methane monooxygenase (pMMO), the most efficient enzyme for methane oxidation. However, no correlation has been observed in nature, which is surprising because methane monooxygenase (MMO) gene expression has been unequivocally linked to Cu availability. Here we provide a fundamental explanation for this lack of correlation. We propose that MMO expression in nature is largely controlled by solid-phase Cu geochemistry and the relative ability of Cu acquisition systems in methanotrophs, such as methanobactins (mb), to obtain Cu from mineral sources. To test this hypothesis, RT-PCR expression assays were developed for Methylosinus trichosporium OB3b (which produces mb) to quantify pMMO, soluble MMO (the alternate MMO expressed when Cu is “unavailable”), and 16S-rRNA gene expression under progressively more stringent Cu supply conditions. When Cu was provided as CuCl2, pMMO transcript levels increased significantly consistent with laboratory work. However, when Cu was provided as Cu-doped iron oxide, pMMO transcript levels increased only when mb was also present. Finally, when Cu was provided as Cu-doped borosilicate glass, pMMO transcription patterns varied depending on the ambient mb:Cu supply ratio. Cu geochemistry clearly influences MMO expression in terrestrial systems, and, as such, local Cu mineralogy might provide an explanation for methane oxidation patterns in the natural environment. PMID:17615240

  2. Inactivation of Toluene 2-Monooxygenase in Burkholderia cepacia G4 by Alkynes

    PubMed Central

    Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.; Hyman, Michael R.

    1999-01-01

    High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene. PMID:9925593

  3. Role of Valine 464 in the Flavin Oxidation Reaction Catalyzed by Choline Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, Steffan; Agniswamy, Johnson; Weber, Irene T.

    2010-11-03

    The oxidation of reduced flavin cofactors by oxygen is a very important reaction that is central to the chemical versatility of hundreds of flavoproteins classified as monooxygenases and oxidases. These enzymes are characterized by bimolecular rate constants {ge} 10{sup 5} M{sup -1} s{sup -1} and produce water and hydrogen peroxide, respectively. A hydrophobic cavity close to the reactive flavin C(4a) atom has been previously identified in the 3D structure of monooxygenases but not in flavoprotein oxidases. In the present study, we have investigated by X-ray crystallography, mutagenesis, steady-state, and rapid reaction approaches the role of Val464, which is <6 {angstrom}more » from the flavin C(4a) atom in choline oxidase. The 3D structure of the Val464Ala enzyme was essentially identical to that of the wild-type enzyme as shown by X-ray crystallography. Time-resolved anaerobic substrate reduction of the enzymes showed that replacement of Val464 with alanine or threonine did not affect the reductive half-reaction. Steady-state and rapid kinetics as well as enzyme-monitored turnovers indicated that the oxidative half-reaction in the Ala464 and Thr464 enzymes was decreased by 50-fold with respect to the wild-type enzyme. We propose that the side chain of Val464 in choline oxidase provides a nonpolar site that is required to guide oxygen in proximity of the C(4a) atom of the flavin, where it will subsequently react via electrostatic catalysis. Visual analysis of available structures suggests that analogous nonpolar sites are likely present in most flavoprotein oxidases. Mechanistic considerations provide rationalization for the differences between sites in monooxygenases and oxidases.« less

  4. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases.

    PubMed

    Kjaergaard, Christian H; Qayyum, Munzarin F; Wong, Shaun D; Xu, Feng; Hemsworth, Glyn R; Walton, Daniel J; Young, Nigel A; Davies, Gideon J; Walton, Paul H; Johansen, Katja Salomon; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I

    2014-06-17

    Strategies for O2 activation by copper enzymes were recently expanded to include mononuclear Cu sites, with the discovery of the copper-dependent polysaccharide monooxygenases, also classified as auxiliary-activity enzymes 9-11 (AA9-11). These enzymes are finding considerable use in industrial biofuel production. Crystal structures of polysaccharide monooxygenases have emerged, but experimental studies are yet to determine the solution structure of the Cu site and how this relates to reactivity. From X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies, we observed a change from four-coordinate Cu(II) to three-coordinate Cu(I) of the active site in solution, where three protein-derived nitrogen ligands coordinate the Cu in both redox states, and a labile hydroxide ligand is lost upon reduction. The spectroscopic data allowed for density functional theory calculations of an enzyme active site model, where the optimized Cu(I) and (II) structures were consistent with the experimental data. The O2 reactivity of the Cu(I) site was probed by EPR and stopped-flow absorption spectroscopies, and a rapid one-electron reduction of O2 and regeneration of the resting Cu(II) enzyme were observed. This reactivity was evaluated computationally, and by calibration to Cu-superoxide model complexes, formation of an end-on Cu-AA9-superoxide species was found to be thermodynamically favored. We discuss how this thermodynamically difficult one-electron reduction of O2 is enabled by the unique protein structure where two nitrogen ligands from His1 dictate formation of a T-shaped Cu(I) site, which provides an open coordination position for strong O2 binding with very little reorganization energy.

  5. Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruer-Zerhusen, Nathan; Alahuhta, Markus; Lunin, Vladimir V.

    Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The pointmore » mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.« less

  6. Evaluating cytochrome p450 in lesser scaup (Aythya affinis) and tree swallow (Tachycineta bicolor) by monooxygenase activity and immunohistochemistry: Possible nonlethal assessment by skin immunohistochemistry

    USGS Publications Warehouse

    Melancon, M.J.; Kutay, A.L.; Woodin, Bruce R.; Stegeman, John J.

    2006-01-01

    Six-month-old lesser scaup (Aythya affinis) and nestling tree swallows (Tachycineta bicolor) were injected intraperitoneally with beta-naphthoflavone (BNF) in corn oil or in vehicle alone. Liver samples were taken and stored at -80 degrees C until microsome preparation and monooxygenase assay. Skin samples were placed in buffered formalin for subsequent immunohistochemical (IHC) analysis for cytochrome P4501A (CYP1A). Lesser scaup treated with BNF at 20 or 100 mg/kg body weight showed approximately 6- to 18-fold increases in four monooxygenases (benzyloxyresorufin-O-dealkylase, ethoxyresorufin-O-dealkylase, methoxyresorufin-O-dealkylase, and pentoxyresorufin-O-dealkylase). No IHC response was observed for CYP1A in the skin of vehicle-injected ducks, whereas in the skin from BNF-treated ducks, the positive IHC response was of similar magnitude for both dose levels of BNF. Tree swallows injected with BNF at 100 mg/kg, but not at. 20 mg/kg, showed significant increases (approximately fivefold) in hepatic microsomal O-dealkylase activities. Cytochrome P4501A was undetectable by IHC response in skin from corn oil-treated swallows, but positive IHC responses were observed in the skin of one of five swallows at 20 mg/kg and four of five swallows at 100 mg/kg. Although these data do not allow construction of significant dose-response curves, the IHC responses for CYP1A in skin support the possible use of this nonlethal approach for biomonitoring contaminant exposure of birds. In addition, the CYP1A signal observed at the bases of emerging feathers suggest that these might provide less invasive sampling sites for IHC analysis of CYP1A.

  7. The Toluene o-Xylene Monooxygenase Enzymatic Activity for the Biosynthesis of Aromatic Antioxidants

    PubMed Central

    Pizzo, Elio; Notomista, Eugenio; Pezzella, Alessandro; Di Cristo, Carlo; De Lise, Federica; Di Donato, Alberto; Izzo, Viviana

    2015-01-01

    Monocyclic phenols and catechols are important antioxidant compounds for the food and pharmaceutic industries; their production through biotransformation of low-added value starting compounds is of major biotechnological interest. The toluene o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 is a bacterial multicomponent monooxygenase (BMM) that is able to hydroxylate a wide array of aromatic compounds and has already proven to be a versatile biochemical tool to produce mono- and dihydroxylated derivatives of aromatic compounds. The molecular determinants of its regioselectivity and substrate specificity have been thoroughly investigated, and a computational strategy has been developed which allows designing mutants able to hydroxylate non-natural substrates of this enzyme to obtain high-added value compounds of commercial interest. In this work, we have investigated the use of recombinant ToMO, expressed in cells of Escherichia coli strain JM109, for the biotransformation of non-natural substrates of this enzyme such as 2-phenoxyethanol, phthalan and 2-indanol to produce six hydroxylated derivatives. The hydroxylated products obtained were identified, isolated and their antioxidant potential was assessed both in vitro, using the DPPH assay, and on the rat cardiomyoblast cell line H9c2. Incubation of H9c2 cells with the hydroxylated compounds obtained from ToMO-catalyzed biotransformation induced a differential protective effect towards a mild oxidative stress induced by the presence of sodium arsenite. The results obtained confirm once again the versatility of the ToMO system for oxyfunctionalization reactions of biotechnological importance. Moreover, the hydroxylated derivatives obtained possess an interesting antioxidant potential that encourages the use of the enzyme for further functionalization reactions and their possible use as scaffolds to design novel bioactive molecules. PMID:25915063

  8. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.

    PubMed

    Furuya, Toshiki; Kino, Kuniki

    2014-02-01

    4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.

  9. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia.

    PubMed

    Wonodi, Ikwunga; McMahon, Robert P; Krishna, Nithin; Mitchell, Braxton D; Liu, Judy; Glassman, Matthew; Hong, L Elliot; Gold, James M

    2014-12-01

    Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.

    PubMed

    Gao, Jingjing; Yao, Licheng; Xia, Tingting; Liao, Xuebin; Zhu, Deyu; Xiang, Ye

    2018-04-01

    The human kynurenine 3-monooxygenase (hKMO) is a potential therapeutic target for neurodegenerative and neurologic disorders. Inhibition of KMO by Ro 61-8048, a potent, selective, and the most widely used inhibitor of KMO, was shown effective in various models of neurodegenerative or neurologic disorders. However, the molecular basis of hKMO inhibition by Ro 61-8048 is not clearly understood. Here, we report biochemistry studies on hKMO and crystal structures of an hKMO homolog, pfKMO from Pseudomonas fluorescens, in complex with the substrate l-kynurenine and Ro 61-8048. We found that the C-terminal ∼110 aa are essential for the enzymatic activity of hKMO and the homologous C-terminal region of pfKMO folds into a distinct, all-α-helical domain, which associates with the N-terminal catalytic domain to form a unique tunnel in proximity to the substrate-binding pocket. The tunnel binds the Ro 61-8048 molecule, which fills most of the tunnel, and Ro 61-8048 is hydrogen bonded with several completely conserved residues, including an essential catalytic residue. Modification of Ro 61-8048 and biochemical studies of the modified Ro 61-8048 derivatives suggested that Ro 61-8048 inhibits the enzyme in an allosteric manner by affecting the conformation of the essential catalytic residue and by blocking entry of the substrate or product release. The unique binding sites distinguish Ro 61-8048 as a noncompetitive and highly selective inhibitor from other competitive inhibitors, which should facilitate further optimization of Ro 61-8048 and the development of new inhibitory drugs to hKMO.-Gao, J., Yao, L., Xia, T., Liao, X., Zhu, D., Xiang, Y. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.

  11. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia✰,✰✰

    PubMed Central

    Wonodi, Ikwunga; McMahon, Robert P.; Krishna, Nithin; Mitchell, Braxton D.; Liu, Judy; Glassman, Matthew; Hong, L. Elliot; Gold, James M.

    2015-01-01

    Background Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. Methods We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Results Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. Conclusions These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. PMID:25464917

  12. Structure and Ligand Binding Properties of the Epoxidase Component of Styrene Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukaegbu, Uchechi E.; Kantz, Auric; Beaton, Michelle

    2010-07-23

    Styrene monooxygenase (SMO) is a two-component flavoprotein monooxygenase that transforms styrene to styrene oxide in the first step of the styrene catabolic and detoxification pathway of Pseudomonas putida S12. The crystal structure of the N-terminally histidine-tagged epoxidase component of this system, NSMOA, determined to 2.3 {angstrom} resolution, indicates the enzyme exists as a homodimer in which each monomer forms two distinct domains. The overall architecture is most similar to that of p-hydroxybenzoate hydroxylase (PHBH), although there are some significant differences in secondary structure. Structural comparisons suggest that a large cavity open to the surface forms the FAD binding site. Atmore » the base of this pocket is another cavity that likely represents the styrene binding site. Flavin binding and redox equilibria are tightly coupled such that reduced FAD binds apo NSMOA {approx}8000 times more tightly than the oxidized coenzyme. Equilibrium fluorescence and isothermal titration calorimetry data using benzene as a substrate analogue indicate that the oxidized flavin and substrate analogue binding equilibria of NSMOA are linked such that the binding affinity of each is increased by 60-fold when the enzyme is saturated with the other. A much weaker {approx}2-fold positive cooperative interaction is observed for the linked binding equilibria of benzene and reduced FAD. The low affinity of the substrate analogue for the reduced FAD complex of NSMOA is consistent with a preferred reaction order in which flavin reduction and reaction with oxygen precede the binding of styrene, identifying the apoenzyme structure as the key catalytic resting state of NSMOA poised to bind reduced FAD and initiate the oxygen reaction.« less

  13. Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues

    DOE PAGES

    Kruer-Zerhusen, Nathan; Alahuhta, Markus; Lunin, Vladimir V.; ...

    2017-11-30

    Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The pointmore » mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.« less

  14. Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA*

    PubMed Central

    Pimviriyakul, Panu; Thotsaporn, Kittisak; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2017-01-01

    The accumulation of chlorophenols (CPs) in the environment, due to their wide use as agrochemicals, has become a serious environmental problem. These organic halides can be degraded by aerobic microorganisms, where the initial steps of various biodegradation pathways include an oxidative dechlorinating process in which chloride is replaced by a hydroxyl substituent. Harnessing these dechlorinating processes could provide an opportunity for environmental remediation, but detailed catalytic mechanisms for these enzymes are not yet known. To close this gap, we now report transient kinetics and product analysis of the dechlorinating flavin-dependent monooxygenase, HadA, from the aerobic organism Ralstonia pickettii DTP0602, identifying several mechanistic properties that differ from other enzymes in the same class. We first overexpressed and purified HadA to homogeneity. Analyses of the products from single and multiple turnover reactions demonstrated that HadA prefers 4-CP and 2-CP over CPs with multiple substituents. Stopped-flow and rapid-quench flow experiments of HadA with 4-CP show the involvement of specific intermediates (C4a-hydroperoxy-FAD and C4a-hydroxy-FAD) in the reaction, define rate constants and the order of substrate binding, and demonstrate that the hydroxylation step occurs prior to chloride elimination. The data also identify the non-productive and productive paths of the HadA reactions and demonstrate that product formation is the rate-limiting step. This is the first elucidation of the kinetic mechanism of a two-component flavin-dependent monooxygenase that can catalyze oxidative dechlorination of various CPs, and as such it will serve as the basis for future investigation of enzyme variants that will be useful for applications in detoxifying chemicals hazardous to human health. PMID:28159841

  15. Differences in hepatic microsomal cytochrome P-450 isoenzyme induction by pyrazole, chronic ethanol, 3-methylcholanthrene, and phenobarbital in high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats.

    PubMed

    Lucas, D; Ménez, J F; Berthou, F; Cauvin, J M; Deitrich, R A

    1992-10-01

    High and low alcohol sensitivity (HAS and LAS) rats have been selected for their differences in ethanol-induced sleep time. Liver monooxygenase activities were studied in HAS and LAS rats before and after treatments with known inducers such as chronic ethanol, pyrazole, 3-methylcholanthrene (3-MC) and phenobarbital (PB) to determine whether the selection procedure also selected for differences in the cytochrome P-450 (P-450) inducibility. This previously has been shown with long sleep (LS) and short sleep (SS) mice, which were selected using a similar criterion. 3-MC and PB, in conjunction with chronic ethanol treatment, were used in order to evaluate the interactions of ethanol with these inducers. Prior to treatment, total P-450 content was slightly lower in LAS than in HAS rats. However, both lines displayed the same microsomal monooxygenase activities related to different P-450 isozymes. This was demonstrated by ethoxyresorufin deethylation (EROD) for cytochrome P-450 1A1 (CYP1A1), acetanilide hydroxylation (ACET) for CYP1A2, pentoxyresorufin dealkylation (PROD) for CYP2B, 1-butanol oxidation (BUTAN) and N-nitrosodimethylamine demethylation (NDMA) for CYP2E1. After the different treatments, HAS rats did not differ from LAS rats in their CYP2E1 inducibility. However, pyrazole, PB and 3-MC treatment led to differences in CYP1A and CYP2B monooxygenase activities between the two lines. The enhancement of PROD by pyrazole treatment was less prominent in LAS (1.7-fold of the control value) than in HAS rats (3.8-fold).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Identification of the Monooxygenase Gene Clusters Responsible for the Regioselective Oxidation of Phenol to Hydroquinone in Mycobacteria▿

    PubMed Central

    Furuya, Toshiki; Hirose, Satomi; Osanai, Hisashi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc2155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc2155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc2155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc2155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria. PMID:21183637

  17. The Divergent AmoC3 Subunit of Ammonia Monooxygenase Functions as Part of a Stress Response System in Nitrosomonas europaea

    PubMed Central

    Berube, Paul M.

    2012-01-01

    The ammonia monooxygenase of chemolithotrophic ammonia-oxidizing bacteria (AOB) catalyzes the first step in ammonia oxidation by converting ammonia to hydroxylamine. The monooxygenase of Nitrosomonas europaea is encoded by two nearly identical operon copies (amoCAB1,2). Several AOB, including N. europaea, also possess a divergent monocistronic copy of amoC (amoC3) of unknown function. Previous work suggested a possible functional role for amoC3 as part of the σE stress response regulon during the recovery of N. europaea from extended ammonia starvation, thus indicating its importance during the exit of cells from starvation. We here used global transcription analysis to show that expression of amoC3 is part of a general poststarvation cellular response system in N. europaea. We also found that amoC3 is required for an efficient response to some stress conditions, as deleting this gene impaired growth at elevated temperatures and recovery following starvation under high oxygen tensions. Deletion of the σ32 global stress response regulator demonstrated that the heat shock regulon plays a significant role in mediating the recovery of N. europaea from starvation. These findings provide the first described phenotype associated with the divergent AmoC3 subunit which appears to function as a stress-responsive subunit capable of maintaining ammonia oxidation activity under stress conditions. While this study was limited to starvation and heat shock, it is possible that the AmoC3 subunit may be responsive to other membrane stressors (e.g., solvent or osmotic shocks) that are prevalent in the environments of AOB. PMID:22544266

  18. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic.

    PubMed

    Yoshimoto, Naoko; Onuma, Misato; Mizuno, Shinya; Sugino, Yuka; Nakabayashi, Ryo; Imai, Shinsuke; Tsuneyoshi, Tadamitsu; Sumi, Shin-ichiro; Saito, Kazuki

    2015-09-01

    S-Alk(en)yl-l-cysteine sulfoxides are cysteine-derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S-alk-(en)yl-l-cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin-containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S-oxygenation reaction in the biosynthesis of S-allyl-l-cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S-oxygenation of S-allyl-l-cysteine to nearly exclusively yield (RC SS )-S-allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S-oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin-containing monooxygenases. AsFMO1 preferred S-allyl-l-cysteine to γ-glutamyl-S-allyl-l-cysteine as the S-oxygenation substrate, suggesting that in garlic, the S-oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre-emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S-allyl-l-cysteine S-oxygenase, and contributes to the production of alliin both through the conversion of stored γ-glutamyl-S-allyl-l-cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum.

    PubMed

    Setsungnern, Arnon; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-11-01

    Benzene, a carcinogenic compound, has been reported as a major indoor air pollutant. Chlorophytum comosum (C. comosum) was reported to be the highest efficient benzene removal plant among other screened plants. Our previous studies found that plants under light conditions could remove gaseous benzene higher than under dark conditions. Therefore, C. comosum exposure to airborne benzene was studied under different light quality at the same light intensity. C. comosum could remove 500 ppm gaseous benzene with the highest efficiency of 68.77% under Blue:Red = 1:1 LED treatments and the lowest one appeared 57.41% under white fluorescent treatment within 8 days. After benzene was uptaken by C. comosum, benzene was oxidized to be phenol in the plant cells by cytochrome P450 monooxygenase system. Then, phenol was catalyzed to be catechol that was confirmed by the up-regulation of phenol 2-monooxygenase (PMO) gene expression. After that, catechol was changed to cic, cis-muconic acid. Interestingly, cis,cis-muconic acid production was found in the plant tissues higher than phenol and catechol. The result confirmed that NADPH-cytochrome P450 reductase (CPR), cytochrome b5 (cyt b5), phenol 2-monooxygenase (PMO) and cytochrome P450 90B1 (CYP90B1) in plant cells were involved in benzene degradation or detoxification. In addition, phenol, catechol, and cis,cis-muconic acid production were found under the Blue-Red LED light conditions higher than under white fluorescent light conditions due to under LED light conditions gave higher NADPH contents. Hence, C. comosum under the Blue-Red LED light conditions had a high potential to remove benzene in a contaminated site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family.

    PubMed

    Morgenstern, Ingo; Powlowski, Justin; Tsang, Adrian

    2014-11-01

    Our understanding of fungal cellulose degradation has shifted dramatically in the past few years with the characterization of a new class of secreted enzymes, the lytic polysaccharide monooxygenases (LPMO). After a period of intense research covering structural, biochemical, theoretical and evolutionary aspects, we have a picture of them as wedge-like copper-dependent metalloenzymes that on reduction generate a radical copper-oxyl species, which cleaves mainly crystalline cellulose. The main biological function lies in the synergism of fungal LPMOs with canonical hydrolytic cellulases in achieving efficient cellulose degradation. Their important role in cellulose degradation is highlighted by the wide distribution and often numerous occurrences in the genomes of almost all plant cell-wall degrading fungi. In this review, we provide an overview of the latest achievements in LPMO research and consider the open questions and challenges that undoubtedly will continue to stimulate interest in this new and exciting group of enzymes. © The Author 2014. Published by Oxford University Press.

  1. Monooxygenase activity of black-crowned night-heron (BCNH) nestlings in Virginia, the Great Lakes and San Francisco Bay

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.

    1990-01-01

    To evaluate cytochrome P-450 related parameters as biomarkers of pollutant exposure, rates of arylhydrocarbon hydroxylase (AHH), ethoxyresorufin-O-deethylase (EROD), benzyloxyROD (BROD), pentoxyROD (PROD) and ethoxycoumarinOD (ECOD) were studied in 10-day-old BCNHs (Nycticorax nycticorax). Nestlings were collected from Chincoteague National Wildlife Refuge, VA ('controls') and from polluted sites including. Cat Island, Green Bay, WI, and Bair and West Marin Islands, San Francisco Bay, CA. Livers were frozen (-70.C) for monooxygenase assays and SDS-PAGE. Microsomal AHH and BROD activities were greater (P2 standard deviations from the control mean (induced up to 3-fold). EROD, PROD and ECOD did not differ among sites. Absence of an EROD response with AHH and BROD induction in BCNHs is different than responses in other species. The association of pollutant burdens with P-450 parameters is being studied. These biomarkers may serve as a rapid screen of exposure in a national contaminant biomonitoring program and other assessment activities.

  2. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.

    PubMed

    Martín Del Campo, Julia S; Vogelaar, Nancy; Tolani, Karishma; Kizjakina, Karina; Harich, Kim; Sobrado, Pablo

    2016-11-18

    Aspergillus fumigatus is an opportunistic fungal pathogen and the most common causative agent of fatal invasive mycoses. The flavin-dependent monooxygenase siderophore A (SidA) catalyzes the oxygen and NADPH dependent hydroxylation of l-ornithine (l-Orn) to N 5 -l-hydroxyornithine in the biosynthetic pathway of hydroxamate-containing siderophores in A. fumigatus. Deletion of the gene that codes for SidA has shown that it is essential in establishing infection in mice models. Here, a fluorescence polarization high-throughput assay was used to screen a 2320 compound library for inhibitors of SidA. Celastrol, a natural quinone methide, was identified as a noncompetitive inhibitor of SidA with a MIC value of 2 μM. Docking experiments suggest that celastrol binds across the NADPH and l-Orn pocket. Celastrol prevents A. fumigatus growth in blood agar. The addition of purified ferric-siderophore abolished the inhibitory effect of celastrol. Thus, celastrol inhibits A. fumigatus growth by blocking siderophore biosynthesis through SidA inhibiton.

  3. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase

    NASA Astrophysics Data System (ADS)

    Hutchinson, Jonathan P.; Rowland, Paul; Taylor, Mark R. D.; Christodoulou, Erica M.; Haslam, Carl; Hobbs, Clare I.; Holmes, Duncan S.; Homes, Paul; Liddle, John; Mole, Damian J.; Uings, Iain; Walker, Ann L.; Webster, Scott P.; Mowat, Christopher G.; Chung, Chun-Wa

    2017-06-01

    Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.

  4. Discovery and characterization of a new family of lytic polysaccharide mono-oxygenases

    PubMed Central

    Hemsworth, Glyn R.; Henrissat, Bernard; Davies, Gideon J.; Walton, Paul H.

    2014-01-01

    Lytic polysaccharide mono-oxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They currently attract much attention due to their potential use in biomass conversion, notably in the production of biofuels. Past work has identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the 3-D structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active centre featuring the histidine brace active site, but is distinct in terms of its active site details and its EPR spectroscopy. The new AA11 family expands the LPMO clan with the potential to broaden both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs. PMID:24362702

  5. Genetic Analysis of Benzothiophene Biodesulfurization Pathway of Gordonia terrae Strain C-6

    PubMed Central

    Lian, Kehui; Zhang, Yue; Tian, Huimei; Ji, Kaihua; Li, Guoqiang

    2013-01-01

    Sulfur can be removed from benzothiophene (BT) by some bacteria without breaking carbon-carbon bonds. However, a clear mechanism for BT desulfurization and its genetic components have not been reported in literatures so far. In this study, we used comparative transcriptomics to study differential expression of genes in Gordonia terrae C-6 cultured with BT or sodium sulfate as the sole source of sulfur. We found that 135 genes were up-regulated with BT relative to sodium sulfate as the sole sulfur source. Many of these genes encode flavin-dependent monooxygenases, alkane sulfonate monooxygenases and desulfinase, which perform similar functions to those involved in the 4S pathway of dibenzothiophene (DBT) biodesulfurization. Three of the genes were found to be located in the same operon, designated bdsABC. Cell extracts of pET28a-bdsABC transfected E. coli Rosetta (DE3) converted BT to a phenolic compound, identified as o-hydroxystyrene. These results advance our understanding of enzymes involved in the BT biodesulfurization pathway. PMID:24367657

  6. A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes*

    PubMed Central

    Vidal-Melgosa, Silvia; Pedersen, Henriette L.; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B.; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G. T.

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. PMID:25657012

  7. Hepatic microsomal monooxygenase activity in black-crowned night herons (BCNHS) from the Chesapeake basin

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Rice, C.P.; Hines, R.K.; Eisemann, J.

    1992-01-01

    In a continuation of our studies on the use of hepatic cytochromes P450 as a biomarker for contaminant exposure, BCNH eggs were collected from Baltimore Harbor (BH) (n = 20), Washington National Zoo (WNZ) (n = 13) and Chincoteague National Wildlife Refuge (CNWR) (reference location) (n = 20). Eggs were artificially incubated and sacrificed at pipping. Livers were snap frozen in liquid nitrogen and stored at -80?C until assay. Hepatic microsomes were prepared by differential centrifugation of homogenates and assayed for protein, benzyloxy-resorufin-O-dealkylase, (BROD) ethoxyresorufinO-dealkylase (EROD) and pentoxyresorufin-O-dealkylase (PROD). Monooxygenase assays were run in triplicate using a computer-coupled fluorometric microwell plate scanner. Values for EROD and BROD, but not PROD, from BH and WNZ were significantly greater (approximately double) than those from CNWR. Organochlorine pesticide residues were much higher in carcasses from BH and WNZ as compared to CNWR. Carcasses are presently being analyzed for PCB congeners.

  8. The Power of Integrating Kinetic Isotope Effects into the Formalism of the Michaelis-Menten Equation

    PubMed Central

    Klinman, Judith P.

    2014-01-01

    The final arbiter of enzyme mechanism is the ability to establish and test a kinetic mechanism. Isotope effects play a major role in expanding the scope and insight derived from the Michaelis-Menten equation. The integration of isotope effects into the formalism of the Michaelis-Menten equation began in the 1970s and has continued to this day. This review discusses a family of eukaryotic copper proteins that includes dopamine β-monooxygenase, tyramine β-monooxygenase, and peptidylglycine α-amidating enzyme, responsible for the synthesis of the neuro-active compounds, norepinephrine, octopamine and C-terminally carboxamidated peptides, respectively. Highlighted are results that show how combining kinetic isotope effects with initial rate parameters permits an evaluation of: (i) the order of substrate binding to multi-substrate enzymes; (ii) the magnitude of individual rate constants in complex, multi-step reactions; (iii) the identification of chemical intermediates; and (iv) the role of non-classical (tunneling) behavior in C–H activation. PMID:23937475

  9. Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria

    PubMed Central

    Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H.; Roberts, Ian S.D.; Sheehan, Susan; Savage, Holly; Haller, Hermann

    2016-01-01

    Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. PMID:27020856

  10. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls

    PubMed Central

    Holtze, Maria; Saetre, Peter; Engberg, Göran; Schwieler, Lilly; Werge, Thomas; Andreassen, Ole A.; Hall, Håkan; Terenius, Lars; Agartz, Ingrid; Jönsson, Erik G.; Schalling, Martin; Erhardt, Sophie

    2012-01-01

    Background Patients with schizophrenia show increased brain and cerebrospinal fluid (CSF) concentrations of the endogenous N-methyl-d-aspartate receptor antagonist kynurenic acid (KYNA). This compound is an end-metabolite of the kynurenine pathway, and its formation indirectly depends on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. Methods We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were selected covering KMO and were analyzed in UNPHASED. Results We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA. Limitations Given the limited sample size, the results are tentative until replication. Conclusion Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA. PMID:21693093

  11. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase.

    PubMed

    Hutchinson, Jonathan P; Rowland, Paul; Taylor, Mark R D; Christodoulou, Erica M; Haslam, Carl; Hobbs, Clare I; Holmes, Duncan S; Homes, Paul; Liddle, John; Mole, Damian J; Uings, Iain; Walker, Ann L; Webster, Scott P; Mowat, Christopher G; Chung, Chun-Wa

    2017-06-12

    Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.

  12. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration

    PubMed Central

    Zwilling, Daniel; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Guidetti, Paolo; Wu, Hui-Qiu; Lee, Jason; Truong, Jennifer; Andrews-Zwilling, Yaisa; Hsieh, Eric W.; Louie, Jamie Y.; Wu, Tiffany; Scearce-Levie, Kimberly; Patrick, Christina; Adame, Anthony; Giorgini, Flaviano; Moussaoui, Saliha; Laue, Grit; Rassoulpour, Arash; Flik, Gunnar; Huang, Yadong; Muchowski, Joseph M.; Masliah, Eliezer; Schwarcz, Robert; Muchowski, Paul J.

    2011-01-01

    SUMMARY Metabolites in the kynurenine pathway of tryptophan degradation are thought to play an important role in neurodegenerative disorders such as Alzheimer’s disease and Huntington’s disease. Metabolites that cause glutamate receptor-mediated excitotoxicity and free radical formation are elevated in the blood and vulnerable brain regions in these diseases, while levels of the neuroprotective metabolite kynurenic acid are often decreased. Here we describe the synthesis and characterization of JM6, a novel small-molecule pro-drug inhibitor of kynurenine 3-monooxygenase (KMO). JM6 raises kynurenic acid and reduces extracellular glutamate in the brain after chronic oral administration by inhibiting KMO in blood. In a transgenic mouse model of Alzheimer’s disease, JM6 prevented spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extended life span, prevented synaptic loss, and decreased microglial activation in a mouse model of Huntington’s disease. These findings support a critical link between blood cells and neurodegeneration that is mediated by KMO and the kynurenine pathway. PMID:21640374

  13. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase

    PubMed Central

    Hutchinson, Jonathan P.; Rowland, Paul; Taylor, Mark R. D.; Christodoulou, Erica M.; Haslam, Carl; Hobbs, Clare I.; Holmes, Duncan S.; Homes, Paul; Liddle, John; Mole, Damian J.; Uings, Iain; Walker, Ann L.; Webster, Scott P.; Mowat, Christopher G.; Chung, Chun-wa

    2017-01-01

    Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design. PMID:28604669

  14. Substrate and inhibitor specificity of kynurenine monooxygenase from Cytophaga hutchinsonii.

    PubMed

    Phillips, Robert S; Anderson, Andrew D; Gentry, Harvey G; Güner, Osman F; Bowen, J Phillip

    2017-04-15

    Kynurenine monooxygenase (KMO) is a potential drug target for treatment of neurodegenerative disorders such as Huntington's and Alzheimer's diseases. We have evaluated substituted kynurenines as substrates or inhibitors of KMO from Cytophaga hutchinsonii. Kynurenines substituted with a halogen at the 5-position are excellent substrates, with values of k cat and k cat /K m comparable to or higher than kynurenine. However, kynurenines substituted in the 3-position are competitive inhibitors, with K I values lower than the K m for kynurenine. Bromination also enhances inhibition, and 3,5-dibromokynurenine is a potent competitive inhibitor with a K I value of 1.5μM. A pharmacophore model of KMO was developed, and predicted that 3,4-dichlorohippuric acid would be an inhibitor. The K I for this compound was found to be 34μM, thus validating the pharmacophore model. We are using these results and our model to design more potent inhibitors of KMO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cometabolic Degradation of Naproxen by Planococcus sp. Strain S5.

    PubMed

    Domaradzka, Dorota; Guzik, Urszula; Hupert-Kocurek, Katarzyna; Wojcieszyńska, Danuta

    Naproxen is a non-steroidal anti-inflammatory drug frequently detected in the influent and effluent of sewage treatment plants. The Gram-positive strain Planococcus sp. S5 was able to remove approximately 30 % of naproxen after 35 days of incubation in monosubstrate culture. Under cometabolic conditions, with glucose or phenol as a growth substrate, the degradation efficiency of S5 increased. During 35 days of incubation, 75.14 ± 1.71 % and 86.27 ± 2.09 % of naproxen was degraded in the presence of glucose and phenol, respectively. The highest rate of naproxen degradation observed in the presence of phenol may be connected with the fact that phenol is known to induce enzymes responsible for aromatic ring cleavage. The activity of phenol monooxygenase, naphthalene monooxygenase, and hydroxyquinol 1,2-dioxygenase was indicated in Planococcus sp. S5 culture with glucose or phenol as a growth substrate. It is suggested that these enzymes may be engaged in naproxen degradation.

  16. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.

    PubMed

    Pierce, Brian C; Agger, Jane Wittrup; Wichmann, Jesper; Meyer, Anne S

    2017-03-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of substrates, including both soy spent flake, a by-product of the soy food industry, and soy spent flake pretreated with sodium hydroxide. Products from enzymatic treatments were analyzed using mass spectrometry and high performance anion exchange chromatography. We demonstrate that TrCel61A is capable of oxidizing cellulose from both pretreated soy spent flake and phosphoric acid swollen cellulose, oxidizing at both the C1 and C4 positions. In addition, we show that the oxidative activity of TrCel61A displays a synergistic effect capable of boosting endoglucanase activity, and thereby substrate depolymerization of soy cellulose, by 27%. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Production of ω-hydroxy octanoic acid with Escherichia coli.

    PubMed

    Kirtz, Marko; Klebensberger, Janosch; Otte, Konrad B; Richter, Sven M; Hauer, Bernhard

    2016-07-20

    The present proof-of-concept study reports the construction of a whole-cell biocatalyst for the de novo production of ω-hydroxy octanoic acid. This was achieved by hijacking the natural fatty acid cycle and subsequent hydroxylation using a specific monooxygenase without the need for the additional feed of alkene-like precursors. For this, we used the model organism Escherichia coli and increased primarily the release of the octanoic acid precursors by overexpressing the plant thioesterase FatB2 from Cuphea hookeriana in a β-oxidation deficient strain, which lead to the production of 2.32mM (8.38mggcww(-1)) octanoic acid in 24h. In order to produce the corresponding ω-hydroxy derivative, we additionally expressed the engineered self-sufficient monooxygenase fusion protein CYP153AMaq(G307A)-CPRBM3 within the octanoic acid producing strain. With this, we finally produced 234μM (0.95mggcww(-1)) ω-hydroxy octanoic acid in a 20h fed-batch set-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of cytochromes P450 in avian species as a biomarker for environmental contaminant exposure and effect: Procedures and baseline values

    USGS Publications Warehouse

    Melancon, M.J.; Bengston, David A.; Henshel, Diane S.

    1996-01-01

    As in mammals and fish, birds respond to many environmental contaminants with induction of hepatic cytochromes P450. In order to monitor cytchromes P450 in specific avian species, for assessing the status of that species or the habitat it utilizes, it is necessary to have background information on the appropriate assay conditions and the responsiveness of cytochrome P450 induction in that species. Assay of four monooxygenases which give resorufin as product using a fluorescence microwell plate scanner has proven to be an effective approach. Information is provided on the incubation conditions and baseline activity for twenty avian species at ages ranging from pipping embryo to adult. Induction responsiveness is presented for sixteen of them. This information can serve as a guide for those who wish to utilize cytochrome P450 as a biomarker for contaminant exposure and effect to aid in selection of appropriate species, age, and monooxygenase assay(s).

  19. Effects of Zinc on Particulate Methane Monooxygenase Activity and Structure*

    PubMed Central

    Sirajuddin, Sarah; Barupala, Dulmini; Helling, Stefan; Marcus, Katrin; Stemmler, Timothy L.; Rosenzweig, Amy C.

    2014-01-01

    Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Zinc is a known inhibitor of pMMO, but the details of zinc binding and the mechanism of inhibition are not understood. Metal binding and activity assays on membrane-bound pMMO from Methylococcus capsulatus (Bath) reveal that zinc inhibits pMMO at two sites that are distinct from the copper active site. The 2.6 Å resolution crystal structure of Methylocystis species strain Rockwell pMMO reveals two previously undetected bound lipids, and metal soaking experiments identify likely locations for the two zinc inhibition sites. The first is the crystallographic zinc site in the pmoC subunit, and zinc binding here leads to the ordering of 10 previously unobserved residues. A second zinc site is present on the cytoplasmic side of the pmoC subunit. Parallels between these results and zinc inhibition studies of several respiratory complexes suggest that zinc might inhibit proton transfer in pMMO. PMID:24942740

  20. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    PubMed

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  1. Bioinorganic Chemical Modeling of Dioxygen-Activating Copper Proteins.

    ERIC Educational Resources Information Center

    Karlin, Kenneth D.; Gultneh, Yilma

    1985-01-01

    Discusses studies done in modeling the copper centers in the proteins hemocyanin (a dioxygen carrier), tyrosinase, and dopamine beta-hydroxylase. Copper proteins, model approach in copper bioinorganic chemistry, characterization of reversible oxygen carriers and dioxygen-metal complexes, a copper mono-oxygenase model reaction, and other topics are…

  2. A copper-methionine interaction controls the pH-dependent activation of peptidylglycine monooxygenase.

    PubMed

    Bauman, Andrew T; Broers, Brenda A; Kline, Chelsey D; Blackburn, Ninian J

    2011-12-20

    The pH dependence of native peptidylglycine monooxygenase (PHM) and its M314H variant has been studied in detail. For wild-type (WT) PHM, the intensity of the Cu-S interaction visible in the Cu(I) extended X-ray absorption fine structure (EXAFS) data is inversely proportional to catalytic activity over the pH range of 3-8. A previous model based on more limited data was interpreted in terms of two protein conformations involving an inactive Met-on form and an active flexible Met-off form [Bauman, A. T., et al. (2006) Biochemistry 45, 11140-11150] that derived its catalytic activity from the ability to couple into vibrational modes critical for proton tunneling. The new studies comparing the WT and M314H variant have led to the evolution of this model, in which the Met-on form has been found to be derived from coordination of an additional Met residue, rather than a more rigid conformer of M314 as previously proposed. The catalytic activity of the mutant decreased by 96% because of effects on both k(cat) and K(M), but it displayed the same activity-pH profile with a maximum around pH 6. At pH 8, the reduced Cu(I) form gave spectra that could be simulated by replacement of the Cu(M) Cu-S(Met) interaction with a Cu-N/O interaction, but the data did not unambiguously assign the ligand to the imidazole side chain of H314. At pH 3.5, the EXAFS still showed the presence of a strong Cu-S interaction, establishing that the Met-on form observed at low pH in WT cannot be due to a strengthening of the Cu(M)-methionine interaction but must arise from a different Cu-S interaction. Therefore, lowering the pH causes a conformational change at one of the Cu centers that brings a new S donor residue into a favorable orientation for coordination to copper and generates an inactive form. Cys coordination is unlikely because all Cys residues in PHM are engaged in disulfide cross-links. Sequence comparison with the PHM homologues tyramine β-monooxygenase and dopamine β-monooxygenase suggests that M109 (adjacent to H site ligands H107 and H108) is the most likely candidate. A model is presented in which H108 is protonated with a pK(a) of 4.6 to generate the inactive low-pH form with Cu(H) coordinated by M109, H107, and H172.

  3. Key Elements of the Chemistry of Cytochrome P-450: The Oxygen Rebound Mechanism.

    ERIC Educational Resources Information Center

    Groves, John T.

    1985-01-01

    Discusses the structure and function of the liver protein cytochrome P-450, an important catalyst for a variety of detoxification reactions. Diagnostic substracts for this heme-containing monooxygenase, synthetic modes of the active site, and oxidations with synthetic metalloporphyrins are the major topic areas considered. (JN)

  4. Cytochrome P450 Monooxygenase Activity in the Dark Southern Subterranean Termite (Isoptera: Rhinotermitidae)

    Treesearch

    Steven M. Valles; Weste L.A. Osbrink; Faith M. Oi; Richard J. Brenner; Janine E. Powell

    1998-01-01

    Microsomal oxidases were characterized using surrogate substrates in the economically important dark southern subterranean termite, Reticulitermes virginicus (Banks). Aldrin epoxitlase activity required NADPH and was inhibited by carbon monoxide and piperonyl butoxide (I50 = 4.72 (+,-) 0.31 X 1O-10 M), indicating that...

  5. MECHANISM-BASED INACTIVATION OF TOLUENE 2-MONOOXYGENASE IN BURKHOLDERIA CEPACIA G4 BY ALKYNES. (R825689C027)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. CORRELATION OF FLAVIN-CONTAINING MONOOXYGENASE ACTIVITY, ALDICARB TOXICITY AND SALINITY IN THE EURYHALINE FISH, JAPANESE MEDAKA (ORYZIAS LATIPES). (R826109)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. EFFECTS OF TRIBUTYLTIN CHLORIDE IN VITRO ON THE HEPATIC MICROSOMAL MONO-OXYGENASE SYSTEM IN THE FISH STENOTOMUS CHRYSOPS. (R823881)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Determining Antifungal Target Sites in the Sterol Pathway of the Yeast Candida and Saccharomyces

    DTIC Science & Technology

    1997-10-01

    interaction of the azole antifungal agent SCH39304 with the cytochrome P-450 monooxygenase system isolated from Cryptococcus neoformans. Antimicrob. Agents...isolates of Cryptococcus neoformans. Antimicrob. Agents Chemother. 41: 748-751. 16. Wheat, J., Marichal, P., Vanden Bossche, H., Le Monte, A., and

  9. Correction to: CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    PubMed

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-12-01

    Due to an unfortunate turn of events, the funding note for Open Access publication was not properly provided in the original publication. Hence, the original article has been corrected. The opening line of the Acknowledgement section should read.

  10. THz+X Seedling Report

    DTIC Science & Technology

    2005-11-23

    lamblia Entamoeba histolytica Toxoplasma Microsporidia Additional viral encephalitides West Nile Virus LaCrosse California encephalitis VEE...Is Catalyzed by Salicylate 1- Monooxygenase from Pseudomonas sp . Strain ATCC 29352; Applied and Environmental Microbiology, July 2004, p. 4040-4047...the Mechanism of RDX Biodegradation by Rhodococcus - 31 - sp . Strain DN22; Applied and Environmental Microbiology, March 2003, p. 1347-1351

  11. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  12. Biological production of organic compounds

    DOEpatents

    Yu, Jianping; Wang, Bo; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2018-03-13

    Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.

  13. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    EPA Science Inventory

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  14. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions

    EPA Science Inventory

    Drinking water monochloramine (NH2Cl) use may promote ammonia–oxidizing bacteria (AOB) growth. For biological ammonia (NH3) oxidation, AOB use (i) ammonia monooxygenase for NH3 oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrit...

  15. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine.

    PubMed

    Yamada, Nana; Takahashi, Hiroyuki; Kitou, Kunihide; Sahashi, Kosuke; Tamagake, Hideto; Tanaka, Yoshito; Takabe, Teruhiro

    2015-11-01

    Glycine betaine (GB) is an important osmoprotectant and synthesized by two-step oxidation of choline. Choline monooxygenase (CMO) catalyzes the first step of the pathway and is believed to be a rate limiting step for GB synthesis. Recent studies have shown the importance of choline-precursor supply for GB synthesis. In order to investigate the role of CMO for GB accumulation in sugar beet (Beta vulgaris), transgenic plants carrying the antisense BvCMO gene were developed. The antisense BvCMO plants showed the decreased activity of GB synthesis from choline compared to wild-type (WT) plants which is well related to the suppressed level of BvCMO protein. However, GB contents were similar between transgenic and WT plants with the exception of young leaves and storage roots. Transgenic plants showed enhanced susceptibility to salt stress than WT plants. These results suggest the importance of choline-precursor-supply for GB accumulation, and young leaves and storage root are sensitive sites for GB accumulation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. The microsomal metabolism of the organometallic derivatives of the group-IV elements, germanium, tin and lead.

    PubMed Central

    Prough, R A; Stalmach, M A; Wiebkin, P; Bridges, J W

    1981-01-01

    The NADPH- and oxygen-dependent microsomal metabolism of the di-, tri- and tetra-ethyl-substituted derivatives of germanium, tin and lead was shown to give rise to ethylene as a major product and ethane as a minor product. These reactions were shown to be catalysed by the liver microsomal cytochrome P-450-dependent mono-oxygenase. Since formation of ethane and ethylene was differentially inhibited by anaerobiosis, the results suggest that at least a large portion of the ethane produced may be derived by a reductive mechanism. Triethyltin bromide in both the absence and presence of NADPH was shown to convert cytochrome P-450 into cytochrome P-420 and to affect the function of the mono-oxygenase in vitro. Tetraethyltin caused the NADPH- and time-dependent formation of cytochrome P-420, suggesting that tetraethyltin is converted into triethyltin salts in significant concentrations. The order of potency in formation of cytochrome P-420 was closely paralleled by the ability of the tin derivatives to induce microsomal lipid peroxidation in vitro. PMID:7317015

  17. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Heterologous Expression of the ema1 Cytochrome P450 Monooxygenase

    PubMed Central

    Molnár, István; Hill, D. Steven; Zirkle, Ross; Hammer, Philip E.; Gross, Frank; Buckel, Thomas G.; Jungmann, Volker; Pachlatko, Johannes Paul; Ligon, James M.

    2005-01-01

    The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1. PMID:16269733

  18. [Free radical reactions and energy transformation in microsome membranes. Arrhenius equation for the monooxygenase reaction].

    PubMed

    Dmitriev, L F

    2001-01-01

    The mechanism of coupling of the oxidation and activation of membrane enzymes was considered. It is obvious that microsomal monooxygenase uses the energy of NADPH oxidation for the activation of the terminal agent--cytochrome P-450. However, till now the mechanism of the transformation of this energy has not been discussed. It is supposed that the coupling process includes transformation of oxidation energy to kinetic energy, the energy of lipid pulsations. The mechanism proposed by us and the mechanism of energy transformation according to Mitchell are two independent mechanisms, both being of fundamental importance for biochemistry and biophysics of membranes. One approach uses the dielectric properties of membrane, and the other is based on the ability of hydrocarbon chains of phospholipids for rotamerization. A new empirical Arrhenius equation for membrane processes is offered. It accounts for the ability of membrane to reserve the energy in kinetic form (internal temperature). In conditions when membrane proteins cease to be acceptors of energy, the transfer of energy, i.e., transformation of the energy of NADPH oxidation into heat or light, occurs.

  19. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    PubMed

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-03

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Structural Basis for Inhibitor-Induced Hydrogen Peroxide Production by Kynurenine 3-Monooxygenase.

    PubMed

    Kim, Hyun Tae; Na, Byeong Kwan; Chung, Jiwoung; Kim, Sulhee; Kwon, Sool Ki; Cha, Hyunju; Son, Jonghyeon; Cho, Joong Myung; Hwang, Kwang Yeon

    2018-04-19

    Kynurenine 3-monooxygenase (KMO) inhibitors have been developed for the treatment of neurodegenerative disorders. The mechanisms of flavin reduction and hydrogen peroxide production by KMO inhibitors are unknown. Herein, we report the structure of human KMO and crystal structures of Saccharomyces cerevisiae (sc) and Pseudomonas fluorescens (pf) KMO with Ro 61-8048. Proton transfer in the hydrogen bond network triggers flavin reduction in p-hydroxybenzoate hydroxylase, but the mechanism triggering flavin reduction in KMO is different. Conformational changes via π-π interactions between the loop above the flavin and substrate or non-substrate effectors lead to disorder of the C-terminal α helix in scKMO and shifts of domain III in pfKMO, stimulating flavin reduction. Interestingly, Ro 61-8048 has two different binding modes. It acts as a competitive inhibitor in scKMO and as a non-substrate effector in pfKMO. These findings provide understanding of the catalytic cycle of KMO and insight for structure-based drug design of KMO inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria.

    PubMed

    Korstanje, Ron; Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H; Roberts, Ian S D; Sheehan, Susan; Savage, Holly; Haller, Hermann; Schiffer, Mario

    2016-11-01

    Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. Copyright © 2016 by the American Society of Nephrology.

  2. Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma.

    PubMed

    Jin, Haojie; Zhang, Yurong; You, Haiyan; Tao, Xuemei; Wang, Cun; Jin, Guangzhi; Wang, Ning; Ruan, Haoyu; Gu, Dishui; Huo, Xisong; Cong, Wenming; Qin, Wenxin

    2015-06-23

    Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington's and Alzheimer's diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p < 0.05). Survival and recurrence analyses showed that KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both p<0.01). And in vitro studies revealed that KMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC.

  3. Kynurenine 3-monooxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands.

    PubMed

    Stephens, Geoffrey L; Wang, Qun; Swerdlow, Bonnie; Bhat, Geetha; Kolbeck, Roland; Fung, Michael

    2013-07-01

    The aryl hydrocarbon receptor (AhR) is a key transcriptional regulator of Th17-cell differentiation. Although endogenous ligands have yet to be identified, evidence suggests that tryptophan metabolites can act as agonists for the AhR. Tryptophan metabolites are abundant in circulation, so we hypothesized that cell intrinsic factors might exist to regulate the exposure of Th17 cells to AhR-dependent activities. Here, we find that Th17 cells preferentially express kynurenine 3-monooxygenase (KMO), which is an enzyme involved in catabolism of the tryptophan metabolite kynurenine. KMO inhibition, either with a specific inhibitor or via siRNA-mediated silencing, markedly increased IL-17 production in vitro, whereas IFN-γ production by Th1 cells was unaffected. Inhibition of KMO significantly exacerbated disease in a Th17-driven model of autoimmune gastritis, suggesting that expression of KMO by Th17 cells serves to limit their continuous exposure to physiological levels of endogenous AhR ligands in vivo. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    PubMed Central

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  5. Purification and properties of the hydroxylase component of methane monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.N.; Savas, J.C.

    Methane monooxygenase from Methylobacterium sp. strain CRL-26 which catalyzes the oxygenation of hydrocarbons was resolved into two components, a hydroxylase and a flavoprotein. An anaerobic procedure was developed for the purification of the hydroxylase to homogeneity. The molecular weight of the hydroxylase as determined by gel filtration was 220,000, and that determined by sedimentation equilibrium analysis was about 225,000. The purified hydroxylase contained three nonidentical subunits with molecular weights of about 55,000, 40,000, and 20,000, in equal amounts as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it is an ..cap alpha../sub 2/..beta gamma.. protein. Optical absorption spectra revealedmore » peaks near 408 and 280 nm, and fluorescence spectra revealed emission peaks at 490 and 630 nm. The purified hydroxylase contained 2.8 +/- 0.2 mol of iron and 0.5 +/- 0.1 mol of zinc per mol of protein but negligible amounts of acid-labile sulfide. The antisera prepared against the hydroxylase showed cross-reactivity with hydroxylase components in soluble extracts from other methanotrophs.« less

  6. Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater.

    PubMed

    Guan, Xiangyu; Liu, Fei; Xie, Yuxuan; Zhu, Lingling; Han, Bin

    2013-08-01

    Pollution of groundwater with chlorinated aliphatic hydrocarbons (CAHs) is a serious environmental problem which is threatening human health. Microorganisms are the major participants in degrading these contaminants. Here, groundwater contaminated for a decade with CAHs was investigated. Numerical simulation and field measurements were used to track and forecast the migration and transformation of the pollutants. The diversity, abundance, and possible activity of groundwater microbial communities at CAH-polluted sites were characterized by molecular approaches. The number of microorganisms was between 5.65E+05 and 1.49E+08 16S rRNA gene clone numbers per liter according to quantitative real-time PCR analysis. In 16S rRNA gene clone libraries constructed from samples along the groundwater flow, eight phyla were detected, and Proteobacteria were dominant (72.8 %). The microbial communities varied with the composition and concentration of pollutants. Meanwhile, toluene monooxygenases and methane monooxygenases capable of degradation of PCE and TCE were detected, demonstrating the major mechanism for PCE and TCE degradation and possibility for in situ remediation by addition of oxygen in this study.

  7. Physical map location of the multicopy genes coding for ammonia monooxygenase and hydroxylamine oxidoreductase in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.

    PubMed

    Hirota, R; Yamagata, A; Kato, J; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

    2000-02-01

    Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB(1) and amoCAB(2)), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)). In this DNA fragment, amoCAB(1) and amoCAB(2) were about 390 kb apart, while hao(1), hao(2), and hao(3) were separated by at least about 100 kb from each other. Interestingly, hao(1) and hao(2) were located relatively close to amoCAB(1) and amoCAB(2), respectively. DNA sequence analysis revealed that hao(1) and hao(2) shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao(3) showed only 30% nucleotide identity in the 160-bp corresponding region.

  8. Physical Map Location of the Multicopy Genes Coding for Ammonia Monooxygenase and Hydroxylamine Oxidoreductase in the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain ENI-11

    PubMed Central

    Hirota, Ryuichi; Yamagata, Akira; Kato, Junichi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao

    2000-01-01

    Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB1 and amoCAB2), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao1, hao2, and hao3). In this DNA fragment, amoCAB1 and amoCAB2 were about 390 kb apart, while hao1, hao2, and hao3 were separated by at least about 100 kb from each other. Interestingly, hao1 and hao2 were located relatively close to amoCAB1 and amoCAB2, respectively. DNA sequence analysis revealed that hao1 and hao2 shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao3 showed only 30% nucleotide identity in the 160-bp corresponding region. PMID:10633121

  9. Enzymes Involved in Naproxen Degradation by Planococcus sp. S5.

    PubMed

    Wojcieszyńska, Danuta; Domaradzka, Dorota; Hupert-Kocurek, Katarzyna; Guzik, Urszula

    2016-01-01

    Naproxen is a one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) entering the environment as a result of high consumption. For this reason, there is an emerging need to recognize mechanisms of its degradation and enzymes engaged in this process. Planococcus sp. S5 is a gram positive strain able to degrade naproxen in monosubstrate culture (27%). However, naproxen is not a sufficient growth substrate for this strain. In the presence of benzoate, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid or vanillic acid as growth substrates, the degradation of 21.5%, 71.71%, 14.75% and 8.16% of naproxen was observed respectively. It was shown that the activity of monooxygenase, hydroxyquinol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxyegnase in strain S5 was induced after growth of the strain with naproxen and 4-hydroxybenzoate. Moreover, in the presence of naproxen activity of gentisate 1,2-dioxygenase, enzyme engaged in 4-hydroxybenzoate metabolism, was completely inhibited. The obtained results suggest that monooxygenase and hydroxyquinol 1,2-dioxygenase are the main enzymes in naproxen degradation by Planococcus sp. S5.

  10. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter

    PubMed Central

    Landry, Zachary; Swan, Brandon K.; Herndl, Gerhard J.; Stepanauskas, Ramunas

    2017-01-01

    ABSTRACT Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist. PMID:28420738

  11. Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.

    PubMed

    Farhan Ul-Haque, Muhammad; Kalidass, Bhagyalakshmi; Vorobev, Alexey; Baral, Bipin S; DiSpirito, Alan A; Semrau, Jeremy D

    2015-04-01

    Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin "piracy" may be commonplace. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Methanobactin from Methylocystis sp. Strain SB2 Affects Gene Expression and Methane Monooxygenase Activity in Methylosinus trichosporium OB3b

    PubMed Central

    Farhan Ul-Haque, Muhammad; Kalidass, Bhagyalakshmi; Vorobev, Alexey; Baral, Bipin S.; DiSpirito, Alan A.

    2015-01-01

    Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin “piracy” may be commonplace. PMID:25616801

  13. Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase

    PubMed Central

    Wang, Shan; Yang, Shuo; An, Baiyi; Wang, Shichen; Yin, Yuejia; Lu, Yang; Xu, Ying; Hao, Dongyun

    2011-01-01

    CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase. PMID:21858078

  14. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O- dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black- crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross- reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p'-DDE were detected in embryos from Cat Island. Cytochrome P450- associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  15. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  16. Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China.

    PubMed

    Qin, Qian; Li, Yiji; Zhong, Daibin; Zhou, Ning; Chang, Xuelian; Li, Chunyuan; Cui, Liwang; Yan, Guiyun; Chen, Xiao-Guang

    2014-03-03

    Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays. The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1 gene were detected by DNA sequencing and PCR-RFLP analysis, respectively. An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (<10%) was detected in An. sinensis, but no kdr mutation was detected in An. vagus populations. Modest to high (45%-75%) ace-1 mutation frequency was found in An. sinensis populations, but no ace-1 mutation was detected in An. vagus populations. Significantly higher P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes. Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.

  17. Camphor Pathway Redux: Functional Recombinant Expression of 2,5- and 3,6-Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453 with Their Cognate Flavin Reductase Catalyzing Baeyer-Villiger Reactions

    PubMed Central

    Iwaki, Hiroaki; Grosse, Stephan; Bergeron, Hélène; Leisch, Hannes; Morley, Krista; Hasegawa, Yoshie

    2013-01-01

    Whereas the biochemical properties of the monooxygenase components that catalyze the oxidation of 2,5-diketocamphane and 3,6-diketocamphane (2,5-DKCMO and 3,6-DKCMO, respectively) in the initial catabolic steps of (+) and (−) isomeric forms of camphor (CAM) metabolism in Pseudomonas putida ATCC 17453 are relatively well characterized, the actual identity of the flavin reductase (Fred) component that provides the reduced flavin to the oxygenases has hitherto been ill defined. In this study, a 37-kDa Fred was purified from a camphor-induced culture of P. putida ATCC 17453 and this facilitated cloning and characterization of the requisite protein. The active Fred is a homodimer with a subunit molecular weight of 18,000 that uses NADH as an electron donor (Km = 32 μM), and it catalyzes the reduction of flavin mononucleotide (FMN) (Km = 3.6 μM; kcat = 283 s−1) in preference to flavin adenine dinucleotide (FAD) (Km = 19 μM; kcat = 128 s−1). Sequence determination of ∼40 kb of the CAM degradation plasmid revealed the locations of two isofunctional 2,5-DKCMO genes (camE25–1 for 2,5-DKCMO-1 and camE25–2 for 2,5-DKCMO-2) as well as that of a 3,6-DKCMO-encoding gene (camE36). In addition, by pulsed-field gel electrophoresis, the CAM plasmid was established to be linear and ∼533 kb in length. To enable functional assessment of the two-component monooxygenase system in Baeyer-Villiger oxidations, recombinant plasmids expressing Fred in tandem with the respective 2,5-DKCMO- and 3,6-DKCMO-encoding genes in Escherichia coli were constructed. Comparative substrate profiling of the isofunctional 2,5-DCKMOs did not yield obvious differences in Baeyer-Villiger biooxidations, but they are distinct from 3,6-DKCMO in the stereoselective oxygenations with various mono- and bicyclic ketone substrates. PMID:23524667

  18. Intermittent hypoxia activates peptidylglycine α-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing

    PubMed Central

    Sharma, Suresh D.; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R.; Kumar, Ganesh K.

    2009-01-01

    Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the α-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O2-sensitive peptidylglycine α-hydroxylating monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O2 for 15 s followed by 21% O2 for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of α-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM (∼1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases Vmax but has no effect on Km. IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem. PMID:18818385

  19. Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing.

    PubMed

    Sharma, Suresh D; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R; Kumar, Ganesh K

    2009-01-01

    Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the alpha-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O(2)-sensitive peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O(2) for 15 s followed by 21% O(2) for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of alpha-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM ( approximately 1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases V(max) but has no effect on K(m). IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem.

  20. Marker Exchange Mutagenesis of mxaF, Encoding the Large Subunit of the Mxa Methanol Dehydrogenase, in Methylosinus trichosporium OB3b

    PubMed Central

    Farhan Ul Haque, Muhammad; Gu, Wenyu; DiSpirito, Alan A.

    2015-01-01

    Methanotrophs have remarkable redundancy in multiple steps of the central pathway of methane oxidation to carbon dioxide. For example, it has been known for over 30 years that two forms of methane monooxygenase, responsible for oxidizing methane to methanol, exist in methanotrophs, i.e., soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), and that expression of these two forms is controlled by the availability of copper. Specifically, sMMO expression occurs in the absence of copper, while pMMO expression increases with increasing copper concentrations. More recently, it was discovered that multiple forms of methanol dehydrogenase (MeDH), Mxa MeDH and Xox MeDH, also exist in methanotrophs and that the expression of these alternative forms is regulated by the availability of cerium. That is, expression of Xox MeDH increases in the presence of cerium, while Mxa MeDH expression decreases in the presence of cerium. As it had been earlier concluded that pMMO and Mxa MeDH form a supercomplex in which electrons from Mxa MeDH are back donated to pMMO to drive the initial oxidation of methane, we speculated that Mxa MeDH could be rendered inactive through marker-exchange mutagenesis but growth on methane could still be possible if cerium was added to increase the expression of Xox MeDH under sMMO-expressing conditions. Here we report that mxaF, encoding the large subunit of Mxa MeDH, could indeed be knocked out in Methylosinus trichosporium OB3b, yet growth on methane was still possible, so long as cerium was added. Interestingly, growth of this mutant occurred in both the presence and the absence of copper, suggesting that Xox MeDH can replace Mxa MeDH regardless of the form of MMO expressed. PMID:26712545

  1. Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles.

    PubMed

    Wójcik, Dagmara; Antos, Piotr A; Katarzyńska, Dorota; Hrabia, Anna; Sechman, Andrzej

    2015-12-03

    The aim of the experiment was to study the in vitro effect of 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) on aryl hydrocarbon receptor (AHR1) and AHR1 nuclear translocator (ARNT1) mRNA expression and the activity of CYP1 family monooxygenases in chicken ovarian follicles. White (1-4 mm) and yellowish (4-8 mm) prehierarchical follicles as well as fragments of the theca and granulosa layers of the 3 largest preovulatory follicles (F3-F1) were incubated in a medium supplemented with 0 (control group), 1, 10 or 100 nM PCB 126. The incubation was carried out for 6 h or 24 h for determination of mRNA expression of AHR1 and ARNT1 genes (real-time qPCR) and CYP1 monooxygenase activity (EROD and MROD fluorometric assays), respectively. It was found that chicken ovarian follicles express mRNA of AHR1 and ARNT1 genes. A modulatory effect of PCB 126 on AHR1 and ARNT1 expression depended not only on the biphenyl concentration but also on the follicular layer and the maturational state of the follicle. EROD and MROD activities appeared predominantly in the granulosa layer of the yellow preovulatory follicles. PCB 126 induced these activities in a dose-dependent manner in all ovarian follicles. The obtained results suggest that ovarian follicles, especially the granulosa layer, are involved in the detoxification process of PCBs in the laying hen. Taking this finding into consideration it can be suggested that the granulosa layer of the yellow hierarchical follicles plays a key role in the protective mechanism which reduces the amount of transferred dioxin-like compounds into the yolk of the oocyte. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Electrochemical sensor with flavin-containing monooxygenase for triethylamine solution.

    PubMed

    Saito, Hirokazu; Shirai, Takeshi; Kudo, Hiroyuki; Mitsubayashi, Kohji

    2008-06-01

    A bioelectronic sensor for triethylamine (TEA) was developed with a flavin-containing monooxygenase type 3 (FMO-3). The TEA biosensor consisted of a Clark-type dissolved-oxygen electrode and an FMO-3 immobilized membrane. The FMO-3 solution was mixed with a poly(vinyl alcohol) containing stilbazolium groups (PVA-SbQ), coated on to the dialysis membrane, and the membrane was irradiated with a fluorescent light to immobilize the enzyme. In order to amplify the biosensor output, a substrate regeneration cycle, obtained by coupling the monooxygenase with L-ascorbic acid (AsA) as reducing reagent system, was applied. The effect of pH on the determination of TEA was studied. The maximum response was achieved at pH >9.0. A drop of the phosphate buffer solution with the AsA was put on the sensing area of the oxygen electrode, and the FMO-3 immobilized membrane was placed on the oxygen electrode and covered with a supporting Nylon mesh net which was secured with a silicone O-ring. A measurement system for TEA solution was constructed using the FMO-3 biosensor, a personal computer, a computer-controlled potentiostat, and an A/D converter. The FMO-3 biosensor was used to measure TEA solution from 0.5 to 4.0 mmol L(-1) with 10.0 mmol L(-1) AsA. The biosensor also had good reproducibility, for example a 6.31% coefficient of variation for five measurements, and the output current was maintained over a few hours. In order to improve the selectivity of the TEA biosensor, three type of biosensor with FMO isomer types 1, 3, and 5 were constructed and used to measure nitrogen and sulfur compounds. The outputs of the isomer biosensors indicated individual patterns for each sample solution. The selectivity of TEA biosensor would be improved, and determination of sulfur and nitrogen compounds would be possible, by using the different output of biosensors prepared from different FMO isomers.

  3. Long distance electron-transfer mechanism in peptidylglycine alpha-hydroxylating monooxygenase: a perfect fitting for a water bridge.

    PubMed

    de la Lande, Aurélien; Martí, Sergio; Parisel, Olivier; Moliner, Vicent

    2007-09-26

    The active sites of copper enzymes have been the subject of many theoretical and experimental investigations from a number of years. Such studies have embraced topics devoted to the modeling of the first coordination sphere at the metallic cations up to the development of biomimetic, or bioinspired, catalytic systems. At least from the theoretical viewpoint, fewer efforts have been dedicated to elucidate how the two copper cations act concertedly in noncoupled dicopper enzymes such as peptidylglycine alpha-hydroxylating monooxygenase (PHM) and dopamine beta-monooxygenase (DbetaM). In these metalloenzymes, an electronic transfer is assumed between the two distant copper cations (11 A). Recent experimental results suggest that this transfer occurs through water molecules, a phenomenon which has been theoretically evidenced to be of high efficiency in the case of cytochrome b5 (Science, 2005, 310, 1311). In the present contribution dedicated to PHM, we overpass the common theoretical approaches dedicated to the electronic and geometrical structures of sites CuM or CuH restricted to their first coordination spheres and aim at directly comparing theoretical results to the experimentally measured activity of the PHM enzyme. To achieve this goal, molecular dynamics simulations were performed on wild-type and various mutants of PHM. More precisely, we provide an estimate of the electron-transfer efficiency between the CuM and CuH sites by means of such molecular dynamics simulations coupled to Marcus theory joined to the Beratan model to approximate the required coupling matrix elements. The theoretical results are compared to the kinetics measurements performed on wild and mutated PHM. The present work, the dynamic aspects of which are essential, accounts for the experimental results issued from mutagenesis. It supports the conclusion that an electronic transfer can occur between two copper(I) sites along a bridge involving a set of hydrogen and chemical bonds. Residue Gln170 is evidenced to be the keystone of this water-mediated pathway.

  4. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotope signatures.

  5. Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15'-monooxygenase 1 single nucleotide polymorphisms

    USDA-ARS?s Scientific Manuscript database

    The mechanisms as well the genetics underlying bioavailability and metabolism of carotenoids in humans remains unclear. The individual temporal response of plasma carotenoids was analyzed in adults who consumed carotenoid-containing juices on a controlled-diet study using cluster analysis. Treatmen...

  6. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay

    Treesearch

    Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Masahiro Samejima; David Hibbett; Bernard Henrissat; Dan Cullen

    2013-01-01

    To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (...

  7. RNAi-mediated knockdown of the Halloween gene spookiest (CYP307B1) impedes adult eclosion in the western tarnished plant bug, Lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    Ecdysteroids play a critical role in coordinating insect growth, development, and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNAi-mediated knockdown of the CYP3...

  8. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.

    PubMed

    Shirey, Carolyn; Badieyan, Somayesadat; Sobrado, Pablo

    2013-11-08

    SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N(5)-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP(+) is the last product to be released. The presence of NADP(+) is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP(+) to slide into position for stabilization of the C4a-hydroperoxyflavin.

  9. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

  10. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    PubMed

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  11. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance

    PubMed Central

    Liu, Simu; Bartnikas, Lisa M.; Volko, Sigrid M.; Ausubel, Frederick M.; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew. PMID:26973671

  12. Induction of cytochrome P450-associated monooxygenases in northern leopard frogs, Rana pipiens, by 3,3',4,4',5-pentachlorobiphenyl

    USGS Publications Warehouse

    Huang, Y.-W.; Melancon, M.J.; Jung, R.E.; Karasov, W.H.

    1998-01-01

    Northern leopard frogs (Rana pipiens) were injected intraperitoneally either with a solution of polychlorinated biphenyl (PCB) 126 in corn oil at a concentration of 0.2, 0.7, 2.3 and 7.8 mg/kg body weight or with corn oil alone. Appropriate assay conditions with hepatic microsomes were determined for four cytochrome P450-associated monooxygenases: ethoxyresorufin-O-dealkylase (EROD), methoxy-ROD (MROD), benzyloxy-ROD (BROD) and pentoxy-ROD (PROD). One week after PCB administration, the specific activities of EROD, MROD, BROD and PROD were not elevated at doses ? 0.7 mg/kg (p > 0.05), but were significantly increased at doses ? 2.3 mg/kg compared to the control groups (p < 0.05). The increased activity of these four enzymes ranged from 3to 6.4fold relative to control levels. The increased activities were maintained for at least four weeks. Due to a lack of induction at low doses of PCB 126, which were still relatively high compared to currentlyknown environmental concentrations, we suspect that EROD, MROD, BROD, and PROD activities are not sensitive biomarkers for coplanar PCB exposure in leopard frogs.

  13. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor.

    PubMed

    Siewers, Verena; Viaud, Muriel; Jimenez-Teja, Daniel; Collado, Isidro G; Gronover, Christian Schulze; Pradier, Jean-Marc; Tudzynski, Bettina; Tudzynski, Paul

    2005-06-01

    The micrographic phytopathogen Botrytis cinerea causes gray mold diseases in a large number of dicotyledonous crop plants and ornamentals. Colonization of host tissue is accompanied by rapid killing of plant cells ahead of the growing hyphen, probably caused by secretion of nonspecific phytotoxins, e.g., the sesquiterpene botrydial. Although all pathogenic strains tested so far had been shown to secrete botrydial and although the toxin causes comparable necrotic lesions as infection by the fungus, the role of botrydial in the infection process has not been elucidated so far. Here, we describe the functional characterization of bcbot1, encoding a P450 monooxygenase and provide evidence that it is involved in the botrydial pathway, i.e., it represents the first botrydial biosynthetic gene identified. We show that bcbot1 is expressed in planta and that expression in vitro and in planta is controlled by an alpha-subunit of a heterotrimeric GTP-binding protein, BCG1. Deletion of bcbot1 in three standard strains of B. cinerea shows that the effect on virulence (on several host plants) is strain-dependent; only deletion in one of the strains (T4) led to reduced virulence.

  14. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology.

    PubMed

    Parrott, Jennifer M; O'Connor, Jason C

    2015-01-01

    Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases.

  15. Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma

    PubMed Central

    Jin, Haojie; Zhang, Yurong; You, Haiyan; Tao, Xuemei; Wang, Cun; Jin, Guangzhi; Wang, Ning; Ruan, Haoyu; Gu, Dishui; Huo, Xisong; Cong, Wenming; Qin, Wenxin

    2015-01-01

    Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington’s and Alzheimer’s diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p < 0.05). Survival and recurrence analyses showed that KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both p<0.01). And in vitro studies revealed that KMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC. PMID:26099564

  16. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    PubMed

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.

  17. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback.

    PubMed

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-04-14

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress.

  18. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback

    PubMed Central

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-01-01

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress. PMID:27077813

  19. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology

    PubMed Central

    Parrott, Jennifer M.; O’Connor, Jason C.

    2015-01-01

    Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases. PMID:26347662

  20. Cytochrome P450 CYP716A254 catalyzes the formation of oleanolic acid from β-amyrin during oleanane-type triterpenoid saponins biosynthesis in Anemone flaccida.

    PubMed

    Zhan, Chuansong; Ahmed, Shakeel; Hu, Sheng; Dong, Shuang; Cai, Qian; Yang, Tewu; Wang, Xuekui; Li, Xiaohua; Hu, Xuebo

    2018-01-01

    Anemone flaccida Fr. Shmidt (Ranunculaceae), known as 'Di Wu' in China, is a perennial herb which has long been used to treat arthritis. The rhizome of A. flaccida contains pharmacologically active components i.e. oleanane-type triterpenoid saponins. Oleanolic acid is natural triterpenoid in plants with diverse biological activities. The biosynthesis of oleanolic acid involves cyclization of 2,3-oxidosqualene to the oleanane-type triterpenoid skeleton, followed by a series of oxidation reactions catalyzed by cytochrome P450 monooxygenase (CYP450). Previously, we identified four possible cytochrome P450 genes belonging to CYP716A subfamily from the transcriptome of A. flaccida. In this study, we identified one of those genes "CYP716A254" encoding a cytochrome P450 monooxygenase from A. flaccida that catalyzes the conversion of the β-amyrin into oleanolic acid. The heterologous expression of CYP716A254 in yeast resulted in oxidation of β-amyrin at the C-18 position to oleanolic acid production. These results provide an important basis for further studies of oleanane-type triterpenoid saponins synthesis in A. flaccida. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans.

    PubMed

    Chiba, M; Xu, X; Nishime, J A; Balani, S K; Lin, J H

    1997-09-01

    Montelukast (L-706,631, MK-0476, SINGULAIR), a potent and selective leukotriene D4 (CysLT1) receptor antagonist, is currently under development for the treatment of asthma. In vitro studies were conducted using human liver microsomes to evaluate: 1) the difference in the metabolic kinetics of montelukast between adult and pediatric subjects; 2) the relative contribution of flavin-containing monooxygenase and cytochrome P450 (P450) to the sulfoxidation; and 3) the P450 isoforms responsible for montelukast oxidation. No statistically significant difference was observed in the in vitro kinetics for acyl glucuronidation and oxidative metabolism between the two age groups. Results from studies on heat inactivation of flavin-containing monooxygenase and immunochemical inhibition by an anti-rat NADPH P450 reductase antibody on montelukast oxidation indicated that all oxidative metabolism of montelukast-including diastereomeric sulfoxidations, as well as 21- and methyl-hydroxylations-are catalyzed exclusively by P450. Five in vitro approaches have been used to identify the P450 isoforms responsible for the human liver microsomal oxidation of montelukast. The experimental results consistently indicated that CYP3A4 catalyzes sulfoxidation and 21-hydroxylation, whereas CYP2C9 selectively mediates methyl-hydroxylation.

  2. Enzymatic transformation of hydrocarbons by methanotrophic organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.N.; Hou, C.T.

    Soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. CRL-26 or R6, catalyzed the NAD(P)H-dependent epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branch-chain alkenes, alkanes (C1-C8), substituted alkanes, branch-chain alkanes, carbon monoxide, ether, cyclic and aromatic compounds. The NAD -linked dehydrogenases such as formate dehydrogenase or secondary alcohol dehydrogenase in the presence of formate or secondary alcohol, respectively, regenerated NAD/NADH required for the methane monooxygenase in a coupled enzymes reactions. Oxidation of secondary alcohols to the corresponding methylketones in methanotrophs is catalyzed by an NAD -dependent, zinc-containing, secondary alcohol hydrogenase. Primary alcohols weremore » oxidized to the corresponding aldehydes by a phenazine methosulfate-dependent, pyrollo quinoline quinone (methoxatin or PQQ) containing, methanol dehydrogenase. Oxidation of aldehydes (C1 to C10) to the corresponding carboxylic acids is catalyzed by a heme-containing aldehyde dehydrogenase. Methanotrophs have been considered potentially useful for single cell protein (SCP), amino acids, and biopolymer production at the expense of growth on cheap and readily available C1 compounds. 80 references, 1 figure, 6 tables.« less

  3. Desaturation reactions catalyzed by soluble methane monooxygenase.

    PubMed

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  4. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    PubMed

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  5. C. elegans flavin-containing monooxygenase-4 is essential for osmoregulation in hypotonic stress

    PubMed Central

    Hirani, Nisha; Westenberg, Marcel; Seed, Paul T.; Petalcorin, Mark I. R.; Dolphin, Colin T.

    2016-01-01

    ABSTRACT Studies in Caenorhabditis elegans have revealed osmoregulatory systems engaged when worms experience hypertonic conditions, but less is known about measures employed when faced with hypotonic stress. Inactivation of fmo-4, which encodes flavin-containing monooxygenase-4, results in dramatic hypoosmotic hypersensitivity; worms are unable to prevent overwhelming water influx and swell rapidly, finally rupturing due to high internal hydrostatic pressure. fmo-4 is expressed prominently in hypodermis, duct and pore cells but is excluded from the excretory cell. Thus, FMO-4 plays a crucial osmoregulatory role by promoting clearance of excess water that enters during hypotonicity, perhaps by synthesizing an osmolyte that acts to establish an osmotic gradient from excretory cell to duct and pore cells. C. elegans FMO-4 contains a C-terminal extension conserved in all nematode FMO-4s. The coincidently numbered human FMO4 also contains an extended C-terminus with features similar to those of FMO-4. Although these shared sequence characteristics suggest potential orthology, human FMO4 was unable to rescue the fmo-4 osmoregulatory defect. Intriguingly, however, mammalian FMO4 is expressed predominantly in the kidney – an appropriate site if it too is, or once was, involved in osmoregulation. PMID:27010030

  6. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants

    PubMed Central

    Karich, Alexander; Ullrich, René; Scheibner, Katrin; Hofrichter, Martin

    2017-01-01

    Unspecific peroxygenases (UPOs) are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs) and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i) steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs), (ii) strong inactivation of aromatic rings (e.g., nitrobenzene), and (iii) low water solubility (e.g., complex arenes). The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments. PMID:28848501

  7. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.

    PubMed

    Wang, Weixue; Liang, Alexandria D; Lippard, Stephen J

    2015-09-15

    A fundamental goal in catalysis is the coupling of multiple reactions to yield a desired product. Enzymes have evolved elegant approaches to address this grand challenge. A salient example is the biological conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily. sMMO is a dynamic protein complex of three components: a hydroxylase, a reductase, and a regulatory protein. The active site, a carboxylate-rich non-heme diiron center, is buried inside the 251 kDa hydroxylase component. The enzyme processes four substrates: O2, protons, electrons, and methane. To couple O2 activation to methane oxidation, timely control of substrate access to the active site is critical. Recent studies of sMMO, as well as its homologues in the BMM superfamily, have begun to unravel the mechanism. The emerging and unifying picture reveals that each substrate gains access to the active site along a specific pathway through the hydroxylase. Electrons and protons are delivered via a three-amino-acid pore located adjacent to the diiron center; O2 migrates via a series of hydrophobic cavities; and hydrocarbon substrates reach the active site through a channel or linked set of cavities. The gating of these pathways mediates entry of each substrate to the diiron active site in a timed sequence and is coordinated by dynamic interactions with the other component proteins. The result is coupling of dioxygen consumption with hydrocarbon oxidation, avoiding unproductive oxidation of the reductant rather than the desired hydrocarbon. To initiate catalysis, the reductase delivers two electrons to the diiron(III) center by binding over the pore of the hydroxylase. The regulatory component then displaces the reductase, docking onto the same surface of the hydroxylase. Formation of the hydroxylase-regulatory component complex (i) induces conformational changes of pore residues that may bring protons to the active site; (ii) connects hydrophobic cavities in the hydroxylase leading from the exterior to the diiron active site, providing a pathway for O2 and methane, in the case of sMMO, to the reduced diiron center for O2 activation and substrate hydroxylation; (iii) closes the pore, as well as a channel in the case of four-component BMM enzymes, restricting proton access to the diiron center during formation of "Fe2O2" intermediates required for hydrocarbon oxidation; and (iv) inhibits undesired electron transfer to the Fe2O2 intermediates by blocking reductase binding during O2 activation. This mechanism is quite different from that adopted by cytochromes P450, a large class of heme-containing monooxygenases that catalyze reactions very similar to those catalyzed by the BMM enzymes. Understanding the timed enzyme control of substrate access has implications for designing artificial catalysts. To achieve multiple turnovers and tight coupling, synthetic models must also control substrate access, a major challenge considering that nature requires large, multimeric, dynamic protein complexes to accomplish this feat.

  8. A novel cytochrome P450 CYP6AB14 gene in spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  9. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm moth (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura (Lepidoptera, Noctuidae) has been shown to be resistant to a wide range of insecticides. In this stu...

  10. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  11. Comparative Metabolism of Hydrazine and Naphthalene.

    DTIC Science & Technology

    1980-09-01

    compounds and chemicals like those in cigarette smoke. Another question of considerable importance to the Air Force is whether animal species currently...the pulmonary cytochrome P-450 monooxygenases differ between species or that enzymes responsible for the detoxification of the "toxic" metabolite(s...metabolic steps in the activation and detoxification of a compound like naphthalene are undertaken in animal lung tissue so that such processes can be

  12. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 contributing to oxidative activation of chlorpyrifos

    USDA-ARS?s Scientific Manuscript database

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Functional analysis of CtCYP6EX3 confirmed its atrazine-induced oxidative activation for chlorpyrifos by using a nanoparticle-based RNA inter...

  13. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S

    2013-04-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).

  14. Rat oesophageal cytochrome P450 (CYP) monooxygenase system: comparison to the liver and relevance in N-nitrosodiethylamine carcinogenesis.

    PubMed

    Pinto, L F; Moraes, E; Albano, R M; Silva, M C; Godoy, W; Glisovic, T; Lang, M A

    2001-11-01

    N-nitrosodiethylamine (NDEA) is able to induce tumours in the rat oesophagus. It has been suggested that this could be due to tissue specific expression of NDEA activating cytochrome P450 enzymes. We investigated this by characterizing the oesophageal monooxygenase complex of male Wistar rats and comparing it with that of the liver. Total amount of cytochrome P450, NADPH P450 reductase, cytochrome b5 and cytochrome b5 reductase of the oesophageal mucosa was approximately 7% of what was found in the liver. In addition, major differences were found in the cytochrome P450 isoenzyme composition between these organs: CYP 2B1/2B2 and CYP3A were found only in the liver, whereas CYP1A1 was constitutively expressed only in the oesophagus. Of the two well-known nitrosamine metabolizing enzymes, CYP2A3 was found only in the oesophagus whereas CYP2E1 was exclusively expressed in the liver. Catalytic studies, western blotting and RT-PCR analyses confirmed the expression of CYP2A3 in the oesophagus. CYP2A enzymes are known to be good catalysts of NDEA metabolism. Oesophageal microsomes had a K(m) for NDEA metabolism, which was about one-third of that of hepatic microsomes, but they showed similar activities when compared per nmol of total P450. NDEA activity in the oesophagus was significantly increased by coumarin (CO), which also induced oesophageal CYP2A3. Immunoinhibition of the microsomal NDEA activity showed that up to 70% of this reaction is catalysed by CYP2A3 in the oesophagus, whereas no inhibition of the hepatic NDEA activity could be achieved by the anti-CYP2A5 antibody. NDEA, but not N-nitrosodimethylamine (NDMA) inhibited the oesophageal metabolism of CO. The results of the present investigation show major differences in the enzyme composition of the oesophageal and hepatic monooxygenase complexes, and are in accordance with the hypothesis that the NDEA organotropism could, to a large extent, be due to the tissue specific expression of the activating enzymes.

  15. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism

    PubMed Central

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced protein (RERY_02670). Accordingly, novel insights in the catabolic pathway of DTDB were gained. PMID:27977722

  16. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.

    PubMed

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced protein (RERY_02670). Accordingly, novel insights in the catabolic pathway of DTDB were gained.

  17. CYP63A2, a Catalytically Versatile Fungal P450 Monooxygenase Capable of Oxidizing Higher-Molecular-Weight Polycyclic Aromatic Hydrocarbons, Alkylphenols, and Alkanes

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills). PMID:23416995

  18. Draft Genome Sequence of Methylovulum psychrotolerans Sph1T, an Obligate Methanotroph from Low-Temperature Environments.

    PubMed

    Oshkin, Igor Y; Miroshnikov, Kirill K; Belova, Svetlana E; Korzhenkov, Aleksei A; Toshchakov, Stepan V; Dedysh, Svetlana N

    2018-03-15

    Methylovulum psychrotolerans Sph1 T is an aerobic, obligate methanotroph, which was isolated from cold methane seeps in West Siberia. This bacterium possesses only a particulate methane monooxygenase and is widely distributed in low-temperature environments. Strain Sph1 T has the genomic potential for biosynthesis of hopanoids required for the maintenance of intracytoplasmic membranes. Copyright © 2018 Oshkin et al.

  19. Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L.

    PubMed

    Tabuchi, Tomoki; Kawaguchi, Yusuke; Azuma, Tetsushi; Nanmori, Takashi; Yasuda, Takeshi

    2005-03-01

    Glycinebetaine (betaine) highly accumulates as a compatible solute in certain plants and has been considered to play a role in the protection from salt stress. The betaine biosynthesis pathway of betaine-accumulating plants involves choline monooxygenase (CMO) as the key enzyme and phosphoethanolamine N-methyltransferase (PEAMT), which require S-adenosyl-L-methionine (SAM) as a methyl donor. SAM is synthesized by SAM synthetase (SAMS), and is needed not only for betaine synthesis but also for the synthesis of other compounds, especially lignin. We cloned CMO, PEAMT and SAMS isogenes from a halophyte Atriplex nummularia L. (Chenopodiaceous). The transcript and protein levels of CMO were much higher in leaves and stems than in roots, suggesting that betaine is synthesized mainly in the shoot. The regulation patterns of transcripts for SAMS and PEAMT highly resembled that of CMO in the leaves during and after relief from salt stress, and on a diurnal rhythm. In the leaves, the betaine content was increased but the lignin content was not changed by salt stress. These results suggest that the transcript levels of SAMS are co-regulated with those of PEAMT and CMO to supply SAM for betaine synthesis in the leaves.

  20. Molecular Cloning and Functional Analysis of Gene Clusters for the Biosynthesis of Indole-Diterpenes in Penicillium crustosum and P. janthinellum

    PubMed Central

    Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry

    2015-01-01

    The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965

  1. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    PubMed Central

    Arora, Pankaj K.; Sharma, Ashutosh

    2015-01-01

    Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography–mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate, whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis,cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10–12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil. PMID:26082768

  2. MPN- and Real-Time-Based PCR Methods for the Quantification of Alkane Monooxygenase Homologous Genes (alkB) in Environmental Samples

    NASA Astrophysics Data System (ADS)

    Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael

    Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.

  3. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  4. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    PubMed

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    PubMed

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  6. Lack of enzyme induction with oxcarbazepine (600 mg daily) in healthy subjects.

    PubMed Central

    Larkin, J G; McKee, P J; Forrest, G; Beastall, G H; Park, B K; Lowrie, J I; Lloyd, P; Brodie, M J

    1991-01-01

    1. Oxcarbazepine (OXC), the 10-keto analogue of carbamazepine (CBZ), has similar anticonvulsant efficacy and possibly improved patient tolerability. Unlike CBZ, it is metabolised by reduction and may not induce hepatic monooxygenase enzymes. 2. Serum concentrations of OXC and its active metabolite 10-OH-carbazepine (10-OH-CZ) were followed after a single 300 mg dose and during and after 300 mg OXC twice daily for 29 doses in eight healthy male volunteers. 3. Antipyrine metabolism, urinary 6-beta-hydroxycortisol excretion, sex hormone binding globulin (SHBG) levels and circulating androgens were measured as indices of hepatic enzyme induction before, during and after treatment with OXC. 4. Elimination half-lives (mean +/- s.e. mean) of 10-OH-CZ were unaltered by 2 weeks' therapy with OXC (before 11.3 +/- 1.1 h; after 13.9 +/- 3 h). Trough plasma concentrations of 10-OH-CZ at steady-state (31 +/- 2.2 mumol l-1) were higher than predicted (16.5 +/- 4 mumol l-1). 5. Antipyrine metabolism, urinary 6-beta-hydroxycortisol excretion, SHBG levels and circulating androgens were unaltered by treatment with OXC. 6. OXC (600 mg daily) does not induce hepatic monooxygenase enzymes and so is likely to have more predictable dose-concentration relationships and to produce fewer physiological and pharmacological interactions than CBZ. PMID:2015172

  7. Absence of kynurenine 3-monooxygenase reduces mortality of acute viral myocarditis in mice.

    PubMed

    Kubo, Hisako; Hoshi, Masato; Mouri, Akihiro; Tashita, Chieko; Yamamoto, Yasuko; Nabeshima, Toshitaka; Saito, Kuniaki

    2017-01-01

    Infection of the encephalomyocarditis virus (EMCV) in mice is an established model for viral myocarditis. Previously, we have demonstrated that indoleamine 2,3-dioxygenase (IDO), an L-tryptophan - kynurenine pathway (KP) enzyme, affects acute viral myocarditis. However, the roles of KP metabolites in EMCV infection remain unclear. Kynurenine 3-monooxygenase (KMO) is one of the key regulatory enzymes, which metabolizes kynurenine to 3-hydroxykynurenine in the KP. Therefore, we examined the role of KMO in acute viral infection by comparing between KMO -/- mice and KMO +/+ mice. KMO deficiency resulted in suppressed mortality after EMCV infection. The number of infiltrating cells and F4/80 + cells in KMO -/- mice was suppressed compared with those in KMO +/+ mice. KMO -/- mice showed significantly increased levels of serum KP metabolites, and induction of KMO expression upon EMCV infection was involved in its effect on mortality through EMCV suppression. Furthermore, KMO -/- mice showed significantly suppression of CCL2, CCL3 and CCL4 on day 2 and CXCL1 on day 4 after infection. These results suggest that increased KP metabolites reduced chemokine production, resulting in suppressed mortality upon KMO knockdown in EMCV infection. KP metabolites may thus provide an effective strategy for treating acute viral myocarditis. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Key Mutations Alter the Cytochrome P450 BM3 Conformational Landscape and Remove Inherent Substrate Bias*

    PubMed Central

    Butler, Christopher F.; Peet, Caroline; Mason, Amy E.; Voice, Michael W.; Leys, David; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) have enormous potential in the production of oxychemicals, due to their unparalleled regio- and stereoselectivity. The Bacillus megaterium P450 BM3 enzyme is a key model system, with several mutants (many distant from the active site) reported to alter substrate selectivity. It has the highest reported monooxygenase activity of the P450 enzymes, and this catalytic efficiency has inspired protein engineering to enable its exploitation for biotechnologically relevant oxidations with structurally diverse substrates. However, a structural rationale is lacking to explain how these mutations have such effects in the absence of direct change to the active site architecture. Here, we provide the first crystal structures of BM3 mutants in complex with a human drug substrate, the proton pump inhibitor omeprazole. Supported by solution data, these structures reveal how mutation alters the conformational landscape and decreases the free energy barrier for transition to the substrate-bound state. Our data point to the importance of such “gatekeeper” mutations in enabling major changes in substrate recognition. We further demonstrate that these mutants catalyze the same 5-hydroxylation reaction as performed by human CYP2C19, the major human omeprazole-metabolizing P450 enzyme. PMID:23828198

  9. Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency*

    PubMed Central

    Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia; Rošker, Stephanie; Kracher, Daniel; Haltrich, Dietmar; Ludwig, Roland; Plank, Harald; Nidetzky, Bernd

    2014-01-01

    Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization. PMID:25361767

  10. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus

    PubMed Central

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-01-01

    SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  11. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  12. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    PubMed

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Improved detection of chemical substances from colorimetric sensor data using probabilistic machine learning

    NASA Astrophysics Data System (ADS)

    Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.

    2017-05-01

    We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.

  14. Clavine Alkaloids Gene Clusters of Penicillium and Related Fungi: Evolutionary Combination of Prenyltransferases, Monooxygenases and Dioxygenases

    PubMed Central

    Martín, Juan F.; Liras, Paloma

    2017-01-01

    The clavine alkaloids produced by the fungi of the Aspergillaceae and Arthrodermatacea families differ from the ergot alkaloids produced by Claviceps and Neotyphodium. The clavine alkaloids lack the extensive peptide chain modifications that occur in lysergic acid derived ergot alkaloids. Both clavine and ergot alkaloids arise from the condensation of tryptophan and dimethylallylpyrophosphate by the action of the dimethylallyltryptophan synthase. The first five steps of the biosynthetic pathway that convert tryptophan and dimethylallyl-pyrophosphate (DMA-PP) in chanoclavine-1-aldehyde are common to both clavine and ergot alkaloids. The biosynthesis of ergot alkaloids has been extensively studied and is not considered in this article. We focus this review on recent advances in the gene clusters for clavine alkaloids in the species of Penicillium, Aspergillus (Neosartorya), Arthroderma and Trychophyton and the enzymes encoded by them. The final products of the clavine alkaloids pathways derive from the tetracyclic ergoline ring, which is modified by late enzymes, including a reverse type prenyltransferase, P450 monooxygenases and acetyltransferases. In Aspergillus japonicus, a α-ketoglutarate and Fe2+-dependent dioxygenase is involved in the cyclization of a festuclavine-like unknown type intermediate into cycloclavine. Related dioxygenases occur in the biosynthetic gene clusters of ergot alkaloids in Claviceps purpurea and also in the clavine clusters in Penicillium species. The final products of the clavine alkaloid pathway in these fungi differ from each other depending on the late biosynthetic enzymes involved. An important difference between clavine and ergot alkaloid pathways is that clavine producers lack the enzyme CloA, a P450 monooxygenase, involved in one of the steps of the conversion of chanoclavine-1-aldehyde into lysergic acid. Bioinformatic analysis of the sequenced genomes of the Aspergillaceae and Arthrodermataceae fungi showed the presence of clavine gene clusters in Arthroderma species, Penicillium roqueforti, Penicillium commune, Penicillium camemberti, Penicillium expansum, Penicillium steckii and Penicillium griseofulvum. Analysis of the gene clusters in several clavine alkaloid producers indicates that there are gene gains, gene losses and gene rearrangements. These findings may be explained by a divergent evolution of the gene clusters of ergot and clavine alkaloids from a common ancestral progenitor six genes cluster although horizontal gene transfer of some specific genes may have occurred more recently. PMID:29186777

  15. CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2

    PubMed Central

    Unterweger, Birgit; Bulach, Dieter M.; Scoble, Judith; Midgley, David J.; Greenfield, Paul; Lyras, Dena; Johanesen, Priscilla

    2016-01-01

    ABSTRACT We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida. Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications. IMPORTANCE CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101 family. This could eventually provide enough bacterial parental enzymes with similar amino acid sequences to enable in vitro evolution via DNA shuffling. PMID:27590809

  16. Genome Sequence of the 1,4-Dioxane-Degrading Pseudonocardia dioxanivoransStrain CB1190▿

    PubMed Central

    Sales, Christopher M.; Mahendra, Shaily; Grostern, Ariel; Parales, Rebecca E.; Goodwin, Lynne A.; Woyke, Tanja; Nolan, Matt; Lapidus, Alla; Chertkov, Olga; Ovchinnikova, Galina; Sczyrba, Alexander; Alvarez-Cohen, Lisa

    2011-01-01

    Pseudonocardia dioxanivoransCB1190 is the first bacterium reported to be capable of growth on the environmental contaminant 1,4-dioxane and the first member of the genus Pseudonocardiafor which there is an annotated genome sequence. Preliminary analysis of the genome (chromosome and three plasmids) indicates that strain CB1190 possesses several multicomponent monooxygenases that could be involved in the aerobic degradation of 1,4-dioxane and other environmental contaminants. PMID:21725009

  17. Elucidating light-induced charge accumulation in an artificial analogue of methane monooxygenase enzymes using time-resolved X-ray absorption spectroscopy

    DOE PAGES

    Moonshiram, Dooshaye; Picon, Antonio; Vazquez-Mayagoitia, Alvaro; ...

    2017-02-08

    Here, we report the use of time-resolved X-ray absorption spectroscopy in the ns–μs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy) 3] 2+/ a diiron(III,III) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(III,III) and reduced diiron(II,II) states.

  18. Determining Antifungal Target Sites in the Sterol Pathway of the Yeasts Candida and Saccharomyces

    DTIC Science & Technology

    1999-10-01

    Cryptococcus (19, 33), and the cloning of the LISI gene (35), mutants of which were Aspergillus (9), have been the subjects of recent reports on selected...cells to bleomycin. 1997. Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Anticancer Res. 14:1711-1721. Antimicrob. Agents...1482-1487. cytoehrome P-450 monooxygenase system isolated from Cryptococcus neo- 38. White, T. 1997. The presence of an R467K amino acid substitution

  19. Elucidating light-induced charge accumulation in an artificial analogue of methane monooxygenase enzymes using time-resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moonshiram, Dooshaye; Picon, Antonio; Vazquez-Mayagoitia, Alvaro

    Here, we report the use of time-resolved X-ray absorption spectroscopy in the ns–μs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy) 3] 2+/ a diiron(III,III) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(III,III) and reduced diiron(II,II) states.

  20. From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity.

    PubMed

    Ro, Soo Y; Ross, Matthew O; Deng, Yue Wen; Batelu, Sharon; Lawton, Thomas J; Hurley, Joseph D; Stemmler, Timothy L; Hoffman, Brian M; Rosenzweig, Amy C

    2018-05-08

    Particulate methane monooxygenase (pMMO) is a copper-dependent, integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. Studies of isolated pMMO have been hindered by loss of enzymatic activity upon its removal from the native membrane. To characterize pMMO in a membrane-like environment, we reconstituted pMMOs from Methylococcus ( Mcc. ) capsulatus (Bath) and Methylomicrobium ( Mm. ) alcaliphilum 20Z into bicelles. Reconstitution into bicelles recovers methane oxidation activity lost upon detergent solubilization and purification without substantial alterations to copper content or copper electronic structure as observed by electron paramagnetic resonance (EPR) spectroscopy.. These findings suggest that loss of pMMO activity upon isolation is due to removal from the membranes rather than caused by loss of the catalytic copper ions. A 2.7 Å resolution crystal structure of pMMO from Mm. alcaliphilum 20Z revealed a mononuclear copper center in the PmoB subunit and indicated that the transmembrane PmoC subunit may be conformationally flexible. Finally, results from extended X-ray absorption fine structure (EXAFS) analysis of pMMO from Mm. alcaliphilum 20Z were consistent with the observed monocopper center in the PmoB subunit. These results underscore the importance of studying membrane proteins in a membrane-like environment, and provide valuable insight into pMMO function. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b.

    PubMed

    Zhang, Tingting; Zhou, Jiti; Wang, Xiaowei; Zhang, Yu

    2017-02-01

    The coupled effects of nitrogen source and methane monooxygenase (MMO) on the growth and poly-β-hydroxybutyrate (PHB) accumulation capacity of methanotrophs were explored. The ammonia-supplied methanotrophs expressing soluble MMO (sMMO) grew at the highest rate, while N 2 -fixing bacteria expressing particulate MMO (pMMO) grew at the lowest rate. Further study showed that more hydroxylamine and nitrite was formed by ammonia-supplied bacteria containing pMMO, which might cause their slightly lower growth rate. The highest PHB content (51.0%) was obtained under nitrogen-limiting conditions with the inoculation of nitrate-supplied bacteria containing pMMO. Ammonia-supplied bacteria also accumulated a higher content of PHB (45.2%) with the expression of pMMO, while N 2 -fixing bacteria containing pMMO only showed low PHB production capacity (32.1%). The maximal PHB contents of bacteria expressing sMMO were low, with no significant change under different nitrogen source conditions. The low MMO activity, low cell growth rate and low PHB production capacity of methanotrophs continuously cultivated with N 2 with the expression of pMMO were greatly improved in the cyclic NO 3 - N 2 cultivation regime, indicating that long-term deficiency of nitrogen sources was detrimental to the activity of methanotrophs expressing pMMO. Copyright © 2016. Published by Elsevier B.V.

  2. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.

    PubMed

    Kracher, Daniel; Andlar, Martina; Furtmüller, Paul G; Ludwig, Roland

    2018-02-02

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-containing enzymes that oxidatively degrade insoluble plant polysaccharides and soluble oligosaccharides. Upon reductive activation, they cleave the substrate and promote biomass degradation by hydrolytic enzymes. In this study, we employed LPMO9C from Neurospora crassa , which is active toward cellulose and soluble β-glucans, to study the enzyme-substrate interaction and thermal stability. Binding studies showed that the reduction of the mononuclear active-site copper by ascorbic acid increased the affinity and the maximum binding capacity of LPMO for cellulose. The reduced redox state of the active-site copper and not the subsequent formation of the activated oxygen species increased the affinity toward cellulose. The lower affinity of oxidized LPMO could support its desorption after catalysis and allow hydrolases to access the cleavage site. It also suggests that the copper reduction is not necessarily performed in the substrate-bound state of LPMO. Differential scanning fluorimetry showed a stabilizing effect of the substrates cellulose and xyloglucan on the apparent transition midpoint temperature of the reduced, catalytically active enzyme. Oxidative auto-inactivation and destabilization were observed in the absence of a suitable substrate. Our data reveal the determinants of LPMO stability under turnover and non-turnover conditions and indicate that the reduction of the active-site copper initiates substrate binding. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Metabolic Engineering for Enhanced Medium Chain Omega Hydroxy Fatty Acid Production in Escherichia coli

    PubMed Central

    Xiao, Kang; Yue, Xiu-Hong; Chen, Wen-Chao; Zhou, Xue-Rong; Wang, Lian; Xu, Lin; Huang, Feng-Hong; Wan, Xia

    2018-01-01

    Medium chain hydroxy fatty acids (HFAs) at ω-1, 2, or 3 positions (ω-1/2/3) are rare in nature but are attractive due to their potential applications in industry. They can be metabolically engineered in Escherichia coli, however, the current yield is low. In this study, metabolic engineering with P450BM3 monooxygenase was applied to regulate both the chain length and sub-terminal position of HFA products in E. coli, leading to increased yield. Five acyl-acyl carrier protein thioesterases from plants and bacteria were first evaluated for regulating the chain length of fatty acids. Co-expression of the selected thioesterase gene CcFatB1 with a fatty acid metabolism regulator fadR and monooxygenase P450BM3 boosted the production of HFAs especially ω-3-OH-C14:1, in both the wild type and fadD deficient strain. Supplementing renewable glycerol to reduce the usage of glucose as a carbon source further increased the HFAs production to 144 mg/L, representing the highest titer of such HFAs obtained in E. coli under the comparable conditions. This study illustrated an improved metabolic strategy for medium chain ω-1/2/3 HFAs production in E. coli. In addition, the produced HFAs were mostly secreted into culture media, which eased its recovery. PMID:29467747

  4. Assay, Purification, and Partial Characterization of Choline Monooxygenase from Spinach.

    PubMed Central

    Burnet, M.; Lafontaine, P. J.; Hanson, A. D.

    1995-01-01

    The osmoprotectant glycine betaine is synthesized via the path-way choline -> betaine aldehyde -> glycine betaine. In spinach (Spinacia oleracea), the first step is catalyzed by choline monooxygenase (CMO), and the second is catalyzed by betaine aldehyde dehydrogenase. Because betaine aldehyde is unstable and not easily detected, we developed a coupled radiometric assay for CMO. [14C]Choline is used as substrate; NAD+ and betaine aldehyde dehydrogenase prepared from Escherichia coli are added to oxidize [14C]betaine aldehyde to [14C]glycine betaine, which is isolated by ion exchange. The assay was used in the purification of CMO from leaves of salinized spinach. The 10-step procedure included polyethylene glycol precipitation, polyethyleneimine precipitation, hydrophobic interaction, anion exchange on choline-Sepharose, dimethyldiethanolamine-Sepharose, and Mono Q, hydroxyapatite, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following gel filtration, overall purification was about 600-fold and recovery of activity was 0.5%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a polypeptide with a molecular mass of 45 kD. Taken with the value of 98 kD estimated for native CMO (R. Brouquisse, P. Weigel, D. Rhodes, C.F. Yocum, A.D. Hanson [1989] Plant Physiol 90: 322-329), this indicates that CMO is a homodimer. CMO preparations were red-brown, showed absorption maxima at 329 and 459 nm, and lost color upon dithionite addition, suggesting that CMO is an iron-sulfur protein. PMID:12228495

  5. Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume.

    PubMed

    Li, Meng; Jain, Sunit; Baker, Brett J; Taylor, Chris; Dick, Gregory J

    2014-01-01

    Particulate membrane-associated hydrocarbon monooxygenases (pHMOs) are critical components of the aerobic degradation pathway for low molecular weight hydrocarbons, including the potent greenhouse gas methane. Here, we analysed pHMO gene diversity in metagenomes and metatranscriptomes of hydrocarbon-rich hydrothermal plumes in the Guaymas Basin (GB) and nearby background waters in the deep Gulf of California. Seven distinct phylogenetic groups of pHMO were present and transcriptionally active in both plume and background waters, including several that are undetectable with currently available polymerase chain reaction (PCR) primers. The seven groups of pHMOs included those related to a putative ethane oxidizing Methylococcaceae-like group, a group of the SAR324 Deltaproteobacteria, three deep-sea clades (Deep sea-1/symbiont-like, Deep sea-2/PS-80 and Deep sea-3/OPU3) within gammaproteobacterial methanotrophs, one clade related to Group Z and one unknown group. Differential abundance of pHMO gene transcripts in plume and background suggests niche differentiation between groups. Corresponding 16S rRNA genes reflected similar phylogenetic and transcriptomic abundance trends. The novelty of transcriptionally active pHMOs we recovered from a hydrocarbon-rich hydrothermal plume suggests there are significant gaps in our knowledge of the diversity and function of these enzymes in the environment. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library.

    PubMed

    Kim, B S; Kim, S Y; Park, J; Park, W; Hwang, K Y; Yoon, Y J; Oh, W K; Kim, B Y; Ahn, J S

    2007-05-01

    Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.

  7. Local Auxin Biosynthesis Mediated by a YUCCA Flavin Monooxygenase Regulates Haustorium Development in the Parasitic Plant Phtheirospermum japonicum.

    PubMed

    Ishida, Juliane K; Wakatake, Takanori; Yoshida, Satoko; Takebayashi, Yumiko; Kasahara, Hiroyuki; Wafula, Eric; dePamphilis, Claude W; Namba, Shigetou; Shirasu, Ken

    2016-08-01

    Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Reversal of Physiological Deficits Caused by Diminished Levels of Peptidylglycine α-Amidating Monooxygenase by Dietary Copper

    PubMed Central

    Bousquet-Moore, D.; Ma, X. M.; Nillni, E. A.; Czyzyk, T. A.; Pintar, J. E.; Eipper, B. A.; Mains, R. E.

    2009-01-01

    Amidated peptides are critically involved in many physiological functions. Genetic deletion of peptidylglycine α-amidating monooxygenase (PAM), the only enzyme that can synthesize these peptides, is embryonically lethal. The goal of the present study was the identification of physiological functions impaired by haploinsufficiency of PAM. Regulation of the hypothalamic-pituitary-thyroid axis and body temperature, functions requiring contributions from multiple amidated peptides, were selected for evaluation. Based on serum T4 and pituitary TSH-β mRNA levels, mice heterozygous for PAM (PAM+/−) were euthyroid at baseline. Feedback within the hypothalamic-pituitary-thyroid axis was impaired in PAM+/− mice made hypothyroid using a low iodine/propylthiouracil diet. Despite their normal endocrine response to cold, PAM+/− mice were unable to maintain body temperature as well as wild-type littermates when kept in a 4 C environment. When provided with additional dietary copper, PAM+/− mice maintained body temperature as well as wild-type mice. Pharmacological activation of vasoconstriction or shivering also allowed PAM+/− mice to maintain body temperature. Cold-induced vasoconstriction was deficient in PAM+/− mice. This deficit was eliminated in PAM+/− mice receiving a diet with supplemental copper. These results suggest that dietary deficiency of copper, coupled with genetic deficits in PAM, could result in physiological deficits in humans. PMID:19022883

  9. Overproduction and characterization of a lytic polysaccharide monooxygenase in Bacillus subtilis using an assay based on ascorbate consumption.

    PubMed

    Yu, Mi-Ji; Yoon, Sun-Hee; Kim, Young-Wan

    2016-11-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper ion-containing enzymes that degrade crystalline polysaccharides, such as cellulose or chitin, through an oxidative mechanism. To the best of our knowledge, there are no assay methods for the direct characterization of LPMOs that degrade substrates without coupled enzymes. As such, in this study, a coupled enzyme-free assay method for LPMOs was developed, which is based on measuring the consumption of ascorbic acid used as an external electron donor for LPMOs. To establish this new assay method, a chitin-active LPMO from Bacillus atrophaeus (BatLPMO10) was cloned as a model enzyme. An expression system using B. subtilis as the host cell yielded a simple purification process without complicated periplasmic fractionation, as well as improved productivity by 3.7-fold higher than that of Escherichia coli BL21(DE3). At the optimum pH determined using a newly developed assay, BatLPMO10 showed the highest activity in terms of promoting chitin degradation by a chitinase. In addition, the assay method indicated that BatLPMO10 was inhibited by sodium ions, and BatLPMO10 and a chitinase mutually enhanced each other's activities upon degrading chitin as the substrate. In conclusion, this hydrolase-free ascorbate assay allows quantitative analysis of BatLPMO10 without a coupled enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Sparteine monooxygenase in brain and liver: Identified by the dopamine uptake blocker ( sup 3 H)GBR-12935

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalow, W.; Tyndale, R.F.; Niznik, H.B.

    1990-02-26

    P450IID6 (human sparteine monooxygenase) metabolizes many drugs including neuroleptics, antidepressants, and beta-blockers. The P450IID6 exists in human, bovine, rat and canine brains, but in very low quantities causing methodological difficulties in its assessment. Work with ({sup 3}H)GBR-12935; 1-(2-(diphenylmethoxy) ethyl)-4-(3-phenyl propyl) piperazine has shown that it binds a neuronal/hepatic protein with high affinity ({approximately}7nM) and a rank order of inhibitory potency suggesting that the binding protein is cytochrome P450IID6. The binding was used to predict that d-amphetamine and methamphetamine would interact with P450IID6. Inhibition studies indicated that these compounds were competitive inhibitors of P450IID6. Haloperidol (HAL) and it's metabolite hydroxy-haloperidol (RHAL)more » are both competitive inhibitors of P450IID6 activity and were found to inhibit ({sup 3}H)GBR-12935 binding. K{sub i} values of twelve compounds (known to interact with the DA transporter or P450IID6) for ({sup 3}H)GRB-12935 binding and P450IID6 activity. The techniques are now available for measurements of cytochrome P450IID6 in healthy and diseased brain/liver tissue using radio-receptor binding assay techniques with ({sup 3}H)GBR-12935.« less

  11. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.

    PubMed

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-07-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members' duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes.

  12. Metabolic shift of the kynurenine pathway impairs alcohol and cocaine seeking and relapse.

    PubMed

    Vengeliene, Valentina; Cannella, Nazzareno; Takahashi, Tatiane; Spanagel, Rainer

    2016-09-01

    The glutamatergic system plays a key role in the maintenance of drug use and development of drug-related conditioned behaviours. In particular, hyper-glutamatergic activity and N-methyl-D-aspartate receptor (NMDAR) activation may drive drug craving and relapse. Inhibition of kynurenine-3-monooxygenase (KMO) shifts the metabolic kynurenine pathway towards production of kynurenic acid, which leads to a reduction of glutamatergic/NMDAR activity via different mechanisms. In this study, we investigated whether drug-seeking and relapse behaviour could be modified by the metabolic shift of endogenous kynurenine pathway. An inhibitor of kynurenine-3-monooxygenase (KMO) Ro61-8048 (4 and 40 mg/kg) and its prodrug JM6 (100 and 200 mg/kg) were tested in two behavioural rat models for drug seeking and relapse-the alcohol deprivation effect (ADE) model in long-term alcohol-drinking rats and the model of cue-induced reinstatement of alcohol- and cocaine-seeking behaviour. Our results show that relapse-like alcohol drinking during the ADE was abolished by repeated intraperitoneal administration of Ro61-8048 and significantly reduced by its oral prodrug JM6. Cue-induced reinstatement of both alcohol- and cocaine-seeking behaviour was also abolished by administration of Ro61-8048. Pharmacological enhancement of endogenous kynurenic acid levels provides a novel treatment strategy to interfere with glutamatergic/NMDAR activity as well as with craving and relapse in alcohol-dependent patients and drug addicts.

  13. Importance of kynurenine 3-monooxygenase for spontaneous firing and pharmacological responses of midbrain dopamine neurons: Relevance for schizophrenia.

    PubMed

    Tufvesson-Alm, Maximilian; Schwieler, Lilly; Schwarcz, Robert; Goiny, Michel; Erhardt, Sophie; Engberg, Göran

    2018-06-05

    Kynurenine 3-monooxygenase (KMO) is an essential enzyme of the kynurenine pathway, converting kynurenine into 3-hydroxykynurenine. Inhibition of KMO increases kynurenine, resulting in elevated levels of kynurenic acid (KYNA), an endogenous N-methyl-d-aspartate and α*7-nicotinic receptor antagonist. The concentration of KYNA is elevated in the brain of patients with schizophrenia, possibly as a result of a reduced KMO activity. In the present study, using in vivo single cell recording techniques, we investigated the electrophysiological characteristics of ventral tegmental area dopamine (VTA DA) neurons and their response to antipsychotic drugs in a KMO knock-out (K/O) mouse model. KMO K/O mice exhibited a marked increase in spontaneous VTA DA neuron activity as compared to wild-type (WT) mice. Furthermore, VTA DA neurons showed clear-cut, yet qualitatively opposite, responses to the antipsychotic drugs haloperidol and clozapine in the two genotypes. The anti-inflammatory drug parecoxib successfully lowered the firing activity of VTA DA neurons in KMO K/O, but not in WT mice. Minocycline, an antibiotic and anti-inflammatory drug, produced no effect in this regard. Taken together, the present data further support the usefulness of KMO K/O mice for studying distinct aspects of the pathophysiology and pharmacological treatment of psychiatric disorders such as schizophrenia. Copyright © 2018. Published by Elsevier Ltd.

  14. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    PubMed Central

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  15. Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington's disease.

    PubMed

    Thevandavakkam, Mathuravani A; Schwarcz, Robert; Muchowski, Paul J; Giorgini, Flaviano

    2010-12-01

    Huntington's disease (HD) is an adult onset neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. Recent work has shown that perturbation of kynurenine pathway (KP) metabolism is a hallmark of HD pathology, and that changes in brain levels of KP metabolites may play a causative role in this disease. The KP contains three neuroactive metabolites, the neurotoxins 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN), and the neuroprotectant kynurenic acid (KYNA). In model systems in vitro and in vivo, 3-HK and QUIN have been shown to cause neurodegeneration via a combination of excitotoxic mechanisms and oxidative stress. Recent studies with HD patient samples and in HD model systems have supported the idea that a shift away from the synthesis of KYNA and towards the formation of 3-HK and QUIN may trigger the neuropathological features observed in HD. The enzyme kynurenine 3-monooxygenase (KMO) is located at a critical branching point in the KP such that inhibition of this enzyme by either pharmacological or genetic means shifts the flux in the pathway towards the formation of KYNA. This intervention ameliorates disease-relevant phenotypes in HD models. Here we review the work implicating the KP in HD pathology and discuss the potential of KMO as a therapeutic target for this disorder. As several neurodegenerative diseases exhibit alterations in KP metabolism, this concept has broader implications for the treatment of brain diseases.

  16. Studies on the neuroprotective action of kynurenine mono-oxygenase inhibitors in post-ischemic brain damage.

    PubMed

    Moroni, Flavio; Carpenedo, Raffaella; Cozzi, Andrea; Meli, Elena; Chiarugi, Alberto; Pellegrini-Giampietro, Domenico E

    2003-01-01

    Kynurenine 3-mono-oxygenase (KMO) inhibitors facilitate kynurenic acid (KYNA) neosynthesis and reduce the formation of 3OH-kynurenine (3-HK) and quinolinic acid (QUIN). They also attenuate post-ischemic brain damage and decrease glutamate (Glu) content in brain extracellular spaces. To investigate KMO mechanism(s) of neuroprotection, we performed experiments in gerbils subjected to bilateral carotid occlusion and in organotypic rat hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD). In gerbils, direct application of KYNA (100 nM, through reverse microdialysis in the hippocampus) completely prevented the increase in Glu output induced by transient (5 min) occlusion of the carotids. In rat hippocampal slices exposed for 30 min to OGD, KMO inhibitors (m-nitrobenzoyl)-alanine (mNBA, 30-100 microM) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61-8048, 1-10 microM) reduced post-ischemic neuronal death and increased KYNA concentrations in the incubation medium. KYNA may antagonize glycineb or alpha7 nicotinic acetylcholine receptors but the concentrations in the incubation medium never reached values that could efficiently antagonize receptor function. On the contrary, 3-HK (1-10 microM) added to slices exposed to OGD in the presence of KMO inhibitors completely prevented the neuroprotective effects of the inhibitors. Our findings suggest that KMO inhibitors reduce OGD-induced pyramidal cell death by decreasing 3-HK (and possibly QUIN) synthesis.

  17. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores

    DOE PAGES

    Orellana, Luis H.; Rodriguez-R, Luis M.; Konstantinidis, Konstantinos T.

    2016-10-07

    Functional annotation of metagenomic and metatranscriptomic data sets relies on similarity searches based on e-value thresholds resulting in an unknown number of false positive and negative matches. To overcome these limitations, we introduce ROCker, aimed at identifying position-specific, most-discriminant thresholds in sliding windows along the sequence of a target protein, accounting for non-discriminative domains shared by unrelated proteins. ROCker employs the receiver operating characteristic (ROC) curve to minimize false discovery rate (FDR) and calculate the best thresholds based on how simulated shotgun metagenomic reads of known composition map onto well-curated reference protein sequences and thus, differs from HMM profiles andmore » related methods. We showcase ROCker using ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes, mediating oxidation of ammonia and the reduction of the potent greenhouse gas, N 2O, to inert N 2, respectively. ROCker typically showed 60-fold lower FDR when compared to the common practice of using fixed e-values. Previously uncounted ‘atypical’ nosZ genes were found to be two times more abundant, on average, than their typical counterparts in most soil metagenomes and the abundance of bacterial amoA was quantified against the highly-related particulate methane monooxygenase (pmoA). Therefore, ROCker can reliably detect and quantify target genes in short-read metagenomes.« less

  18. Induction of cytochrome P450-associated monooxygenases in northern leopard frogs, Rana pipiens, by 3,3{prime},4,4{prime},5-pentachlorobiphenyl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Jung, R.E.; Karasov, W.H.

    1998-08-01

    In the past decade, biochemical and physiological characteristics such as hepatic detoxifying system. DNA adducts, thyroid malfunction, and acetylcholinesterase inhibition have been used extensively as biomarkers for contaminant exposure. Northern leopard frogs (Rana pipiens) were injected intraperitoneally either with a solution of polychlorinated biphenyl (PCB) 126 m corn oil at a concentration of 0.2, 0.7, 2.3, or 7.8 mg/kg body weight or with corn oil alone. Appropriate assay conditions with hepatic microsomes were determined for four cytochrome P450-associated monooxygenases: ethoxyresorufin-O-dealkylase (EROD), methoxy-ROD (MROD), benzyloxy-ROD (BROD), and pentoxy-ROD (PROD). One week after PCB administration, the specific activities of EROD, MROD, BROD,more » and PROD were not elevated at doses {le}0.7 mg/kg (p > 0.05) but were significantly increased at doses {ge}2.3 mg/kg compared to the control groups (p < 0.05). The increased activities of these four enzymes were 3 to 6.4 times those in the control groups. The increased activities were maintained for at least 4 weeks. Because of a lack of induction at low doses of PCB 126, which were still relatively high compared to currently known environmental concentration, the authors suspect that EROD, MROD, BROD, and PROD activities are not sensitive biomarkers for coplanar PCB exposure in leopard frogs.« less

  19. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis.

    PubMed

    Men, Yujie; Han, Ping; Helbling, Damian E; Jehmlich, Nico; Herbold, Craig; Gulde, Rebekka; Onnis-Hayden, Annalisa; Gu, April Z; Johnson, David R; Wagner, Michael; Fenner, Kathrin

    2016-05-03

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation.

  20. Synergism studies with binary mixtures of pyrethroid, carbamate and organophosphate insecticides on Frankliniella occidentalis (Pergande).

    PubMed

    Bielza, Pablo; Espinosa, Pedro J; Quinto, Vicente; Abellán, Jaime; Contreras, Josefina

    2007-01-01

    The major mechanism of resistance to most insecticides in Frankliniella occidentalis (Pergande) is metabolic, piperonyl butoxide (PBO) suppressible, mediated by cytochrome-P450 monooxygenases and conferring cross-resistance among insecticide classes. The efficacy of insecticide mixtures of acrinathrin, methiocarb, formetanate and chlorpyrifos was studied by topical exposure in strains of F. occidentalis selected for resistance to each insecticide. The method consisted in combining increasing concentrations of one insecticide with a constant low rate of the second one as synergist. Acrinathrin activity against F. occidentalis was enhanced by carbamate insecticides, methiocarb being a much better synergist than formetanate. Monooxygenase action on the carbamates would prevent degradation of the pyrethroid, hence providing a level of synergism by competitive substrate inhibition. However, the number of insecticides registered for control of F. occidentalis is very limited, and they are needed for antiresistance strategies such as mosaics and rotations. Therefore, a study was made of the synergist effect of other carbamates not used against thrips, such as carbofuran and carbosulfan, against a susceptible strain and a field strain. Neither carbamate showed synergism to acrinathrin in the susceptible strain, but both did in the field strain, carbosulfan being a better synergist than carbofuran. The data obtained indicate that low rates of carbamates could be used as synergists to restore some pyrethroid susceptibility in F. occidentalis. Copyright (c) 2006 Society of Chemical Industry.

  1. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    PubMed

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Carbon Isotope Fractionations Associated with Methanotrophic Growth with the Soluble and Particulate Methane Monooxygenases

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Summons, Roger E.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Growth experiments with the RuMP-type methanotroph, Methylococcus capsulatus (Bath), have demonstrated that biomass and lipid biomarkers are significantly depleted in C-13 compared to the substrate methane and that the extent of fractionation is dependent on whether cells express the soluble (s) or particulate (p) methane monooxygenase (MMO). The presence or absence of the characteristic sMMO subunits was monitored using SDS-polyacrylamide gels. In M. capsulatus grown with no Cu supplementation, the characteristic sMMO subunits were observed in the soluble fraction throughout the entire growth period and biomass was depleted in C-13 by approximately 14,700 relative to substrate methane. In cells grown with 5uM Cu, no sMMO bands were observed and a greater fractionation of approximately 27,700 in resultant biomass was obtained. Methanol growth experiments with M. capsulatus and with a RuMP methylotroph, Methylophilus methylotrophus, in which biomass measurements yielded depletions in C-13 of 9 and 5%(sub o), respectively, suggest that oxidation of methane is the major fractionation step. Growth of M. capsulatus at a low level of oxygen, approximately 0.5%, had no significant effect on carbon isotope fractionation by either sMMO or pMMO. These observations are significant for identification of molecular biomarkers; and methanotrophic contributions to carbon isotope composition in natural environments.

  3. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in RiceW⃞

    PubMed Central

    Zhu, Yongyou; Nomura, Takahito; Xu, Yonghan; Zhang, Yingying; Peng, Yu; Mao, Bizeng; Hanada, Atsushi; Zhou, Haicheng; Wang, Renxiao; Li, Peijin; Zhu, Xudong; Mander, Lewis N.; Kamiya, Yuji; Yamaguchi, Shinjiro; He, Zuhua

    2006-01-01

    The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops. PMID:16399803

  4. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    PubMed

    Bass, C; Carvalho, R A; Oliphant, L; Puinean, A M; Field, L M; Nauen, R; Williamson, M S; Moores, G; Gorman, K

    2011-12-01

    The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7-ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real-time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40-fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  5. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orellana, Luis H.; Rodriguez-R, Luis M.; Konstantinidis, Konstantinos T.

    Functional annotation of metagenomic and metatranscriptomic data sets relies on similarity searches based on e-value thresholds resulting in an unknown number of false positive and negative matches. To overcome these limitations, we introduce ROCker, aimed at identifying position-specific, most-discriminant thresholds in sliding windows along the sequence of a target protein, accounting for non-discriminative domains shared by unrelated proteins. ROCker employs the receiver operating characteristic (ROC) curve to minimize false discovery rate (FDR) and calculate the best thresholds based on how simulated shotgun metagenomic reads of known composition map onto well-curated reference protein sequences and thus, differs from HMM profiles andmore » related methods. We showcase ROCker using ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes, mediating oxidation of ammonia and the reduction of the potent greenhouse gas, N 2O, to inert N 2, respectively. ROCker typically showed 60-fold lower FDR when compared to the common practice of using fixed e-values. Previously uncounted ‘atypical’ nosZ genes were found to be two times more abundant, on average, than their typical counterparts in most soil metagenomes and the abundance of bacterial amoA was quantified against the highly-related particulate methane monooxygenase (pmoA). Therefore, ROCker can reliably detect and quantify target genes in short-read metagenomes.« less

  6. The hmuQ and hmuD Genes from Bradyrhizobium japonicum Encode Heme-Degrading Enzymes

    PubMed Central

    Puri, Sumant; O'Brian, Mark R.

    2006-01-01

    Utilization of heme by bacteria as a nutritional iron source involves the transport of exogenous heme, followed by cleavage of the heme macrocycle to release iron. Bradyrhizobium japonicum can use heme as an iron source, but no heme-degrading oxygenase has been described. Here, bioinformatics analyses of the B. japonicum genome identified two paralogous genes renamed hmuQ (bll7075) and hmuD (bll7423) that encode proteins with weak similarity to the heme-degrading monooxygenase IsdG from Staphylococcus aureus. The hmuQ gene is clustered with known heme transport genes in the genome. Recombinant HmuQ bound heme with a Kd value of 0.8 μM and showed spectral properties consistent with a heme oxygenase. In the presence of a reductant, HmuQ catalyzed the degradation of heme and the formation of biliverdin. The hmuQ and hmuD genes complemented a Corynebacterium ulcerans heme oxygenase mutant in trans for utilization of heme as the sole iron source for growth. Furthermore, homologs of hmuQ and hmuD were identified in many bacterial genera, and the recombinant homolog from Brucella melitensis bound heme and catalyzed its degradation. The findings show that hmuQ and hmuD encode heme oxygenases and indicate that the IsdG family of heme-degrading monooxygenases is not restricted to gram-positive pathogenic bacteria. PMID:16952937

  7. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores

    PubMed Central

    2017-01-01

    Abstract Functional annotation of metagenomic and metatranscriptomic data sets relies on similarity searches based on e-value thresholds resulting in an unknown number of false positive and negative matches. To overcome these limitations, we introduce ROCker, aimed at identifying position-specific, most-discriminant thresholds in sliding windows along the sequence of a target protein, accounting for non-discriminative domains shared by unrelated proteins. ROCker employs the receiver operating characteristic (ROC) curve to minimize false discovery rate (FDR) and calculate the best thresholds based on how simulated shotgun metagenomic reads of known composition map onto well-curated reference protein sequences and thus, differs from HMM profiles and related methods. We showcase ROCker using ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes, mediating oxidation of ammonia and the reduction of the potent greenhouse gas, N2O, to inert N2, respectively. ROCker typically showed 60-fold lower FDR when compared to the common practice of using fixed e-values. Previously uncounted ‘atypical’ nosZ genes were found to be two times more abundant, on average, than their typical counterparts in most soil metagenomes and the abundance of bacterial amoA was quantified against the highly-related particulate methane monooxygenase (pmoA). Therefore, ROCker can reliably detect and quantify target genes in short-read metagenomes. PMID:28180325

  8. Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B.

    PubMed

    Takahashi, Shusuke; Furuya, Toshiki; Ishii, Yoshitaka; Kino, Kuniki; Kirimura, Kohtaro

    2009-01-01

    Bacillus subtilis WU-S2B is a thermophilic dibenzothiophene (DBT)-desulfurizing bacterium and produces a flavin reductase (Frb) that couples with DBT and DBT sulfone monooxygenases. The recombinant Frb was purified from Escherichia coli cells expressing the frb gene and was characterized. The purified Frb exhibited high stability over wide temperature and pH ranges of 20-55 degrees C and 2-12, respectively. Frb contained FMN and exhibited both flavin reductase and nitroreductase activities.

  9. Biomimetic methane oxidation

    NASA Astrophysics Data System (ADS)

    Watkins, B. E.; Droege, M. W.; Taylor, R. T.; Satcher, J. H.

    1992-06-01

    Methane monooxygenase (MMO) is an enzyme found in methanotrophs that catalyses the selective oxidation of methane to methanol. MMO is protein complex one component of which is a binuclear metal center containing oxygenase. We have completed one round of a design/synthesis/evaluation cycle in the development of coordination complexes that mimic the structure/function of the MMO active site. One of these, a binuclear, coordinately-asymmetric copper complex, is capable of oxidizing cyclohexane to a mixture of cyclohexanol and cyclohexanone in the presence of hydrogen peroxide.

  10. Examination of Urinary Beta-Naphthol as a Biomarker Indicative of Jet Fuel Exposures

    DTIC Science & Technology

    2015-04-01

    NPQ) by cytochrome P450 has been shown to alter with age, diminishing at a rate of ~ 3% per year.22 Subject age effects on cytochrome P450 enzymes ...of Ageing on cytochrome P450 enzymes : Consequences for drug biotransformation in the elderly. Current Med Chem. (2007) 14:745-757. 24. Van Winkle...naphthalene 1,2-oxide by the cytochrome P450 monooxygenase system (Fig. 1). This reaction occurs primarily in the liver, although oxidation can also

  11. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta

    PubMed Central

    Saidi-Mehrabad, Alireza; He, Zhiguo; Tamas, Ivica; Sharp, Christine E; Brady, Allyson L; Rochman, Fauziah F; Bodrossy, Levente; Abell, Guy CJ; Penner, Tara; Dong, Xiaoli; Sensen, Christoph W; Dunfield, Peter F

    2013-01-01

    We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4–8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km2) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic methane oxidation was measured in the surface water at rates up to 152 nmol CH4 ml−1 water d−1. Microbial diversity was investigated via pyrotag sequencing of amplified 16S rRNA genes, as well as by analysis of methanotroph-specific pmoA genes using both pyrosequencing and microarray analysis. The predominantly detected methanotroph in surface waters at all sampling times was an uncultured species related to the gammaproteobacterial genus Methylocaldum, although a few other methanotrophs were also detected, including Methylomonas spp. Active species were identified via 13CH4 stable isotope probing (SIP) of DNA, combined with pyrotag sequencing and shotgun metagenomic sequencing of heavy 13C-DNA. The SIP-PCR results demonstrated that the Methylocaldum and Methylomonas spp. actively consumed methane in fresh tailings pond water. Metagenomic analysis of DNA from the heavy SIP fraction verified the PCR-based results and identified additional pmoA genes not detected via PCR. The metagenome indicated that the overall methylotrophic community possessed known pathways for formaldehyde oxidation, carbon fixation and detoxification of nitrogenous compounds but appeared to possess only particulate methane monooxygenase not soluble methane monooxygenase. PMID:23254511

  12. The Flavin-Containing Monooxygenase 3 Gene and Essential Hypertension: The Joint Effect of Polymorphism E158K and Cigarette Smoking on Disease Susceptibility

    PubMed Central

    Bushueva, Olga; Solodilova, Maria; Churnosov, Mikhail; Ivanov, Vladimir; Polonikov, Alexey

    2014-01-01

    Gene encoding flavin-containing monooxygenase 3 (FMO3), a microsomal antioxidant defense enzyme, has been suggested to contribute to essential hypertension (EH). The present study was designed to investigate whether common functional polymorphism E158K (rs2266782) of the FMO3 gene is associated with EH susceptibility in a Russian population. A total of 2 995 unrelated subjects from Kursk (1 362 EH patients and 843 healthy controls) and Belgorod (357 EH patients and 422 population controls) regions of Central Russia were recruited for this study. DNA samples from all study participants were genotyped for the FMO3 gene polymorphism through PCR followed by RFLP analysis. We found that the polymorphism E158K is associated with increased risk of essential hypertension in both discovery population from Kursk region (OR 1.36 95% CI 1.09–1.69, P = 0.01) and replication population from Belgorod region (OR 1.54 95% CI 1.07–1.89, P = 0.02) after adjustment for gender and age using logistic regression analysis. Further analysis showed that the increased hypertension risk in carriers of genotype 158KK gene occurred in cigarette smokers, whereas nonsmoker carriers of this genotype did not show the disease risk. This is the first study reporting the association of the FMO3 gene polymorphism and the risk of essential hypertension. PMID:25243081

  13. Effect of salinity on flavin-containing monooxygenase expression and activity in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Larsen, B K; Schlenk, D

    2001-06-01

    In order to obtain more information about the physiological role(s) of flavin-containing monooxygenases (FMOs) in euryhaline teleost fishes, two experimental series were performed using adult and juvenile rainbow trout (Oncorhynchus mykiss). Cannulated adult trout were exposed to freshwater or 21% seawater for 48 h, whereas juvenile trout were acclimated to one of four different salinities: freshwater, 7%, 14%, or 21% during a 2-week period. FMO expression and activity were determined in red blood cells (RBC), liver, gill, kidney, gut, heart and brain. Furthermore, the content of trimethylamine oxide (TMAO; an FMO metabolite and an osmolyte) as well as urea were determined in various tissues. FMO expression and activity increased significantly and in a salinity dependent manner in osmoregulatory organs (gills, kidney and gut) in both juveniles and adult trout and, furthermore, in RBC in adults. No significant changes were observed in liver or heart. Urea content increased significantly and in a salinity dependent manner in all tissues, whereas TMAO was accumulated primarily in muscle tissue. Salinity dependent adjustment of FMO expression and activity primarily in osmoregulatory organs as well as regulation of TMAO content in muscle is consistent with previous studies showing an association of FMO with osmoregulation in euryhaline teleosts. However, the lack of a parallel increase of TMAO with urea in other tissues of fish at high salinity indicates other mechanisms of protection from intracellular urea may exist in non-muscular tissues.

  14. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism

    PubMed Central

    Kim, Seonah; Ståhlberg, Jerry; Sandgren, Mats; Paton, Robert S.; Beckham, Gregg T.

    2014-01-01

    Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass depolymerization. To date, several features of copper binding to LPMOs have been elucidated, but the identity of the reactive oxygen species and the key steps in the oxidative mechanism have not been elucidated. Here, density functional theory calculations are used with an enzyme active site model to identify the reactive oxygen species and compare two hypothesized reaction pathways in LPMOs for hydrogen abstraction and polysaccharide hydroxylation; namely, a mechanism that employs a η1-superoxo intermediate, which abstracts a substrate hydrogen and a hydroperoxo species is responsible for substrate hydroxylation, and a mechanism wherein a copper-oxyl radical abstracts a hydrogen and subsequently hydroxylates the substrate via an oxygen-rebound mechanism. The results predict that oxygen binds end-on (η1) to copper, and that a copper-oxyl–mediated, oxygen-rebound mechanism is energetically preferred. The N-terminal histidine methylation is also examined, which is thought to modify the structure and reactivity of the enzyme. Density functional theory calculations suggest that this posttranslational modification has only a minor effect on the LPMO active site structure or reactivity for the examined steps. Overall, this study suggests the steps in the LPMO mechanism for oxidative cleavage of glycosidic bonds. PMID:24344312

  15. 60 YEARS OF POMC: From POMC and α-MSH to PAM, molecular oxygen, copper, and vitamin C.

    PubMed

    Kumar, Dhivya; Mains, Richard E; Eipper, Betty A

    2016-05-01

    A critical role for peptide C-terminal amidation was apparent when the first bioactive peptides were identified. The conversion of POMC into adrenocorticotropic hormone and then into α-melanocyte-stimulating hormone, an amidated peptide, provided a model system for identifying the amidating enzyme. Peptidylglycine α-amidating monooxygenase (PAM), the only enzyme that catalyzes this modification, is essential; mice lacking PAM survive only until mid-gestation. Purification and cloning led to the discovery that the amidation of peptidylglycine substrates proceeds in two steps: peptidylglycine α-hydroxylating monooxygenase catalyzes the copper- and ascorbate-dependent α-hydroxylation of the peptidylglycine substrate; peptidyl-α-hydroxyglycine α-amidating lyase cleaves the N-C bond, producing amidated product and glyoxylate. Both enzymes are contained in the luminal domain of PAM, a type 1 integral membrane protein. The structures of both catalytic cores have been determined, revealing how they interact with metals, molecular oxygen, and substrate to catalyze both reactions. Although not essential for activity, the intrinsically disordered cytosolic domain is essential for PAM trafficking. A phylogenetic survey led to the identification of bifunctional membrane PAM in Chlamydomonas, a unicellular eukaryote. Accumulating evidence points to a role for PAM in copper homeostasis and in retrograde signaling from the lumen of the secretory pathway to the nucleus. The discovery of PAM in cilia, cellular antennae that sense and respond to environmental stimuli, suggests that much remains to be learned about this ancient protein. © 2016 Society for Endocrinology.

  16. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulates carotenoid and lipid metabolism in mice

    PubMed Central

    Ford, Nikki A.; Elsen, Amy C.; Erdman, John W.

    2013-01-01

    Carotene-15,15'-monooxygenase (CMO-I) cleaves β-carotene to form vitamin A while carotene-9’,10’-monooxygenase (CMO-II) preferentially cleaves non-provitamin A carotenoids. Recent reports indicate that beta-carotene metabolites regulate dietary lipid uptake while lycopene regulates peroxisome-proliferated activator receptor (PPAR) expression. To determine the physiologic consequences of carotenoids and their interactions with CMO-I and CMO-II, we characterized mammalian carotenoid metabolism, metabolic perturbations and lipid metabolism in female CMO-I−/− and CMO-II−/− mice fed lycopene or tomato-containing diets for 30 days. We hypothesized that there would be significant interactions between diet and genotype on carotenoid accumulation and lipid parameters. CMO-I−/− mice had higher levels of leptin, insulin and hepatic lipidosis, but lower levels of serum cholesterol. CMO-II−/− mice had increased tissue lycopene and phytofluene accumulation, reduced IGF-1 levels and cholesterol levels, but elevated liver lipids and cholesterol compared with WT mice. The diets did not modulate these genotypic perturbations, but lycopene and tomato powder did significantly decrease serum insulin-like growth factor-I. Tomato powder also reduced hepatic PPAR expression, independent of genotype. These data point to the pleiotropic actions of CMO-I and CMO-II supporting a strong role of these proteins in regulating tissue carotenoid accumulation and the lipid metabolic phenotype, as well as tomato carotenoid-independent regulation of lipid metabolism. PMID:24034573

  17. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide.

    PubMed Central

    Hyman, M R; Kim, C Y; Arp, D J

    1990-01-01

    Carbon disulfide has long been recognized as a potent inhibitor of nitrification, and it is the likely active component in several nitrification inhibitors suitable for field use. The effects of this compound on Nitrosomonas europaea have been investigated, and the site of action has been determined. Low concentrations of CS2 (less than 400 microM) produced a time-dependent inhibition of ammonia-dependent O2 uptake but did not inhibit hydrazine-oxidizing activity. CS2 also produced distinct changes in difference spectra of whole cells. These results suggest that ammonia monooxygenase (AMO) is the site of action of CS2. Unlike the case for thiourea and acetylene, saturating concentrations of CS2 did not fully inhibit AMO, and the inhibition resulted in a low but significant rate of ammonia-dependent O2 uptake. The effects of CS2 were not competitive with respect to ammonia concentration, and the inhibition by CS2 did not require the turnover of AMO to take effect. The ability of CS2-treated cells to incorporate [14C]acetylene into the 28-kilodalton polypeptide of AMO was used to demonstrate that the effects of CS2 are compatible with a mode of action which involves a reduction of the rate of turnover of AMO without effects on the catalytic mechanism. It is proposed that CS2 may act on AMO by reversibly reacting with a suitable nucleophilic amino acid in close proximity to the active site copper. Images PMID:2118501

  18. Osmotic Stress Induces Expression of Choline Monooxygenase in Sugar Beet and Amaranth1

    PubMed Central

    Russell, Brenda L.; Rathinasabapathi, Bala; Hanson, Andrew D.

    1998-01-01

    Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolerant crop. The deduced beet CMO amino acid sequence comprised a transit peptide and a 381-residue mature peptide that was 84% identical (97% similar) to that of spinach and that showed the same consensus motif for coordinating a Rieske-type [2Fe-2S] cluster. A mononuclear Fe-binding motif was also present. When water was withheld, leaf relative water content declined to 59% and the levels of CMO mRNA, protein, and enzyme activity rose 3- to 5-fold; rewatering reversed these changes. After gradual salinization (NaCl:CaCl2 = 5.7:1, mol/mol), CMO mRNA, protein, and enzyme levels in leaves increased 3- to 7-fold at 400 mm salt, and returned to uninduced levels when salt was removed. Beet roots also expressed CMO, most strongly when salinized. Salt-inducible CMO mRNA, protein, and enzyme activity were readily detected in leaves of Amaranthus caudatus L. (Amaranthaceae). These data show that CMO most probably has a mononuclear Fe center, is inducibly expressed in roots as well as in leaves of Chenopodiaceae, and is not unique to this family. PMID:9489025

  19. The Structure of the Flavoprotein Tryptophan-2-Monooxygenase, a Key Enzyme in the Formation of Galls in Plants†

    PubMed Central

    Gaweska, Helena M.; Taylor, Alexander B.; Hart, P. John; Fitzpatrick, Paul F.

    2013-01-01

    The flavoprotein tryptophan 2-monooxygenase catalyzes the oxidative decarboxylation of tryptophan to yield indole-3-acetamide. This is the initial step in the biosynthesis of the plant growth hormone indole-acetic-acid by bacterial pathogens that cause crown gall and related diseases. The structure of the enzyme from Pseudomonas savastanoi has been determined by X-ray diffraction methods to a resolution of 1.95 Å. The overall structure of the protein shows that it has the same fold as the monoamine oxidase family of flavoproteins, with the greatest similarities to the L-amino acid oxidases. The location of bound indole-3-acetamide in the active site enables identification of residues responsible for substrate binding and specificity. Two residues in the enzyme are conserved in all members of the monoamine oxidase family, Lys365 and Trp466. The K365M mutation decreases the kcat and kcat/KTrp values by 60,000 and 2 million-fold, respectively. The deuterium kinetic isotope effect increases to 3.2, consistent with carbon-hydrogen bond cleavage becoming rate-limiting in the mutant enzyme. The W466F mutation decreases the kcat value less than 2-fold and the kcat/KTrp value only 5-fold, while the W466M mutation results in enzyme lacking flavin and detectable activity. This is consistent with a role for Trp466 in maintaining the structure of the flavin binding site in the more conserved FAD domain. PMID:23521653

  20. Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.

    PubMed

    Luthra, Pratibha Mehta; Singh, Satendra

    2010-05-01

    Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.

  1. Salicylic Acid–Independent ENHANCED DISEASE SUSCEPTIBILITY1 Signaling in Arabidopsis Immunity and Cell Death Is Regulated by the Monooxygenase FMO1 and the Nudix Hydrolase NUDT7[W

    PubMed Central

    Bartsch, Michael; Gobbato, Enrico; Bednarek, Pawel; Debey, Svenja; Schultze, Joachim L.; Bautor, Jaqueline; Parker, Jane E.

    2006-01-01

    Arabidopsis thaliana ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) controls defense activation and programmed cell death conditioned by intracellular Toll-related immune receptors that recognize specific pathogen effectors. EDS1 is also needed for basal resistance to invasive pathogens by restricting the progression of disease. In both responses, EDS1, assisted by its interacting partner, PHYTOALEXIN-DEFICIENT4 (PAD4), regulates accumulation of the phenolic defense molecule salicylic acid (SA) and other as yet unidentified signal intermediates. An Arabidopsis whole genome microarray experiment was designed to identify genes whose expression depends on EDS1 and PAD4, irrespective of local SA accumulation, and potential candidates of an SA-independent branch of EDS1 defense were found. We define two new immune regulators through analysis of corresponding Arabidopsis loss-of-function insertion mutants. FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) positively regulates the EDS1 pathway, and one member (NUDT7) of a family of cytosolic Nudix hydrolases exerts negative control of EDS1 signaling. Analysis of fmo1 and nudt7 mutants alone or in combination with sid2-1, a mutation that severely depletes pathogen-induced SA production, points to SA-independent functions of FMO1 and NUDT7 in EDS1-conditioned disease resistance and cell death. We find instead that SA antagonizes initiation of cell death and stunting of growth in nudt7 mutants. PMID:16531493

  2. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis.

    PubMed

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie Z M; Baily, James E; Sharp, Matthew G F; Garden, O James; Hughes, Jeremy; Howie, Sarah E M; Holmes, Duncan S; Liddle, John; Iredale, John P

    2016-02-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.

  3. Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures.

    PubMed

    Carpenedo, Raffaella; Meli, Elena; Peruginelli, Fiamma; Pellegrini-Giampietro, Domenico E; Moroni, Flavio

    2002-09-01

    Kynurenine 3-mono-oxygenase (KMO) inhibitors reduce 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) neosynthesis and facilitate kynurenine metabolism towards kynurenic acid (KYNA) formation. They also reduce tissue damage in models of focal or transient global cerebral ischemia in vivo. We used organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) to investigate KMO mechanism(s) of neuroprotective activity. Exposure of the slices to 30 min of OGD caused CA1 pyramidal cell death and significantly decreased the amount of KYNA released in the incubation medium. The KMO inhibitors (m-nitrobenzoyl)-alanine (30-100 micro m) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (1-10 micro m) reduced post-ischemic neuronal death and increased KYNA concentrations in slice incubation media. The maximal concentration of KYNA detected in the incubation media of slices treated with KMO inhibitors was approximately 50 nm and was too low to efficiently interact with alpha7 nicotinic acetylcholine receptors or with the glycineb site of N-methyl-d-aspartate (NMDA) receptors. On the other hand, the addition of either 3-HK or QUIN (1-10 micro m) to OGD-exposed hippocampal slices prevented the neuroprotective activity of KMO inhibitors. Our results suggest that KMO inhibitors reduce the neuronal death found in the CA1 region of organotypic hippocampal slices exposed to 30 min of OGD by decreasing the local synthesis of 3-HK and QUIN.

  4. Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis[W

    PubMed Central

    Nafisi, Majse; Goregaoker, Sameer; Botanga, Christopher J.; Glawischnig, Erich; Olsen, Carl E.; Halkier, Barbara A.; Glazebrook, Jane

    2007-01-01

    Camalexin (3-thiazol-2-yl-indole) is an indole alkaloid phytoalexin produced by Arabidopsis thaliana that is thought to be important for resistance to necrotrophic fungal pathogens, such as Alternaria brassicicola and Botrytis cinerea. It is produced from Trp, which is converted to indole acetaldoxime (IAOx) by the action of cytochrome P450 monooxygenases CYP79B2 and CYP79B3. The remaining biosynthetic steps are unknown except for the last step, which is conversion of dihydrocamalexic acid to camalexin by CYP71B15 (PAD3). This article reports characterization of CYP71A13. Plants carrying cyp71A13 mutations produce greatly reduced amounts of camalexin after infection by Pseudomonas syringae or A. brassicicola and are susceptible to A. brassicicola, as are pad3 and cyp79B2 cyp79B3 mutants. Expression levels of CYP71A13 and PAD3 are coregulated. CYP71A13 expressed in Escherichia coli converted IAOx to indole-3-acetonitrile (IAN). Expression of CYP79B2 and CYP71A13 in Nicotiana benthamiana resulted in conversion of Trp to IAN. Exogenously supplied IAN restored camalexin production in cyp71A13 mutant plants. Together, these results lead to the conclusion that CYP71A13 catalyzes the conversion of IAOx to IAN in camalexin synthesis and provide further support for the role of camalexin in resistance to A. brassicicola. PMID:17573535

  5. Possible Peroxo State of the Dicopper Site of Particulate Methane Monooxygenase from Combined Quantum Mechanics and Molecular Mechanics Calculations.

    PubMed

    Itoyama, Shuhei; Doitomi, Kazuki; Kamachi, Takashi; Shiota, Yoshihito; Yoshizawa, Kazunari

    2016-03-21

    Enzymatic methane hydroxylation is proposed to efficiently occur at the dinuclear copper site of particulate methane monooxygenase (pMMO), which is an integral membrane metalloenzyme in methanotrophic bacteria. The resting state and a possible peroxo state of the dicopper active site of pMMO are discussed by using combined quantum mechanics and molecular mechanics calculations on the basis of reported X-ray crystal structures of the resting state of pMMO by Rosenzweig and co-workers. The dicopper site has a unique structure, in which one copper is coordinated by two histidine imidazoles and another is chelated by a histidine imidazole and primary amine of an N-terminal histidine. The resting state of the dicopper site is assignable to the mixed-valent Cu(I)Cu(II) state from a computed Cu-Cu distance of 2.62 Å from calculations at the B3LYP-D/TZVP level of theory. A μ-η(2):η(2)-peroxo-Cu(II)2 structure similar to those of hemocyanin and tyrosinase is reasonably obtained by using the resting state structure and dioxygen. Computed Cu-Cu and O-O distances are 3.63 and 1.46 Å, respectively, in the open-shell singlet state. Structural features of the dicopper peroxo species of pMMO are compared with those of hemocyanin and tyrosinase and synthetic dicopper model compounds. Optical features of the μ-η(2):η(2)-peroxo-Cu(II)2 state are calculated and analyzed with TD-DFT calculations.

  6. The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate.

    PubMed

    Mushiroda, T; Douya, R; Takahara, E; Nagata, O

    2000-10-01

    The goals of the present study were to identify the enzyme responsible for metabolism of itopride hydrochloride (itopride) and to evaluate the likelihood of drug interaction involving itopride. In human liver microsomes, the involvement of flavin-containing monooxygenase in N-oxygenation, the major metabolic pathway of itopride, was indicated by the following results: inhibition by methimazole and thiourea, heat inactivation, and protection against heat inactivation by NADPH. When the effects of ketoconazole on the metabolism of itopride, cisapride, and mosapride citrate (mosapride) were examined using human liver microsomes, ketoconazole strongly inhibited the formation of the primary metabolites of cisapride and mosapride, but not itopride. Other cytochrome P450 (CYP) 3A4 inhibitors, cimetidine, erythromycin, and clarithromycin, also inhibited the metabolism of cisapride and mosapride. In an in vivo study, itopride (30 mg/kg), cisapride (1.5 mg/kg), or mosapride (3 mg/kg) was orally administered to male rats with or without oral pretreatment with ketoconazole (120 mg/kg) twice daily for 2 days. The ketoconazole pretreatment significantly increased the area under the serum concentration curve and the maximum serum concentration of cisapride and mosapride but had no significant effect on the pharmacokinetics of itopride. In addition, itopride did not inhibit five specific CYP-mediated reactions of human liver microsomes. These results suggest that itopride is unlikely to alter the pharmacokinetics of other concomitantly administered drugs.

  7. Potential for drug interactions mediated by polymorphic flavin-containing monooxygenase 3 in human livers.

    PubMed

    Shimizu, Makiko; Shiraishi, Arisa; Sato, Ayumi; Nagashima, Satomi; Yamazaki, Hiroshi

    2015-02-01

    Human flavin-containing monooxygenase 3 (FMO3) in the liver catalyzes a variety of oxygenations of nitrogen- and sulfur-containing medicines and xenobiotic substances. Because of growing interest in drug interactions mediated by polymorphic FMO3, benzydamine N-oxygenation by human FMO3 was investigated as a model reaction. Among the 41 compounds tested, trimethylamine, methimazole, itopride, and tozasertib (50 μM) suppressed benzydamine N-oxygenation at a substrate concentration of 50 μM by approximately 50% after co-incubation. Suppression of N-oxygenation of benzydamine, trimethylamine, itopride, and tozasertib and S-oxygenation of methimazole and sulindac sulfide after co-incubation with the other five of these six substrates was compared using FMO3 proteins recombinantly expressed in bacterial membranes. Apparent competitive inhibition by methimazole (0-50 μM) of sulindac sulfide S-oxygenation was observed with FMO3 proteins. Sulindac sulfide S-oxygenation activity of Arg205Cys variant FMO3 protein was likely to be suppressed more by methimazole than wild-type or Val257Met variant FMO3 protein was. These results suggest that genetic polymorphism in the human FMO3 gene may lead to changes of drug interactions for N- or S-oxygenations of xenobiotics and endogenous substances and that a probe battery system of benzydamine N-oxygenation and sulindac sulfide S-oxygenation activities is recommended to clarify the drug interactions mediated by FMO3. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  8. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis

    PubMed Central

    2016-01-01

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation. PMID:27046099

  9. Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid

    PubMed Central

    Seo, Joo-Hyun; Kim, Hwan-Hee; Jeon, Eun-Yeong; Song, Young-Ha; Shin, Chul-Soo; Park, Jin-Byung

    2016-01-01

    Baeyer-Villiger monooxygenases (BVMOs) are able to catalyze regiospecific Baeyer-Villiger oxygenation of a variety of cyclic and linear ketones to generate the corresponding lactones and esters, respectively. However, the enzymes are usually difficult to express in a functional form in microbial cells and are rather unstable under process conditions hindering their large-scale applications. Thereby, we investigated engineering of the BVMO from Pseudomonas putida KT2440 and the gene expression system to improve its activity and stability for large-scale biotransformation of ricinoleic acid (1) into the ester (i.e., (Z)-11-(heptanoyloxy)undec-9-enoic acid) (3), which can be hydrolyzed into 11-hydroxyundec-9-enoic acid (5) (i.e., a precursor of polyamide-11) and n-heptanoic acid (4). The polyionic tag-based fusion engineering of the BVMO and the use of a synthetic promoter for constitutive enzyme expression allowed the recombinant Escherichia coli expressing the BVMO and the secondary alcohol dehydrogenase of Micrococcus luteus to produce the ester (3) to 85 mM (26.6 g/L) within 5 h. The 5 L scale biotransformation process was then successfully scaled up to a 70 L bioreactor; 3 was produced to over 70 mM (21.9 g/L) in the culture medium 6 h after biotransformation. This study demonstrated that the BVMO-based whole-cell reactions can be applied for large-scale biotransformations. PMID:27311560

  10. Effect of benzene and ethylbenzene on the transcription of methyl-tert-butyl ether degradation genes of Methylibium petroleiphilum PM1.

    PubMed

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2016-09-01

    Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.

  11. Effect of benzene and ethylbenzene on the transcription of methyl-tert-butyl ether degradation genes of Methylibium petroleiphilum PM1

    PubMed Central

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M.; Denison, Michael S.; Hristova, Krassimira R.

    2016-01-01

    Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds’ impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1. PMID:27450417

  12. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.

    PubMed

    Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi

    2018-02-01

    1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.

  13. A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium

    PubMed Central

    Bhattacharya, Sukanta S.; Syed, Khajamohiddin; Shann, Jodi; Yadav, Jagjit S.

    2013-01-01

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) such as benzo[a]pyrene (BaP) are resistant to biodegradation in soil. Conventionally, white rot fungus Phanerochaete chrysosporium has been investigated for HMW-PAH degradation in soil primarily using nutrient-deficient (ligninolytic) conditions, albeit with limited and non-sustainable biodegradation outcomes. In this study, we report development of an alternative novel biphasic process initiated under nutrient-sufficient (non-ligninolytic) culture conditions, by employing an advanced experimental design strategy. During the initial nutrient-sufficient non-ligninolytic phase (16 days), the process showed upregulation (3.6-and 22.3-fold, respectively) of two key PAH-oxidizing P450 monooxygenases pc2 (CYP63A2) and pah4 (CYP5136A3) and formation of typical P450-hydroxylated metabolite. This along with abrogation (84.9%) of BaP degradation activity in response to a P450-specific inhibitor implied key role of these monooxygenases. The subsequent phase triggered on continued incubation (to 25 days) switched the process from non-ligninolytic to ligninolytic resulting in a significantly higher net degradation (91.6% as against 67.4% in the control nutrient-limited set) of BaP with concomitant de novo ligninolytic enzyme expression making it a biphasic process yielding improved sustainable bioremediation of PAH-contaminated soil. To our knowledge this is the first report on development of such biphasic process for bioremediation application of a white rot fungus. PMID:24051002

  14. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    NASA Astrophysics Data System (ADS)

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-07-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg-1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites.

  15. Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium*

    PubMed Central

    Wu, Miao; Beckham, Gregg T.; Larsson, Anna M.; Ishida, Takuya; Kim, Seonah; Payne, Christina M.; Himmel, Michael E.; Crowley, Michael F.; Horn, Svein J.; Westereng, Bjørge; Igarashi, Kiyohiko; Samejima, Masahiro; Ståhlberg, Jerry; Eijsink, Vincent G. H.; Sandgren, Mats

    2013-01-01

    Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain. PMID:23525113

  16. p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

    PubMed

    Zhang, Hongye; Xie, Yun; Liu, Zhimin; Tao, Ranting; Sun, Zhenyu; Ding, Kunlun; An, Guimin

    2009-10-15

    Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380-800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1-3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA-TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction.

  17. Biochemistry of Ammonia Monoxygenase from Nitrosomonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Hooper

    2009-07-15

    Major results. 1. CytochromecM552, a protein in the electron transfer chain to ammonia monooxygenase. Purification, modeling of protein structure based on primary structure, characterization of 4 hemes by magnetic spectroscopy, potentiometry, ligand binding and turnover. Kim, H. J., ,Zatsman, et al. 2008). 2. Characterization of proteins which thought to be involved in the AMO reaction or to protect AMO from toxic nitrogenous intermediates such as NO. Nitrosocyanin is a protein present only in bacteria which catalyze the ammonia monoxygenase reaction (1). Cytochrome c P460 beta and cytochrome c’ beta.

  18. Modulation of the Kynurenine Pathway for the Potential Treatment of Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Courtney, Stephen; Scheel, Andreas

    Modulation of tryptophan metabolism and in particular the kynurenine pathway is of considerable interest in the discovery of potential new treatments for neurodegenerative diseases. A number of small molecule inhibitors of the kynurenine metabolic pathway enzymes have been identified over recent years; a summary of these and their utility has been reviewed in this chapter. In particular, inhibitors of kynurenine monooxygenase represent an opportunity to develop a therapy for Huntington's disease; progress in the optimization of small molecule inhibitors of this enzyme is also described.

  19. How pH Modulates the Reactivity and Selectivity of a Siderophore-Associated Flavin Monooxygenase

    PubMed Central

    2015-01-01

    Flavin-containing monooxygenases (FMOs) catalyze the oxygenation of diverse organic molecules using O2, NADPH, and the flavin adenine dinucleotide (FAD) cofactor. The fungal FMO SidA initiates peptidic siderophore biosynthesis via the highly selective hydroxylation of l-ornithine, while the related amino acid l-lysine is a potent effector of reaction uncoupling to generate H2O2. We hypothesized that protonation states could critically influence both substrate-selective hydroxylation and H2O2 release, and therefore undertook a study of SidA’s pH-dependent reaction kinetics. Consistent with other FMOs that stabilize a C4a-OO(H) intermediate, SidA’s reductive half reaction is pH independent. The rate constant for the formation of the reactive C4a-OO(H) intermediate from reduced SidA and O2 is likewise independent of pH. However, the rate constants for C4a-OO(H) reactions, either to eliminate H2O2 or to hydroxylate l-Orn, were strongly pH-dependent and influenced by the nature of the bound amino acid. Solvent kinetic isotope effects of 6.6 ± 0.3 and 1.9 ± 0.2 were measured for the C4a-OOH/H2O2 conversion in the presence and absence of l-Lys, respectively. A model is proposed in which l-Lys accelerates H2O2 release via an acid–base mechanism and where side-chain position determines whether H2O2 or the hydroxylation product is observed. PMID:24490904

  20. Enzymatic activity of albumin shown by coelenterazine chemiluminescence.

    PubMed

    Vassel, N; Cox, C D; Naseem, R; Morse, V; Evans, R T; Power, R L; Brancale, A; Wann, K T; Campbell, A K

    2012-01-01

    Bioluminescence, the emission of light from live organisms, occurs in 18 phyla and is the major communication system in the deep sea. It has appeared independently many times during evolution but its origins remain unknown. Coelenterazine bioluminescence discovered in luminous jellyfish is the most common chemistry causing bioluminescence in the sea, occurring in seven phyla. Sequence similarities between coelenterazine luciferases and photoproteins from different phyla are poor (often < 5%). The aim of this study was to examine albumin that binds organic substances as a coelenterazine luciferase to test the hypothesis that the evolutionary origin of a bioluminescent protein was the result of the formation of a solvent cage containing just a few key amino acids. The results show for the first time that bovine and human albumin catalysed coelenterazine chemiluminescence consistent with a mono-oxygenase, whereas gelatin and haemoglobin, an oxygen carrier, had very weak activity. Insulin also catalysed coelenterazine chemiluminescence and was increased by Zn(2+). Albumin chemiluminescence was heat denaturable, exhibited saturable substrate characteristics and was inhibited by cations that bound these proteins and by drugs that bind to human albumin drug site I. Molecular modelling confirmed the coelenterazine binding site and identified four basic amino acids: lys195, arg222, his242 and arg257, potentially important in binding and catalysis similar to naturally occurring coelenterazine bioluminescent proteins. These results support the 'solvent cage' hypothesis for the evolutionary origin of enzymatic coelenterazine bioluminescent proteins. They also have important consequences in diseases such as diabetes, gut disorders and food intolerance where a mono-oxygenase could affect cell surface proteins. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Spliceostatin hemiketal biosynthesis in Burkholderia spp. is catalyzed by an iron/α-ketoglutarate–dependent dioxygenase

    PubMed Central

    Eustáquio, Alessandra S.; Janso, Jeffrey E.; Ratnayake, Anokha S.; O’Donnell, Christopher J.; Koehn, Frank E.

    2014-01-01

    Spliceostatins are potent spliceosome inhibitors biosynthesized by a hybrid nonribosomal peptide synthetase−polyketide synthase (NRPS−PKS) system of the trans-acyl transferase (AT) type. Burkholderia sp. FERM BP-3421 produces hemiketal spliceostatins, such as FR901464, as well as analogs containing a terminal carboxylic acid. We provide genetic and biochemical evidence for hemiketal biosynthesis by oxidative decarboxylation rather than the previously hypothesized Baeyer–Villiger oxidative release postulated to be catalyzed by a flavin-dependent monooxygenase (FMO) activity internal to the last module of the PKS. Inactivation of Fe(II)/α-ketoglutarate–dependent dioxygenase gene fr9P led to loss of hemiketal congeners, whereas the mutant was still able to produce all major carboxylic acid-type compounds. FMO mutants, on the other hand, produced both hemiketal and carboxylic acid analogs containing an exocyclic methylene instead of an epoxide, indicating that the FMO is involved in epoxidation rather than Baeyer–Villiger oxidation. Moreover, recombinant Fr9P enzyme was shown to catalyze hydroxylation to form β-hydroxy acids, which upon decarboxylation led to hemiketal FR901464. Finally, a third oxygenase activity encoded in the biosynthetic gene cluster, the cytochrome P450 monooxygenase Fr9R, was assigned as a 4-hydroxylase based on gene inactivation results. Identification and deletion of the gene involved in hemiketal formation allowed us to generate a strain—the dioxygenase fr9P− mutant—that accumulates only the carboxylic acid-type spliceostatins, which are as potent as the hemiketal analogs, when derivatized to increase cell permeability, but are chemically more stable. PMID:25097259

  2. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum.

    PubMed

    Joussen, Nicole; Schuphan, Ingolf; Schmidt, Burkhard

    2010-03-01

    Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.

  3. Network analysis of ChIP-Seq data reveals key genes in prostate cancer.

    PubMed

    Zhang, Yu; Huang, Zhen; Zhu, Zhiqiang; Liu, Jianwei; Zheng, Xin; Zhang, Yuhai

    2014-09-03

    Prostate cancer (PC) is the second most common cancer among men in the United States, and it imposes a considerable threat to human health. A deep understanding of its underlying molecular mechanisms is the premise for developing effective targeted therapies. Recently, deep transcriptional sequencing has been used as an effective genomic assay to obtain insights into diseases and may be helpful in the study of PC. In present study, ChIP-Seq data for PC and normal samples were compared, and differential peaks identified, based upon fold changes (with P-values calculated with t-tests). Annotations of these peaks were performed. Protein-protein interaction (PPI) network analysis was performed with BioGRID and constructed with Cytoscape, following which the highly connected genes were screened. We obtained a total of 5,570 differential peaks, including 3,726 differentially enriched peaks in tumor samples and 1,844 differentially enriched peaks in normal samples. There were eight significant regions of the peaks. The intergenic region possessed the highest score (51%), followed by intronic (31%) and exonic (11%) regions. The analysis revealed the top 35 highly connected genes, which comprised 33 differential genes (such as YWHAQ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein and θ polypeptide) from ChIP-Seq data and 2 differential genes retrieved from the PPI network: UBA52 (ubiquitin A-52 residue ribosomal protein fusion product (1) and SUMO2 (SMT3 suppressor of mif two 3 homolog (2) . Our findings regarding potential PC-related genes increase the understanding of PC and provides direction for future research.

  4. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures.

    PubMed

    Wang, Yufeng; Zhang, Jianhui; Shi, Xiaoliang; Peng, Yu; Li, Ping; Lin, Dongzhi; Dong, Yanjun; Teng, Sheng

    2016-09-01

    Chloroplasts are essential for photosynthesis and play critical roles in plant development. In this study, we characterized the temperature-sensitive chlorophyll-deficient rice mutant tcd5, which develops albino leaves at low temperatures (20 °C) and normal green leaves at high temperatures (32 °C). The development of chloroplasts and etioplasts is impaired in tcd5 plants at 20 °C, and the temperature-sensitive period for the albino phenotype is the P4 stage of leaf development. The development of thylakoid membranes is arrested at the mid-P4 stage in tcd5 plants at 20 °C. We performed positional cloning of TCD5 and then complementation and knock-down experiments, and the results showed that the transcript LOC_Os05g34040.1 from the LOC_Os05g34040 gene corresponded to the tcd5 phenotype. TCD5 encodes a conserved plastid-targeted monooxygenase family protein which has not been previously reported associated with a temperature-sensitive albino phenotype in plants. TCD5 is abundantly expressed in young leaves and immature spikes, and low temperatures increased this expression. The transcription of some genes involved in plastid transcription/translation and photosynthesis varied in the tcd5 mutant. Although the phenotype and temperature dependence of the TCD5 orthologous mutant phenotype were different in rice and Arabidopsis, OsTCD5 could rescue the phenotype of the Arabidopsis mutant, suggesting that TCD5 function is conserved between monocots and dicots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Disulfide bridges as essential elements for the thermostability of lytic polysaccharide monooxygenase LPMO10C from Streptomyces coelicolor.

    PubMed

    Tanghe, Magali; Danneels, Barbara; Last, Matthias; Beerens, Koen; Stals, Ingeborg; Desmet, Tom

    2017-05-01

    Lytic polysaccharide monooxygenases (LPMOs) are crucial components of cellulase mixtures but their stability has not yet been studied in detail, let alone been engineered for industrial applications. In this work, we have evaluated the importance of disulfide bridges for the thermodynamic stability of Streptomyces coelicolor LPMO10C. Interestingly, this enzyme was found to retain 34% of its activity after 2-h incubation at 80°C while its apparent melting temperature (Tm) is only 51°C. When its three disulfide bridges were broken, however, irreversible unfolding occurred and no residual activity could be detected after a similar heat treatment. Based on these findings, additional disulfide bridges were introduced, as predicted by computational tools (MOdelling of DIsulfide bridges in Proteins (MODiP) and Disulfide by Design (DbD)) and using the most flexible positions in the structure as target sites. Four out of 16 variants displayed an improvement in Tm, ranging from 2 to 9°C. Combining the positive mutations yielded additional improvements (up to 19°C) but aberrant unfolding patterns became apparent in some cases, resulting in a diminished capacity for heat resistance. Nonetheless, the best variant, a combination of A143C-P183C and S73C-A115C, displayed a 12°C increase in Tm and was able to retain and was able to retain no less than 60% of its activity after heat treatment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

    PubMed

    Alonso, Hernan; Roujeinikova, Anna

    2012-11-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.

  7. Identification of human flavin-containing monooxygenase 3 substrates by a colorimetric screening assay.

    PubMed

    Catucci, Gianluca; Polignano, Isabelle; Cusumano, Debora; Medana, Claudio; Gilardi, Gianfranco; Sadeghi, Sheila J

    2017-04-01

    Human hepatic flavin-containing monooxygenase 3 is a phase I drug-metabolizing enzyme that is responsible for the oxidation of a variety of drugs and xenobiotics. This work reports on a high throughput rapid colorimetric assay for the screening of substrates or inhibitors of this enzyme. The method is based on the competition of two substrates for access to the active site of hFMO3 whereby the enzymatic product of the first drug converts nitro-5-thiobenzoate (TNB, yellow) to 5,5'-dithiobis (2-nitrobenzoate) (DTNB, colourless). Upon addition of a competing substrate, the amount of detected DNTB is decreased. The assay is validated testing three known substrates of hFMO3, namely benzydamine, tozasertib and tamoxifen. The latter drugs resulted in 41%-55% inhibition. In addition, two other drugs also classified as doping drugs, selegiline and clomiphene, were selected based on their chemical structure similarity to known substrates of hFMO3. These drugs showed 21% and 60% inhibition in the colorimetric assay and therefore were proven to be hFMO3 substrates. LC-MS was used to confirm their N-oxide products. Further characterisation of these newly identified hFMO3 substrates was performed determining their K m and k cat values that resulted to be 314 μM and 1.4 min -1 for selegiline and, 18 μM and 0.1 min -1 for clomiphene. This method paves the way for a rapid automated high throughput screening of nitrogen-containing compounds as substrates/inhibitors of hFMO3. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes new natural product discovery.

    PubMed

    Watanabe, Kenji

    2014-01-01

    In the past few years, there has been impressive progress in elucidating the mechanism of biosynthesis of various natural products accomplished through the use of genetic, molecular biological and biochemical techniques. Here, we present a comprehensive overview of the current results from our studies on fungal natural product biosynthetic enzymes, including nonribosomal peptide synthetase and polyketide synthase-nonribosomal peptide synthetase hybrid synthetase, as well as auxiliary enzymes, such as methyltransferases and oxygenases. Specifically, biosynthesis of the following compounds is described in detail: (i) Sch210972, potentially involving a Diels-Alder reaction that may be catalyzed by CghA, a functionally unknown protein identified by targeted gene disruption in the wild type fungus; (ii) chaetoglobosin A, formed via multi-step oxidations catalyzed by three redox enzymes, one flavin-containing monooxygenase and two cytochrome P450 oxygenases as characterized by in vivo biotransformation of relevant intermediates in our engineered Saccharomyces cerevisiae; (iii) (-)-ditryptophenaline, formed by a cytochrome P450, revealing the dimerization mechanism for the biosynthesis of diketopiperazine alkaloids; (iv) pseurotins, whose variations in the C- and O-methylations and the degree of oxidation are introduced combinatorially by multiple redox enzymes; and (v) spirotryprostatins, whose spiro-carbon moiety is formed by a flavin-containing monooxygenase or a cytochrome P450 as determined by heterologous de novo production of the biosynthetic intermediates and final products in Aspergillus niger. We close our discussion by summarizing some of the key techniques that have facilitated the discovery of new natural products, production of their analogs and identification of biosynthetic mechanisms in our study.

  9. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics.

    PubMed

    Kadek, Alan; Kavan, Daniel; Marcoux, Julien; Stojko, Johann; Felice, Alfons K G; Cianférani, Sarah; Ludwig, Roland; Halada, Petr; Man, Petr

    2017-02-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Kynurenine 3-monooxygenase is implicated in antidepressants-responsive depressive-like behaviors and monoaminergic dysfunctions.

    PubMed

    Tashiro, Tomoyuki; Murakami, Yuki; Mouri, Akihiro; Imamura, Yukio; Nabeshima, Toshitaka; Yamamoto, Yasuko; Saito, Kuniaki

    2017-01-15

    l-Tryptophan (TRP) is metabolized via serotonin and kynurenine pathways (KP). Several studies have demonstrated that abnormality of both pathways is involved in the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the KP, has been suggested to play major roles in physiological and pathological events mediated by bioactive kynurenine metabolites. In this study, we investigated the role of KMO in the emotional and cognitive functions by using KMO knockout (KO) mice. We measured contents of TRP and monoamines and their metabolites in the serum and hippocampus of KMO KO mice. Further, we investigated whether antidepressants improved the depressive-like behaviors in KMO KO mice. KMO KO mice showed depressive-like behaviors such as decreased sucrose preference and increased immobility in the forced swimming test and high anxiety by decreased time spent in the center area of open field. But, there was no difference in spontaneous alternation in Y-maze test, counts of rearing or locomotor activity. Higher contents of TRP metabolites such as kynurenine (KYN), kynurenic acid (KA), anthranilic acid (AA), and 3-hydroxykynurenine (3-HK) in the serum and hippocampus and decreased serotonin turnover and higher content of normetanephrine (NM) in the hippocampus were observed in the KMO KO mice. Although both antidepressant attenuated increase of immobility, sertraline but not imipramine improved decrease of sucrose preference in the KMO KO mice. These findings suggested that KMO KO mice show antidepressants-responsive depressive-like behaviors and monoaminergic dysfunctions via abnormality of kynurenine metabolism with good validities as MDD model. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain.

    PubMed

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V; Notarangelo, Francesca M; Thomas, Marian A R; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J

    2013-12-20

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.

  12. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation.

    PubMed

    Favennec, Marie; Hennart, Benjamin; Caiazzo, Robert; Leloire, Audrey; Yengo, Loïc; Verbanck, Marie; Arredouani, Abdelilah; Marre, Michel; Pigeyre, Marie; Bessede, Alban; Guillemin, Gilles J; Chinetti, Giulia; Staels, Bart; Pattou, François; Balkau, Beverley; Allorge, Delphine; Froguel, Philippe; Poulain-Godefroy, Odile

    2015-10-01

    This study characterized the kynurenine pathway (KP) in human obesity by evaluating circulating levels of kynurenines and the expression of KP enzymes in adipose tissue. Tryptophan and KP metabolite levels were measured in serum of individuals from the D.E.S.I.R. cohort (case-cohort study: 212 diabetic, 836 randomly sampled) and in women with obesity, diabetic or normoglycemic, from the ABOS cohort (n = 100). KP enzyme gene expressions were analyzed in omental and subcutaneous adipose tissue of women from the ABOS cohort, in human primary adipocytes and in monocyte-derived macrophages. In the D.E.S.I.R. cohort, kynurenine levels were positively associated with body mass index (BMI) (P = 4.68 × 10(-19) ) and with a higher HOMA2-IR insulin resistance index (P = 6.23 × 10(-4) ). The levels of kynurenine, kynurenic acid, and quinolinic acid were associated with higher BMI (P < 0.05). The expression of several KP enzyme genes (indoleamine 2,3-dioxygenase 1 [IDO1], kynureninase [KYNU], kynurenine 3-monooxygenase [KMO], and kynurenine aminotransferase III [CCBL2]) was increased in the omental adipose tissue of women with obesity compared to lean (P < 0.05), and their expression was induced by proinflammatory cytokines in human primary adipocytes (P < 0.05), except for KMO that is not expressed in these cells. The expressions of IDO1, KYNU, KMO, and CCBL2 were higher in proinflammatory than in anti-inflammatory macrophages (P < 0.05). In the context of obesity, the presence of macrophages in adipose tissue may contribute to diverting KP toward KMO activation. © 2015 The Obesity Society.

  13. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase.

    PubMed

    Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena

    2015-10-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.

  14. Targeted Deletion of Kynurenine 3-Monooxygenase in Mice

    PubMed Central

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Thomas, Marian A. R.; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J.

    2013-01-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease. PMID:24189070

  15. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis

    PubMed Central

    2010-01-01

    Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis. PMID:20849641

  16. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    PubMed Central

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  17. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker

    PubMed Central

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing “unknown methanotrophic bacteria.” This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  18. Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations

    PubMed Central

    Yin, Ping; Bousquet-Moore, Danielle; Annangudi, Suresh P.; Southey, Bruce R.; Mains, Richard E.; Eipper, Betty A.; Sweedler, Jonathan V.

    2011-01-01

    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides. PMID:22194882

  19. High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy

    PubMed Central

    Rupasinghe, Sanjeewa G.; Duan, Hui; Frericks Schmidt, Heather L.; Berthold, Deborah A.; Rienstra, Chad M.; Schuler, Mary A.

    2008-01-01

    Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, E. coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain (SAD) and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis 13C,15N-labeled CYP98A3 is expressed at yields of 2–4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. PMID:18005930

  20. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease

    PubMed Central

    Fennema, Diede; Phillips, Ian R.

    2016-01-01

    Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. On a daily basis, however, we are exposed to one of the most abundant substrates of the enzyme trimethylamine (TMA), which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous TMA to nonodorous TMA N-oxide (TMAO), which is excreted in urine. Impaired FMO3 activity gives rise to the inherited disorder primary trimethylaminuria (TMAU). Affected individuals cannot produce TMAO and, consequently, excrete large amounts of TMA. A dysbiosis in gut bacteria can give rise to secondary TMAU. Recently, there has been much interest in FMO3 and its catalytic product, TMAO, because TMAO has been implicated in various conditions affecting health, including cardiovascular disease, reverse cholesterol transport, and glucose and lipid homeostasis. In this review, we consider the dietary components that can give rise to TMA, the gut bacteria involved in the production of TMA from dietary precursors, the metabolic reactions by which bacteria produce and use TMA, and the enzymes that catalyze the reactions. Also included is information on bacteria that produce TMA in the oral cavity and vagina, two key microbiome niches that can influence health. Finally, we discuss the importance of the TMA/TMAO microbiome-host axis in health and disease, considering factors that affect bacterial production and host metabolism of TMA, the involvement of TMAO and FMO3 in disease, and the implications of the host-microbiome axis for management of TMAU. PMID:27190056

  1. On Dioxygen and Substrate Access to Soluble Methane Monooxygenases: An all-Atom Molecular Dynamics Investigation in Water Solution.

    PubMed

    Pietra, Francesco

    2017-01-01

    In a preliminary exploration of the dummy model for diiron proteins, random-acceleration molecular dynamics (RAMD) revealed that a pure four-helix bundle structure, like hemerythrin, constitutes an efficient cage for dioxygen (O 2 ), which can only leave from defined, albeit very broad, gates. However, this well ordered structure does not constitute an archetype on which to compare O 2 permeation of other diiron proteins, like the complex of soluble methane monooxygenase hydroxylase with the regulatory protein (sMMOH-MMOB). The reason is that with this complex, unlike hemerythrin, the four helices of the four-helix bundle are heavily bent, and RAMD showed that most traps for O 2 lie outside them. It was also observed that, in spite of a nearly identical van der Waals radius for O 2 and the natural substrate CH 4 , the latter behaves under RAMD as a bulkier molecule than O 2 , requiring a higher external force to be brought out of sMMOH-MMOB along trajectories of viable length. All that determined with sMMOH-MMOB multiple gates and multiple pathways to each of them through several binding pockets, for both O 2 and CH 4 . Of the two equally preferred pathways for O 2 , at right angle with one another, one proved to be in accordance with the Xe-atom mapping for sMMOH. In contrast, none of the pathways identified for CH 4 proved to be in accordance with such mapping, CH 4 looking for more open avenues instead. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans.

    PubMed

    Attar, Mayssa; Dong, Dahai; Ling, Kah-Hiing John; Tang-Liu, Diane D-S

    2003-04-01

    Upon oral administration, tazarotene is rapidly converted to tazarotenic acid by esterases. The main circulating agent, tazarotenic acid is subsequently oxidized to the inactive sulfoxide metabolite. Therefore, alterations in the metabolic clearance of tazarotenic acid may have significant effects on its systemic exposure. The objective of this study was to identify the human liver microsomal enzymes responsible for the in vitro metabolism of tazarotenic acid. Tazarotenic acid was incubated with 1 mg/ml pooled human liver microsomes, in 100 mM potassium phosphate buffer (pH 7.4), at 37 degrees C, over a period of 30 min. The microsomal enzymes that may be involved in tazarotenic acid metabolism were identified through incubation with microsomes containing cDNA-expressed human microsomal isozymes. Chemical inhibition studies were then conducted to confirm the identity of the enzymes potentially involved in tazarotenic acid metabolism. Reversed-phase high performance liquid chromatography was used to quantify the sulfoxide metabolite, the major metabolite of tazarotenic acid. Upon incubation of tazarotenic acid with microsomes expressing CYP2C8, flavin-containing monooxygenase 1 (FMO1), or FMO3, marked formation of the sulfoxide metabolite was observed. The involvement of these isozymes in tazarotenic acid metabolism was further confirmed by inhibition of metabolite formation in pooled human liver microsomes by specific inhibitors of CYP2C8 or FMO. In conclusion, the in vitro metabolism of tazarotenic acid to its sulfoxide metabolite in human liver microsomes is mediated by CYP2C8 and FMO.

  3. Biosynthetic machinery of ionophore polyether lasalocid: enzymatic construction of polyether skeleton.

    PubMed

    Minami, Atsushi; Oguri, Hiroki; Watanabe, Kenji; Oikawa, Hideaki

    2013-08-01

    Diversity of natural polycyclic polyethers originated from very simple yet versatile strategy consisting of epoxidation of linear polyene followed by epoxide opening cascade. To understand two-step enzymatic transformations at molecular basis, a flavin containing monooxygenase (EPX) Lsd18 and an epoxide hydrolase (EH) Lsd19 were selected as model enzymes for extensive investigation on substrate specificity, catalytic mechanism, cofactor requirement and crystal structure. This pioneering study on prototypical lasalocid EPX and EH provides insight into detailed mechanism of ionophore polyether assembly machinery and clarified remaining issues for polyether biosynthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  5. Evaluating cytochrome P450 in birds by monooxygenases and immunohistochemistry: possible nonlethal assessment by skin immunohistochemistry

    USGS Publications Warehouse

    Melancon, M.J.; Kutay, A.L.; Woodin, Bruce R.; Stegeman, John J.

    2000-01-01

    Six month old Lesser Scaup and nestling Tree Swallows were injected intraperitoneally with beta-naphthoflavone (BNF) or vehicle. Nestling Tree Swallows were also collected from five sites with differing levels of contaminants. Liver samples were taken and stored at -80C until microsome preparation and monooxygenase (MO) assay. Skin and heart samples were placed in buffered formalin until immunohistochemical (IMHC) analysis for cytochrome P4501A (CYP1A). Scaup treated with BNF at 20 or 100 mg/kg body weight showed approximately 20- to 65-fold increases in four MOs. Responses of two of the four MOs were as high at 20 mg/kg as at 100mg/kg. There was no IMHC response in the vehicle-injected ducks, while in skin the IMHC response was the same for both dose levels of BNF and in heart there was response in two of four samples at 20 mg/kg and in all five samples at 100mg/kg. Tree Swallows injected with BNF at 100, but not at 20 mg/kg showed significant increases (ca.5-fold) in two MO activities. There was no IMHC response in control swallows. In skin and heart there were IMHC responses in one of five swallows at 20 mg/kg and four of five swallows at 100mg/kg. There was poor correlation between individual skin IMHC responses and MO activities and PCB concentrations in 47 field-collected Tree Swallow samples, but 14 of the 16 skin samples with positive IMHC responses were from the location with the highest MO activities and PCB concentrations. Although present data do not allow construction of significant dose response curves, the responses in skin make it well worth continuing study on this potential nonlethal technique for biomonitoring contaminant exposure of birds.

  6. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.

    PubMed

    Robinson, Reeder; Franceschini, Stefano; Fedkenheuer, Michael; Rodriguez, Pedro J; Ellerbrock, Jacob; Romero, Elvira; Echandi, Maria Paulina; Martin Del Campo, Julia S; Sobrado, Pablo

    2014-04-01

    Siderophore A (SidA) is a flavin-dependent monooxygenase that catalyzes the NAD(P)H- and oxygen-dependent hydroxylation of ornithine in the biosynthesis of siderophores in Aspergillus fumigatus and is essential for virulence. SidA can utilize both NADPH or NADH for activity; however, the enzyme is selective for NADPH. Structural analysis shows that R279 interacts with the 2'-phosphate of NADPH. To probe the role of electrostatic interactions in coenzyme selectivity, R279 was mutated to both an alanine and a glutamate. The mutant proteins were active but highly uncoupled, oxidizing NADPH and producing hydrogen peroxide instead of hydroxylated ornithine. For wtSidA, the catalytic efficiency was 6-fold higher with NADPH as compared to NADH. For the R279A mutant the catalytic efficiency was the same with both coenyzmes, while for the R279E mutant the catalytic efficiency was 5-fold higher with NADH. The effects are mainly due to an increase in the KD values, as no major changes on the kcat or flavin reduction values were observed. Thus, the absence of a positive charge leads to no coenzyme selectivity while introduction of a negative charge leads to preference for NADH. Flavin fluorescence studies suggest altered interaction between the flavin and NADP⁺ in the mutant enzymes. The effects are caused by different binding modes of the coenzyme upon removal of the positive charge at position 279, as no major conformational changes were observed in the structure for R279A. The results indicate that the positive charge at position 279 is critical for tight binding of NADPH and efficient hydroxylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth.

    PubMed

    McGenity, Terry J; Crombie, Andrew T; Murrell, J Colin

    2018-04-01

    Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria.

  8. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    PubMed Central

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  9. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    PubMed

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  10. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    PubMed

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control.

  11. Mechanism of Resistance Acquisition and Potential Associated Fitness Costs in Amyelois transitella (Lepidoptera: Pyralidae) Exposed to Pyrethroid Insecticides.

    PubMed

    Demkovich, Mark; Siegel, Joel P; Higbee, Bradley S; Berenbaum, May R

    2015-06-01

    The polyphagous navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is the most destructive pest of nut crops, including almonds and pistachios, in California orchards. Management of this insect has typically been a combination of cultural controls and insecticide use, with the latter increasing substantially along with the value of these commodities. Possibly associated with increased insecticide use, resistance has been observed recently in navel orangeworm populations in Kern County, California. In studies characterizing a putatively pyrethroid-resistant strain (R347) of navel orangeworm, susceptibility to bifenthrin and β-cyfluthrin was compared with that of an established colony of susceptible navel orangeworm. Administration of piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in first-instar feeding bioassays with the pyrethroids bifenthrin and β-cyfluthrin produced synergistic effects and demonstrated that cytochrome P450 monooxygenases and carboxylesterases contribute to resistance in this population. Resistance is therefore primarily metabolic and likely the result of overexpression of specific cytochrome P450 monooxygenases and carboxylesterase genes. Resistance was assessed by median lethal concentration (LC50) assays and maintained across nine generations in the laboratory. Life history trait comparisons between the resistant strain and susceptible strain revealed significantly lower pupal weights in resistant individuals reared on the same wheat bran-based artificial diet across six generations. Time to second instar was greater in the resistant strain than the susceptible strain, although overall development time was not significantly different between strains. Resistance was heritable and may have an associated fitness cost, which could influence the dispersal and expansion of resistant populations in nut-growing areas in California. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. CD and MCD studies of the effects of component B variant binding on the biferrous active site of methane monooxygenase.

    PubMed

    Mitić, Natasa; Schwartz, Jennifer K; Brazeau, Brian J; Lipscomb, John D; Solomon, Edward I

    2008-08-12

    The multicomponent soluble form of methane monooxygenase (sMMO) catalyzes the oxidation of methane through the activation of O 2 at a nonheme biferrous center in the hydroxylase component, MMOH. Reactivity is limited without binding of the sMMO effector protein, MMOB. Past studies show that mutations of specific MMOB surface residues cause large changes in the rates of individual steps in the MMOH reaction cycle. To define the structural and mechanistic bases for these observations, CD, MCD, and VTVH MCD spectroscopies coupled with ligand-field (LF) calculations are used to elucidate changes occurring near and at the MMOH biferrous cluster upon binding of MMOB and the MMOB variants. Perturbations to both the CD and MCD are observed upon binding wild-type MMOB and the MMOB variant that similarly increases O 2 reactivity. MMOB variants that do not greatly increase O 2 reactivity fail to cause one or both of these changes. LF calculations indicate that reorientation of the terminal glutamate on Fe2 reproduces the spectral perturbations in MCD. Although this structural change allows O 2 to bridge the diiron site and shifts the redox active orbitals for good overlap, it is not sufficient for enhanced O 2 reactivity of the enzyme. Binding of the T111Y-MMOB variant to MMOH induces the MCD, but not CD changes, and causes only a small increase in reactivity. Thus, both the geometric rearrangement at Fe2 (observed in MCD) coupled with a more global conformational change that may control O 2 access (probed by CD), induced by MMOB binding, are critical factors in the reactivity of sMMO.

  13. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  14. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leoni, Claudia; Buratti, Franca M.; Testai, Emanuela

    Although fenthion (FEN) is widely used as a broad spectrum insecticide on various crops in many countries, very scant data are available on its biotransformation in humans. In this study the in vitro human hepatic FEN biotransformation was characterized, identifying the relative contributions of cytochrome P450 (CYPs) and/or flavin-containing monooxygenase (FMOs) by using single c-DNA expressed human enzymes, human liver microsomes and cytosol and CYP/FMO-specific inhibitors. Two major metabolites, FEN-sulfoxide and FEN-oxon (FOX), are formed by some CYPs although at very different levels, depending on the relative CYP hepatic content. Formation of further oxidation products and the reduction of FEN-sulfoxidemore » back to FEN by the cytosolic aldehyde oxidase enzyme were ruled out. Comparing intrinsic clearance values, FOX formation seemed to be favored and at low FEN concentrations CYP2B6 and 1A2 are mainly involved in its formation. At higher levels, a more widespread CYP involvement was evident, as in the case of FEN-sulfoxide, although a higher efficiency of CYP2C family was suggested. Hepatic FMOs were able to catalyze only sulfoxide formation, but at low FEN concentrations hepatic FEN sulfoxidation is predominantly P450-driven. Indeed, the contribution of the hepatic isoforms FMO{sub 3} and FMO{sub 5} was generally negligible, although at high FEN concentrations FMO's showed activities comparable to the active CYPs, accounting for up to 30% of total sulfoxidation. Recombinant FMO{sub 1} showed the highest efficiency with respect to CYPs and the other FMOs, but it is not expressed in the adult human liver. This suggests that FMO{sub 1}-catalysed sulfoxidation may represent the major extra-hepatic pathway of FEN biotransformation.« less

  15. Contributions of the three CYP1 monooxygenases to pro-inflammatory and inflammation-resolution lipid mediator pathways.

    PubMed

    Divanovic, Senad; Dalli, Jesmond; Jorge-Nebert, Lucia F; Flick, Leah M; Gálvez-Peralta, Marina; Boespflug, Nicholas D; Stankiewicz, Traci E; Fitzgerald, Jonathan M; Somarathna, Maheshika; Karp, Christopher L; Serhan, Charles N; Nebert, Daniel W

    2013-09-15

    All three cytochrome P450 1 (CYP1) monooxygenases are believed to participate in lipid mediator biosynthesis and/or their local inactivation; however, distinct metabolic steps are unknown. We used multiple-reaction monitoring and liquid chromatography-UV coupled with tandem mass spectrometry-based lipid-mediator metabololipidomics to identify and quantify three lipid-mediator metabolomes in basal peritoneal and zymosan-stimulated inflammatory exudates, comparing Cyp1a1/1a2/1b1(⁻/⁻) C57BL/6J-background triple-knockout mice with C57BL/6J wild-type mice. Significant differences between untreated triple-knockout and wild-type mice were not found for peritoneal cell number or type or for basal CYP1 activities involving 11 identified metabolic steps. Following zymosan-initiated inflammation, 18 lipid mediators were identified, including members of the eicosanoids and specialized proresolving mediators (i.e., resolvins and protectins). Compared with wild-type mice, Cyp1 triple-knockout mice exhibited increased neutrophil recruitment in zymosan-treated peritoneal exudates. Zymosan stimulation was associated with eight statistically significantly altered metabolic steps: increased arachidonic acid-derived leukotriene B₄ (LTB₄) and decreased 5S-hydroxyeicosatetraenoic acid; decreased docosahexaenoic acid-derived neuroprotectin D1/protectin D1, 17S-hydroxydocosahexaenoic acid, and 14S-hydroxydocosahexaenoic acid; and decreased eicosapentaenoic acid-derived 18R-hydroxyeicosapentaenoic acid (HEPE), 15S-HEPE, and 12S-HEPE. In neutrophils analyzed ex vivo, elevated LTB₄ levels were shown to parallel increased neutrophil numbers, and 20-hydroxy-LTB₄ formation was found to be deficient in Cyp1 triple-knockout mice. Together, these results demonstrate novel contributions of CYP1 enzymes to the local metabolite profile of lipid mediators that regulate neutrophilic inflammation.

  16. Rapid down-regulation of testicular androgen biosynthesis at increased environmental temperature is due to cytochrome P450c17 (CYP17) thermolability in Leydig cells, but not in endoplasmic reticulum membranes.

    PubMed

    Kühn-Velten, W N

    1996-01-01

    To identify possible molecular targets in moderate heat-induced, short-term derangements of rat testicular endocrine function, rates of androgen and precursor biosynthesis and key enzyme concentrations were compared at 38 degrees C (normal body core temperature) and 31 degrees C (normal scrotal temperature) in three in-vitro models of decreasing complexity and increasing specificity. In purified Leydig cells and similarly in decapsulated testes, gross testosterone secretion was by 20% higher at 38 degrees C under basal conditions and during the initial phase of stimulation with hCG or cAMP; longer (> 1 hour) exposure to the elevated temperature resulted in a marked decrease (52% after 3 hours) of testosterone response to hCG or cAMP as compared to the corresponding rates at 31 degrees C. This phenomenon was neither due to the development of hormone resistance at the receptor level nor to restricted cholesterol supply and turnover nor to increased testosterone accumulation. Whereas mitochondrial CYP11A (cytochrome P450cscc: cholesterol monooxygenase) was absolutely temperature-insensitive in all systems tested, CYP17 (cytochrome P450c17: steroid-17 alpha-monooxygenase/C17, 20-aldolase) in the smooth endoplasmic reticulum responded with a 57% loss in whole testes and 39% loss in purified Leydig cells upon a 3-hour temperature elevation from 31 degrees C to 38 degrees C. In contrast, CYP17 was stable (4% loss) when tested directly in microsomal membranes. It is concluded that CYP17, but not CYP11A, is very sensitive towards even moderate elevation of environmental temperature, and that this apparent lability is not an intrinsic property of the enzyme protein but rather mediated by heat-activated intracellular factors.

  17. Toxicological, Enzymatic, and Molecular Assessment of the Insecticide Susceptibility Profile of Triatoma infestans (Hemiptera: Reduviidae, Triatominae) Populations From Rural Communities of Santa Cruz, Bolivia.

    PubMed

    Santo-Orihuela, Pablo L; Vassena, Claudia V; Carvajal, Guillermo; Clark, Eva; Menacho, Silvio; Bozo, Ricardo; Gilman, Robert H; Bern, Caryn; Marcet, Paula L

    2017-01-01

    A wide range of insecticide resistance profiles has been reported across Bolivian domestic and sylvatic populations of Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae), including some with levels proven to be a threat for vector control. In this work, the insecticide profile of domestic T. infestans was studied with standardized toxicological bioassays, in an area that has not undergone consistent vector control. F1 first-instar nymphs hatched in laboratory from bugs captured in three communities from the Santa Cruz Department were evaluated with different insecticides. Moreover, the enzymatic activity of esterases and cytochrome P450 monooxygenases was measured in individual insects to evaluate the possible mechanism of metabolic resistance to pyrethroids. In addition, the DNA sequence of sodium channel gene (kdr) was screened for two point mutations associated with pyrethroid resistance previously reported in T. infestans.All populations showed reduced susceptibility to deltamethrin and α-cypermethrin, albeit the RR50 values varied significantly among them. Increased P450 monooxygenases and permethrate esterases suggest the contribution, as detoxifying mechanisms, to the observed resistance to deltamethrin in all studied populations. No individuals presented either mutation associated to resistance in the kdr gene. The level of susceptibility to α-cypermethrin, the insecticide used by the local vector control program, falls within an acceptable range to continue its use in these populations. However, the observed RR50 values evidence the possibility of selection for resistance to pyrethroids, especially to deltamethrin. Consequently, the use of pyrethroid insecticides should be closely monitored in these communities, which should be kept under entomological surveillance and sustained interventions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter.

    PubMed

    Landry, Zachary; Swan, Brandon K; Herndl, Gerhard J; Stepanauskas, Ramunas; Giovannoni, Stephen J

    2017-04-18

    Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist. IMPORTANCE Carbon in the ocean is massively sequestered in a complex mixture of biologically refractory molecules that accumulate as the chemical end member of biological oxidation and diagenetic change. However, few details are known about the biochemical machinery of carbon sequestration in the deep ocean. Reconstruction of the metabolism of a deep-ocean microbial clade, SAR202, led to postulation of new biochemical pathways that may be the penultimate stages of DOM oxidation to refractory forms that persist. These pathways are tied to a proliferation of oxidative enzymes. This research illuminates dark-ocean biochemistry that is broadly consequential for reconstructing the global carbon cycle. Copyright © 2017 Landry et al.

  19. Induction of cytochromes P450 1A1 and 1B1 in human lung adenocarcinoma CL5 cells by frying-meat emission particulate.

    PubMed

    Wang, H-W; Chen, T-L; Yang, P-C; Ma, Y-C; Yu, C-C; Ueng, T-H

    2002-05-01

    The effect of airborne frying-meat emission particulate (FMEP) on cytochrome P450 (P450)-dependent monooxygenase was determined using human lung adenocarcinoma cell line CL5 treated with organic extract of FMEP prepared from beef, fish or pork. Treatment with fish FMEP extract caused greater increases of intracellular peroxide production and glutathione content than did beef and pork FMEP extracts. Treatment with 200 microg/ml beef, fish or pork FMEP extract for 6 h increased benzo[a]pyrene hydroxylase, 7-ethoxyresorufin and methoxyresorufin O-dealkylases activities in S9. Immunoblot analysis of S9 proteins from control cells and cells treated with FMEP extracts revealed that the airborne particulates increased proteins immunorelated to CYP1A1 and CYP1B1. Northern blot analysis of total cellular RNA from controls and cells treated with FMEP extracts showed that the cooking by-products increased the levels of CYP1A1 and CYP1B1 mRNA. Treatment with 1 microM dibenzo[a,h]anthracene for 6 h increased monooxygenase activities, CYP1A1 and CYP1B1 protein and mRNA levels in CL5 cells. Beef FMEP extract and dibenzo[a,h]anthracene also induced CYP1A1 and CYP1B1 in human lung carcinoma NCI-H322 cells. The present finding demonstrates that airborne particulates generated during the frying of beef, fish and pork can induce carcinogen-metabolizing CYP1A1 and CYP1B1 in the human lung-derived cell line CL5.

  20. Toxicological, Enzymatic, and Molecular Assessment of the Insecticide Susceptibility Profile of Triatoma infestans (Hemiptera: Reduviidae, Triatominae) Populations From Rural Communities of Santa Cruz, Bolivia

    PubMed Central

    Santo-Orihuela, Pablo L.; Vassena, Claudia V.; Carvajal, Guillermo; Clark, Eva; Menacho, Silvio; Bozo, Ricardo; Gilman, Robert H.; Bern, Caryn; Marcet, Paula L.

    2017-01-01

    A wide range of insecticide resistance profiles has been reported across Bolivian domestic and sylvatic populations of Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae), including some with levels proven to be a threat for vector control. In this work, the insecticide profile of domestic T. infestans was studied with standardized toxicological bioassays, in an area that has not undergone consistent vector control. F1 first-instarnymphs hatched in laboratory from bugs captured in three communities from the Santa Cruz Department were evaluated with different insecticides. Moreover, the enzymatic activity of esterases and cytochrome P450 monooxygenases was measured in individual insects to evaluate the possible mechanism of metabolic resistance to pyrethroids. In addition, the DNA sequence of sodium channel gene (kdr) was screened for two point mutations associated with pyrethroid resistance previously reported in T. infestans. All populations showed reduced susceptibility to deltamethrin and α-cypermethrin, albeit the RR50 values varied significantly among them. Increased P450 monooxygenases and permethrate esterases suggest the contribution, as detoxifying mechanisms, to the observed resistance to deltamethrin in all studied populations. No individuals presented either mutation associated to resistance in the kdr gene. The level of susceptibility to α-cypermethrin, the insecticide used by the local vector control program, falls within an acceptable range to continue its use in these populations. However, the observed RR50 values evidence the possibility of selection for resistance to pyrethroids, especially to deltamethrin. Consequently, the use of pyrethroid insecticides should be closely monitored in these communities, which should be kept under entomological surveillance and sustained interventions. PMID:28011736

  1. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    PubMed Central

    Alonso, Hernan

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C12E8]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-d-maltopyranoside (DM), n-dodecyl-β-d-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism. PMID:22941083

  2. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker Trimethylamine N-oxide from dietary precursors

    PubMed Central

    Petriello, Michael C; Hoffman, Jessie B; Sunkara, Manjula; Wahlang, Banrida; Perkins, Jordan T; Morris, Andrew J; Hennig, Bernhard

    2016-01-01

    The etiology of cardiovascular disease (CVD) is impacted by multiple modifiable and non-modifiable risk factors including dietary choices, genetic predisposition, and environmental exposures. However, mechanisms linking diet, exposure to pollutants, and CVD risk are largely unclear. Recent studies identified a strong link between plasma levels of nutrient-derived Trimethylamine N-oxide (TMAO) and coronary artery disease. Dietary precursors of TMAO include carnitine and phosphatidylcholine, which are abundant in animal-derived foods. Dioxin-like pollutants can upregulate a critical enzyme responsible for TMAO formation, hepatic flavin containing monooxygenase 3 (FMO3), but a link between dioxin-like PCBs, upregulation of FMO3, and increased TMAO has not been reported. Here, we show that mice exposed acutely to dioxin-like PCBs exhibit increased hepatic FMO3 mRNA, protein, as well as an increase in circulating levels of TMAO following oral administration of its metabolic precursors. C57BL/6 mice were exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg). At 48 h post-PCB exposure, mice were subsequently given a single gavage of phosphatidylcholine dissolved in corn oil. Exposure to 5 μmole/kg PCB 126 resulted in greater than 100-fold increase in FMO3 mRNA expression, robust induction of FMO3 protein, and a 5-fold increase in TMAO levels compared with vehicle treated mice. We made similar observations in mice exposed to PCB 77 (49.6 mg/kg twice); stable isotope tracer studies revealed increased formation of plasma TMAO from an orally administered precursor trimethylamine (TMA). Taken together, these observations suggest a novel diet-toxicant interaction that results in increased production of a circulating biomarker of cardiovascular disease risk. PMID:27155921

  3. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    PubMed Central

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  4. A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor.

    PubMed

    Vishwanatha, Kurutihalli; Bäck, Nils; Mains, Richard E; Eipper, Betty A

    2014-05-02

    Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.

  5. A Structural Model of a P450-Ferredoxin Complex from Orientation-Selective Double Electron-Electron Resonance Spectroscopy.

    PubMed

    Bowen, Alice M; Johnson, Eachan O D; Mercuri, Francesco; Hoskins, Nicola J; Qiao, Ruihong; McCullagh, James S O; Lovett, Janet E; Bell, Stephen G; Zhou, Weihong; Timmel, Christiane R; Wong, Luet Lok; Harmer, Jeffrey R

    2018-02-21

    Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe 2 S 2 ] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe 2 S 2 ] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.

  6. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus*

    PubMed Central

    Forsberg, Zarah; Nelson, Cassandra E.; Dalhus, Bjørn; Mekasha, Sophanit; Loose, Jennifer S. M.; Crouch, Lucy I.; Røhr, Åsmund K.; Gardner, Jeffrey G.; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2016-01-01

    Cellvibrio japonicus is a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO, CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of the CjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show that CjLPMO10A is needed by C. japonicus to obtain efficient growth on both purified chitin and crab shell particles. PMID:26858252

  7. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus.

    PubMed

    Forsberg, Zarah; Nelson, Cassandra E; Dalhus, Bjørn; Mekasha, Sophanit; Loose, Jennifer S M; Crouch, Lucy I; Røhr, Åsmund K; Gardner, Jeffrey G; Eijsink, Vincent G H; Vaaje-Kolstad, Gustav

    2016-04-01

    Cellvibrio japonicusis a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO,CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of theCjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show thatCjLPMO10A is needed byC. japonicusto obtain efficient growth on both purified chitin and crab shell particles. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme*

    PubMed Central

    Bonnemaison, Mathilde L.; Bäck, Nils; Duffy, Megan E.; Ralle, Martina; Mains, Richard E.; Eipper, Betty A.

    2015-01-01

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. PMID:26170456

  9. Peripheral kynurenine-3-monooxygenase deficiency as a potential risk factor for metabolic syndrome in schizophrenia patients.

    PubMed

    Oxenkrug, Gregory; van der Hart, Marieke; Roeser, Julien; Summergrad, Paul

    2017-01-01

    Increased predisposition of schizophrenia patients (SP) to development of obesity and insulin resistance suggested common signaling pathway between metabolic syndrome (MetS) and schizophrenia. Deficiency of kynurenine-3-monooxygenase (KMO), enzyme catalyzing formation of 3-hydroxykynurenine (3-HK) from kynurenine (Kyn), a tryptophan (Trp) metabolite, might contribute to development of MetS as suggested by non-expression of KMO genes in human fat tissue and elevated serum concentrations of Kyn and its metabolites, kynurenic (KYNA) and anthranilic (ANA) acids, in diabetic patients and Zucker fatty rats (ZFR). Markers of KMO deficiency: decreased 3-HK and elevated Kyn, KYNA and ANA, were observed in brains and spinal fluids of SP, and in brains and serum of experimental animals with genetically- or pharmacologically-induced KMO deficiency. However, elevated concentrations of ANA and decreased 3-HK were reported in serum of SP without concurrent increase of Kyn and KYNA. Present study aimed to re-assess serum Kyn metabolites (HPLC-MS) in a sub-group of SP with elevated KYNA. We found increased Kyn concentrations (by 30%) and Kyn:Trp ratio (by 20%) in serum of SP with elevated KYNA concentrations (by 40%). Obtained results and our previous data suggest that peripheral KMO deficiency might be manifested by, at least, two different patterns: elevated ANA with decreased 3-HK; and elevated KYNA and KYN. The latter pattern was previously described in type 2 diabetes patients and might underline increased predisposition of SP to development of MetS. Assessment of peripheral KMO deficiency might identify SP predisposed to MetS. Attenuation of the consequences of peripheral KMO deficiency might be a new target for prevention/treatment of obesity and diabetes in SP.

  10. Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation.

    PubMed

    Garrison, Allison M; Parrott, Jennifer M; Tuñon, Arnulfo; Delgado, Jennifer; Redus, Laney; O'Connor, Jason C

    2018-08-01

    Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 h, mRNA expression of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3-dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 h post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO -/- mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect of KMO inhibition on microglia during immune challenge and suggest that KP metabolic balance may play a direct role in regulating microglia activity. Published by Elsevier Ltd.

  11. Heterologous expression and purification of kynurenine-3-monooxygenase from Pseudomonas fluorescens strain 17400.

    PubMed

    Crozier, Karen R; Moran, Graham R

    2007-02-01

    Kynurenine 3-monooxygenase (KMO) is an NADPH-dependent flavoprotein hydroxylase that catalyzes the conversion of l-Kynurenine (L-Kyn) to 3-hydroxykynurenine (3OHKyn). The reaction is central to the tryptophan degradative pathway and takes place within microglial cells defining cellular concentrations of the N-methyl-d-aspatate (NMDA) receptor agonist quinolinate and antagonist kynurenate. The influence over the cellular concentrations of these NMDA receptor effectors makes KMO an attractive target for the treatment of ischemic stroke. Pseudomonas fluorescens str 17400, expresses five activities of tryptophan catabolism including that of KMO. The KMO gene from P. fluorescens was cloned into the pET-17b plasmid using incorporated NdeI and XhoI restriction sites. This construct yielded PfKMO to 20% of total cell protein after 12h of expression at 22 degrees C without induction by isopropyl-beta-thiogalactopyranoside (IPTG). The enzyme could be readily purified using ammonium sulfate fractionation and ion exchange chromatography, resulting in pure KMO with a turnover number of 5.0 s(-1). PfKMO activity was dependent on the reduction state of the enzyme. Preparation and storage benefited from the presence of a reductant such as dithiothreitol or beta-mercaptoethanol. The loss of activity was found to be directly related to the oxidation of thiols as measured by dinitrothiobenzoate assay. Steady-state assays monitoring the consumption of dioxygen were used to measure apparent kinetic parameters and ligand perturbation of flavin fluorescence was used to determine a Kd value for both L-Kyn and the inhibitor m-nitrobenzoylalanine. PfKMO is offered as prototypical bacterial form of the enzyme to serve as a viable platform on which to base future KMO studies.

  12. Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model.

    PubMed

    Rojewska, Ewelina; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2016-03-01

    Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Downregulated Kynurenine 3-Monooxygenase Gene Expression and Enzyme Activity in Schizophrenia and Genetic Association With Schizophrenia Endophenotypes

    PubMed Central

    Wonodi, Ikwunga; Stine, O. Colin; Sathyasaikumar, Korrapati V.; Roberts, Rosalinda C.; Mitchell, Braxton D.; Hong, L. Elliot; Kajii, Yasushi; Thaker, Gunvant K.; Schwarcz, Robert

    2013-01-01

    Context Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. Objectives To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Design Case-control postmortem and clinical study. Setting Maryland Brain Collection, outpatient clinics. Participants Postmortem specimens from schizophrenia patients (n=32) and control donors (n=32) and a clinical sample of schizophrenia patients (n=248) and healthy controls (n=228). Main Outcome Measures Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). Results In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Conclusion Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits. PMID:21727251

  14. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma?

    PubMed

    Connor, Thomas J; Starr, Neasa; O'Sullivan, Joan B; Harkin, Andrew

    2008-08-15

    Inflammation-mediated dysregulation of the kynurenine pathway has been implicated as a contributor to a number of major brain disorders. Consequently, we examined the impact of a systemic inflammatory challenge on kynurenine pathway enzyme expression in rat brain. Indoleamine 2,3-dioxygenase (IDO) expression was induced in cortex and hippocampus following systemic lipopolysaccharide (LPS) administration. Whilst IDO expression was paralleled by increased circulating interferon (IFN)-gamma concentrations, IFN-gamma expression in the brain was only modestly altered following LPS administration. In contrast, induction of IDO was associated with increased central tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 expression. Similarly, in cultured glial cells LPS-induced IDO expression was accompanied by increased TNF-alpha and IL-6 expression, whereas IFN-gamma was not detectable. These findings indicate that IFN-gamma is not required for LPS-induced IDO expression in brain. A robust increase in kynurenine-3-monooxygenase (KMO) expression was observed in rat brain 24h post LPS, without any change in kynurenine aminotransferase II (KAT II) expression. In addition, we report that constitutive expression of KAT II is approximately 8-fold higher than KMO in cortex and 20-fold higher in hippocampus. Similarly, in glial cells constitutive expression of KAT II was approximately 16-fold higher than KMO, and expression of KMO but not KAT II was induced by LPS. These data are the first to demonstrate that a systemic inflammatory challenge stimulates KMO expression in brain; a situation that is likely to favour kynurenine metabolism in a neurotoxic direction. However, our observation that expression of KAT II is much higher than KMO in rat brain is likely to counteract potential neurotoxicity that could arise from KMO induction following an acute inflammation.

  15. Adaptive and Behavioral Changes in Kynurenine 3-monooxygenase Knockout Mice: Relevance to Psychotic Disorders

    PubMed Central

    Erhardt, Sophie; Pocivavsek, Ana; Repici, Mariaelena; Liu, Xi-Cong; Imbeault, Sophie; Maddison, Daniel C; Thomas, Marian AR; Smalley, Joshua L; Larsson, Markus K; Muchowski, Paul J; Giorgini, Flaviano; Schwarcz, Robert

    2018-01-01

    BACKGROUND Kynurenine 3-monooxygenase (KMO) converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway - which is implicated as dysfunctional in various psychiatric disorders - towards enhanced synthesis of kynurenic acid (KYNA), an antagonist of both α7 nicotinic acetylcholine and NMDA receptors. Possibly as a result of reduced KMO activity, elevated central nervous system levels of KYNA have been found in patients with psychotic disorders, including schizophrenia (SZ). METHODS In the present study, we investigated adaptive – and possibly regulatory – changes in mice with a targeted deletion of Kmo (Kmo−/−) and characterized the KMO-deficient mice using six behavioral assays relevant for the study of SZ. RESULTS Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of SZ- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. KYNA levels were also increased in these brain regions in Kmo−/− mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo−/− mice exhibited impairments in contextual memory and spent less time than controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light-dark box. After a D-amphetamine challenge (5 mg/kg, i.p.), Kmo−/− mice showed potentiated horizontal activity in the open field paradigm. CONCLUSIONS Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders. PMID:28187857

  16. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes.

    PubMed

    Wonodi, Ikwunga; Stine, O Colin; Sathyasaikumar, Korrapati V; Roberts, Rosalinda C; Mitchell, Braxton D; Hong, L Elliot; Kajii, Yasushi; Thaker, Gunvant K; Schwarcz, Robert

    2011-07-01

    Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Case-control postmortem and clinical study. Maryland Brain Collection, outpatient clinics. Postmortem specimens from schizophrenia patients (n = 32) and control donors (n = 32) and a clinical sample of schizophrenia patients (n = 248) and healthy controls (n = 228). Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits.

  17. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    PubMed

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira

    PubMed Central

    Bartelme, Ryan P.; McLellan, Sandra L.; Newton, Ryan J.

    2017-01-01

    Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while supporting multiple ammonia oxidation lifestyles within the nitrifying consortium. PMID:28194147

  19. A Two-Component para-Nitrophenol Monooxygenase Initiates a Novel 2-Chloro-4-Nitrophenol Catabolism Pathway in Rhodococcus imtechensis RKJ300

    PubMed Central

    Min, Jun; Zhang, Jun-Jie

    2015-01-01

    Rhodococcus imtechensis RKJ300 (DSM 45091) grows on 2-chloro-4-nitrophenol (2C4NP) and para-nitrophenol (PNP) as the sole carbon and nitrogen sources. In this study, by genetic and biochemical analyses, a novel 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with hydroxyquinol (hydroxy-1,4-hydroquinone or 1,2,4-benzenetriol [BT]) as the ring cleavage substrate. Real-time quantitative PCR analysis indicated that the pnp cluster located in three operons is likely involved in the catabolism of both 2C4NP and PNP. The oxygenase component (PnpA1) and reductase component (PnpA2) of the two-component PNP monooxygenase were expressed and purified to homogeneity, respectively. The identification of chlorohydroquinone (CHQ) and BT during 2C4NP degradation catalyzed by PnpA1A2 indicated that PnpA1A2 catalyzes the sequential denitration and dechlorination of 2C4NP to BT and catalyzes the conversion of PNP to BT. Genetic analyses revealed that pnpA1 plays an essential role in both 2C4NP and PNP degradations by gene knockout and complementation. In addition to catalyzing the oxidation of CHQ to BT, PnpA1A2 was also found to be able to catalyze the hydroxylation of hydroquinone (HQ) to BT, revealing the probable fate of HQ that remains unclear in PNP catabolism by Gram-positive bacteria. This study fills a gap in our knowledge of the 2C4NP degradation mechanism in Gram-positive bacteria and also enhances our understanding of the genetic and biochemical diversity of 2C4NP catabolism. PMID:26567304

  20. N-terminus determines activity and specificity of styrene monooxygenase reductases.

    PubMed

    Heine, Thomas; Scholtissek, Anika; Westphal, Adrie H; van Berkel, Willem J H; Tischler, Dirk

    2017-12-01

    Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH 2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s -1 , one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bing; Kognole, Abhishek A.; Wu, Miao

    Lytic polysaccharide monooxygenases (LPMOs) are a group of recently discovered enzymes that play important roles in the decomposition of recalcitrant polysaccharides. Here, we report the biochemical, structural, and computational characterization of an LPMO from the white-rot fungus Heterobasidion irregulare (HiLPMO9B). This enzyme oxidizes cellulose at the C1 carbon of glycosidic linkages. The crystal structure of HiLPMO9B was determined at 2.1 A resolution using X-ray crystallography. Unlike the majority of the currently available C1-specific LPMO structures, the HiLPMO9B structure contains an extended L2 loop, connecting ..beta..-strands ..beta..2 and ..beta..3 of the ..beta..-sandwich structure. Molecular dynamics (MD) simulations suggest roles for bothmore » aromatic and acidic residues in the substrate binding of HiLPMO9B, with the main contribution from the residues located on the extended region of the L2 loop (Tyr20) and the LC loop (Asp205, Tyr207, and Glu210). Asp205 and Glu210 were found to be involved in the hydrogen bonding with the hydroxyl group of the C6 carbon of glucose moieties directly or via a water molecule. Two different binding orientations were observed over the course of the MD simulations. In each orientation, the active-site copper of this LPMO preferentially skewed toward the pyranose C1 of the glycosidic linkage over the targeted glycosidic bond. This study provides additional insight into cellulose binding by C1-specific LPMOs, giving a molecular-level picture of active site substrate interactions.« less

  2. Mammalian Peptidylglycine α-Amidating Monooxygenase mRNA Expression Can Be Modulated by the La Autoantigen

    PubMed Central

    Brenet, Fabienne; Dussault, Nadège; Borch, Jonas; Ferracci, Géraldine; Delfino, Christine; Roepstorff, Peter; Miquelis, Raymond; Ouafik, L'Houcine

    2005-01-01

    Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the COOH-terminal α-amidation of peptidylglycine substrates, yielding amidated products. We have previously reported a putative regulatory RNA binding protein (PAM mRNA-BP) that binds specifically to the 3′ untranslated region (UTR) of PAM-mRNA. Here, the PAM mRNA-BP was isolated and revealed to be La protein using affinity purification onto a 3′ UTR PAM RNA, followed by tandem mass spectrometry identification. We determined that the core binding sequence is approximately 15-nucleotides (nt) long and is located 471 nt downstream of the stop codon. Moreover, we identified the La autoantigen as a protein that specifically binds the 3′ UTR of PAM mRNA in vivo and in vitro. Furthermore, La protein overexpression caused a nuclear retention of PAM mRNAs and resulted in the down-regulation of endogenous PAM activity. Most interestingly, the nuclear retention of PAM mRNA is lost upon expressing the La proteins that lack a conserved nuclear retention element, suggesting a direct association between PAM mRNA and La protein in vivo. Reporter assays using a chimeric mRNA that combined luciferase and the 3′ UTR of PAM mRNA demonstrated a decrease of the reporter activity due to an increase in the nuclear localization of reporter mRNAs, while the deletion of the 15-nt La binding site led to their clear-cut cytoplasmic relocalization. The results suggest an important role for the La protein in the modulation of PAM expression, possibly by mechanisms that involve a nuclear retention and perhaps a processing of pre-PAM mRNA molecules. PMID:16107699

  3. An Investigation into the Prediction of in Vivo Clearance for a Range of Flavin-containing Monooxygenase Substrates.

    PubMed

    Jones, Barry C; Srivastava, Abhishek; Colclough, Nicola; Wilson, Joanne; Reddy, Venkatesh Pilla; Amberntsson, Sara; Li, Danxi

    2017-10-01

    Flavin-containing monooxygenases (FMO) are metabolic enzymes mediating the oxygenation of nucleophilic atoms such as nitrogen, sulfur, phosphorus, and selenium. These enzymes share similar properties to the cytochrome P450 system but can be differentiated through heat inactivation and selective substrate inhibition by methimazole. This study investigated 10 compounds with varying degrees of FMO involvement to determine the nature of the correlation between human in vitro and in vivo unbound intrinsic clearance. To confirm and quantify the extent of FMO involvement six of the compounds were investigated in human liver microsomal (HLM) in vitro assays using heat inactivation and methimazole substrate inhibition. Under these conditions FMO contribution varied from 21% (imipramine) to 96% (itopride). Human hepatocyte and HLM intrinsic clearance (CL int ) data were scaled using standard methods to determine the predicted unbound intrinsic clearance (predicted CL int u ) for each compound. This was compared with observed unbound intrinsic clearance (observed CL int u ) values back calculated from human pharmacokinetic studies. A good correlation was observed between the predicted and observed CL int u using hepatocytes ( R 2 = 0.69), with 8 of the 10 compounds investigated within or close to a factor of 2. For HLM the in vitro-in vivo correlation was maintained ( R 2 = 0.84) but the accuracy was reduced with only 3 out of 10 compounds falling within, or close to, twofold. This study demonstrates that human hepatocytes and HLM can be used with standard scaling approaches to predict the human in vivo clearance for FMO substrates. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors

    PubMed Central

    Fu, Chien-wei; Lin, Thy-Hou

    2017-01-01

    As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase (FMO) also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism (SOM) on a molecule is the site where the metabolic reaction is exerted by an enzyme. Accurate prediction of SOMs on drug molecules will assist the search for drug leads during the optimization process. Here, some quantum mechanics features such as the condensed Fukui function and attributes from circular fingerprints (called Molprint2D) are computed and classified using the support vector machine (SVM) for predicting some potential SOMs on a series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function fA− representing the nucleophilicity of central atom A and the attributes from circular fingerprints accounting the influence of neighbors on the central atom. The total number of FMO substrates and non-substrates collected in the study is 85 and they are equally divided into the training and test sets with each carrying roughly the same number of potential SOMs. However, only N-oxidation and S-oxidation features were considered in the prediction since the available C-oxidation data was scarce. In the training process, the LibSVM package of WEKA package and the option of 10-fold cross validation are employed. The prediction performance on the test set evaluated by accuracy, Matthews correlation coefficient and area under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals that the SVM model built can accurately predict the potential SOMs for drug molecules that are metabolizable by the FMO enzymes. PMID:28072829

  5. Comparative Genomic Analysis and Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylene (BTEX) Degradation Pathways of Pseudoxanthomonas spadix BD-a59

    PubMed Central

    Choi, Eun Jin; Jin, Hyun Mi; Lee, Seung Hyeon; Math, Renukaradhya K.; Madsen, Eugene L.

    2013-01-01

    Pseudoxanthomonas spadix BD-a59, isolated from gasoline-contaminated soil, has the ability to degrade all six BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) compounds. The genomic features of strain BD-a59 were analyzed bioinformatically and compared with those of another fully sequenced Pseudoxanthomonas strain, P. suwonensis 11-1, which was isolated from cotton waste compost. The genome of strain BD-a59 differed from that of strain 11-1 in many characteristics, including the number of rRNA operons, dioxygenases, monooxygenases, genomic islands (GIs), and heavy metal resistance genes. A high abundance of phage integrases and GIs and the patterns in several other genetic measures (e.g., GC content, GC skew, Karlin signature, and clustered regularly interspaced short palindromic repeat [CRISPR] gene homology) indicated that strain BD-a59's genomic architecture may have been altered through horizontal gene transfers (HGT), phage attack, and genetic reshuffling during its evolutionary history. The genes for benzene/toluene, ethylbenzene, and xylene degradations were encoded on GI-9, -13, and -21, respectively, which suggests that they may have been acquired by HGT. We used bioinformatics to predict the biodegradation pathways of the six BTEX compounds, and these pathways were proved experimentally through the analysis of the intermediates of each BTEX compound using a gas chromatograph and mass spectrometry (GC-MS). The elevated abundances of dioxygenases, monooxygenases, and rRNA operons in strain BD-a59 (relative to strain 11-1), as well as other genomic characteristics, likely confer traits that enhance ecological fitness by enabling strain BD-a59 to degrade hydrocarbons in the soil environment. PMID:23160122

  6. Metagenomic survey of methanesulfonic acid (MSA) catabolic genes in an Atlantic Ocean surface water sample and in a partial enrichment

    PubMed Central

    Henriques, Ana C.; Azevedo, Rui M.S.

    2016-01-01

    Methanesulfonic acid (MSA) is a relevant intermediate of the biogeochemical cycle of sulfur and environmental microorganisms assume an important role in the mineralization of this compound. Several methylotrophic bacterial strains able to grow on MSA have been isolated from soil or marine water and two conserved operons, msmABCD coding for MSA monooxygenase and msmEFGH coding for a transport system, have been repeatedly encountered in most of these strains. Homologous sequences have also been amplified directly from the environment or observed in marine metagenomic data, but these showed a base composition (G + C content) very different from their counterparts from cultivated bacteria. The aim of this study was to understand which microorganisms within the coastal surface oceanic microflora responded to MSA as a nutrient and how the community evolved in the early phases of an enrichment by means of metagenome and gene-targeted amplicon sequencing. From the phylogenetic point of view, the community shifted significantly with the disappearance of all signals related to the Archaea, the Pelagibacteraceae and phylum SAR406, and the increase in methylotroph-harboring taxa, accompanied by other groups so far not known to comprise methylotrophs such as the Hyphomonadaceae. At the functional level, the abundance of several genes related to sulfur metabolism and methylotrophy increased during the enrichment and the allelic distribution of gene msmA diagnostic for MSA monooxygenase altered considerably. Even more dramatic was the disappearance of MSA import-related gene msmE, which suggests that alternative transporters must be present in the enriched community and illustrate the inadequacy of msmE as an ecofunctional marker for MSA degradation at sea. PMID:27761315

  7. Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica).

    PubMed

    Luo, Di; Niu, Xiangli; Yu, Jinde; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2012-09-01

    Glycine betaine (GB) is a compatible quaternary amine that enables plants to tolerate abiotic stresses, including salt, drought and cold. In plants, GB is synthesized through two-step of successive oxidations from choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Rice is considered as a typical non-GB accumulating species, although the entire genome sequencing revealed rice contains orthologs of both CMO and BADH. Several studies unraveled that rice has a functional BADH gene, but whether rice CMO gene (OsCMO) is functional or a pseudogene remains to be elucidated. In the present study, we report the functional characterization of rice CMO gene. The OsCMO gene was isolated from rice cv. Nipponbare (Oryza sativa L. ssp. japonica) using RT-PCR. Northern blot demonstrated the transcription of OsCMO is enhanced by salt stress. Transgenic tobacco plants overexpressing OsCMO results in increased GB content and elevated tolerance to salt stress. Immunoblotting analysis demonstrates that a functional OsCMO protein with correct size was present in transgenic tobacco but rarely accumulated in wild-type rice plants. Surprisingly, a large amount of truncated proteins derived from OsCMO was induced in the rice seedlings in response to salt stresses. This suggests that it is the lack of a functional OsCMO protein that presumably results in non-GB accumulation in the tested rice plant. Expression and transgenic studies demonstrate OsCMO is transcriptionally induced in response to salt stress and functions in increasing glycinebetaine accumulation and enhancing tolerance to salt stress. Immunoblotting analysis suggests that no accumulation of glycinebetaine in the Japonica rice plant presumably results from lack of a functional OsCMO protein.

  8. Oxidation of C18 Hydroxy-Polyunsaturated Fatty Acids to Epoxide or Ketone by Catalase-Related Hemoproteins Activated with Iodosylbenzene.

    PubMed

    Teder, Tarvi; Boeglin, William E; Brash, Alan R

    2017-07-01

    Small catalase-related hemoproteins with a facility to react with fatty acid hydroperoxides were examined for their potential mono-oxygenase activity when activated using iodosylbenzene. The proteins tested were a Fusarium graminearum 41 kD catalase hemoprotein (Fg-cat, gene FGSG_02217), a Pseudomonas fluorescens Pfl01 catalase (37.5 kD, accession number WP_011333788.1), and a Mycobacterium avium ssp. paratuberculosis 33 kD catalase (gene MAP-2744c). 13-Hydroxy-octadecenoic acids (which are normally unreactive) were selected as substrates because these enzymes react specifically with the corresponding 13S-hydroperoxides (Pakhomova et al. 18:2559-2568, 5; Teder et al. 1862:706-715, 14). In the presence of iodosylbenzene Fg-cat converted 13S-hydroxy-fatty acids to two products: the 15,16-double bond of 13S-hydroxy α-linolenic acid was oxidized stereospecifically to the 15S,16R-cis-epoxide or the 13-hydroxyl was oxidized to the 13-ketone. Products were identified by UV, HPLC, LC-MS, NMR and by comparison with authentic standards prepared for this study. The Pfl01-cat displayed similar activity. MAP-2744c oxidized 13S-hydroxy-linoleic acid to the 13-ketone, and epoxidized the double bonds to form the 9,10-epoxy-13-hydroxy, 11,12-epoxy-13-hydroxy, and 9,10-epoxy-13-keto derivatives; equivalent transformations occurred with 9S-hydroxy-linoleic acid as substrate. In parallel incubations in the presence of iodosylbenzene, human catalase displayed no activity towards 13S-hydroxy-linoleic acid, as expected from the highly restricted access to its active site. The results indicated that with suitable transformation to Compound I, monooxygenase activity can be demonstrated by these catalase-related hemoproteins with tyrosine as the proximal heme ligand.

  9. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    PubMed

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Kong, Y; Liu, X-P; Wan, P-J; Shi, X-Q; Guo, W-C; Li, G-Q

    2014-10-01

    Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata. © 2014 The Royal Entomological Society.

  11. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101

    PubMed Central

    Kitagawa, Wataru; Kimura, Nobutada; Kamagata, Yoichi

    2004-01-01

    p-Nitrophenol (4-NP) is recognized as an environmental contaminant; it is used primarily for manufacturing medicines and pesticides. To date, several 4-NP-degrading bacteria have been isolated; however, the genetic information remains very limited. In this study, a novel 4-NP degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, was identified and characterized. The deduced amino acid sequences of npcB, npcA, and npcC showed identity with phenol 2-hydroxylase component B (reductase, PheA2) of Geobacillus thermoglucosidasius A7 (32%), with 2,4,6-trichlorophenol monooxygenase (TcpA) of Ralstonia eutropha JMP134 (44%), and with hydroxyquinol 1,2-dioxygenase (ORF2) of Arthrobacter sp. strain BA-5-17 (76%), respectively. The npcB, npcA, and npcC genes were cloned into pET-17b to construct the respective expression vectors pETnpcB, pETnpcA, and pETnpcC. Conversion of 4-NP was observed when a mixture of crude cell extracts of Escherichia coli containing pETnpcB and pETnpcA was used in the experiment. The mixture converted 4-NP to hydroxyquinol and also converted 4-nitrocatechol (4-NCA) to hydroxyquinol. Furthermore, the crude cell extract of E. coli containing pETnpcC converted hydroxyquinol to maleylacetate. These results suggested that npcB and npcA encode the two-component 4-NP/4-NCA monooxygenase and that npcC encodes hydroxyquinol 1,2-dioxygenase. The npcA and npcC mutant strains, SDA1 and SDC1, completely lost the ability to grow on 4-NP as the sole carbon source. These results clearly indicated that the cloned npc genes play an essential role in 4-NP mineralization in R. opacus SAO101. PMID:15262926

  12. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction.

    PubMed

    Gudmundsson, Mikael; Kim, Seonah; Wu, Miao; Ishida, Takuya; Momeni, Majid Hadadd; Vaaje-Kolstad, Gustav; Lundberg, Daniel; Royant, Antoine; Ståhlberg, Jerry; Eijsink, Vincent G H; Beckham, Gregg T; Sandgren, Mats

    2014-07-04

    Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes that employ a copper-mediated, oxidative mechanism to cleave glycosidic bonds. The LPMO catalytic mechanism likely requires that molecular oxygen first binds to Cu(I), but the oxidation state in many reported LPMO structures is ambiguous, and the changes in the LPMO active site required to accommodate both oxidation states of copper have not been fully elucidated. Here, a diffraction data collection strategy minimizing the deposited x-ray dose was used to solve the crystal structure of a chitin-specific LPMO from Enterococcus faecalis (EfaCBM33A) in the Cu(II)-bound form. Subsequently, the crystalline protein was photoreduced in the x-ray beam, which revealed structural changes associated with the conversion from the initial Cu(II)-oxidized form with two coordinated water molecules, which adopts a trigonal bipyramidal geometry, to a reduced Cu(I) form in a T-shaped geometry with no coordinated water molecules. A comprehensive survey of Cu(II) and Cu(I) structures in the Cambridge Structural Database unambiguously shows that the geometries observed in the least and most reduced structures reflect binding of Cu(II) and Cu(I), respectively. Quantum mechanical calculations of the oxidized and reduced active sites reveal little change in the electronic structure of the active site measured by the active site partial charges. Together with a previous theoretical investigation of a fungal LPMO, this suggests significant functional plasticity in LPMO active sites. Overall, this study provides molecular snapshots along the reduction process to activate the LPMO catalytic machinery and provides a general method for solving LPMO structures in both copper oxidation states. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Demonstration that CobG, the monooxygenase associated with the ring contraction process of the aerobic cobalamin (vitamin B12) biosynthetic pathway, contains an Fe-S center and a mononuclear non-heme iron center.

    PubMed

    Schroeder, Susanne; Lawrence, Andrew D; Biedendieck, Rebekka; Rose, Ruth-Sarah; Deery, Evelyne; Graham, Ross M; McLean, Kirsty J; Munro, Andrew W; Rigby, Stephen E J; Warren, Martin J

    2009-02-20

    The ring contraction process that occurs during cobalamin (vitamin B(12)) biosynthesis is mediated via the action of two enzymes, CobG and CobJ. The first of these generates a tertiary alcohol at the C-20 position of precorrin-3A by functioning as a monooxygenase, a reaction that also forms a gamma lactone with the acetic acid side chain on ring A. The product, precorrin-3B, is then acted upon by CobJ, which methylates at the C-17 position and promotes ring contraction of the macrocycle by catalyzing a masked pinacol rearrangement. Here, we report the characterization of CobG enzymes from Pseudomonas denitrificans and Brucella melitensis. We show that both contain a [4Fe-4S] center as well as a mononuclear non-heme iron. Although both enzymes are active in vivo, the P. denitrificans enzyme was found to be inactive in vitro. Further analysis of this enzyme revealed that the mononuclear non-heme iron was not reducible, and it was concluded that it is rapidly inactivated once it is released from the bacterial cell. In contrast, the B. melitensis enzyme was found to be fully active in vitro and the mononuclear non-heme iron was reducible by dithionite. The reduced mononuclear non-heme was able to react with the oxygen analogue NO, but only in the presence of the substrate precorrin-3A. The cysteine residues responsible for binding the Fe-S center were identified by site-directed mutagenesis. A mechanism for CobG is presented.

  14. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance.

    PubMed

    Sporer, Abigail J; Beierschmitt, Christopher; Bendebury, Anastasia; Zink, Katherine E; Price-Whelan, Alexa; Buzzeo, Marisa C; Sanchez, Laura M; Dietrich, Lars E P

    2018-05-01

    The activities of critical metabolic and regulatory proteins can be altered by exposure to natural or synthetic redox-cycling compounds. Many bacteria, therefore, possess mechanisms to transport or transform these small molecules. The opportunistic pathogen Pseudomonas aeruginosa PA14 synthesizes phenazines, redox-active antibiotics that are toxic to other organisms but have beneficial effects for their producer. Phenazines activate the redox-sensing transcription factor SoxR and thereby induce the transcription of a small regulon, including the operon mexGHI-opmD, which encodes an efflux pump that transports phenazines, and PA14_35160 (pumA), which encodes a putative monooxygenase. Here, we provide evidence that PumA contributes to phenazine resistance and normal biofilm development, particularly during exposure to or production of strongly oxidizing N-methylated phenazines. We show that phenazine resistance depends on the presence of residues that are conserved in the active sites of other putative and characterized monooxygenases found in the antibiotic producer Streptomyces coelicolor. We also show that during biofilm growth, PumA is required for the conversion of phenazine methosulfate to unique phenazine metabolites. Finally, we compare ∆mexGHI-opmD and ∆pumA strains in assays for colony biofilm morphogenesis and SoxR activation, and find that these deletions have opposing phenotypic effects. Our results suggest that, while MexGHI-OpmD-mediated efflux has the effect of making the cellular phenazine pool more reducing, PumA acts on cellular phenazines to make the pool more oxidizing. We present a model in which these two SoxR targets function simultaneously to control the biological activity of the P. aeruginosa phenazine pool.

  15. Recurrent Distal 7q11.23 Deletion Including HIP1 and YWHAG Identified in Patients with Intellectual Disabilities, Epilepsy, and Neurobehavioral Problems

    PubMed Central

    Ramocki, Melissa B.; Bartnik, Magdalena; Szafranski, Przemyslaw; Kołodziejska, Katarzyna E.; Xia, Zhilian; Bravo, Jaclyn; Miller, G. Steve; Rodriguez, Diana L.; Williams, Charles A.; Bader, Patricia I.; Szczepanik, Elżbieta; Mazurczak, Tomasz; Antczak-Marach, Dorota; Coldwell, James G.; Akman, Cigdem I.; McAlmon, Karen; Cohen, Melinda P.; McGrath, James; Roeder, Elizabeth; Mueller, Jennifer; Kang, Sung-Hae L.; Bacino, Carlos A.; Patel, Ankita; Bocian, Ewa; Shaw, Chad A.; Cheung, Sau Wai; Mazurczak, Tadeusz; Stankiewicz, Paweł

    2010-01-01

    We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.2 Mb deletion that includes the Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination in two patients. There were no cases of this ∼1.2 Mb distal 7q11.23 deletion copy number variant identified in over 20,000 control samples surveyed. Three individuals with smaller, nonrecurrent deletions (∼180–500 kb) that include HIP1 but not YWHAG suggest that deletion of HIP1 is sufficient to cause neurological disease. Mice with targeted mutation in the Hip1 gene (Hip1−/−) develop a neurological phenotype characterized by failure to thrive, tremor, and gait ataxia. Overall, our data characterize a neurodevelopmental and epilepsy syndrome that is likely caused by recurrent and nonrecurrent deletions, including HIP1. These data do not exclude the possibility that YWHAG loss of function is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein function and its proposed role in AMPA and NMDA ionotropic glutamate receptor trafficking, we believe that HIP1 haploinsufficiency in humans will be amenable to rational drug design for improved seizure control and cognitive and behavioral function. PMID:21109226

  16. Recurrent distal 7q11.23 deletion including HIP1 and YWHAG identified in patients with intellectual disabilities, epilepsy, and neurobehavioral problems.

    PubMed

    Ramocki, Melissa B; Bartnik, Magdalena; Szafranski, Przemyslaw; Kołodziejska, Katarzyna E; Xia, Zhilian; Bravo, Jaclyn; Miller, G Steve; Rodriguez, Diana L; Williams, Charles A; Bader, Patricia I; Szczepanik, Elżbieta; Mazurczak, Tomasz; Antczak-Marach, Dorota; Coldwell, James G; Akman, Cigdem I; McAlmon, Karen; Cohen, Melinda P; McGrath, James; Roeder, Elizabeth; Mueller, Jennifer; Kang, Sung-Hae L; Bacino, Carlos A; Patel, Ankita; Bocian, Ewa; Shaw, Chad A; Cheung, Sau Wai; Mazurczak, Tadeusz; Stankiewicz, Paweł

    2010-12-10

    We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.2 Mb deletion that includes the Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination in two patients. There were no cases of this ∼1.2 Mb distal 7q11.23 deletion copy number variant identified in over 20,000 control samples surveyed. Three individuals with smaller, nonrecurrent deletions (∼180-500 kb) that include HIP1 but not YWHAG suggest that deletion of HIP1 is sufficient to cause neurological disease. Mice with targeted mutation in the Hip1 gene (Hip1⁻(/)⁻) develop a neurological phenotype characterized by failure to thrive, tremor, and gait ataxia. Overall, our data characterize a neurodevelopmental and epilepsy syndrome that is likely caused by recurrent and nonrecurrent deletions, including HIP1. These data do not exclude the possibility that YWHAG loss of function is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein function and its proposed role in AMPA and NMDA ionotropic glutamate receptor trafficking, we believe that HIP1 haploinsufficiency in humans will be amenable to rational drug design for improved seizure control and cognitive and behavioral function. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes.

    PubMed

    Rinkel, Jan; Litzenburger, Martin; Bernhardt, Rita; Dickschat, Jeroen Sidney

    2018-04-26

    The cytochrome P450 monooxygenase CYP267B1 from Sorangium cellulosum was applied for enzymatic oxidation of the sesquiterpene alcohols T-muurolol and isodauc-8-en-11-ol. Various isotopically labelled geranyl and farnesyl diphosphates were used for product identification from micro-scale reactions, for determination of the absolute configurations of unknown compounds, to follow the stereochemical course of a cytochrome P450-catalysed hydroxylation step, and to investigate kinetic isotope effects. Overall, this study demonstrates that isotopically labelled terpene precursors are highly useful to follow cytochrome P450 dependent oxidations of terpenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Kynurenines in CNS disease: regulation by inflammatory cytokines

    PubMed Central

    Campbell, Brian M.; Charych, Erik; Lee, Anna W.; Möller, Thomas

    2014-01-01

    The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders. PMID:24567701

  19. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.

    PubMed

    Minami, Atsushi; Shimaya, Mayu; Suzuki, Gaku; Migita, Akira; Shinde, Sandip S; Sato, Kyohei; Watanabe, Kenji; Tamura, Tomohiro; Oguri, Hiroki; Oikawa, Hideaki

    2012-05-02

    Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis. © 2012 American Chemical Society

  20. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes

    PubMed Central

    Kojima, Yuka; Várnai, Anikó; Ishida, Takuya; Sunagawa, Naoki; Petrovic, Dejan M.; Igarashi, Kiyohiko; Jellison, Jody; Goodell, Barry; Alfredsen, Gry; Westereng, Bjørge

    2016-01-01

    ABSTRACT Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. IMPORTANCE Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall. PMID:27590806

  1. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.

    PubMed

    Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol

    2014-12-28

    Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

  2. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol.

    PubMed

    Grundner, Sebastian; Markovits, Monica A C; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A; Hensen, Emiel J M; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon-hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.

  3. Engineering of a Stable Whole-Cell Biocatalyst Capable of (S)-Styrene Oxide Formation for Continuous Two-Liquid-Phase Applications

    PubMed Central

    Panke, Sven; de Lorenzo, Víctor; Kaiser, Arnë; Witholt, Bernard; Wubbolts, Marcel G.

    1999-01-01

    Recombinant strains of Pseudomonas putida KT2440 carrying genetic expression cassettes with xylene oxygenase- and styrene monooxygenase-encoding genes on their chromosomes could be induced in shaking-flask experiments to specific activities that rivaled those of multicopy-plasmid-based Escherichia coli recombinants. Such strains maintained the introduced styrene oxidation activity in continuous two-liquid-phase cultures for at least 100 generations, although at a lower level than in the shaking-flask experiments. The data suggest that placement of target genes on the chromosome might be a suitable route for the construction of segregationally stable and highly active whole-cell biocatalysts. PMID:10584030

  4. [Synthesis, biotransformation and pharmacodynamics of a new theophylline derivative].

    PubMed

    Oelschläger, H; Harsche, C; Engel, J

    1991-09-01

    7-[(RS)2-((S)-1-Methyl-2-phenyl-ethylamino)propyl]-theophylline (3) was not described until now. This fenetylline analogue is available by reaction of 7 with an excess of 2 at 150 degrees C. If 2 reacts with 4, an E2-elimination overwhelms SN-nucleophilic displacement yielding compound 5. In vivo studies with male White-Wistar rats, comparing biotransformation of 3 and 1, demonstrate, that the amount of 2 is decreased from 4.7% of (RS)-2 to 1%, probably due to steric hindrance of the attacking monooxygenases by the methyl group at C-11 of 3. Pharmacodynamic studies of 3, tested with mice, gave similar results to those obtained with 1.

  5. Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems.

    PubMed

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H

    2011-02-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.

  6. Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems▿ †

    PubMed Central

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.

    2011-01-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686

  7. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6.

    PubMed

    Patel, Ilabahen; Kracher, Daniel; Ma, Su; Garajova, Sona; Haon, Mireille; Faulds, Craig B; Berrin, Jean-Guy; Ludwig, Roland; Record, Eric

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) belong to the "auxiliary activities (AA)" enzyme class of the CAZy database. They are known to strongly improve the saccharification process and boost soluble sugar yields from lignocellulosic biomass, which is a key step in the efficient production of sustainable economic biofuels. To date, most LPMOs have been characterized from terrestrial fungi, but novel fungal LPMOs isolated from more extreme environments such as an estuary mangrove ecosystem could offer enzymes with unique properties in terms of salt tolerance and higher stability under harsh condition. Two LPMOs secreted by the mangrove-associated fungus Pestalotiopsis sp. NCi6 (PsLPMOA and PsLPMOB) were expressed in the yeast Pichia pastoris and produced in a bioreactor with >85 mg L(-1) for PsLPMOA and >260 mg L(-1) for PsLPMOB. Structure-guided homology modeling of the PsLPMOs showed a high abundance of negative surface charges, enabling enhanced protein stability and activity in the presence of sea salt. Both PsLPMOs were activated by a cellobiose dehydrogenase (CDH) from Neurospora crassa, with an apparent optimum of interaction at pH 5.5. Investigation into their regioselective mode of action revealed that PsLPMOA released C1- and C4-oxidized cello-oligosaccharide products, while PsLPMOB released only C4-oxidized products. PsLPMOA was found to cleave polymeric cellulose in the presence of up to 6 % sea salt, which emphasizes the use of sea water in the industrial saccharification process with improved ecological footprints. Two new LPMOs from the mangrove fungus Pestalotiopsis sp. NCi6 were found to be fully reactive against cellulose. The combined hydrolytic activities of these salt-responsive LPMOs could therefore facilitate the saccharification process using sea water as a reaction medium for large-scale biorefineries.

  8. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Landsiedel, Robert

    2018-06-18

    Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.

  9. Description of toluene inhibition of methyl bromide biodegradation in seawater and isolation of a marine toluene oxidizer that degrades methyl bromide.

    PubMed

    Goodwin, Kelly D; Tokarczyk, Ryszard; Stephens, F Carol; Saltzman, Eric S

    2005-07-01

    Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are important precursors for destruction of stratospheric ozone, and oceanic uptake is an important component of the biogeochemical cycle of these methyl halides. In an effort to identify and characterize the organisms mediating halocarbon biodegradation, we surveyed the effect of potential cometabolic substrates on CH3Br biodegradation using a 13CH3Br incubation technique. Toluene (160 to 200 nM) clearly inhibited CH3Br and CH3Cl degradation in seawater samples from the North Atlantic, North Pacific, and Southern Oceans. Furthermore, a marine bacterium able to co-oxidize CH3Br while growing on toluene was isolated from subtropical Western Atlantic seawater. The bacterium, Oxy6, was also able to oxidize o-xylene and the xylene monooxygenase (XMO) pathway intermediate 3-methylcatechol. Patterns of substrate oxidation, lack of acetylene inhibition, and the inability of the toluene 4-monooxygenase (T4MO)-containing bacterium Pseudomonas mendocina KR1 to degrade CH3Br ruled out participation of the T4MO pathway in Oxy6. Oxy6 also oxidized a variety of toluene (TOL) pathway intermediates such as benzyl alcohol, benzylaldehyde, benzoate, and catechol, but the inability of Pseudomonas putida mt-2 to degrade CH3Br suggested that the TOL pathway might not be responsible for CH3Br biodegradation. Molecular phylogenetic analysis identified Oxy6 to be a member of the family Sphingomonadaceae related to species within the Porphyrobacter genus. Although some Sphingomonadaceae can degrade a variety of xenobiotic compounds, this appears to be the first report of CH3Br degradation for this class of organism. The widespread inhibitory effect of toluene on natural seawater samples and the metabolic capabilities of Oxy6 indicate a possible link between aromatic hydrocarbon utilization and the biogeochemical cycle of methyl halides.

  10. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.

    Nitrosomonas europaeais an aerobic nitrifying bacterium that oxidizes ammonia (NH 3) to nitrite (NO 2 ₋) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH 4 +-dependent O 2uptake byN. europaeaby 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide usingmore » a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA.« less

  11. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea

    PubMed Central

    Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao

    2018-01-01

    A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea. PMID:29867912

  12. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis

    PubMed Central

    2014-01-01

    Background Brassica vegetables contain a class of secondary metabolites, the glucosinolates (GS), whose specific degradation products determine the characteristic flavor and smell. While some of the respective degradation products of particular GS are recognized as health promoting substances for humans, recent studies also show evidence that namely the 1-methoxy-indol-3-ylmethyl GS might be deleterious by forming characteristic DNA adducts. Therefore, a deeper knowledge of aspects involved in the biosynthesis of indole GS is crucial to design vegetables with an improved secondary metabolite profile. Results Initially the leafy Brassica vegetable pak choi (Brassica rapa ssp. chinensis) was established as suitable tool to elicit very high concentrations of 1-methoxy-indol-3-ylmethyl GS by application of methyl jasmonate. Differentially expressed candidate genes were discovered in a comparative microarray analysis using the 2 × 104 K format Brassica Array and compared to available gene expression data from the Arabidopsis AtGenExpress effort. Arabidopsis knock out mutants of the respective candidate gene homologs were subjected to a comprehensive examination of their GS profiles and confirmed the exclusive involvement of polypeptide 4 of the cytochrome P450 monooxygenase subfamily CYP81F in 1-methoxy-indol-3-ylmethyl GS biosynthesis. Functional characterization of the two identified isoforms coding for CYP81F4 in the Brassica rapa genome was performed using expression analysis and heterologous complementation of the respective Arabidopsis mutant. Conclusions Specific differences discovered in a comparative microarray and glucosinolate profiling analysis enables the functional attribution of Brassica rapa ssp. chinensis genes coding for polypeptide 4 of the cytochrome P450 monooxygenase subfamily CYP81F to their metabolic role in indole glucosinolate biosynthesis. These new identified Brassica genes will enable the development of genetic tools for breeding vegetables with improved GS composition in the near future. PMID:24886080

  13. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper.

    PubMed Central

    Ensign, S A; Hyman, M R; Arp, D J

    1993-01-01

    The effect of copper on the in vivo and in vitro activity of ammonia monooxygenase (AMO) from the nitrifying bacterium Nitrosomonas europaea was investigated. The addition of CuCl2 to cell extracts resulted in 5- to 15-fold stimulation of ammonia-dependent O2 consumption, ammonia-dependent nitrite production, and hydrazine-dependent ethane oxidation. AMO activity was further stimulated in vitro by the presence of stabilizing agents, including serum albumins, spermine, or MgCl2. In contrast, the addition of CuCl2 and stabilizing agents to whole-cell suspensions did not result in any stimulation of AMO activity. The use of the AMO-specific suicide substrate acetylene revealed two populations of AMO in cell extracts. The low, copper-independent (residual) AMO activity was completely inactivated by acetylene in the absence of exogenously added copper. In contrast, the copper-dependent (activable) AMO activity was protected against acetylene inactivation in the absence of copper. However, in the presence of copper both populations of AMO were inactivated by acetylene. [14C]acetylene labelling of the 27-kDa polypeptide of AMO revealed the same extent of label incorporation in both whole cells and optimally copper-stimulated cell extracts. In the absence of copper, the label incorporation in cell extracts was proportional to the level of residual AMO activity. Other metal ions tested, including Zn2+, Co2+, Ni2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Cr3+, and Ag+, were ineffective at stimulating AMO activity or facilitating the incorporation of 14C label from [14C]acetylene into the 27-kDa polypeptide. On the basis of these results, we propose that loss of AMO activity upon lysis of N. europaea results from the loss of copper from AMO, generating a catalytically inactive, yet stable and activable, form of the enzyme. Images PMID:8458839

  14. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    PubMed

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia.

  15. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L).

    PubMed

    Wei, Y; Appel, A G; Moar, W J; Liu, N

    2001-11-01

    A German cockroach (Blatella germanica (L)) strain, Apyr-R, was collected from Opelika, Alabama after control failures with pyrethroid insecticides. Levels of resistance to permethrin and deltamethrin in Apyr-R (97- and 480-fold, respectively, compared with a susceptible strain, ACY) were partially or mostly suppressed by piperonyl butoxide (PBO) and S,S,S,-tributylphosphorotrithioate (DEF), suggesting that P450 monooxygenases and hydrolases are involved in resistance to these two pyrethroids in Apyr-R. However, incomplete suppression of pyrethroid resistance with PBO and DEF implies that one or more additional mechanisms are involved in resistance. Injection, compared with topical application, resulted in 43- and 48-fold increases in toxicity of permethrin in ACY and Apyr-R, respectively. Similarly, injection increased the toxicity of deltamethrin 27-fold in ACY and 28-fold in Apyr-R. These data indicate that cuticular penetration is one of the obstacles for the effectiveness of pyrethroids against German cockroaches. However, injection did not change the levels of resistance to either permethrin or deltamethrin, suggesting that a decrease in the rate of cuticular penetration may not play an important role in pyrethroid resistance in Apyr-R. Apyr-R showed cross-resistance to imidacloprid, with a resistance ratio of 10. PBO treatment resulted in no significant change in the toxicity of imidacloprid, implying that P450 monooxygenase-mediated detoxication is not the mechanism responsible for cross-resistance. Apyr-R showed no cross-resistance to spinosad, although spinosad had relatively low toxicity to German cockroaches compared with other insecticides tested in this study. This result further confirmed that the mode of action of spinosad to insects is unique. Fipronil, a relatively new insecticide, was highly toxic to German cockroaches, and the multi-resistance mechanisms in Apyr-R did not confer significant cross-resistance to this compound. Thus, we propose that fipronil could be a valuable tool in integrated resistance management of German cockroaches.

  16. Molecular mechanism of lytic polysaccharide monooxygenases.

    PubMed

    Hedegård, Erik Donovan; Ryde, Ulf

    2018-04-21

    The lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes that can enhance polysaccharide depolymerization through an oxidative mechanism and hence boost generation of biofuel from e.g. cellulose. By employing density functional theory in a combination of quantum mechanics and molecular mechanics (QM/MM), we report a complete description of the molecular mechanism of LPMOs. The QM/MM scheme allows us to describe all reaction steps with a detailed protein environment and we show that this is necessary. Several active species capable of abstracting a hydrogen from the substrate have been proposed previously and starting from recent crystallographic work on a substrate-LPMO complex, we investigate previously suggested paths as well as new ones. We describe the generation of the reactive intermediates, the abstraction of a hydrogen atom from the polysaccharide substrate, as well as the final recombination step in which OH is transferred back to the substrate. We show that a superoxo [CuO 2 ] + complex can be protonated by a nearby histidine residue (suggested by recent mutagenesis studies and crystallographic work) and, provided an electron source is available, leads to formation of an oxyl-complex after cleavage of the O-O bond and dissociation of water. The oxyl complex either reacts with the substrate or is further protonated to a hydroxyl complex. Both the oxyl and hydroxyl complexes are also readily generated from a reaction with H 2 O 2 , which was recently suggested to be the true co-substrate, rather than O 2 . The C-H abstraction by the oxyl and hydroxy complexes is overall favorable with activation barriers of 69 and 94 kJ mol -1 , compared to the much higher barrier (156 kJ mol -1 ) obtained for the copper-superoxo species. We obtain good structural agreement for intermediates for which structural data are available and the estimated reaction energies agree with experimental rate constants. Thus, our suggested mechanism is the most complete to date and concur with available experimental evidence.

  17. Quantification of Flavin-containing Monooxygenases 1, 3, and 5 in Human Liver Microsomes by UPLC-MRM-Based Targeted Quantitative Proteomics and Its Application to the Study of Ontogeny.

    PubMed

    Chen, Yao; Zane, Nicole R; Thakker, Dhiren R; Wang, Michael Zhuo

    2016-07-01

    Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39-67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26-65) pmol/mg HLM protein and 27 (11.5-49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14-20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9-9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Quantification of Flavin-containing Monooxygenases 1, 3, and 5 in Human Liver Microsomes by UPLC-MRM-Based Targeted Quantitative Proteomics and Its Application to the Study of Ontogeny

    PubMed Central

    Chen, Yao; Zane, Nicole R.; Thakker, Dhiren R.

    2016-01-01

    Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39–67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26–65) pmol/mg HLM protein and 27 (11.5–49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14–20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9–9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. PMID:26839369

  19. Target sites for chemical regulation of strigolactone signaling

    PubMed Central

    Nakamura, Hidemitsu; Asami, Tadao

    2014-01-01

    Demands for plant growth regulators (PGRs; chemicals that control plant growth) are increasing globally, especially in developing countries. Both positive and negative PGRs are widely used to enhance crop production and to suppress unwanted shoot growth, respectively. Strigolactones (SLs) are multifunctional molecules that function as phytohormones, inhibiting shoot branching and also functioning in the rhizospheric communication with symbiotic fungi and parasitic weeds. Therefore, it is anticipated that chemicals that regulate the functions of SLs will be widely used in agricultural applications. Although the SL biosynthetic pathway is not fully understood, it has been demonstrated that β-carotene isomerases, carotenoid cleavage dioxygenases (CCDs), and a cytochrome P450 monooxygenase are involved in strigolactone biosynthesis. A CCD inhibitor, abamine, which is also an inhibitor of abscisic acid biosynthesis, reduces the levels of SL in several plant species and reduces the germination rate of Orobanche minor seeds grown with tobacco. On the basis of the structure of abamine, several chemicals have been designed to specifically inhibit CCDs during SL synthesis. Cytochrome P450 monooxygenase is another target enzyme in the development of SL biosynthesis inhibitors, and the triazole-derived TIS series of chemicals is known to include SL biosynthesis inhibitors, although their target enzyme has not been identified. Recently, DWARF14 (D14) has been shown to be a receptor for SLs, and the D-ring moiety of SL is essential for its recognition by D14. A variety of SL agonists are currently under development and most agonists commonly contain the D-ring or a D-ring-like moiety. Several research groups have also resolved the crystal structure of D14 in the last two years. It is expected that this information on the D14 structure will be invaluable not only for developing SL agonists with novel structures but also in the design of inhibitors of SL receptors. PMID:25414720

  20. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment.

    PubMed

    Imhoff, Johannes F

    2016-05-24

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane monooxygenase (pmoA) for methane oxidizing bacteria.

  1. Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene, tfdR.

    PubMed Central

    Harker, A R; Olsen, R H; Seidler, R J

    1989-01-01

    Plasmid pJP4 enables Alcaligenes eutrophus JMP134 to degrade 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (TFD). Plasmid pRO101 is a derivative of pJP4 obtained by insertion of Tn1721 into a nonessential region of pJP4. Plasmid pRO101 was transferred by conjugation to several Pseudomonas strains and to A. eutrophus AEO106, a cured isolate of JMP134. AEO106(pRO101) and some Pseudomonas transconjugants grew on TFD. Transconjugants with a chromosomally encoded phenol hydroxylase also degraded phenoxyacetic acid (PAA) in the presence of an inducer of the TFD pathway, namely, TFD or 3-chlorobenzoate. A mutant of one such phenol-degrading strain, Pseudomonas putida PPO300(pRO101), grew on PAA as the sole carbon source in the absence of inducer. This isolate carried a mutant plasmid, designated pRO103, derived from pRO101 through the deletion of a 3.9-kilobase DNA fragment. Plasmid pRO103 constitutively expressed the TFD pathway, and this allowed the metabolism of PAA in the absence of the inducer, TFD. Complementation of pRO103 in trans by a DNA fragment corresponding to the fragment deleted in pRO101 indicates that a negative control-regulatory gene (tfdR) is located on the BamHI E fragment of pRO101. Other subcloning experiments resulted in the cloning of the tfdA monooxygenase gene on a 3.5-kilobase fragment derived from pRO101. This subclone, in the absence of other pRO101 DNA, constitutively expressed the tfdA gene and allowed PPO300 to grow on PAA. Preliminary evidence suggests that the monooxygenase activity encoded by this DNA fragment is feedback-inhibited by phenols. Images PMID:2914848

  2. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry.

    PubMed

    Westereng, Bjørge; Arntzen, Magnus Ø; Agger, Jane Wittrup; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2017-01-01

    Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging. The changes in physicochemical properties that are associated with oxidation need to be considered when choosing analytical approaches. C1 oxidation leads to a sugar that is no longer reducing but instead has an acidic functionality, whereas C4 oxidation leads to products that are inherently labile at high and low pH and that exist in a keto-gemdiol equilibrium that is strongly shifted toward the gemdiol in aqueous solutions. Partial degradation of C4-oxidized products leads to the formation of native products, which could explain why some authors claim to have observed glycoside hydrolase activity for LPMOs. Notably, apparent glycoside hydrolase activity may also be due to small amounts of contaminating glycoside hydrolases since these normally have much higher catalytic rates than LPMOs. The low catalytic turnover rates of LPMOs necessitate the use of sensitive product detection methods, which limits the analytical possibilities considerably. Modern liquid chromatography and mass spectrometry have become essential tools for evaluating LPMO activity, and this chapter provides an overview of available methods together with a few novel tools. The methods described constitute a suite of techniques for analyzing oxidized carbohydrate products, which can be applied to LPMOs as well as other carbohydrate-active redox enzymes.

  3. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    PubMed

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  4. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Kynurenine 3-monooxygenase from Pseudomonas fluorescens: substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin-peroxo intermediate yet result in the production of hydrogen peroxide.

    PubMed

    Crozier-Reabe, Karen R; Phillips, Robert S; Moran, Graham R

    2008-11-25

    Kynurenine 3-monooxygenase (KMO) is a flavin-dependent hydroxylase that catalyzes the conversion of l-kynurenine (l-Kyn) to 3-hydroxykynurenine (3OHKyn) in the pathway for tryptophan catabolism. KMO inhibition has been widely suggested as an early treatment for stroke and other neurological disorders that involve ischemia. We have investigated the reductive and the oxidative half-reactions of a stable form of KMO from Pseudomonas fluorescens (KMO). The binding of l-Kyn by the enzyme is relatively slow and involves at least two reversible steps. The rate constant for reduction of the flavin cofactor by NADPH increases by a factor of approximately 2.5 x 10(3) when l-Kyn is bound. The rate of reduction of the KMO.l-Kyn complex is 160 s(-1), and the K(d) for the NADPH complex is 200 microM with charge-transfer absorption bands for the KMO(RED).l-Kyn.NADP(+) complex accumulating after reduction. The reduction potential of KMO is -188 mV and is unresponsive to the addition of l-Kyn or other inhibitory ligands. KMO inhibitors whose structures are reminiscent of l-Kyn such as m-nitrobenzoylalanine and benzoylalanine also stimulate reduction of flavin by NADPH and, in the presence of dioxygen, result in the stoichiometric liberation of hydrogen peroxide, diminishing the perceived therapeutic potential of inhibitors of this type. In the presence of the native substrate, the oxidative half-reaction exhibits triphasic absorbance data. A spectrum consistent with that of a peroxyflavin species accumulates and then decays to yield the oxidized enzyme. This species then undergoes minor spectral changes that, based on flavin difference spectra defined in the presence of 3OHKyn, can be correlated with product release. The oxidative half-reaction observed in the presence of saturating benzoylalanine or m-nitrobenzoylalanine also shows the accumulation of a peroxyflavin species that then decays to yield hydrogen peroxide without hydroxylation.

  6. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea.

    PubMed

    Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao

    2018-01-01

    A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .

  7. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs.

    PubMed

    Yamazaki, Miho; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2014-07-15

    Liver microsomal flavin-containing monooxygenases (FMO, EC 1.14.13.8) 1 and 3 were functionally characterized in terms of expression levels and molecular catalytic capacities in human, cynomolgus monkey, rat, and minipig livers. Liver microsomal FMO3 in humans and monkeys and FMO1 and FMO3 in rats and minipigs could be determined immunochemically with commercially available anti-human FMO3 peptide antibodies or rat FMO1 peptide antibodies. With respect to FMO-dependent N-oxygenation of benzydamine and tozasertib and S-oxygenation of methimazole and sulindac sulfide activities, rat and minipig liver microsomes had high maximum velocity values (Vmax) and high catalytic efficiency (Vmax/Km, Michaelis constant) compared with those for human or monkey liver microsomes. Apparent Km values for recombinantly expressed rat FMO3-mediated N- and S-oxygenations were approximately 10-100-fold those of rat FMO1, although these enzymes had similar Vmax values. The mean catalytic efficiencies (Vmax/Km, 1.4 and 0.4 min(-1)μM(-1), respectively) of recombinant human and monkey FMO3 were higher than those of FMO1, whereas Vmax/Km values for rat and minipig FMO3 were low compared with those of FMO1. Minipig liver microsomal FMO1 efficiently catalyzed N- and S-oxygenation reactions; in addition, the minipig liver microsomal FMO1 concentration was higher than the levels in rats, humans, and monkeys. These results suggest that liver microsomal FMO1 could contribute to the relatively high FMO-mediated drug N- and S-oxygenation activities in rat and minipig liver microsomes and that lower expression of FMO1 in human and monkey livers could be a determinant factor for species differences in liver drug N- and S-oxygenation activities between experimental animals and humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide monooxygenase: crystal packing, ligand binding and active-site disorder.

    PubMed

    Frandsen, Kristian E H; Poulsen, Jens Christian Navarro; Tovborg, Morten; Johansen, Katja S; Lo Leggio, Leila

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO-substrate complex was reported, giving insights into the interaction of LPMOs with β-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on β-linked glycosidic bonds (families AA9-AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Å resolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.

  9. Structure and Mechanism of Styrene Monooxygenase Reductase: New Insight into the FAD–Transfer Reaction†

    PubMed Central

    Morrison, Eliot; Kantz, Auric; Gassner, George T.; Sazinsky, Matthew H.

    2013-01-01

    The two–component flavoprotein styrene monooxygenase (SMO) from Pseudomonas putida S12 catalyzes the NADH– and FAD–dependent epoxidation of styrene to styrene oxide. In this study we investigate the mechanism of flavin reduction and transfer from the reductase (SMOB) to epoxidase (NSMOA) component and report our findings in light of the 2.2–Å crystal structure of SMOB. Upon rapidly mixing with NADH, SMOB forms an NADH→FADox charge–transfer intermediate and catalyzes a hydride–transfer reaction from NADH to FAD, with a rate constant of 49.1 ± 1.4 s−1, in a step that is coupled to the rapid dissociation of NAD+. Electrochemical and equilibrium–binding studies indicate that NSMOA binds FADhq ~13–times more tightly than SMOB, which supports a vectoral transfer of FADhq from the reductase to the epoxidase. After binding to NSMOA, FADhq rapidly reacts with molecular oxygen to form a stable C(4a)–hydroperoxide intermediate. The half–life of apoSMOB generated in the FAD–transfer reaction is increased ~21–fold, supporting the model of a protein–protein interaction between apoSMOB and NSMOA with the peroxide intermediate. The mechanisms of FAD–dissociation and transport from SMOB to NSMOA were probed by monitoring the competitive reduction of cytochrome c in the presence and absence of pyridine nucleotides. Based on these studies, we propose a model in which reduced FAD binds to SMOB in equilibrium between an unreactive, sequestered state (S–state) and more reactive, transfer state (T–state). Dissociation of NAD+ after the hydride transfer–reaction transiently populates the T–state, promoting the transfer of FADhq to NSMOA. The binding of pyridine nucleotides to SMOB–FADhq shifts the FADhq–binding equilibrium from the T–state to the S–state. Additionally, the 2.2–Å crystal structure of SMOB–FADox reported in this work is discussed in light of the pyridine nucleotide–gated flavin–transfer and electron–transfer reactions. PMID:23909369

  10. The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.

    PubMed

    Nikodinovic-Runic, Jasmina; Coulombel, Lydie; Francuski, Djordje; Sharma, Narain D; Boyd, Derek R; Ferrall, Rory Moore O; O'Connor, Kevin E

    2013-06-01

    Nine different sulfur-containing compounds were biotransformed to the corresponding sulfoxides by Escherichia coli Bl21(DE3) cells expressing styrene monooxygenase (SMO) from Pseudomonas putida CA-3. Thioanisole was consumed at 83.3 μmoles min(-1) g cell dry weight(-1) resulting mainly in the formation of R-thioanisole sulfoxide with an enantiomeric excess (ee) value of 45 %. The rate of 2-methyl-, 2-chloro- and 2-bromo-thioanisole consumption was 2-fold lower than that of thioanisole. Surprisingly, the 2-methylthioanisole sulfoxide product had the opposite (S) configuration to that of the other 2-substituted thioanisole derivatives and had a higher ee value (84 %). The rate of oxidation of 4-substituted thioanisoles was higher than the corresponding 2-substituted substrates but the ee values of the products were consistently lower (10-23 %). The rate of benzo[b]thiophene and 2-methylbenzo[b]thiophene sulfoxidation was approximately 10-fold lower than that of thioanisole. The ee value of the benzo[b]thiophene sulfoxide could not be determined as the product racemized rapidly. E. coli cells expressing an engineered SMO (SMOeng R3-11) oxidised 2-substituted thioanisoles between 1.8- and 2.8-fold faster compared to cells expressing the wild-type enzyme. SMOeng R3-11 oxidised benzo[b]thiophene and 2-methylbenzo[b]thiophene 10.1 and 5.6 times faster that the wild-type enzyme. The stereospecificity of the reaction catalysed by SMOeng was unchanged from that of the wild type. Using the X-ray crystal structure of the P. putida S12 SMO, it was evident that the entrance of substrates into the SMO active site is limited by the binding pocket bottleneck formed by the side chains of Val-211 and Asn-46 carboxyamide group.

  11. Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    PubMed Central

    Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo

    2011-01-01

    Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil. PMID:21437257

  12. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors.

    PubMed

    Petriello, Michael C; Hoffman, Jessie B; Sunkara, Manjula; Wahlang, Banrida; Perkins, Jordan T; Morris, Andrew J; Hennig, Bernhard

    2016-07-01

    The etiology of cardiovascular disease (CVD) is impacted by multiple modifiable and non-modifiable risk factors including dietary choices, genetic predisposition, and environmental exposures. However, mechanisms linking diet, exposure to pollutants, and CVD risk are largely unclear. Recent studies identified a strong link between plasma levels of nutrient-derived Trimethylamine N-oxide (TMAO) and coronary artery disease. Dietary precursors of TMAO include carnitine and phosphatidylcholine, which are abundant in animal-derived foods. Dioxin-like pollutants can upregulate a critical enzyme responsible for TMAO formation, hepatic flavin containing monooxygenase 3 (FMO3), but a link between dioxin-like PCBs, upregulation of FMO3, and increased TMAO has not been reported. Here, we show that mice exposed acutely to dioxin-like PCBs exhibit increased hepatic FMO3 mRNA, protein, as well as an increase in circulating levels of TMAO following oral administration of its metabolic precursors. C57BL/6 mice were exposed to 5μmol PCB 126/kg mouse weight (1.63mg/kg). At 48h post-PCB exposure, mice were subsequently given a single gavage of phosphatidylcholine dissolved in corn oil. Exposure to 5 μmole/kg PCB 126 resulted in greater than 100-fold increase in FMO3 mRNA expression, robust induction of FMO3 protein, and a 5-fold increase in TMAO levels compared with vehicle treated mice. We made similar observations in mice exposed to PCB 77 (49.6mg/kg twice); stable isotope tracer studies revealed increased formation of plasma TMAO from an orally administered precursor trimethylamine (TMA). Taken together, these observations suggest a novel diet-toxicant interaction that results in increased production of a circulating biomarker of cardiovascular disease risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway

    PubMed Central

    Terelius, Ylva; Abedi-Valugerdi, Manuchehr; Naughton, Seán; Saghafian, Maryam; Moshfegh, Ali; Mattsson, Jonas; Potácová, Zuzana; Hassan, Moustapha

    2017-01-01

    Busulphan (Bu) is an alkylating agent used in the conditioning regimen prior to hematopoietic stem cell transplantation (HSCT). Bu is extensively metabolized in the liver via conjugations with glutathione to form the intermediate metabolite (sulfonium ion) which subsequently is degraded to tetrahydrothiophene (THT). THT was reported to be oxidized forming THT-1-oxide that is further oxidized to sulfolane and finally 3-hydroxysulfolane. However, the underlying mechanisms for the formation of these metabolites remain poorly understood. In the present study, we performed in vitro and in vivo investigations to elucidate the involvement of flavin-containing monooxygenase-3 (FMO3) and cytochrome P450 enzymes (CYPs) in Bu metabolic pathway. Rapid clearance of THT was observed when incubated with human liver microsomes. Furthermore, among different recombinant microsomal enzymes, the highest intrinsic clearance for THT was obtained via FMO3 followed by several CYPs including 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4. In Bu- or THT-treated mice, inhibition of FMO3 by phenylthiourea significantly suppressed the clearance of both Bu and THT. Moreover, the simultaneous administration of a high dose of THT (200μmol/kg) to Bu-treated mice reduced the clearance of Bu. Consistently, in patients undergoing HSCT, repeated administration of Bu resulted in a significant up-regulation of FMO3 and glutathione-S-transfrase -1 (GSTA1) genes. Finally, in a Bu-treated patient, additional treatment with voriconazole (an antimycotic drug known as an FMO3-substrate) significantly altered the Bu clearance. In conclusion, we demonstrate for the first time that FMO3 along with CYPs contribute a major part in busulphan metabolic pathway and certainly can affect its kinetics. The present results have high clinical impact. Furthermore, these findings might be important for reducing the treatment-related toxicity of Bu, through avoiding interaction with other concomitant used drugs during conditioning and hence improving the clinical outcomes of HSCT. PMID:29121650

  14. Hepatic Flavin-Containing Monooxygenase 3 Enzyme Suppressed by Type 1 Allergy-Produced Nitric Oxide.

    PubMed

    Tanino, Tadatoshi; Bando, Toru; Komada, Akira; Nojiri, Yukie; Okada, Yuna; Ueda, Yukari; Sakurai, Eiichi

    2017-11-01

    Flavin-containing monooxygenases (FMOs) are major mammalian non-cytochrome P450 oxidative enzymes. T helper 2 cell-activated allergic diseases produce excess levels of nitric oxide (NO) that modify the functions of proteins. However, it remains unclear whether allergy-induced NO affects the pharmacokinetics of drugs metabolized by FMOs. This study investigated alterations of hepatic microsomal FMO1 and FMO3 activities in type 1 allergic mice and further examined the interaction of FMO1 and FMO3 with allergy-induced NO. Imipramine (IMP; FMO1 substrate) N- oxidation activity was not altered in allergic mice with high serum NO and immunoglobulin E levels. At 7 days after primary sensitization (PS7) or secondary sensitization (SS7), benzydamine (BDZ; FMO1 and FMO3 substrate) N- oxygenation was significantly decreased to 70% of individual controls. The expression levels of FMO1 and FMO3 proteins were not significantly changed in the sensitized mice. Hepatic inducible NO synthase (iNOS) mRNA level increased 5-fold and 15-fold in PS7 and SS7 mice, respectively, and hepatic tumor necrosis factor- α levels were greatly enhanced. When a selective iNOS inhibitor was injected into allergic mice, serum NO levels and BDZ N- oxygenation activity returned to control levels. NO directly suppressed BDZ N- oxygenation, which was probably related to FMO3-dependent metabolism in comparison with IMP N- oxidation. In hepatic microsomes from PS7 and SS7 mice, the suppression of BDZ N- oxygenation was restored by ascorbate. Therefore, type 1 allergic mice had differentially suppressed FMO3-dependent BDZ N- oxygenation. The suppression of FMO3 metabolism related to reversible S- nitrosyl modifications of iNOS-derived NO. NO is expected to alter FMO3-metabolic capacity-limited drug pharmacokinetics in humans. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose.

    PubMed

    Westereng, Bjørge; Arntzen, Magnus Ø; Aachmann, Finn L; Várnai, Anikó; Eijsink, Vincent G H; Agger, Jane Wittrup

    2016-05-06

    Lytic polysaccharide monooxygenases play a pivotal role in enzymatic deconstruction of plant cell wall material due to their ability to catalyze oxidative cleavage of glycosidic bonds. LPMOs may release different products, often in small amounts, with various oxidation patterns (C1 or C4) and with varying stabilities, making accurate analysis of product profiles a major challenge. So far, HPAEC has been the method of choice but it has limitations with respect to analysis of C4-oxidized products. Here, we compare various HPLC methods and present procedures that allow efficient separation of intact C1- and C4-oxidized products. We demonstrate that both PGC and HILIC (in WAX-mode) can separate C1- and C4-oxidized products and that PGC gives superior chromatographic performance. In contrast to HPAEC, these methods are directly compatible with mass spectroscopy and charged aerosol detection (CAD), which enables online peak validation and quantification with LOD levels in the low ng range. While the novel methods show lower resolution than HPAEC, this is compensated by easy peak identification, allowing, for example, discrimination between chromatographically highly similar native and C4-oxidized cello-oligomers. HPAEC-MS studies revealed chemical oxidation of C4-geminal diol products, which implies that peaks commonly believed to be C4-oxidized cello-oligomers, in fact are on-column generated derivatives. Non-destructive separation of C4-oxidized cello-oligosaccharides on the PGC column allowed us, for the first time, to isolate C4-oxidized standards. HPAEC fractionation of a purified C4-oxidized tetramer revealed that on-column decomposition leads to formation of the native trimer, which may explain why product mixtures generated by C4-oxidizing LPMOs seem to be rich in native oligosaccharides when analyzed by HPAEC. The findings and methods described here will aid in future studies in the emerging LPMO field. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway.

    PubMed

    El-Serafi, Ibrahim; Terelius, Ylva; Abedi-Valugerdi, Manuchehr; Naughton, Seán; Saghafian, Maryam; Moshfegh, Ali; Mattsson, Jonas; Potácová, Zuzana; Hassan, Moustapha

    2017-01-01

    Busulphan (Bu) is an alkylating agent used in the conditioning regimen prior to hematopoietic stem cell transplantation (HSCT). Bu is extensively metabolized in the liver via conjugations with glutathione to form the intermediate metabolite (sulfonium ion) which subsequently is degraded to tetrahydrothiophene (THT). THT was reported to be oxidized forming THT-1-oxide that is further oxidized to sulfolane and finally 3-hydroxysulfolane. However, the underlying mechanisms for the formation of these metabolites remain poorly understood. In the present study, we performed in vitro and in vivo investigations to elucidate the involvement of flavin-containing monooxygenase-3 (FMO3) and cytochrome P450 enzymes (CYPs) in Bu metabolic pathway. Rapid clearance of THT was observed when incubated with human liver microsomes. Furthermore, among different recombinant microsomal enzymes, the highest intrinsic clearance for THT was obtained via FMO3 followed by several CYPs including 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4. In Bu- or THT-treated mice, inhibition of FMO3 by phenylthiourea significantly suppressed the clearance of both Bu and THT. Moreover, the simultaneous administration of a high dose of THT (200μmol/kg) to Bu-treated mice reduced the clearance of Bu. Consistently, in patients undergoing HSCT, repeated administration of Bu resulted in a significant up-regulation of FMO3 and glutathione-S-transfrase -1 (GSTA1) genes. Finally, in a Bu-treated patient, additional treatment with voriconazole (an antimycotic drug known as an FMO3-substrate) significantly altered the Bu clearance. In conclusion, we demonstrate for the first time that FMO3 along with CYPs contribute a major part in busulphan metabolic pathway and certainly can affect its kinetics. The present results have high clinical impact. Furthermore, these findings might be important for reducing the treatment-related toxicity of Bu, through avoiding interaction with other concomitant used drugs during conditioning and hence improving the clinical outcomes of HSCT.

  17. Delineation of the Caffeine C-8 Oxidation Pathway in Pseudomonas sp. Strain CBB1 via Characterization of a New Trimethyluric Acid Monooxygenase and Genes Involved in Trimethyluric Acid Metabolism

    PubMed Central

    Mohanty, Sujit Kumar; Yu, Chi-Li; Das, Shuvendu; Louie, Tai Man; Gakhar, Lokesh

    2012-01-01

    The molecular basis of the ability of bacteria to live on caffeine via the C-8 oxidation pathway is unknown. The first step of this pathway, caffeine to trimethyluric acid (TMU), has been attributed to poorly characterized caffeine oxidases and a novel quinone-dependent caffeine dehydrogenase. Here, we report the detailed characterization of the second enzyme, a novel NADH-dependent trimethyluric acid monooxygenase (TmuM), a flavoprotein that catalyzes the conversion of TMU to 1,3,7-trimethyl-5-hydroxyisourate (TM-HIU). This product spontaneously decomposes to racemic 3,6,8-trimethylallantoin (TMA). TmuM prefers trimethyluric acids and, to a lesser extent, dimethyluric acids as substrates, but it exhibits no activity on uric acid. Homology models of TmuM against uric acid oxidase HpxO (which catalyzes uric acid to 5-hydroxyisourate) reveal a much bigger and hydrophobic cavity to accommodate the larger substrates. Genes involved in the caffeine C-8 oxidation pathway are located in a 25.2-kb genomic DNA fragment of CBB1, including cdhABC (coding for caffeine dehydrogenase) and tmuM (coding for TmuM). Comparison of this gene cluster to the uric acid-metabolizing gene cluster and pathway of Klebsiella pneumoniae revealed two major open reading frames coding for the conversion of TM-HIU to S-(+)-trimethylallantoin [S-(+)-TMA]. The first one, designated tmuH, codes for a putative TM-HIU hydrolase, which catalyzes the conversion of TM-HIU to 3,6,8-trimethyl-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (TM-OHCU). The second one, designated tmuD, codes for a putative TM-OHCU decarboxylase which catalyzes the conversion of TM-OHCU to S-(+)-TMA. Based on a combination of enzymology and gene-analysis, a new degradative pathway for caffeine has been proposed via TMU, TM-HIU, TM-OHCU to S-(+)-TMA. PMID:22609920

  18. Detection of Methanotroph Diversity on Roots of Submerged Rice Plants by Molecular Retrieval of pmoA, mmoX, mxaF, and 16S rRNA and Ribosomal DNA, Including pmoA-Based Terminal Restriction Fragment Length Polymorphism Profiling

    PubMed Central

    Horz, Hans-Peter; Yimga, Merlin Tchawa; Liesack, Werner

    2001-01-01

    The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA. PMID:11526021

  19. CYP-dependent metabolism of PF9601N, a new monoamine oxidase-B inhibitor, by C57BL/6 mouse and human liver microsomes.

    PubMed

    Dragoni, Stefania; Materozzi, Giada; Pessina, Federica; Frosini, Maria; Marco, José Luis; Unzeta, Mercedes; Sgaragli, Giampietro; Valoti, Massimo

    2007-01-01

    The selective monoamine oxidase-B (MAO-B) inhibitor, l-deprenyl, is still used for treating Parkinson's patients, however, a disadvantage of its use lies in the formation of l-amphetamine and l-methamphetamine. Subsequently, this has promoted the design of a novel, more potent, MAO-B inhibitor PF9601N, which also has neuroprotective and antioxidant properties. The aim of this work was to investigate the effect of treatment with PF9601N on its own phase I hepatic metabolism. Kinetic parameters of PF9601N CYP-dependent N-dealkylation reaction was also studied and compared with those of l-deprenyl. C57BL/6 mice were treated with PF9601N for 4 days. After CYP content and related monooxygenase activities were assayed in liver microsomes of control and treated animals. CYP activities, cytochrome b5 content, NADPH-cytochrome P450 reductase and various monooxygenase activities were unaffected by in vivo PF9601N treatment. With microsomes from both control and treated mice, the PF9601N-dealkylation product, FA72, was the only detected metabolite with its formation rate following an hyperbolic, Michaelis-Menten curve. Among various inhibitors, only ketoconazole inhibited the FA72 formation rate, indicating a major involvement for CYP3A. Apparent Km and Vmax values generated by human liver microsomes were similar to those found with mouse microsomes. Ketoconazole inhibition indicates that CYP3A is one of the major enzymes involved in PF9601N metabolism also by human liver microsomes. In mouse liver microsomes, the intrinsic clearance of PF9601N was significantly lower than that of l-deprenyl suggestive of an improved bioavailability for the former. The observed favourable metabolic profile may suggest suitability of PF9601N for clinical use.

  20. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation.

    PubMed

    Zhang, Yingying; Zhang, Baichen; Yan, Dawei; Dong, Weixin; Yang, Weibing; Li, Qun; Zeng, Longjun; Wang, Jianjun; Wang, Linyou; Hicks, Leslie M; He, Zuhua

    2011-07-01

    The rice gene ELONGATED UPPERMOST INTERNODE1 (EUI1) encodes a P450 monooxygenase that epoxidizes gibberellins (GAs) in a deactivation reaction. The Arabidopsis genome contains a tandemly duplicated gene pair ELA1 (CYP714A1) and ELA2 (CYP714A2) that encode EUI homologs. In this work, we dissected the functions of the two proteins. ELA1 and ELA2 exhibited overlapping yet distinct gene expression patterns. We showed that while single mutants of ELA1 or ELA2 exhibited no obvious morphological phenotype, simultaneous elimination of ELA1 and ELA2 expression in ELA1-RNAi/ela2 resulted in increased biomass and enlarged organs. By contrast, transgenic plants constitutively expressing either ELA1 or ELA2 were dwarfed, similar to those overexpressing the rice EUI gene. We also discovered that overexpression of ELA1 resulted in a severe dwarf phenotype, while overexpression of ELA2 gave rise to a breeding-favored semi-dwarf phenotype in rice. Consistent with the phenotypes, we found that the ELA1-RNAi/ela2 plants increased amounts of biologically active GAs that were decreased in the internodes of transgenic rice with ELA1 and ELA2 overexpression. In contrast, the precursor GA(12) slightly accumulated in the transgenic rice, and GA(19) highly accumulated in the ELA2 overexpression rice. Taken together, our study strongly suggests that the two Arabidopsis EUI homologs subtly regulate plant growth most likely through catalyzing deactivation of bioactive GAs similar to rice EUI. The two P450s may also function in early stages of the GA biosynthetic pathway. Our results also suggest that ELA2 could be an excellent tool for molecular breeding for high yield potential in cereal crops. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

Top