Sample records for phenylethanolamine n-methyltransferase pnmt

  1. Time-dependent inactivation of human phenylethanolamine N-methyltransferase by 7-isothiocyanatotetrahydroisoquinoline

    PubMed Central

    Wu, Qian; Caine, Joanne M.; Thomson, Stuart A.; Slavica, Meri; Grunewald, Gary L.

    2009-01-01

    Inhibitors of phenylethanolamine N-methyltransferase [PNMT, the enzyme that catalyzes the final step in the biosynthesis of epinephrine (Epi)] may be of use in determining the role of Epi in the central nervous system. Here we describe the synthesis and characterization of 7-SCN tetrahydroisoquinoline as an affinity label for human PNMT. PMID:19171483

  2. Radiometric assay for phenylethanolamine N-methyltransferase and catechol O-methyltransferase in a single tissue sample: application to rat hypothalamic nuclei, pineal gland, and heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culman, J.; Torda, T.; Weise, V.K.

    A simple and highly sensitive method for simultaneous assay of phenylethanolamine N-methyltransferase (PNMT) and catechol O-methyltransferase (COMT) is described. These enzymes are determined in a single tissue homogenate using S-(methyl-/sup 3/H) adenosyl-L-methionine as methyl donor and sequentially incubating with the substrates phenylethanolamine and epinephrine. The radioactive products of the enzymatic reactions, N-methylphenylethanolamine and metanephrine, are extracted and then separated by thin-layer chromatography. The identity of the reaction products has been established chromatographically and the conditions for both enzymatic reactions in the assay procedure have been defined. Measurement of PNMT activity in the rat pineal gland or in minute fragments ofmore » other tissues (e.g., brain nuclei) has not been possible using previously described methods. Activities of PNMT and COMT in the rat pineal gland, various hypothalamic nuclei, and the auricular and ventricular myocardia are herein reported.« less

  3. Comparative effects of kainic, quisqualic, and ibotenic acids on phenylethanolamine-N-methyltransferase-containing cells of rat retina.

    PubMed

    Cohen, J

    1989-02-01

    Phenylethanolamine-N-methyltransferase (PNMT) activity is located in a subpopulation of amacrine cells in the inner nuclear layer of the rat retina. Kainic, quisqualic, and ibotenic acids, all of which are analogues of glutamic acid, were injected intravitreally to the right and saline to the contralateral left eyes of adult male rats in order to determine the effect of these agents upon retinal PNMT activity. Animals were sacrificed 1 week later for tissue removal. The effect of these agents was measured by radiometric assay for PNMT. The fall in PNMT activity was used to measure the sensitivity of the PNMT-containing cells to these agents. Kainic acid was the most potent, producing the greatest reduction in PNMT activity in the smallest doses. Quisqualic acid was intermediate in potency to that of kainic and ibotenic acids. Ibotenic acid reduced PNMT activity only in extremely high doses. The PNMT-containing cells are sensitive to the toxic actions of kainic and quisqualic acids, but relatively insensitive to the actions of ibotenic acid.

  4. Effects of phenylethanolamine N-methyltransferase inhibitors on uptake and release of norepinephrine and dopamine from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, N.Y.; Hower, J.A.; Borchardt, R.T.

    1985-09-01

    Inhibitors of phenylethanolamine N-methyltransferase (PNMT) and amphetamine were evaluated for their effects on the uptake of (TH)-norepinephrine (TH-NE) and the release of endogenous NE and dopamine (DA) from chopped rat brain tissues. Unlike amphetamine, all of PNMT inhibitors tested produced only slight inhibition of (TH)-NE uptake into chopped cerebral cortex. 2,3-Dichloro-alpha-methylbenzylamine (DCMB) and 7,8-dichloro-1,2,3,4-tetrahydroisoquinoline (SKF64139), but not 2-cyclooctyl-2-hydroxyethylamine (CONH) and 1-aminomethylcycloundecanol (CUNH) produced slight release of endogenous NE and DA from chopped hypothalami, but their effects were less pronounced than those produced by amphetamine.

  5. Inheritance of Adrenal Phenylethanolamine N-Methyltransferase Activity in the Rat

    PubMed Central

    Stolk, Jon M.; Vantini, Guido; Guchhait, Ras B.; Hurst, Jeffrey H.; Perry, Bruce D.; U'Prichard, David C.; Elston, Robert C.

    1984-01-01

    Phenylethanolamine N-methyltransferase (PNMT) is the enzyme that catalyzes the S-adenosyl-l-methionine-dependent methylation of (-)norepinephrine to (-)epinephrine in the adrenal medulla. Adrenal PNMT activity is markedly different in two highly inbred rat strains; enzyme activity in the F344 strain is more than fivefold greater than that in the Buf strain. Initial characterization of the enzyme in the two inbred strains reveals evidence for catalytic and structural differences, as reflected in dissimilar Km values for the cosubstrate (S-adenosyl-l-methionine) and prominent differences in thermal inactivation curves. To assess adrenal PNMT activity in an F344 x Buf pedigree, we employed a statistical procedure to test for one- and two-locus hypotheses in the presence of within-class correlations due to cage or litter effects. The PNMT data in the pedigree are best accounted for by segregation at a simple major locus superimposed upon a polygenic background; data obtained from the biochemical studies suggest that the major locus is a structural gene locus. PMID:6149973

  6. GLUCOCORTICOID TREATMENT—EFFECT ON ADRENAL MEDULLARY CATECHOLAMINE PRODUCTION

    PubMed Central

    Sharara-Chami, Rana I.; Joachim, Maria; Pacak, Karel; Majzoub, Joseph A.

    2016-01-01

    Glucocorticoid and epinephrine are important stress hormones secreted from the adrenal gland during critical illness. Adrenal glucocorticoid stimulates phenylethanolamine N-methyltransferase (PNMT) to convert norepinephrine to epinephrine in the adrenal medulla. Glucocorticoid is sometimes used in catecholamine-resistant septic shock in critically ill patients. By suppressing adrenal glucocorticoid production, glucocorticoid therapy might also reduce the secretion of epinephrine during stress. To investigate this, we used a mouse model subjected to glucocorticoid therapy under basal conditions (experiment 1) and during stress (experiment 2). In experiment 1, pellets containing 0% to 8% dexamethasone were implanted subcutaneously in mice for 4 weeks. In experiment 2, animals received 14 days of intraperitoneal injections of normal saline, low- or high-dose dexamethasone, followed by 2 h of restraint. We found that in experiment 1, adrenal corticosterone did not differ with dexamethasone treatment. Phenylethanolamine N-methyltransferase messenger RNA levels and adrenal catecholamines were highest in the 8% dexamethasone group. Compared with experiment 1, restrained control mice in experiment 2 had high adrenal corticosterone, which decreased with dexamethasone. Phenylethanolamine N-methyltransferase messenger RNA content doubled with restraint but decreased with dexamethasone treatment. As in experiment 1, adrenal catecholamine content increased significantly with dexamethasone treatment. We conclude that without stress, when adrenocorticotropic hormone is low, high doses of exogenous dexamethasone stimulate PNMT and catecholamine synthesis, likely independently of adrenal corticosterone concentration. After stress, adrenocorticotropic hormone levels are elevated, and exogenous dexamethasone suppresses endogenous corticosterone and PNMT production. Nonetheless, catecholamines increase, possibly due to direct neural stimulation, which may override the hormonal regulation of epinephrine synthesis during stress. PMID:19503019

  7. Phosphodiesterase 4 Inhibitors Attenuate the Asthma Phenotype Produced by β2-Adrenoceptor Agonists in Phenylethanolamine N-Methyltransferase-Knockout Mice.

    PubMed

    Forkuo, Gloria S; Kim, Hosu; Thanawala, Vaidehi J; Al-Sawalha, Nour; Valdez, Daniel; Joshi, Radhika; Parra, Sergio; Pera, Tonio; Gonnella, Patricia A; Knoll, Brian J; Walker, Julia K L; Penn, Raymond B; Bond, Richard A

    2016-08-01

    Mice lacking the endogenous β2-adrenoceptor (β2AR) agonist epinephrine (phenylethanolamine N-methyltransferase [PNMT]-knockout mice) are resistant to developing an "asthma-like" phenotype in an ovalbumin sensitization and challenge (Ova S/C) model, and chronic administration of β2AR agonists to PNMT-KO mice restores the phenotype. Based on these and other studies showing differential effects of various β2AR ligands on the asthma phenotype, we have speculated that the permissive effect of endogenous epinephrine and exogenous β2AR agonists on allergic lung inflammation can be explained by qualitative β2AR signaling. The β2AR can signal through at least two pathways: the canonical Gαs-cAMP pathway and a β-arrestin-dependent pathway. Previous studies suggest that β-arrestin-2 is required for allergic lung inflammation. On the other hand, cell-based assays suggest antiinflammatory effects of Gαs-cAMP signaling. This study was designed to test whether the in vitro antiinflammatory effects of phosphodiesterase 4 inhibitors, known to increase intracellular cAMP in multiple airway cell types, attenuate the asthma-like phenotype produced by the β2AR agonists formoterol and salmeterol in vivo in PNMT-KO mice, based on the hypothesis that skewing β2AR signaling toward Gαs-cAMP pathway is beneficial. Airway inflammatory cells, epithelial mucus production, and airway hyperresponsiveness were quantified. In Ova S/C PNMT-KO mice, formoterol and salmeterol restored the asthma-like phenotype comparable to Ova S/C wild-type mice. However, coadministration of either roflumilast or rolipram attenuated this formoterol- or salmeterol-driven phenotype in Ova S/C PNMT-KO. These findings suggest that amplification of β2AR-mediated cAMP by phosphodiesterase 4 inhibitors attenuates the asthma-like phenotype promoted by β-agonists.

  8. Syntheses of conformationally defined analogues of tyramine and phenylethanolamine and their biological evaluations at central dopamine receptors and the active site of phenylethanolamine N-methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Q.

    Tyramine analogues 31-33 and 37-39 were evaluated for dopaminergic activities on rat striatal tissues with radioligands ({sup 3}H)SCH23390 for D-1 receptor and ({sup 3}H)spiroperidol for D-2 receptor. The tertiary amines 37-39 were generally more potent than the primary amines 31-33. In the primary amines, 33 (2-OH) was more potent than 31 and 32, and in the tertiary amines, 37 (4-OH) was more potent than 38 and 39 at both D-1 and D-2 receptors. The reduced activity of 31-33 and 37-39 compared with corresponding hydroxyl-substituted 2ATs is consistent with a negative interaction from the extra ethano bridge in their binding tomore » the dopamine receptors. No selectivity was observed in both these conformationally defined tyramines (31-33 and 37-39) and conformationally restricted tyramines; a good correlation was observed between log IC{sub 5}O values at D-1 and D-2 receptors. The tyramines 31-33, the phenylethanolamines 45 and 46, and the phenylethylamine 44 (X, Y = H) were evaluated for activities as either substrates or inhibitors of phenylethanolamine N-methyltransferase (PNMT) by an in vitro radiochemical assay.« less

  9. Imidacloprid, a neonicotinoid insecticide, facilitates tyrosine hydroxylase transcription and phenylethanolamine N-methyltransferase mRNA expression to enhance catecholamine synthesis and its nicotine-evoked elevation in PC12D cells.

    PubMed

    Kawahata, Ichiro; Yamakuni, Tohru

    2018-02-01

    Imidacloprid is a neonicotinoid insecticide acting as an agonist of nicotinic acetylcholine receptors (nAChRs) in the target insects. However, questions about the safety to mammals, including human have emerged. Overactivation of mammalian peripheral catecholaminergic systems leads to onset of tachycardia, hypertension, vomiting, etc., which have been observed in acutely imidacloprid-poisoned patients as well. Physiological activation of the nAChRs is known to drive catecholamine biosynthesis and secretion in mammalian adrenal chromaffin cells. Yet, the impacts of imidacloprid on the catecholaminergic function of the chromaffin cells remain to be evaluated. In this study using PC12D cells, a catecholaminergic cell line derived from the medulla chromaffin-cell tumors of rat adrenal gland, we examined whether imidacloprid itself could impact the catecholamine-synthesizing ability. Imidacloprid alone did facilitate tyrosine hydroxylase (TH) transcription via activation of α3β4 nAChR and the α7 subunit-comprising receptor. The insecticide showed the TH transcription-facilitating ability at the concentrations of 3 and 30 μM, at which acetylcholine is known to produce physiological responses, including catecholamine secretion through the nAChRs in adrenal chromaffin cells. The insecticide-facilitated TH transcription was also dependent on PKA- and RhoA-mediated signaling pathways. The insecticide coincidentally raised levels of TH and phenylethanolamine N-methyltransferase (PNMT) mRNA, and as a consequence, increased catecholamine production, although the efficacy of the neonicotinoid was lesser than that of nicotine, indicating its partial agonist-like action. Intriguingly, in cultured rat adrenal chromaffin cells, imidacloprid did increase levels of TH and PNMT protein. When the chromaffin cells were treated with nicotine in the presence of the insecticide, nicotine-elevated adrenaline production was enhanced due to facilitation of nicotine-increased TH and PNMT protein expression, and simultaneous enhancement of nicotine-elevated adrenaline secretion also took place. These findings thus suggest that imidacloprid may facilitate the physiological functions of adrenal glands in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Actions of hypoxia on catecholamine synthetic enzyme mRNA expression before and after development of adrenal innervation in the sheep fetus

    PubMed Central

    Adams, M B; McMillen, I C

    2000-01-01

    We have investigated adrenal mRNA expression of the catecholamine synthetic enzymes tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) following acute hypoxia in fetal sheep before (< 105 days gestation, n = 20) and after (> 125 days gestation, n = 20) the development of adrenal innervation and following pretreatment with the nicotinic receptor anatgonist hexamethonium (n = 12). Total RNA was extracted from fetal adrenal glands collected at specific time points at 3-20 h after the onset of either hypoxia (∼50% reduction in fetal arterial oxygen saturation (SO2) for 30 min), or normoxia. Before 105 days, there was a decrease in adrenal TH mRNA expression at 20 h after hypoxia and adrenal TH mRNA expression was directly related to the changes in arterial PO2 measured during normoxia and hypoxia. After 125 days, adrenal TH mRNA levels were suppressed for up to 12 h following hypoxia. In both age groups, adrenal PNMT mRNA expression increased at 3-5 h after hypoxia and was inversely related to the changes in fetal arterial PO2 during normoxia or hypoxia. After 125 days, the administration of hexamethonium (25 mg kg−1, I. V.) reduced TH mRNA but not PNMT mRNA expression after normoxia. After hexamethonium pretreatment, there was no significant change in either adrenal TH or PNMT mRNA expression following hypoxia. We conclude that acute hypoxia differentially regulates adrenal TH and PNMT mRNA expression in the fetal sheep both before and after the development of adrenal innervation. After the development of adrenal innervation, however, the effect of acute hypoxia upon adrenal TH and PNMT mRNA expression is dependent upon neurogenic input acting via nicotinic receptors. PMID:11118487

  11. Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors.

    PubMed

    Alves, Ester; Lukoyanov, Nikolay; Serrão, Paula; Moura, Daniel; Moreira-Rodrigues, Mónica

    2016-06-01

    Phenylethanolamine-N-methyltransferase knockout (Pnmt-KO) mice are unable to synthesize epinephrine and display reduced contextual fear. However, the precise mechanism responsible for impaired contextual fear learning in these mice is unknown. Our aim was to study the mechanism of epinephrine-dependent contextual learning. Wild-type (WT) or Pnmt-KO (129x1/SvJ) mice were submitted to a fear conditioning test either in the absence or in the presence of epinephrine, isoprenaline (non-selective β-adrenoceptor agonist), fenoterol (selective β2-adrenoceptor agonist), epinephrine plus sotalol (non-selective β-adrenoceptor antagonist), and dobutamine (selective β1-adrenoceptor agonist). Catecholamines were separated by reverse-phase HPLC and quantified by electrochemical detection. Blood glucose was measured by coulometry. Re-exposure to shock context induced higher freezing in WT and Pnmt-KO mice treated with epinephrine and fenoterol than in mice treated with vehicle. In addition, freezing response in Pnmt-KO mice was much lower than in WT mice. Freezing induced by epinephrine was blocked by sotalol in Pnmt-KO mice. Epinephrine and fenoterol treatment restored glycemic response in Pnmt-KO mice. Re-exposure to shock context did not induce a significant difference in freezing in Pnmt-KO mice treated with dobutamine and vehicle. Aversive memories are best retained if moderately high plasma epinephrine concentrations occur at the same moment as the aversive stimulus. In addition, epinephrine increases context fear learning by acting on peripheral β2-adrenoceptors, which may induce high levels of blood glucose. Since glucose crosses the blood-brain barrier, it may enhance hippocampal-dependent contextual learning.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, A.A.; Fleming, P.J.; Lake, C.R.

    We modified a norepinephrine radioenzymatic method for determination of plasma phenylpropanolamine (PPA) concentrations. PPA is converted to N(methyl-/sup 3/H)ephedrine ((/sup 3/H)EPD) by the enzyme phenylethanolamine N-methyltransferase (PNMT) and S-(methyl-/sup 3/H)adenosyl-L-methionine ((/sup 3/H)AdoMet). The product, (/sup 3/H)EPD, is isolated from unreacted (/sup 3/H)AdoMet and labeled side products by an organic extraction and a TLC procedure. In addition, a preincubation organic extraction procedure is included to remove inhibitors of PNMT from plasma and to concentrate the sample for enhanced enzymatic conversion. In order to accurately quantitate PPA across the wide range of possible concentrations, the assay is conducted at two plasma volumes.more » PPA concentrations between 0.3 and 50 micrograms/liter can be detected with 1 ml of plasma, while concentrations between 4 and 1500 micrograms/liter can be detected with 0.1 ml of plasma. The intra-assay coefficients of variation (CVs) are 9.3 and 5.7% at 0.5 and 1500 micrograms/liter, respectively, while the mean interassay CV is 13.8%.« less

  13. Noncompetitive inhibition of indolethylamine-N-methyltransferase by N,N-dimethyltryptamine and N,N-dimethylaminopropyltryptamine.

    PubMed

    Chu, Uyen B; Vorperian, Sevahn K; Satyshur, Kenneth; Eickstaedt, Kelsey; Cozzi, Nicholas V; Mavlyutov, Timur; Hajipour, Abdol R; Ruoho, Arnold E

    2014-05-13

    Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 μM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.

  14. Noncompetitive Inhibition of Indolethylamine-N-methyltransferase by N,N-Dimethyltryptamine and N,N-Dimethylaminopropyltryptamine

    PubMed Central

    2015-01-01

    Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis–Menten and Lineweaver–Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N′,N′-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 μM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14) identified an N-terminal helix–loop–helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were −6.34 and −7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT. PMID:24730580

  15. Coexistence and gene expression of phenylethanolamine N-methyltransferase, tyrosine hydroxylase, and neuropeptide tyrosine in the rat and bovine adrenal gland: effects of reserpine.

    PubMed

    Schalling, M; Dagerlind, A; Brené, S; Hallman, H; Djurfeldt, M; Persson, H; Terenius, L; Goldstein, M; Schlesinger, D; Hökfelt, T

    1988-11-01

    Expression and regulation of the catecholamine-synthesizing enzymes phenylethanolamine N-methyltransferase (PNMTase; S-adenosyl-L-methionine:phenylethanolamine N-methyltransferase, EC 2.1.1.28) and tyrosine hydroxylase [TyrOHase; tyrosine 3-monooxygenase, L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] and the coexisting neuropeptide tyrosine (NPY) were studied in rat and bovine adrenal medulla. By using both immunohistochemistry and in situ hybridization, PNMTase- and NPY-positive cells exhibited a close overlap in bovine medulla and were preferentially localized in the outer two-thirds of the medulla. Although TyrOHase and its mRNA were observed in virtually all medullary gland cells, TyrOHase mRNA levels were much higher in the PNMTase- and NPY-positive cells. After administration of the catecholamine-depleting drug reserpine to rats, a brief increase, followed by a dramatic decrease, in the level of PNMTase mRNA was observed in the adrenal medulla. In contrast, mRNA for both TyrOHase and NPY only exhibited an increase, whereby the TyrOHase mRNA peak preceded that of NPY mRNA. Different regulatory mechanisms may thus operate for these three compounds coexisting in the adrenal medulla.

  16. Coexistence and gene expression of phenylethanolamine N-methyltransferase, tyrosine hydroxylase, and neuropeptide tyrosine in the rat and bovine adrenal gland: effects of reserpine.

    PubMed Central

    Schalling, M; Dagerlind, A; Brené, S; Hallman, H; Djurfeldt, M; Persson, H; Terenius, L; Goldstein, M; Schlesinger, D; Hökfelt, T

    1988-01-01

    Expression and regulation of the catecholamine-synthesizing enzymes phenylethanolamine N-methyltransferase (PNMTase; S-adenosyl-L-methionine:phenylethanolamine N-methyltransferase, EC 2.1.1.28) and tyrosine hydroxylase [TyrOHase; tyrosine 3-monooxygenase, L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] and the coexisting neuropeptide tyrosine (NPY) were studied in rat and bovine adrenal medulla. By using both immunohistochemistry and in situ hybridization, PNMTase- and NPY-positive cells exhibited a close overlap in bovine medulla and were preferentially localized in the outer two-thirds of the medulla. Although TyrOHase and its mRNA were observed in virtually all medullary gland cells, TyrOHase mRNA levels were much higher in the PNMTase- and NPY-positive cells. After administration of the catecholamine-depleting drug reserpine to rats, a brief increase, followed by a dramatic decrease, in the level of PNMTase mRNA was observed in the adrenal medulla. In contrast, mRNA for both TyrOHase and NPY only exhibited an increase, whereby the TyrOHase mRNA peak preceded that of NPY mRNA. Different regulatory mechanisms may thus operate for these three compounds coexisting in the adrenal medulla. Images PMID:2903502

  17. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).

    PubMed

    Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina

    2017-06-13

    Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.

  18. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    PubMed

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  19. Exposure to alcohol during adolescence exerts long-term effects on stress response and the adult brain stress circuits.

    PubMed

    Allen, Camryn D; Grigoleit, Jan-Sebastian; Hong, Joonho; Bae, Sejin; Vaughan, Joan; Lee, Soon

    2016-12-17

    The hypothalamic-pituitary-adrenal (HPA) axis undergoes critical developments during adolescence. Therefore, stressors experienced during this period potentially have long-term effects on adult HPA axis function. We hypothesized that adolescent intermittent ethanol (AIE) exposure would affect adult HPA axis function, resulting in altered responses to an alcohol challenge in young adults or adults. To test these hypotheses, male rats were exposed to alcohol vapor for 6h per day from post-natal day (PND) 28-42, then acutely challenged with alcohol intragastrically (3.2-4.5g/kg) in young adults (PND 70) or adults (PND 90). Overall, we observed blunted HPA axis responses to an alcohol challenge due to AIE exposure. Specifically, AIE tended to inhibit the alcohol challenge-induced increase in plasma corticosterone (CORT) concentrations in young adult and adult rats. As well, AIE significantly blunted the alcohol challenge-induced arginine vasopressin (Avp) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus of adult rats. Results of the present study are similar to what we have previously shown, that these changes in PVN responsiveness may result from AIE-induced alterations in adrenergic neurons in brain stem regions C1-C3 known to project to the PVN. AIE elevated the number of colocalized c-fos/phenylethanolamine N-methyltransferase (PNMT)-positive cell bodies in the C1 region of adult rats. Together, these data suggest that AIE exposure produces alterations in male HPA axis responsiveness to administration of an acute alcohol challenge that may be long-lasting. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design

    PubMed Central

    2012-01-01

    The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472

  1. Fragment-based screening by protein crystallography: successes and pitfalls.

    PubMed

    Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J

    2012-10-08

    Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality.

  2. Fragment-Based Screening by Protein Crystallography: Successes and Pitfalls

    PubMed Central

    Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J.

    2012-01-01

    Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality. PMID:23202926

  3. BETAINE FEEDING PREVENTS THE BLOOD ALCOHOL CYCLE IN RATS FED ALCOHOL CONTINUOUSLY FOR 1 MONTH USING THE RAT INTRAGASTRIC TUBE FEEDING MODEL

    PubMed Central

    Li, J; Li, XM; Caudill, M; Malysheva, O; Bardag-Gorce, F; Oliva, J; French, BA; Gorce, E; Morgan, K; Kathirvel, E; Morgan, T; French, SW

    2011-01-01

    Background Blood alcohol levels (BAL) cycle up and down over a 7–8 day period when ethanol is fed continuously for one month in the intragastric tube feeding rat model (ITFRM) of alcoholic liver disease. The cycling phenomenon is due to an alternating increase and decrease in the metabolic rate. Recently, we found that S-adenosyl-methionine (SAMe) fed with alcohol prevented the BAL cycle. Method Using the ITFRM we fed rats betaine (2 g/kg/day) with ethanol for 1 month and recorded the daily 24 h urine ethanol level (UAL) to measure the BAL cycle. UAL is equivalent to BAL because of the constant ethanol infusion. Liver histology, steatosis and BAL were measured terminally after 1 month of treatment. Microarray analysis was done on the mRNA extracted from the liver to determine the effects of betaine and alcohol on changes in gene expression. Results Betaine fed with ethanol completely prevented the BAL cycle similar to SAMe. Betaine also significantly reduced the BAL compared to ethanol fed rats without betaine. This was also observed when SAMe was fed with ethanol. The mechanism involved in both cases is that SAMe is required for the conversion of epinephrine from norepinephrine by phenylethanolamine methyltransferase (PNMT). Epinephrine is 5 to 10 fold more potent than norepinephrine in increasing the metabolic rate. The increase in the metabolic rate generates NAD, permitting ADH to increase the oxidation of alcohol. NAD is the rate limiting factor in oxidation of alcohol by alcohol dehydrogenase (ADH). This explains how SAMe and betaine prevented the cycle. Microarray analysis showed that betaine feeding prevented the up regulation of a large number of genes including TLR2/4, Il-1b, Jax3, Sirt3, Fas, Ifngr1, Tgfgr2, Tnfrsf21, Lbp and Stat 3 which could explain how betaine prevented fatty liver. Conclusion Betaine feeding lowers the BAL and prevents the BAL cycle by increasing the metabolic rate. This increases the rate of ethanol elimination by generating NAD. PMID:21708146

  4. Nicotine promotes cell proliferation via {alpha}7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferationmore » and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.« less

  5. Subunit Arrangement and Phenylethanolamine Binding in GluN1/GluN2B NMDA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Karakas; N Simorowski; H Furukawa

    2011-12-31

    Since it was discovered that the anti-hypertensive agent ifenprodil has neuroprotective activity through its effects on NMDA (N-methyl-D-aspartate) receptors, a determined effort has been made to understand the mechanism of action and to develop improved therapeutic compounds on the basis of this knowledge. Neurotransmission mediated by NMDA receptors.

  6. Exploring Pre-Service Elementary Science Teachers' Conceptual Understanding of Particulate Nature of Matter through Three-Tier Diagnostic Test

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Bilican, Kader; Kirbulut, Zubeyde Demet

    2017-01-01

    The purpose of this study was to explore Pre-service Elementary Science Teachers' (PSTs) conceptual understanding of Particulate Nature of Matter (PNM) through a three-tier diagnostic test. Participants were 215 PSTs from Turkey. Data consisted of participants' responses to the Particulate Nature of Matter Test (PNMT). The PNMT consists of…

  7. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.

    PubMed

    Somogyi, P; Minson, J B; Morilak, D; Llewellyn-Smith, I; McIlhinney, J R; Chalmers, J

    1989-09-04

    The source and possible role of excitatory amino acid projections to areas of the ventrolateral medulla (VLM) involved in cardiovascular control were studied. Following the injection of [3H]D-aspartate ([3H]D-Asp), a selective tracer for excitatory amino acid pathways, into vasopressor or vasodepressor areas of the VLM in rats, more than 90% of retrogradely labelled neurones were found in the nucleus of the solitary tract (NTS). Very few of the [3H]D-Asp-labelled cells were immunoreactive for tyrosine hydroxylase, none for phenylethanolamine-N-methyltransferase or gamma-aminobutyric acid. The density of labelled cells in the NTS was similar to that obtained with the non-selective tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and WGA-colloidal gold, but these tracers also labelled other cell groups in the medulla. Furthermore, the decrease in blood pressure, caused by pharmacological activation of neurones in the NTS of rats, or by electrical stimulation of the aortic depressor nerve in rabbits could be blocked by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate injected into the caudal vasodepressor area of the VLM. This area corresponds to the termination of [3H]D-Asp transporting NTS neurones. These results provide evidence that a population of NTS neurones projecting to the VLM use excitatory amino acids as transmitters. Among other possible functions, this pathway may mediate tonic and reflex control of blood pressure via NMDA receptors in the VLM.

  8. The enigma of conditioned taste aversion learning: stimulus properties of 2-phenylethylamine derivatives.

    PubMed

    Greenshaw, A J; Turrkish, S; Davis, B A

    2002-01-01

    The functional aversive stimulus properties of several IP doses of (+/-)-amphetamine (1.25-10 mg.kg-1), 2-phenylethylamine (PEA, 2.5-10 mg.kg-1, following inhibition of monoamine oxidase with pargyline 50 mg.kg-1) and phenylethanolamine (6.25-50 mg.kg-1) were measured with the conditioned taste aversion (CTA) paradigm. A two-bottle choice procedure was used, water vs. 0.1 % saccharin with one conditioning trial and three retention trials. (+/-)-Amphetamine and phenylethanolamine induced a significant conditioned taste aversion but PEA did not. (+/-)-Amphetamine and PEA increased spontaneous locomotor activity but phenylethanolamine had no effects on this measure. Measurement of whole brain levels of these drugs revealed that the peak brain elevation of PEA occurred at approximately 10 min whereas the peak elevations of (+/-)-amphetamine and phenylethanolamine occurred at approximately 20 min. The present failure of PEA to elicit conditioned taste aversion learning is consistent with previous reports for this compound. The differential functional aversive stimulus effects of these three compounds are surprising since they exhibit similar discriminative stimulus properties and both (+/-)-amphetamine and PEA are self-administered by laboratory animals. The present data suggest that time to maximal brain concentrations following peripheral injection may be a determinant of the aversive stimulus properties of PEA derivatives.

  9. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation.

    PubMed

    Sidler, Dominik; Schwaninger, Arthur; Riniker, Sereina

    2016-10-21

    In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.

  10. High Hydrostatic Pressure Extract of Ginger Exerts Antistress Effects in Immobilization-Stressed Rats.

    PubMed

    Moon, Sohee; Lee, Mak-Soon; Jung, Sunyoon; Kang, Bori; Kim, Seog-Young; Park, Seonyoung; Son, Hye-Yeon; Kim, Chong-Tai; Jo, Young-Hee; Kim, In-Hwan; Kim, Young Soon; Kim, Yangha

    2017-09-01

    Stress contributes to physiological changes such as weight loss and hormonal imbalances. The aim of the present study was to investigate antistress effects of high hydrostatic pressure extract of ginger (HPG) in immobilization-stressed rats. Male Sprague-Dawley rats (n = 24) were divided into three groups as follows: control (C), immobilization stress (2 h daily, for 2 weeks) (S), and immobilization stress (2 h daily, for 2 weeks) plus oral administration of HPG (150 mg/kg body weight/day) (S+G). Immobilization stress reduced the body weight gain and thymus weight by 50.2% and 31.3%, respectively, compared to the control group. The levels of serum aspartate transaminase, alanine transaminase, and corticosterone were significantly higher in the stress group, compared to the control group. Moreover, immobilization stress elevated the mRNA levels of tyrosine hydroxylase (Th), dopamine beta-hydroxylase (Dbh), and cytochrome P450 side-chain cleavage (P450scc), which are related to catecholamine and corticosterone synthesis in the adrenal gland. HPG administration also increased the body weight gain and thymus weight by 12.7% and 16.6%, respectively, compared to the stress group. Furthermore, the mRNA levels of Th, Dbh, phenylethanolamine-N-methyltransferase, and P450scc were elevated by the HPG treatment when compared to the stress group. These results suggest that HPG would have antistress effects partially via the reversal of stress-induced physiological changes and suppression of mRNA expression of genes related to corticosterone and catecholamine synthetic enzymes.

  11. Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells.

    PubMed

    Gou, Qing; He, ShuJiao; Zhou, ZeJian

    2017-02-01

    Hepatocellular carcinoma is the most common subtype of liver cancer. Protein arginine N-methyltransferase 1 was shown to be upregulated in various cancers. However, the role of protein arginine N-methyltransferase 1 in hepatocellular carcinoma progression remains incompletely understood. We investigated the clinical and functional significance of protein arginine N-methyltransferase 1 in a series of clinical hepatocellular carcinoma samples and a panel of hepatocellular carcinoma cell lines. We performed suppression analysis of protein arginine N-methyltransferase 1 using small interfering RNA to determine the biological roles of protein arginine N-methyltransferase 1 in hepatocellular carcinoma. In addition, the expression of epithelial-mesenchymal transition indicators was verified by western blotting in hepatocellular carcinoma cell lines after small interfering RNA treatment. Protein arginine N-methyltransferase 1 expression was found to be significantly upregulated in hepatocellular carcinoma cell lines and clinical tissues. Moreover, downregulation of protein arginine N-methyltransferase 1 in hepatocellular carcinoma cells by small interfering RNA could inhibit cell proliferation, migration, and invasion in vitro. These results indicate that protein arginine N-methyltransferase 1 may contribute to hepatocellular carcinoma progression and serves as a promising target for the treatment of hepatocellular carcinoma patients.

  12. Discriminative stimulus properties of beta-phenylethylamine, deuterated beta-phenylethylamine, phenylethanolamine and some metabolites of phenylethylamine in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, D.; Goudie, A.J.

    The discriminative stimulus (cue) properties of phenylethylamine (PEA) were analysed in rodents in a conventional two lever FR10 operant drug discrimination task. Rats trained to discriminate phenylethylamine at 30 mg/kg showed complete dose-related generalization to PEA and to two potential PEA metabolites: phenylethanolamine (PEOH) and N-Methyl PEA (NMPEA). Only partial (50%) generalization was seen with N-Methylphenylethanolamine (NMPEOH), another potential PEA metabolite. The specificity of PEA's action as a discriminative stimulus was demonstrated by the finding that fenfluramine, a substituted phenylethylamine, failed to generalize to PEA even at high doses with marked behavioural effects which are known to have discriminative stimulusmore » properties themselves. These data suggest that NMPEA and PEOH may be functionally important active metabolites of PEA, particularly if the major pathway of PEA metabolism to phenylacetic acid under the influence of MAO Type B is for any reason impaired. A long acting deuterium substituted form of PEA (alpha, alpha, d2 PEA), which is resistant to metabolism by MAO, produced complete dose-related generalization to the PEA cue but was more potent than PEA, due presumably to its resistance to metabolism by MAO. Deuterated PEA may therefore be a useful agent to use in future studies of the PEA cue, because the discriminability of PEA itself appears to be low due to its very rapid metabolism in vivo.« less

  13. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids1[OPEN

    PubMed Central

    Levac, Dylan; Cázares, Paulo; Yu, Fang

    2016-01-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  14. Identification of phosphomethylethanolamine N-methyltransferase from Arabidopsis and its role in choline and phospholipid metabolism.

    PubMed

    BeGora, Michael D; Macleod, Mitchell J R; McCarry, Brian E; Summers, Peter S; Weretilnyk, Elizabeth A

    2010-09-17

    Three sequential methylations of phosphoethanolamine (PEA) are required for the synthesis of phosphocholine (PCho) in plants. A cDNA encoding an N-methyltransferase that catalyzes the last two methylation steps was cloned from Arabidopsis by heterologous complementation of a Saccharomyces cerevisiae cho2, opi3 mutant. The cDNA encodes phosphomethylethanolamine N-methyltransferase (PMEAMT), a polypeptide of 475 amino acids that is organized as two tandem methyltransferase domains. PMEAMT shows 87% amino acid identity to a related enzyme, phosphoethanolamine N-methyltransferase, an enzyme in plants that catalyzes all three methylations of PEA to PCho. PMEAMT cannot use PEA as a substrate, but assays using phosphomethylethanolamine as a substrate result in both phosphodimethylethanolamine and PCho as products. PMEAMT is inhibited by the reaction products PCho and S-adenosyl-l-homocysteine, a property reported for phosphoethanolamine N-methyltransferase from various plants. An Arabidopsis mutant with a T-DNA insertion associated with locus At1g48600 showed no transcripts encoding PMEAMT. Shotgun lipidomic analyses of leaves of atpmeamt and wild-type plants generated phospholipid profiles showing the content of phosphatidylmethylethanolamine to be altered relative to wild type with the content of a 34:3 lipid molecular species 2-fold higher in mutant plants. In S. cerevisiae, an increase in PtdMEA in membranes is associated with reduced viability. This raises a question regarding the role of PMEAMT in plants and whether it serves to prevent the accumulation of PtdMEA to potentially deleterious levels.

  15. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    PubMed

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  16. Characterization of a plasma membrane-associated prenylcysteine-directed alpha carboxyl methyltransferase in human neutrophils.

    PubMed

    Pillinger, M H; Volker, C; Stock, J B; Weissmann, G; Philips, M R

    1994-01-14

    Signal transduction in human neutrophils requires prenylcysteine-directed carboxyl methylation of ras-related low molecular weight GTP-binding proteins. We now report the subcellular localization and characterization of a neutrophil prenylcysteine alpha carboxyl methyltransferase. The highest carboxyl methyltransferase activity copurified with biotinylated neutrophil surface membranes, supporting a plasma membrane localization of the enzyme. Neutrophil nuclear fractions contained little or no methyltransferase activity. Methyltransferase activity was detergent-sensitive but could be reconstituted by removal of detergent in the presence of phosphatidyl choline and an anionic phospholipid. N-Acetyl-S-trans,trans-farnesyl-L-cysteine (AFC) and N-acetyl-S-all-trans-geranylgeranyl-L-cysteine (AGGC) were effective substrates for neutrophil prenylcysteine-directed methyltransferase; Vmax values for AFC and AGGC (16.4 and 22.1 pmol of methylated/mg protein/min, respectively) are among the highest yet reported. Although both GTP gamma S and the chemoattractant fMet-Leu-Phe stimulated methylation of ras-related proteins, neither affected methylation of AFC. These data suggest that neutrophil plasma membranes contain a phospholipid-dependent, prenylcysteine-directed carboxyl methyltransferase of relatively high specific activity that modifies ras-related protein substrates in the GTP-bound, activated state.

  17. RNA Cap Methyltransferase Activity Assay

    PubMed Central

    Trotman, Jackson B.; Schoenberg, Daniel R.

    2018-01-01

    Methyltransferases that methylate the guanine-N7 position of the mRNA 5′ cap structure are ubiquitous among eukaryotes and commonly encoded by viruses. Here we provide a detailed protocol for the biochemical analysis of RNA cap methyltransferase activity of biological samples. This assay involves incubation of cap-methyltransferase-containing samples with a [32P]G-capped RNA substrate and S-adenosylmethionine (SAM) to produce RNAs with N7-methylated caps. The extent of cap methylation is then determined by P1 nuclease digestion, thin-layer chromatography (TLC), and phosphorimaging. The protocol described here includes additional steps for generating the [32P]G-capped RNA substrate and for preparing nuclear and cytoplasmic extracts from mammalian cells. This assay is also applicable to analyzing the cap methyltransferase activity of other biological samples, including recombinant protein preparations and fractions from analytical separations and immunoprecipitation/pulldown experiments. PMID:29644259

  18. Structure and function of flavivirus NS5 methyltransferase.

    PubMed

    Zhou, Yangsheng; Ray, Debashish; Zhao, Yiwei; Dong, Hongping; Ren, Suping; Li, Zhong; Guo, Yi; Bernard, Kristen A; Shi, Pei-Yong; Li, Hongmin

    2007-04-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.

  19. A simplified characterization of S-adenosyl-l-methionine-consuming enzymes with 1-Step EZ-MTase: a universal and straightforward coupled-assay for in vitro and in vivo setting.

    PubMed

    Burgos, Emmanuel S; Walters, Ryan O; Huffman, Derek M; Shechter, David

    2017-09-01

    Methyltransferases use S -adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo , we report a highly-sensitive one-step deaminase-linked continuous assay where the S -adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S -inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N -methyltransferase (DIM-5) and a sarcosine/dimethylglycine N -methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S -8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 μM h -1 , thus making it possible to quantify low nanomolar concentrations of glycine N -methyltransferase within crude biological samples. With Z '-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics.

  20. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase and method of inactivating ribulose-1,5-bisphosphatase carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  1. Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ -methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase.

    PubMed

    Cázares-Flores, Paulo; Levac, Dylan; De Luca, Vincenzo

    2016-08-01

    Ajmaline biosynthesis in Rauvolfia serpentina has been one of the most studied monoterpenoid indole alkaloid (MIA) pathways within the plant family Apocynaceae. Detailed molecular and biochemical information on most of the steps involved in the pathway has been generated over the last 30 years. Here we report the identification, molecular cloning and functional expression in Escherichia coli of two R. serpentinacDNAs that are part of a recently discovered γ-tocopherol-like N-methyltransferase (γ-TLMT) family and are involved in indole and side-chain N-methylation of ajmaline. Recombinant proteins showed remarkable substrate specificity for molecules with an ajmalan-type backbone and strict regiospecific N-methylation. Furthermore, N-methyltransferase gene transcripts and enzyme activity were enriched in R. serpentina roots which correlated with accumulation of ajmaline alkaloid. This study elucidates the final step in the ajmaline biosynthetic pathway and describes the enzyme responsible for the formation of Nβ -methylajmaline, an unusual charged MIA found in R. serpentina. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Development of a highly sensitive and specific monoclonal antibody based enzyme-linked immunosorbent assay for the detection of a new β-agonist, phenylethanolamine A, in food samples.

    PubMed

    Jiang, Danni; Cao, Biyun; Wang, Meiyu; Yang, Hong; Zhao, Kang; Li, Jianguo; Li, Mingxin; Sun, Lulu; Deng, Anping

    2017-02-01

    All β-agonists are banned as feed additives for growth promotion in animals due to toxic effects on humans after consuming the β-agonist contaminated meats. Phenylethanolamine A (PA) is a newly emerged β-agonist. Thus there is a need to develop highly sensitive and specific analytical methods for the detection of PA in food samples. In this study, the monoclonal antibody (mAb) against PA was produced by hybridoma technology and used for the development of enzyme-linked immunosorbent assay (ELISA). The IC 50 values and limits of detection (LODs) of the ELISA using homogeneous combination of coating antigen/antibody for PA were 0.16 ng mL -1 and 0.011 ng mL -1 , respectively. The cross-reactive (CR) values of the assay with 14 structurally related β-agonists were lower than 0.59%. Swine liver and meat samples were spiked with PA at different content and analysed by ELISA. Acceptable recovery rates of 91.40-105.51% and intra-assay coefficients of variation of 1.56-9.92% (n = 3) were obtained. The ELISA for seven spiked samples was confirmed by LC-MS/MS with a high correlation coefficient of 0.9881. The proposed mAb-based ELISA was highly sensitive and specific for PA and could be used as a quantitative/screening method for PA analysis in food samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. A simplified characterization of S-adenosyl-l-methionine-consuming enzymes with 1-Step EZ-MTase: a universal and straightforward coupled-assay for in vitro and in vivo setting† †Electronic supplementary information (ESI) available: Experimental materials and methods, characterization of all compounds (1H–1H COSY NMR, 1H–13C edited HSQC NMR, MS analysis), supplementary figures and tables, worksheets for the 1-Step EZ-MTase assay using both UV- and fluorescence-detection mode, a worksheet for the determination of glycine N-methyltransferase activity within biological samples. Samples of purified TM0936 will be distributed upon request. See DOI: 10.1039/c7sc02830j

    PubMed Central

    Walters, Ryan O.; Huffman, Derek M.

    2017-01-01

    Methyltransferases use S-adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic ‘writers’ are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo, we report a highly-sensitive one-step deaminase-linked continuous assay where the S-adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S-inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N-methyltransferase (DIM-5) and a sarcosine/dimethylglycine N-methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S-8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 μM h–1, thus making it possible to quantify low nanomolar concentrations of glycine N-methyltransferase within crude biological samples. With Z′-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics. PMID:29449933

  4. Structure and Function of Flavivirus NS5 Methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou,Y.; Ray, D.; Zhao, Y.

    2007-01-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m{sup 7}GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA {yields} m{sup 7}GpppA {yields} m{sup 7}GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m{sup 7}GpppA-RNA can be readily methylated to m{sup 7}GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 {angstrom} resolution showedmore » a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K{sub 61}-D{sub 146}-K{sub 182}-E{sub 218} motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.« less

  5. Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism.

    PubMed

    Engström, Karin; Vahter, Marie; Mlakar, Simona Jurkovic; Concha, Gabriela; Nermell, Barbro; Raqib, Rubhana; Cardozo, Alejandro; Broberg, Karin

    2011-02-01

    Arsenic (As) occurs as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in humans, and the methylation pattern demonstrates large interindividual differences. The fraction of urinary MMA is a marker for susceptibility to As-related diseases. We evaluated the impact of polymorphisms in five methyltransferase genes on As metabolism in two populations, one in South America and one in Southeast Asia. The methyltransferase genes were arsenic(+III oxidation state) methyltransferase (AS3MT), DNA-methyltransferase 1a and 3b (DNMT1a and DNMT3b, respectively), phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine methyltransferase (BHMT). AS3MT expression was analyzed in peripheral blood. Subjects were women exposed to As in drinking water in the Argentinean Andes [n = 172; median total urinary As (U-As), 200 µg/L] and in rural Bangladesh (n = 361; U-As, 100 µg/L; all in early pregnancy). Urinary As metabolites were measured by high-pressure liquid chromatography/inductively coupled plasma mass spectrometry. Polymorphisms (n = 22) were genotyped with Sequenom, and AS3MT expression was measured by quantitative real-time polymerase chain reaction using TaqMan expression assays. Six AS3MT polymorphisms were significantly associated with As metabolite patterns in both populations (p ≤ 0.01). The most frequent AS3MT haplotype in Bangladesh was associated with a higher percentage of MMA (%MMA), and the most frequent haplotype in Argentina was associated with a lower %MMA and a higher percentage of DMA. Four polymorphisms in the DNMT genes were associated with metabolite patterns in Bangladesh. Noncoding AS3MT polymorphisms affected gene expression of AS3MT in peripheral blood, demonstrating that one functional impact of AS3MT polymorphisms may be altered levels of gene expression. Polymorphisms in AS3MT significantly predicted As metabolism across these two very different populations, suggesting that AS3MT may have an impact on As metabolite patterns in populations worldwide.

  6. Development of a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for the detection of phenylethanolamine A in tissue and feed samples and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS).

    PubMed

    Cao, Biyun; He, Guangzhao; Yang, Hong; Chang, Huafang; Li, Shuqun; Deng, Anping

    2013-10-15

    Phenylethanolamine A (PA) is a new emerged β-adrenergic agonist illegally used as feed additives for growth promotion. In this study, a highly sensitive and specific indirect competitive enzyme-linked immunosorbent assay (ELISA) for the detection of PA in tissue and feed samples was developed and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). By reduction of nitryl group to amino group, the PA derivative was synthesized and coupled to carrier proteins with diazobenzidine method. The antisera obtained from four immunized rabbits were characterized in terms of sensitivity and specificity. All antisera displayed high sensitivity with IC50 values lower than 0.48 ng mL(-1). The most sensitive ELISA was established with IC50 and limit of detection (LOD) values of 0.049 ng mL(-1) and 0.003 ng mL(-1), respectively. The cross-reactivity (CR) values of the antisera with three frequently used β-adrenergic agonists (clenbuterol, salbutamol and ractopamine) were lesser than 0.39%; there was no CR of the antisera with other six compounds including two structurally related substances (isoproterenol, phenylephrine). To investigate the accuracy and precision of the assay, swine kidney, liver, meat and feed samples were fortified with PA at different content and analyzed by ELISA. Acceptable recovery rates of 92.2-113.7% and intra-assay coefficients of variation of 3.8-10.9% (n=3) were achieved. Seven spiked samples were simultaneously analyzed by ELISA and LC-MS/MS. There was a high correlation coefficient of 0.9956 (n=7) between the two methods. The proposed ELISA proven to be a feasible quantitative/screening method for PA analysis in tissue and feed samples with the properties of high sensitivity and specificity, high sample throughput and low expensive. © 2013 Elsevier B.V. All rights reserved.

  7. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    PubMed Central

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang; Jian, Yap Li; Chao, Alexander Theodore; Lescar, Julien; Yin, Zheng; Vedananda, T. R.; Keller, Thomas H.; Shi, Pei-Yong

    2011-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome. PMID:21147775

  8. Ergothioneine biosynthetic methyltransferase EgtD reveals the structural basis of aromatic amino acid betaine biosynthesis.

    PubMed

    Vit, Allegra; Misson, Laëtitia; Blankenfeldt, Wulf; Seebeck, Florian P

    2015-01-02

    Ergothioneine is an N-α-trimethyl-2-thiohistidine derivative that occurs in human, plant, fungal, and bacterial cells. Biosynthesis of this redox-active betaine starts with trimethylation of the α-amino group of histidine. The three consecutive methyl transfers are catalyzed by the S-adenosylmethionine-dependent methyltransferase EgtD. Three crystal structures of this enzyme in the absence and in the presence of N-α-dimethylhistidine and S-adenosylhomocysteine implicate a preorganized array of hydrophilic interactions as the determinants for substrate specificity and apparent processivity. We identified two active site mutations that change the substrate specificity of EgtD 10(7)-fold and transform the histidine-methyltransferase into a proficient tryptophan-methyltransferase. Finally, a genomic search for EgtD homologues in fungal genomes revealed tyrosine and tryptophan trimethylation activity as a frequent trait in ascomycetous and basidomycetous fungi. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Purification and characterization of caffeine synthase from tea leaves.

    PubMed

    Kato, M; Mizuno, K; Fujimura, T; Iwama, M; Irie, M; Crozier, A; Ashihara, H

    1999-06-01

    Caffeine synthase (CS), the S-adenosylmethionine-dependent N-methyltransferase involved in the last two steps of caffeine biosynthesis, was extracted from young tea (Camellia sinensis) leaves; the CS was purified 520-fold to apparent homogeneity and a final specific activity of 5.7 nkat mg-1 protein by ammonium sulfate fractionation and hydroxyapatite, anion-exchange, adenosine-agarose, and gel-filtration chromatography. The native enzyme was monomeric with an apparent molecular mass of 61 kD as estimated by gel-filtration chromatography and 41 kD as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme displayed a sharp pH optimum of 8.5. The final preparation exhibited 3- and 1-N-methyltransferase activity with a broad substrate specificity, showing high activity toward paraxanthine, 7-methylxanthine, and theobromine and low activity with 3-methylxanthine and 1-methylxanthine. However, the enzyme had no 7-N-methyltransferase activity toward xanthosine and xanthosine 5'-monophosphate. The Km values of CS for paraxanthine, theobromine, 7-methylxanthine, and S-adenosylmethionine were 24, 186, 344, and 21 microM, respectively. The possible role and regulation of CS in purine alkaloid biosynthesis in tea leaves are discussed. The 20-amino acid N-terminal sequence for CS showed little homology with other methyltransferases.

  10. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    PubMed

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  11. Betaine:homocysteine methyltransferase--a new assay for the liver enzyme and its absence from human skin fibroblasts and peripheral blood lymphocytes.

    PubMed

    Wang, J A; Dudman, N P; Lynch, J; Wilcken, D E

    1991-12-31

    Chronic elevation of plasma homocysteine is associated with increased atherogenesis and thrombosis, and can be lowered by betaine (N,N,N-trimethylglycine) treatment which is thought to stimulate activity of the enzyme betaine:homocysteine methyltransferase. We have developed a new assay for this enzyme, in which the products of the enzyme-catalysed reaction between betaine and homocysteine are oxidised by performic acid before being separated and quantified by amino acid analysis. This assay confirmed that human liver contains abundant betaine:homocysteine methyltransferase (33.4 nmol/h/mg protein at 37 degrees C, pH 7.4). Chicken and lamb livers also contain the enzyme, with respective activities of 50.4 and 6.2 nmol/h/mg protein. However, phytohaemagglutinin-stimulated human peripheral blood lymphocytes and cultured human skin fibroblasts contained no detectable betaine:homocysteine methyltransferase (less than 1.4 nmol/h/mg protein), even after cells were pre-cultured in media designed to stimulate production of the enzyme. The results emphasize the importance of the liver in mediating the lowering of elevated circulating homocysteine by betaine.

  12. Polymorphisms in Arsenic(+III Oxidation State) Methyltransferase (AS3MT) Predict Gene Expression of AS3MT as Well as Arsenic Metabolism

    PubMed Central

    Engström, Karin; Vahter, Marie; Mlakar, Simona Jurkovic; Concha, Gabriela; Nermell, Barbro; Raqib, Rubhana; Cardozo, Alejandro; Broberg, Karin

    2011-01-01

    Background Arsenic (As) occurs as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in humans, and the methylation pattern demonstrates large interindividual differences. The fraction of urinary MMA is a marker for susceptibility to As-related diseases. Objectives We evaluated the impact of polymorphisms in five methyltransferase genes on As metabolism in two populations, one in South America and one in Southeast Asia. The methyltransferase genes were arsenic(+III oxidation state) methyltransferase (AS3MT), DNA-methyltransferase 1a and 3b (DNMT1a and DNMT3b, respectively), phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine methyltransferase (BHMT). AS3MT expression was analyzed in peripheral blood. Methods Subjects were women exposed to As in drinking water in the Argentinean Andes [n = 172; median total urinary As (U-As), 200 μg/L] and in rural Bangladesh (n = 361; U-As, 100 μg/L; all in early pregnancy). Urinary As metabolites were measured by high-pressure liquid chromatography/inductively coupled plasma mass spectrometry. Polymorphisms (n = 22) were genotyped with Sequenom, and AS3MT expression was measured by quantitative real-time polymerase chain reaction using TaqMan expression assays. Results Six AS3MT polymorphisms were significantly associated with As metabolite patterns in both populations (p ≤ 0.01). The most frequent AS3MT haplotype in Bangladesh was associated with a higher percentage of MMA (%MMA), and the most frequent haplotype in Argentina was associated with a lower %MMA and a higher percentage of DMA. Four polymorphisms in the DNMT genes were associated with metabolite patterns in Bangladesh. Noncoding AS3MT polymorphisms affected gene expression of AS3MT in peripheral blood, demonstrating that one functional impact of AS3MT polymorphisms may be altered levels of gene expression. Conclusions Polymorphisms in AS3MT significantly predicted As metabolism across these two very different populations, suggesting that AS3MT may have an impact on As metabolite patterns in populations worldwide. PMID:21247820

  13. Purification and Characterization of Caffeine Synthase from Tea Leaves1

    PubMed Central

    Kato, Misako; Mizuno, Kouichi; Fujimura, Tatsuhito; Iwama, Masanori; Irie, Masachika; Crozier, Alan; Ashihara, Hiroshi

    1999-01-01

    Caffeine synthase (CS), the S-adenosylmethionine-dependent N-methyltransferase involved in the last two steps of caffeine biosynthesis, was extracted from young tea (Camellia sinensis) leaves; the CS was purified 520-fold to apparent homogeneity and a final specific activity of 5.7 nkat mg−1 protein by ammonium sulfate fractionation and hydroxyapatite, anion-exchange, adenosine-agarose, and gel-filtration chromatography. The native enzyme was monomeric with an apparent molecular mass of 61 kD as estimated by gel-filtration chromatography and 41 kD as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme displayed a sharp pH optimum of 8.5. The final preparation exhibited 3- and 1-N-methyltransferase activity with a broad substrate specificity, showing high activity toward paraxanthine, 7-methylxanthine, and theobromine and low activity with 3-methylxanthine and 1-methylxanthine. However, the enzyme had no 7-N-methyltransferase activity toward xanthosine and xanthosine 5′-monophosphate. The Km values of CS for paraxanthine, theobromine, 7-methylxanthine, and S-adenosylmethionine were 24, 186, 344, and 21 μm, respectively. The possible role and regulation of CS in purine alkaloid biosynthesis in tea leaves are discussed. The 20-amino acid N-terminal sequence for CS showed little homology with other methyltransferases. PMID:10364410

  14. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed,more » purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.« less

  15. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins

    PubMed Central

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  16. Insights into Methyltransferase Specificity and Bioactivity of Derivatives of the Antibiotic Plantazolicin

    DOE PAGES

    Hao, Yue; Blair, Patricia M.; Sharma, Abhishek; ...

    2015-01-30

    Peptide antibiotics represent a class of conformationally-constrained natural products of growing pharmaceutical interest. Plantazolicin (PZN) is a linear, polyheterocyclic natural product with highly selective and potent activity against the anthrax-causing bacterium, Bacillus anthracis. The bioactivity of PZN is contingent on dimethylation of its N-terminal Arg residue by an S-adenosylmethionine-dependent methyltransferase. Here in this paper, we explore the substrate tolerances of two homologous PZN methyltransferases by carrying out kinetic analyses of the enzymes against a synthetic panel of truncated PZN analogs containing the N-terminal Arg residue. X-ray cocrystal structures of the PZN methyltransferases with each of these heterocycle-containing substrates provide amore » rationale for understanding the strict substrate specificity of these enzymes. Kinetic studies of structure-guided, site-specific variants allowed for the assignment of residues governing catalysis and substrate scope. Microbiological testing further revealed that upon dimethylation of the N-terminal Arg, a pentaheterocyclized PZN analog retained potent anti-B. anthracis activity, nearly equal to that of full-length PZN. These studies may be useful in the biosynthetic engineering of natural product analogs with different bioactivity profiles, as demonstrated by our identification of a truncated plantazolicin derivative that is active against methicillin-resistant Staphylococcus aureus (MRSA).« less

  17. Insights into Methyltransferase Specificity and Bioactivity of Derivatives of the Antibiotic Plantazolicin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yue; Blair, Patricia M.; Sharma, Abhishek

    Peptide antibiotics represent a class of conformationally-constrained natural products of growing pharmaceutical interest. Plantazolicin (PZN) is a linear, polyheterocyclic natural product with highly selective and potent activity against the anthrax-causing bacterium, Bacillus anthracis. The bioactivity of PZN is contingent on dimethylation of its N-terminal Arg residue by an S-adenosylmethionine-dependent methyltransferase. Here in this paper, we explore the substrate tolerances of two homologous PZN methyltransferases by carrying out kinetic analyses of the enzymes against a synthetic panel of truncated PZN analogs containing the N-terminal Arg residue. X-ray cocrystal structures of the PZN methyltransferases with each of these heterocycle-containing substrates provide amore » rationale for understanding the strict substrate specificity of these enzymes. Kinetic studies of structure-guided, site-specific variants allowed for the assignment of residues governing catalysis and substrate scope. Microbiological testing further revealed that upon dimethylation of the N-terminal Arg, a pentaheterocyclized PZN analog retained potent anti-B. anthracis activity, nearly equal to that of full-length PZN. These studies may be useful in the biosynthetic engineering of natural product analogs with different bioactivity profiles, as demonstrated by our identification of a truncated plantazolicin derivative that is active against methicillin-resistant Staphylococcus aureus (MRSA).« less

  18. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxgenase large subunit .epsilon. n-methyltransferase and method of inactivating ribulose-1,5-bishosphatase .epsilon. n-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    2001-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltansferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  19. Molecular cloning and characterization of tetrahydroprotoberberine cis-N-methyltransferase, an enzyme involved in alkaloid biosynthesis in opium poppy.

    PubMed

    Liscombe, David K; Facchini, Peter J

    2007-05-18

    S-Adenosyl-l-methionine:tetrahydroprotoberberine cis-N-methyltransferase (EC 2.1.1.122) catalyzes the conversion of (S)-stylopine to the quaternary ammonium alkaloid, (S)-cis-N-methylstylopine, as a key step in the biosynthesis of protopine and benzophenanthridine alkaloids in plants. A full-length cDNA encoding a protein exhibiting 45 and 48% amino acid identity with coclaurine N-methyltransferase from Papaver somniferum (opium poppy) and Coptis japonica, respectively, was identified in an elicitor-treated opium poppy cell culture expressed sequence tag data base. Phylogenetic analysis showed that the protein belongs to a unique clade of enzymes that includes coclaurine N-methyltransferase, the predicated translation products of the Arabidopsis thaliana genes, At4g33110 and At4g33120, and bacterial S-adenosyl-L-methionine-dependent cyclopropane fatty acid synthases. Expression of the cDNA in Escherichia coli produced a recombinant enzyme able to convert the protoberberine alkaloids stylopine, canadine, and tetrahydropalmatine to their corresponding N-methylated derivatives. However, the protoberberine alkaloids tetrahydroxyberbine and scoulerine, and simple isoquinoline, benzylisoquinoline, and pavine alkaloids were not accepted as substrates, demonstrating the strict specificity of the enzyme. The apparent K(m) values for (R,S)-stylopine and S-adenosyl-L-methionine were 0.6 and 11.5 microm, respectively. TNMT gene transcripts and enzyme activity were detected in opium poppy seedlings and all mature plant organs and were induced in cultured opium poppy cells after treatment with a fungal elicitor. The enzyme was detected in cell cultures of other members of the Papaveraceae but not in species of related plant families that do not accumulate protopine and benzophenanthridine alkaloids.

  20. Properly Substituted Analogues of BIX-01294 Lose Inhibition of G9a Histone Methyltransferase and Gain Selective Anti-DNA Methyltransferase 3A Activity

    PubMed Central

    Rotili, Dante; Tarantino, Domenico; Marrocco, Biagina; Gros, Christina; Masson, Véronique; Poughon, Valérie; Ausseil, Fréderic; Chang, Yanqi; Labella, Donatella; Cosconati, Sandro; Di Maro, Salvatore; Novellino, Ettore; Schnekenburger, Michael; Grandjenette, Cindy; Bouvy, Celine; Diederich, Marc; Cheng, Xiaodong; Arimondo, Paola B.; Mai, Antonello

    2014-01-01

    Chemical manipulations performed on the histone H3 lysine 9 methyltransferases (G9a/GLP) inhibitor BIX-01294 afforded novel desmethoxyquinazolines able to inhibit the DNA methyltransferase DNMT3A at low micromolar levels without any significant inhibition of DNMT1 and G9a. In KG-1 cells such compounds, when tested at sub-toxic doses, induced the luciferase re-expression in a stable construct controlled by a cytomegalovirus (CMV) promoter silenced by methylation (CMV-luc assay). Finally, in human lymphoma U-937 and RAJI cells, the N-(1-benzylpiperidin-4-yl)-2-(4-phenylpiperazin-1-yl)quinazolin-4-amine induced the highest proliferation arrest and cell death induction starting from 10 µM, in agreement with its DNMT3A inhibitory potency. PMID:24810902

  1. 7-Methylxanthine methyltransferase of coffee plants. Gene isolation and enzymatic properties.

    PubMed

    Ogawa, M; Herai, Y; Koizumi, N; Kusano, T; Sano, H

    2001-03-16

    Caffeine is synthesized through sequential three-step methylation of xanthine derivatives at positions 7-N, 3-N, and 1-N. However, controversy exists as to the number and properties of the methyltransferases involved. Using primers designed on the basis of conserved amino acid regions of tea caffeine synthase and Arabidopsis hypothetical proteins, a particular DNA fragment was amplified from an mRNA population of coffee plants. Subsequently, this fragment was used as a probe, and four independent clones were isolated from a cDNA library derived from coffee young leaves. Upon expression in Escherichia coli, one of them was found to encode a protein possessing 7-methylxanthine methyltransferase activity and was designated as CaMXMT. It consists of 378 amino acids with a relative molecular mass of 42.7 kDa and shows similarity to tea caffeine synthase (35.8%) and salicylic acid methyltransferase (34.1%). The bacterially expressed protein exhibited an optimal pH for activity ranging between 7 and 9 and methylated almost exclusively 7-methylxanthine with low activity toward paraxanthine, indicating a strict substrate specificity regarding the 3-N position of the purine ring. K(m) values were estimated to be 50 and 12 microM for 7-methylxanthine and S-adenosyl-l-methionine, respectively. Transcripts of CaMXMT could be shown to accumulate in young leaves and stems containing buds, and green fluorescent protein fusion protein assays indicated localization in cytoplasmic fractions. The results suggest that, in coffee plants, caffeine is synthesized through three independent methylation steps from xanthosine, in which CaMXMT catalyzes the second step to produce theobromine.

  2. Adrenal 11-beta hydroxysteroid dehydrogenase activity in response to stress.

    PubMed

    Zallocchi, Marisa; Matković, Laura; Damasco, María C

    2004-06-01

    This work studied the effect of stresses produced by simulated gavage or gavage with 200 mmol/L HCl two hours before adrenal extraction, on the activities of the 11beta-hydroxysteroid dehydrogenase 1 and 11beta-hydroxysteroid dehydrogenase 2 isoforms present in the rat adrenal gland. These activities were determined on immediately prepared adrenal microsomes following incubations with 3H-corticosterone and NAD+ or NADP+. 11-dehydrocorticosterone was measured as an end-product by TLC, and controls were adrenal microsomes from rats kept under basal (unstressed) conditions. 11beta-hydroxysteroid dehydrogenase 1 activity, but not 11beta-hydroxysteroid dehydrogenase 2 activity, was increased under both stress-conditions. Homeostatically, the stimulation of 11beta-hydroxysteroid dehydrogenase 1 activity would increase the supply of glucocorticoids. These, in turn, would activate the enzyme phenylethanolamine N-methyl transferase, thereby improving the synthesis of epinephrine as part of the stress-response.

  3. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase.

    PubMed

    Debler, Erik W; Jain, Kanishk; Warmack, Rebeccah A; Feng, You; Clarke, Steven G; Blobel, Günter; Stavropoulos, Pete

    2016-02-23

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.

  4. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms.

  5. Associations between arsenic (+3 oxidation state) methyltransferase (AS3MT) and N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms, arsenic metabolism, and cancer risk in a chilean population.

    PubMed

    de la Rosa, Rosemarie; Steinmaus, Craig; Akers, Nicholas K; Conde, Lucia; Ferreccio, Catterina; Kalman, David; Zhang, Kevin R; Skibola, Christine F; Smith, Allan H; Zhang, Luoping; Smith, Martyn T

    2017-07-01

    Inter-individual differences in arsenic metabolism have been linked to arsenic-related disease risks. Arsenic (+3) methyltransferase (AS3MT) is the primary enzyme involved in arsenic metabolism, and we previously demonstrated in vitro that N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) also methylates the toxic inorganic arsenic (iAs) metabolite, monomethylarsonous acid (MMA), to the less toxic dimethylarsonic acid (DMA). Here, we evaluated whether AS3MT and N6AMT1 gene polymorphisms alter arsenic methylation and impact iAs-related cancer risks. We assessed AS3MT and N6AMT1 polymorphisms and urinary arsenic metabolites (%iAs, %MMA, %DMA) in 722 subjects from an arsenic-cancer case-control study in a uniquely exposed area in northern Chile. Polymorphisms were genotyped using a custom designed multiplex, ligation-dependent probe amplification (MLPA) assay for 6 AS3MT SNPs and 14 tag SNPs in the N6AMT1 gene. We found several AS3MT polymorphisms associated with both urinary arsenic metabolite profiles and cancer risk. For example, compared to wildtypes, individuals carrying minor alleles in AS3MT rs3740393 had lower %MMA (mean difference = -1.9%, 95% CI: -3.3, -0.4), higher %DMA (mean difference = 4.0%, 95% CI: 1.5, 6.5), and lower odds ratios for bladder (OR = 0.3; 95% CI: 0.1-0.6) and lung cancer (OR = 0.6; 95% CI: 0.2-1.1). Evidence of interaction was also observed for both lung and bladder cancer between these polymorphisms and elevated historical arsenic exposures. Clear associations were not seen for N6AMT1. These results are the first to demonstrate a direct association between AS3MT polymorphisms and arsenic-related internal cancer risk. This research could help identify subpopulations that are particularly vulnerable to arsenic-related disease. Environ. Mol. Mutagen. 58:411-422, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-L-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm ofmore » the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.« less

  7. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    PubMed Central

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-01-01

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs. PMID:26858449

  8. Methyltransferase That Modifies Guanine 966 of the 16 S rRNA: FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE*

    PubMed Central

    Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.

    2010-01-01

    N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261

  9. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.

    PubMed

    Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A

    2007-02-23

    N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.

  10. Effects of Jigsaw Cooperative Learning and Animation Techniques on Students' Understanding of Chemical Bonding and Their Conceptions of the Particulate Nature of Matter

    NASA Astrophysics Data System (ADS)

    Karacop, Ataman; Doymus, Kemal

    2013-04-01

    The aim of this study was to determine the effect of jigsaw cooperative learning and computer animation techniques on academic achievements of first year university students attending classes in which the unit of chemical bonding is taught within the general chemistry course and these students' learning of the particulate nature of matter of this unit. The sample of this study consisted of 115 first-year science education students who attended the classes in which the unit of chemical bonding was taught in a university faculty of education during the 2009-2010 academic year. The data collection instruments used were the Test of Scientific Reasoning, the Purdue Spatial Visualization Test: Rotations, the Chemical Bonding Academic Achievement Test, and the Particulate Nature of Matter Test in Chemical Bonding (CbPNMT). The study was carried out in three different groups. One of the groups was randomly assigned to the jigsaw group, the second was assigned to the animation group (AG), and the third was assigned to the control group, in which the traditional teaching method was applied. The data obtained with the instruments were evaluated using descriptive statistics, one-way ANOVA, and MANCOVA. The results indicate that the teaching of chemical bonding via the animation and jigsaw techniques was more effective than the traditional teaching method in increasing academic achievement. In addition, according to findings from the CbPNMT, the students from the AG were more successful in terms of correct understanding of the particulate nature of matter.

  11. Dietary intake of S-(α-carboxybutyl)-DL-homocysteine induces hyperhomocysteinemia in rats

    PubMed Central

    Strakova, Jana; Williams, Kelly T.; Gupta, Sapna; Schalinske, Kevin L.; Kruger, Warren D.; Rozen, Rima; Jiracek, Jiri; Li, Lucas; Garrow, Timothy A.

    2010-01-01

    Betaine homocysteine S-methyltransferase (BHMT) catalyzes the transfer of a methyl group from betaine to homocysteine forming dimethylglycine and methionine. We previously showed that inhibiting BHMT in mice by intraperitoneal injection of S-(α-carboxybutyl)-DL-homocysteine (CBHcy) results in hyperhomocysteinemia. In the present study, CBHcy was fed to rats to determine whether it could be absorbed and cause hyperhomocysteinemia as observed for the intraperitoneal administration of the compound in mice. We hypothesized that dietary administered CBHcy will be absorbed and will result in the inhibition of BHMT and cause hyperhomocysteinemia. Rats were meal-fed every 8 hours an L-amino acid-defined diet either containing or devoid of CBHcy (5 mg/meal) for 3 days. The treatment decreased liver BHMT activity by 90% and had no effect on methionine synthase, methylenetetrahydrofolate reductase, phosphatidylethanolamine N-methyltransferase and CTP:phosphocholine cytidylyltransferase activities. In contrast, cystathionine β-synthase activity and immunodetectable protein decreased (56 and 26%, respectively) and glycine N-methyltransferase activity increased (52%) in CBHcy-treated rats. Liver S-adenosylmethionine levels decreased by 25% in CBHcy-treated rats and S-adenosylhomocysteine levels did not change. Further, plasma choline decreased (22%) and plasma betaine increased (15-fold) in CBHcy-treated rats. The treatment had no effect on global DNA and CpG island methylation, liver histology and plasma markers of liver damage. We conclude that CBHcy mediated BHMT inhibition causes an elevation in total plasma homocysteine that is not normalized by the folate-dependent conversion of homocysteine to methionine. Further, metabolic changes caused by BHMT inhibition affect cystathionine β-synthase and glycine N-methyltransferase activities, which further deteriorate plasma homocysteine levels. PMID:20797482

  12. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques.

    PubMed

    Greißel, A; Culmes, M; Napieralski, R; Wagner, E; Gebhard, H; Schmitt, M; Zimmermann, A; Eckstein, H-H; Zernecke, A; Pelisek, J

    2015-08-01

    Little is known about epigenetics and its possible role in atherosclerosis. We here analysed histone and DNA methylation and the expression of corresponding methyltransferases in early and advanced human atherosclerotic carotid lesions in comparison to healthy carotid arteries. Western Blotting was performed on carotid plaques from our biobank with early (n=60) or advanced (n=60) stages of atherosclerosis and healthy carotid arteries (n=12) to analyse di-methylation patterns of histone H3 at positions K4, K9 and K27. In atherosclerotic lesions, di-methylation of H3K4 was unaltered and that of H3K9 and H3K27 significantly decreased compared to control arteries. Immunohistochemistry revealed an increased appearance of di-methylated H3K4 in smooth muscle cells (SMCs), a decreased expression of di-methylated H3K9 in SMCs and inflammatory cells, and reduced di-methylated H3K27 in inflammatory cells in advanced versus early atherosclerosis. Expression of corresponding histone methyltransferases MLL2 and G9a was increased in advanced versus early atherosclerosis. Genomic DNA hypomethylation, as determined by PCR for methylated LINE1 and SAT-alpha, was observed in early and advanced plaques compared to control arteries and in cell-free serum of patients with high-grade carotid stenosis compared to healthy volunteers. In contrast, no differences in DNA methylation were observed in blood cells. Expression of DNA-methyltransferase DNMT1 was reduced in atherosclerotic plaques versus controls, DNMT3A was undetectable, and DNMT3B not altered. DNA-demethylase TET1 was increased in atherosclerosisc plaques. The extent of histone and DNA methylation and expression of some corresponding methyltransferases are significantly altered in atherosclerosis, suggesting a possible contribution of epigenetics in disease development.

  13. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention.

    PubMed

    Pendleton, Kathryn E; Chen, Beibei; Liu, Kuanqing; Hunter, Olga V; Xie, Yang; Tu, Benjamin P; Conrad, Nicholas K

    2017-05-18

    Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N 6 -adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakas, E.; Simorowski, N; Furukawa, H

    2009-01-01

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-freemore » and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.« less

  15. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues.

    PubMed

    Zurita-Lopez, Cecilia I; Sandberg, Troy; Kelly, Ryan; Clarke, Steven G

    2012-03-09

    Full-length human protein arginine methyltransferase 7 (PRMT7) expressed as a fusion protein in Escherichia coli was initially found to generate only ω-N(G)-monomethylated arginine residues in small peptides, suggesting that it is a type III enzyme. A later study, however, characterized fusion proteins of PRMT7 expressed in bacterial and mammalian cells as a type II/type I enzyme, capable of producing symmetrically dimethylated arginine (type II activity) as well as small amounts of asymmetric dimethylarginine (type I activity). We have sought to clarify the enzymatic activity of human PRMT7. We analyzed the in vitro methylation products of a glutathione S-transferase (GST)-PRMT7 fusion protein with robust activity using a variety of arginine-containing synthetic peptides and protein substrates, including a GST fusion with the N-terminal domain of fibrillarin (GST-GAR), myelin basic protein, and recombinant human histones H2A, H2B, H3, and H4. Regardless of the methylation reaction conditions (incubation time, reaction volume, and substrate concentration), we found that PRMT7 only produces ω-N(G)-monomethylarginine with these substrates. In control experiments, we showed that mammalian GST-PRMT1 and Myc-PRMT5 were, unlike PRMT7, able to dimethylate both peptide P-SmD3 and SmB/D3 to give the expected asymmetric and symmetric products, respectively. These experiments show that PRMT7 is indeed a type III human methyltransferase capable of forming only ω-N(G)-monomethylarginine, not asymmetric ω-N(G),N(G)-dimethylarginine or symmetric ω-N(G),N(G')-dimethylarginine, under the conditions tested.

  16. Expansion of the aminoglycoside-resistance 16S rRNA (m(1)A1408) methyltransferase family: expression and functional characterization of four hypothetical enzymes of diverse bacterial origin.

    PubMed

    Witek, Marta A; Conn, Graeme L

    2014-09-01

    The global dissemination, potential activity in diverse species and broad resistance spectrum conferred by the aminoglycoside-resistance ribosomal RNA methyltransferases make them a significant potential new threat to the efficacy of aminoglycoside antibiotics in the treatment of serious bacterial infections. The N1 methylation of adenosine 1408 (m(1)A1408) confers resistance to structurally diverse aminoglycosides, including kanamycin, neomycin and apramycin. The limited analyses to date of the enzymes responsible have identified common features but also potential differences in their molecular details of action. Therefore, with the goal of expanding the known 16S rRNA (m(1)A1408) methyltransferase family as a platform for developing a more complete mechanistic understanding, we report here the cloning, expression and functional analyses of four hypothetical aminoglycoside-resistance rRNA methyltransferases from recent genome sequences of diverse bacterial species. Each of the genes produced a soluble, folded protein with a secondary structure, as determined from circular dichroism (CD) spectra, consistent with enzymes for which high-resolution structures are available. For each enzyme, antibiotic minimum inhibitory concentration (MIC) assays revealed a resistance spectrum characteristic of the known 16S rRNA (m(1)A1408) methyltransferases and the modified nucleotide was confirmed by reverse transcription as A1408. In common with other family members, higher binding affinity for the methylation reaction by-product S-adenosylhomocysteine (SAH) than the cosubstrate S-adenosyl-L-methionine (SAM) was observed for three methyltransferases, while one unexpectedly showed no measurable affinity for SAH. Collectively, these results confirm that each hypothetical enzyme is a functional 16S rRNA (m(1)A1408) methyltransferase but also point to further potential mechanistic variation within this enzyme family. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1998-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .epsilon.N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  18. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  19. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1998-03-03

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) {epsilon}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 5 figs.

  20. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1999-02-02

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS){sup {epsilon}}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 8 figs.

  1. Two New Plant-Like Pathways Link Hemoglobin Degradation to Lipid Biogenesis in Falciparum Malaria: Novel Targets for Anti-Malarial Chemotherapy

    DTIC Science & Technology

    2005-03-01

    when the compound was added at 50/uM (Appendix VI, B). Furthermore, clofibric acid , an inhibitor of PtdEtn methylransferases (19), had no effect on Pfpmt...reduced when the compound was added at 50 AM (Fig. 5B). Furthermore, clofibric acid , an inhibitor of PtdEtn B 35 methyltransferases (34), had no...Fig. 5B). Furthermore, clofibric acid , an takDs .Shnmn .Jnsn .Coday n .U~a o inhibitor of PtdEtn methyltransferases, had no effect on Pfpmt helpful

  2. Impaired adrenal medullary function in a mouse model of depression induced by unpredictable chronic stress.

    PubMed

    Santana, Magda M; Rosmaninho-Salgado, Joana; Cortez, Vera; Pereira, Frederico C; Kaster, Manuella P; Aveleira, Célia A; Ferreira, Marisa; Álvaro, Ana Rita; Cavadas, Cláudia

    2015-10-01

    Stress has been considered determinant in the etiology of depression. The adrenal medulla plays a key role in response to stress by releasing catecholamines, which are important to maintain homeostasis. We aimed to study the adrenal medulla in a mouse model of depression induced by 21 days of unpredictable chronic stress (UCS). We observed that UCS induced a differential and time-dependent change in adrenal medulla. After 7 days of UCS, mice did not show depressive-like behavior, but the adrenal medullae show increased protein and/or mRNA levels of catecholamine biosynthetic enzymes (TH, DβH and PNMT), Neuropeptide Y, the SNARE protein SNAP-25, the catecholamine transporter VMAT2 and the chromaffin progenitor cell markers, Mash1 and Phox2b. Moreover, 7 days of UCS induced a decrease in the chromaffin progenitor cell markers, Sox9 and Notch1. This suggests an increased capacity of chromaffin cells to synthesize, store and release catecholamines. In agreement, after 7 days, UCS mice had higher NE and EP levels in adrenal medulla. Opposite, when mice were submitted to 21 days of UCS, and showed a depressive like behavior, adrenal medullae had lower protein and/or mRNA levels of catecholamine biosynthetic enzymes (TH, DβH, PNMT), catecholamine transporters (NET, VMAT1), SNARE proteins (synthaxin1A, SNAP25, VAMP2), catecholamine content (EP, NE), and lower EP serum levels, indicating a reduction in catecholamine synthesis, re-uptake, storage and release. In conclusion, this study suggests that mice exposed to UCS for a period of 21 days develop a depressive-like behavior accompanied by an impairment of adrenal medullary function. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  3. Biochemical Characterization and Structural Basis of Reactivity and Regioselectivity Differences between Burkholderia thailandensis and Burkholderia glumae 1,6-Didesmethyltoxoflavin N-Methyltransferase.

    PubMed

    Fenwick, Michael K; Almabruk, Khaled H; Ealick, Steven E; Begley, Tadhg P; Philmus, Benjamin

    2017-08-01

    Burkholderia glumae converts the guanine base of guanosine triphosphate into an azapteridine and methylates both the pyrimidine and triazine rings to make toxoflavin. Strains of Burkholderia thailandensis and Burkholderia pseudomallei have a gene cluster encoding seven putative biosynthetic enzymes that resembles the toxoflavin gene cluster. Four of the enzymes are similar in sequence to BgToxBCDE, which have been proposed to make 1,6-didesmethyltoxoflavin (1,6-DDMT). One of the remaining enzymes, BthII1283 in B. thailandensis E264, is a predicted S-adenosylmethionine (SAM)-dependent N-methyltransferase that shows a low level of sequence identity to BgToxA, which sequentially methylates N6 and N1 of 1,6-DDMT to form toxoflavin. Here we show that, unlike BgToxA, BthII1283 catalyzes a single methyl transfer to N1 of 1,6-DDMT in vitro. In addition, we investigated the differences in reactivity and regioselectivity by determining crystal structures of BthII1283 with bound S-adenosylhomocysteine (SAH) or 1,6-DDMT and SAH. BthII1283 contains a class I methyltransferase fold and three unique extensions used for 1,6-DDMT recognition. The active site structure suggests that 1,6-DDMT is bound in a reduced form. The plane of the azapteridine ring system is orthogonal to its orientation in BgToxA. In BthII1283, the modeled SAM methyl group is directed toward the p orbital of N1, whereas in BgToxA, it is first directed toward an sp 2 orbital of N6 and then toward an sp 2 orbital of N1 after planar rotation of the azapteridine ring system. Furthermore, in BthII1283, N1 is hydrogen bonded to a histidine residue whereas BgToxA does not supply an obvious basic residue for either N6 or N1 methylation.

  4. Structural and Functional Analysis of the Pyocyanin Biosynthetic Protein PhzM from Pseudomonas aeruginosa†‡

    PubMed Central

    Parsons, James F.; Greenhagen, Bryan T.; Shi, Katherine; Calabrese, Kelly; Robinson, Howard; Ladner, Jane E.

    2008-01-01

    Pyocyanin is a biologically active phenazine produced by the human pathogen Pseudomonas aeruginosa. It is thought to endow P. aeruginosa with a competitive growth advantage in colonized tissue and is also thought to be a virulence factor in diseases such as cystic fibrosis and AIDS where patients are commonly infected by pathogenic Pseudomonads due to their immunocompromised state. Pyocyanin is also a chemically interesting compound due to its unusual oxidation-reduction activity. Phenazine-1-carboxylic acid, the precursor to the bioactive phenazines, is synthesized from chorismic acid by enzymes encoded in a seven-gene cistron in Pseudomonas aeruginosa and in other Pseudomonads. Phenzine-1-carboxylic acid is believed to be converted to pyocyanin by the sequential actions of the putative S-adenosylmethionine dependent N-methyltransferase PhzM and the putative flavin-dependent hydroxylase PhzS. Here we report the 1.8 Å crystal structure of PhzM solved by single anomalous dispersion. Unlike many methyltransferases, PhzM is a dimer in solution. The 36 kDa PhzM polypeptide folds into three domains. The C-terminal domain exhibits the α/β-hydrolase fold typical of small molecule methyltransferases. Two smaller N-terminal domains form much of the dimer interface. Structural alignments with known methyltransferases show that PhzM is most similar to the plant O-methyltransferases that are characterized by an unusual intertwined dimer interface. The structure of PhzM contains no ligands and the active site is open and solvent exposed when compared to structures of similar enzymes. In vitro experiments using purified PhzM alone demonstrate that it has little or no ability to methylate phenzine-1-carboxylic acid. However, when the putative hydroxylase PhzS is included, pyocyanin is readily produced. This observation suggests that a mechanism has evolved in P. aeruginosa that ensures efficient production of pyocyanin by preventing the formation and release of an unstable and potentially deleterious intermediate. PMID:17253782

  5. Molecular Cloning and Functional Characterization of Three Distinct N-Methyltransferases Involved in the Caffeine Biosynthetic Pathway in Coffee Plants1

    PubMed Central

    Uefuji, Hirotaka; Ogita, Shinjiro; Yamaguchi, Yube; Koizumi, Nozomu; Sano, Hiroshi

    2003-01-01

    Caffeine is synthesized from xanthosine through N-methylation and ribose removal steps. In the present study, three types of cDNAs encoding N-methyltransferases were isolated from immature fruits of coffee (Coffea arabica) plants, and designated as CaXMT1, CaMXMT2, and CaDXMT1, respectively. The bacterially expressed encoded proteins were characterized for their catalytic properties. CaXMT1 catalyzed formation of 7-methylxanthosine from xanthosine with a Km value of 78 μm, CaMXMT2 catalyzed formation of 3,7-dimethylxanthine (theobromine) from 7-methylxanthine with a Km of 251 μm, and CaDXMT1 catalyzed formation of 1,3,7-trimethylxanthine (caffeine) from 3,7-dimethylxanthine with a Km of 1,222 μm. The crude extract of Escherichia coli was found to catalyze removal of the ribose moiety from 7-methylxanthosine, leading to the production of 7-methylxanthine. As a consequence, when all three recombinant proteins and E. coli extract were combined, xanthosine was successfully converted into caffeine in vitro. Transcripts for CaDXMT1 were predominantly found to accumulate in immature fruits, whereas those for CaXMT1 and CaMXMT2 were more broadly detected in sites encompassing the leaves, floral buds, and immature fruits. These results suggest that the presently identified three N-methyltransferases participate in caffeine biosynthesis in coffee plants and substantiate the proposed caffeine biosynthetic pathway: xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine. PMID:12746542

  6. Structure and Biocatalytic Scope of Coclaurine N-Methyltransferase.

    PubMed

    Bennett, Matthew; Thompson, Mark; Shepherd, Sarah; Dunstan, Mark; Herbert, Abigail; Smith, Duncan; Cronin, Victoria; Menon, Binuraj; Levy, Colin; Micklefield, Jason

    2018-05-23

    Benzylisoquinoline alkaloids (BIAs) are a structurally diverse family of plant secondary metabolites which have been exploited to develop analgesics, antibiotics, antitumor agents and other therapeutic agents. Biosynthesis of BIAs proceeds via a common pathway from tyrosine to (S)-reticulene at which point the pathway diverges. Coclaurine N-methyltransferase (CNMT) is a key enzyme in the pathway to (S)-reticulene, installing the N-methyl substituent that is essential for the bioactivity of many BIAs. In this paper, we describe the first crystal structure of CNMT which, along with mutagenesis studies, defines the enzymes active site architecture. The specificity of CNMT was also explored with a range of natural and synthetic substrates as well as co-factor analogues. Knowledge from this study could be used to generate improved CNMT variants required to produce BIAs or synthetic derivatives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Flavivirus RNA cap methyltransferase: structure, function, and inhibition.

    PubMed

    Liu, Lihui; Dong, Hongping; Chen, Hui; Zhang, Jing; Ling, Hua; Li, Zhong; Shi, Pei-Yong; Li, Hongmin

    2010-08-01

    Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5' terminal cap 1 structure (m(7)GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m(7)GpppA → m(7)GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2'-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2'-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.

  8. Functional and Structural Analysis of Phenazine O-Methyltransferase LaPhzM from Lysobacter antibioticus OH13 and One-Pot Enzymatic Synthesis of the Antibiotic Myxin.

    PubMed

    Jiang, Jiasong; Guiza Beltran, Daisy; Schacht, Andrew; Wright, Stephen; Zhang, Limei; Du, Liangcheng

    2018-04-20

    Myxin is a well-known antibiotic that had been used for decades. It belongs to the phenazine natural products that exhibit various biological activities, which are often dictated by the decorating groups on the heteroaromatic three-ring system. The three rings of myxin carry a number of decorations, including an unusual aromatic N5, N10-dioxide. We previously showed that phenazine 1,6-dicarboxylic acid (PDC) is the direct precursor of myxin, and two redox enzymes (LaPhzS and LaPhzNO1) catalyze the decarboxylative hydroxylation and aromatic N-oxidations of PDC to produce iodinin (1.6-dihydroxy- N5, N10-dioxide phenazine). In this work, we identified the LaPhzM gene from Lysobacter antibioticus OH13 and demonstrated that LaPhzM encodes a SAM-dependent O-methyltransferase converting iodinin to myxin. The results further showed that LaPhzM is responsible for both monomethoxy and dimethoxy formation in all phenazine compounds isolated from strain OH13. LaPhzM exhibits relaxed substrate selectivity, catalyzing O-methylation of phenazines with non-, mono-, or di- N-oxide. In addition, we demonstrated a one-pot biosynthesis of myxin by in vitro reconstitution of the three phenazine-ring decorating enzymes. Finally, we determined the X-ray crystal structure of LaPhzM with a bound cofactor at 1.4 Å resolution. The structure provided molecular insights into the activity and selectivity of the first characterized phenazine O-methyltransferase. These results will facilitate future exploitation of the thousands of phenazines as new antibiotics through metabolic engineering and chemoenzymatic syntheses.

  9. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    PubMed

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Catalytic mechanism of human N-acetylserotonin methyltransferase: a theoretical investigation

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Ting; Li, Jieqiong; He, Chaozheng; He, Hongqing; Zhang, Jinglai

    2015-11-01

    The methyl-transfer mechanism of human N-acetylserotonin methyltransferase and the roles of several residues around the active sites are investigated by density function theory method. This enzyme will catalyse the conversion of N-acetylserotonin and S-adenosyl-L-methionine (SAM) into melatonin and S-asenosylhomocysteine, which is the terminal step in the melatonin (N-acetyl-5-methoxytryptamine) biosynthesis. The calculated results confirm that the methyl transfer and proton transfer will take place via a SN2 step with a concerted mechanism, which is different from the experimental estimation via a water bridge. The residues H255, D256, E311, and R252 play an important role in reducing the barrier height and inducing methyl transfer. In addition, a full SAM molecule is considered in this work, which is never explored in previous reports. We find that some residues around the SAM in the centre of active site are essential factors to influence the mechanism and barrier height. So a truncated SAM model may not be suitable for all reactions.

  11. Rapid determination of phenylethanolamine A in biological samples by enzyme-linked immunosorbent assay and lateral-flow immunoassay.

    PubMed

    Li, Xiangmei; Wang, Wenjun; Wang, Limiao; Wang, Qi; Pei, Xingyao; Jiang, Haiyang

    2015-10-01

    Phenylethanolamine A (PA) is a β-adrenergic agonist, which was first used in animal husbandry as a growth promoter in China in 2010. In this study, a monoclonal-antibody (mAb)-based indirect competitive enzyme-linked immunosorbent assay (icELISA) and lateral-flow immunoassay (LFA) for the detection of PA in swine urine and pork were developed. The immunogen was prepared by linking PA hapten with carrier protein via a diazotization method. The IC50 value of the optimized icELISA was 0.44 ng mL(-1). The limits of detection of the icELISA for PA in swine urine and pork were 0.13 ng mL(-1) and 0.39 ng g(-1), respectively. The recoveries of PA from spiked swine urine and pork were in the range 82.0-107.4 % and 81.8-113.3%, respectively, with the coefficients of variation in the range 4.1-16.2% and 1.2-6.3%, respectively. The mAbs had negligible cross reactivity with 10 other β-agonists. In contrast, the LFA had a cut-off level of 5 ng mL(-1) (g) in swine urine and pork, and the results could be achieved within 5 min. Ten blind samples of swine urine were analyzed simultaneously by icELISA, LFA, and ultra-high-performance liquid chromatography-tandem mass spectrometry, and the results of the three methods agreed well. Therefore, the combination of two immunoassays provides an effective and rapid screening method for detection of PA residues in biological samples.

  12. Membrane topology of Golgi-localized probable S-adenosylmethionine-dependent methyltransferase in tobacco (Nicotiana tabacum) BY-2 cells.

    PubMed

    Liu, Jianping; Hayashi, Kyoko; Matsuoka, Ken

    2015-01-01

    S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.

  13. Nicotinamide N-methyltransferase: more than a vitamin B3 clearance enzyme

    PubMed Central

    Pissios, Pavlos

    2017-01-01

    Nicotinamide N-methyltransferase (NNMT) was originally identified as the enzyme responsible for the methylation of nicotinamide (NAM), one of the forms of vitamin B3. Methylated NAM (MNAM) is eventually excreted from the body. Recent evidence has expanded the role of NNMT beyond clearance of excess vitamin B3. NNMT has been implicated in the regulation of multiple metabolic pathways in tissues such as the adipose tissue and liver, as well as cancer cells, through consumption of methyl donors and generation of active metabolites. This review examines recent findings regarding the function of NNMT in physiology and disease and highlights potential new avenues for therapeutic intervention. Finally, key gaps in our knowledge for this enzymatic system and future areas of investigation are discussed. PMID:28291578

  14. Crystal structure of phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with amodiaquine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soon Goo; Alpert, Tara D.; Jez, Joseph M.

    2012-07-17

    Phosphoethanolamine N-methyltransferase (PMT) is essential for phospholipid biogenesis in the malarial parasite Plasmodium falciparum. PfPMT catalyzes the triple methylation of phosphoethanolamine to produce phosphocholine, which is then used for phosphatidylcholine synthesis. Here we describe the 2.0 {angstrom} resolution X-ray crystal structure of PfPMT in complex with amodiaquine. To better characterize inhibition of PfPMT by amodiaquine, we determined the IC{sub 50} values of a series of aminoquinolines using a direct radiochemical assay. Both structural and functional analyses provide a possible approach for the development of new small molecule inhibitors of PfPMT.

  15. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera)

    PubMed Central

    Yang, Mei; Zhu, Lingping; Li, Ling; Li, Juanjuan; Xu, Liming; Feng, Ji; Liu, Yanling

    2017-01-01

    The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3′-hydroxylase (NMCH), and 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This transcriptomic database provides new directions for future studies on clarifying the aporphine alkaloid pathway. PMID:28197160

  16. The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis

    PubMed Central

    Zheng, Zhi-Liang

    2008-01-01

    The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants. PMID:18167546

  17. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice

    PubMed Central

    Yan, Jian; Ginsberg, Stephen D.; Powers, Brian; Alldred, Melissa J.; Saltzman, Arthur; Strupp, Barbara J.; Caudill, Marie A.

    2014-01-01

    Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain.—Yan, J., Ginsberg, S. D., Powers, B., Alldred, M. J., Saltzman, A., Strupp, B. J., Caudill, M. A. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. PMID:24963152

  18. Asymmetric arginine dimethylation of heterogeneous nuclear ribonucleoprotein K by protein-arginine methyltransferase 1 inhibits its interaction with c-Src.

    PubMed

    Ostareck-Lederer, Antje; Ostareck, Dirk H; Rucknagel, Karl P; Schierhorn, Angelika; Moritz, Bodo; Huttelmaier, Stefan; Flach, Nadine; Handoko, Lusy; Wahle, Elmar

    2006-04-21

    Arginine methylation is a post-translational modification found in many RNA-binding proteins. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) from HeLa cells was shown, by mass spectrometry and Edman degradation, to contain asymmetric N(G),N(G)-dimethylarginine at five positions in its amino acid sequence (Arg256, Arg258, Arg268, Arg296, and Arg299). Whereas these five residues were quantitatively modified, Arg303 was asymmetrically dimethylated in <33% of hnRNP K and Arg287 was monomethylated in <10% of the protein. All other arginine residues were unmethylated. Protein-arginine methyltransferase 1 was identified as the only enzyme methylating hnRNP K in vitro and in vivo. An hnRNP K variant in which the five quantitatively modified arginine residues had been substituted was not methylated. Methylation of arginine residues by protein-arginine methyltransferase 1 did not influence the RNA-binding activity, the translation inhibitory function, or the cellular localization of hnRNP K but reduced the interaction of hnRNP K with the tyrosine kinase c-Src. This led to an inhibition of c-Src activation and hnRNP K phosphorylation. These findings support the role of arginine methylation in the regulation of protein-protein interactions.

  19. The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis.

    PubMed

    Kobayashi, Masatoshi; Ohsugi, Mitsuru; Sasako, Takayoshi; Awazawa, Motoharu; Umehara, Toshihiro; Iwane, Aya; Kobayashi, Naoki; Okazaki, Yukiko; Kubota, Naoto; Suzuki, Ryo; Waki, Hironori; Horiuchi, Keiko; Hamakubo, Takao; Kodama, Tatsuhiko; Aoe, Seiichiro; Tobe, Kazuyuki; Kadowaki, Takashi; Ueki, Kohjiro

    2018-06-04

    Adipocyte differentiation is regulated by various mechanisms, of which the mitotic clonal expansion (MCE) is a key step. Although this process is known to be regulated by the cell cycle modulators, the precise mechanism remains unclear. N 6 -methyladenosine (m 6 A) post-transcriptional RNA modification, whose methylation and demethylation is performed by respective enzymal molecules, has recently been suggested to be involved in the regulation of adipogenesis. Here, we show that an RNA N 6 -adenosine methyltransferase complex consisting of Wilms' tumor 1-associating protein (WTAP), methyltransferase like (METTL) 3 and METTL14 positively control adipogenesis, by promoting cell cycle transition in MCE during adipogenesis. WTAP, coupled with METTL3 and METTL14, is increased and distributed in nucleus by the induction of adipogenesis dependently on RNA in vitro Knockdown of each of these three proteins leads to cell cycle arrest and impaired adipogenesis associated with suppression of Cyclin A2 upregulation during MCE, whose knockdown also impairs adipogenesis. Consistently, Wtap heterozygous knockout mice are protected from diet-induced obesity with smaller size and number of adipocytes, leading to improved insulin sensitivity. These data provide a mechanism for adipogenesis through WTAP-METTL3-METTL14 complex and a potential strategy for treatment of obesity and associated disorders. Copyright © 2018 Kobayashi et al.

  20. Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase.

    PubMed

    Rothe, Grit; Hachiya, Akira; Yamada, Yasuyuki; Hashimoto, Takashi; Dräger, Birgit

    2003-09-01

    Putrescine N-methyltransferase (PMT) is the first alkaloid-specific enzyme for nicotine and tropane alkaloid formation. The pmt gene from Nicotiana tabacum was fused to the CaMV 35S promoter and integrated into the Atropa belladonna genome. Transgenic plants and derived root cultures were analysed for gene expression and for levels of alkaloids and their precursors. Scopolamine, hyoscyamine, tropine, pseudotropine, tropinone, and calystegines were found unaltered or somewhat decreased in pmt-overexpressing lines compared to controls. When root cultures were treated with 5% sucrose, calystegine levels were elevated in control roots, but were not affected in pmt-overexpressing roots. 1 microM auxin reduced calystegine levels in control roots, while in pmt-overexpressing roots all alkaloids remained unaltered. Expression level of pmt alone is apparently not limiting for tropane alkaloid formation in A. belladonna.

  1. Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats.

    PubMed

    Hasegawa, Morio; Toma-Fukai, Sachiko; Kim, Jun-Dal; Fukamizu, Akiyoshi; Shimizu, Toshiyuki

    2014-05-21

    Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-L-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-L-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  3. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp; Matsuzaki, Masahiro; Kanazawa, Shiho

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that themore » production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with any of the typical substrates of B′-MTs. It was concluded that CTgSs have strict substrate specificity. The K{sub m} values of CTgS1 and CTgS2 were 121 and 184 μM with nicotinic acid as a substrate, and 68 and 120 μM with S-adenosyl-L-methionine as a substrate, respectively.« less

  4. Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD.

    PubMed

    Misson, Laëtitia; Burn, Reto; Vit, Allegra; Hildesheim, Julia; Beliaeva, Mariia A; Blankenfeldt, Wulf; Seebeck, Florian P

    2018-05-18

    Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from Mycobacterium smegmatis. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy.

  5. Purification, crystallization and preliminary X-ray analysis of the BseCI DNA methyltransferase from Bacillus stearothermophilus in complex with its cognate DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapetaniou, Evangelia G.; Kotsifaki, Dina; Providaki, Mary

    2007-01-01

    The DNA methyltransferase M.BseCI from B. stearothermophilus was crystallized as a complex with its cognate DNA. Crystals belong to space group P6 and diffract to 2.5 Å resolution at a synchrotron source. The DNA methyltransferase M.BseCI from Bacillus stearothermophilus (EC 2.1.1.72), a 579-amino-acid enzyme, methylates the N6 atom of the 3′ adenine in the sequence 5′-ATCGAT-3′. M.BseCI was crystallized in complex with its cognate DNA. The crystals were found to belong to the hexagonal space group P6, with unit-cell parameters a = b = 87.0, c = 156.1 Å, β = 120.0° and one molecule in the asymmetric unit. Twomore » complete data sets were collected at wavelengths of 1.1 and 2.0 Å to 2.5 and 2.8 Å resolution, respectively, using synchrotron radiation at 100 K.« less

  6. Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site.

    PubMed

    Cura, Vincent; Troffer-Charlier, Nathalie; Wurtz, Jean Marie; Bonnefond, Luc; Cavarelli, Jean

    2014-09-01

    Protein arginine methyltransferase 7 (PRMT7) is a type III arginine methyltransferase which has been implicated in several biological processes such as transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation and metastasis. PRMT7 is a unique but less characterized member of the family of PRMTs. The crystal structure of full-length PRMT7 from Mus musculus refined at 1.7 Å resolution is described. The PRMT7 structure is composed of two catalytic modules in tandem forming a pseudo-dimer and contains only one AdoHcy molecule bound to the N-terminal module. The high-resolution crystal structure presented here revealed several structural features showing that the second active site is frozen in an inactive state by a conserved zinc finger located at the junction between the two PRMT modules and by the collapse of two degenerated AdoMet-binding loops.

  7. Structural and Functional Analyses of a Conserved Hydrophobic Pocket of Flavivirus Methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Dong; L Liu; G Zou

    2011-12-31

    The flavivirus methyltransferase (MTase) sequentially methylates the N7 and 2'-O positions of the viral RNA cap (GpppA-RNA {yields} m(7)GpppA-RNA {yields} m(7)GpppAm-RNA), using S-adenosyl-l-methionine (AdoMet) as a methyl donor. We report here that sinefungin (SIN), an AdoMet analog, inhibits several flaviviruses through suppression of viral MTase. The crystal structure of West Nile virus MTase in complex with SIN inhibitor at 2.0-{angstrom} resolution revealed a flavivirus-conserved hydrophobic pocket located next to the AdoMet-binding site. The pocket is functionally critical in the viral replication and cap methylations. In addition, the N7 methylation efficiency was found to correlate with the viral replication ability. Thus,more » SIN analogs with modifications that interact with the hydrophobic pocket are potential specific inhibitors of flavivirus MTase.« less

  8. Phosphatidylethanolamine N-methyltransferase activity is increased in rat intestinal brush-border membrane by chronic ethanol ingestion.

    PubMed

    Furtado, Valéria Cristina Soares; Takiya, Christina Maeda; Braulio, Valeria Bender

    2002-01-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) catalyses the synthesis of phosphatidylcholine from phosphatidylethanolamine. The aim of this study was to evaluate the effect of chronic ethanol ingestion on PEMT activity in the jejunal brush-border membrane (BBM) of adequately nourished rats. For this purpose, rats were fed a liquid diet containing ethanol [ethanol-fed group (EFG)] or an isocaloric liquid diet without ethanol [pair-fed group (PFG)] for 4 weeks. Diet ingestion, body weight, nitrogen balance and urinary creatinine excretion were monitored during the experimental period, and serum transferrin levels were determined at the end. BBM was isolated for the determination of PEMT activity. PEMT activity was significantly increased in the jejunal BBM of the EFG. Nutritional parameters, however, did not differ between groups. The increase in PEMT activity may be attributed exclusively to chronic ethanol ingestion, since a major nutritional deficit was excluded.

  9. Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum

    PubMed Central

    Malmquist, Nicholas A.; Moss, Thomas A.; Mecheri, Salah; Scherf, Artur; Fuchter, Matthew J.

    2012-01-01

    Epigenetic factors such as histone methylation control the developmental progression of malaria parasites during the complex life cycle in the human host. We investigated Plasmodium falciparum histone lysine methyltransferases as a potential target class for the development of novel antimalarials. We synthesized a compound library based upon a known specific inhibitor (BIX-01294) of the human G9a histone methyltransferase. Two compounds, BIX-01294 and its derivative TM2-115, inhibited P. falciparum 3D7 parasites in culture with IC50 values of ∼100 nM, values at least 22-fold more potent than their apparent IC50 toward two human cell lines and one mouse cell line. These compounds irreversibly arrested parasite growth at all stages of the intraerythrocytic life cycle. Decrease in parasite viability (>40%) was seen after a 3-h incubation with 1 µM BIX-01294 and resulted in complete parasite killing after a 12-h incubation. Additionally, mice with patent Plasmodium berghei ANKA strain infection treated with a single dose (40 mg/kg) of TM2-115 had 18-fold reduced parasitemia the following day. Importantly, treatment of P. falciparum parasites in culture with BIX-01294 or TM2-115 resulted in significant reductions in histone H3K4me3 levels in a concentration-dependent and exposure time-dependent manner. Together, these results suggest that BIX-01294 and TM2-115 inhibit malaria parasite histone methyltransferases, resulting in rapid and irreversible parasite death. Our data position histone lysine methyltransferases as a previously unrecognized target class, and BIX-01294 as a promising lead compound, in a presently unexploited avenue for antimalarial drug discovery targeting multiple life-cycle stages. PMID:23011794

  10. Expanding the Chemistry of the Class C Radical SAM Methyltransferase NosN by Using an Allyl Analogue of SAM.

    PubMed

    Ji, Xinjian; Mandalapu, Dhanaraju; Cheng, Jinduo; Ding, Wei; Zhang, Qi

    2018-03-30

    The radical S-adenosylmethionine (SAM) superfamily enzymes cleave SAM reductively to generate a highly reactive 5'-deoxyadenosyl (dAdo) radical, which initiates remarkably diverse reactions. Unlike most radical SAM enzymes, the class C radical SAM methyltransferase NosN binds two SAMs in the active site, using one SAM to produce a dAdo radical and the second as a methyl donor. Here, we report a mechanistic investigation of NosN in which an allyl analogue of SAM (allyl-SAM) was used. We show that NosN cleaves allyl-SAM efficiently and the resulting dAdo radical can be captured by the olefin moieties of allyl-SAM or 5'-allylthioadenosine (ATA), the latter being a derivative of allyl-SAM. Remarkably, we found that NosN produced two distinct sets of products in the presence and absence of the methyl acceptor substrate, thus suggesting substrate-triggered production of ATA from allyl-SAM. We also show that NosN produces S-adenosylhomocysteine from 5'-thioadenosine and homoserine lactone. These results support the idea that 5'-methylthioadenosine is the direct methyl donor in NosN reactions, and demonstrate great potential to modulate radical SAM enzymes for novel catalytic activities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DNA methyltransferase-3 like protein expression in various histological types of testicular germ cell tumor.

    PubMed

    Matsuoka, Taeko; Kawai, Koji; Ando, Satoshi; Sugita, Shintaro; Kandori, Shuya; Kojima, Takahiro; Miyazaki, Jun; Nishiyama, Hiroyuki

    2016-05-01

    DNA methyltransferase 3-like plays an important role in germ cell development. The aim of this study was to analyse the DNA methyltransferase 3-like protein expression in testicular germ cell tumors. The immunohistochemical expression of DNA methyltransferase 3-like was examined in 86 testicular germ cell tumor specimens in various clinical settings. The association between DNA methyltransferase 3-like expression and disease stage was analyzed. DNA methyltransferase 3-like was strongly expressed in seven of the eight pure embryonal carcinomas (87.5%). Partial DNA methyltransferase 3-like expression was observed in 6 of 23 (26.1%) pure seminomas. Various degrees of DNA methyltransferase 3-like expression was observed in all four pure yolk sac tumors, of which three were prepubertal yolk sac tumors. In mixed germ cell tumors, DNA methyltransferase 3-like protein was expressed in various degrees in elements of the embryonal carcinoma (14/18, 77.8%), seminoma (4/11, 36.4%), teratoma (4/7, 57.1%) and choriocarcinoma (3/3, 100%) but not in the yolk sac tumors (0/4). When DNA methyltransferase 3-like expression was analyzed according to disease stages, it was significantly correlated with advanced seminoma rather than Stage I seminoma (46.2 vs. 0%, P = 0.019), whereas there was no significant difference in the DNA methyltransferase 3-like-positive proportion between Stage I and advanced disease in the mixed germ cell tumors. Our findings suggest that DNA methyltransferase 3-like protein may play roles not only in the development of embryonal carcinoma but also in the development of advanced pure seminoma and pure yolk sac tumor. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Construction of plasmid, bacterial expression, purification, and assay of dengue virus type 2 NS5 methyltransferase.

    PubMed

    Boonyasuppayakorn, Siwaporn; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus (DENV), a member of mosquito-borne flavivirus, causes self-limiting dengue fever as well as life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its positive sense RNA genome has a cap at the 5'-end and no poly(A) tail at the 3'-end. The viral RNA encodes a single polyprotein, C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5. The polyprotein is processed into 3 structural proteins (C, prM, and E) and 7 nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). NS3 and NS5 are multifunctional enzymes performing various tasks in viral life cycle. The N-terminal domain of NS5 has distinct GTP and S-adenosylmethionine (SAM) binding sites. The role of GTP binding site is implicated in guanylyltransferase (GTase) activity of NS5. The SAM binding site is involved in both N-7 and 2'-O-methyltransferase (MTase) activities involved in formation of type I cap. The C-terminal domain of NS5 catalyzes RNA-dependent RNA polymerase (RdRp) activity involved in RNA synthesis. We describe the construction of the MTase domain of NS5 in an E. coli expression vector, purification of the enzyme, and conditions for enzymatic assays of N7- and 2'O-methyltransferase activities that yield the final type I 5'-capped RNA ((7Me)GpppA2'OMe-RNA).

  13. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger.

    PubMed

    Manzanares-Miralles, Lara; Sarikaya-Bayram, Özlem; Smith, Elizabeth B; Dolan, Stephen K; Bayram, Özgür; Jones, Gary W; Doyle, Sean

    2016-01-10

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus, which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p=0.0018) required for homocysteine generation from S-adenosylhomocysteine (SAH), and spermidine synthase (p=0.0068), involved in the recycling of Met, was observed. Analysis of Met-related metabolites revealed significant increases in the levels of Met and adenosine, in correlation with proteomic data. Methyltransferase MT-II is responsible for bisthiobis(methylthio)gliotoxin (BmGT) formation, deletion of MT-II abolished BmGT formation and led to increased GT sensitivity in A. niger. Proteomic analysis also revealed that GT exposure also significantly (p<0.05) increased hydrolytic enzyme abundance, including glycoside hydrolases (n=22) and peptidases (n=16). We reveal that in an attempt to protect against the detrimental affects of GT, methyltransferase-mediated GT thiomethylation alters cellular pathways involving Met and SAM, with consequential dysregulation of hydrolytic enzyme abundance in A. niger. Thus, it provides new opportunities to exploit the response of GT-naïve fungi to GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling

    PubMed Central

    Thomas, M G; Saldanha, M; Mistry, R J; Dexter, D T; Ramsden, D B; Parsons, R B

    2013-01-01

    Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways. PMID:23764850

  15. Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling.

    PubMed

    Thomas, M G; Saldanha, M; Mistry, R J; Dexter, D T; Ramsden, D B; Parsons, R B

    2013-06-13

    Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houtz, Robert, L.

    This project focused on a molecular and biochemical characterization of the protein methyltransferases responsible for methylation of the LS and SS in Rubisco, and the associated functional consequences accompanying these modifications. Our results provided some of the most informative structural and mechanistic understandings of SET domain protein methyltransferases. These results also positioned us to provide the first unambiguous assignment of the kinetic reaction mechanism for SET-domain protein methyltransferases, and to design and engineer an alternative substrate for Rubisco LSMT, enabling substrate specificity and functional significance studies. We demonstrated that the minimal substrate recognized by Rubisco LSMT is free lysine asmore » well as monomethyllysine, an observation corroborated both by structural analyses as well as enzymatic activity and subsequent product distribution analyses. Ternary complexes between Rubisco LSMT and free lysine compared to complexes with monomethyllysine demonstrated that the structural basis for multiple methyl group additions is a consequence of hydrogen-bond driven spatial shifts in the amino group of Lys-14, which maintains the direct in-line geometry necessary for SN2 nucleophilic attack. The structural observations are also consistent with the previous proposal that the multiplicity of methyl group additions takes place through a processive mechanism, with successive methyl group additions to an enzyme protein complex which does not disassociate prior to the formation of trimethyllysine. This mechanism has important implications, since the regulation of gene expression by SET domain histone methyltransferases is not only dependent on site-specific lysine methylation, but also the degree of methylation. We examined the kinetic reaction mechanism for three different types of SET domain protein methyltransferases, each under conditions supporting mono-, di-, or trimethyllysine formation corroborated by product analyses. Additionally, the tight initial binding of Rubisco LSMT to Rubisco also allowed us to design a novel immobilized complex between Rubisco and Rubisco LSMT, which allowed for an unambiguous demonstration of the requirement for trimethyllysine formation prior to disassociation of the Rubisco LSMT:Rubisco complex, and therefore proof of the processive mechanism for methyl group transfer. These kinetic studies also demonstrated that an important factor has been overlooked in all kinetic analyses of SET domain protein methyltransferases reported to date. This factor is the influence of the low turnover number for SET domain protein methyltransferases and how, relative to the time-frame of kinetic enzyme assays, this can generate changes in kinetic profiles shifting reciprocal plot patterns from random/ordered bi-bi to the real kinetic reaction mechanism plots of ping-pong. Although the ternary complexes of Rubisco LSMT with S-Adenosylhomocysteine and lysine and monomethyllysine were informative in regard to reaction mechanism, they were not helpful in identifying the mechanism used by Rubisco LSMT for determining substrate specificity. We were unsuccessful at obtaining ternary complexes of Rubisco LSMT with bound synthetic polypeptide substrates, as has been reported for several histone methyltransferases. However, we were able to model a polypeptide sequence corresponding to the N-terminal region of the LS of Rubisco into the apparent substrate binding cleft in Rubisco LSMT. Knowledge of the determinants of polypeptide substrate specificity are important for identifying possible alternate substrates, as well as the possibility of generating more desirable substrates amenable to site-directed mutagenesis experiments unlike Rubisco. We determined that Rubisco LSMT is capable of methylating synthetic polypeptide mimics of the N-terminal region of the LS, both free as well as conjugated to keyhole limpet hemacyanin, but with considerable less efficiency than intact holoenzyme.« less

  17. Turning a Substrate Peptide into a Potent Inhibitor for the Histone Methyltransferase SETD8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, Russell A.; Zhu, Haizhong; Upadhyay, Anup K.

    SETD8 is a histone H4–K20 methyltransferase that plays an essential role in the maintenance of genomic integrity during mitosis and in DNA damage repair, making it an intriguing target for cancer research. While some small molecule inhibitors for SETD8 have been reported, the structural binding modes for these inhibitors have not been revealed. Using the complex structure of the substrate peptide bound to SETD8 as a starting point, different natural and unnatural amino acid substitutions were tested, and a potent (Ki 50 nM, IC50 0.33 μM) and selective norleucine containing peptide inhibitor has been obtained.

  18. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luka, Zigmund; Pakhomova, Svetlana; Loukachevitch, Lioudmila V

    2012-06-27

    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinantmore » protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.« less

  19. Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China.

    PubMed

    Gong, Xiaoqing; Mei, Shenghui; Li, Xindi; Li, Xingang; Zhou, Heng; Liu, Yonghong; Zhou, Anna; Yang, Li; Zhao, Zhigang; Zhang, Xinghu

    2018-06-01

    Thiopurines are effective drugs in treating neuromyelitis optica spectrum disorders and other diseases. Thiopurines' toxicity is mainly imputed to thiopurine S-methyltransferase activity. In Chinese population, the most common and important variation of thiopurine S-methyltransferase is TPMT*3C (rs1142345). This study aims to reveal the association between thiopurine S-methyltransferase activity and genetic polymorphisms of thiopurine S-methyltransferase in patients with neuromyelitis optica spectrum disorders in China. A liquid chromatography tandem mass/mass method was used to evaluate the thiopurine S-methyltransferase activity by using 6-mercapthioprine as the substrate in human erythrocyte haemolysate via 1 h incubation at 37 °C to form its methylated product 6-methylmercaptopurine. The amount of 6-methylmercaptopurine was adjusted by haematocrit and normalized to 8 × 10 8 erythrocytes. The selected polymorphisms of thiopurine S-methyltransferase were identified using MassARRAY system (Sequenom) and multiple SNaPshot technique. In 69 patients with neuromyelitis optica spectrum disorders, thiopurine S-methyltransferase activity was 80.29-154.53 (127.51 ± 16.83) pmol/h/8 × 10 8 erythrocytes. TPMT*3C (rs1142345) was associated with lower thiopurine S-methyltransferase activity (BETA = -25.37, P = 0.011). Other selected variants were not associated with thiopurine S-methyltransferase activity. TPMT*3C affects TPMT activity in Chinese patients with neuromyelitis optica spectrum disorders. Further studies are warranted to confirm the results. TPRs = thiopurines; NMOSD = neuromyelitis optica spectrum disorders; TPMT = thiopurine S-methyltransferase; LC-MS/MS = liquid chromatography tandem mass/mass; 6-MMP = 6-methylmercaptopurine; IS = internal standard; SNP = single nucleotide polymorphism; MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium; BETA = regression coefficients; UTR-3 = untranslated region 3.

  20. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice.

    PubMed

    Neelakantan, Harshini; Vance, Virginia; Wetzel, Michael D; Wang, Hua-Yu Leo; McHardy, Stanton F; Finnerty, Celeste C; Hommel, Jonathan D; Watowich, Stanley J

    2018-01-01

    There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD + ) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD + salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD + and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to reverse diet-induced obesity and validate NNMT as a viable target to treat obesity and related metabolic conditions. Increased flux of key cellular energy regulators, including NAD + and SAM, may potentially define the therapeutic mechanism-of-action of NNMT inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    PubMed Central

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro. PMID:22496660

  2. Structural basis for substrate recognition by the human N-terminal methyltransferase 1

    DOE PAGES

    Dong, Cheng; Mao, Yunfei; Tempel, Wolfram; ...

    2015-11-05

    α-N-terminal methylation represents a highly conserved and prevalent post-translational modification, yet its biological function has remained largely speculative. The recent discovery of α-N-terminal methyltransferase 1 (NTMT1) and its physiological substrates propels the elucidation of a general role of α-N-terminal methylation in mediating DNA-binding ability of the modified proteins. The phenotypes, observed from both NTMT1 knockdown in breast cancer cell lines and knockout mouse models, suggest the potential involvement of α-N-terminal methylation in DNA damage response and cancer development. In this study, we report the first crystal structures of human NTMT1 in complex with cofactor S-adenosyl-L-homocysteine (SAH) and six substrate peptides,more » respectively, and reveal that NTMT1 contains two characteristic structural elements (a β hairpin and an N-terminal extension) that contribute to its substrate specificity. Our complex structures, coupled with mutagenesis, binding, and enzymatic studies, also present the key elements involved in locking the consensus substrate motif XPK (X indicates any residue type other than D/E) into the catalytic pocket for α-N-terminal methylation and explain why NTMT1 prefers an XPK sequence motif. We propose a catalytic mechanism for α-N-terminal methylation. Overall, this study gives us the first glimpse of the molecular mechanism of α-N-terminal methylation and potentially contributes to the advent of therapeutic agents for human diseases associated with deregulated α-N-terminal methylation.« less

  3. Expression of exogenous DNA methyltransferases: application in molecular and cell biology.

    PubMed

    Dyachenko, O V; Tarlachkov, S V; Marinitch, D V; Shevchuk, T V; Buryanov, Y I

    2014-02-01

    DNA methyltransferases might be used as powerful tools for studies in molecular and cell biology due to their ability to recognize and modify nitrogen bases in specific sequences of the genome. Methylation of the eukaryotic genome using exogenous DNA methyltransferases appears to be a promising approach for studies on chromatin structure. Currently, the development of new methods for targeted methylation of specific genetic loci using DNA methyltransferases fused with DNA-binding proteins is especially interesting. In the present review, expression of exogenous DNA methyltransferase for purposes of in vivo analysis of the functional chromatin structure along with investigation of the functional role of DNA methylation in cell processes are discussed, as well as future prospects for application of DNA methyltransferases in epigenetic therapy and in plant selection.

  4. Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase

    PubMed Central

    Liu, Binbin; Banavali, Nilesh K.; Jones, Susan A.; Zhang, Jing; Li, Zhong; Kramer, Laura D.; Li, Hongmin

    2015-01-01

    The flavivirus methyltransferase (MTase) is an essential enzyme that sequentially methylates the N7 and 2’-O positions of the viral RNA cap, using S-adenosyl-L-methionine (SAM) as a methyl donor. We report here that small molecule compounds, which putatively bind to the SAM-binding site of flavivirus MTase and inhibit its function, were identified by using virtual screening. In vitro methylation experiments demonstrated significant MTase inhibition by 13 of these compounds, with the most potent compound displaying sub-micromolar inhibitory activity. The most active compounds showed broad spectrum activity against the MTase proteins of multiple flaviviruses. Two of these compounds also exhibited low cytotoxicity and effectively inhibited viral replication in cell-based assays, providing further structural insight into flavivirus MTase inhibition. PMID:26098995

  5. Reviving the RNA World: An Insight into the Appearance of RNA Methyltransferases

    PubMed Central

    Rana, Ajay K.; Ankri, Serge

    2016-01-01

    RNA, the earliest genetic and catalytic molecule, has a relatively delicate and labile chemical structure, when compared to DNA. It is prone to be damaged by alkali, heat, nucleases, or stress conditions. One mechanism to protect RNA or DNA from damage is through site-specific methylation. Here, we propose that RNA methylation began prior to DNA methylation in the early forms of life evolving on Earth. In this article, the biochemical properties of some RNA methyltransferases (MTases), such as 2′-O-MTases (Rlml/RlmN), spOUT MTases and the NSun2 MTases are dissected for the insight they provide on the transition from an RNA world to our present RNA/DNA/protein world. PMID:27375676

  6. Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnackenberg, Laura K.; Chen Minjun; Sun, Jinchun

    2009-02-15

    Drug-induced liver injury has been associated with the generation of reactive metabolites, which are primarily detoxified via glutathione conjugation. In this study, it was hypothesized that molecules involved in the synthesis of glutathione would be diminished to replenish the glutathione depleted through conjugation reactions. Since S-adenosylmethionine (SAMe) is the primary source of the sulfur atom in glutathione, UPLC/MS and NMR were used to evaluate metabolites involved with the transulfuration pathway in urine samples collected during studies of eight liver toxic compounds in Sprague-Dawley rats. Urinary levels of creatine were increased on day 1 or day 2 in 8 high dosemore » liver toxicity studies. Taurine concentration in urine was increased in only 3 of 8 liver toxicity studies while SAMe was found to be reduced in 4 of 5 liver toxicity studies. To further validate the results from the metabonomic studies, microarray data from rat liver samples following treatment with acetaminophen was obtained from the Gene Expression Omnibus (GEO) database. Some genes involved in the trans-sulfuration pathway, including guanidinoacetate N-methyltransferase, glycine N-methyltransferase, betaine-homocysteine methyltransferase and cysteine dioxygenase were found to be significantly decreased while methionine adenosyl transferase II, alpha increased at 24 h post-dosing, which is consistent with the SAMe and creatine findings. The metabolic and transcriptomic results show that the trans-sulfuration pathway from SAMe to glutathione was disturbed due to the administration of heptatotoxicants.« less

  7. The Helicobacter pylori HpyAXII restriction–modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components

    PubMed Central

    Humbert, Olivier; Salama, Nina R.

    2008-01-01

    The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model. PMID:18978016

  8. Catechol-O-Methyltransferase Val158Met Polymorphism on Striatum Structural Covariance Networks in Alzheimer's Disease.

    PubMed

    Chang, Chiung-Chih; Tsai, Shih-Jen; Chen, Nai-Ching; Huang, Chi-Wei; Hsu, Shih-Wei; Chang, Ya-Ting; Liu, Mu-En; Chang, Wen-Neng; Tsai, Wan-Chen; Lee, Chen-Chang

    2018-06-01

    The catechol-O-methyltransferase enzyme metabolizes dopamine in the prefrontal axis, and its genetic polymorphism (rs4680; Val158Met) is a known determinant of dopamine signaling. In this study, we investigated the possible structural covariance networks that may be modulated by this functional polymorphism in patients with Alzheimer's disease. Structural covariance networks were constructed by 3D T1 magnetic resonance imaging. The patients were divided into two groups: Met-carriers (n = 91) and Val-homozygotes (n = 101). Seed-based analysis was performed focusing on triple-network models and six striatal networks. Neurobehavioral scores served as the major outcome factors. The role of seed or peak cluster volumes, or a covariance strength showing Met-carriers > Val-homozygotes were tested for the effect on dopamine. Clinically, the Met-carriers had higher mental manipulation and hallucination scores than the Val-homozygotes. The volume-score correlations suggested the significance of the putaminal seed in the Met-carriers and caudate seed in the Val-homozygotes. Only the dorsal-rostral and dorsal-caudal putamen interconnected peak clusters showed covariance strength interactions (Met-carriers > Val-homozygotes), and the peak clusters also correlated with the neurobehavioral scores. Although the triple-network model is important for a diagnosis of Alzheimer's disease, our results validated the role of the dorsal-putaminal-anchored network by the catechol-O-methyltransferase Val158Met polymorphism in predicting the severity of cognitive and behavior in subjects with Alzheimer's disease.

  9. Structure and Function of the Glycopeptide N-methyltransferase MtfA, a Tool for the Biosynthesis of Modified Glycopeptide Antibiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rong; Lamb, Sherry S.; Zakeri, Bijan

    2009-06-01

    There is a considerable interest in the modification of existing antibiotics to generate new antimicrobials. Glycopeptide antibiotics (GPAs) are effective against serious Gram-positive bacterial pathogens including methicillin-resistant Staphylococcus aureus. However, resistance to these antibiotics is becoming a serious problem requiring new strategies. We show that the Amycolatopsis orientalis (S)-adenosyl-L-methionine-dependent methyltransferase MtfA, from the vancomycin-class GPA chloroeremomycin biosynthetic pathway, catalyzes in vivo and in vitro methyl transfer to generate methylated GPA derivatives of the teicoplanin class. The crystal structure of MtfA complexed with (S)-adenosyl-L-methionine, (S)-adenosylhomocysteine, or sinefungin inhibitor, coupled with mutagenesis, identified His228 as a likely general base required for methylmore » transfer to the N terminus of the glycopeptide. Computational docking and molecular dynamics simulations were used to model binding of demethyl-vancomycin aglycone to MtfA. These results demonstrate its utility as a tool for engineering methylated analogs of GPAs.« less

  10. TERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeast

    PubMed Central

    Wanat, Jennifer J.; Logsdon, Glennis A.; Driskill, Jordan H.; Deng, Zhong; Lieberman, Paul M.

    2018-01-01

    The events underlying senescence induced by critical telomere shortening are not fully understood. Here we provide evidence that TERRA, a non-coding RNA transcribed from subtelomeres, contributes to senescence in yeast lacking telomerase (tlc1Δ). Levels of TERRA expressed from multiple telomere ends appear elevated at senescence, and expression of an artificial RNA complementary to TERRA (anti-TERRA) binds TERRA in vivo and delays senescence. Anti-TERRA acts independently from several other mechanisms known to delay senescence, including those elicited by deletions of EXO1, TEL1, SAS2, and genes encoding RNase H enzymes. Further, it acts independently of the senescence delay provided by RAD52-dependent recombination. However, anti-TERRA delays senescence in a fashion epistatic to inactivation of the conserved histone methyltransferase Dot1. Dot1 associates with TERRA, and anti-TERRA disrupts this interaction in vitro and in vivo. Surprisingly, the anti-TERRA delay is independent of the C-terminal methyltransferase domain of Dot1 and instead requires only its N-terminus, which was previously found to facilitate release of telomeres from the nuclear periphery. Together, these data suggest that TERRA and Dot1 cooperate to drive senescence. PMID:29649255

  11. Identification of novel inhibitors of DNA methylation by screening of a chemical library.

    PubMed

    Ceccaldi, Alexandre; Rajavelu, Arumugam; Ragozin, Sergey; Sénamaud-Beaufort, Catherine; Bashtrykov, Pavel; Testa, Noé; Dali-Ali, Hana; Maulay-Bailly, Christine; Amand, Séverine; Guianvarc'h, Dominique; Jeltsch, Albert; Arimondo, Paola B

    2013-03-15

    In order to discover new inhibitors of the DNA methyltransferase 3A/3L complex, we used a medium-throughput nonradioactive screen on a random collection of 1120 small organic compounds. After a primary hit detection against DNA methylation activity of the murine Dnmt3A/3L catalytic complex, we further evaluated the EC50 of the 12 most potent hits as well as their cytotoxicity on DU145 prostate cancer cultured cells. Interestingly, most of the inhibitors showed low micromolar activities and little cytotoxicity. Dichlone, a small halogenated naphthoquinone, classically used as pesticide and fungicide, showed the lowest EC50 at 460 nM. We briefly assessed the selectivity of a subset of our new inhibitors against hDNMT1 and bacterial Dnmts, including M. SssI and EcoDam, and the protein lysine methyltransferase PKMT G9a and the mode of inhibition. Globally, the tested molecules showed a clear preference for the DNA methyltransferases, but poor selectivity among them. Two molecules including Dichlone efficiently reactivated YFP gene expression in a stable HEK293 cell line by promoter demethylation. Their efficacy was comparable to the DNMT inhibitor of reference 5-azacytidine.

  12. Characterization of Zea mays endosperm C-24 sterol methyltransferase: one of two types of sterol methyltransferase in higher plants.

    PubMed

    Grebenok, R J; Galbraith, D W; Penna, D D

    1997-08-01

    We report the characterization of a higher-plant C-24 sterol methyltransferase by yeast complementation. A Zea mays endosperm expressed sequence tag (EST) was identified which, upon complete sequencing, showed 46% identity to the yeast C-24 methyltransferase gene (ERG6) and 75% and 37% amino acid identity to recently isolated higher-plant sterol methyltransferases from soybean and Arabidopsis, respectively. When placed under GALA regulation, the Z. mays cDNA functionally complemented the erg6 mutation, restoring ergosterol production and conferring resistance to cycloheximide. Complementation was both plasmid-dependent and galactose-inducible. The Z. mays cDNA clone contains an open reading frame encoding a 40 kDa protein containing motifs common to a large number of S-adenosyl-L-methionine methyltransferases (SMTs). Sequence comparisons and functional studies of the maize, soybean and Arabidopsis cDNAs indicates two types of C-24 SMTs exist in higher plants.

  13. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-04-01

    Serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT) are the last two key enzymes for melatonin biosynthesis in living organisms. In this study, we demonstrated that transgenic rice (Oryza sativa L.) plants, in which expression of either endogenous SNAT or ASMT was suppressed, had reduced melatonin synthesis, confirming that both SNAT and ASMT are functionally involved in melatonin synthesis. The melatonin-deficient SNAT rice had retarded seedling growth, which was partially restored by exogenous melatonin application, suggesting melatonin's role in seedling growth. In addition, the plants were more sensitive to various abiotic stresses, including salt and cold, compared with the wild type. Melatonin-deficient SNAT rice had increased coleoptile growth under anoxic conditions, indicating that melatonin also inversely regulates plant growth under anaerobic conditions with the concomitant high expression of alcohol dehydrogenase genes. Similarly, the melatonin-deficient ASMT rice exhibited accelerated senescence in detached flag leaves, as well as significantly reduced yield. These loss-of-function studies on the melatonin biosynthetic genes confirmed most previous pharmacological reports that melatonin not only promotes plant growth but also mitigates various abiotic stresses. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Automethylation of Protein Arginine Methyltransferase 8 (PRMT8) Regulates Activity by Impeding S-Adenosylmethionine Sensitivity*

    PubMed Central

    Dillon, Myles B. C.; Rust, Heather L.; Thompson, Paul R.; Mowen, Kerri A.

    2013-01-01

    Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet. PMID:23946480

  15. Flavonoids inhibit both rice and sheep serotonin N-acetyltransferases and reduce melatonin levels in plants.

    PubMed

    Lee, Kyungjin; Hwang, Ok Jin; Reiter, Russel J; Back, Kyoungwhan

    2018-05-31

    The plant melatonin biosynthetic pathway has been well characterized, but inhibitors of melatonin synthesis have not been well studied. Here, we found that flavonoids potently inhibited plant melatonin synthesis. For example, flavonoids including morin and myricetin significantly inhibited purified, recombinant sheep serotonin N-acetyltransferase (SNAT). Flavonoids also dose-dependently and potently inhibited purified rice SNAT1 and SNAT2. Thus, myricetin (100 μmol/L) reduced rice SNAT1 and SNAT2 activity 7- and 10-fold, respectively, and also strongly inhibited the N-acetylserotonin methyltransferase activity of purified, recombinant rice caffeic acid O-methyltransferase. To explore the in vivo effects, rice leaves were treated with flavonoids and then cadmium. Flavonoid-treated leaves had lower melatonin levels than the untreated control. To explore the direct roles of flavonoids in melatonin biosynthesis, we first functionally characterized a putative rice flavonol synthase (FLS) in vitro and generated flavonoid-rich transgenic rice plants that overexpressed FLS. Such plants produced more flavonoids but less melatonin than the wild-type, which suggests that flavonoids indeed inhibit plant melatonin biosynthesis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD.

    PubMed

    Vit, Allegra; Misson, Laëtitia; Blankenfeldt, Wulf; Seebeck, Florian Peter

    2014-05-01

    Ergothioneine is an amino-acid betaine derivative of histidine that was discovered more than one century ago. Despite significant research pointing to a function in oxidative stress defence, the exact mechanisms of action of ergothioneine remain elusive. Although both humans and bacterial pathogens such as Mycobacterium tuberculosis seem to depend on ergothioneine, humans are devoid of the corresponding biosynthetic enzymes. Therefore, its biosynthesis may emerge as potential drug target in the development of novel therapeutics against tuberculosis. The recent identification of ergothioneine-biosynthetic genes in M. smegmatis enables a more systematic study of its biology. The pathway is initiated by EgtD, a SAM-dependent methyltransferase that catalyzes a trimethylation reaction of histidine to give N(α),N(α),N(α)-trimethylhistidine. Here, the recombinant production, purification and crystallization of EgtD are reported. Crystals of native EgtD diffracted to 2.35 Å resolution at a synchrotron beamline, whereas crystals of seleno-L-methionine-labelled protein diffracted to 1.75 Å resolution and produced a significant anomalous signal to 2.77 Å resolution at the K edge. All of the crystals belonged to space group P212121, with two EgtD monomers in the asymmetric unit.

  17. Fast and slow methylators: do racial differences influence risk of allograft rejection?

    PubMed

    Chocair, P R; Duley, J A; Sabbaga, E; Arap, S; Simmonds, H A; Cameron, J S

    1993-06-01

    A catabolic route for azathioprine involving methylation by thiopurine methyltransferase has been directly implicated in the drug's immunosuppressive efficacy. Since ethnic differences in thiopurine methyltransferase activity have been reported in a study of Lapps, this study compared the distribution of thiopurine methyltransferase activity in erythrocyte lysates from 134 healthy, randomly selected subjects living in Brazil, comprising 39 blacks (i.e. Afro-Brazilians), 33 white subjects, 30 mixed-race subjects, and 32 Brazilian-residing Japanese subjects. The results demonstrated bimodality of thiopurine methyltransferase activity compatible with genetic polymorphism in the white, black and mixed-race groups, but not in the Japanese, who were homogeneously 'fast methylators' (high thiopurine methyltransferase activity). Thiopurine methyltransferase activity was generally higher in Brazilian males than females, and some individuals in the black and mixed-race groups had very high activity. Azathioprine-immunosuppressed transplant patients with thiopurine methyltransferase activity above 35 pmol/h/mgHb have previously been shown to have significantly poorer outcomes. Using this thiopurine methyltransferase value as the cut-off point between 'poor responders' and 'good responders' to azathioprine, 65% of the Japanese, 59% of the black subjects, and 63% of the mixed-race subjects fell into the 'poor responder' category, compared with only 42% of the white group. Interestingly, this approximately 20% difference in azathioprine response corresponds to the racial differences seen in allograft survival.

  18. A Panoptic Uncovering of the Dynamical Evolution of the Zika Virus NS5 Methyltransferase Binding Site Loops- Zeroing in on the Molecular Landscape.

    PubMed

    Devnarain, Nikita; Soliman, Mahmoud E S

    2018-06-20

    The global threat of the Zika virus to humanity is real. Innovative and potent anti-Zika virus drugs are still at large, due to the lack of anti-Zika virus drugs that have passed phase 1 trials. Experimental research has revealed novel inhibitors of Zika virus NS5 methyltransferase enzyme. This study has taken a step further to provide insight into the molecular dynamics of Zika virus and inhibitor binding, which have not been established experimentally. Movements of the methyltransferase binding site loops have a large role to play in the methylation of the viral mRNA cap, which is essential for Zika virus replication. Here we pinpoint the binding interactions between each potential inhibitor and the methyltransferase, residues that are responsible for binding, as well as which inhibitor-bound complex renders the methyltransferase more stable. We also highlight the conformational changes that occur within the methyltransferase to accommodate binding of inhibitors and consequences of those changes upon the RNA- and cap-binding sites in the methyltransferase. This research will improve the understanding of the Zika virus NS5 methyltransferase enzyme, and will be beneficial in driving the development of anti-Zika virus drugs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Identification of Methyl Halide-Utilizing Genes in the Methyl Bromide-Utilizing Bacterial Strain IMB-1 Suggests a High Degree of Conservation of Methyl Halide-Specific Genes in Gram-Negative Bacteria

    USGS Publications Warehouse

    Woodall, C.A.; Warner, K.L.; Oremland, R.S.; Murrell, J.C.; McDonald, I.R.

    2001-01-01

    Strain IMB-1, an aerobic methylotrophic member of the alpha subgroup of the Proteobacteria, can grow with methyl bromide as a sole carbon and energy source. A single cmu gene cluster was identified in IMB-1 that contained six open reading frames: cmuC, cmuA, orf146, paaE, hutI, and partial metF. CmuA from IMB-1 has high sequence homology to the methyltransferase CmuA from Methylobacterium chloromethanicum and Hyphomicrobium chloromethanicum and contains a C-terminal corrinoid-binding motif and an N-terminal methyl-transferase motif. However, cmuB, identified in M. chloromethanicum and H. chloromethanicum, was not detected in IMB-1.

  20. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities.

    PubMed

    Lewinsohn, E; Ziv-Raz, I; Dudai, N; Tadmor, Y; Lastochkin, E; Larkov, O; Chaimovitsh, D; Ravid, U; Putievsky, E; Pichersky, E; Shoham, Y

    2000-12-07

    Sweet basil (Ocimum basilicum L., Lamiaceae) is a common herb, used for culinary and medicinal purposes. The essential oils of different sweet basil chemotypes contain various proportions of the allyl phenol derivatives estragole (methyl chavicol), eugenol, and methyl eugenol, as well as the monoterpene alcohol linalool. To monitor the developmental regulation of estragole biosynthesis in sweet basil, an enzymatic assay for S-adenosyl-L-methionine (SAM):chavicol O-methyltransferase activity was developed. Young leaves display high levels of chavicol O-methyltransferase activity, but the activity was negligible in older leaves, indicating that the O-methylation of chavicol primarily occurs early during leaf development. The O-methyltransferase activities detected in different sweet basil genotypes differed in their substrate specificities towards the methyl acceptor substrate. In the high-estragole-containing chemotype R3, the O-methyltransferase activity was highly specific for chavicol, while eugenol was virtually not O-methylated. In contrast, chemotype 147/97, that contains equal levels of estragole and methyl eugenol, displayed O-methyltransferase activities that accepted both chavicol and eugenol as substrates, generating estragole and methyl eugenol, respectively. Chemotype SW that contains high levels of eugenol, but lacks both estragole and methyl eugenol, had apparently no allylphenol dependent O-methyltransferase activities. These results indicate the presence of at least two types of allylphenol-specific O-methyltransferase activities in sweet basil chemotypes, one highly specific for chavicol; and a different one that can accept eugenol as a substrate. The relative availability and substrate specificities of these O-methyltransferase activities biochemically rationalizes the variation in the composition of the essential oils of these chemotypes.

  1. RamA, a Protein Required for Reductive Activation of Corrinoid-dependent Methylamine Methyltransferase Reactions in Methanogenic Archaea*S⃞

    PubMed Central

    Ferguson, Tsuneo; Soares, Jitesh A.; Lienard, Tanja; Gottschalk, Gerhard; Krzycki, Joseph A.

    2009-01-01

    Archaeal methane formation from methylamines is initiated by distinct methyltransferases with specificity for monomethylamine, dimethylamine, or trimethylamine. Each methylamine methyltransferase methylates a cognate corrinoid protein, which is subsequently demethylated by a second methyltransferase to form methyl-coenzyme M, the direct methane precursor. Methylation of the corrinoid protein requires reduction of the central cobalt to the highly reducing and nucleophilic Co(I) state. RamA, a 60-kDa monomeric iron-sulfur protein, was isolated from Methanosarcina barkeri and is required for in vitro ATP-dependent reductive activation of methylamine:CoM methyl transfer from all three methylamines. In the absence of the methyltransferases, highly purified RamA was shown to mediate the ATP-dependent reductive activation of Co(II) corrinoid to the Co(I) state for the monomethylamine corrinoid protein, MtmC. The ramA gene is located near a cluster of genes required for monomethylamine methyltransferase activity, including MtbA, the methylamine-specific CoM methylase and the pyl operon required for co-translational insertion of pyrrolysine into the active site of methylamine methyltransferases. RamA possesses a C-terminal ferredoxin-like domain capable of binding two tetranuclear iron-sulfur proteins. Mutliple ramA homologs were identified in genomes of methanogenic Archaea, often encoded near methyltrophic methyltransferase genes. RamA homologs are also encoded in a diverse selection of bacterial genomes, often located near genes for corrinoid-dependent methyltransferases. These results suggest that RamA mediates reductive activation of corrinoid proteins and that it is the first functional archetype of COG3894, a family of redox proteins of unknown function. PMID:19043046

  2. Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.

    PubMed

    Boulanger, Marie-Chloé; Miranda, Tina Branscombe; Clarke, Steven; Di Fruscio, Marco; Suter, Beat; Lasko, Paul; Richard, Stéphane

    2004-04-15

    The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.

  3. Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.

    PubMed Central

    Boulanger, Marie-Chloé; Miranda, Tina Branscombe; Clarke, Steven; Di Fruscio, Marco; Suter, Beat; Lasko, Paul; Richard, Stéphane

    2004-01-01

    The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation. PMID:14705965

  4. Indolethylamine-N-methyltransferase Polymorphisms: Genetic and Biochemical Approaches for Study of Endogenous N,N,-dimethyltryptamine.

    PubMed

    Dean, Jon G

    2018-01-01

    N,N -dimethyltryptamine (DMT) is a powerful serotonergic psychedelic whose exogenous administration elicits striking psychedelic effects in humans. Studies have identified DMT and analogous compounds (e.g., 5-hydroxy-DMT, 5-methoxy-DMT) alongside of an enzyme capable of synthesizing DMT endogenously from tryptamine, indolethylamine- N -methyltransferase (INMT), in human and several other mammalian tissues. Subsequently, multiple hypotheses for the physiological role of endogenous DMT have emerged, from proposed immunomodulatory functions to an emphasis on the overlap between the mental states generated by exogenous DMT and naturally occurring altered states of consciousness; e.g., schizophrenia. However, no clear relationship between endogenous DMT and naturally occurring altered states of consciousness has yet been established from in vivo assays of DMT in bodily fluids. The advent of genetic screening has afforded the capability to link alterations in the sequence of specific genes to behavioral and molecular phenotypes via expression of identified single nucleotide polymorphisms (SNPs) in cell and animal models. As SNPs in INMT may impact endogenous DMT synthesis and levels via changes in INMT expression and/or INMT structure and function, these combined genetic and biochemical approaches circumvent the limitations of assaying DMT in bodily fluids and may augment data from prior in vitro and in vivo work. Therefore, all reported SNPs in INMT were amassed from genetic and biochemical literature and genomic databases to consolidate a blueprint for future studies aimed at elucidating whether DMT plays a physiological role.

  5. Indolethylamine-N-methyltransferase Polymorphisms: Genetic and Biochemical Approaches for Study of Endogenous N,N,-dimethyltryptamine

    PubMed Central

    Dean, Jon G.

    2018-01-01

    N,N-dimethyltryptamine (DMT) is a powerful serotonergic psychedelic whose exogenous administration elicits striking psychedelic effects in humans. Studies have identified DMT and analogous compounds (e.g., 5-hydroxy-DMT, 5-methoxy-DMT) alongside of an enzyme capable of synthesizing DMT endogenously from tryptamine, indolethylamine-N-methyltransferase (INMT), in human and several other mammalian tissues. Subsequently, multiple hypotheses for the physiological role of endogenous DMT have emerged, from proposed immunomodulatory functions to an emphasis on the overlap between the mental states generated by exogenous DMT and naturally occurring altered states of consciousness; e.g., schizophrenia. However, no clear relationship between endogenous DMT and naturally occurring altered states of consciousness has yet been established from in vivo assays of DMT in bodily fluids. The advent of genetic screening has afforded the capability to link alterations in the sequence of specific genes to behavioral and molecular phenotypes via expression of identified single nucleotide polymorphisms (SNPs) in cell and animal models. As SNPs in INMT may impact endogenous DMT synthesis and levels via changes in INMT expression and/or INMT structure and function, these combined genetic and biochemical approaches circumvent the limitations of assaying DMT in bodily fluids and may augment data from prior in vitro and in vivo work. Therefore, all reported SNPs in INMT were amassed from genetic and biochemical literature and genomic databases to consolidate a blueprint for future studies aimed at elucidating whether DMT plays a physiological role. PMID:29740267

  6. Challenges in profiling and lead optimization of drug discovery for methyltransferases.

    PubMed

    Horiuchi, Kurumi Y

    2015-11-01

    The importance of epigenetics in the initiation and progression of disease has attracted many investigators to incorporate this novel and exciting field in drug development. Protein methyltransferases are one of the target classes which have gained attention as potential therapeutic targets after promising results of inhibitors for EZH2 and DOT1L in clinical trials. There are many technologies developed in order to find small molecule inhibitors for protein methyltransferases. However, in contrast to high throughput screening, profiling against different methyltransferases is challenging since each enzyme has a different substrate preference so that it is hard to profile in one assay format. Here, different technologies for methyltransferase assays will be overviewed, and the advantages and disadvantages of each will be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase

    PubMed Central

    McNeil, Scott D.; Nuccio, Michael L.; Ziemak, Michael J.; Hanson, Andrew D.

    2001-01-01

    Choline (Cho) is the precursor of the osmoprotectant glycine betaine and is itself an essential nutrient for humans. Metabolic engineering of Cho biosynthesis in plants could therefore enhance both their resistance to osmotic stresses (drought and salinity) and their nutritional value. The key enzyme of the plant Cho-synthesis pathway is phosphoethanolamine N-methyltransferase, which catalyzes all three of the methylations required to convert phosphoethanolamine to phosphocholine. We show here that overexpressing this enzyme in transgenic tobacco increased the levels of phosphocholine by 5-fold and free Cho by 50-fold without affecting phosphatidylcholine content or growth. Moreover, the expanded Cho pool led to a 30-fold increase in synthesis of glycine betaine via an engineered glycine betaine pathway. Supplying the transgenics with the Cho precursor ethanolamine (EA) further enhanced Cho levels even though the supplied EA was extensively catabolized. These latter results establish that there is further scope for improving Cho synthesis by engineering an increased endogenous supply of EA and suggest that this could be achieved by enhancing EA synthesis and/or by suppressing its degradation. PMID:11481443

  8. Functional Insights from Structural Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNAmore » methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).« less

  9. Modified rubisco large subunit n-methyltransferase useful for targeting molecules to the active-site vicinity of ribulose-1,5-bisphosphate

    DOEpatents

    Houtz, Robert L [Lexington, KY

    2012-03-20

    The present invention generally relates to a modified Rubisco large subunit .sup..epsilon.N-Methyltransferase (Rubisco LSMT, or RLSMT). The present invention also relates to a modified RLSMT-carbonic anhydrase (RLSMT-CA). This modified RLSMT-CA improves the efficiency of the reduction of CO.sub.2 during photosynthesis, which may increase plant growth rates. The present invention also relates to nucleic acids encoding the modified RLSMT-CA or modified RLSMT. Also, the present invention relates to cells including the modified RLSMT-CA or modified RLSMT, plants containing the modified RLSMT-CA or modified RLSMT, and methods using compositions of the present invention. In addition, the present invention relates to antibodies conjugated to CA which may bind to Rubisco, and antibodies which bind a modified RLSMT-CA. The invention also relates to modified forms of the LS and SS of Rubisco where the modified forms are fusions with CA or biologically active fragments thereof. The present invention provides methods of altering Rubisco carboxylase activity and altering plant growth.

  10. RNA-dependent RNA polymerase complex of Brome mosaic virus: analysis of the molecular structure with monoclonal antibodies.

    PubMed

    Dohi, Koji; Mise, Kazuyuki; Furusawa, Iwao; Okuno, Tetsuro

    2002-11-01

    Viral RNA-dependent RNA polymerase (RdRp) plays crucial roles in the genomic replication and subgenomic transcription of Brome mosaic virus (BMV), a positive-stranded RNA plant virus. BMV RdRp is a complex of virus-encoded 1a and 2a proteins and some cellular factors, and associates with the endoplasmic reticulum at an infection-specific structure in the cytoplasm of host cells. In this study, we investigate the gross structure of the active BMV RdRp complex using monoclonal antibodies raised against the 1a and 2a proteins. Immunoprecipitation experiments showed that the intermediate region between the N-terminal methyltransferase-like domain and the C-terminal helicase-like domain of 1a protein, and the N terminus region of 2a protein are exposed on the surface of the solubilized RdRp complex. Inhibition assays for membrane-bound RdRp suggested that the intermediate region between the methyltransferase-like and the helicase-like domains of 1a protein is located at the border of the region buried within a membrane structure or with membrane-associated material.

  11. Gene expression differences in the methionine remethylation and transsulphuration pathways under methionine restriction and recovery with D,L-methionine or D,L-HMTBA in meat-type chickens.

    PubMed

    Aggrey, S E; González-Cerón, F; Rekaya, R; Mercier, Y

    2018-02-01

    This study examined the molecular mechanisms of methionine pathways in meat-type chickens where birds were provided with a diet deficient in methionine from 3 to 5 weeks of age. The birds on the deficient diet were then provided with a diet supplemented with either D,L-methionine or D,L-HMTBA from 5 to 7 weeks. The diet of the control birds was supplemented with L-methionine from hatch till 7 weeks of age. We studied the mRNA expression of methionine adenosyltransferase 1, alpha, methionine adenosyltransferase 1, beta, 5-methyltetrahydrofolate-homocysteine methyltransferase, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase, betaine-homocysteine S-methyltransferase, glycine N-methyltransferase, S-adenosyl-L-homocysteine hydrolase and cystathionine beta synthase genes in the liver, duodenum, Pectoralis (P.) major and the gastrocnemius muscle at 5 and 7 weeks. Feeding a diet deficient in dietary methionine affected body composition. Birds that were fed a methionine-deficient diet expressed genes that indicated that remethylation occurred via the one-carbon pathway in the liver and duodenum; however, in the P. major and the gastrocnemius muscles, gene expression levels suggested that homocysteine received methyl from both folate and betaine for remethylation. Birds who were switched from a methionine deficiency diet to one supplemented with either D,L-methionine or D,L-HMTBA showed a downregulation of all the genes studied in the liver. However, depending on the tissue or methionine form, either folate or betaine was elicited for remethylation. Thus, mRNA expressions show that genes in the remethylation and transsulphuration pathways were regulated according to tissue need, and there were some differences in the methionine form. © 2017 Blackwell Verlag GmbH.

  12. The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo.

    PubMed

    Batut, Julie; Vandel, Laurence; Leclerc, Catherine; Daguzan, Christiane; Moreau, Marc; Néant, Isabelle

    2005-10-18

    We have previously shown that an increase in intracellular Ca2+ is both necessary and sufficient to commit ectoderm to a neural fate in Xenopus embryos. However, the relationship between this Ca2+ increase and the expression of early neural genes has yet to be defined. Using a subtractive cDNA library between untreated and caffeine-treated animal caps, i.e., control ectoderm and ectoderm induced toward a neural fate by a release of Ca2+, we have isolated the arginine N-methyltransferase, xPRMT1b, a Ca2+-induced target gene, which plays a pivotal role in this process. First, we show in embryo and in animal cap that xPRMT1b expression is Ca2+-regulated. Second, overexpression of xPRMT1b induces the expression of early neural genes such as Zic3. Finally, in the whole embryo, antisense approach with morpholino oligonucleotide against xPRMT1b impairs neural development and in animal caps blocks the expression of neural markers induced by a release of internal Ca2+. Our results implicate an instructive role of an enzyme, an arginine methyltransferase protein, in the embryonic choice of determination between epidermal and neural fate. The results presented provide insights by which a Ca2+ increase induces neural fate.

  13. Homocysteine: overview of biochemistry, molecular biology, and role in disease processes.

    PubMed

    Fowler, Brian

    2005-05-01

    Homocysteine is derived from the essential amino acid methionine and plays a vital role in cellular homeostasis in man. Homocysteine levels depend on its synthesis, involving methionine adenosyltransferase, S-adenosylmethionine-dependent methyltransferases such as glycine N-methyltransferase, and S-adenosylhomocysteine hydrolase; its remethylation to methionine by methionine synthase, which requires methionine synthase reductase, vitamin B (12), and 5-methyltetrahydrofolate produced by methylenetetrahydrofolate reductase or betaine methyltransferase; and its degradation by transsulfuration involving cystathionine beta-synthase. The control of homocysteine metabolism involves changes of tissue content or inherent kinetic properties of the enzymes. In particular, S-adenosylmethionine acts as a switch between remethylation and transsulfuration through its allosteric inhibition of methylenetetrahydrofolate reductase and activation of cystathionine beta-synthase. Mutant alleles of genes for these enzymes can lead to severe loss of function and varying severity of disease. Several defects lead to severe hyperhomocysteinemia, the most common form being cystathionine beta-synthase deficiency, with more than a hundred reported mutations. Less severe elevations of plasma homocysteine are caused by folate and vitamin B (12) deficiency, and renal disease and moderate hyperhomocysteinemia are associated with several common disease states such as cardiovascular disease. Homocysteine toxicity is likely direct or caused by disturbed levels of associated metabolites; for example, methylation reactions through elevated S-adenosylhomocysteine.

  14. Characterization of an O-Demethylase of Desulfitobacterium hafniense DCB-2

    PubMed Central

    Studenik, Sandra; Vogel, Michaela

    2012-01-01

    Besides acetogenic bacteria, only Desulfitobacterium has been described to utilize and cleave phenyl methyl ethers under anoxic conditions; however, no ether-cleaving O-demethylases from the latter organisms have been identified and investigated so far. In this study, genes of an operon encoding O-demethylase components of Desulfitobacterium hafniense strain DCB-2 were cloned and heterologously expressed in Escherichia coli. Methyltransferases I and II were characterized. Methyltransferase I mediated the ether cleavage and the transfer of the methyl group to the superreduced corrinoid of a corrinoid protein. Desulfitobacterium methyltransferase I had 66% identity (80% similarity) to that of the vanillate-demethylating methyltransferase I (OdmB) of Acetobacterium dehalogenans. The substrate spectrum was also similar to that of the latter enzyme; however, Desulfitobacterium methyltransferase I showed a higher level of activity for guaiacol and used methyl chloride as a substrate. Methyltransferase II catalyzed the transfer of the methyl group from the methylated corrinoid protein to tetrahydrofolate. It also showed a high identity (∼70%) to methyltransferases II of A. dehalogenans. The corrinoid protein was produced in E. coli as cofactor-free apoprotein that could be reconstituted with hydroxocobalamin or methylcobalamin to function in the methyltransferase I and II assays. Six COG3894 proteins, which were assumed to function as activating enzymes mediating the reduction of the corrinoid protein after an inadvertent oxidation of the corrinoid cofactor, were studied with respect to their abilities to reduce the recombinant reconstituted corrinoid protein. Of these six proteins, only one was found to catalyze the reduction of the corrinoid protein. PMID:22522902

  15. The Catalytic Domain of Topological Knot tRNA Methyltransferase (TrmH) Discriminates between Substrate tRNA and Nonsubstrate tRNA via an Induced-fit Process*

    PubMed Central

    Ochi, Anna; Makabe, Koki; Yamagami, Ryota; Hirata, Akira; Sakaguchi, Reiko; Hou, Ya-Ming; Watanabe, Kazunori; Nureki, Osamu; Kuwajima, Kunihiro; Hori, Hiroyuki

    2013-01-01

    A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2′-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination. PMID:23867454

  16. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme.

    PubMed Central

    Motorin, Y; Grosjean, H

    1999-01-01

    Several genes encoding putative RNA:5-methylcytidine-transferases (m5C-transferases) from different organisms, including yeast, have been identified by sequence homology with the recently identified 16S rRNA:m5C967-methyltransferase (gene SUN) from Escherichia coli. One of the yeast ORFs (YBL024w) was amplified by PCR, inserted in the expression vector pET28b, and the corresponding protein was hyperexpressed in E. coli BL21 (DE3). The resulting N-terminally His6-tagged recombinant Ybl024p was purified to apparent homogeneity by one-step affinity chromatography on Ni2+-NTA-agarose column. The activity and substrate specificity of the purified Ybl024p were tested in vitro using T7 transcripts of different yeast tRNAs as substrates and S-adenosyl-L-methionine as a donor of the methyl groups. The results indicate that yeast ORF YBL024w encodes S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase that is capable of methylating cytosine to m5C at several positions in different yeast tRNAs and pre-tRNAs containing intron. Modification of tRNA occurs at all four positions (34, 40, 48, and 49) at which m5C has been found in yeast tRNAs sequenced so far. Disruption of the ORF YBL024w leads to the complete absence of m5C in total yeast tRNA. Moreover no tRNA:m5C-methyltransferase activity towards all potential m5C methylation sites was detected in the extract of the disrupted yeast strain. These results demonstrate that the protein product of a single gene is responsible for complete m5C methylation of yeast tRNA. Because this newly characterized multisite-specific modification enzyme Ybl024p is the fourth tRNA-specific methyltransferase identified in yeast, we suggest designating it as TRM4, the gene corresponding to ORF YBL024w. PMID:10445884

  17. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster.

    PubMed

    Panikar, Chitra S; Rajpathak, Shriram N; Abhyankar, Varada; Deshmukh, Saniya; Deobagkar, Deepti D

    2015-12-01

    Drosophila melanogaster lacks DNMT1/DNMT3 based methylation machinery. Despite recent reports confirming the presence of low DNA methylation in Drosophila; little is known about the methyltransferase. Therefore, in this study, we have aimed to investigate the possible functioning of DNA methyltransferase in Drosophila. The 14 K oligo microarray slide was incubated with native cell extract from adult Drosophila to check the presence of the methyltransferase activity. After incubation under appropriate conditions, the methylated oligo sequences were identified by the binding of anti 5-methylcytosine monoclonal antibody. The antibody bound to the methylated oligos was detected using Cy3 labeled secondary antibody. Methylation sensitive restriction enzyme mediated PCR was used to assess the methylation at a few selected loci identified on the array. It could be seen that a few of the total oligos got methylated under the assay conditions. Analysis of methylated oligo sequences provides evidence for the presence of de novo methyltransferase activity and allows identification of its sequence specificity in adult Drosophila. With the help of methylation sensitive enzymes we could detect presence of CpC methylation in the selected genomic regions. This study reports presence of an active DNA methyltransferase in adult Drosophila, which exhibits sequence specificity confirmed by presence of asymmetric methylation at corresponding sites in the genomic DNA. It also provides an innovative approach to investigate methylation specificity of a native methyltransferase.

  19. Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD

    PubMed Central

    Vit, Allegra; Misson, Laëtitia; Blankenfeldt, Wulf; Seebeck, Florian Peter

    2014-01-01

    Ergothioneine is an amino-acid betaine derivative of histidine that was discovered more than one century ago. Despite significant research pointing to a function in oxidative stress defence, the exact mechanisms of action of ergothioneine remain elusive. Although both humans and bacterial pathogens such as Mycobacterium tuberculosis seem to depend on ergothioneine, humans are devoid of the corresponding biosynthetic enzymes. Therefore, its biosyn­thesis may emerge as potential drug target in the development of novel therapeutics against tuberculosis. The recent identification of ergothioneine-biosynthetic genes in M. smegmatis enables a more systematic study of its biology. The pathway is initiated by EgtD, a SAM-dependent methyltransferase that catalyzes a trimethylation reaction of histidine to give N(α),N(α),N(α)-trimethylhistidine. Here, the recombinant production, purification and crystallization of EgtD are reported. Crystals of native EgtD diffracted to 2.35 Å resolution at a synchrotron beamline, whereas crystals of seleno-l-methionine-labelled protein diffracted to 1.75 Å resolution and produced a significant anomalous signal to 2.77 Å resolution at the K edge. All of the crystals belonged to space group P212121, with two EgtD monomers in the asymmetric unit. PMID:24817736

  20. Potato plants with genetically engineered tropane alkaloid precursors.

    PubMed

    Küster, Nadine; Rosahl, Sabine; Dräger, Birgit

    2017-02-01

    Solanum tuberosum tropinone reductase I reduced tropinone in vivo. Suppression of tropinone reductase II strongly reduced calystegines in sprouts. Overexpression of putrescine N -methyltransferase did not alter calystegine accumulation. Calystegines are hydroxylated alkaloids formed by the tropane alkaloid pathway. They accumulate in potato (Solanum tuberosum L., Solanaceae) roots and sprouting tubers. Calystegines inhibit various glycosidases in vitro due to their sugar-mimic structure, but functions of calystegines in plants are not understood. Enzymes participating in or competing with calystegine biosynthesis, including putrescine N-methyltransferase (PMT) and tropinone reductases (TRI and TRII), were altered in their activity in potato plants by RNA interference (RNAi) and by overexpression. The genetically altered potato plants were investigated for the accumulation of calystegines and for intermediates of their biosynthesis. An increase in N-methylputrescine provided by DsPMT expression was not sufficient to increase calystegine accumulation. Overexpression and gene knockdown of StTRI proved that S. tuberosum TRI is a functional tropinone reductase in vivo, but no influence on calystegine accumulation was observed. When StTRII expression was suppressed by RNAi, calystegine formation was severely compromised in the transformed plants. Under phytochamber and green house conditions, the StTRII RNAi plants did not show phenotypic alterations. Further investigation of calystegines function in potato plants under natural conditions is enabled by the calystegine deprived StTRII RNAi plants.

  1. Molecular and Biochemical Characterization of a Cold-Regulated Phosphoethanolamine N-Methyltransferase from Wheat1

    PubMed Central

    Charron, Jean-Benoit Frenette; Breton, Ghislain; Danyluk, Jean; Muzac, Ingrid; Ibrahim, Ragai K.; Sarhan, Fathey

    2002-01-01

    A cDNA that encodes a methyltransferase (MT) was cloned from a cold-acclimated wheat (Triticum aestivum) cDNA library. Molecular analysis indicated that the enzyme WPEAMT (wheat phosphoethanolamine [P-EA] MT) is a bipartite protein with two separate sets of S-adenosyl-l-Met-binding domains, one close to the N-terminal end and the second close to the C-terminal end. The recombinant protein was found to catalyze the three sequential methylations of P-EA to form phosphocholine, a key precursor for the synthesis of phosphatidylcholine and glycine betaine in plants. Deletion and mutation analyses of the two S-adenosyl-l-Met-binding domains indicated that the N-terminal domain could perform the three N-methylation steps transforming P-EA to phosphocholine. This is in contrast to the MT from spinach (Spinacia oleracea), suggesting a different functional evolution for the monocot enzyme. The truncated C-terminal and the N-terminal mutated enzyme were only able to methylate phosphomonomethylethanolamine and phosphodimethylethanolamine, but not P-EA. This may suggest that the C-terminal part is involved in regulating the rate and the equilibrium of the three methylation steps. Northern and western analyses demonstrated that both Wpeamt transcript and the corresponding protein are up-regulated during cold acclimation. This accumulation was associated with an increase in enzyme activity, suggesting that the higher activity is due to de novo protein synthesis. The role of this enzyme during cold acclimation and the development of freezing tolerance are discussed. PMID:12011366

  2. Insulin-like peptides and DNA/tRNA methyltransferases are involved in the nutritional regulation of female reproduction in Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Li, Wenru; Li, Yue; Zhang, Zhichao; Zhou, Qiang

    2018-01-10

    Insulin-like peptides (ILPs) sense and transduce nutritional information and are linked to female reproduction in many insect species. Our previous studies have shown that "Target of rapamycin" (TOR) pathway functions through juvenile hormone (JH) to regulate amino acids-mediated vitellogenesis in the brown planthopper, Nilaparvata lugens, one of the most destructive rice pests in Asia. Recent reports have demonstrated that DNA methyltransferases (Dnmts) are also involved in female reproduction of N. lugens. However, the roles of ILPs and Dnmts in the nutritional regulation of female reproduction have not been fully elucidated. ILPs and Dnmts are highly expressed in the adult females after a supplement of amino acids, indicating nutrition-stimulated expression patterns of these genes. RNA interference-mediated depletion of NlILP2 or NlILP4 dramatically decreased the expression levels of NlDnmt1 and NlDnmt2 (tRNA methyltransferase), and resulted in severely impaired ovary growth as well as the substantial reduction of fecundity. Notably, NlILP2 or NlILP4 knockdown led to reduced mRNA accumulation of S6 kinase (S6K), a downstream target of the nutritional TOR pathway, and decreased vitellogenin content in the fat body. Silencing NlDnmt1 or NlDnmt2 effectively suppressed ovary development and decreased female fecundity. However, NlDnmt1 or NlDnmt2 knockdown did not influence the expression of NlILP2 and NlILP4. We infer that amino acids act on ILPs and Dnmts to regulate vitellogenesis and oocyte maturation in N. lugens. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Beta-adrenergic control of phosphatidylcholine synthesis by transmethylation in hepatocytes from juvenile, adult and adrenalectomized rats.

    PubMed Central

    Marin-Cao, D; Alvarez Chiva, V; Mato, J M

    1983-01-01

    Changes in isoprenaline-sensitive phospholipid methyltransferase were studied in hepatocytes isolated from juvenile, mature and adrenalectomized rats. Isoprenaline produced greater stimulation of cyclic AMP accumulation in juvenile and mature adrenalectomized rats than in mature animals. Similarly, isoprenaline stimulated phospholipid methyltransferase in juvenile and mature adrenalectomized rats but had no effect in mature animals. Isoprenaline-mediated activation of phospholipid methyltransferase in adrenalectomized rats was time- and dose-dependent. In hepatocytes isolated from adrenalectomized rats incubated with [Me-3H]methionine or [3H]-ethanolamine the addition of isoprenaline increased the amount of radioactivity incorporated into phosphatidylcholine. The activation by isoprenaline of phospholipid methyltransferase was abolished by the beta-blocker propranolol and by insulin. These results indicate that rat liver the occupation of functional beta-receptors causes a stimulation of phospholipid methylation. It is suggested that, as reported previously, cyclic AMP activates phospholipid methyltransferase. PMID:6320796

  4. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    PubMed

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer. 2009 Elsevier GmbH. All rights reserved.

  5. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.

    PubMed

    Thanh Mai Pham, Le; Kim, Yong Hwan

    2016-01-01

    Using bioinformatic homology search tools, this study utilized sequence phylogeny, gene organization and conserved motifs to identify members of the family of O-methyltransferases from lignin-degrading fungus Phanerochaete chrysosporium. The heterologous expression and characterization of O-methyltransferases from P. chrysosporium were studied. The expressed protein utilized S-(5'-adenosyl)-L-methionine p-toluenesulfonate salt (SAM) and methylated various free-hydroxyl phenolic compounds at both meta and para site. In the same motif, O-methyltransferases were also identified in other white-rot fungi including Bjerkandera adusta, Ceriporiopsis (Gelatoporia) subvermispora B, and Trametes versicolor. As free-hydroxyl phenolic compounds have been known as inhibitors for lignin peroxidase, the presence of O-methyltransferases in white-rot fungi suggested their biological functions in accelerating lignin degradation in white-rot basidiomycetes by converting those inhibitory groups into non-toxic methylated phenolic ones. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shuhei; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574; Sawatsubashi, Shun

    2008-07-11

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressedmore » EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly.« less

  7. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin

    PubMed Central

    Chahine, Sarah; Okafor, Darius; Ong, Ana C.; Maybank, Rosslyn; Kwak, Yoon I.; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2015-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. PMID:26537447

  8. The conformational changes of Zika virus methyltransferase upon converting SAM to SAH.

    PubMed

    Zhou, Han; Wang, Fenghua; Wang, Haofeng; Chen, Cheng; Zhang, Tianqing; Han, Xu; Wang, Deping; Chen, Chen; Wu, Chen; Xie, Wei; Wang, Zefang; Zhang, Lei; Wang, Lanfeng; Yang, Haitao

    2017-02-28

    An outbreak of Zika virus (ZIKV) infection has been reported in South and Central America and the Caribbean. Neonatal microcephaly potentially associated with ZIKV infection has already caused a public health emergency of international concern. Currently, there are no clinically effective vaccines or antiviral drugs available to treat ZIKV infection. The methyltransferase domain (MTase) of ZIKV nonstructural protein 5 (NS5) can sequentially methylate guanine N-7 and ribose 2'-O to form m7NGpppA2'Om cap structure in the new RNA transcripts. This methylation step is crucial for ZIKV replication cycle and evading the host immune system, making it a target for drug design. Here, we present the 1.76 Å crystal structure of ZIKV MTase in complex with the byproduct SAH, providing insight into the elegant methylation process, which will benefit the following antiviral drug development.

  9. New class of radioenzymatic assay for the quantification of p-tyramine and phenylethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, D.P.; Van Huysse, J.W.; Bowsher, R.R.

    Radioenzymatic assays are widely used for the quantification of a number of biogenic amines. All previous procedures have utilized methyltransferases derived from mammalian tissues. In this assay for the quantification of the trace aralkylamines, p-tyramine (p-tym) and phenylethylamine (PEA), an enzyme, tyramine N-methyltransferase isolated from sprouted barley roots was used. The enzyme was specific for phenylethylamines. Of 26 structurally-related compounds, only p-tym, PEA, m-tym and amphetamine were substrates in vitro. Theoretic maximal methylation of substrates occurred at 10-20/sup 0/C. When TLC was used to separate the radiolabeled reaction products, a specific method was developed for p-tym and PEA. The assaymore » had a sensitivity of 0.8 and 2.8 pg/tube with a C.V. < 5% and was applicable to human plasma and urine. Assay throughput is similar to that of other TLC based radioenzymatic assays.« less

  10. Maturation of nitrogenase cofactor—the role of a class E radical SAM methyltransferase NifB

    PubMed Central

    Hu, Yilin; Ribbe, Markus W.

    2016-01-01

    Nitrogenase catalyzes the important reactions of N2-, CO- and CO2-reduction at its active cofactor site. Designated the M-cluster, this complex metallocofactor is assembled through the generation of a characteristic 8Fe-core prior to the insertion of Mo and homocitrate that completes the stoichiometry of the M-cluster. NifB catalyzes the critical step of radical SAM-dependent carbide insertion that occurs concomitant with the insertion a “9th” sulfur and the rearrangement/coupling of two 4Fe-clusters into a complete 8Fe-core of the M-cluster. Further categorization of a family of NifB proteins as a new class of radical SAM methyltransferases suggests a general function of these proteins in complex metallocofactor assembly and provides a new platform for unveiling unprecedented chemical reactions catalyzed by biological systems. PMID:26969410

  11. The β3 -adrenoceptor agonist mirabegron increases human atrial force through β1 -adrenoceptors: an indirect mechanism?

    PubMed

    Mo, Weilan; Michel, Martin C; Lee, Xiang Wen; Kaumann, Alberto J; Molenaar, Peter

    2017-08-01

    Mirabegron has been classified as a β 3 -adrenoceptor agonist approved for overactive bladder syndrome. We investigated possible cardiac effects of mirabegron in the absence or presence of β-adrenoceptor subtype antagonists. In view of its phenylethanolamine structure, we investigated whether mirabegron has indirect sympathomimetic activity by using neuronal uptake blockers. Right atrial trabeculae, from non-failing hearts, were paced and contractile force measured at 37°C. Single concentrations of mirabegron were added in the absence or presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), β 3 (L-748,337), β 1 (CGP 20712A), β 2 (ICI 118,551) -adrenoceptor antagonists, neuronal uptake inhibitors desipramine or phenoxybenzamine. Mirabegron significantly increased contractile force in human right atrium (1 μM, 7.6 ± 2.6%, n = 7; 10 μM, 10.2 ± 1.5%, n = 22 compared with (-)-isoprenaline P < 0.05). In the presence of IBMX, mirabegron (10 μM) caused a greater contraction. L-748,337 (100 nM) had no effect on the increase in contractile force caused by mirabegron (10 μM). In contrast, mirabegron (10 μM) reduced contractile force in the presence of CGP 20712A, which was not affected by L-748,337 (100 nM) or ICI 118,551 (50 nM). Mirabegron (10 μM) also reduced contractile force in the presence of desipramine or phenoxybenzamine. Mirabegron increases human atrial force through β 1 - but not β 3 -adrenoceptors. Desipramine and phenoxybenzamine block neuronal uptake and conceivably prevent mirabegron from releasing noradrenaline. A non-specific cardiodepressant effect is not mediated through β 3 (or β 2 )-adrenoceptors, consistent with lack of β 3 -adrenoceptor function on human atrial contractility. © 2017 The British Pharmacological Society.

  12. Metabolic characterization of Hyoscyamus niger root-specific putrescine N-methyltransferase.

    PubMed

    Geng, Chen; Zhao, Tengfei; Yang, Chunxian; Zhang, Qiaozhuo; Bai, Feng; Zeng, Junlan; Zhang, Fangyuan; Liu, Xiaoqiang; Lan, Xiaozhong; Chen, Min; Liao, Zhihua

    2018-03-02

    N-methylputrescine is the precursor of nicotine and pharmaceutical tropane alkaloids such as hyoscyamine. Putrescine N-methyltransferase (PMT) catalyzes the N-methylation of putrescine to form N-methylputrescine. While the role of PMT in nicotine biosynthesis is clear, knowledge of PMT in the biosynthesis of tropane alkaloids (TAs) and the regulation of polyamines remains limited. We characterized a PMT gene from Hyoscyamus niger, designated HnPMT that was specifically expressed in roots, especially in the secondary roots and dramatically induced by methyl jasmonate (MeJA). The GUS gene was specifically expressed in Arabidopsis roots or in the vascular tissues, including pericycles and endodermis, of the H. niger hairy root cultures, when it was driven by the 5'-flanking promoter region of HnPMT. The recombinant HnPMT was purified for enzymatic assays. HnPMT converted putrescine to form N-methylputrescine, as confirmed by LC-MS. The kinetics analysis revealed that HnPMT had high affinity with putrescine but low catalytic activity, suggesting that it was a rate-limiting enzyme. When HnPMT was suppressed in the H. niger plants by using the VIGS approach, the contents of N-methylputrescine and hyoscyamine were markedly decreased, but the contents of putrescine, spermidine and a mixture of spermine and thermospermine were significantly increased; this suggested that HnPMT was involved in the biosynthesis of tropane alkaloids and played a competent role in regulating the biosynthesis of polyamines. Functional identification of HnPMT facilitated the understanding of TA biosynthesis and thus implied that the HnPMT-catalyzed step might be a target for metabolic engineering of the TA production in H. niger. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility

    PubMed Central

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-01-01

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome. PMID:26365244

  14. Functional and Structural Characterization of a Cation-dependent O-Methyltransferase from the Cyanobacterium Synechocystis sp. Strain PCC 6803*S⃞

    PubMed Central

    Kopycki, Jakub Grzegorz; Stubbs, Milton T.; Brandt, Wolfgang; Hagemann, Martin; Porzel, Andrea; Schmidt, Jürgen; Schliemann, Willibald; Zenk, Meinhart H.; Vogt, Thomas

    2008-01-01

    The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed. PMID:18502765

  15. Transcriptional changes in epigenetic modifiers associated with gene silencing in the intestine of the sea cucumber, Apostichopus japonicus (Selenka), during aestivation

    NASA Astrophysics Data System (ADS)

    Wang, Tianming; Yang, Hongsheng; Zhao, Huan; Chen, Muyan; Wang, Bing

    2011-11-01

    The sea cucumber, Apostichopus japonicus, undergoes aestivation to improve survival during periods of high-temperature. During aestivation, the metabolic rate is depressed to reduce the consumption of reserved energy. We evaluated the role of epigenetic modification on global gene silencing during metabolic rate depression in the sea cucumber. We compared the expression of epigenetic modifiers in active and aestivating sea cucumbers. The expression of three genes involved in DNA methylation and chromatin remodeling (DNA (cytosine-5)-methyltransferase 1, Methyl-CpG-binding domain protein 2), and Chromodomain-helicase-DNA-binding protein 5) was significantly higher during aestivation (Days 20 and 40). Similarly, we observed an increase in the expression of genes involved in histone acetylation (Histone deacetylase 3) and Histone-binding protein RBBP4) during the early (Days 5 and 10) and late phases (Days 20 and 40) of aestivation. There was no change in the expression of KAT2B, a histone acetyltransferase. However, the expression of histone methylation associated modifiers (Histone-arginine methyltransferase CARMER and Histone-lysine N-methyltransferase MLL5) was significantly higher after 5 d in the aestivating group. The results suggest that the expression of epigenetic modifiers involved in DNA methylation, chromatin remodeling, histone acetylation, and histone methylation is upregulated during aestivation. We hypothesize that these changes regulate global gene silencing during aestivation in A. japonicus.

  16. Molecular Dynamics Simulation Reveals Correlated Inter-Lobe Motion in Protein Lysine Methyltransferase SMYD2.

    PubMed

    Spellmon, Nicholas; Sun, Xiaonan; Sirinupong, Nualpun; Edwards, Brian; Li, Chunying; Yang, Zhe

    2015-01-01

    SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open-closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity.

  17. Physiological Study on Association between Nicotinamide N-Methyltransferase Gene Polymorphisms and Hyperlipidemia

    PubMed Central

    Zhu, Xiao-Juan; Lin, Ya-Jun; Chen, Wei; Wang, Ya-Hui; Qiu, Li-Qiang; Cai, Can-Xin; Xiong, Qun; Chen, Fei; Chen, Li-Hui; Zhou, Qiong

    2016-01-01

    Nicotinamide N-methyltransferase (NNMT) catalyzes the methylation of nicotinamide. Our previous works indicate that NNMT is involved in the body mass index and energy metabolism, and recently the association between a SNP (rs694539) of NNMT and a variety of cardiovascular diseases was reported. At present, more than 200 NNMT single nucleotide polymorphisms (SNPs) have been identified in the databases of the human genome projects; however, the association between rs694539 variation and hyperlipidemia has not been reported yet, and whether there are any SNPs in NNMT significantly associated with hyperlipidemia is still unclear. In this paper, we selected 19 SNPs in NNMT as the tagSNPs using Haploview software (Haploview 4.2) first and then performed a case-control study to observe the association between these tagSNPs and hyperlipidemia and finally applied physiological approaches to explore the possible mechanisms through which the NNMT polymorphism induces hyperlipidemia. The results show that a SNP (rs1941404) in NNMT is significantly associated with hyperlipidemia, and the influence of rs1941404 variation on the resting energy expenditure may be the possible mechanism for rs1941404 variation to induce hyperlipidemia. PMID:27999813

  18. Fenofibrate, but not ezetimibe, prevents fatty liver disease in mice lacking phosphatidylethanolamine N-methyltransferase.

    PubMed

    van der Veen, Jelske N; Lingrell, Susanne; Gao, Xia; Takawale, Abhijit; Kassiri, Zamaneh; Vance, Dennis E; Jacobs, René L

    2017-04-01

    Mice lacking phosphatidylethanolamine N -methyltransferase (PEMT) are protected from high-fat diet (HFD)-induced obesity and insulin resistance. However, these mice develop severe nonalcoholic fatty liver disease (NAFLD) when fed the HFD, which is mainly due to inadequate secretion of VLDL particles. Our aim was to prevent NAFLD development in mice lacking PEMT. We treated Pemt -/- mice with either ezetimibe or fenofibrate to see if either could ameliorate liver disease in these mice. Ezetimibe treatment did not reduce fat accumulation in Pemt -/- livers, nor did it reduce markers for hepatic inflammation or fibrosis. Fenofibrate, conversely, completely prevented the development of NAFLD in Pemt -/- mice: hepatic lipid levels, as well as markers of endoplasmic reticulum stress, inflammation, and fibrosis, in fenofibrate-treated Pemt -/- mice were similar to those in Pemt +/+ mice. Importantly, Pemt -/- mice were still protected against HFD-induced obesity and insulin resistance. Moreover, fenofibrate partially reversed hepatic steatosis and fibrosis in Pemt -/- mice when treatment was initiated after NAFLD had already been established. Increasing hepatic fatty acid oxidation can compensate for the lower VLDL-triacylglycerol secretion rate and prevent/reverse fatty liver disease in mice lacking PEMT. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Influence of iodinated contrast media on the activities of histamine inactivating enzymes diamine oxidase and histamine N-methyltransferase in vitro.

    PubMed

    Kuefner, M A; Feurle, J; Petersen, J; Uder, M; Schwelberger, H G

    2014-01-01

    Iodinated contrast media can cause pseudoallergic reactions associated with histamine release in significant numbers of patients. To clarify whether these adverse reactions may be aggravated by a compromised histamine catabolism we asked if radiographic contrast agents in vitro inhibit the histamine inactivating enzymes diamine oxidase (DAO) and histamine N-methyltransferase (HMT). Nine iodinated contrast agents were tested in vitro. Following pre-incubation of purified porcine kidney DAO and recombinant human HMT with 0.1-10mM of the respective contrast medium (H2O and specific inhibitors of DAO and HMT as controls) enzyme activities were determined by using radiometric micro assays. None of the contrast media irrespective of their structure showed significant inhibition of the activities of DAO and HMT. Pre-incubation of the enzymes with specific inhibitors led to complete inhibition of the respective enzymatic activity. The iodinated contrast media tested in vitro did not exhibit inhibition of histamine converting enzymes at physiologically relevant concentrations. However due to the in vitro character of this study these results do not directly reflect the in vivo situation. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  20. N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection.

    PubMed

    Gokhale, Nandan S; McIntyre, Alexa B R; McFadden, Michael J; Roder, Allison E; Kennedy, Edward M; Gandara, Jorge A; Hopcraft, Sharon E; Quicke, Kendra M; Vazquez, Christine; Willer, Jason; Ilkayeva, Olga R; Law, Brittany A; Holley, Christopher L; Garcia-Blanco, Mariano A; Evans, Matthew J; Suthar, Mehul S; Bradrick, Shelton S; Mason, Christopher E; Horner, Stacy M

    2016-11-09

    The RNA modification N6-methyladenosine (m 6 A) post-transcriptionally regulates RNA function. The cellular machinery that controls m 6 A includes methyltransferases and demethylases that add or remove this modification, as well as m 6 A-binding YTHDF proteins that promote the translation or degradation of m 6 A-modified mRNA. We demonstrate that m 6 A modulates infection by hepatitis C virus (HCV). Depletion of m 6 A methyltransferases or an m 6 A demethylase, respectively, increases or decreases infectious HCV particle production. During HCV infection, YTHDF proteins relocalize to lipid droplets, sites of viral assembly, and their depletion increases infectious viral particles. We further mapped m 6 A sites across the HCV genome and determined that inactivating m 6 A in one viral genomic region increases viral titer without affecting RNA replication. Additional mapping of m 6 A on the RNA genomes of other Flaviviridae, including dengue, Zika, yellow fever, and West Nile virus, identifies conserved regions modified by m 6 A. Altogether, this work identifies m 6 A as a conserved regulatory mark across Flaviviridae genomes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability

    PubMed Central

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J. M.; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D. James; Carter, Melissa T.; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B.

    2015-01-01

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. PMID:26206890

  2. Detailed Exploration around 4-Aminoquinolines Chemical Space to Navigate the Lysine Methyltransferase G9a and DNA Methyltransferase Biological Spaces.

    PubMed

    Rabal, Obdulia; Sánchez-Arias, Juan A; San José-Eneriz, Edurne; Agirre, Xabier; De Miguel, Irene; Garate, Leire; Miranda, Estibaliz; Sáez, Elena; Roa, Sergio; Martinez-Climent, Jose Angel; Liu, Yingying; Wu, Wei; Xu, Musheng; Prosper, Felipe; Oyarzabal, Julen

    2018-06-11

    Epigenetic regulators that exhibit aberrant enzymatic activities or expression profiles are potential therapeutic targets for cancers. Specifically, enzymes responsible for methylation at histone-3 lysine-9 (like G9a) and aberrant DNA hypermethylation (DNMTs) have been implicated in a number of cancers. Recently, molecules bearing a 4-aminoquinoline scaffold were reported as dual inhibitors of these targets and showed a significant in-vivo efficacy in animal models of hematological malignancies. Here, we report a detailed exploration around three growing vectors born by this chemotype. Exploring this chemical space led to the identification of features to navigate G9a and DNMT1 biological spaces; not only their corresponding exclusive areas, selective compounds, but also common spaces. Thus, we identified from selective G9a and first-in-class DNMT1 inhibitors, > 1 log unit between their IC50 values, with IC50 < 25nM (e.g. 43 and 26, respectively) to equipotent inhibitors with IC50 < 50nM for both targets (e.g. 13). Their ADME/Tox profiling and antiproliferative efficacies, versus some cancer cell lines, are also reported.

  3. Fenofibrate, but not ezetimibe, prevents fatty liver disease in mice lacking phosphatidylethanolamine N-methyltransferase[S

    PubMed Central

    van der Veen, Jelske N.; Lingrell, Susanne; Gao, Xia; Takawale, Abhijit; Kassiri, Zamaneh; Vance, Dennis E.; Jacobs, René L.

    2017-01-01

    Mice lacking phosphatidylethanolamine N-methyltransferase (PEMT) are protected from high-fat diet (HFD)-induced obesity and insulin resistance. However, these mice develop severe nonalcoholic fatty liver disease (NAFLD) when fed the HFD, which is mainly due to inadequate secretion of VLDL particles. Our aim was to prevent NAFLD development in mice lacking PEMT. We treated Pemt−/− mice with either ezetimibe or fenofibrate to see if either could ameliorate liver disease in these mice. Ezetimibe treatment did not reduce fat accumulation in Pemt−/− livers, nor did it reduce markers for hepatic inflammation or fibrosis. Fenofibrate, conversely, completely prevented the development of NAFLD in Pemt−/− mice: hepatic lipid levels, as well as markers of endoplasmic reticulum stress, inflammation, and fibrosis, in fenofibrate-treated Pemt−/− mice were similar to those in Pemt+/+ mice. Importantly, Pemt−/− mice were still protected against HFD-induced obesity and insulin resistance. Moreover, fenofibrate partially reversed hepatic steatosis and fibrosis in Pemt−/− mice when treatment was initiated after NAFLD had already been established. Increasing hepatic fatty acid oxidation can compensate for the lower VLDL-triacylglycerol secretion rate and prevent/reverse fatty liver disease in mice lacking PEMT. PMID:28159867

  4. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin.

    PubMed

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2016-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity

    PubMed Central

    Jacques-Fricke, Bridget T.; Gammill, Laura S.

    2014-01-01

    Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the dynamic process of neural crest migration is unclear. Here we show that the lysine methyltransferase NSD3 is abundantly and specifically expressed in premigratory and migratory neural crest cells. NSD3 expression commences before up-regulation of neural crest genes, and NSD3 is necessary for expression of the neural plate border gene Msx1, as well as the key neural crest transcription factors Sox10, Snail2, Sox9, and FoxD3, but not gene expression generally. Nevertheless, only Sox10 histone H3 lysine 36 dimethylation requires NSD3, revealing unexpected complexity in NSD3-dependent neural crest gene regulation. In addition, by temporally limiting expression of a dominant negative to migratory stages, we identify a novel, direct requirement for NSD3-related methyltransferase activity in neural crest migration. These results identify NSD3 as the first protein methyltransferase essential for neural crest gene expression during specification and show that NSD3-related methyltransferase activity independently regulates migration. PMID:25318671

  6. Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions.

    PubMed

    Li, Xi; Sun, Qinwei; Li, Xian; Cai, Demin; Sui, Shiyan; Jia, Yimin; Song, Haogang; Zhao, Ruqian

    2015-10-01

    The adequate supply of methyl donors is critical for the normal development of brain. The purpose of the present study was to investigate the effects of maternal betaine supplementation on hippocampal gene expression in neonatal piglets and to explore the possible mechanisms. Gestational sows were fed control or betaine-supplemented (3 g/kg) diets throughout the pregnancy. Immediately after birth, male piglets were killed, and the hippocampus was dissected for analyses. The mRNA abundance was determined by reverse transcription real-time polymerase chain reaction. Protein content was measured by Western blot, and DNA methylation was detected by methylated DNA immunoprecipitation assay. Prenatal betaine supplementation did not alter the body weight or the hippocampus weight, but increased the hippocampal DNA content as well as the mRNA expression of proliferation-related genes. Prenatal betaine supplementation increased serum level of methionine (P < 0.05) and up-regulated (P < 0.05) the mRNA and protein expression of betaine-homocysteine methyltransferase, glycine N-methyltransferase and DNA methyltransferase 1 in the neonatal hippocampus. Hippocampal expression of insulin growth factor II (IGF2) and its receptors IGF1R and IGF2R were all significantly up-regulated (P < 0.05) in betaine-treated group, together with a significant activation (P < 0.01) of the downstream extracellular signal-regulated kinase 1/2. Moreover, the differentially methylated region (DMR) 1 and 2 on IGF2 locus was found to be hypermethylated (P < 0.05) in the hippocampus of betaine-treated piglets. These results indicate that maternal betaine supplementation enhances betaine/methionine metabolism and DNA methyltransferase expression, causes hypermethylation of DMR on IGF2 gene, which was associated with augmented expression of IGF2 and cell proliferation/anti-apoptotic markers in the hippocampus of neonatal piglets.

  7. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre

    2007-04-01

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{submore » 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.« less

  8. A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs.

    PubMed

    Baerson, Scott R; Dayan, Franck E; Rimando, Agnes M; Nanayakkara, N P Dhammika; Liu, Chang-Jun; Schröder, Joachim; Fishbein, Mark; Pan, Zhiqiang; Kagan, Isabelle A; Pratt, Lee H; Cordonnier-Pratt, Marie-Michèle; Duke, Stephen O

    2008-02-08

    Sorghum is considered to be one of the more allelopathic crop species, producing phytotoxins such as the potent benzoquinone sorgoleone (2-hydroxy-5-methoxy-3-[(Z,Z)-8',11',14'-pentadecatriene]-p-benzoquinone) and its analogs. Sorgoleone likely accounts for much of the allelopathy of Sorghum spp., typically representing the predominant constituent of Sorghum bicolor root exudates. Previous and ongoing studies suggest that the biosynthetic pathway for this plant growth inhibitor occurs in root hair cells, involving a polyketide synthase activity that utilizes an atypical 16:3 fatty acyl-CoA starter unit, resulting in the formation of a pentadecatrienyl resorcinol intermediate. Subsequent modifications of this resorcinolic intermediate are likely to be mediated by S-adenosylmethionine-dependent O-methyltransferases and dihydroxylation by cytochrome P450 monooxygenases, although the precise sequence of reactions has not been determined previously. Analyses performed by gas chromatography-mass spectrometry with sorghum root extracts identified a 3-methyl ether derivative of the likely pentadecatrienyl resorcinol intermediate, indicating that dihydroxylation of the resorcinol ring is preceded by O-methylation at the 3'-position by a novel 5-n-alk(en)ylresorcinol-utilizing O-methyltransferase activity. An expressed sequence tag data set consisting of 5,468 sequences selected at random from an S. bicolor root hair-specific cDNA library was generated to identify candidate sequences potentially encoding enzymes involved in the sorgoleone biosynthetic pathway. Quantitative real time reverse transcription-PCR and recombinant enzyme studies with putative O-methyltransferase sequences obtained from the expressed sequence tag data set have led to the identification of a novel O-methyltransferase highly and predominantly expressed in root hairs (designated SbOMT3), which preferentially utilizes alk(en)ylresorcinols among a panel of benzene-derivative substrates tested. SbOMT3 is therefore proposed to be involved in the biosynthesis of the allelochemical sorgoleone.

  9. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8

    PubMed Central

    Linscott, Joshua A.; Kapilashrami, Kanishk; Wang, Zhen; Senevirathne, Chamara; Bothwell, Ian R.; Blum, Gil; Luo, Minkui

    2016-01-01

    Protein lysine methyltransferases (PKMTs) catalyze the methylation of protein substrates, and their dysregulation has been linked to many diseases, including cancer. Accumulated evidence suggests that the reaction path of PKMT-catalyzed methylation consists of the formation of a cofactor(cosubstrate)–PKMT–substrate complex, lysine deprotonation through dynamic water channels, and a nucleophilic substitution (SN2) transition state for transmethylation. However, the molecular characters of the proposed process remain to be elucidated experimentally. Here we developed a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method and corresponding mathematic matrix to determine precisely the ratios of isotopically methylated peptides. This approach may be generally applicable for examining the kinetic isotope effects (KIEs) of posttranslational modifying enzymes. Protein lysine methyltransferase SET8 is the sole PKMT to monomethylate histone 4 lysine 20 (H4K20) and its function has been implicated in normal cell cycle progression and cancer metastasis. We therefore implemented the MS-based method to measure KIEs and binding isotope effects (BIEs) of the cofactor S-adenosyl-l-methionine (SAM) for SET8-catalyzed H4K20 monomethylation. A primary intrinsic 13C KIE of 1.04, an inverse intrinsic α-secondary CD3 KIE of 0.90, and a small but statistically significant inverse CD3 BIE of 0.96, in combination with computational modeling, revealed that SET8-catalyzed methylation proceeds through an early, asymmetrical SN2 transition state with the C-N and C-S distances of 2.35–2.40 Å and 2.00–2.05 Å, respectively. This transition state is further supported by the KIEs, BIEs, and steady-state kinetics with the SAM analog Se-adenosyl-l-selenomethionine (SeAM) as a cofactor surrogate. The distinct transition states between protein methyltransferases present the opportunity to design selective transition-state analog inhibitors. PMID:27940912

  10. DNA Damage Induced Neuronal Death

    DTIC Science & Technology

    1999-10-01

    heterozygous for the DNA repair genes Os-methylguanine methyltransferase (Mgmt), 3-methyladenine DNA glycosylase (Aag) , and xeroderma pigmentosum ...mice by human 06-alkylguanine-DNA alkyltransferase. Science 1993; 259: 219-222. 4. Enokido Y, Inamura N, Araki T, et al: Loss of the xeroderma ... pigmentosum group A gene (XPA) enhances apoptosis of cultured cerebellar neurons induced by UV but not by low-K+ medium. J Neurochem 199; 69: 246-251. 5

  11. Plasmodium falciparum PfSET7: enzymatic characterization and cellular localization of a novel protein methyltransferase in sporozoite, liver and erythrocytic stage parasites

    PubMed Central

    Chen, Patty B.; Ding, Shuai; Zanghì, Gigliola; Soulard, Valérie; DiMaggio, Peter A.; Fuchter, Matthew J.; Mecheri, Salah; Mazier, Dominique; Scherf, Artur; Malmquist, Nicholas A.

    2016-01-01

    Epigenetic control via reversible histone methylation regulates transcriptional activation throughout the malaria parasite genome, controls the repression of multi-copy virulence gene families and determines sexual stage commitment. Plasmodium falciparum encodes ten predicted SET domain-containing protein methyltransferases, six of which have been shown to be refractory to knock-out in blood stage parasites. We have expressed and purified the first recombinant malaria methyltransferase in sufficient quantities to perform a full enzymatic characterization and reveal the ill-defined PfSET7 is an AdoMet-dependent histone H3 lysine methyltransferase with highest activity towards lysines 4 and 9. Steady-state kinetics of the PfSET7 enzyme are similar to previously characterized histone methyltransferase enzymes from other organisms, however, PfSET7 displays specific protein substrate preference towards nucleosomes with pre-existing histone H3 lysine 14 acetylation. Interestingly, PfSET7 localizes to distinct cytoplasmic foci adjacent to the nucleus in erythrocytic and liver stage parasites, and throughout the cytoplasm in salivary gland sporozoites. Characterized recombinant PfSET7 now allows for target based inhibitor discovery. Specific PfSET7 inhibitors can aid in further investigating the biological role of this specific methyltransferase in transmission, hepatic and blood stage parasites, and may ultimately lead to the development of suitable antimalarial drug candidates against this novel class of essential parasite enzymes. PMID:26902486

  12. DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site.

    PubMed

    van Bemmel, Dana M; Brank, Adam S; Eritja, Ramon; Marquez, Victor E; Christman, Judith K

    2009-09-15

    Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferases and oligodeoxyribonucleotides (ODNs) containing either 5-azacytosine or 2-(1H)-pyrimidinone in place of the cytosine targeted for methylation. When incorporated into small ODNs, the rate of C5 DNA methyltransferase inhibition by both nucleosides is essentially identical. However, the stability and reversibility of the enzyme complex in the absence and presence of cofactor differs. 5-Azacytosine ODNs form complexes with C5 DNA methyltransferases that are irreversible when the 5-azacytosine ring is intact. ODNs containing 2-(1H)-pyrimidinone at the enzymatic target site are competitive inhibitors of both prokaryotic and mammalian DNA C5 methyltransferases. We determined that the ternary complexes between the enzymes, 2-(1H)-pyrimidinone inhibitor, and the cofactor S-adenosyl methionine are maintained through the formation of a reversible covalent interaction. The differing stability and reversibility of the covalent bonds may partially account for the observed differences in cytotoxicity between zebularine and 5-azacytidine inhibitors.

  13. DNA (Cytosine-C5) Methyltransferase Inhibition by Oligodeoxyribonucleotides Containing 2-(1H)-Pyrimidinone (Zebularine Aglycon) at the Enzymatic Target Site

    PubMed Central

    van Bemmel, Dana M.; Brank, Adam S.; Eritja, Ramon; Marquez, Victor E.; Christman, Judith K.

    2009-01-01

    Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferases and oligodeoxyribonucleotides (ODNs) containing either 5-azacytosine or 2-(1H)-pyrimidinone in place of the cytosine targeted for methylation. When incorporated into small ODNs, the rate of C5 DNA methyltransferase inhibition by both nucleosides is essentially identical. However, the stability and reversibility of the enzyme complex in the absence and presence of cofactor differs. 5-Azacytosine ODNs form complexes with C5 DNA methyltransferases that are irreversible when the 5-azacytosine ring is intact. ODNs containing 2-(1H)-pyrimidinone at the enzymatic target site are competitive inhibitors of both prokaryotic and mammalian DNA C5 methyltransferases. We determined that the ternary complexes between the enzymes, 2-(1H)-pyrimidinone inhibitor, and the cofactor S-adenosyl methionine are maintained through the formation of a reversible covalent interaction. The differing stability and reversibility of the covalent bonds may partially account for the observed differences in cytotoxicity between zebularine and 5-azacytidine inhibitors. PMID:19467223

  14. Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases.

    PubMed

    Horowitz, Scott; Dirk, Lynnette M A; Yesselman, Joseph D; Nimtz, Jennifer S; Adhikari, Upendra; Mehl, Ryan A; Scheiner, Steve; Houtz, Robert L; Al-Hashimi, Hashim M; Trievel, Raymond C

    2013-10-16

    S-adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon-oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.

  15. The genome-wide identification and transcriptional levels of DNA methyltransferases and demethylases in globe artichoke.

    PubMed

    Gianoglio, Silvia; Moglia, Andrea; Acquadro, Alberto; Comino, Cinzia; Portis, Ezio

    2017-01-01

    Changes to the cytosine methylation status of DNA, driven by the activity of C5 methyltransferases (C5-MTases) and demethylases, exert an important influence over development, transposon movement, gene expression and imprinting. Three groups of C5-MTase enzymes have been identified in plants, namely MET (methyltransferase 1), CMT (chromomethyltransferases) and DRM (domains rearranged methyltransferases). Here the repertoire of genes encoding C5-MTase and demethylase by the globe artichoke (Cynara cardunculus var. scolymus) is described, based on sequence homology, a phylogenetic analysis and a characterization of their functional domains. A total of ten genes encoding C5-MTase (one MET, five CMTs and four DRMs) and five demethylases was identified. An analysis of their predicted product's protein structure suggested an extensive level of conservation has been retained by the C5-MTases. Transcriptional profiling based on quantitative real time PCR revealed a number of differences between the genes encoding maintenance and de novo methyltransferases, sometimes in a tissue- or development-dependent manner, which implied a degree of functional specialization.

  16. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility.

    PubMed

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-10-15

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmA(II) enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmA(II), rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmA(II) in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmA(II) activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmA(II), thereby facilitating TEL binding to the ribosome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The Identification and Structure of an N-Terminal PR Domain Show that FOG1 Is a Member of the PRDM Family of Proteins

    PubMed Central

    Clifton, Molly K.; Westman, Belinda J.; Thong, Sock Yue; O’Connell, Mitchell R.; Webster, Michael W.; Shepherd, Nicholas E.; Quinlan, Kate G.; Crossley, Merlin; Blobel, Gerd A.; Mackay, Joel P.

    2014-01-01

    FOG1 is a transcriptional regulator that acts in concert with the hematopoietic master regulator GATA1 to coordinate the differentiation of platelets and erythrocytes. Despite considerable effort, however, the mechanisms through which FOG1 regulates gene expression are only partially understood. Here we report the discovery of a previously unrecognized domain in FOG1: a PR (PRD-BF1 and RIZ) domain that is distantly related in sequence to the SET domains that are found in many histone methyltransferases. We have used NMR spectroscopy to determine the solution structure of this domain, revealing that the domain shares close structural similarity with SET domains. Titration with S-adenosyl-L-homocysteine, the cofactor product synonymous with SET domain methyltransferase activity, indicated that the FOG PR domain is not, however, likely to function as a methyltransferase in the same fashion. We also sought to define the function of this domain using both pulldown experiments and gel shift assays. However, neither pulldowns from mammalian nuclear extracts nor yeast two-hybrid assays reproducibly revealed binding partners, and we were unable to detect nucleic-acid-binding activity in this domain using our high-diversity Pentaprobe oligonucleotides. Overall, our data demonstrate that FOG1 is a member of the PRDM (PR domain containing proteins, with zinc fingers) family of transcriptional regulators. The function of many PR domains, however, remains somewhat enigmatic for the time being. PMID:25162672

  18. Crystal Structure of the Escherichia coli 23S rRNA: m{5}C Methyltransferase RlmI (YccW) Reveals Evolutionary Links Between RNA Modification Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunita, S.; Tkaczuk, K; Purta, E

    2008-01-01

    Methylation is the most common RNA modification in the three domains of life. Transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to specific atoms of RNA nucleotides is catalyzed by methyltransferase (MTase) enzymes. The rRNA MTase RlmI (rRNA large subunit methyltransferase gene I; previously known as YccW) specifically modifies Escherichia coli 23S rRNA at nucleotide C1962 to form 5-methylcytosine. Here, we report the crystal structure of RlmI refined at 2 {angstrom} to a final R-factor of 0.194 (R{sub free} = 0.242). The RlmI molecule comprises three domains: the N-terminal PUA domain; the central domain, which resembles a domain previously foundmore » in RNA:5-methyluridine MTases; and the C-terminal catalytic domain, which contains the AdoMet-binding site. The central and C-terminal domains are linked by a {Beta}-hairpin structure that has previously been observed in several MTases acting on nucleic acids or proteins. Based on bioinformatics analyses, we propose a model for the RlmI-AdoMet-RNA complex. Comparative structural analyses of RlmI and its homologs provide insight into the potential function of several structures that have been solved by structural genomics groups and furthermore indicate that the evolutionary paths of RNA and DNA 5-methyluridine and 5-methylcytosine MTases have been closely intertwined.« less

  19. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d

    PubMed Central

    Knuckles, Philip; Lence, Tina; Haussmann, Irmgard U.; Jacob, Dominik; Kreim, Nastasja; Carl, Sarah H.; Masiello, Irene; Hares, Tina; Villaseñor, Rodrigo; Hess, Daniel; Andrade-Navarro, Miguel A.; Biggiogera, Marco; Helm, Mark; Soller, Matthias; Bühler, Marc; Roignant, Jean-Yves

    2018-01-01

    N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m6A methyltransferase complex components in Drosophila and mice. Like other components of this complex, Flacc controls m6A levels and is involved in sex determination in Drosophila. We demonstrate that Flacc promotes m6A deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the m6A machinery. PMID:29535189

  20. Monomethylioarsenicals are substratres for human arsenic (+3 oxidation state) methyltransferase

    EPA Science Inventory

    Monomethylthioarsenicals are substrates for human arsenic (+3 oxida1tion state) methyltransferase Methylated thioarsenicals are structural analogs of methylated oxyarsenic in which one or more oxygen atom bound t...

  1. Monolignol 4-O-methyltransferases and uses thereof

    DOEpatents

    Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei

    2014-11-18

    Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.

  2. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Lee, Kyungjin; Lee, Hye-Jung; Back, Kyoungwhan

    2014-11-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis. We cloned SNAT from Arabidopsis thaliana (AtSNAT) and functionally characterized this enzyme for the first time from dicotyledonous plants. Similar to rice SNAT, AtSNAT was found to localize to chloroplasts with peak enzyme activity at 45 °C (Km , 309 μm; Vmax , 1400 pmol/min/mg protein). AtSNAT also catalyzed 5-methoxytryptamine (5-MT) into melatonin with high catalytic activity (Km , 51 μm; Vmax , 5300 pmol/min/mg protein). In contrast, Arabidopsis caffeic acid O-methyltransferase (AtCOMT) localized to the cytoplasm. Interestingly, AtCOMT can methylate serotonin into 5-MT with low catalytic activity (Km , 3.396 mm; Vmax , 528 pmol/min/mg protein). These data suggest that serotonin can be converted into either N-acetylserotonin by SNAT or into 5-MT by COMT, after which it is metabolized into melatonin by COMT or SNAT, respectively. To support this hypothesis, serotonin was incubated in the presence of both AtSNAT and AtCOMT enzymes. In addition to melatonin production, the production of major intermediates depended on incubation temperatures; N-acetylserotonin was predominantly produced at high temperatures (45 °C), while low temperatures (37 °C) favored the production of 5-MT. Our results provide biochemical evidence for the presence of a serotonin O-methylation pathway in plant melatonin biosynthesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene corresponds with desirability of “unhealthy” foods

    PubMed Central

    Wallace, Deanna L.; Aarts, Esther; Uquillas, Federico d’Oleire; Dang, Linh C.; Greer, Stephanie M.; Jagust, William J.; D’Esposito, Mark

    2015-01-01

    The role of dopamine is extensively documented in weight regulation and food intake in both animal models and humans. Yet the role of dopamine has not been well studied in individual differences for food desirability. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene has been shown to influence dopamine levels, with greater COMT enzymatic activity in val/val individuals corresponding to greater degradation of dopamine. Decreased dopamine has been associated with poorer cognitive control and diminished goal-directed behavior in various behavioral paradigms. Additionally, dopaminergic-rich regions such as the frontal cortex and dorsal striatum have been shown to be important for supporting food-related decision-making. However, the role of dopamine, as assessed by COMT genotype status, in food desirability has not been fully explored. Therefore, we utilized an individual’s COMT genotype status (n=61) and investigated food desirability based on self-rated “healthy” and “unhealthy” food perceptions. Here we found val/val individuals (n=19) have greater desirability for self-rated “unhealthy” food items, but not self-rated “healthy” food items, as compared to val/met (n=24) and met/met (n=18) individuals (p<0.005). Utilizing an objective health measure for the food items, we also found val/val and val/met individuals have greater desirability for objectively defined “unhealthy” food items, as compared to met/met individuals (p<0.01). This work further substantiates a role of dopamine in food-related behaviors and more specifically in relationship to food desirability for “unhealthy” food items. PMID:25963102

  4. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice.

    PubMed

    Yan, Jian; Ginsberg, Stephen D; Powers, Brian; Alldred, Melissa J; Saltzman, Arthur; Strupp, Barbara J; Caudill, Marie A

    2014-10-01

    Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain. © FASEB.

  5. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine.

    PubMed

    Paasela, Tanja; Lim, Kean-Jin; Pietiäinen, Milla; Teeri, Teemu H

    2017-06-01

    Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L.

    PubMed

    Tabuchi, Tomoki; Kawaguchi, Yusuke; Azuma, Tetsushi; Nanmori, Takashi; Yasuda, Takeshi

    2005-03-01

    Glycinebetaine (betaine) highly accumulates as a compatible solute in certain plants and has been considered to play a role in the protection from salt stress. The betaine biosynthesis pathway of betaine-accumulating plants involves choline monooxygenase (CMO) as the key enzyme and phosphoethanolamine N-methyltransferase (PEAMT), which require S-adenosyl-L-methionine (SAM) as a methyl donor. SAM is synthesized by SAM synthetase (SAMS), and is needed not only for betaine synthesis but also for the synthesis of other compounds, especially lignin. We cloned CMO, PEAMT and SAMS isogenes from a halophyte Atriplex nummularia L. (Chenopodiaceous). The transcript and protein levels of CMO were much higher in leaves and stems than in roots, suggesting that betaine is synthesized mainly in the shoot. The regulation patterns of transcripts for SAMS and PEAMT highly resembled that of CMO in the leaves during and after relief from salt stress, and on a diurnal rhythm. In the leaves, the betaine content was increased but the lignin content was not changed by salt stress. These results suggest that the transcript levels of SAMS are co-regulated with those of PEAMT and CMO to supply SAM for betaine synthesis in the leaves.

  7. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability.

    PubMed

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J M; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D James; Carter, Melissa T; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B

    2015-10-15

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Reaction mechanism of guanidinoacetate methyltransferase, concerted or step-wise.

    PubMed

    Zhang, Xiaodong; Bruice, Thomas C

    2006-10-31

    We describe a quantum mechanics/molecular mechanics investigation of the guanidinoacetate methyltransferase catalyzed reaction, which shows that proton transfer from guanidinoacetate (GAA) to Asp-134 and methyl transfer from S-adenosyl-L-methionine (AdoMet) to GAA are concerted. By self-consistent-charge density functional tight binding/molecular mechanics, the bond lengths in the concerted mechanism's transition state are 1.26 A for both the OD1 (Asp-134)-H(E) (GAA) and H(E) (GAA)-N(E) (GAA) bonds, and 2.47 and 2.03 A for the S8 (AdoMet)-C9 (AdoMet) and C9 (AdoMet)-N(E) (GAA) bonds, respectively. The potential-energy barrier (DeltaE++) determined by single-point B3LYP/6-31+G*//MM is 18.9 kcal/mol. The contributions of the entropy (-TDeltaS++) and zero-point energy corrections Delta(ZPE)++ by normal mode analysis are 2.3 kcal/mol and -1.7 kcal/mol, respectively. Thus, the activation enthalpy of this concerted mechanism is predicted to be DeltaH++ = DeltaE++ plus Delta(ZPE)++ = 17.2 kcal/mol. The calculated free-energy barrier for the concerted mechanism is DeltaG++ = 19.5 kcal/mol, which is in excellent agreement with the value of 19.0 kcal/mol calculated from the experimental rate constant (3.8 +/- 0.2.min(-1)).

  9. Metadynamics Simulation Study on the Conformational Transformation of HhaI Methyltransferase: An Induced-Fit Base-Flipping Hypothesis

    PubMed Central

    Ye, Fei; Zhao, Dan; Chen, Shijie; Jiang, Ren-Wang; Jiang, Hualiang; Luo, Cheng

    2014-01-01

    DNA methyltransferases play crucial roles in establishing and maintenance of DNA methylation, which is an important epigenetic mark. Flipping the target cytosine out of the DNA helical stack and into the active site of protein provides DNA methyltransferases with an opportunity to access and modify the genetic information hidden in DNA. To investigate the conversion process of base flipping in the HhaI methyltransferase (M.HhaI), we performed different molecular simulation approaches on M.HhaI-DNA-S-adenosylhomocysteine ternary complex. The results demonstrate that the nonspecific binding of DNA to M.HhaI is initially induced by electrostatic interactions. Differences in chemical environment between the major and minor grooves determine the orientation of DNA. Gln237 at the target recognition loop recognizes the GCGC base pair from the major groove side by hydrogen bonds. In addition, catalytic loop motion is a key factor during this process. Our study indicates that base flipping is likely to be an “induced-fit” process. This study provides a solid foundation for future studies on the discovery and development of mechanism-based DNA methyltransferases regulators. PMID:25045662

  10. Chemical Probes of Histone Lysine Methyltransferases

    PubMed Central

    2015-01-01

    Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077

  11. Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity.

    PubMed

    Bate-Eya, Laurel T; Gierman, Hinco J; Ebus, Marli E; Koster, Jan; Caron, Huib N; Versteeg, Rogier; Dolman, M Emmy M; Molenaar, Jan J

    2017-04-01

    Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yuan; Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3; Wu, Keqiang

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants.more » We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.« less

  13. Structural characterization of the mitomycin 7-O-methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Shanteri; Chang, Aram; Goff, Randal D.

    2014-10-02

    Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylationmore » to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.« less

  14. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins.

    PubMed

    Gonsalvez, Graydon B; Tian, Liping; Ospina, Jason K; Boisvert, François-Michel; Lamond, Angus I; Matera, A Gregory

    2007-08-27

    Small nuclear ribonucleoproteins (snRNPs) are core components of the spliceosome. The U1, U2, U4, and U5 snRNPs each contain a common set of seven Sm proteins. Three of these Sm proteins are posttranslationally modified to contain symmetric dimethylarginine (sDMA) residues within their C-terminal tails. However, the precise function of this modification in the snRNP biogenesis pathway is unclear. Several lines of evidence suggest that the methyltransferase protein arginine methyltransferase 5 (PRMT5) is responsible for sDMA modification of Sm proteins. We found that in human cells, PRMT5 and a newly discovered type II methyltransferase, PRMT7, are each required for Sm protein sDMA modification. Furthermore, we show that the two enzymes function nonredundantly in Sm protein methylation. Lastly, we provide in vivo evidence demonstrating that Sm protein sDMA modification is required for snRNP biogenesis in human cells.

  15. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins

    PubMed Central

    Gonsalvez, Graydon B.; Tian, Liping; Ospina, Jason K.; Boisvert, François-Michel; Lamond, Angus I.; Matera, A. Gregory

    2007-01-01

    Small nuclear ribonucleoproteins (snRNPs) are core components of the spliceosome. The U1, U2, U4, and U5 snRNPs each contain a common set of seven Sm proteins. Three of these Sm proteins are posttranslationally modified to contain symmetric dimethylarginine (sDMA) residues within their C-terminal tails. However, the precise function of this modification in the snRNP biogenesis pathway is unclear. Several lines of evidence suggest that the methyltransferase protein arginine methyltransferase 5 (PRMT5) is responsible for sDMA modification of Sm proteins. We found that in human cells, PRMT5 and a newly discovered type II methyltransferase, PRMT7, are each required for Sm protein sDMA modification. Furthermore, we show that the two enzymes function nonredundantly in Sm protein methylation. Lastly, we provide in vivo evidence demonstrating that Sm protein sDMA modification is required for snRNP biogenesis in human cells. PMID:17709427

  16. Causes and Consequences of Flavivirus RNA Methylation.

    PubMed

    Bradrick, Shelton S

    2017-01-01

    Mosquito-borne flaviviruses are important human pathogens that represent global threats to human health. The genomes of these positive-strand RNA viruses have been shown to be substrates of both viral and cellular methyltransferases. N 7 -methylation of the 5' cap structure is essential for infection whereas 2'- O -methylation of the penultimate nucleotide is required for evasion of host innate immunity. N 6 -methylation of internal adenosine nucleotides has also been shown to impact flavivirus infection. Here, I summarize recent progress made in understanding roles for methylation in the flavivirus life-cycle and discuss relevant emerging hypotheses.

  17. The pharmacokinetic effect of discontinuation of mesalazine on mercaptopurine metabolite levels in inflammatory bowel disease patients.

    PubMed

    Gilissen, L P L; Bierau, J; Derijks, L J J; Bos, L P; Hooymans, P M; van Gennip, A; Stockbrügger, R W; Engels, L G J B

    2005-10-01

    In vitro studies suggest interactions between mesalazine (mesalamine) and thiopurines by thiopurine S-methyltransferase (TPMT) inhibition, influencing the balance of hepatotoxic 6-methylmercaptopurine ribonucleotide and immunosuppressive tioguanine (thioguanine) metabolites. To examine the in vivo pharmacokinetic interaction between mesalazine and mercaptopurine. A prospective study was performed in quiescent inflammatory bowel disease patients using the combination of mercaptopurine and mesalazine. Laboratory parameters, 6-methylmercaptopurine ribonucleotide and tioguanine levels and thiopurine S-methyltransferase activity in erythrocytes were measured at stable medication, after mesalazine discontinuation and mesalazine reintroduction, further mercaptopurine was continued. Seventeen patients were participated. Mean mercaptopurine dose was 0.78 mg/kg/day and median of mesalazine dose was 3000 mg/day. After mesalazine discontinuation, mean tioguanine levels changed significantly from 262 to 209 pmol/8 x 10(8) red blood cell, increasing to 270 after reintroduction. Mean 6-methylmercaptopurine ribonucleotide levels were 1422, 2149 and 1503 pmol/8 x 10(8) red blood cell respectively. Mean 6-methylmercaptopurine ribonucleotide/tioguanine ratio increased significantly from 6.3 at baseline to 11.2. Mean baseline thiopurine S-methyltransferase activity was 0.58 pmol/10(6) red blood cell/h and stable. All patients had wild-type thiopurine S-methyltransferase genotypes however, leucocyte counts were stable. A significantly higher tioguanine levels and improving 6-methylmercaptopurine ribonucleotide/tioguanine ratio were found during mesalazine/mercaptopurine combination. Theoretically, mesalazine inhibits thiopurine S-methyltransferase activity. In vivo thiopurine S-methyltransferase activity did not change, however. Mesalazine has synergistic effects on mercaptopurine therapy, but the mechanism is unclear. Combining these drugs may be further indication for mesalazine in inflammatory bowel disease treatment.

  18. New enzymes from environmental cassette arrays: Functional attributes of a phosphotransferase and an RNA-methyltransferase

    PubMed Central

    Nield, Blair S.; Willows, Robert D.; Torda, Andrew E.; Gillings, Michael R.; Holmes, Andrew J.; Nevalainen, K.M. Helena; Stokes, H.W.; Mabbutt, Bridget C.

    2004-01-01

    By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7″) from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%–28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg2+-binding residues. Unlike related APH(4) or APH(7″) enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins. PMID:15152095

  19. New enzymes from environmental cassette arrays: functional attributes of a phosphotransferase and an RNA-methyltransferase.

    PubMed

    Nield, Blair S; Willows, Robert D; Torda, Andrew E; Gillings, Michael R; Holmes, Andrew J; Nevalainen, K M Helena; Stokes, H W; Mabbutt, Bridget C

    2004-06-01

    By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7") from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%-28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg(2+)-binding residues. Unlike related APH(4) or APH(7") enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins.

  20. The Ether-Cleaving Methyltransferase System of the Strict Anaerobe Acetobacterium dehalogenans: Analysis and Expression of the Encoding Genes▿

    PubMed Central

    Schilhabel, Anke; Studenik, Sandra; Vödisch, Martin; Kreher, Sandra; Schlott, Bernhard; Pierik, Antonio Y.; Diekert, Gabriele

    2009-01-01

    Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases. PMID:19011025

  1. Modification of lignin content and composition in plants

    DOEpatents

    Ye, Zheng-Hua

    2002-01-01

    Plants and methods of preparing plants having reduced lignin content and/or altered lignin composition are provided. The activities of caffeoyl-CoA O-methyltransferase and/or caffeic acid O-methyltransferase enzymes in the modified plants are reduced.

  2. Highly Expressed Genes within Hippocampal Sector CA1: Implications for the Physiology of Memory.

    PubMed

    Meyer, Michael A

    2014-04-22

    As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT). From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated.

  3. Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukrejewska, Malgorzata; Derewenda, Urszula; Radwanska, Malwina

    2017-08-15

    Two nonstructural proteins encoded byZika virusstrain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Å resolution, respectively. The NS5 methyltransferase contains a boundS-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.

  4. Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p.

    PubMed

    Yagoub, Daniel; Hart-Smith, Gene; Moecking, Jonas; Erce, Melissa A; Wilkins, Marc R

    2015-09-01

    The Hmt1 methyltransferase is the predominant arginine methyltransferase in Saccharomyces cerevisiae. There are 18 substrate proteins described for this methyltransferase, however native sites of methylation have only been identified on two of these proteins. Here we used peptide immunoaffinity enrichment, followed by LC-ETD-MS/MS, to discover 21 native sites of arginine methylation on five putative Hmt1 substrate proteins, namely Gar1p (H/ACA ribonucleoprotein complex subunit 1), Nop1p (rRNA 2'-O-methyltransferase fibrillarin), Npl3p (nucleolar protein 3), Nsr1p (nuclear localization sequence-binding protein), and Rps2p (40S ribosomal protein S2). The sites, many of which were found to be mono- or di-methylated, were predominantly found in RGG (Arg-Gly-Gly) motifs. Heavy methyl-SILAC validated the majority of these peptides. The above proteins, and relevant sites of methylation, were subsequently validated by in vitro methylation with recombinant Hmt1. This brings the total of Hmt1 substrate proteins for which native methylation sites have been identified to five. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Site-specific bioalkylation of rapamycin by the RapM 16-O-methyltransferase.

    PubMed

    Law, Brian J C; Struck, Anna-Winona; Bennett, Matthew R; Wilkinson, Barrie; Micklefield, Jason

    2015-05-01

    The methylation of natural products by S -adenosyl methionine (AdoMet, also known as SAM)-dependent methyltransferase enzymes is a common tailoring step in many biosynthetic pathways. The introduction of methyl substituents can affect the biological and physicochemical properties of the secondary metabolites produced. Recently it has become apparent that some AdoMet-dependent methyltransferases exhibit promiscuity and will accept AdoMet analogues enabling the transfer of alternative alkyl groups. In this study we have characterised a methyltransferase, RapM, which is involved in the biosynthesis of the potent immunosuppressive agent rapamycin. We have shown that recombinant RapM regioselectively methylates the C16 hydroxyl group of desmethyl rapamycin precursors in vitro and is promiscuous in accepting alternative co-factors in addition to AdoMet. A coupled enzyme system was developed, including a mutant human enzyme methionine adenosyl transferase (MAT), along with RapM, which was used to prepare alkylated rapamycin derivatives (rapalogs) with alternative ethyl and allyl ether groups, derived from simple S -ethyl or S -allyl methionine analogues. There are two other methyltransferases RapI and RapQ which provide methyl substituents of rapamycin. Consequently, using the enzymatic approach described here, it should be possible to generate a diverse array of alkylated rapalogs, with altered properties, that would be difficult to obtain by traditional synthetic approaches.

  6. Structure and possible mechanism of the CcbJ methyltransferase from Streptomyces caelestis.

    PubMed

    Bauer, Jacob; Ondrovičová, Gabriela; Najmanová, Lucie; Pevala, Vladimír; Kameník, Zdeněk; Koštan, Július; Janata, Jiří; Kutejová, Eva

    2014-04-01

    The S-adenosyl-L-methionine (SAM)-dependent methyltransferase CcbJ from Streptomyces caelestis catalyzes one of the final steps in the biosynthesis of the antibiotic celesticetin, methylation of the N atom of its proline moiety, which greatly enhances the activity of the antibiotic. Since several celesticetin variants exist, this enzyme may be able to act on a variety of substrates. The structures of CcbJ determined by MAD phasing at 3.0 Å resolution, its native form at 2.7 Å resolution and its complex with S-adenosyl-L-homocysteine (SAH) at 2.9 Å resolution are reported here. Based on these structures, three point mutants, Y9F, Y17F and F117G, were prepared in order to study its behaviour as well as docking simulations of both CcbJ-SAM-substrate and CcbJ-SAH-product complexes. The structures show that CcbJ is a class I SAM-dependent methyltransferase with a wide active site, thereby suggesting that it may accommodate a number of different substrates. The mutation results show that the Y9F and F117G mutants are almost non-functional, while the Y17F mutant has almost half of the wild-type activity. In combination with the docking studies, these results suggest that Tyr9 and Phe117 are likely to help to position the substrate for the methyl-transfer reaction and that Tyr9 may also facilitate the reaction by removing an H(+) ion. Tyr17, on the other hand, seems to operate by helping to stabilize the SAM cofactor.

  7. Modification of S-Adenosyl-l-Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Tambunan, Usman Sumo Friend; Nasution, Mochammad Arfin Fardiansyah; Azhima, Fauziah; Parikesit, Arli Aditya; Toepak, Erwin Prasetya; Idrus, Syarifuddin; Kerami, Djati

    2017-01-01

    Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world’s population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S-adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2′OH, resulting in S-adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔGbinding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever. PMID:28469408

  8. Berberine acts as a putative epigenetic modulator by affecting the histone code.

    PubMed

    Wang, Zhixiang; Liu, Yuan; Xue, Yong; Hu, Haiyan; Ye, Jieyu; Li, Xiaodong; Lu, Zhigang; Meng, Fanyi; Liang, Shuang

    2016-10-01

    Berberine, an isoquinoline plant alkaloid, exhibits a wide range of biochemical and pharmacological effects. However, the precise mechanism of these bioactivities remains poorly understood. In this study, we found significant similarity between berberine and two epigenetic modulators (CG-1521 and TSA). Reverse-docking using berberine as a ligand identified lysine-N-methyltransferase as a putative target of berberine. These findings suggested the potential role of berberine in epigenetic modulation. The results of PCR array analysis of epigenetic chromatin modification enzymes supported our hypothesis. Furthermore, the analysis showed that enzymes involved in histone acetylation and methylation were predominantly affected by treatment with berberine. Up-regulation of histone acetyltransferase CREBBP and EP300, histone deacetylase SIRT3, histone demethylase KDM6A as well as histone methyltransferase SETD7, and down-regulation of histone acetyltransferase HDAC8, histone methyltransferase WHSC1I, WHSC1II and SMYD3, in addition to 38 genes from histone clusters 1-3 were observed in berberine-treated cells using real-time PCR. In parallel, western blotting analyses revealed that the expression of H3K4me3, H3K27me3 and H3K36me3 proteins decreased with berberine treatment. These results were further confirmed in acute myelocytic leukemia (AML) cell lines HL-60/ADR and KG1-α. Taken together, this study suggests that berberine might modulate the expression of epigenetic regulators important for many downstream pathways, resulting in the variation of its bioactivities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Phe71 in Type III Trypanosomal Protein Arginine Methyltransferase 7 (TbPRMT7) Restricts the Enzyme to Monomethylation.

    PubMed

    Cáceres, Tamar B; Thakur, Abhishek; Price, Owen M; Ippolito, Nicole; Li, Jun; Qu, Jun; Acevedo, Orlando; Hevel, Joan M

    2018-02-27

    Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation. To test this, we probed the active site of trypanosomal PRMT7 (TbPRMT7) using accelerated molecular dynamics, site-directed mutagenesis, kinetic, binding, and product analyses. Both the dynamics simulations and experimental results show that the mutation of Phe71 to Ile converts the enzyme from a type III methyltransferase into a mixed type I/II, that is, an enzyme that can now perform dimethylation. In contrast, the serine and alanine mutants of Phe71 preserve the type III behavior of the native enzyme. These results are inconsistent with a sterics-only model to explain product specificity. Instead, molecular dynamics simulations of these variants bound to peptides show hydrogen bonding between would-be substrates and Glu172 of TbPRMT7. Only in the case of the Phe71 to Ile mutation is this interaction between MMA and the enzyme maintained, and the geometry for optimal S N 2 methyl transfer is obtained. The results of these studies highlight the benefit of combined computational and experimental methods in providing a better understanding for how product specificity is dictated by PRMTs.

  10. Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression.

    PubMed

    Geng, Pengyu; Zhang, Yu; Liu, Xiaoqing; Zhang, Na; Liu, Yingqi; Liu, Xin; Lin, Cong; Yan, Xu; Li, Zhongwei; Wang, Guannan; Li, Yuxin; Tan, Jiang; Liu, Dong-Xu; Huang, Baiqu; Lu, Jun

    2017-06-01

    Protein arginine methyltransferases (PRMTs) catalyze protein arginine methylation and are linked to carcinogenesis and metastasis. Some members of PRMTs have been found to undergo automethylation; however, the biologic significance of this self-modification is not entirely clear. In this report, we demonstrate that R531 of PRMT7 is self-methylated, both in vitro and in vivo Automethylation of PRMT7 plays a key role in inducing the epithelial-mesenchymal transition (EMT) program and in promoting the migratory and invasive behavior of breast cancer cells. We also prove in a nude mouse model that expression of wild-type PRMT7 in MCF7 breast cancer cells promotes metastasis in vivo , in contrast to the PRMT7 R531K mutant (a mimic of the unmethylated status). Moreover, our immunohistochemical data unravel a close link between PRMT7 automethylation and the clinical outcome of breast carcinomas. Mechanistically, we determine that loss of PRMT7 automethylation leads to the reduction of its recruitment to the E-cadherin promoter by YY1, which consequently derepresses the E-cadherin expression through decreasing the H4R3me2s level. The findings in this work define a novel post-translational modification of PRMT7 that has a promoting impact on breast cancer metastasis.-Geng, P., Zhang, Y., Liu, X., Zhang, N., Liu, Y., Liu, X., Lin, C., Yan, X., Li, Z., Wang, G., Li, Y., Tan, J., Liu, D.-X., Huang, B., Lu, J. Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. © FASEB.

  11. Human Protein Arginine Methyltransferase 7 (PRMT7) Is a Type III Enzyme Forming ω-NG-Monomethylated Arginine Residues*

    PubMed Central

    Zurita-Lopez, Cecilia I.; Sandberg, Troy; Kelly, Ryan; Clarke, Steven G.

    2012-01-01

    Full-length human protein arginine methyltransferase 7 (PRMT7) expressed as a fusion protein in Escherichia coli was initially found to generate only ω-NG-monomethylated arginine residues in small peptides, suggesting that it is a type III enzyme. A later study, however, characterized fusion proteins of PRMT7 expressed in bacterial and mammalian cells as a type II/type I enzyme, capable of producing symmetrically dimethylated arginine (type II activity) as well as small amounts of asymmetric dimethylarginine (type I activity). We have sought to clarify the enzymatic activity of human PRMT7. We analyzed the in vitro methylation products of a glutathione S-transferase (GST)-PRMT7 fusion protein with robust activity using a variety of arginine-containing synthetic peptides and protein substrates, including a GST fusion with the N-terminal domain of fibrillarin (GST-GAR), myelin basic protein, and recombinant human histones H2A, H2B, H3, and H4. Regardless of the methylation reaction conditions (incubation time, reaction volume, and substrate concentration), we found that PRMT7 only produces ω-NG-monomethylarginine with these substrates. In control experiments, we showed that mammalian GST-PRMT1 and Myc-PRMT5 were, unlike PRMT7, able to dimethylate both peptide P-SmD3 and SmB/D3 to give the expected asymmetric and symmetric products, respectively. These experiments show that PRMT7 is indeed a type III human methyltransferase capable of forming only ω-NG-monomethylarginine, not asymmetric ω-NG,NG-dimethylarginine or symmetric ω-NG,NG′-dimethylarginine, under the conditions tested. PMID:22241471

  12. DNA Alkylating Agent Protects Against Spontaneous Hepatocellular Carcinoma Regardless of O6-Methylguanine-DNA Methyltransferase Status.

    PubMed

    Herzig, Maryanne C S; Zavadil, Jessica A; Street, Karah; Hildreth, Kim; Drinkwater, Norman R; Reddick, Traci; Herbert, Damon C; Hanes, Martha A; McMahan, C Alex; Reddick, Robert L; Walter, Christi A

    2016-03-01

    Hepatocellular carcinoma is increasingly important in the United States as the incidence rate rose over the last 30 years. C3HeB/FeJ mice serve as a unique model to study hepatocellular carcinoma tumorigenesis because they mimic human hepatocellular carcinoma with delayed onset, male gender bias, approximately 50% incidence, and susceptibility to tumorigenesis is mediated through multiple genetic loci. Because a human O(6)-methylguanine-DNA methyltransferase (hMGMT) transgene reduces spontaneous tumorigenesis in this model, we hypothesized that hMGMT would also protect from methylation-induced hepatocarcinogenesis. To test this hypothesis, wild-type and hMGMT transgenic C3HeB/FeJ male mice were treated with two monofunctional alkylating agents: diethylnitrosamine (DEN; 0.025 μmol/g body weight) on day 12 of life with evaluation for glucose-6-phosphatase-deficient (G6PD) foci at 16, 24, and 32 weeks or N-methyl-N-nitrosurea (MNU; 25 mg MNU/kg body weight) once monthly for 7 months starting at 3 months of age with evaluation for liver tumors at 12 to 15 months of age. No difference in abundance or size of G6PD foci was measured with DEN treatment. In contrast, it was unexpectedly found that MNU reduces liver tumor prevalence in wild-type and hMGMT transgenic mice despite increased tumor prevalence in other tissues. hMGMT and MNU protections were additive, suggesting that MNU protects through a different mechanism, perhaps through the cytotoxic N7-alkylguanine and N3-alkyladenine lesions which have low mutagenic potential compared with O(6)-alkylguanine lesions. Together, these results suggest that targeting the repair of cytotoxic lesions may be a good preventative for patients at high risk of developing hepatocellular carcinoma. ©2015 American Association for Cancer Research.

  13. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  14. A Sensitive Luminescent Assay for the Histone Methyltransferase NSD1 and Other SAM-Dependent Enzymes

    PubMed Central

    Drake, Katherine M.; Watson, Venita G.; Kisielewski, Anne; Glynn, Rebecca

    2014-01-01

    Abstract A major focus of our pediatric cancer research is the discovery of chemical probes to further our understanding of the biology of leukemia harboring fusion proteins arising from chromosomal rearrangements, and to develop novel specifically targeted therapies. The NUP98-NSD1 fusion protein occurs in a highly aggressive subtype of acute myeloid leukemia after rearrangement of the genes NUP98 and NSD1. The methyltransferase activity of NSD1 is retained in the fusion, and it gives rise to abnormally high levels of methylation at lysine 36 on histone 3, enforcing oncogene activation. Therefore, inhibition of the methyltransferase activity of NUP98-NSD1 may be considered a viable therapeutic strategy. Here, we report the development and validation of a highly sensitive and robust luminescence-based assay for NSD1 and other methyltransferases that use S-adenosylmethionine (SAM) as a methyl donor. The assay quantifies S-adenosylhomocysteine (SAH), which is produced during methyl transfer from SAM. SAH is converted enzymatically to adenosine monophosphate (AMP); in the process, adenosine triphosphate (ATP) is consumed and the amount of ATP remaining is measured using a luminescent assay kit. The assay was validated by pilot high-throughput screening (HTS), dose-response confirmation of hits, and elimination of artifacts through counterscreening against SAH detection in the absence of NSD1. The known methyltransferase inhibitor suramin was identified, and profiled for selectivity against the histone methyltransferases EZH2, SETD7, and PRMT1. HTS using the luminescent NSD1 assay described here has the potential to deliver selective NSD1 inhibitors that may serve as leads in the development of targeted therapies for NUP98-NSD1-driven leukemias. PMID:24927133

  15. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase

    DOE PAGES

    Ticak, Tomislav; Kountz, D. J.; Girosky, K. E.; ...

    2014-10-13

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptorsmore » such as nitrate or fumarate, producing dimethylglycine and CO 2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. Additionally, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. Lastly, they are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health.« less

  16. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    PubMed

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.

  17. MicroRNA-29a Alleviates Bile Duct Ligation Exacerbation of Hepatic Fibrosis in Mice through Epigenetic Control of Methyltransferases.

    PubMed

    Yang, Ya-Ling; Wang, Feng-Sheng; Li, Sung-Chou; Tiao, Mao-Meng; Huang, Ying-Hsien

    2017-01-18

    MicroRNA-29 (miR-29) is found to modulate hepatic stellate cells' (HSCs) activation and, thereby, reduces liver fibrosis pathogenesis. Histone methyltransferase regulation of epigenetic reactions reportedly participates in hepatic fibrosis. This study is undertaken to investigate the miR-29a regulation of the methyltransferase signaling and epigenetic program in hepatic fibrosis progression. miR-29a transgenic mice (miR-29aTg mice) and wild-type littermates were subjected to bile duct-ligation (BDL) to develop cholestatic liver fibrosis. Primary HSCs were transfected with a miR-29a mimic and antisense inhibitor. Profibrogenic gene expression, histone methyltransferases and global genetic methylation were probed with real-time quantitative RT-PCR, immunohistochemical stain, Western blot and ELISA. Hepatic tissue in miR-29aTg mice displayed weak fibrotic matrix as evidenced by Sirius Red staining concomitant with low fibrotic matrix collagen 1α1 expression within affected tissues compared to the wild-type mice. miR-29a overexpression reduced the BDL exaggeration of methyltransferases, DNMT1, DNMT3b and SET domain containing 1A (SET1A) expression. It also elevated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling within liver tissue. In vitro, miR-29a mimic transfection lowered collagen 1α1, DNMT1, DNMT3b and SET1A expression in HSCs. Gain of miR-29a signaling resulted in DNA hypomethylation and high PTEN expression. This study shines a new light on miR-29a inhibition of methyltransferase, a protective effect to maintain the DNA hypomethylation state that decreases fibrogenic activities in HSC. These robust analyses also highlight the miR-29a regulation of epigenetic actions to ameliorate excessive fibrosis during cholestatic liver fibrosis development.

  18. Persistent Catechol-O-methyltransferase-dependent Pain Is Initiated by Peripheral β-Adrenergic Receptors.

    PubMed

    Ciszek, Brittney P; O'Buckley, Sandra C; Nackley, Andrea G

    2016-05-01

    Patients with chronic pain disorders exhibit increased levels of catecholamines alongside diminished activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. The authors found that acute pharmacologic inhibition of COMT in rodents produces hypersensitivity to mechanical and thermal stimuli via β-adrenergic receptor (βAR) activation. The contribution of distinct βAR populations to the development of persistent pain linked to abnormalities in catecholamine signaling requires further investigation. Here, the authors sought to determine the contribution of peripheral, spinal, and supraspinal βARs to persistent COMT-dependent pain. They implanted osmotic pumps to deliver the COMT inhibitor OR486 (Tocris, USA) for 2 weeks. Behavioral responses to mechanical and thermal stimuli were evaluated before and every other day after pump implantation. The site of action was evaluated in adrenalectomized rats receiving sustained OR486 or in intact rats receiving sustained βAR antagonists peripherally, spinally, or supraspinally alongside OR486. The authors found that male (N = 6) and female (N = 6) rats receiving sustained OR486 exhibited decreased paw withdrawal thresholds (control 5.74 ± 0.24 vs. OR486 1.54 ± 0.08, mean ± SEM) and increased paw withdrawal frequency to mechanical stimuli (control 4.80 ± 0.22 vs. OR486 8.10 ± 0.13) and decreased paw withdrawal latency to thermal heat (control 9.69 ± 0.23 vs. OR486 5.91 ± 0.11). In contrast, adrenalectomized rats (N = 12) failed to develop OR486-induced hypersensitivity. Furthermore, peripheral (N = 9), but not spinal (N = 4) or supraspinal (N = 4), administration of the nonselective βAR antagonist propranolol, the β2AR antagonist ICI-118,511, or the β3AR antagonist SR59230A blocked the development of OR486-induced hypersensitivity. Peripheral adrenergic input is necessary for the development of persistent COMT-dependent pain, and peripherally-acting βAR antagonists may benefit chronic pain patients.

  19. Putrescine N-Methyltransferase in Cultured Roots of Hyoscyamus albus1

    PubMed Central

    Hibi, Naruhiro; Fujita, Toshihiro; Hatano, Mika; Hashimoto, Takashi; Yamada, Yasuyuki

    1992-01-01

    Biosynthesis of tropane alkaloids is thought to proceed by way of the diamine putrescine, followed by its methylation by putrescine N-methyltransferase (PMT; EC 2.1.1.53). High PMT activities were found in branch roots and/or cultured roots of several solanaceous plants. PMT was partially purified and characterized from cultured roots of Hyoscyamus albus that contain hyoscyamine as the main alkaloid. Initial velocity studies and product inhibition patterns of PMT are consistent with an ordered bi-bi mechanism, in which the Km values for putrescine and S-adenosyl-l-methionine are 277 and 203 μm, respectively, and the Ki value for S-adenosyl-l-homocysteine is 110 μm. PMT efficiently N-methylated amines that have at least two amino groups separated by three or four methylene groups. Monoamines were good competitive inhibitors of PMT, among which n-butylamine, cyclohexylamine, and exo-2-aminonorbornane were most inhibitory, with respective Ki values of 11.0, 9.1, and 10.0 μm. When n-butylamine was fed to root cultures of H. albus, the alkamine intermediates (tropinone, tropine, and pseudotropine) drastically decreased at 1 mm of the exogenous monoamine, and the hyoscyamine content decreased by 52% at 6 mm, whereas the contents of 6β-hydroxyhyoscyamine and scopolamine did not change. Free and conjugated forms of polyamines were also measured. The n-butylamine treatment caused a large increase in the putrescine content (especially in the conjugated pool), and the spermine content also increased slightly, whereas the spermidine content decreased slightly. The increase in the putrescine pool size (approximately 40 nmol/mg dry weight) was large enough to account for the decrease in the total alkaloid pool size. Similar results were also obtained in root cultures of Datura stramonium. These studies further support the role of PMT as the first committed enzyme specific to alkaloid biosynthesis. Images Figure 8 PMID:16653064

  20. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  1. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  2. Discovery of reversible DNA methyltransferase and lysine methyltransferase G9a inhibitors with antitumoral in vivo efficacy.

    PubMed

    Rabal, Obdulia; San José-Eneriz, Edurne; Agirre, Xabier; Sánchez-Arias, Juan A; Vilas-Zornoza, Amaia; Ugarte, Ana; De Miguel, Irene; Miranda, Estibaliz; Garate, Leire; Fraga, Mario; Santamarina, Pablo; Fernandez Perez, Raul; Ordoñez, Raquel; Sáez, Elena; Roa, Sergio; Garcia-Barchino, Maria Jose; Martinez-Climent, Jose Angel; Liu, Yingying; Wu, Wei; Xu, Musheng; Prosper, Felipe; Oyarzabal, Julen

    2018-06-28

    Using knowledge- and structure-based approaches, we designed and synthesized reversible chemical probes that simultaneously inhibit the activity of two epigenetic targets, histone 3 lysine 9 methyltransferase (G9a) and DNA methyltransferases (DNMT), at nanomolar ranges. Enzymatic competition assays confirmed our design strategy: substrate competitive inhibitors. Next, an initial exploration around our hit 11 was pursued to identify an adequate tool compound for in vivo testing. In vitro treatment of different hematological neoplasia cell lines led to the identification of molecules with clear anti-proliferative efficacies (GI50 values in the nanomolar range). Based on epigenetic functional cellular responses (levels of lysine 9 methylation and 5-methylcytosine), an acceptable therapeutic window (around 1 log unit) and a suitable pharmacokinetic profile, 12 was selected for in vivo proof-of-concept (ref 53). Herein, 12 achieved a significant in vivo efficacy: 70% overall tumor growth inhibition of a human AML (Acute Myeloid Leukemia) xenograft in a mouse model.

  3. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.

    2010-07-23

    Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerstermore » resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.« less

  4. Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein.

    PubMed

    Liger, Dominique; Mora, Liliana; Lazar, Noureddine; Figaro, Sabine; Henri, Julien; Scrima, Nathalie; Buckingham, Richard H; van Tilbeurgh, Herman; Heurgué-Hamard, Valérie; Graille, Marc

    2011-08-01

    Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.

  5. Mechanism of activation of methyltransferases involved in translation by the Trm112 ‘hub’ protein

    PubMed Central

    Liger, Dominique; Mora, Liliana; Lazar, Noureddine; Figaro, Sabine; Henri, Julien; Scrima, Nathalie; Buckingham, Richard H.; van Tilbeurgh, Herman; Heurgué-Hamard, Valérie; Graille, Marc

    2011-01-01

    Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases. PMID:21478168

  6. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase.

    PubMed

    Li, Huaijun Michael; Rotter, David; Hartman, Thomas G; Pak, Fulya E; Havkin-Frenkel, Daphna; Belanger, Faith C

    2006-06-01

    The biosynthesis of many plant secondary compounds involves the methylation of one or more hydroxyl groups, catalyzed by O-methyltransferases (OMTs). Here, we report the characterization of two OMTs, Van OMT-2 and Van OMT-3, from the orchid Vanilla planifolia Andrews. These enzymes catalyze the methylation of a single outer hydroxyl group in substrates possessing a 1,2,3-trihydroxybenzene moiety, such as methyl gallate and myricetin. This is a substrate requirement not previously reported for any OMTs. Based on sequence analysis these enzymes are most similar to caffeic acid O-methyltransferases (COMTs), but they have negligible activity with typical COMT substrates. Seven of 12 conserved substrate-binding residues in COMTs are altered in Van OMT-2 and Van OMT-3. Phylogenetic analysis of the sequences suggests that Van OMT-2 and Van OMT-3 evolved from the V. planifolia COMT. These V. planifolia OMTs are new instances of COMT-like enzymes with novel substrate preferences.

  7. Effects of nicotinamide N-methyltransferase on PANC-1 cells proliferation, metastatic potential and survival under metabolic stress.

    PubMed

    Yu, Tao; Wang, Yong-Tao; Chen, Pan; Li, Yu-Hua; Chen, Yi-Xin; Zeng, Hang; Yu, Ai-Ming; Huang, Min; Bi, Hui-Chang

    2015-01-01

    Aberrant expression of Nicotinamide N-methyltransferase (NNMT) has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress. © 2015 S. Karger AG, Basel.

  8. Species differences in metabolism of EPZ015666, an oxetane-containing protein arginine methyltransferase-5 (PRMT5) inhibitor.

    PubMed

    Rioux, Nathalie; Duncan, Kenneth W; Lantz, Ronald J; Miao, Xiusheng; Chan-Penebre, Elayne; Moyer, Mikel P; Munchhof, Michael J; Copeland, Robert A; Chesworth, Richard; Waters, Nigel J

    2016-01-01

    1. Metabolite profiling and identification studies were conducted to understand the cross-species differences in the metabolic clearance of EPZ015666, a first-in-class protein arginine methyltransferase-5 (PRMT5) inhibitor, with anti-proliferative effects in preclinical models of Mantle Cell Lymphoma. EPZ015666 exhibited low clearance in human, mouse and rat liver microsomes, in part by introduction of a 3-substituted oxetane ring on the molecule. In contrast, a higher clearance was observed in dog liver microsomes (DLM) that translated to a higher in vivo clearance in dog compared with rodent. 2. Structure elucidation via high resolution, accurate mass LC-MS(n) revealed that the prominent metabolites of EPZ015666 were present in hepatocytes from all species, with the highest turnover rate in dogs. M1 and M2 resulted from oxidative oxetane ring scission, whereas M3 resulted from loss of the oxetane ring via an N-dealkylation reaction. 3. The formation of M1 and M2 in DLM was significantly abrogated in the presence of the specific CYP2D inhibitor, quinidine, and to a lesser extent by the CYP3A inhibitor, ketoconazole, corroborating data from human recombinant isozymes. 4. Our data indicate a marked species difference in the metabolism of the PRMT5 inhibitor EPZ015666, with oxetane ring scission the predominant metabolic pathway in dog mediated largely by CYP2D.

  9. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    PubMed

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  10. Choline Supplementation Promotes Hepatic Insulin Resistance in Phosphatidylethanolamine N-Methyltransferase-deficient Mice via Increased Glucagon Action*

    PubMed Central

    Wu, Gengshu; Zhang, Liyan; Li, Tete; Zuniga, Azeret; Lopaschuk, Gary D.; Li, Liang; Jacobs, René L.; Vance, Dennis E.

    2013-01-01

    Biosynthesis of hepatic choline via phosphatidylethanolamine N-methyltransferase (PEMT) plays an important role in the development of type 2 diabetes and obesity. We investigated the mechanism(s) by which choline modulates insulin sensitivity. PEMT wild-type (Pemt+/+) and knock-out (Pemt−/−) mice received either a high fat diet (HF; 60% kcal of fat) or a high fat, high choline diet (HFHC; 4 g of choline/kg of HF diet) for 1 week. Hepatic insulin signaling and glucose and lipid homeostasis were investigated. Glucose and insulin intolerance occurred in Pemt−/− mice fed the HFHC diet, but not in their Pemt−/− littermates fed the HF diet. Plasma glucagon was elevated in Pemt−/− mice fed the HFHC diet compared with Pemt−/− mice fed the HF diet, concomitant with increased hepatic expression of glucagon receptor, phosphorylated AMP-activated protein kinase (AMPK), and phosphorylated insulin receptor substrate 1 at serine 307 (IRS1-s307). Gluconeogenesis and mitochondrial oxidative stress were markedly enhanced, whereas glucose oxidation and triacylglycerol biosynthesis were diminished in Pemt−/− mice fed the HFHC diet. A glucagon receptor antagonist (2-aminobenzimidazole) attenuated choline-induced hyperglycemia and insulin intolerance and blunted up-regulation of phosphorylated AMPK and IRS1-s307. Choline induces glucose and insulin intolerance in Pemt−/− mice through modulating plasma glucagon and its action in liver. PMID:23179947

  11. Involvement of human histamine N-methyltransferase gene polymorphisms in susceptibility to atopic dermatitis in korean children.

    PubMed

    Lee, Hee Seon; Kim, Seung-Hyun; Kim, Kyung Won; Baek, Ji Young; Park, Hae-Sim; Lee, Kyung Eun; Hong, Jung Yeon; Kim, Mi Na; Heo, Won Il; Sohn, Myung Hyun; Kim, Kyu-Earn

    2012-01-01

    Histamine N-methyltransferase (HNMT) catalyzes one of two major histamine metabolic pathways. Histamine is a mediator of pruritus in atopic dermatitis (AD). The aim of this study was to evaluate the association between HNMT polymorphisms and AD in children. We genotyped 763 Korean children for allelic determinants at four polymorphic sites in the HNMT gene: -465T>C, -413C>T, 314C>T, and 939A>G. Genotyping was performed using a TaqMan fluorogenic 5' nuclease assay. The functional effect of the 939A>G polymorphism was analyzed. Of the 763 children, 520 had eczema and 542 had atopy. Distributions of the genotype and allele frequencies of the HNMT 314C>T polymorphism were significantly associated with non-atopic eczema (P=0.004), and those of HNMT 939A>G were significantly associated with eczema in the atopy groups (P=0.048). Frequency distributions of HNMT -465T>C and -413C>T were not associated with eczema. Subjects who were AA homozygous or AG heterozygous for 939A>G showed significantly higher immunoglobulin E levels than subjects who were GG homozygous (P=0.009). In U937 cells, the variant genotype reporter construct had significantly higher mRNA stability (P<0.001) and HNMT enzyme activity (P<0.001) than the common genotype. Polymorphisms in HNMT appear to confer susceptibility to AD in Korean children.

  12. Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity.

    PubMed

    Jacobs, René L; Zhao, Yang; Koonen, Debby P Y; Sletten, Torunn; Su, Brian; Lingrell, Susanne; Cao, Guoqing; Peake, David A; Kuo, Ming-Shang; Proctor, Spencer D; Kennedy, Brian P; Dyck, Jason R B; Vance, Dennis E

    2010-07-16

    Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.

  13. Inhibition of murine DNA methyltransferase Dnmt3a by DNA duplexes containing pyrimidine-2(1H)-one.

    PubMed

    Cherepanova, N A; Zhuze, A L; Gromova, E S

    2010-09-01

    Here we studied the inhibition of the catalytic domain of Dnmt3a methyltransferase (Dnmt3a-CD) by DNA duplexes containing the mechanism-based inhibitor pyrimidine-2(1H)-one (P) instead of the target cytosine. It has been shown that conjugates of Dnmt3a-CD with P-DNA (DNA containing pyrimidine-2(1H)-one) are not stable to heating at 65°C in 0.1% SDS. The yield of covalent intermediate increases in the presence of the regulatory factor Dnmt3L. The importance of the DNA minor groove for covalent intermediate formation during the methylation reaction catalyzed by Dnmt3a-CD has been revealed. P-DNA was shown to inhibit Dnmt3a-CD; the IC(50) is 830 nM. The competitive mechanism of inhibition of Dnmt3a-CD by P-DNA has been elucidated. It is suggested that therapeutic effect of zebularine could be achieved by inhibition of not only Dnmt1 but also Dnmt3a.

  14. Quantum chemical modeling of enzymatic reactions: the case of histone lysine methyltransferase.

    PubMed

    Georgieva, Polina; Himo, Fahmi

    2010-06-01

    Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods. Copyright 2010 Wiley Periodicals, Inc.

  15. Genetic variation in catechol-O-methyltransferase modifies effects of clonidine treatment in chronic fatigue syndrome.

    PubMed

    Hall, K T; Kossowsky, J; Oberlander, T F; Kaptchuk, T J; Saul, J P; Wyller, V B; Fagermoen, E; Sulheim, D; Gjerstad, J; Winger, A; Mukamal, K J

    2016-10-01

    Clonidine, an α2-adrenergic receptor agonist, decreases circulating norepinephrine and epinephrine, attenuating sympathetic activity. Although catechol-O-methyltransferase (COMT) metabolizes catecholamines, main effectors of sympathetic function, COMT genetic variation effects on clonidine treatment are unknown. Chronic fatigue syndrome (CFS) is hypothesized to result in part from dysregulated sympathetic function. A candidate gene analysis of COMT rs4680 effects on clinical outcomes in the Norwegian Study of Chronic Fatigue Syndrome in Adolescents: Pathophysiology and Intervention Trial (NorCAPITAL), a randomized double-blinded clonidine versus placebo trial, was conducted (N=104). Patients homozygous for rs4680 high-activity allele randomized to clonidine took 2500 fewer steps compared with placebo (Pinteraction=0.04). There were no differences between clonidine and placebo among patients with COMT low-activity alleles. Similar gene-drug interactions were observed for sleep (Pinteraction=0.003) and quality of life (Pinteraction=0.018). Detrimental effects of clonidine in the subset of CFS patients homozygous for COMT high-activity allele warrant investigation of potential clonidine-COMT interaction effects in other conditions.

  16. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains.

    PubMed

    Naoi, Makoto; Maruyama, Wakako; Nagy, Georgy M

    2004-01-01

    Salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, is an endogenous catechol isoquinoline detected in humans by M. Sandler. In human brain, a series of catechol isoquinolines were identified as the condensation products of dopamine or other monoamines with aldehydes or keto-acids. Recently selective occurrence of the (R)enantiomers of salsolinol derivatives was confirmed in human brain, and they are synthesized by enzymes in situ, but not by the non-enzymatic Pictet-Spengler reaction. A (R)salsolinol synthase catalyzes the enantio-specific synthesis of (R)salsolinol from dopamine and acetaldehyde, and (R)salsolinol N-methyltransferase synthesizes N-methyl(R)salsolinol, which is further oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion by non-enzymatic and enzymatic oxidation. The step-wise reactions, N-methylation and oxidation, induce the specified distribution of the N-methylated and oxidized derivatives in the human nigro-striatum, suggesting that these derivatives may be involved in the function of dopamine neurons under physiological and pathological conditions. As shown by in vivo and in vitro experiments, salsolinol derivatives affect the levels of monoamine neurotransmitters though the inhibition of enzymes related in the metabolism of catechol- and indoleamines. In addition, the selective neurotoxicity of N-methyl(R)salsolinol to dopamine neurons was confirmed by preparation of an animal model of Parkinson's disease in rats. The involvement of N-methyl(R)salsolinol in the pathogenesis of Parkinson's disease was further indicated by the increase in the N-methyl(R)salsolinol levels in the cerebrospinal fluid and that in the activity of its synthesizing enzyme, a neural (R)salsolinol N-methyltransferase, in the lymphocytes prepared from parkinsonian patients. N-methyl(R)salsolinol induces apoptosis in dopamine neurons, which is mediated by death signal transduction in mitochondria. In addition, salsolinol was found to function as a signal transmitter for the prolactin release in the neuro-intermediate lobe of the brain. These results are discussed in relation to role of dopamine-derived endogenous salsolinol derivatives as the regulators of neurotransmission, dopaminergic neurotoxins and neuro-hormonal transmitters in the human brain.

  17. An experimental study of catechol-o-methyltransferase Val158Met moderation of delta-9-tetrahydrocannabinol-induced effects on psychosis and cognition.

    PubMed

    Henquet, Cécile; Rosa, Araceli; Krabbendam, Lydia; Papiol, Sergi; Fananás, Lourdes; Drukker, Marjan; Ramaekers, Johannes G; van Os, Jim

    2006-12-01

    Observational studies have suggested that psychometric psychosis liability and a functional polymorphism in the catechol-O-methyltransferase (COMT Val(158)Met) gene moderate the psychosis-inducing effect of cannabis. To replicate and extend this finding, a double-blind, placebo-controlled cross-over design was used in which patients with a psychotic disorder (n=30), relatives of patients with a psychotic disorder (n=12), and healthy controls (n=32) were exposed to Delta-9-tetrahydrocannabinol (Delta-9-THC, the principal component of cannabis) or placebo, followed by cognitive assessment and assessment of current psychotic experiences. Previous expression of psychometric psychosis liability was also assessed. Models of current psychotic experiences and cognition were examined with multilevel random regression analyses to assess (i) main effects of genotype and condition, (ii) interactions between condition and genotype, and (iii) three-way interactions between condition, genotype, and psychometric psychosis liability. Carriers of the Val allele were most sensitive to Delta-9-THC-induced psychotic experiences, but this was conditional on prior evidence of psychometric psychosis liability. Delta-9-THC impacted negatively on cognitive measures. Carriers of the Val allele were also more sensitive to Delta-9-THC-induced memory and attention impairments compared to carriers of the Met allele. Experimental effects of Delta-9-THC on cognition and psychosis are moderated by COMT Val(158)Met genotype, but the effects may in part be conditional on the additional presence of pre-existing psychosis liability. The association between cannabis and psychosis may represent higher order gene-environment and gene-gene interactions.

  18. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  19. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    EPA Science Inventory

    Diversity of arsenic metabolism in cultured human cancer cell lines.

    Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  20. Roles of phospholipid methyltransferases in pycnidia development, stress tolerance and secondary metabolism in the taxol-producing fungus Pestalotiopsis microspore.

    PubMed

    Akhberdi, Oren; Zhang, Qian; Wang, Haichuan; Li, Yingying; Chen, Longfei; Wang, Dan; Yu, Xi; Wei, Dongsheng; Zhu, Xudong

    2018-05-01

    Phosphatidylcholine (PC) is an important membrane component of the eukaryotic cell. In yeast fungi, two phospholipid methyltransferases catalyze consecutive steps of methylation in the formation of phosphatidylcholine from phosphatidylethanolamine. However, roles of phospholipid methyltransferases in filamentous fungi remains less investigated. We report here the characterization of two genes, choA and choC, that putatively encoded phospholipid methyltransferases in the taxol-producing fungus Pestalotiopsis microspora. Deletion of choC resulted in defects in PC production, vegetative growth and development of asexual structure. The mutant strains exhibited multiple morphological abnormalities, e.g. swollen hyphal tips and enhanced hyphal branching, and even mycelial autolysis. Some novel roles for the genes were also revealed, for instance, the deletion of either choC or choA impaired the development of pycnidia and conidia, the cell wall integrity. The mutant strains displayed a hypersensitivity to stress conditions, e.g. osmotic stress, cold and metal ions. The osmotic hypersensitivity indicates a crosstalk of PC pathways to other signaling pathways, such as the HOG pathway. Still more, choA, but not choC, was required for the production of secondary metabolites, e.g. pestalotiollide B, suggesting distinct roles of the two genes. This work would contribute to better understanding the function of phospholipid methyltransferases in fungi. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex.

    PubMed

    Ke, Min; Chen, Yu; Wu, Andong; Sun, Ying; Su, Ceyang; Wu, Hao; Jin, Xu; Tao, Jiali; Wang, Yi; Ma, Xiao; Pan, Ji-An; Guo, Deyin

    2012-08-01

    Coronaviruses are the etiological agents of respiratory and enteric diseases in humans and livestock, exemplified by the life-threatening severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV). However, effective means for combating coronaviruses are still lacking. The interaction between nonstructural protein (nsp) 10 and nsp16 has been demonstrated and the crystal structure of SARS-CoV nsp16/10 complex has been revealed. As nsp10 acts as an essential trigger to activate the 2'-O-methyltransferase activity of nsp16, short peptides derived from nsp10 may have inhibitory effect on viral 2'-O-methyltransferase activity. In this study, we revealed that the domain of aa 65-107 of nsp10 was sufficient for its interaction with nsp16 and the region of aa 42-120 in nsp10, which is larger than the interaction domain, was needed for stimulating the nsp16 2'-O-methyltransferase activity. We further showed that two short peptides derived from the interaction domain of nsp10 could inhibit the 2'-O-methyltransferase activity of SARS-CoV nsp16/10 complex, thus providing a novel strategy and proof-of-principle study for developing peptide inhibitors against SARS-CoV. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Arsenic (+3 Oxidation State) Methyltransferase and the Methylation of Arsenicals

    PubMed Central

    Thomas, David J.; Li, Jiaxin; Waters, Stephen B.; Xing, Weibing; Adair, Blakely M.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav

    2008-01-01

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono-, di-, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification process. Intermediates and products formed in this pathway may be more reactive and toxic than inorganic arsenic. Like all metabolic pathways, understanding the pathway for arsenic methylation involves identification of each individual step in the process and the characterization of the molecules which participate in each step. Among several arsenic methyltransferases that have been identified, arsenic (+3 oxidation state) methyltransferase is the one best characterized at the genetic and functional levels. This review focuses on phylogenetic relationships in the deuterostomal lineage for this enzyme and on the relation between genotype for arsenic (+3 oxidation state) methyltransferase and phenotype for conversion of inorganic arsenic to methylated metabolites. Two conceptual models for function of arsenic (+3 oxidation state) methyltransferase which posit different roles for cellular reductants in the conversion of inorganic arsenic to methylated metabolites are compared. Although each model accurately represents some aspects of enzyme’s role in the pathway for arsenic methylation, neither model is a fully satisfactory representation of all the steps in this metabolic pathway. Additional information on the structure and function of the enzyme will be needed to develop a more comprehensive model for this pathway. PMID:17202581

  3. A Continuous, Quantitative Fluorescent Assay for Plant Caffeic acid O-Methyltransferases

    USDA-ARS?s Scientific Manuscript database

    Plant caffeic acid O-methyltransferases (COMTs) use s-adenosylmethionine (ado-met), as a methyl donor to transmethylate their preferred (phenolic) substrates in-vivo, and will generally utilize a range of phenolic compounds in-vitro. Collazo et al. (2005; Analytical Biochemistry 342: 86-92) have pu...

  4. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated ars...

  5. RmtA, a putative arginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is found colonizing numerous oil seed crops such as corn, peanuts, sorghum, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been de...

  6. Comparative Distribution and Retention of Arsenic in Arsenic (+3 Oxidation State) Methyltransferase Knockout and Wild Type Mice

    EPA Science Inventory

    The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...

  7. Discovery of Novel N-Nicotinamide Methyltransferase Inhibitors to Combat Obesity-Linked Osteoarthritis and Metabolic Disease Among Veterans and Beneficiaries

    DTIC Science & Technology

    2016-10-01

    Medical Branch at Galveston Galveston, TX 77555 REPORT DATE: October 2016 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and...SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S...testing of in silico hits 1.1. Complete project hiring Research scientists hired February 1, 2016 and February 15, 2016. Research technician hired

  8. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.

    PubMed

    Swinehart, William E; Henderson, Jeremy C; Jackman, Jane E

    2013-08-01

    N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.

  9. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity.

    PubMed

    Miranda, Tina Branscombe; Miranda, Mark; Frankel, Adam; Clarke, Steven

    2004-05-28

    We have identified a mammalian arginine N-methyltransferase, PRMT7, that can catalyze the formation of omega-NG-monomethylarginine in peptides. This protein is encoded by a gene on human chromosome 16q22.1 (human locus AK001502). We expressed a full-length human cDNA construct in Escherichia coli as a glutathione S-transferase (GST) fusion protein. We found that GST-tagged PRMT7 catalyzes the S-adenosyl-[methyl-3H]-l-methionine-dependent methylation of the synthetic peptide GGPGGRGGPGG-NH2 (R1). The radiolabeled peptide was purified by high-pressure liquid chromatography and acid hydrolyzed to free amino acids. When the hydrolyzed products were separated by high-resolution cation-exchange chromatography, we were able to detect one tritiated species which co-migrated with an omega-NG-monomethylarginine standard. Surprisingly, GST-PRMT7 was not able to catalyze the in vitro methylation of a GST-fibrillarin (amino acids 1-148) fusion protein (GST-GAR), a methyl-accepting substrate for the previously characterized PRMT1, PRMT3, PRMT4, PRMT5, and PRMT6 enzymes. Nor was it able to methylate myelin basic protein or histone H2A, in vitro substrates of PRMT5. This specificity distinguishes PRMT7 from all of the other known arginine methyltransferases. An additional unique feature of PRMT7 is that it seems to have arisen from a gene duplication event and contains two putative AdoMet-binding motifs. To see if both motifs were necessary for activity, each putative domain was expressed as a GST-fusion and tested for activity with peptides R1 and R2 (acetyl-GGRGG-NH2). These truncated proteins were enzymatically inactive, suggesting that both domains are required for functionality.

  10. Crystal structure of SAM-dependent methyltransferase from Pyrococcus horikoshii.

    PubMed

    Pampa, K J; Madan Kumar, S; Hema, M K; Kumara, Karthik; Naveen, S; Kunishima, Naoki; Lokanath, N K

    2017-12-01

    Methyltransferases (MTs) are enzymes involved in methylation that are needed to perform cellular processes such as biosynthesis, metabolism, gene expression, protein trafficking and signal transduction. The cofactor S-adenosyl-L-methionine (SAM) is used for catalysis by SAM-dependent methyltransferases (SAM-MTs). The crystal structure of Pyrococcus horikoshii SAM-MT was determined to a resolution of 2.1 Å using X-ray diffraction. The monomeric structure consists of a Rossmann-like fold (domain I) and a substrate-binding domain (domain II). The cofactor (SAM) molecule binds at the interface between adjacent subunits, presumably near to the active site(s) of the enzyme. The observed dimeric state might be important for the catalytic function of the enzyme.

  11. COBALAMIN- AND COBAMIDE-DEPENDENT METHYLTRANSFERASES

    PubMed Central

    Matthews, Rowena G.; Koutmos, Markos; Datta, Supratim

    2008-01-01

    Methyltransferases that employ cobalamin cofactors, or their analogues the cobamides, as intermediates in catalysis of methyl transfer play vital roles in energy generation in anaerobic unicellular organisms. In a broader range of organisms they are involved in the conversion of homocysteine to methionine. Although the individual methyl transfer reactions catalyzed are simple SN2 displacements, the required change in coordination at the cobalt of the cobalamin or cobamide cofactors and the lability of the reduced Co+1 intermediates introduces the necessity for complex conformational changes during the catalytic cycle. Recent spectroscopic and structural studies on several of these methyltransferases have helped to reveal the strategies by which these conformational changes are facilitated and controlled. PMID:19059104

  12. Outbreak of Serratia marcescens Coproducing ArmA and CTX-M-15 Mediated High Levels of Resistance to Aminoglycoside and Extended-Spectrum Beta-Lactamases, Algeria.

    PubMed

    Batah, Rima; Loucif, Lotfi; Olaitan, Abiola Olumuyiwa; Boutefnouchet, Nafissa; Allag, Hamoudi; Rolain, Jean-Marc

    2015-08-01

    Serratia marcescens is one of the most important pathogens responsible for nosocomial infections worldwide. Here, we have investigated the molecular support of antibiotic resistance and genetic relationships in a series of 54 S. marcescens clinical isolates collected from Eastern Algeria between December 2011 and July 2013. The 54 isolates were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Antibiotic susceptibility testing was performed by disc diffusion and E-test methods. Antibiotic resistance genes were detected by polymerase chain reaction (PCR). The genetic transfer of antibiotic resistance was performed by conjugation using azide-resistant Escherichia coli J53 as the recipient strain, and plasmid analysis was done by PCR-based replicon typing. The relatedness of our isolates was determined by phylogenetic analysis based on partial sequences of four protein-encoding genes (gyrB, rpoB, infB, and atpD) and then compared to MALDI-TOF MS clustering. Thirty-five out of 54 isolates yielded an extended-spectrum β-lactamase (ESBL) phenotype and carried bla(CTX-M-15) (n=32), bla(TEM-1) (n=26), bla(TEM-71) (n=1), bla(SHV-1a) (n=1), and bla(PER-2) (n=12). Among these isolates, we identified a cluster of 15 isolates from a urology unit that coharbored ESBL and the 16S rRNA methyltransferase armA. Conjugation was successful for five selected strains, demonstrating the transferability of a conjugative plasmid of incompatibility group incL/M type. Phylogenetic analysis along with MALDI-TOF clustering likely suggested an outbreak of such isolates in the urology unit. In this study, we report for the first time the co-occurrence of armA methyltransferase with ESBL in S. marcescens clinical isolates in Eastern Algeria.

  13. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    EPA Science Inventory

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT
    S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE

    Stephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  14. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    EPA Science Inventory

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)

    Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  15. Lignin and Fiber digestibility in Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase Downregulated Alfalfa

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is one of the most important forages in the United States. Increasing alfalfa fiber digestibility would improve forage management and ration formulation flexibility. Currently, growers and breeders rely on near infrared spectroscopy (NIRS) to predict forage quality tra...

  16. Guanidinoacetate Methyltransferase (GAMT) Deficiency: Late Onset of Movement Disorder and Preserved Expressive Language

    ERIC Educational Resources Information Center

    O'Rourke, Declan J.; Ryan, Stephanie; Salomons, Gajja; Jakobs, Cornelis; Monavari, Ahmad; King, Mary D.

    2009-01-01

    Guanidinoacetate methyltransferase (GAMT) deficiency is a disorder of creatine biosynthesis, characterized by early-onset learning disability and epilepsy in most affected children. Severe expressive language delay is a constant feature even in the mildest clinical phenotypes. We report the clinical, biochemical, imaging, and treatment data of two…

  17. CHARACTERIZATION OF HUMAN URINARY BLADDER CELL LINE UROTSA TRANSDUCED WITH RAT ASLLL-METHYLTRANSFERASE

    EPA Science Inventory


    In humans, the biomethylation of arsenic (As) is catalyzed by an As(III)-methyltransferase (Cyt19) and yields pentavalent and trivalent methylated arsenicals. Cyt19 activity and expression levels vary among tissues. For example, Cyt19 mRNA is not detected in UROtsa cells, a h...

  18. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    EPA Science Inventory

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver Cytosol
    Shan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas
    S-adenosyl-L-methionine (AdoMet): ar...

  19. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  20. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    USDA-ARS?s Scientific Manuscript database

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  1. Characterization of a candidate tetravalent vaccine based on 2'-O-methyltransferase mutants

    PubMed Central

    Züst, Roland; Li, Shi-Hua; Xie, Xuping; Velumani, Sumathy; Chng, Melissa; Toh, Ying-Xiu; Zou, Jing; Dong, Hongping; Shan, Chao; Pang, Jassia; Qin, Cheng-Feng; Newell, Evan W.; Shi, Pei-Yong

    2018-01-01

    Dengue virus (DENV) is one of the most widespread arboviruses. The four DENV serotypes infect about 400 million people every year, causing 96 million clinical dengue cases, of which approximately 500’000 are severe and potentially life-threatening. The only licensed vaccine has a limited efficacy and is only recommended in regions with high endemicity. We previously reported that 2’-O-methyltransferase mutations in DENV-1 and DENV-2 block their capacity to inhibit type I IFNs and render the viruses attenuated in vivo, making them amenable as vaccine strains; here we apply this strategy to all four DENV serotypes to generate a tetravalent, non-chimeric live-attenuated dengue vaccine. 2’-O-methyltransferase mutants of all four serotypes are highly sensitive to type I IFN inhibition in human cells. The tetravalent formulation is attenuated and immunogenic in mice and cynomolgus macaques and elicits a response that protects from virus challenge. These results show the potential of 2’-O-methyltransferase mutant viruses as a safe, tetravalent, non-chimeric dengue vaccine. PMID:29298302

  2. Quercetin-Induced Lifespan Extension in Podospora anserina Requires Methylation of the Flavonoid by the O-Methyltransferase PaMTH1.

    PubMed

    Warnsmann, Verena; Hainbuch, Saskia; Osiewacz, Heinz D

    2018-01-01

    Quercetin is a flavonoid that is ubiquitously found in vegetables and fruits. Like other flavonoids, it is active in balancing cellular reactive oxygen species (ROS) levels and has a cyto-protective function. Previously, a link between ROS balancing, aging, and the activity of O -methyltransferases was reported in different organisms including the aging model Podospora anserina. Here we describe a role of the S -adenosylmethionine-dependent O -methyltransferase PaMTH1 in quercetin-induced lifespan extension. We found that effects of quercetin treatment depend on the methylation state of the flavonoid. Specifically, we observed that quercetin treatment increases the lifespan of the wild type but not of the PaMth1 deletion mutant. The lifespan increasing effect is not associated with effects of quercetin on mitochondrial respiration or ROS levels but linked to the induction of the PaMth1 gene. Overall, our data demonstrate a novel role of O -methyltransferase in quercetin-induced longevity and identify the underlying pathway as part of a network of longevity assurance pathways with the perspective to intervene into mechanisms of biological aging.

  3. Structural Chemistry of Human RNA Methyltransferases.

    PubMed

    Schapira, Matthieu

    2016-03-18

    RNA methyltransferases (RNMTs) play important roles in RNA stability, splicing, and epigenetic mechanisms. They constitute a promising target class that is underexplored by the medicinal chemistry community. Information of relevance to drug design can be extracted from the rich structural coverage of human RNMTs. In this work, the structural chemistry of this protein family is analyzed in depth. Unlike most methyltransferases, RNMTs generally feature a substrate-binding site that is largely open on the cofactor-binding pocket, favoring the design of bisubstrate inhibitors. Substrate purine or pyrimidines are often sandwiched between hydrophobic walls that can accommodate planar ring systems. When the substrate base is laying on a shallow surface, a 5' flanking base is sometimes anchored in a druggable cavity. The cofactor-binding site is structurally more diverse than in protein methyltransferases and more druggable in SPOUT than in Rossman-fold enzymes. Finally, conformational plasticity observed both at the substrate and cofactor binding sites may be a challenge for structure-based drug design. The landscape drawn here may inform ongoing efforts toward the discovery of the first human RNMT inhibitors.

  4. Analysis of Natural and Induced Variation in Tomato Glandular Trichome Flavonoids Identifies a Gene Not Present in the Reference Genome[W][OPEN

    PubMed Central

    Kim, Jeongwoon; Matsuba, Yuki; Ning, Jing; Schilmiller, Anthony L.; Hammar, Dagan; Jones, A. Daniel; Pichersky, Eran; Last, Robert L.

    2014-01-01

    Flavonoids are ubiquitous plant aromatic specialized metabolites found in a variety of cell types and organs. Methylated flavonoids are detected in secreting glandular trichomes of various Solanum species, including the cultivated tomato (Solanum lycopersicum). Inspection of the sequenced S. lycopersicum Heinz 1706 reference genome revealed a close homolog of Solanum habrochaites MOMT1 3′/5′ myricetin O-methyltransferase gene, but this gene (Solyc06g083450) is missing the first exon, raising the question of whether cultivated tomato has a distinct 3′ or 3′/5′ O-methyltransferase. A combination of mining genome and cDNA sequences from wild tomato species and S. lycopersicum cultivar M82 led to the identification of Sl-MOMT4 as a 3′ O-methyltransferase. In parallel, three independent ethyl methanesulfonate mutants in the S. lycopersicum cultivar M82 background were identified as having reduced amounts of di- and trimethylated myricetins and increased monomethylated myricetin. Consistent with the hypothesis that Sl-MOMT4 is a 3′ O-methyltransferase gene, all three myricetin methylation defective mutants were found to have defects in MOMT4 sequence, transcript accumulation, or 3′-O-methyltransferase enzyme activity. Surprisingly, no MOMT4 sequence is found in the Heinz 1706 reference genome sequence, and this cultivar accumulates 3-methyl myricetin and is deficient in 3′-methyl myricetins, demonstrating variation in this gene among cultivated tomato varieties. PMID:25128240

  5. Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function

    PubMed Central

    Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit

    2010-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates. PMID:15946712

  6. Identification of white campion (Silene latifolia) guaiacol O-methyltransferase involved in the biosynthesis of veratrole, a key volatile for pollinator attraction

    PubMed Central

    2012-01-01

    Background Silene latifolia and its pollinator, the noctuid moth Hadena bicruris, represent an open nursery pollination system wherein floral volatiles, especially veratrole (1, 2-dimethoxybenzene), lilac aldehydes, and phenylacetaldehyde are of key importance for floral signaling. Despite the important role of floral scent in ensuring reproductive success in S. latifolia, the molecular basis of scent biosynthesis in this species has not yet been investigated. Results We isolated two full-length cDNAs from S. latifolia that show similarity to rose orcinol O-methyltransferase. Biochemical analysis showed that both S. latifolia guaiacol O-methyltransferase1 (SlGOMT1) &S. latifolia guaiacol O-methyltransferase2 (SlGOMT2) encode proteins that catalyze the methylation of guaiacol to form veratrole. A large Km value difference between SlGOMT1 (~10 μM) and SlGOMT2 (~501 μM) resulted that SlGOMT1 is 31-fold more catalytically efficient than SlGOMT2. qRT-PCR expression analysis showed that the SlGOMT genes are specifically expressed in flowers and male S. latifolia flowers had 3- to 4-folds higher level of GOMT gene transcripts than female flower tissues. Two related cDNAs, S. dioica O-methyltransferase1 (SdOMT1) and S. dioica O-methyltransferase2 (SdOMT2), were also obtained from the sister species Silene dioica, but the proteins they encode did not methylate guaiacol, consistent with the lack of veratrole emission in the flowers of this species. Our evolutionary analysis uncovered that SlGOMT1 and SlGOMT2 genes evolved under positive selection, whereas SdOMT1 and SdOMT2 genes show no evidence for selection. Conclusions Altogether, we report the identification and functional characterization of the gene, SlGOMT1 that efficiently catalyzes veratrole formation, whereas another copy of this gene with only one amino acid difference, SlGOMT2 was found to be less efficient for veratrole synthesis in S. latifolia. PMID:22937972

  7. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases

    PubMed Central

    Lin, Lin; Liu, Yong; Xu, Fengping; Huang, Jinrong; Daugaard, Tina Fuglsang; Petersen, Trine Skov; Hansen, Bettina; Ye, Lingfei; Zhou, Qing; Fang, Fang; Yang, Ling; Li, Shengting; Fløe, Lasse; Jensen, Kristopher Torp; Shrock, Ellen; Chen, Fang; Yang, Huanming; Wang, Jian; Liu, Xin; Xu, Xun; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun

    2018-01-01

    Abstract Background Fusion of DNA methyltransferase domains to the nuclease-deficient clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (dCas9) has been used for epigenome editing, but the specificities of these dCas9 methyltransferases have not been fully investigated. Findings We generated CRISPR-guided DNA methyltransferases by fusing the catalytic domain of DNMT3A or DNMT3B to the C terminus of the dCas9 protein from Streptococcus pyogenes and validated its on-target and global off-target characteristics. Using targeted quantitative bisulfite pyrosequencing, we prove that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can efficiently methylate the CpG dinucleotides flanking its target sites at different genomic loci (uPA and TGFBR3) in human embryonic kidney cells (HEK293T). Furthermore, we conducted whole genome bisulfite sequencing (WGBS) to address the specificity of our dCas9 methyltransferases. WGBS revealed that although dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B did not cause global methylation changes, a substantial number (more than 1000) of the off-target differentially methylated regions (DMRs) were identified. The off-target DMRs, which were hypermethylated in cells expressing dCas9 methyltransferase and guide RNAs, were predominantly found in promoter regions, 5΄ untranslated regions, CpG islands, and DNase I hypersensitivity sites, whereas unexpected hypomethylated off-target DMRs were significantly enriched in repeated sequences. Through chromatin immunoprecipitation with massive parallel DNA sequencing analysis, we further revealed that these off-target DMRs were weakly correlated with dCas9 off-target binding sites. Using quantitative polymerase chain reaction, RNA sequencing, and fluorescence reporter cells, we also found that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can mediate transient inhibition of gene expression, which might be caused by dCas9-mediated de novo DNA methylation as well as interference with transcription. Conclusion Our results prove that dCas9 methyltransferases cause efficient RNA-guided methylation of specific endogenous CpGs. However, there is significant off-target methylation indicating that further improvements of the specificity of CRISPR-dCas9 based DNA methylation modifiers are required. PMID:29635374

  8. Determination of the order of substrate addition to MspI DNA methyltransferase using a novel mechanism-based inhibitor.

    PubMed Central

    Taylor, C; Ford, K; Connolly, B A; Hornby, D P

    1993-01-01

    The cloning and overexpression of the MspI DNA methyltransferase as a functional fusion with glutathione S-transferase is described. The fusion enzyme retains full biological activity and has been used to investigate the interaction of substrates and inhibitors with MspI DNA methyltransferase. The fusion enzyme has been purified to homogeneity in a single step on GSH-agarose and is free from contaminating exonuclease activity. The enzyme can be photolabelled with S-adenosyl-L-methionine and the level of incorporation of label is enhanced by the presence of a nonspecific DNA duplex. In the presence of a cognate oligodeoxynucleotide, no photolabelling was observed since methyl transfer occurs instead. The inclusion of a mechanism-based inhibitor of C-5 deoxycytidine DNA methylation (an oligodeoxynucleotide containing the base 2-pyrimidinone-1-beta-D-2'-deoxyribofuranoside in the position of the deoxycytidine to which methyl addition occurs), which is thought to form a covalent interaction with the reactive cysteine of such enzymes, led to an enhancement of S-adenosyl-L-methionine photolabelling which suggests that, in contrast with results obtained with EcoRII DNA methyltransferase [Som and Friedman (1991) J. Biol. Chem. 266, 2937-2945], methylcysteine is not the photolabelled product. The implications of the results obtained with this mechanism-based inhibitor are discussed with respect to other C-5-specific DNA methyltransferases. Gel-retardation assays in the presence of cognate oligodeoxynucleotides that contain the reactive pyrimidinone base in place of the deoxycytidine target base are described. These demonstrate that most probably a stable covalent bond is formed between the methyltransferase and this oligodeoxynucleotide. However, the alternative of extremely tight non-covalent binding cannot be rigorously excluded. Furthermore, the results from these experiments indicate that the reaction mechanism proceeds in a manner similar to that of HhaI DNA methyltransferase with sequence-specific DNA binding being followed by addition of S-adenosyl-L-methionine and concomitant isomerization of the ternary complex leading to methyl transfer. S-Adenosyl-L-homocysteine appears to inhibit the reaction pathway as a result of either competition with the methyl donor and potentiation of a high-affinity interaction between the enzyme and DNA in an abortive ternary complex or through an allosteric interaction. Images Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:8484730

  9. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases.

    PubMed

    Lin, Lin; Liu, Yong; Xu, Fengping; Huang, Jinrong; Daugaard, Tina Fuglsang; Petersen, Trine Skov; Hansen, Bettina; Ye, Lingfei; Zhou, Qing; Fang, Fang; Yang, Ling; Li, Shengting; Fløe, Lasse; Jensen, Kristopher Torp; Shrock, Ellen; Chen, Fang; Yang, Huanming; Wang, Jian; Liu, Xin; Xu, Xun; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun

    2018-03-01

    Fusion of DNA methyltransferase domains to the nuclease-deficient clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (dCas9) has been used for epigenome editing, but the specificities of these dCas9 methyltransferases have not been fully investigated. We generated CRISPR-guided DNA methyltransferases by fusing the catalytic domain of DNMT3A or DNMT3B to the C terminus of the dCas9 protein from Streptococcus pyogenes and validated its on-target and global off-target characteristics. Using targeted quantitative bisulfite pyrosequencing, we prove that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can efficiently methylate the CpG dinucleotides flanking its target sites at different genomic loci (uPA and TGFBR3) in human embryonic kidney cells (HEK293T). Furthermore, we conducted whole genome bisulfite sequencing (WGBS) to address the specificity of our dCas9 methyltransferases. WGBS revealed that although dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B did not cause global methylation changes, a substantial number (more than 1000) of the off-target differentially methylated regions (DMRs) were identified. The off-target DMRs, which were hypermethylated in cells expressing dCas9 methyltransferase and guide RNAs, were predominantly found in promoter regions, 5΄ untranslated regions, CpG islands, and DNase I hypersensitivity sites, whereas unexpected hypomethylated off-target DMRs were significantly enriched in repeated sequences. Through chromatin immunoprecipitation with massive parallel DNA sequencing analysis, we further revealed that these off-target DMRs were weakly correlated with dCas9 off-target binding sites. Using quantitative polymerase chain reaction, RNA sequencing, and fluorescence reporter cells, we also found that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can mediate transient inhibition of gene expression, which might be caused by dCas9-mediated de novo DNA methylation as well as interference with transcription. Our results prove that dCas9 methyltransferases cause efficient RNA-guided methylation of specific endogenous CpGs. However, there is significant off-target methylation indicating that further improvements of the specificity of CRISPR-dCas9 based DNA methylation modifiers are required.

  10. Structural and Kinetic Evidence for an Extended Hydrogen-Bonding Network in Catalysis of Methyl Group Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doukov,T.; Hemmi, H.; Drennan, C.

    The methyltetrahydrofolate (CH{sub 3}-H{sub 4}folate) corrinoid-ironsulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH3-H4folate to cob(I)amide. This key step in anaerobic CO and CO{sub 2} fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH{sub 3}-H{sub 4}folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH{sub 3}-H{sub 4}folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead,more » an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH{sub 3}-H{sub 4}folate binding. An N199A variant exhibits only {approx}20-fold weakened affinity for CH{sub 3}-H{sub 4}folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.« less

  11. Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+3 oxidation state) methyltransferase knockout mice. A preliminary report

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes reactions which convert inorganic arsenic to methylated metabolites. This study determined whether the As3mt null genotype in the mouse modifies cytotoxic and proliferative effects seen in urinary bladders of wild t...

  12. Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in whi...

  13. Association of Catechol-O-Methyltransferase (COMT) Polymorphism and Academic Achievement in a Chinese Cohort

    ERIC Educational Resources Information Center

    Yeh, Ting-Kuang; Chang, Chun-Yen; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Ming-Yeh

    2009-01-01

    Catechol-O-methyltransferase (COMT) is a methylation enzyme that catalyzes the degradation pathway and inactivation of dopamine. It is accepted widely as being involved in the modulation of dopaminergic physiology and prefrontal cortex (PFC) function. The COMT Val158Met polymorphism is associated with variation in COMT activity. COMT 158Met allele…

  14. Effect of Sodium Arsenite Dose Administered in the Drinking Water on the Urinary Bladder Epithelium of Female Arsenic (+3 oxidation state) Methyltransferase Knockout Mice

    EPA Science Inventory

    The enzyme arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes reactions converting inorganic arsenic to methylated metabolites, some of which are highly cytotoxic. In a previous study, we evaluated whether the As3mt null genotype in mice modified cytotoxic and proli...

  15. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    USDA-ARS?s Scientific Manuscript database

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  16. Involvement of DNA methylation in memory processing in the honey bee.

    PubMed

    Lockett, Gabrielle A; Helliwell, Paul; Maleszka, Ryszard

    2010-08-23

    DNA methylation, an important and evolutionarily conserved epigenetic mechanism, is implicated in learning and memory processes in vertebrates, but its role in behaviour in invertebrates is unknown. We examined the role of DNA methylation in memory in the honey bee using an appetitive Pavlovian olfactory discrimination task, and by assessing the expression of DNA methyltransferase3, a key driver of epigenetic reprogramming. Here we report that DNA methyltransferase inhibition reduces acquisition retention and alters the extinction depending on treatment time, and DNA methyltransferase3 is upregulated after training. Our findings add to the understanding of epigenetic mechanisms in learning and memory, extending known roles of DNA methylation to appetitive and extinction memory, and for the first time implicate DNA methylation in memory in invertebrates.

  17. [Definition of the specificity of DNA-methyltransferase M.Bsc4I in cell lysate by blocking of restriction endonucleases and computer modeling].

    PubMed

    Dedkov, V S

    2009-01-01

    The specificity of DNA-methyltransferase M.Bsc4I was defined in cellular lysate of Bacillus schlegelii 4. For this purpose, we used methylation sensitivity of restriction endonucleases, and also modeling of methylation. The modeling consisted in editing sequences of DNA using replacements of methylated bases and their complementary bases. The substratum DNA processed by M.Bsc4I also were used for studying sensitivity of some restriction endonucleases to methylation. Thus, it was shown that M.Bsc4I methylated 5'-Cm4CNNNNNNNGG-3' and the overlapped dcm-methylation blocked its activity. The offered approach can appear universal enough and simple for definition of specificity of DNA-methyltransferases.

  18. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    PubMed

    Henderson, Brittney R; Saeedi, Bejan J; Campagnola, Grace; Geiss, Brian J

    2011-01-01

    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  19. The impact of the Val158Met catechol-O-methyltransferase genotype on neural correlates of sad facial affect processing in patients with bipolar disorder and their relatives.

    PubMed

    Lelli-Chiesa, G; Kempton, M J; Jogia, J; Tatarelli, R; Girardi, P; Powell, J; Collier, D A; Frangou, S

    2011-04-01

    The Met allele of the catechol-O-methyltransferase (COMT) valine-to-methionine (Val158Met) polymorphism is known to affect dopamine-dependent affective regulation within amygdala-prefrontal cortical (PFC) networks. It is also thought to increase the risk of a number of disorders characterized by affective morbidity including bipolar disorder (BD), major depressive disorder (MDD) and anxiety disorders. The disease risk conferred is small, suggesting that this polymorphism represents a modifier locus. Therefore our aim was to investigate how the COMT Val158Met may contribute to phenotypic variation in clinical diagnosis using sad facial affect processing as a probe for its neural action. We employed functional magnetic resonance imaging to measure activation in the amygdala, ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC) during sad facial affect processing in family members with BD (n=40), MDD and anxiety disorders (n=22) or no psychiatric diagnosis (n=25) and 50 healthy controls. Irrespective of clinical phenotype, the Val158 allele was associated with greater amygdala activation and the Met158 allele with greater signal change in the vmPFC and vlPFC. Signal changes in the amygdala and vmPFC were not associated with disease expression. However, in the right vlPFC the Met158 allele was associated with greater activation in all family members with affective morbidity compared with relatives without a psychiatric diagnosis and healthy controls. Our results suggest that the COMT Val158Met polymorphism has a pleiotropic effect within the neural networks subserving emotional processing. Furthermore the Met158 allele further reduces cortical efficiency in the vlPFC in individuals with affective morbidity.

  20. Structural Basis of Substrate Recognition in Human Nicotinamide N-Methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi; Sartini, Davide; Pozzi, Valentina

    2012-05-02

    Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide, pyridines, and other analogues using S-adenosyl-L-methionine as donor. NNMT plays a significant role in the regulation of metabolic pathways and is expressed at markedly high levels in several kinds of cancers, presenting it as a potential molecular target for cancer therapy. We have determined the crystal structure of human NNMT as a ternary complex bound to both the demethylated donor S-adenosyl-L-homocysteine and the acceptor substrate nicotinamide, to 2.7 {angstrom} resolution. These studies reveal the structural basis for nicotinamide binding and highlight several residues in the active site which may play roles inmore » nicotinamide recognition and NNMT catalysis. The functional importance of these residues was probed by mutagenesis. Of three residues near the nicotinamide's amide group, substitution of S201 and S213 had no effect on enzyme activity while replacement of D197 dramatically decreased activity. Substitutions of Y20, whose side chain hydroxyl interacts with both the nicotinamide aromatic ring and AdoHcy carboxylate, also compromised activity. Enzyme kinetics analysis revealed k{sub cat}/K{sub m} decreases of 2-3 orders of magnitude for the D197A and Y20A mutants, confirming the functional importance of these active site residues. The mutants exhibited substantially increased K{sub m} for both NCA and AdoMet and modestly decreased k{sub cat}. MD simulations revealed long-range conformational effects which provide an explanation for the large increase in K{sub m}(AdoMet) for the D197A mutant, which interacts directly only with nicotinamide in the ternary complex crystal structure.« less

  1. The Arabidopsis Histone Methyltransferase SUVR4 Binds Ubiquitin via a Domain with a Four-Helix Bundle Structure

    PubMed Central

    Rahman, Mohummad Aminur; Kristiansen, Per E.; Veiseth, Silje V.; Andersen, Jan Terje; Yap, Kyoko L.; Zhou, Ming-Ming; Sandlie, Inger; Thorstensen, Tage; Aalen, Reidunn B.

    2014-01-01

    In eukaryotes, different chromatin states facilitate or repress gene expression and restrict the activity of transposable elements. Post-translational modifications (PTMs) of amino acid residues on the N-terminal tails of histones are suggested to define such states. The histone lysine methyltransferase (HKMTase) SU(VAR)3-9 RELATED4 (SUVR4) of Arabidopsis thaliana functions as a repressor of transposon activity. Binding of ubiquitin by the WIYLD domain facilitates the addition of two methyl groups to monomethylated lysine 9 of histone H3. By using nuclear magnetic resonance (NMR) spectroscopy, we identified SUVR4 WIYLD (S4WIYLD) as a domain with a four-helix bundle structure, in contrast to three-helix bundles of other ubiquitin binding domains. NMR titration analyses showed that residues of helix α1 (Q38, L39, and D40) and helix α4 (N68, T70, A71, V73, D74, I76, S78, and E82) of S4WIYLD and residues between the first and second β-strands (T9 and G10) and on β-strands 3 (R42, G47, K48, and Q49) and 4 (H68, R72, and L73) undergo significant chemical shift changes when the two proteins interact. A model of the complex, generated using HADDOCK, suggests that the N-terminal and C-terminal parts of S4WIYLD constitute a surface that interacts with charged residues close to the hydrophobic patch of ubiquitin. The WIYLD domains of the closely related SUVR1 and SUVR2 Arabidopsis proteins also bind ubiquitin, indicating that this is a general feature of this domain. The question of whether SUVR proteins act as both readers of monoubiquitinated H2B and writers of histone PTMs is discussed. PMID:24625295

  2. Increased phosphatidylethanolamine N-methyltransferase gene expression in non-small-cell lung cancer tissue predicts shorter patient survival

    PubMed Central

    ZINRAJH, DAVID; HÖRL, GERD; JÜRGENS, GÜNTHER; MARC, JANJA; SOK, MIHA; CERNE, DARKO

    2014-01-01

    Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression. PMID:24932311

  3. Increased phosphatidylethanolamine N-methyltransferase gene expression in non-small-cell lung cancer tissue predicts shorter patient survival.

    PubMed

    Zinrajh, David; Hörl, Gerd; Jürgens, Günther; Marc, Janja; Sok, Miha; Cerne, Darko

    2014-06-01

    Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression.

  4. Sites and Regulation of Polyamine Catabolism in the Tobacco Plant. Correlations with Cell Division/Expansion, Cell Cycle Progression, and Vascular Development1

    PubMed Central

    Paschalidis, Konstantinos A.; Roubelakis-Angelakis, Kalliopi A.

    2005-01-01

    We previously gave a picture of the homeostatic characteristics of polyamine (PA) biosynthesis and conjugation in tobacco (Nicotiana tabacum) plant organs during development. In this work, we present the sites and regulation of PA catabolism related to cell division/expansion, cell cycle progression, and vascular development in the tobacco plant. Diamine oxidase (DAO), PA oxidase (PAO), peroxidases (POXs), and putrescine N-methyltransferase expressions follow temporally and spatially discrete patterns in shoot apical cells, leaves (apical, peripheral, and central regions), acropetal and basipetal petiole regions, internodes, and young and old roots in developing plants. DAO and PAO produce hydrogen peroxide, a plant signal molecule and substrate for POXs. Gene expression and immunohistochemistry analyses reveal that amine oxidases in developing tobacco tissues precede and overlap with nascent nuclear DNA and also with POXs and lignification. In mature and old tissues, flow cytometry indicates that amine oxidase and POX activities, as well as pao gene and PAO protein levels, coincide with G2 nuclear phase and endoreduplication. In young versus the older roots, amine oxidases and POX expression decrease with parallel inhibition of G2 advance and endoreduplication, whereas putrescine N-methyltransferase dramatically increases. In both hypergeous and hypogeous tissues, DAO and PAO expression occurs in cells destined to undergo lignification, suggesting a different in situ localization. DNA synthesis early in development and the advance in cell cycle/endocycle are temporally and spatially related to PA catabolism and vascular development. PMID:16040649

  5. Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency.

    PubMed

    Schmidt, Andreas; Marescau, Bart; Boehm, Ernest A; Renema, W Klaas Jan; Peco, Ruben; Das, Anib; Steinfeld, Robert; Chan, Sharon; Wallis, Julie; Davidoff, Michail; Ullrich, Kurt; Waldschütz, Ralph; Heerschap, Arend; De Deyn, Peter P; Neubauer, Stefan; Isbrandt, Dirk

    2004-05-01

    We generated a knockout mouse model for guanidinoacetate N-methyltransferase (GAMT) deficiency (MIM 601240), the first discovered human creatine deficiency syndrome, by gene targeting in embryonic stem cells. Disruption of the open reading frame of the murine GAMT gene in the first exon resulted in the elimination of 210 of the 237 amino acids present in mGAMT. The creation of an mGAMT null allele was verified at the genetic, RNA and protein levels. GAMT knockout mice have markedly increased guanidinoacetate (GAA) and reduced creatine and creatinine levels in brain, serum and urine, which are key findings in human GAMT patients. In vivo (31)P magnetic resonance spectroscopy showed high levels of PGAA and reduced levels of creatine phosphate in heart, skeletal muscle and brain. These biochemical alterations were comparable to those found in human GAMT patients and can be attributed to the very similar GAMT expression patterns found by us in human and mouse tissues. We provide evidence that GAMT deficiency in mice causes biochemical adaptations in brain and skeletal muscle. It is associated with increased neonatal mortality, muscular hypotonia, decreased male fertility and a non-leptin-mediated life-long reduction in body weight due to reduced body fat mass. Therefore, GAMT knockout mice are a valuable creatine deficiency model for studying the effects of high-energy phosphate depletion in brain, heart, skeletal muscle and other organs.

  6. Melatonin biosynthesis enzymes recruit WRKY transcription factors to regulate melatonin accumulation and transcriptional activity on W-box in cassava.

    PubMed

    Wei, Yunxie; Liu, Guoyin; Chang, Yanli; Lin, Daozhe; Reiter, Russel J; He, Chaozu; Shi, Haitao

    2018-03-12

    Melatonin is widely involved in growth, development, and stress responses in plants. Although the melatonin synthesis enzymes have been identified in various plants, their interacting proteins remain unknown. Herein, overexpression of tryptophan decarboxylase 2 (MeTDC2)-interacting proteins, N-acetylserotonin O-methyltransferase 2 (MeASMT2) interacting proteins, and N-acetylserotonin O-methyltransferase 3 (MeASMT3) in cassava leaf protoplasts resulted in more melatonin than when other enzymes were overexpressed. Through yeast two-hybrid, 14 MeTDC2-interacting proteins, 24 MeASMT2 interacting proteins, and 9 MeASMT3-interacting proteins were identified. Notably, we highlighted MeWRKY20 and MeWRKY75 as common interacting proteins of the 3 enzymes, as evidenced by yeast two-hybrid, and in vivo bimolecular fluorescence complementation (BiFC). Moreover, co-overexpression of MeTDC2/MeASMT2/3 with MeWRKY20/75 in cassava leaf protoplasts did not only activated the transcriptional activities of MeWRKY20 and MeWRKY75 on W-box, but also induced the effects of MeTDC2, MeASMT2/3 on endogenous melatonin levels. Taken together, 3 melatonin synthesis enzymes (MeTDC2, MeASMT2/3) interact with MeWRKY20/75 to form a protein complex in cassava. This information significantly extends the knowledge of the complex modulation of plant melatonin signaling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Crystal structure of Rv2258c from Mycobacterium tuberculosis H37Rv, an S-adenosyl-l-methionine-dependent methyltransferase.

    PubMed

    Im, Ha Na; Kim, Hyoun Sook; An, Doo Ri; Jang, Jun Young; Kim, Jieun; Yoon, Hye-Jin; Yang, Jin Kuk; Suh, Se Won

    2016-03-01

    The Mycobacterium tuberculosis Rv2258c protein is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase (MTase). Here, we have determined its crystal structure in three forms: a ligand-unbound form, a binary complex with sinefungin (SFG), and a binary complex with S-adenosyl-L-homocysteine (SAH). The monomer structure of Rv2258c consists of two domains which are linked by a long α-helix. The N-terminal domain is essential for dimerization and the C-terminal domain has the Class I MTase fold. Rv2258c forms a homodimer in the crystal, with the N-terminal domains facing each other. It also exists as a homodimer in solution. A DALI structural similarity search with Rv2258c reveals that the overall structure of Rv2258c is very similar to small-molecule SAM-dependent MTases. Rv2258c interacts with the bound SFG (or SAH) in an extended conformation maintained by a network of hydrogen bonds and stacking interactions. Rv2258c has a relatively large hydrophobic cavity for binding of the methyl-accepting substrate, suggesting that bulky nonpolar molecules with aromatic rings might be targeted for methylation by Rv2258c in M. tuberculosis. However, the ligand-binding specificity and the biological role of Rv2258c remain to be elucidated due to high variability of the amino acid residues defining the substrate-binding site. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Computational Study of Symmetric Methylation on Histone Arginine Catalyzed by Protein Arginine Methyltransferase PRMT5 through QM/MM MD and Free Energy Simulations

    DOE PAGES

    Yue, Yufei; CHu, Yuzhuo; Guo, Hong

    2015-01-01

    Protein arginine methyltransferases (PRMTs) catalyze the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to arginine residues. There are three types of PRMTs (I, II and III) that produce different methylation products, including asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and monomethylarginine (MMA). Since these different methylations can lead to different biological consequences, understanding the origin of product specificity of PRMTs is of considerable interest. In this article, the quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations are performed to study SDMA catalyzed by the Type II PRMT5 on the basis of experimental observation that the dimethylated productmore » is generated through a distributive fashion. The simulations have identified some important interactions and proton transfers during the catalysis. Similar to the cases involving Type I PRMTs, a conserved Glu residue (Glu435) in PRMT5 is suggested to function as general base catalyst based on the result of the simulations. Moreover, our results show that PRMT5 has an energetic preference for the first methylation on N-1 followed by the second methylation on a different -guanidino nitrogen of arginine (N-2).The first and second methyl transfers are estimated to have free energy barriers of 19-20 and 18-19 kcal/mol respectively. The computer simulations suggest a distinctive catalytic mechanism of symmetric dimethylation that seems to be different from asymmetric dimethylation.« less

  9. No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats.

    PubMed

    Valtolina, Chiara; Vaandrager, Arie B; Favier, Robert P; Robben, Joris H; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan

    2015-11-09

    Feline hepatic lipidosis (FHL) is a common cholestatic disease affecting cats of any breed, age and sex. Both choline deficiency and low hepatic phosphatidylethanolamine N-methyltransferase (PEMT) activity are associated with hepatic lipidosis (HL) in humans, mice and rats. The PEMT expression is known to be upregulated by oestrogens, protecting the females in these species from the development of HL when exposed to choline deficient diets. The aim of the present study was to evaluate the influence of sex hormones on choline synthesis via the PEMT pathway in healthy male and female cats before and after spaying/neutering, when fed a diet with recommended dietary choline content. From six female and six male cats PEMT activity was assayed directly in liver biopsies taken before and after spaying/neutering, and assessed indirectly by analyses of PEMT-specific hepatic phosphatidylcholine (PC) species and plasma choline levels. Hepatic PEMT activity did not differ between intact female and male cats and no changes upon spaying/neutering were observed. Likewise, no significant differences in liver PC content and PEMT-specific polyunsaturated PC species were found between the sexes and before or after spaying/neutering. These results suggest that choline synthesis in cats differs from what is observed in humans, mice and rats. The lack of evident influence of sex hormones on the PEMT pathway makes it unlikely that spaying/neutering predisposes cats for HL by causing PC deficiency as suggested in other species.

  10. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase

    DOE PAGES

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.; ...

    2014-10-06

    Here, the phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical S n2-type methyl transfer frommore » S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.« less

  11. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.

    Here, the phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical S n2-type methyl transfer frommore » S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.« less

  12. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    PubMed

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising vaccine strategy for human paramyxoviruses. However, it remains a challenge to identify an attenuated virus strain that has an optimal balance between attenuation and immunogenicity. Using reverse genetics, we generated a panel of recombinant hMPVs that were specifically defective in ribose 2'-O methyltransferase (MTase) but not G-N-7 MTase. These MTase-defective hMPVs were genetically stable and sufficiently attenuated but retained high immunogenicity. This work highlights a critical role of 2'-O MTase in paramyxovirus replication and pathogenesis and a new avenue for the development of safe and efficacious live attenuated vaccines for hMPV and other human paramyxoviruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sukheung; Roberts, D.M.

    1990-07-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less

  14. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design.

    PubMed

    Benmansour, Fatiha; Trist, Iuni; Coutard, Bruno; Decroly, Etienne; Querat, Gilles; Brancale, Andrea; Barral, Karine

    2017-01-05

    With the aim to help drug discovery against dengue virus (DENV), a fragment-based drug design approach was applied to identify ligands targeting a main component of DENV replication complex: the NS5 AdoMet-dependent mRNA methyltransferase (MTase) domain, playing an essential role in the RNA capping process. Herein, we describe the identification of new inhibitors developed using fragment-based, structure-guided linking and optimization techniques. Thermal-shift assay followed by a fragment-based X-ray crystallographic screening lead to the identification of three fragment hits binding DENV MTase. We considered linking two of them, which bind to proximal sites of the AdoMet binding pocket, in order to improve their potency. X-ray crystallographic structures and computational docking were used to guide the fragment linking, ultimately leading to novel series of non-nucleoside inhibitors of flavivirus MTase, respectively N-phenyl-[(phenylcarbamoyl)amino]benzene-1-sulfonamide and phenyl [(phenylcarbamoyl)amino]benzene-1-sulfonate derivatives, that show a 10-100-fold stronger inhibition of 2'-O-MTase activity compared to the initial fragments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Global developmental delay in guanidionacetate methyltransferase deficiency: differences in formal testing and clinical observation.

    PubMed

    Verbruggen, Krijn T; Knijff, Wilma A; Soorani-Lunsing, Roelineke J; Sijens, Paul E; Verhoeven, Nanda M; Salomons, Gajja S; Goorhuis-Brouwer, Siena M; van Spronsen, Francjan J

    2007-09-01

    Guanidinoacetate N-methyltransferase (GAMT) deficiency is a defect in the biosynthesis of creatine (Cr). So far, reports have not focused on the description of developmental abilities in this disorder. Here, we present the result of formal testing of developmental abilities in a GAMT-deficient patient. Our patient, a 3-year-old boy with GAMT deficiency, presented clinically with a severe language production delay and nearly normal nonverbal development. Treatment with oral Cr supplementation led to partial restoration of the cerebral Cr concentration and a clinically remarkable acceleration of language production development. In contrast to clinical observation, formal testing showed a rather harmonic developmental delay before therapy and a general improvement, but no specific acceleration of language development after therapy. From our case, we conclude that in GAMT deficiency language delay is not always more prominent than delays in other developmental areas. The discrepancy between the clinical impression and formal testing underscores the importance of applying standardized tests in children with developmental delays. Screening for Cr deficiency by metabolite analysis of body fluids or proton magnetic resonance spectroscopy of the brain deficiency should be considered in any child with global developmental delay/mental retardation lacking clues for an alternative etiology.

  16. Enhanced O6-methylguanine-DNA methyltransferase activity in transgenic mice containing an integrated E. coli ada repair gene.

    PubMed

    Matsukuma, S; Nakatsuru, Y; Nakagawa, K; Utakoji, T; Sugano, H; Kataoka, H; Sekiguchi, M; Ishikawa, T

    1989-11-01

    The E. coli ada gene encodes O6-methylguanine DNA methyltransferase (O6MTase) which repairs the methylation of guanine at the O6 position in DNA. After recombination with a Chinese hamster metallothionein I gene promoter, the ada gene was microinjected into C3H/HeN mouse zygotes. Eventually, transgenic mice containing the ada fusion DNA were generated. The integrated ada DNA complex was transmitted to the progeny in a mode conforming to tandem integration at a single chromosome site, and homozygotes were also obtained from an inter-transgenic mouse cross. RNA transcripts of the chimeric ada gene were identified in the livers of these transgenic mice using dot and Northern blot analyses. O6MTase activity was increased in the liver of transgenic mice of line No. 708, and was more than 3 times the activity found in non-transgenic mice, especially in the transgenic homozygotes. The ada gene product was detected in the liver of a transgenic homozygote by immunoblot analysis. These transgenic mice have great potential for analysis of the role played by O6MTase in chemical carcinogenesis.

  17. DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora

    PubMed Central

    Gladyshev, Eugene; Kleckner, Nancy

    2017-01-01

    Eukaryotic genomes contain substantial amounts of repetitive DNA organized in the form of constitutive heterochromatin and associated with repressive epigenetic modifications, such as H3K9me3 and C5-cytosine methylation (5mC). In the fungus Neurospora crassa, H3K9me3 and 5mC are catalyzed, respectively, by a conserved SUV39 histone methyltransferase DIM-5 and a DNMT1-like cytosine methyltransferase DIM-2. Here we show that DIM-2 can also mediate Repeat-Induced Point mutation (RIP) of repetitive DNA in N. crassa. We further show that DIM-2-dependent RIP requires DIM-5, HP1, and other known heterochromatin factors, implying the role of a repeat-induced heterochromatin-related process. Our previous findings suggest that the mechanism of repeat recognition for RIP involves direct interactions between homologous double-stranded (ds) DNA segments. We thus now propose that, in somatic cells, homologous dsDNA/dsDNA interactions between a small number of repeat copies can nucleate a transient heterochromatic state, which, on longer repeat arrays, may lead to the formation of constitutive heterochromatin. PMID:28459455

  18. m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases.

    PubMed

    Du, Kunzhao; Zhang, Longbin; Lee, Trevor; Sun, Tao

    2018-06-16

    RNA modifications are involved in many aspects of biological functions. N6-methyladenosine (m 6 A) is one of the most important forms of RNA methylation and plays a vital role in regulating gene expression, protein translation, cell behaviors, and physiological conditions in many species, including humans. The dynamic and reversible modification of m 6 A is conducted by three elements: methyltransferases ("writers"), such as methyltransferase-like protein 3 (METTL3) and METTL14; m 6 A-binding proteins ("readers"), such as the YTH domain family proteins (YTHDFs) and YTH domain-containing protein 1 (YTHDC1); and demethylases ("erasers"), such as fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5). In this review, we summarize the current knowledge on mapping mRNA positions of m 6 A modification and revealing molecular processes of m 6 A. We further highlight the biological significance of m 6 A modification in neural cells during development of the nervous system and its association with human diseases. m 6 A RNA methylation is becoming a new frontier in neuroscience and should help us better understand neural development and neurological diseases from a novel point of view.

  19. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy.

    PubMed

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-07

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O(6)-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids.

  20. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy

    PubMed Central

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-01

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O6-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids. PMID:24367102

  1. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop.

    PubMed

    Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G

    2014-11-21

    Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-N(G)-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Uncovering the Protein Lysine and Arginine Methylation Network in Arabidopsis Chloroplasts

    PubMed Central

    Mininno, Morgane; Brugière, Sabine; Gilgen, Annabelle; Ma, Sheng; Mazzoleni, Meryl; Gigarel, Océane; Martin-Laffon, Jacqueline; Ferro, Myriam; Ravanel, Stéphane

    2014-01-01

    Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology. PMID:24748391

  3. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation.

    PubMed

    Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip

    2006-10-01

    Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation-DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.

  4. The Testis-Specific Factor CTCFL Cooperates with the Protein Methyltransferase PRMT7 in H19 Imprinting Control Region Methylation

    PubMed Central

    Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip

    2006-01-01

    Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation. PMID:17048991

  5. Catechol-O-Methyltransferase "Val[superscript 158]Met" Genotype, Parenting Practices and Adolescent Alcohol Use: Testing the Differential Susceptibility Hypothesis

    ERIC Educational Resources Information Center

    Laucht, Manfred; Blomeyer, Dorothea; Buchmann, Arlette F.; Treutlein, Jens; Schmidt, Martin H.; Esser, Gunter; Jennen-Steinmetz, Christine; Rietschel, Marcella; Zimmermann, Ulrich S.; Banaschewski, Tobias

    2012-01-01

    Background: Recently, first evidence has been reported for a gene-parenting interaction (G x E) with regard to adolescent alcohol use. The present investigation set out to extend this research using the catechol-O-methyltransferase ("COMT") "Val[superscript 158]Met" polymorphism as a genetic susceptibility factor. Moreover, the current study…

  6. Determination of the structure and catalytic mechanism of Sorghum bicolor caffeic acid O-methyltransferase and the structural impact of three brown midrib12 mutations

    USDA-ARS?s Scientific Manuscript database

    With S-adenosylmethionine (SAM) acting as the methyl donor, caffeic acid O-methyltransferase from Sorghum bicolor (SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde, to form sinapaldehyde. In order to determine the mechanism of SbCOMT and understand the red...

  7. METABOLISM AND TOXICITY OF AS IN HUMAN UROTHELIAL CELLS EXPRESSING RAT ARSENIC (+3 OXIDATION STATE)-METHYLTRANSFERASE

    EPA Science Inventory

    The enzymatic methylation of inorganic As (iAs) is catalyzed by As(+3 oxidation state)-methyltransferase (AS3MT). AS3MT is expressed in rat liver and in human hepatocytes However, AS3MT is not expressed in UROtsa, human urothelial cells that do not methylate iAs. Thus, UROtsa ce...

  8. Hsl7 is a substrate-specific type II protein arginine methyltransferase in yeast

    PubMed Central

    Sayegh, Joyce; Clarke, Steven G.

    2008-01-01

    The Saccharomyces cerevisiae protein Hsl7 is a regulator of the Swe1 protein kinase in cell cycle checkpoint control. Hsl7 has been previously described as a type III protein arginine methyltransferase, catalyzing the formation of ω-monomethylarginine residues on non-physiological substrates. However, we show here that Hsl7 can also display type II activity, generating symmetric dimethylarginine residues on calf thymus histone H2A. Symmetric dimethylation is only observed when enzyme and the methyl-accepting substrate were incubated for extended times. We confirmed the Hsl7-dependent formation of symmetric dimethylarginine by amino acid analysis and thin layer chromatography with wild type and mutant recombinant enzymes expressed from both bacteria and yeast. This result is significant because no type II activity has been previously demonstrated in S. cerevisiae. We also show that Hsl7 has little or no activity on GST-GAR, a commonly used substrate for protein arginine methyltransferases, and only minimal activity on myelin basic protein. This enzyme thus may only recognize only a small subset of potential substrate proteins in yeast, in contrast to the situation with Rmt1, the major type I methyltransferase. PMID:18515076

  9. Role of transmethylation reactions in alcoholic liver disease

    PubMed Central

    Kharbanda, Kusum K

    2007-01-01

    Alcoholic liver disease is a major health care problem worldwide. Findings from many laboratories, including ours, have demonstrated that ethanol feeding impairs several of the many steps involved in methionine metabolism. Ethanol consumption predominantly results in a decrease in the hepatocyte level of S-adenosylmethionine and the increases in two toxic metabolites, homocysteine and S-adenosylhomocysteine. These changes, in turn, result in serious functional consequences which include decreases in essential methylation reactions via inhibition of various methyltransferases. Of particular interest to our laboratory is the inhibition of three important enzymes, phosphatidylethanolamine methyltransferase, isoprenylcysteine carboxyl methyltransferase and protein L-isoaspartate methyltransferase. Decreased activity of these enzymes results in increased fat deposition, increased apoptosis and increased accumulation of damaged proteins-all of which are hallmark features of alcoholic liver injury. Of all the therapeutic modalities available, betaine has been shown to be the safest, least expensive and most effective in attenuating ethanol-induced liver injury. Betaine, by virtue of aiding in the remethylation of homocysteine, removes both toxic metabolites (homocysteine and S-adenosylhomocysteine), restores S-adenosylmethionine level, and reverses steatosis, apoptosis and damaged proteins accumulation. In conclusion, betaine appears to be a promising therapeutic agent in relieving the methylation and other defects associated with alcoholic abuse. PMID:17854136

  10. O6-Methylguanine DNA Methyltransferase Status Does Not Predict Response or Resistance to Alkylating Agents in Well-Differentiated Pancreatic Neuroendocrine Tumors.

    PubMed

    Raj, Nitya; Klimstra, David S; Horvat, Natally; Zhang, Liying; Chou, Joanne F; Capanu, Marinela; Basturk, Olca; Do, Richard Kinh Gian; Allen, Peter J; Reidy-Lagunes, Diane

    2017-07-01

    Alkylating agents have activity in well-differentiated pancreatic neuroendocrine tumors (WD panNETs). In glioblastoma multiforme, decreased activity of O-methylguanine DNA methyltransferase (MGMT) predicts response; in panNETs, MGMT relevance is unknown. We identified patients with WD panNETs treated with alkylating agents, determined best overall response by Response Evaluation Criteria In Solid Tumors (RECIST) 1.1, and performed MGMT activity testing. Fifty-six patients were identified; 26 (46%) of the 56 patients experienced partial response, 24 (43%) of 56 experienced stable disease, and 6 (11%) of 56 experienced progression of disease. O-methylguanine DNA methyltransferase status was available for 36 tumors. For tumors with partial response, 10 (67%) of 15 were MGMT deficient, and 5 (33%) of 15 were MGMT intact. For tumors with stable disease, 7 (47%) of 15 were MGMT deficient, and 8 (53%) of 15 were MGMT intact. For tumors with progression of disease, 3 (50%) of 6 were MGMT deficient, and 3 (50%) of 6 were MGMT intact. We observed response and resistance to alkylating agents in MGMT-deficient and MGMT-intact tumors. O-methylguanine DNA methyltransferase status should not guide alkylating agent therapy in WD panNETs.

  11. Aurora-B Regulates RNA Methyltransferase NSUN2

    PubMed Central

    Sakita-Suto, Shiho; Kanda, Akifumi; Suzuki, Fumio; Sato, Sunao; Takata, Takashi

    2007-01-01

    Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G1 phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis. PMID:17215513

  12. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    PubMed

    James, Allison E; Rogovskyy, Artem S; Crowley, Michael A; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.

  13. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  14. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.

    PubMed

    Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G

    2013-12-27

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.

  15. Highly Iterated Palindromic Sequences (HIPs) and Their Relationship to DNA Methyltransferases

    PubMed Central

    Elhai, Jeff

    2015-01-01

    The sequence GCGATCGC (Highly Iterated Palindrome, HIP1) is commonly found in high frequency in cyanobacterial genomes. An important clue to its function may be the presence of two orphan DNA methyltransferases that recognize internal sequences GATC and CGATCG. An examination of genomes from 97 cyanobacteria, both free-living and obligate symbionts, showed that there are exceptional cases in which HIP1 is at a low frequency or nearly absent. In some of these cases, it appears to have been replaced by a different GC-rich palindromic sequence, alternate HIPs. When HIP1 is at a high frequency, GATC- and CGATCG-specific methyltransferases are generally present in the genome. When an alternate HIP is at high frequency, a methyltransferase specific for that sequence is present. The pattern of 1-nt deviations from HIP1 sequences is biased towards the first and last nucleotides, i.e., those distinguish CGATCG from HIP1. Taken together, the results point to a role of DNA methylation in the creation or functioning of HIP sites. A model is presented that postulates the existence of a GmeC-dependent mismatch repair system whose activity creates and maintains HIP sequences. PMID:25789551

  16. Highly Iterated Palindromic Sequences (HIPs) and Their Relationship to DNA Methyltransferases.

    PubMed

    Elhai, Jeff

    2015-03-17

    The sequence GCGATCGC (Highly Iterated Palindrome, HIP1) is commonly found in high frequency in cyanobacterial genomes. An important clue to its function may be the presence of two orphan DNA methyltransferases that recognize internal sequences GATC and CGATCG. An examination of genomes from 97 cyanobacteria, both free-living and obligate symbionts, showed that there are exceptional cases in which HIP1 is at a low frequency or nearly absent. In some of these cases, it appears to have been replaced by a different GC-rich palindromic sequence, alternate HIPs. When HIP1 is at a high frequency, GATC- and CGATCG-specific methyltransferases are generally present in the genome. When an alternate HIP is at high frequency, a methyltransferase specific for that sequence is present. The pattern of 1-nt deviations from HIP1 sequences is biased towards the first and last nucleotides, i.e., those distinguish CGATCG from HIP1. Taken together, the results point to a role of DNA methylation in the creation or functioning of HIP sites. A model is presented that postulates the existence of a GmeC-dependent mismatch repair system whose activity creates and maintains HIP sequences.

  17. Gender-specific effects of prenatal stress on emotional reactivity and stress physiology of goat kids.

    PubMed

    Roussel, S; Boissy, A; Montigny, D; Hemsworth, P H; Duvaux-Ponter, C

    2005-03-01

    The aims of this study were to investigate the effects of maternal stress during pregnancy on the emotional reactivity, the hypothalamo-pituitary-adrenocortical (HPA) axis, and the sympatho-adrenomedullary (SAM) system of goat offspring according to their gender, and to investigate the role of maternal cortisol in prenatal stress effects. Goats were exposed to ten transports in isolation or ten ACTH injections (0.125 IU/kg body weight) during the last third of pregnancy. Control goats remained undisturbed. No effect of repeated transport during the last third of pregnancy was found on basal cortisol concentrations of the offspring. However, an increase in phenylethanolamine N-methyl transferase activity in the adrenals was observed in prenatally stressed kids compared to control kids (P = 0.031). In the presence of novelty, prenatally stressed female kids were more active (P = 0.049) than control females; they also showed more signs of arousal (P = 0.039) and tended to explore more of their environment (P = 0.053) in reaction to a startling stimulus. On the contrary, prenatally stressed male kids tended to be less active (P = 0.051) than control male kids but showed more signs of distress (P = 0.047) in the presence of novelty. Intermediate effects were found on the emotional reactivity to novelty of kids born from dams given injections of ACTH. In conclusion, transport stress in pregnant goats affects the sympatho-adrenomedullary system and the emotional reactivity of their offspring in a gender-specific manner. Moreover, the effects of prenatal transport and ACTH injections showed some similarities but differed in some critical details.

  18. Accelerated degradation of lignin by lignin peroxidase isozyme H8 (LiPH8) from Phanerochaete chrysosporium with engineered 4-O-methyltransferase from Clarkia breweri.

    PubMed

    Pham, Le Thanh Mai; Kim, Yong Hwan

    2014-11-01

    Free-hydroxyl phenolic units can decrease or even abort the catalytic activity of lignin peroxidase H8 during oxidation of veratryl alcohol and model lignin dimers, resulting in slow and inefficient lignin degradation. In this study we applied engineered 4-O-methyltransferase from Clarkia breweri to detoxify the inhibiting free-hydroxyl phenolic groups by converting them to methylated phenolic groups. The multistep, enzyme-catalyzed process that combines 4-O-methyltransferase and lignin peroxidase H8 suggested in this work can increase the efficiency of lignin-degradation. This study also suggests approaching the field of multi-enzyme in vitro systems to improve the understanding and development of plant biomass in biorefinery operations. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The catechol-O-methyltransferase (COMT) Val158Met genotype modulates working memory-related dorsolateral prefrontal response and performance in bipolar disorder.

    PubMed

    Miskowiak, K W; Kjaerstad, H L; Støttrup, M M; Svendsen, A M; Demant, K M; Hoeffding, L K; Werge, T M; Burdick, K E; Domschke, K; Carvalho, A F; Vieta, E; Vinberg, M; Kessing, L V; Siebner, H R; Macoveanu, J

    2017-05-01

    Cognitive dysfunction affects a substantial proportion of patients with bipolar disorder (BD), and genetic-imaging paradigms may aid in the elucidation of mechanisms implicated in this symptomatic domain. The Val allele of the functional Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene is associated with reduced prefrontal cortex dopamine and exaggerated working memory-related prefrontal activity. This functional magnetic resonance imaging (fMRI) study investigated for the first time whether the COMT Val158Met genotype modulates prefrontal activity during spatial working memory in BD. Sixty-four outpatients with BD in full or partial remission were stratified according to COMT Val158Met genotype (ValVal [n=13], ValMet [n=34], and MetMet [n=17]). The patients completed a spatial n-back working memory task during fMRI and the Cambridge Neuropsychological Test Automated Battery (CANTAB) Spatial Working Memory test outside the scanner. During high working memory load (2-back vs 1-back), Val homozygotes displayed decreased activity relative to ValMet individuals, with Met homozygotes displaying intermediate levels of activity in the right dorsolateral prefrontal cortex (dlPFC) (P=.016). Exploratory whole-brain analysis revealed a bilateral decrease in working memory-related dlPFC activity in the ValVal group vs the ValMet group which was not associated with differences in working memory performance during fMRI. Outside the MRI scanner, Val carriers performed worse in the CANTAB Spatial Working Memory task than Met homozygotes (P≤.006), with deficits being most pronounced in Val homozygotes. The association between Val allelic load, dlPFC activity and WM impairment points to a putative role of aberrant PFC dopamine tonus in the cognitive impairments in BD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wenbin; Cui Zhihong; Ao Lin

    To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. Themore » prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.« less

  1. Leucine 208 in human histamine N-methyltransferase emerges as a hotspot for protein stability rationalizing the role of the L208P variant in intellectual disability.

    PubMed

    Tongsook, Chanakan; Niederhauser, Johannes; Kronegger, Elena; Straganz, Grit; Macheroux, Peter

    2017-01-01

    The degradation of histamine catalyzed by the SAM-dependent histamine N-methyltransferase (HNMT) is critically important for the maintenance of neurological processes. Recently, two mutations in the encoding human gene were reported to give rise to dysfunctional protein variants (G60D and L208P) leading to intellectual disability. In the present study, we have expressed eight L208 variants with either apolar (L208F and L208V), polar (L208N and L208T) or charged (L208D, L208H, L208K and L208R) amino acids to define the impact of side chain variations on protein structure and function. We found that the variants L208N, L208T, L208D and L208H were severely compromised in their stability. The other four variants were obtained in lower amounts in the order wild-type HNMT>L208F=L208V>L208K=L208R. Biochemical characterization of the two variants L208F and L208V exhibited similar Michaelis-Menten parameters for SAM and histamine while the enzymatic activity was reduced to 21% and 48%, respectively. A substantial loss of enzymatic activity and binding affinity for histamine was seen for the L208K and L208R variants. Similarly the thermal stability for the latter variants was reduced by 8 and 13°C, respectively. These findings demonstrate that position 208 is extremely sensitive to side chain variations and even conservative replacements affect enzymatic function. Molecular dynamics simulations showed that amino acid replacements in position 208 perturb the helical character and disrupt interactions with the adjacent β-strand, which is involved in the binding and correct positioning of histamine. This finding rationalizes the gradual loss of enzymatic activity observed in the L208 variants. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. [Cytotoxicity of lysomustine and its isomers, and their potential use for selection of cells].

    PubMed

    Rozov, F N; Grinenko, T S; Levit, G L; Grishakov, A N; Beliavskiĭ, A V; Krasnov, V P

    2011-01-01

    N epsilon-Nitroso-N epsilon- [N'-(2-chloroethyl)carbamoyl]-L-lysine (I) and N epsilon- [N'-(2-chloroethyl)-N'-nitrosocarbamoyl]-L-lysine (II), the isomers being the constituents of antitumor agent Lysomustine, were obtained by RFHPLC. The study of cytotoxicity of the above compounds against K562 cells showed that the lesions induced by isomer (II) produce a significant cytotoxic effect but can be efficiently repaired by the action of MGMT (O6-methylaguanine DNA methyltransferase). Under similar conditions, the lesions induced by isomer (I) produce substantially smaller effect but are weakly if at all repairable by MGMT. The effects of a clinically approved agent Lysomustine, which is the mixture of isomers (I) and (II), are similar to those of isomer (II). The results obtained point to a different chemical nature of DNA lesions induced by two Lysomustine isomers. Our data indicate that Lysomustine and its isomer (II) can be used for in vitro selection of cells expressing MGMT.

  3. Methylation of Arsenic by Recombinant Human Wild-Type Arsenic (+3 Oxidation State) Methyltransferase and its Methionine 287 Threonine (M287T) Polymorph

    EPA Science Inventory

    ABSTRACT Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency...

  4. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    PubMed

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks.

  5. A novel non-SET domain multi-subunit methyltransferase required for sequential nucleosomal histone H3 methylation by the mixed lineage leukemia protein-1 (MLL1) core complex.

    PubMed

    Patel, Anamika; Vought, Valarie E; Dharmarajan, Venkatasubramanian; Cosgrove, Michael S

    2011-02-04

    Gene expression within the context of eukaryotic chromatin is regulated by enzymes that catalyze histone lysine methylation. Histone lysine methyltransferases that have been identified to date possess the evolutionarily conserved SET or Dot1-like domains. We previously reported the identification of a new multi-subunit histone H3 lysine 4 methyltransferase lacking homology to the SET or Dot1 family of histone lysine methyltransferases. This enzymatic activity requires a complex that includes WRAD (WDR5, RbBP5, Ash2L, and DPY-30), a complex that is part of the MLL1 (mixed lineage leukemia protein-1) core complex but that also exists independently of MLL1 in the cell. Here, we report that the minimal complex required for WRAD enzymatic activity includes WDR5, RbBP5, and Ash2L and that DPY-30, although not required for enzymatic activity, increases the histone substrate specificity of the WRAD complex. We also show that WRAD requires zinc for catalytic activity, displays Michaelis-Menten kinetics, and is inhibited by S-adenosyl-homocysteine. In addition, we demonstrate that WRAD preferentially methylates lysine 4 of histone H3 within the context of the H3/H4 tetramer but does not methylate nucleosomal histone H3 on its own. In contrast, we find that MLL1 and WRAD are required for nucleosomal histone H3 methylation, and we provide evidence suggesting that each plays distinct structural and catalytic roles in the recognition and methylation of a nucleosome substrate. Our results indicate that WRAD is a new H3K4 methyltransferase with functions that include regulating the substrate and product specificities of the MLL1 core complex.

  6. Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?

    PubMed Central

    Bayraktar, Gonca; Kreutz, Michael R.

    2017-01-01

    DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders. PMID:28513272

  7. Specialized (iso)eugenol-4-O-methyltransferases (s-IEMTs) and methods of making and using the same

    DOEpatents

    Liu, Chang-Jun; Cai, Yuanheng

    2017-01-31

    Specialized (iso)eugenol 4-O-methyltransferase (s-IEMT) enzymes having increased capacity for methylation of monolignols are disclosed. The s-IEMTs have unique activity favoring methylation of coniferyl alcohol versus sinapyl alcohol. Various s-IEMTs methylate ferulic acid. Means for producing the various s-IEMTs are provided. The s-IEMTs are useful for modification of lignin content and production of aromatic compounds.

  8. Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by HhaI methyltransferase | Center for Cancer Research

    Cancer.gov

    HHAI methyltransferase (blue ribbon) bound to oligonucleotide (strands with bonds colored yellow and green) containing a pseudorotationally constrained sugar analogue at the target position (orange bonds with cyan atoms). The south-constrained pseudosugar is rotated about its flanking phosphodiester bonds, 90° from its initial position in B-form DNA, but short of a completely

  9. The Flexible Mind Is Associated with the Catechol-O-Methyltransferase (COMT) Val[superscript 158]Met Polymorphism: Evidence for a Role of Dopamine in the Control of Task-Switching

    ERIC Educational Resources Information Center

    Colzato, Lorenza S.; Waszak, Florian; Nieuwenhuis, Sander; Posthuma, Danielle; Hommel, Bernhard

    2010-01-01

    Genetic variability related to the catechol-O-methyltransferase (COMT) gene Val[superscript 128]Met polymorphism) has received increasing attention as a possible modulator of cognitive control functions. Recent evidence suggests that the Val[superscript 128]Met genotype may differentially affect cognitive stability and flexibility, in such a way…

  10. Premethylation of Foreign DNA Improves Integrative Transformation Efficiency in Synechocystis sp. Strain PCC 6803

    PubMed Central

    Wang, Bo; Yu, Jianping

    2015-01-01

    Restriction digestion of foreign DNA is one of the key biological barriers against genetic transformation in microorganisms. To establish a high-efficiency transformation protocol in the model cyanobacterium, Synechocystis sp. strain PCC 6803 (Synechocystis 6803), we investigated the effects of premethylation of foreign DNA on the integrative transformation of this strain. In this study, two type II methyltransferase-encoding genes, i.e., sll0729 (gene M) and slr0214 (gene C), were cloned from the chromosome of Synechocystis 6803 and expressed in Escherichia coli harboring an integration plasmid. After premethylation treatment in E. coli, the integration plasmid was extracted and used for transformation of Synechocystis 6803. The results showed that although expression of methyltransferase M had little impact on the transformation of Synechocystis 6803, expression of methyltransferase C resulted in 11- to 161-fold-higher efficiency in the subsequent integrative transformation of Synechocystis 6803. Effective expression of methyltransferase C, which could be achieved by optimizing the 5′ untranslated region, was critical to efficient premethylation of the donor DNA and thus high transformation efficiency in Synechocystis 6803. Since premethylating foreign DNA prior to transforming Synechocystis avoids changing the host genetic background, the study thus provides an improved method for high-efficiency integrative transformation of Synechocystis 6803. PMID:26452551

  11. Methylated nucleosides in tRNA and tRNA methyltransferases

    PubMed Central

    Hori, Hiroyuki

    2014-01-01

    To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed. PMID:24904644

  12. Case study for the evaluation of current treatment recommendations of guanidinoacetate methyltransferase deficiency: ineffectiveness of sodium benzoate.

    PubMed

    Mercimek-Mahmutoglu, Saadet; Salomons, Gajja S; Chan, Alicia

    2014-07-01

    Guanidinoacetate methyltransferase deficiency is an autosomal recessively inherited disorder of creatine biosynthesis. We report a new patient with guanidinoacetate methyltransferase deficiency and her >3-year treatment outcome. This is a 6-year-old girl who was diagnosed with guanidinoacetate methyltransferase deficiency at the age of 28 months. She presented with moderate global developmental delay, one afebrile seizure, and hypotonia between 6 and 18 months of life. She was treated with creatine and ornithine supplementation and a strict arginine-restricted diet for 42 months. Mutation analysis (compound heterozygous mutations, a known c.327G>A and a novel c.58dupT [p.Trp20LeufsX65]) and enzyme studies in primary fibroblasts confirmed the diagnosis. After 33 months of therapy, her cerebrospinal fluid guanidinoacetate level decreased from 47 to 5.3 times the normal level. Brain creatine by proton magnetic resonance spectroscopy increased by >75% but did not normalize in the basal ganglia and white matter after 3 years of therapy. Additional treatment with sodium benzoate for 17 months did not further improve plasma guanidinoacetate levels, which questions the relevance of this therapy. Treatment did not improve moderate intellectual disability or normalize guanidinoacetate accumulation in the central nervous system. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  13. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode

    PubMed Central

    Wagner, Tristan; Ermler, Ulrich; Shima, Seigo

    2016-01-01

    In the three domains of life, vitamin B12 (cobalamin) is primarily used in methyltransferase and isomerase reactions. The methyltransferase complex MtrA–H of methanogenic archaea has a key function in energy conservation by catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme M and its coupling with sodium-ion translocation. The cobalamin-binding subunit MtrA is not homologous to any known B12-binding proteins and is proposed as the motor of the sodium-ion pump. Here, we present crystal structures of the soluble domain of the membrane-associated MtrA from Methanocaldococcus jannaschii and the cytoplasmic MtrA homologue/cobalamin complex from Methanothermus fervidus. The MtrA fold corresponds to the Rossmann-type α/β fold, which is also found in many cobalamin-containing proteins. Surprisingly, the cobalamin-binding site of MtrA differed greatly from all the other cobalamin-binding sites. Nevertheless, the hydrogen-bond linkage at the lower axial-ligand site of cobalt was equivalently constructed to that found in other methyltransferases and mutases. A distinct polypeptide segment fixed through the hydrogen-bond linkage in the relaxed Co(III) state might be involved in propagating the energy released upon corrinoid demethylation to the sodium-translocation site by a conformational change. PMID:27324530

  14. A novel BLAST-Based Relative Distance (BBRD) method can effectively group members of protein arginine methyltransferases and suggest their evolutionary relationship.

    PubMed

    Wang, Yi-Chun; Wang, Jing-Doo; Chen, Chin-Han; Chen, Yi-Wen; Li, Chuan

    2015-03-01

    We developed a novel BLAST-Based Relative Distance (BBRD) method by Pearson's correlation coefficient to avoid the problems of tedious multiple sequence alignment and complicated outgroup selection. We showed its application on reconstructing reliable phylogeny for nucleotide and protein sequences as exemplified by the fmr-1 gene and dihydrolipoamide dehydrogenase, respectively. We then used BBRD to resolve 124 protein arginine methyltransferases (PRMTs) that are homologues of nine mammalian PRMTs. The tree placed the uncharacterized PRMT9 with PRMT7 in the same clade, outside of all the Type I PRMTs including PRMT1 and its vertebrate paralogue PRMT8, PRMT3, PRMT6, PRMT2 and PRMT4. The PRMT7/9 branch then connects with the type II PRMT5. Some non-vertebrates contain different PRMTs without high sequence homology with the mammalian PRMTs. For example, in the case of Drosophila arginine methyltransferase (DART) and Trypanosoma brucei methyltransferases (TbPRMTs) in the analyses, the BBRD program grouped them with specific clades and thus suggested their evolutionary relationships. The BBRD method thus provided a great tool to construct a reliable tree for members of protein families through evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Catechol-O-methyltransferase (COMT) genotype affects cognitive control during total sleep deprivation.

    PubMed

    Satterfield, Brieann C; Hinson, John M; Whitney, Paul; Schmidt, Michelle A; Wisor, Jonathan P; Van Dongen, Hans P A

    2018-02-01

    Adaptive decision making is profoundly impaired by total sleep deprivation (TSD). This suggests that TSD impacts fronto-striatal pathways involved in cognitive control, where dopamine is a key neuromodulator. In the prefrontal cortex (PFC), dopamine is catabolized by the enzyme catechol-O-methyltransferase (COMT). A functional polymorphism (Val158Met) influences COMT's enzymatic activity, resulting in markedly different levels of prefrontal dopamine. We investigated the effect of this polymorphism on adaptive decision making during TSD. Sixty-six healthy young adults participated in one of two in-laboratory studies. After a baseline day, subjects were randomized to either a TSD group (n = 32) with 38 h or 62 h of extended wakefulness or a well-rested control group (n = 34) with 10 h nighttime sleep opportunities. Subjects performed a go/no-go reversal learning (GNGr) task at well-rested baseline and again during TSD or equivalent control. During the task, subjects were required to learn stimulus-response relationships from accuracy feedback. The stimulus-response relationships were reversed halfway through the task, which required subjects to learn the new stimulus-response relationships from accuracy feedback. Performance on the GNGr task was quantified by discriminability (d') between go and no-go stimuli before and after the stimulus-response reversal. GNGr performance did not differ between COMT genotypes when subjects were well-rested. However, TSD exposed a significant vulnerability to adaptive decision making impairment in subjects with the Val allele. Our results indicate that sleep deprivation degrades cognitive control through a fronto-striatal, dopaminergic mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells.

    PubMed

    Bera, Soumen; Wallimann, Theo; Ray, Subhankar; Ray, Manju

    2008-12-01

    The creatine/creatine kinase system decreases drastically in sarcoma. In the present study, an investigation of catalytic activities, western blot and mRNA expression unambiguously demonstrates the prominent expression of the creatine-synthesizing enzymes l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase in sarcoma, Ehrlich ascites carcinoma and Sarcoma 180 cells, whereas both enzymes were virtually undetectable in normal muscle. Compared to that of normal animals, these enzymes remained unaffected in the kidney or liver of sarcoma-bearing mice. High activity and expression of mitochondrial arginase II in sarcoma indicated increased ornithine formation. Slightly or moderately higher levels of ornithine, guanidinoacetate and creatinine were observed in sarcoma compared to muscle. Despite the intrinsically low level of creatine in Ehrlich ascites carcinoma and Sarcoma 180 cells, these cells could significantly take up and release creatine, suggesting a functional creatine transport, as verified by measuring mRNA levels of creatine transporter. Transcript levels of arginase II, ornithine-decarboxylase, S-adenosyl-homocysteine hydrolase and methionine-synthase were significantly upregulated in sarcoma and in Ehrlich ascites carcinoma and Sarcoma 180 cells. Overall, the enzymes related to creatine and arginine/methionine metabolism were found to be significantly upregulated in malignant cells. However, the low levels of creatine kinase in the same malignant cells do not appear to be sufficient for the building up of an effective creatine/phosphocreatine pool. Instead of supporting creatine biosynthesis, l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase appear to be geared to support cancer cell metabolism in the direction of polyamine and methionine synthesis because both these compounds are in high demand in proliferating cancer cells.

  17. Dimethylethanolamine does not prevent liver failure in phosphatidylethanolamine N-methyltransferase-deficient mice fed a choline-deficient diet.

    PubMed

    Waite, Kristin A; Vance, Dennis E

    2004-03-22

    Mice that lack phosphatidylethanolamine-N-methyltransferase (PEMT) and are fed a choline-deficient (CD) diet suffer severe liver damage and do not survive. Since phosphatidyldimethylethanolamine (PDME) has physical properties similar to those of phosphatidylcholine (PC), we hypothesized that dimethylethanolamine (DME) would be converted into PDME that might substitute for PC, and therefore abrogate the liver damage in the Pemt -/- mice fed a CD diet. We fed Pemt -/- mice either a CD diet, a CD diet supplemented with choline, or a CD diet supplemented with DME (CD + DME). Pemt -/- mice fed the CD diet developed severe liver failure by 4 days while CD + DME-fed mice developed severe liver failure by 5 days. The hepatic PC level in choline-supplemented (CS) mice was 67 +/- 4 nmol/mg protein, whereas the PC content was reduced in CD- and CD + DME-fed mice (49 +/- 3 and 30 +/- 3 nmol/mg protein, respectively). Upon supplementation of the CD diet with DME the amount of hepatic PDME was 81 +/- 9 nmol/mg protein so that the hepatic content of PC + PDME combined was 111 nmol/mg protein. Moreover, plasma apolipoprotein B100 and Al levels were markedly lower in mice fed the CD + DME diet compared to mice fed the CS diet, as was the plasma content of PC. Thus, despite replacement of the deficit in hepatic PC with PDME in Pemt -/- mice fed a CD diet, normal liver function was not restored. We conclude that although PC and PDME exhibit similar physical properties, the three methyl groups of choline are required for hepatic function in mice.

  18. Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis

    PubMed Central

    Martínez-Uña, Maite; Varela-Rey, Marta; Cano, Ainara; Fernández-Ares, Larraitz; Beraza, Naiara; Aurrekoetxea, Igor; Martínez-Arranz, Ibon; García-Rodríguez, Juan L; Buqué, Xabier; Mestre, Daniela; Luka, Zigmund; Wagner, Conrad; Alonso, Cristina; Finnell, Richard H; Lu, Shelly C; Martínez-Chantar, M Luz; Aspichueta, Patricia; Mato, José M

    2013-01-01

    Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are the primary genes involved in hepatic S-adenosylmethionine (SAMe) synthesis and degradation, respectively. Mat1a ablation in mice induces a decrease in hepatic SAMe, activation of lipogenesis, inhibition of triglyceride (TG) release, and steatosis. Gnmt deficient mice, despite showing a large increase in hepatic SAMe, also develop steatosis. We hypothesized that as an adaptive response to hepatic SAMe accumulation, phosphatidylcholine (PC) synthesis via the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway is stimulated in Gnmt−/− mice. We also propose that the excess PC thus generated is catabolized leading to TG synthesis and steatosis via diglyceride (DG) generation. We observed that Gnmt−/− mice present with normal hepatic lipogenesis and increased TG release. We also observed that the flux from PE to PC is stimulated in the liver of Gnmt−/− mice and that this results in a reduction in PE content and a marked increase in DG and TG. Conversely, reduction of hepatic SAMe following the administration of a methionine deficient diet reverted the flux from PE to PC of Gnmt−/− mice to that of wild type animals and normalized DG and TG content preventing the development of steatosis. Gnmt−/− mice with an additional deletion of perilipin2, the predominant lipid droplet protein, maintain high SAMe levels, with a concurrent increased flux from PE to PC, but do not develop liver steatosis. Conclusion These findings indicate that excess SAMe reroutes PE towards PC and TG synthesis, and lipid sequestration. PMID:23505042

  19. Validation of a high-performance liquid chromatography method for thiopurine S-methyltransferase activity in whole blood using 6-mercaptopurine as substrate.

    PubMed

    Rieger, Hannah; Schmidt, Patrik; Schaeffeler, Elke; Abe, Manabu; Schiffhauer, Mira; Schwab, Matthias; von Ahsen, Nicolas; Zurek, Gabriela; Kirchherr, Hartmut; Shipkova, Maria; Wieland, Eberhard

    2018-04-25

    Variation in metabolism, toxicity and therapeutic efficacy of thiopurine drugs is largely influenced by genetic polymorphisms in the thiopurine S-methyltransferase (TPMT) gene. Determination of TPMT activity is routinely performed in patients to adjust drug therapy. We further optimized a previously established high-performance liquid chromatography (HPLC) method by measuring TPMT activity in whole blood instead of isolated erythrocytes, which is based on conversion of 6-mercaptopurine to 6-methylmercaptopurine using S-adenosyl-methionine as methyl donor. The simplified TPMT whole-blood method showed similar or better analytical and diagnostic performance compared with the former erythrocyte assay. The whole-blood method was linear for TPMT activities between 0 and 40 nmol/(mL·h) with a quantification limit of 0.1 nmol/(mL·h). Within-day imprecision and between-day imprecision were ≤5.1% and ≤8.5%, respectively. The optimized method determining TPMT activity in whole blood (y) showed agreement with the former method determining TPMT activity in erythrocytes (x) (n=45, y=1.218+0.882x; p>0.05). Phenotype-genotype concordance (n=300) of the whole-blood method was better when TPMT activity was expressed per volume of whole blood (specificity 92.2%), whereas correction for hematocrit resulted in lower genotype concordance (specificity 86.9%). A new cutoff for the whole-blood method to distinguish normal from reduced TPMT activity was determined at ≤6.7 nmol/(mL·h). This optimized TPMT phenotyping assay from whole blood using 6-MP as substrate is suitable for research and routine clinical analysis.

  20. Understanding the catalytic mechanism of xanthosine methyltransferase in caffeine biosynthesis from QM/MM molecular dynamics and free energy simulations

    DOE PAGES

    Qian, Ping; Guo, Hao -Bo; Yue, Yufei; ...

    2016-08-02

    S-Adenosyl-l-methionine (SAM) dependent xanthosine methyltransferase (XMT) is the key enzyme that catalyzes the first methyl transfer in the caffeine biosynthesis pathway to produce the intermediate 7-methylxanthosine (7mXR). Although XMT has been a subject of extensive discussions, the catalytic mechanism and nature of the substrate involved in the catalysis are still unclear. Here in this paper, quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (potential of mean force or PMF) simulations are undertaken to determine the catalytic mechanism of the XMT-catalyzed reaction. Both xanthosine and its monoanionic form with N3 deprotonated are used as the substrates for the methylation.more » It is found that while the methyl group can be transferred to the monoanionic form of xanthosine with a reasonable free energy barrier (about 17 kcal/mol), that is not the case for the neutral xanthosine. The results suggest that the substrate for the first methylation step in the caffeine biosynthesis pathway is likely to be the monoanionic form of xanthosine rather than the neutral form as widely adopted. This conclusion is supported by the p K a value on N3 of xanthosine both measured in aqueous phase and calculated in the enzymatic environment. As a result, the structural and dynamics information from both the X-ray structure and MD simulations is also consistent with the monoanionic xanthosine scenario. Finally, we discuss the implications of this conclusion for caffeine biosynthesis.« less

  1. Understanding the catalytic mechanism of xanthosine methyltransferase in caffeine biosynthesis from QM/MM molecular dynamics and free energy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Ping; Guo, Hao -Bo; Yue, Yufei

    S-Adenosyl-l-methionine (SAM) dependent xanthosine methyltransferase (XMT) is the key enzyme that catalyzes the first methyl transfer in the caffeine biosynthesis pathway to produce the intermediate 7-methylxanthosine (7mXR). Although XMT has been a subject of extensive discussions, the catalytic mechanism and nature of the substrate involved in the catalysis are still unclear. Here in this paper, quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (potential of mean force or PMF) simulations are undertaken to determine the catalytic mechanism of the XMT-catalyzed reaction. Both xanthosine and its monoanionic form with N3 deprotonated are used as the substrates for the methylation.more » It is found that while the methyl group can be transferred to the monoanionic form of xanthosine with a reasonable free energy barrier (about 17 kcal/mol), that is not the case for the neutral xanthosine. The results suggest that the substrate for the first methylation step in the caffeine biosynthesis pathway is likely to be the monoanionic form of xanthosine rather than the neutral form as widely adopted. This conclusion is supported by the p K a value on N3 of xanthosine both measured in aqueous phase and calculated in the enzymatic environment. As a result, the structural and dynamics information from both the X-ray structure and MD simulations is also consistent with the monoanionic xanthosine scenario. Finally, we discuss the implications of this conclusion for caffeine biosynthesis.« less

  2. Human Calmodulin Methyltransferase: Expression, Activity on Calmodulin, and Hsp90 Dependence

    PubMed Central

    Magen, Sophia; Magnani, Roberta; Haziza, Sitvanit; Hershkovitz, Eli; Houtz, Robert; Cambi, Franca; Parvari, Ruti

    2012-01-01

    Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34) has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes. PMID:23285036

  3. Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence.

    PubMed

    Magen, Sophia; Magnani, Roberta; Haziza, Sitvanit; Hershkovitz, Eli; Houtz, Robert; Cambi, Franca; Parvari, Ruti

    2012-01-01

    Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34) has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2(nd) known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.

  4. Plant isoflavone and isoflavanone O-methyltransferase genes

    DOEpatents

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  5. Chromosomal 16S Ribosomal RNA Methyltransferase RmtE1 in Escherichia coli Sequence Type 448

    PubMed Central

    Li, Bin; Pacey, Marissa P.

    2017-01-01

    We identified rmtE1, an uncommon 16S ribosomal methyltransferase gene, in an aminoglycoside- and cephalosporin-resistant Escherichia coli sequence type 448 clinical strain co-harboring blaCMY-2. Long-read sequencing revealed insertion of a 101,257-bp fragment carrying both resistance genes to the chromosome. Our findings underscore E. coli sequence type 448 as a potential high-risk multidrug-resistant clone. PMID:28418308

  6. A case of recurrent pancytopenia in a patient with acute promyelocytic leukemia on maintenance chemotherapy and concomitant methyltetrahydrofolate reductase and thiopurine S-methyltransferase mutation - review of literature.

    PubMed

    Keung, Yi-Kong; Keung, Lap-Woon; Hong-Lung Hu, Eddie

    2016-06-01

    Pharmacogenetics is a study of how genetic variation of an individual affects the drug response. We report a case of recurrent pancytopenia resulting from maintenance chemotherapy in a patient with acute promyelocytic leukemia and two pharmacogenetic mutations, namely, methylene tetrahydrofolate reductase C677T homozygous mutation and thiopurine methyltransferase mutation. © The Author(s) 2015.

  7. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond.

    PubMed

    Boehm, Daniela; Ott, Melanie

    2017-11-01

    A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.

  8. An Iterative O-Methyltransferase Catalyzes 1,11-Dimethylation of Aspergillus fumigatus Fumaric Acid Amides.

    PubMed

    Kalb, Daniel; Heinekamp, Thorsten; Schieferdecker, Sebastian; Nett, Markus; Brakhage, Axel A; Hoffmeister, Dirk

    2016-10-04

    S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, Rebecca S.; Webb, Kristofor J.; Clarke, Steven G., E-mail: clarke@mbi.ucla.edu

    2010-01-22

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These resultsmore » are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  11. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in Hhai methyltransferase that is in contact with DNA bases.

    PubMed Central

    Gopal, J; Yebra, M J; Bhagwat, A S

    1994-01-01

    The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework. Images PMID:7971279

  12. Development of Carbocyanine Dyes for PRMT Inhibition and Imaging

    PubMed Central

    Sinha, Sarmistha Halder; Owens, Eric A.; Feng, You; Yang, Yutao; Xie, Yan; Tu, Yaping; Henary, Maged; Zheng, Yujun George

    2014-01-01

    Summary Protein arginine methylation regulates multiple biological processes. Deregulation of protein arginine methyltransferase (PRMT) activities has been observed in many disease phenotypes. Small molecule probes that target PRMTs with strong affinity and selectivity can be used as valuable tools to dissect biological mechanisms of arginine methylation and establish the role of PRMT proteins in a disease process. In this work, we report synthesis and evaluation of a class of carbocyanine compounds containing indolium, benz[e]indolium or benz[c,d]indolium heterocyclic moieties that bind to the predominant arginine methyltransferase PRMT1 and inhibit its methyltransferase activity at low micromolar potencies. In particular, the developed molecules have long wavelength colorimetric and fluorometric photoactivities, which can be used for optical and near-infrared fluorescence imaging in cells or biological tissues. Together, these new chemical probes have potential application in PRMT studies both as enzyme inhibitors and as fluorescent dyes for microscope imaging. PMID:22749641

  13. Absence of a direct role of phospholipid methylation in stimulus-secretion coupling and control of adenylate cyclase in guinea-pig and rat parotid gland.

    PubMed Central

    Padel, U; Unger, C; Söling, H D

    1982-01-01

    The present study was undertaken to investigate a possible involvement of phospholipid methyltransferases in the coupling of receptor-mediated stimulation to secretion. Phospholipid methyltransferases were assayed in isolated parotid acini in the presence of carbamoylcholine or isoprenaline. Carbamoylcholine reduced the incorporation of methyl groups into phospholipids, whereas isoprenaline showed no effect. Amylase secretion stimulated either by carbamoylcholine or by isoprenaline could not be affected by inhibitors of methyltransferases (3-deaza-adenosine alone or plus homocysteine thiolactone) under conditions where phospholipid methylation was strongly inhibited. The activity of adenylate cyclase in isolated parotid microsomal membranes was not inhibited or stimulated by S-adenosyl-homocysteine or -methionine respectively. These results indicate that phospholipid methylation does not play an essential role in stimulus-secretion coupling in the parotid gland. PMID:6186246

  14. The R882H DNMT3A Mutation Associated with AML Dominantly Inhibits WT DNMT3A by Blocking its Ability to Form Active Tetramers

    PubMed Central

    Russler-Germain, David A.; Spencer, David H.; Young, Margaret A.; Lamprecht, Tamara L.; Miller, Christopher A.; Fulton, Robert; Meyer, Matthew R.; Erdmann-Gilmore, Petra; Townsend, R. Reid; Wilson, Richard K.; Ley, Timothy J.

    2014-01-01

    Summary Somatic mutations in DNMT3A, which encodes a de novo DNA methyltransferase, are found in ~30% of normal karyotype acute myeloid leukemia (AML) cases. Most mutations are heterozygous and alter R882 within the catalytic domain (most commonly R882H), suggesting the possibility of dominant negative consequences. The methyltransferase activity of R882H DNMT3A is reduced by ~80% compared to the WT enzyme. In vitro mixing of WT and R882H DNMT3A does not affect the WT activity but co-expression of the two proteins in cells profoundly inhibits the WT enzyme by disrupting its ability to homotetramerize. AML cells with the R882H mutation have severely reduced de novo methyltransferase activity and focal hypomethylation at specific CpGs throughout AML cell genomes. PMID:24656771

  15. The role of protein methyltransferases as potential novel therapeutic targets in squamous cell carcinoma of the head and neck.

    PubMed

    Saloura, Vassiliki; Vougiouklakis, Theodore; Sievers, Cem; Burkitt, Kyunghee; Nakamura, Yusuke; Hager, Gordon; van Waes, Carter

    2018-06-01

    Squamous cell carcinoma of the head and neck is a lethal disease with suboptimal survival outcomes and standard therapies with significant comorbidities. Whole exome sequencing data recently revealed an abundance of genetic and expression alterations in a family of enzymes known as protein methyltransferases in a variety of cancer types, including squamous cell carcinoma of the head and neck. These enzymes are mostly known for their chromatin-modifying functions through methylation of various histone substrates, though evidence supports their function also through methylation of non-histone substrates. This review summarizes the current knowledge on the function of protein methyltransferases in squamous cell carcinoma of the head and neck and highlights their promising potential as the next generation of therapeutic targets in this disease. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Crystal structure of RlmAI: Implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site

    PubMed Central

    Das, Kalyan; Acton, Thomas; Chiang, Yiwen; Shih, Lydia; Arnold, Eddy; Montelione, Gaetano T.

    2004-01-01

    The RlmA class of enzymes (RlmAI and RlmAII) catalyzes N1-methylation of a guanine base (G745 in Gram-negative and G748 in Gram-positive bacteria) of hairpin 35 of 23S rRNA. We have determined the crystal structure of Escherichia coli RlmAI at 2.8-Å resolution, providing 3D structure information for the RlmA class of RNA methyltransferases. The dimeric protein structure exhibits features that provide new insights into its molecular function. Each RlmAI molecule has a Zn-binding domain, responsible for specific recognition and binding of its rRNA substrate, and a methyltransferase domain. The asymmetric RlmAI dimer observed in the crystal structure has a well defined W-shaped RNA-binding cleft. Two S-adenosyl-l-methionine substrate molecules are located at the two valleys of the W-shaped RNA-binding cleft. The unique shape of the RNA-binding cleft, different from that of known RNA-binding proteins, is highly specific and structurally complements the 3D structure of hairpin 35 of bacterial 23S rRNA. Apart from the hairpin 35, parts of hairpins 33 and 34 also interact with the RlmAI dimer. PMID:14999102

  17. Insulin and adenosine regulate the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes.

    PubMed

    Kiechle, F L; Sykes, E; Artiss, J D

    1995-01-01

    Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.

  18. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases.

    PubMed Central

    McClelland, M; Nelson, M; Raschke, E

    1994-01-01

    Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes. PMID:7937074

  19. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    PubMed

    Züst, Roland; Dong, Hongping; Li, Xiao-Feng; Chang, David C; Zhang, Bo; Balakrishnan, Thavamalar; Toh, Ying-Xiu; Jiang, Tao; Li, Shi-Hua; Deng, Yong-Qiang; Ellis, Brett R; Ellis, Esther M; Poidinger, Michael; Zolezzi, Francesca; Qin, Cheng-Feng; Shi, Pei-Yong; Fink, Katja

    2013-01-01

    Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  20. Heterologous expression of 2-methylisoborneol / 2 methylenebornane biosynthesis genes in Escherichia coli yields novel C11-terpenes

    PubMed Central

    Wortmann, Hannah; Dickschat, Jeroen S.; Schrader, Jens

    2018-01-01

    The structural diversity of terpenoids is limited by the isoprene rule which states that all primary terpene synthase products derive from methyl-branched building blocks with five carbon atoms. With this study we discover a broad spectrum of novel terpenoids with eleven carbon atoms as byproducts of bacterial 2-methylisoborneol or 2-methylenebornane synthases. Both enzymes use 2-methyl-GPP as substrate, which is synthesized from GPP by the action of a methyltransferase. We used E. coli strains that heterologously produce different C11-terpene synthases together with the GPP methyltransferase and the mevalonate pathway enzymes. With this de novo approach, 35 different C11-terpenes could be produced. In addition to eleven known compounds, it was possible to detect 24 novel C11-terpenes which have not yet been described as terpene synthase products. Four of them, 3,4-dimethylcumene, 2-methylborneol and the two diastereomers of 2-methylcitronellol could be identified. Furthermore, we showed that an E. coli strain expressing the GPP-methyltransferase can produce the C16-terpene 6-methylfarnesol which indicates the condensation of 2-methyl-GPP and IPP to 6-methyl-FPP by the E. coli FPP-synthase. Our study demonstrates the broad range of unusual terpenes accessible by expression of GPP-methyltransferases and C11-terpene synthases in E. coli and provides an extended mechanism for C11-terpene synthases. PMID:29672609

  1. Structure and expression of dna methyltransferase genes from apomictic and sexual Boechera species.

    PubMed

    Taşkin, Kemal Melik; Özbilen, Aslıhan; Sezer, Fatih; Hürkan, Kaan; Güneş, Şebnem

    2017-04-01

    In this study, we determined the structure of DNA methyltransferase (DNMT) genes in apomict and sexual Boechera species and investigated the expression levels during seed development. Protein and DNA sequences of diploid sexual Boechera stricta DNMT genes obtained from Phytozome 10.3 were used to identify the homologues in apomicts, Boechera holboellii and Boechera divaricarpa. Geneious R8 software was used to map the short-paired reads library of B. holboellii whole genome or B. divaricarpa transcriptome reads to the reference gene sequences. We determined three DNMT genes; for Boechera spp. METHYLTRANSFERASE1 (MET1), CHROMOMETHYLASE 3 (CMT3) and DOMAINS REARRANGED METHYLTRANSFERASE 1/2 (DRM2). We examined the structure of these genes with bioinformatic tools and compared with other DNMT genes in plants. We also examined the levels of expression in silique tissues after fertilization by semi-quantitative PCR. The structure of DNMT proteins in apomict and sexual Boechera species share common features. However, the expression levels of DNMT genes were different in apomict and sexual Boechera species. We found that DRM2 was upregulated in apomictic Boechera species after fertilization. Phylogenetic trees showed that three genes are conserved among green algae, monocotyledons and dicotyledons. Our results indicated a deregulation of DNA methylation machinery during seed development in apomicts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Procainamide Is a Specific Inhibitor of DNA Methyltransferase 1*

    PubMed Central

    Lee, Byron H.; Yegnasubramanian, Srinivasan; Lin, Xiaohui; Nelson, William G.

    2007-01-01

    CpG island hypermethylation occurs in most cases of cancer, typically resulting in the transcriptional silencing of critical cancer genes. Procainamide has been shown to inhibit DNA methyltransferase activity and reactivate silenced gene expression in cancer cells by reversing CpG island hypermethylation. We report here that procainamide specifically inhibits the hemimethylase activity of DNA methyltransferase 1 (DNMT1), the mammalian enzyme thought to be responsible for maintaining DNA methylation patterns during replication. At micromolar concentrations, procainamide was found to be a partial competitive inhibitor of DNMT1, reducing the affinity of the enzyme for its two substrates, hemimethylated DNA and S-adenosyl-l-methionine. By doing so, procainamide significantly decreased the processivity of DNMT1 on hemimethylated DNA. Procainamide was not a potent inhibitor of the de novo methyltransferases DNMT3a and DNMT3b2. As further evidence of the specificity of procainamide for DNMT1, procainamide failed to lower genomic 5-methyl-2′-deoxycytidine levels in HCT116 colorectal cancer cells when DNMT1 was genetically deleted but significantly reduced genomic 5-methyl-2′-deoxycyti-dine content in parental HCT116 cells and in HCT116 cells where DNMT3b was genetically deleted. Because many reports have strongly linked DNMT1 with epigenetic alterations in carcinogenesis, procainamide may be a useful drug in the prevention of cancer. PMID:16230360

  3. Rational Design of a Live Attenuated Dengue Vaccine: 2′-O-Methyltransferase Mutants Are Highly Attenuated and Immunogenic in Mice and Macaques

    PubMed Central

    Chang, David C.; Zhang, Bo; Balakrishnan, Thavamalar; Toh, Ying-Xiu; Jiang, Tao; Li, Shi-Hua; Deng, Yong-Qiang; Ellis, Brett R.; Ellis, Esther M.; Poidinger, Michael; Zolezzi, Francesca; Qin, Cheng-Feng; Shi, Pei-Yong; Fink, Katja

    2013-01-01

    Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2′-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2′-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2′-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response. PMID:23935499

  4. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.).

    PubMed

    Chiron, H; Drouet, A; Claudot, A C; Eckerskorn, C; Trost, M; Heller, W; Ernst, D; Sandermann, H

    2000-12-01

    Formation of pinosylvin (PS) and pinosylvin 3-O-monomethyl ether (PSM), as well as the activities of stilbene synthase (STS) and S-adenosyl-1-methionine (SAM):pinosylvin O-methyltransferase (PMT), were induced strongly in needles of Scots pine seedlings upon ozone treatment, as well as in cell suspension cultures of Scots pine upon fungal elicitation. A SAM-dependent PMT protein was purified and partially characterised. A cDNA encoding PMT was isolated from an ozone-induced Scots pine cDNA library. Southern blot analysis of the genomic DNA suggested the presence of a gene family. The deduced protein sequence showed the typical highly conserved regions of O-methyltransferases (OMTs), and average identities of 20-56% to known OMTs. PMT expressed in Escherichia coli corresponded to that of purified PMT (40 kDa) from pine cell cultures. The recombinant enzyme catalysed the methylation of PS, caffeic acid, caffeoyl-CoA and quercetin. Several other substances, such as astringenin, resveratrol, 5-OH-ferulic acid, catechol and luteolin, were also methylated. Recombinant PMT thus had a relatively broad substrate specificity. Treatment of 7-year old Scots pine trees with ozone markedly increased the PMT mRNA level. Our results show that PMT represents a new SAM-dependent OMT for the methylation of stress-induced pinosylvin in Scots pine needles.

  5. Site-specific bioalkylation of rapamycin by the RapM 16-O-methyltransferase† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00164a

    PubMed Central

    Law, Brian J. C.; Struck, Anna-Winona; Bennett, Matthew R.; Wilkinson, Barrie

    2015-01-01

    The methylation of natural products by S-adenosyl methionine (AdoMet, also known as SAM)-dependent methyltransferase enzymes is a common tailoring step in many biosynthetic pathways. The introduction of methyl substituents can affect the biological and physicochemical properties of the secondary metabolites produced. Recently it has become apparent that some AdoMet-dependent methyltransferases exhibit promiscuity and will accept AdoMet analogues enabling the transfer of alternative alkyl groups. In this study we have characterised a methyltransferase, RapM, which is involved in the biosynthesis of the potent immunosuppressive agent rapamycin. We have shown that recombinant RapM regioselectively methylates the C16 hydroxyl group of desmethyl rapamycin precursors in vitro and is promiscuous in accepting alternative co-factors in addition to AdoMet. A coupled enzyme system was developed, including a mutant human enzyme methionine adenosyl transferase (MAT), along with RapM, which was used to prepare alkylated rapamycin derivatives (rapalogs) with alternative ethyl and allyl ether groups, derived from simple S-ethyl or S-allyl methionine analogues. There are two other methyltransferases RapI and RapQ which provide methyl substituents of rapamycin. Consequently, using the enzymatic approach described here, it should be possible to generate a diverse array of alkylated rapalogs, with altered properties, that would be difficult to obtain by traditional synthetic approaches. PMID:29403635

  6. Cystathionine beta-synthase deficiency alters hepatic phospholipid and choline metabolism: Post-translational repression of phosphatidylethanolamine N-methyltransferase is a consequence rather than a cause of liver injury in homocystinuria.

    PubMed

    Jacobs, René L; Jiang, Hua; Kennelly, John P; Orlicky, David J; Allen, Robert H; Stabler, Sally P; Maclean, Kenneth N

    2017-04-01

    Classical homocystinuria (HCU) due to inactivating mutation of cystathionine β-synthase (CBS) is a poorly understood life-threatening inborn error of sulfur metabolism. A previously described cbs-/- mouse model exhibits a semi-lethal phenotype due to neonatal liver failure. The transgenic HO mouse model of HCU exhibits only mild liver injury and recapitulates multiple aspects of the disease as it occurs in humans. Disruption of the methionine cycle in HCU has the potential to impact multiple aspect of phospholipid (PL) metabolism by disruption of both the Kennedy pathway and phosphatidylethanolamine N-methyltransferase (PEMT) mediated synthesis of phosphatidylcholine (PC). Comparative metabolomic analysis of HO mouse liver revealed decreased levels of choline, and choline phosphate indicating disruption of the Kennedy pathway. Alterations in the relative levels of multiple species of PL included significant increases in PL degradation products consistent with enhanced membrane PL turnover. A significant decrease in PC containing 20:4n6 which primarily formed by the methylation of phosphatidylethanolamine to PC was consistent with decreased flux through PEMT. Hepatic expression of PEMT in both the cbs-/- and HO models is post-translationally repressed with decreased levels of PEMT protein and activity that inversely-correlates with the scale of liver injury. Failure to induce further repression of PEMT in HO mice by increased homocysteine, methionine and S-adenosylhomocysteine or depletion of glutathione combined with examination of multiple homocysteine-independent models of liver injury indicated that repression of PEMT in HCU is a consequence rather than a cause of liver injury. Collectively, our data show significant alteration of a broad range of hepatic PL and choline metabolism in HCU with the potential to contribute to multiple aspects of pathogenesis in this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inhibition of in vivo histamine metabolism in rats by foodborne and pharmacologic inhibitors of diamine oxidase, histamine N-methyltransferase, and monoamine oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, J.Y.; Taylor, S.L.

    When (/sup 14/C)histamine was administered orally to rats, an average of 80% of the administered radioactivity was recovered in the urine at the end of 24 hr. About 10% of the total dose was excreted via the feces. Analysis of 4-hr urine samples found imidazoleacetic acid to be the predominant metabolite (60.6%), with N tau-methylimidazoleacetic acid (8.6%), N tau-methylhistamine (7.3%), and N-acetylhistamine (4.5%) to be the minor metabolites. Histamine metabolism was inhibited by simultaneous oral administration of aminoguanidine, isoniazid, quinacrine, cadaverine, putrescine, tyramine, and beta-phenylethylamine. The administration of inhibitors resulted in an increased amount of unmetabolized histamine and a decreasedmore » amount of metabolites reaching the urine. Pharmacologic inhibitors were found to be more potent and have a longer duration of action than foodborne ones. The inhibitors could potentiate food poisoning caused by histamine by inhibiting its metabolism.« less

  8. Molecular Characterization of a Novel Temperate Sinorhizobium Bacteriophage, ФLM21, Encoding DNA Methyltransferase with CcrM-Like Specificity

    PubMed Central

    Dziewit, Lukasz; Oscik, Karolina; Bartosik, Dariusz

    2014-01-01

    ABSTRACT ΦLM21 is a temperate phage isolated from Sinorhizobium sp. strain LM21 (Alphaproteobacteria). Genomic analysis and electron microscopy suggested that ΦLM21 is a member of the family Siphoviridae. The phage has an isometric head and a long noncontractile tail. The genome of ΦLM21 has 50,827 bp of linear double-stranded DNA encoding 72 putative proteins, including proteins responsible for the assembly of the phage particles, DNA packaging, transcription, replication, and lysis. Virion proteins were characterized using mass spectrometry, leading to the identification of the major capsid and tail components, tape measure, and a putative portal protein. We have confirmed the activity of two gene products, a lytic enzyme (a putative chitinase) and a DNA methyltransferase, sharing sequence specificity with the cell cycle-regulating methyltransferase (CcrM) of the bacterial host. Interestingly, the genome of Sinorhizobium phage ΦLM21 shows very limited similarity to other known phage genome sequences and is thus considered unique. IMPORTANCE Prophages are known to play an important role in the genomic diversification of bacteria via horizontal gene transfer. The influence of prophages on pathogenic bacteria is very well documented. However, our knowledge of the overall impact of prophages on the survival of their lysogenic, nonpathogenic bacterial hosts is still limited. In particular, information on prophages of the agronomically important Sinorhizobium species is scarce. In this study, we describe the isolation and molecular characterization of a novel temperate bacteriophage, ΦLM21, of Sinorhizobium sp. LM21. Since we have not found any similar sequences, we propose that this bacteriophage is a novel species. We conducted a functional analysis of selected proteins. We have demonstrated that the phage DNA methyltransferase has the same sequence specificity as the cell cycle-regulating methyltransferase CcrM of its host. We point out that this phenomenon of mimicking the host regulatory mechanisms by viruses is quite common in bacteriophages. PMID:25187538

  9. A Tetrahydrofolate-Dependent Methyltransferase Catalyzing the Demethylation of Dicamba in Sphingomonas sp. Strain Ndbn-20

    PubMed Central

    Yao, Li; Yu, Lin-Lu; Zhang, Jun-Jie; Xie, Xiang-Ting; Tao, Qing; Yan, Xin; Hong, Qing; Qiu, Ji-Guo

    2016-01-01

    ABSTRACT Sphingomonas sp. strain Ndbn-20 degrades and utilizes the herbicide dicamba as its sole carbon and energy source. In the present study, a tetrahydrofolate (THF)-dependent dicamba methyltransferase gene, dmt, was cloned from the strain, and three other genes, metF, dhc, and purU, which are involved in THF metabolism, were found to be located downstream of dmt. A transcriptional study revealed that the four genes constituted one transcriptional unit that was constitutively transcribed. Lysates of cells grown with glucose or dicamba exhibited almost the same activities, which further suggested that the dmt gene is constitutively expressed in the strain. Dmt shared 46% and 45% identities with the methyltransferases DesA and LigM from Sphingomonas paucimobilis SYK-6, respectively. The purified Dmt catalyzed the transfer of methyl from dicamba to THF to form the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA) and 5-methyl-THF. The activity of Dmt was inhibited by 5-methyl-THF but not by DCSA. The introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba. In conclusion, this study identified a THF-dependent dicamba methyltransferase, Dmt, with potential applications for the genetic engineering of dicamba-resistant crops. IMPORTANCE Dicamba is a very important herbicide that is widely used to control more than 200 types of broadleaf weeds and is a suitable target herbicide for the engineering of herbicide-resistant transgenic crops. A study of the mechanism of dicamba metabolism by soil microorganisms will benefit studies of its dissipation, transformation, and migration in the environment. This study identified a THF-dependent methyltransferase, Dmt, capable of catalyzing dicamba demethylation in Sphingomonas sp. Ndbn-20, and a preliminary study of its enzymatic characteristics was performed. Introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba, suggesting that the dmt gene has potential applications for the genetic engineering of herbicide-resistant crops. PMID:27422839

  10. Estrogen-DNA Adducts as Novel Biomarkers for Ovarian Cancer Risk and for Use in Prevention

    DTIC Science & Technology

    2013-03-01

    genes for four selected estrogen-metabolizing enzymes : cytochrome P450 (CYP)1A1 (I462V), CYP1B1 (V432L),catechol-O-methyltransferase (COMT) (V158M...homozygous for the catechol-O-methyltransferase allele and the cytochrome P450 1B1 high activity allele had significantly increased DNA adduct ratios and... enzyme polymorphisms to serve as biomarkers to screen for ovarian cancer . Task 1. Obtain approval of the protocol from the OCRP Human Research

  11. Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest

    PubMed Central

    Tunbridge, Elizabeth M.; Farrell, Sarah M.; Harrison, Paul J.; Mackay, Clare E.

    2013-01-01

    Catechol-O-methyltransferase (COMT) modulates dopamine in the prefrontal cortex (PFC) and influences PFC dopamine-dependent cognitive task performance. A human COMT polymorphism (Val158Met) alters enzyme activity and is associated with both the activation and functional connectivity of the PFC during task performance, particularly working memory. Here, we used functional magnetic resonance imaging and a data-driven, independent components analysis (ICA) approach to compare resting state functional connectivity within the executive control network (ECN) between young, male COMT Val158 (n = 27) and Met158 (n = 28) homozygotes. COMT genotype effects on grey matter were assessed using voxel-based morphometry. COMT genotype significantly modulated functional connectivity within the ECN, which included the head of the caudate, and anterior cingulate and frontal cortical regions. Val158 homozygotes showed greater functional connectivity between a cluster within the left ventrolateral PFC and the rest of the ECN (using a threshold of Z > 2.3 and a family-wise error cluster significance level of p < 0.05). This difference occurred in the absence of any alterations in grey matter. Our data show that COMT Val158Met affects the functional connectivity of the PFC at rest, complementing its prominent role in the activation and functional connectivity of this region during cognitive task performance. The results suggest that genotype-related differences in prefrontal dopaminergic tone result in neuroadaptive changes in basal functional connectivity, potentially including subtle COMT genotype-dependent differences in the relative coupling of task-positive and task-negative regions, which could in turn contribute to its effects on brain activation, connectivity, and behaviour. PMID:23228511

  12. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome

    PubMed Central

    Kim, Yuna; Lee, Hyeong-Min; Xiong, Yan; Sciaky, Noah; Hulbert, Samuel W; Cao, Xinyu; Everitt, Jeffrey I; Jin, Jian; Roth, Bryan L; Jiang, Yong-hui

    2017-01-01

    Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS. PMID:28024084

  13. A Crystal Structure of the Dengue Virus Non-structural Protein 5 (NS5) Polymerase Delineates Interdomain Amino Acid Residues That Enhance Its Thermostability and de Novo Initiation Activities*

    PubMed Central

    Lim, Siew Pheng; Koh, Jolene Hong Kiew; Seh, Cheah Chen; Liew, Chong Wai; Davidson, Andrew D.; Chua, Leng Shiew; Chandrasekaran, Ramya; Cornvik, Tobias C.; Shi, Pei-Yong; Lescar, Julien

    2013-01-01

    The dengue virus (DENV) non-structural protein 5 (NS5) comprises an N-terminal methyltransferase and a C-terminal RNA-dependent RNA polymerase (RdRp) domain. Both enzymatic activities form attractive targets for antiviral development. Available crystal structures of NS5 fragments indicate that residues 263–271 (using the DENV serotype 3 numbering) located between the two globular domains of NS5 could be flexible. We observed that the addition of linker residues to the N-terminal end of the DENV RdRp core domain stabilizes DENV1–4 proteins and improves their de novo polymerase initiation activities by enhancing the turnover of the RNA and NTP substrates. Mutation studies of linker residues also indicate their importance for viral replication. We report the structure at 2.6-Å resolution of an RdRp fragment from DENV3 spanning residues 265–900 that has enhanced catalytic properties compared with the RdRp fragment (residues 272–900) reported previously. This new orthorhombic crystal form (space group P21212) comprises two polymerases molecules arranged as a dimer around a non-crystallographic dyad. The enzyme adopts a closed “preinitiation” conformation similar to the one that was captured previously in space group C2221 with one molecule per asymmetric unit. The structure reveals that residues 269–271 interact with the RdRp domain and suggests that residues 263–268 of the NS5 protein from DENV3 are the major contributors to the flexibility between its methyltransferase and RdRp domains. Together, these results should inform the screening and development of antiviral inhibitors directed against the DENV RdRp. PMID:24025331

  14. Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease

    PubMed Central

    Jiménez-Jiménez, Félix Javier; Alonso-Navarro, Hortensia; García-Martín, Elena; Agúndez, José A.G.

    2016-01-01

    Abstract Background/aims: Several neuropathological, biochemical, and pharmacological data suggested a possible role of histamine in the etiopathogenesis of Parkinson disease (PD). The single nucleotide polymorphism (SNP) rs11558538 in the histamine N-methyltransferase (HNMT) gene has been associated with the risk of developing PD by several studies but not by some others. We carried out a systematic review that included all the studies published on PD risk related to the rs11558538 SNP, and we conducted a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Methods: We used several databases to perform the systematic review, the software Meta-DiSc 1.1.1 to perform the meta-analysis of the eligible studies, and the Q-statistic to test heterogeneity between studies. Results: The meta-analysis included 4 eligible case–control association studies for the HNMT rs11558538 SNP and the risk for PD (2108 patients, 2158 controls). The frequency of the minor allele positivity showed a statistically significant association with a decreased risk for PD, both in the total series and in Caucasians. Although homozygosity for the minor allele did not reach statistical significance, the test for trend indicates the occurrence of a gene–dose effect. Global diagnostic odds ratios (95% confidence intervals) for rs11558538T were 0.61 (0.46–0.81) for the total group, and 0.63 (0.45–0.88) for Caucasian patients. Conclusion: The present meta-analysis confirms published evidence suggesting that the HNMT rs11558538 minor allele is related to a reduced risk of developing PD. PMID:27399132

  15. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach.

    PubMed

    Ahmadi, Homa; Ramezani, Mohammad; Yazdian-Robati, Rezvan; Behnam, Behzad; Razavi Azarkhiavi, Kamal; Hashem Nia, Azadeh; Mokhtarzadeh, Ahad; Matbou Riahi, Maryam; Razavi, Bibi Marjan; Abnous, Khalil

    2017-09-25

    Recently carbon nanotubes (CNTs) showed promising potentials in different biomedical applications but their safe use in humans and probable toxicities are still challenging. The aim of this study was to determine the acute toxicity of functionalized single walled carbon nanotubes (SWCNTs). In this project, PEGylated and Tween functionalized SWCNTs were prepared. BALB/c mice were randomly divided into nine groups, including PEGylated SWCNTs (75,150μg/mouse) and PEG, Tween80 suspended SWCNTs, Tween 80 and a control group (intact mice). One or 7 days after intravenous injection, the mice were killed and serum and livers were collected. The oxidative stress markers, biochemical and histopathological changes were studied. Subsequently, proteomics approach was used to investigate the alterations of protein expression profiles in the liver. Results showed that there were not any significant differences in malondealdehyde (MDA), glutathione (GSH) levels and biochemical enzymes (ALT and AST) between groups, while the histopathological observations of livers showed some injuries. The results of proteomics analysis revealed indolethylamine N-Methyltransferase (INMT), glycine N-Methyltransferase (GNMT), selenium binding protein (Selenbp), thioredoxin peroxidase (TPx), TNF receptor associated protein 1(Trap1), peroxiredoxin-6 (Prdx6), electron transport flavoprotein (Etf-α), regucalcin (Rgn) and ATP5b proteins were differentially expressed in functionalized SWCNTs groups. Western blot analyses confirmed that the changes in Prdx6 were consistent with 2-DE gel analysis. In summary, acute toxicological study on two functionalized SWCNTs did not show any significant toxicity at selected doses. Proteomics analysis also showed that following exposure to functionalized SWCNTs, the expression of some proteins with antioxidant activity and detoxifying properties were increased in liver tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. PLS modelling of structure—activity relationships of catechol O-methyltransferase inhibitors

    NASA Astrophysics Data System (ADS)

    Lotta, Timo; Taskinen, Jyrki; Bäckström, Reijo; Nissinen, Erkki

    1992-06-01

    Quantitative structure-activity analysis was carried out for in vitro inhibition of rat brain soluble catechol O-methyltransferase by a series (N=99) of 1,5-substituted-3,4-dihydroxybenzenes using computational chemistry and multivariate PLS modelling of data sets. The molecular structural descriptors (N=19) associated with the electronics of the catecholic ring and sizes of substituents were derived theoretically. For the whole set of molecules two separate PLS models have to be used. A PLS model with two significant (crossvalidated) model dimensions describing 82.2% of the variance in inhibition activity data was capable of predicting all molecules except those having the largest R1 substituent or having a large R5 substituent compared to the NO2 group. The other PLS model with three significant (crossvalidated) model dimensions described 83.3% of the variance in inhibition activity data. This model could not handle compounds having a small R5 substituent, compared to the NO2 group, or the largest R1 substituent. The predictive capability of these PLS models was good. The models reveal that inhibition activity is nonlinearly related to the size of the R5 substituent. The analysis of the PLS models also shows that the binding affinity is greatly dependent on the electronic nature of both R1 and R5 substituents. The electron-withdrawing nature of the substituents enhances inhibition activity. In addition, the size of the R1 substituent and its lipophilicity are important in the binding of inhibitors. The size of the R1 substituent has an upper limit. On the other hand, ionized R1 substituents decrease inhibition activity.

  17. Thiopurine methyltransferase genotype–phenotype discordance and thiopurine active metabolite formation in childhood acute lymphoblastic leukaemia

    PubMed Central

    Lennard, Lynne; Cartwright, Cher Suzanne; Wade, Rachel; Richards, Susan M; Vora, Ajay

    2013-01-01

    Aims In children with acute lymphoblastic leukaemia (ALL) bone marrow activity can influence red blood cell (RBC) kinetics, the surrogate tissue for thiopurine methyltransferase (TPMT) measurements. The aim of this study was to investigate TPMT phenotype–genotype concordance in ALL, and the influence of TPMT on thiopurine metabolite formation. Methods We measured TPMT (activity, as units ml−1 packed RBCs and genotype) at diagnosis (n = 1150) and TPMT and thioguanine nucleotide (TGN) and methylmercaptopurine nucleotide (MeMPN) metabolites (pmol/8 × 108 RBCs) during chemotherapy (n = 1131) in children randomized to thioguanine or mercaptopurine on the United Kingdom trial ALL97. Results Median TPMT activity at diagnosis (8.5 units) was significantly lower than during chemotherapy (13.8 units, median difference 5.1 units, 95% confidence interval (CI) 4.8, 5.4, P < 0.0001). At diagnosis genotype–phenotype was discordant. During chemotherapy the overall concordance was 92%, but this fell to 55% in the intermediate activity cohort (45% had wild-type genotypes). For both thiopurines TGN concentrations differed by TPMT status. For mercaptopurine, median TGNs were higher in TPMT heterozygous genotype (754 pmol) than wild-type (360 pmol) patients (median difference 406 pmol, 95% CI 332, 478, P < 0.0001), whilst median MeMPNs, products of the TPMT reaction, were higher in wild-type (10 650 pmol) than heterozygous patients (3868 pmol) (P < 0.0001). In TPMT intermediate activity patients with a wild-type genotype, TGN (median 366 pmol) and MeMPN (median 8590 pmol) concentrations were similar to those in wild-type, high activity patients. Conclusions In childhood ALL, TPMT activity should not be used to predict heterozygosity particularly in blood samples obtained at disease diagnosis. Genotype is a better predictor of TGN accumulation during chemotherapy. PMID:23252716

  18. Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice.

    PubMed

    Gao, Xia; van der Veen, Jelske N; Zhu, Linfu; Chaba, Todd; Ordoñez, Marta; Lingrell, Susanne; Koonen, Debby P Y; Dyck, Jason R B; Gomez-Muñoz, Antonio; Vance, Dennis E; Jacobs, René L

    2015-04-01

    Phosphatidylethanolamine N-methyltransferase (PEMT), a liver enriched enzyme, is responsible for approximately one third of hepatic phosphatidylcholine biosynthesis. When fed a high-fat diet (HFD), Pemt(-/-) mice are protected from HF-induced obesity; however, they develop steatohepatitis. The vagus nerve relays signals between liver and brain that regulate peripheral adiposity and pancreas function. Here we explore a possible role of the hepatic branch of the vagus nerve in the development of diet induced obesity and steatohepatitis in Pemt(-/-) mice. 8-week old Pemt(-/-) and Pemt(+/+) mice were subjected to hepatic vagotomy (HV) or capsaicin treatment, which selectively disrupts afferent nerves, and were compared to sham-operated or vehicle-treatment, respectively. After surgery, mice were fed a HFD for 10 weeks. HV abolished the protection against the HFD-induced obesity and glucose intolerance in Pemt(-/-) mice. HV normalized phospholipid content and prevented steatohepatitis in Pemt(-/-) mice. Moreover, HV increased the hepatic anti-inflammatory cytokine interleukin-10, reduced chemokine monocyte chemotactic protein-1 and the ER stress marker C/EBP homologous protein. Furthermore, HV normalized the expression of mitochondrial electron transport chain proteins and of proteins involved in fatty acid synthesis, acetyl-CoA carboxylase and fatty acid synthase in Pemt(-/-) mice. However, disruption of the hepatic afferent vagus nerve by capsaicin failed to reverse either the protection against the HFD-induced obesity or the development of HF-induced steatohepatitis in Pemt(-/-) mice. Neuronal signals via the hepatic vagus nerve contribute to the development of steatohepatitis and protection against obesity in HFD fed Pemt(-/-) mice. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. COMT Val(158)Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition.

    PubMed

    Farrell, Sarah M; Tunbridge, Elizabeth M; Braeutigam, Sven; Harrison, Paul J

    2012-03-15

    Catechol-O-methyltransferase (COMT) metabolizes dopamine. The COMT Val(158)Met polymorphism influences its activity, and multiple neural correlates of this genotype on dopaminergic phenotypes, especially working memory, have been reported. COMT activity can also be regulated pharmacologically by COMT inhibitors. The inverted-U relationship between cortical dopamine signaling and working memory predicts that the effects of COMT inhibition will differ according to COMT genotype. Thirty-four COMT Met(158)Met (Met-COMT) and 33 COMT Val(158)Val (Val-COMT) men were given a single 200-mg dose of the brain-penetrant COMT inhibitor tolcapone or placebo in a randomized, double-blind, between-subjects design. They completed the N-back task of working memory and a gambling task. In the placebo group, Met-COMT subjects outperformed Val-COMT subjects on the 2- back, and they were more risk averse. Tolcapone had opposite effects in the two genotype groups: it worsened N-back performance in Met-COMT subjects but enhanced it in Val-COMT subjects. Tolcapone made Met-COMT subjects less risk averse but Val-COMT subjects more so. In both tasks, tolcapone reversed the baseline genotype differences. Depending on genotype, COMT inhibition can enhance or impair working memory and increase or decrease risky decision making. To our knowledge, the data are the clearest demonstration to date that the direction of effect of a drug can be influenced by a polymorphism in its target gene. The results support the inverted-U model of dopamine function. The findings are of translational relevance, because COMT inhibitors are used in the adjunctive treatment of Parkinson's disease and are under evaluation in schizophrenia and other disorders. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. How to consistently link extraversion and intelligence to the catechol-O-methyltransferase (COMT) gene: on defining and measuring psychological phenotypes in neurogenetic research.

    PubMed

    Wacker, Jan; Mueller, Erik M; Hennig, Jürgen; Stemmler, Gerhard

    2012-02-01

    The evidence for associations between genetic polymorphisms and complex behavioral/psychological phenotypes (traits) has thus far been weak and inconsistent. Using the well-studied Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene as an example, we demonstrate that using theoretical models to guide phenotype definition and measuring the phenotypes of interest with a high degree of specificity reveals strong gene-behavior associations that are consistent with prior work and that would have otherwise gone unnoticed. Only after statistically controlling for irrelevant portions of phenotype variance did we observe strong (Cohen's d = 0.33-0.70) and significant associations between COMT Val158Met and both cognitive and affective traits in a healthy male sample (N = 201) in Study 1: Carriers of the Met allele scored higher in fluid intelligence (reasoning) but lower in both crystallized intelligence (general knowledge) and the agency facet of extraversion. In Study 2, we conceptually replicated the association of COMT Val158Met with the agency facet of extraversion after partialing irrelevant phenotype variance in a female sample (N = 565). Finally, through reanalysis of a large published data set we showed that Met allele carriers also scored higher in indicators of fluid intelligence after partialing verbal fluency. Because the Met allele codes for a less efficient variant of the enzyme COMT, resulting in higher levels of extrasynaptic prefrontal dopamine, these observations provide further support for a role for dopamine in both intelligence and extraversion. More importantly, the present findings have important implications for the definition of psychological phenotypes in neurogenetic research.

  1. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose.

    PubMed

    Treede, Irina; Jakobsen, Lene; Kirpekar, Finn; Vester, Birte; Weitnauer, Gabriele; Bechthold, Andreas; Douthwaite, Stephen

    2003-07-01

    Avilamycin is an orthosomycin antibiotic that has shown considerable potential for clinical use, although it is presently used as a growth promoter in animal feed. Avilamycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit. The ribosomes of the producer strain, Streptomyces viridochromogenes Tü57, are protected from the drug by the action of three resistance factors located in the avilamycin biosynthetic gene cluster. Two of the resistance factors, aviRa and aviRb, encode rRNA methyltransferases that specifically target 23S rRNA. Recombinant AviRa and AviRb proteins retain their activity after purification, and both specifically methylate in vitro transcripts of 23S rRNA domain V. Reverse transcriptase primer extension indicated that AviRa is an N-methyltransferase that targets G2535 within helix 91 of the rRNA, whereas AviRb modified the 2'-O-ribose position of nucleotide U2479 within helix 89. MALDI mass spectrometry confirmed the exact positions of each of these modifications, and additionally established that a single methyl group is added at each nucleotide. Neither of these two nucleotides have previously been described as a target for enzymatic methylation. Molecular models of the 50S subunit crystal structure show that the N-1 of the G2535 base and the 2'-hydroxyl of U2479 are separated by approximately 10 A, a distance that can be spanned by avilamycin. In addition to defining new resistance mechanisms, these data refine our understanding of the probable ribosome contacts made by orthosomycins and of how these antibiotics inhibit protein synthesis.

  2. Mutational analysis of residues in human arsenic (III) methyltransferase (hAS3MT) belonging to 5 Å around S-adenosylmethionine (SAM).

    PubMed

    Li, Xiangli; Geng, Zhirong; Chang, Jiayin; Song, Xiaoli; Wang, Zhilin

    2014-12-01

    The functions of residues 57-RY-58, G60, L77, 80-GSGR-83, I101, T104, 134-GY-135, N155, V157 and 160-LV-161 in human arsenic (III) methyltransferase (hAS3MT) 5 Å around S-adenosylmethionine (SAM) have not been studied. Herein, sixteen mutants were designed by substituting these residues with Ala. Mutants G60A, G80A, I101A, N155A and L160A were completely inactive. Only MMA was detected when mutants R57A, Y58A, G82A and T104A were used as the enzymes, which suggested that their catalytic activities were seriously impaired compared with that of wild type (WT). The catalytic capacities of other mutants were also lower than that of WT-hAS3MT. The KM(SAM) values of mutants were 1.9–8.7 times that of WT, suggesting their affinities to SAM were weakened. As evidenced by the experimental data herein, earlier literature and the model of hAS3MT-SAM, 57-RYYG-60, G78, G80, G82 and 155-NCV-157 interacted with the methionine of SAM, and 101-IDMT-104 and 135-YIE-137 were associated with the nucleotide adenosine of SAM. Since C156 and L160 were the common residues between 5 Å around SAM and 5 Å around As, and C156S and L160A were inactive, we proposed that C156 and L160 functioned in the methyl transfer process. G78, G80 and G82 belonging to the consensus GxGxG were located in a loop connecting the first β-strand and α-helix in the Rossmann fold core. Y59, N155, C156 and L160 oriented S(+)-CH(3) during its approach to the arsenic lone pair, and further activated methyl transfer. G78, D102, M103, T104, I136 and N155 formed hydrogen bonds with SAM.

  3. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; College of Basic Medicine, Tianjin Medical University, 300070 Tianjin; Li, Jinru

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by whichmore » Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.« less

  4. Alleviation of Nitrogen and Sulfur Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by Overexpression of Uroporphyrinogen III Methyltransferase (UPM1)

    PubMed Central

    Garai, Sampurna; Tripathy, Baishnab C.

    2018-01-01

    Siroheme, an iron-containing tetrapyrrole, is the prosthetic group of nitrite reductase (NiR) and sulfite reductase (SiR); it is synthesized from uroporphyrinogen III, an intermediate of chlorophyll biosynthesis, and is required for nitrogen (N) and sulfur (S) assimilation. Further, uroporphyrinogen III methyltransferase (UPM1), responsible for two methylation reactions to form dihydrosirohydrochlorin, diverts uroporphyrinogen III from the chlorophyll biosynthesis pathway toward siroheme synthesis. AtUPM1 [At5g40850] was used to produce both sense and antisense plants of Arabidopsis thaliana in order to modulate siroheme biosynthesis. In our experiments, overexpression of AtUPM1 signaled higher NiR (NII) and SiR gene and gene product expression. Increased NII expression was found to regulate and enhance the transcript and protein abundance of nitrate reductase (NR). We suggest that elevated NiR, NR, and SiR expression must have contributed to the increased synthesis of S containing amino acids in AtUPM1overexpressors, observed in our studies. We note that due to higher N and S assimilation in these plants, total protein content had increased in these plants. Consequently, chlorophyll biosynthesis increased in these sense plants. Higher chlorophyll and protein content of plants upregulated photosynthetic electron transport and carbon assimilation in the sense plants. Further, we have observed increased plant biomass in these plants, and this must have been due to increased N, S, and C assimilation. On the other hand, in the antisense plants, the transcript abundance, and protein content of NiR, and SiR was shown to decrease, resulting in reduced total protein and chlorophyll content. This led to a decrease in photosynthetic electron transport rate, carbon assimilation and plant biomass in these antisense plants. Under nitrogen or sulfur starvation conditions, the overexpressors had higher protein content and photosynthetic electron transport rate than the wild type (WT). Conversely, the antisense plants had lower protein content and photosynthetic efficiency in N-deficient environment. Our results clearly demonstrate that upregulation of siroheme biosynthesis leads to increased nitrogen and sulfur assimilation, and this imparts tolerance to nitrogen and sulfur deficiency in Arabidopsis thaliana plants. PMID:29472934

  5. Discovery and Characterization of a Highly Potent and Selective Aminopyrazoline-Based in Vivo Probe (BAY-598) for the Protein Lysine Methyltransferase SMYD2.

    PubMed

    Eggert, Erik; Hillig, Roman C; Koehr, Silke; Stöckigt, Detlef; Weiske, Jörg; Barak, Naomi; Mowat, Jeffrey; Brumby, Thomas; Christ, Clara D; Ter Laak, Antonius; Lang, Tina; Fernandez-Montalvan, Amaury E; Badock, Volker; Weinmann, Hilmar; Hartung, Ingo V; Barsyte-Lovejoy, Dalia; Szewczyk, Magdalena; Kennedy, Steven; Li, Fengling; Vedadi, Masoud; Brown, Peter J; Santhakumar, Vijayaratnam; Arrowsmith, Cheryl H; Stellfeld, Timo; Stresemann, Carlo

    2016-05-26

    Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents.

  6. The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols

    PubMed Central

    2011-01-01

    Background Black tea is, second only to water, the most consumed beverage globally. Previously, the inhibition of DNA methyltransferase 1 was shown by dietary polyphenols and epi-gallocatechin gallate (EGCG), the main polyphenolic constituent of green tea, and 5-caffeoyl quinic acid, the main phenolic constituent of the green coffee bean. Results We studied the inhibition of DNA methyltransferase 3a by a series of dietary polyphenols from black tea such as theaflavins and thearubigins and chlorogenic acid derivatives from coffee. For theaflavin 3,3 digallate and thearubigins IC50 values in the lower micro molar range were observed, which when compared to pharmacokinetic data available, suggest an effect of physiological relevance. Conclusions Since Dnnmt3a has been associated with development, cancer and brain function, these data suggest a biochemical mechanism for the beneficial health effect of black tea and coffee and a possible molecular mechanism for the improvement of brain performance and mental health by dietary polyphenols. PMID:21510884

  7. Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli.

    PubMed

    Moore, M H; Gulbis, J M; Dodson, E J; Demple, B; Moody, P C

    1994-04-01

    The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to methylation at the O6 position of guanine in DNA. O6-methylguanine directs the incorporation of either thymine or cytosine without blocking DNA replication, resulting in GC to AT transition mutations. In prokaryotic and eukaryotic cells antimutagenic repair is effected by direct reversal of this DNA damage. A suicidal methyltransferase repair protein removes the methyl group from DNA to one of its own cysteine residues. The resulting self-methylation of the active site cysteine renders the protein inactive. Here we report the X-ray structure of the 19 kDa C-terminal domain of the Escherichia coli ada gene product, the prototype of these suicidal methyltransferases. In the crystal structure the active site cysteine is buried. We propose a model for the significant conformational change that the protein must undergo in order to bind DNA and effect methyl transfer.

  8. Synthesis and evaluation of carbocyanine dyes as PRMT inhibitors and imaging agents.

    PubMed

    Sinha, Sarmistha Halder; Owens, Eric A; Feng, You; Yang, Yutao; Xie, Yan; Tu, Yaping; Henary, Maged; Zheng, Yujun George

    2012-08-01

    Protein arginine methylation regulates multiple biological processes. Deregulation of protein arginine methyltransferase (PRMT) activities has been observed in many disease phenotypes. Small molecule probes that target PRMTs with strong affinity and selectivity can be used as valuable tools to dissect biological mechanisms of arginine methylation and establish the role of PRMT proteins in a disease process. In this work, we report synthesis and evaluation of a class of carbocyanine compounds containing indolium, benz[e]indolium or benz[c,d]indolium heterocyclic moieties that bind to the predominant arginine methyltransferase PRMT1 and inhibit its methyltransferase activity at low micromolar potencies. In particular, the developed molecules have long wavelength colorimetric and fluorometric photoactivities, which can be used for optical and near-infrared fluorescence imaging in cells or biological tissues. Together, these new chemical probes have potential application in PRMT studies both as enzyme inhibitors and as fluorescent dyes for microscope imaging. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Structure and function of the Zika virus full-length NS5 protein

    DOE PAGES

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  10. Recruitment of DNA methyltransferase I to DNA repair sites.

    PubMed

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M Cristina; Leonhardt, Heinrich

    2005-06-21

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair.

  11. DOMAINS REARRANGED METHYLTRANSFERASE3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis

    PubMed Central

    Zhong, Xuehua; Hale, Christopher J.; Nguyen, Minh; Ausin, Israel; Groth, Martin; Hetzel, Jonathan; Vashisht, Ajay A.; Henderson, Ian R.; Wohlschlegel, James A.; Jacobsen, Steven E.

    2015-01-01

    DNA methylation is a mechanism of epigenetic gene regulation and genome defense conserved in many eukaryotic organisms. In Arabidopsis, the DNA methyltransferase DOMAINS REARRANGED METHYLASE 2 (DRM2) controls RNA-directed DNA methylation in a pathway that also involves the plant-specific RNA Polymerase V (Pol V). Additionally, the Arabidopsis genome encodes an evolutionarily conserved but catalytically inactive DNA methyltransferase, DRM3. Here, we show that DRM3 has moderate effects on global DNA methylation and small RNA abundance and that DRM3 physically interacts with Pol V. In Arabidopsis drm3 mutants, we observe a lower level of Pol V-dependent noncoding RNA transcripts even though Pol V chromatin occupancy is increased at many sites in the genome. These findings suggest that DRM3 acts to promote Pol V transcriptional elongation or assist in the stabilization of Pol V transcripts. This work sheds further light on the mechanism by which long noncoding RNAs facilitate RNA-directed DNA methylation. PMID:25561521

  12. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine.

    PubMed

    Lee, Jin-Hyung; Cook, Jeffry R; Yang, Zhi-Hong; Mirochnitchenko, Olga; Gunderson, Samuel I; Felix, Arthur M; Herth, Nicole; Hoffmann, Ralf; Pestka, Sidney

    2005-02-04

    The cDNA for PRMT7, a recently discovered human protein-arginine methyltransferase (PRMT), was cloned and expressed in Escherichia coli and mammalian cells. Immunopurified PRMT7 actively methylated histones, myelin basic protein, a fragment of human fibrillarin (GAR) and spliceosomal protein SmB. Amino acid analysis showed that the modifications produced were predominantly monomethylarginine and symmetric dimethylarginine (SDMA). Examination of PRMT7 expressed in E. coli demonstrated that peptides corresponding to sequences contained in histone H4, myelin basic protein, and SmD3 were methylated. Furthermore, analysis of the methylated proteins showed that symmetric dimethylarginine and relatively small amounts of monomethylarginine and asymmetric dimethylarginine were produced. SDMA was also formed when a GRG tripeptide was methylated by PRMT7, indicating that a GRG motif is by itself sufficient for symmetric dimethylation to occur. Symmetric dimethylation is reduced dramatically compared with monomethylation as the concentration of the substrate is increased. The data demonstrate that PRMT7 (like PRMT5) is a Type II methyltransferase capable of producing SDMA modifications in proteins.

  13. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA

    PubMed Central

    Lukinavičius, Gražvydas; Lapinaitė, Audronė; Urbanavičiūtė, Giedrė; Gerasimaitė, Rūta; Klimašauskas, Saulius

    2012-01-01

    DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA. PMID:23042683

  14. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    PubMed

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  15. Transfer RNA methyltransferases from Thermoplasma acidophilum, a thermoacidophilic archaeon.

    PubMed

    Kawamura, Takuya; Anraku, Ryou; Hasegawa, Takahiro; Tomikawa, Chie; Hori, Hiroyuki

    2014-12-23

    We investigated tRNA methyltransferase activities in crude cell extracts from the thermoacidophilic archaeon Thermoplasma acidophilum. We analyzed the modified nucleosides in native initiator and elongator tRNAMet, predicted the candidate genes for the tRNA methyltransferases on the basis of the tRNAMet and tRNALeu sequences, and characterized Trm5, Trm1 and Trm56 by purifying recombinant proteins. We found that the Ta0997, Ta0931, and Ta0836 genes of T. acidophilum encode Trm1, Trm56 and Trm5, respectively. Initiator tRNAMet from T. acidophilum strain HO-62 contained G+, m1I, and m22G, which were not reported previously in this tRNA, and the m2G26 and m22G26 were formed by Trm1. In the case of elongator tRNAMet, our analysis showed that the previously unidentified G modification at position 26 was a mixture of m2G and m22G, and that they were also generated by Trm1. Furthermore, purified Trm1 and Trm56 could methylate the precursor of elongator tRNAMet, which has an intron at the canonical position. However, the speed of methyl-transfer by Trm56 to the precursor RNA was considerably slower than that to the mature transcript, which suggests that Trm56 acts mainly on the transcript after the intron has been removed. Moreover, cellular arrangements of the tRNA methyltransferases in T. acidophilum are discussed.

  16. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2*

    PubMed Central

    Hadjikyriacou, Andrea; Yang, Yanzhong; Espejo, Alexsandra; Bedford, Mark T.; Clarke, Steven G.

    2015-01-01

    Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides. PMID:25979344

  17. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery

    PubMed Central

    Kilgore, Matthew B.; Kutchan, Toni M.

    2015-01-01

    Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4′-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS). PMID:27340382

  18. The impact of the catechol-O-methyltransferase genotype on vascular function and blood pressure after acute green tea ingestion.

    PubMed

    Miller, Rosalind J; Jackson, Kim G; Dadd, Tony; Mayes, Andrew E; Brown, A Louise; Lovegrove, Julie A; Minihane, Anne M

    2012-06-01

    Evidence for the benefits of green tea catechins on vascular function is inconsistent, with genotype potentially contributing to the heterogeneity in response. Here, the impact of the catechol-O-methyltransferase (COMT) genotype on vascular function and blood pressure (BP) after green tea extract ingestion are reported. Fifty subjects (n = 25 of the proposed low-activity [AA] and of the high-activity [GG] COMT rs4680 genotype), completed a randomized, double-blind, crossover study. Peripheral arterial tonometry, digital volume pulse (DVP), and BP were assessed at baseline and 90 min after 1.06 g of green tea extract or placebo. A 5.5 h and subsequent 18.5 h urine collection was performed to assess green tea catechin excretion. A genotype × treatment interaction was observed for DVP reflection index (p = 0.014), with green tea extract in the AA COMT group attenuating the increase observed with placebo. A tendency for a greater increase in diastolic BP was evident at 90 min after the green tea extract compared to placebo (p = 0.07). A genotypic effect was observed for urinary methylated epigallocatechin during the first 5.5 h, with the GG COMT group demonstrating a greater concentration (p = 0.049). Differences in small vessel tone according to COMT genotype were evident after acute green tea extract. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Observed positive parenting behaviors and youth genotype: evidence for gene-environment correlations and moderation by parent personality traits.

    PubMed

    Oppenheimer, Caroline W; Hankin, Benjamin L; Jenness, Jessica L; Young, Jami F; Smolen, Andrew

    2013-02-01

    Gene-environment correlations (rGE) have been demonstrated in behavioral genetic studies, but rGE have proven elusive in molecular genetic research. Significant gene-environment correlations may be difficult to detect because potential moderators could reduce correlations between measured genetic variants and the environment. Molecular genetic studies investigating moderated rGE are lacking. This study examined associations between child catechol-O-methyltransferase genotype and aspects of positive parenting (responsiveness and warmth), and whether these associations were moderated by parental personality traits (neuroticism and extraversion) among a general community sample of third, sixth, and ninth graders (N = 263) and their parents. Results showed that parent personality traits moderated the rGE association between youths' genotype and coded observations of positive parenting. Parents with low levels of neuroticism and high levels of extraversion exhibited greater sensitive responsiveness and warmth, respectively, to youth with the valine/valine genotype. Moreover, youth with this genotype exhibited lower levels of observed anger. There was no association between the catechol-O-methyltransferase genotype and parenting behaviors for parents high on neuroticism and low on extraversion. Findings highlight the importance of considering moderating variables that may influence child genetic effects on the rearing environment. Implications for developmental models of maladaptive and adaptive child outcomes, and interventions for psychopathology, are discussed within a developmental psychopathology framework.

  20. Observed positive parenting behaviors and youth genotype: Evidence for gene–environment correlations and moderation by parent personality traits

    PubMed Central

    OPPENHEIMER, CAROLINE W.; HANKIN, BENJAMIN L.; JENNESS, JESSICA L.; YOUNG, JAMI F.; SMOLEN, ANDREW

    2013-01-01

    Gene–environment correlations (rGE) have been demonstrated in behavioral genetic studies, but rGE have proven elusive in molecular genetic research. Significant gene–environment correlations may be difficult to detect because potential moderators could reduce correlations between measured genetic variants and the environment. Molecular genetic studies investigating moderated rGE are lacking. This study examined associations between child catechol-O-methyltransferase genotype and aspects of positive parenting (responsiveness and warmth), and whether these associations were moderated by parental personality traits (neuroticism and extraversion) among a general community sample of third, sixth, and ninth graders (N = 263) and their parents. Results showed that parent personality traits moderated the rGE association between youths’ genotype and coded observations of positive parenting. Parents with low levels of neuroticism and high levels of extraversion exhibited greater sensitive responsiveness and warmth, respectively, to youth with the valine/valine genotype. Moreover, youth with this genotype exhibited lower levels of observed anger. There was no association between the catechol-O-methyltransferase genotype and parenting behaviors for parents high on neuroticism and low on extraversion. Findings highlight the importance of considering moderating variables that may influence child genetic effects on the rearing environment. Implications for developmental models of maladaptive and adaptive child outcomes, and interventions for psychopathology, are discussed within a developmental psychopathology framework. PMID:23398761

  1. Phosphorylation of serine-515 activates the Mammalian maintenance methyltransferase Dnmt1.

    PubMed

    Goyal, Rachna; Rathert, Philipp; Laser, Heike; Gowher, Humaira; Jeltsch, Albert

    2007-09-01

    DNA methyltransferase 1 methylates hemi-methylated CG sites generated during DNA replication. Serine 515 of this enzyme has been shown to be phosphorylated. To explore the importance of S515 phosphorylation, we generated mutants of Dnmt1 which removed the phosphorylation potential (S515A) or mimic phosphoserine (S515E), purified the proteins from insect cells and analyzed their DNA methylation activity in vitro. The S515E mutant was found to be active, while S515A mutant had severe loss in activity when compared to the wild type protein. The loss of activity of the S515A variant was not due to loss of DNA binding capacity. Furthermore, we show that a phosphorylated peptide whose sequence mimics the surrounding of Ser515 (EKIYIS(P)KIVVE) inhibited the activity of wild type Dnmt1 ten-fold more than the non-phosphorylated peptide. The inhibition was specific for Dnmt1 and for the particular peptide sequence. Our data suggest that phosphorylation of Ser515 is important for an interaction between the N-terminal domain of Dnmt1 and its catalytic domain that is necessary for activity and that this interaction is specifically disrupted by the phosphorylated peptide. We conclude that phosphorylation of Dnmt1 at Ser515 could be an important regulator of Dnmt1 activity during cell cycle and after proliferative stimuli.

  2. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA

    PubMed Central

    Toh, Seok-Ming; Xiong, Liqun; Bae, Taeok; Mankin, Alexander S.

    2008-01-01

    A2503 in 23S rRNA of the Gram-negative bacterium Escherichia coli is located in a functionally important region of the ribosome, at the entrance to the nascent peptide exit tunnel. In E. coli, and likely in other species, this adenosine residue is post-transcriptionally modified to m2A. The enzyme responsible for this modification was previously unknown. We identified E. coli protein YfgB, which belongs to the radical SAM enzyme superfamily, as the methyltransferase that modifies A2503 of 23S rRNA to m2A. Inactivation of the yfgB gene in E. coli led to the loss of modification at nucleotide A2503 of 23S rRNA as revealed by primer extension analysis and thin layer chromatography. The A2503 modification was restored when YfgB protein was expressed in the yfgB knockout strain. A similar protein was shown to catalyze post-transcriptional modification of A2503 in 23S rRNA in Gram-positive Staphylococcus aureus. The yfgB knockout strain loses in competition with wild type in a co-growth experiment, indicating functional importance of A2503 modification. The location of A2503 in the exit tunnel suggests its possible involvement in interaction with the nascent peptide and raises the possibility that its post-transcriptional modification may influence such an interaction. PMID:18025251

  3. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Cancer.gov

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  4. Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women's Health Initiative Observational Study.

    PubMed

    Cheng, Ting-Yuan David; Makar, Karen W; Neuhouser, Marian L; Miller, Joshua W; Song, Xiaoling; Brown, Elissa C; Beresford, Shirley A A; Zheng, Yingye; Poole, Elizabeth M; Galbraith, Rachel L; Duggan, David J; Habermann, Nina; Bailey, Lynn B; Maneval, David R; Caudill, Marie A; Toriola, Adetunji T; Green, Ralph; Ulrich, Cornelia M

    2015-10-15

    Investigations of folate-mediated one-carbon metabolism (FOCM) genes and gene-nutrient interactions with respect to colorectal cancer (CRC) risk are limited to candidate polymorphisms and dietary folate. This study comprehensively investigated associations between genetic variants in FOCM and CRC risk and whether the FOCM nutrient status modified these associations. Two hundred eighty-eight candidate and tagging single-nucleotide polymorphisms (SNPs) in 30 FOCM genes were genotyped for 821 incident CRC case-control matched pairs in the Women's Health Initiative Observational Study cohort. FOCM biomarkers (red blood cell [RBC] folate, plasma folate, pyridoxal-5'-phosphate [PLP], vitamin B12, and homocysteine) and self-reported alcohol consumption were measured at the baseline. Conditional logistic regression was implemented; effect modification was examined on the basis of known enzyme-nutrient relations. Statistically significant associations were observed between CRC risk and functionally defined candidate SNPs of methylenetetrahydrofolate dehydrogenase 1 (MTHFD1; K134R), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR; P450R), and PR domain containing 2 with ZNF domain (PRDM2; S450N) and a literature candidate SNP of thymidylate synthase (TYMS; g.676789A>T; nominal P < .05). In addition, suggestive associations were noted for tagging SNPs in cystathionine-β-synthase (CBS), dihydrofolate reductase (DHFR), DNA (cytosine-5-)-methyltransferase 3β (DNMT3B), methionine adenosyltransferase I α (MAT1A), MTHFD1, and MTRR (nominal P < .05; adjusted P, not significant). Significant interactions between nutrient biomarkers and candidate polymorphisms were observed for 1) plasma/RBC folate and folate hydrolase 1 (FOLH1), paraoxonase 1 (PON1), transcobalamin II (TCN2), DNMT1, and DNMT3B; 2) plasma PLP and TYMS TS3; 3) plasma B12 and betaine-homocysteine S-methyltransferase 2 (BHMT2); and 4) homocysteine and methylenetetrahydrofolate reductase (MTHFR) and alanyl-transfer RNA synthetase (AARS). Genetic variants in FOCM genes are associated with CRC risk among postmenopausal women. FOCM nutrients continue to emerge as effect modifiers of genetic influences on CRC risk. © 2015 American Cancer Society.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Jinsong, E-mail: pangjs542@nenu.edu.cn; Dong, Mingyue; Li, Ning

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo andmore » maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA methyltransferase gene with conserved activity in both prokaryotic and eukaryotic non-host species.« less

  6. The METTL20 Homologue from Agrobacterium tumefaciens Is a Dual Specificity Protein-lysine Methyltransferase That Targets Ribosomal Protein L7/L12 and the β Subunit of Electron Transfer Flavoprotein (ETFβ)*

    PubMed Central

    Małecki, Jędrzej; Dahl, Helge-André; Moen, Anders; Davydova, Erna; Falnes, Pål Ø.

    2016-01-01

    Human METTL20 is a mitochondrial, lysine-specific methyltransferase that methylates the β-subunit of electron transfer flavoprotein (ETFβ). Interestingly, putative METTL20 orthologues are found in a subset of α-proteobacteria, including Agrobacterium tumefaciens. Using an activity-based approach, we identified in bacterial extracts two substrates of recombinant METTL20 from A. tumefaciens (AtMETTL20), namely ETFβ and the ribosomal protein RpL7/L12. We show that AtMETTL20, analogous to the human enzyme, methylates ETFβ on Lys-193 and Lys-196 both in vitro and in vivo. ETF plays a key role in mediating electron transfer from various dehydrogenases, and we found that its electron transferring ability was diminished by AtMETTL20-mediated methylation of ETFβ. Somewhat surprisingly, AtMETTL20 also catalyzed monomethylation of RpL7/L12 on Lys-86, a common modification also found in many bacteria that lack METTL20. Thus, we here identify AtMETTL20 as the first enzyme catalyzing RpL7/L12 methylation. In summary, here we have identified and characterized a novel bacterial lysine-specific methyltransferase with unprecedented dual substrate specificity within the seven β-strand class of lysine-specific methyltransferases, as it targets two apparently unrelated substrates, ETFβ and RpL7/L12. Moreover, the present work establishes METTL20-mediated methylation of ETFβ as the first lysine methylation event occurring in both bacteria and humans. PMID:26929405

  7. Modifying the 5'-Cap for Click Reactions of Eukaryotic mRNA and To Tune Translation Efficiency in Living Cells.

    PubMed

    Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea

    2016-08-26

    The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA.

    PubMed

    Ferron, François; Subissi, Lorenzo; Silveira De Morais, Ana Theresa; Le, Nhung Thi Tuyet; Sevajol, Marion; Gluais, Laure; Decroly, Etienne; Vonrhein, Clemens; Bricogne, Gérard; Canard, Bruno; Imbert, Isabelle

    2018-01-09

    Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes (∼30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability. Here, we demonstrate for severe acute respiratory syndrome (SARS)-CoV an RNA synthesis and proofreading pathway through association of nsp14 with the low-fidelity nsp12 viral RNA polymerase. Through this pathway, the antiviral compound ribavirin 5'-monophosphate is significantly incorporated but also readily excised from RNA, which may explain its limited efficacy in vivo. The crystal structure at 3.38 Å resolution of SARS-CoV nsp14 in complex with its cofactor nsp10 adds to the uniqueness of CoVs among RNA viruses: The MTase domain presents a new fold that differs sharply from the canonical Rossmann fold.

  9. Genetic Insights Into Pyralomicin Biosynthesis in Nonomuraea spiralis IMC A-0156

    PubMed Central

    Flatt, Patricia M.; Wu, Xiumei; Perry, Steven; Mahmud, Taifo

    2013-01-01

    The biosynthetic gene cluster for the pyralomicin antibiotics has been cloned and sequenced from Nonomuraea spiralis IMC A-0156. The 41-kb gene cluster contains 27 ORFs predicted to encode all of the functions for pyralomicin biosynthesis. This includes non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) required for the formation of the benzopyranopyrrole core unit, as well as a suite of tailoring enzymes (e.g., four halogenases, an O-methyltransferase, and an N-glycosyltransferase) necessary for further modifications of the core structure. The N-glycosyltransferase is predicted to transfer either glucose or a pseudosugar (cyclitol) to the aglycone. A gene cassette encoding C7-cyclitol biosynthetic enzymes was identified upstream of the benzopyranopyrrole-specific ORFs. Targeted disruption of the gene encoding the N-glycosyltransferase, prlH, abolished pyralomicin production and recombinant expression of PrlA confirms the activity of this enzyme as a sugar phosphate cyclase (SPC) involved in the formation of the C7-cyclitol moiety. PMID:23607523

  10. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    PubMed Central

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  11. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis.

    PubMed

    Rivera-Millot, Alex; Lesne, Elodie; Solans, Luis; Coutte, Loic; Bertrand-Michel, Justine; Froguel, Philippe; Dhennin, Véronique; Hot, David; Locht, Camille; Antoine, Rudy; Jacob-Dubuisson, Françoise

    2017-01-01

    The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen.

  12. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana.

    PubMed

    Hong, Sunghyun; Song, Hae-Ryong; Lutz, Kerry; Kerstetter, Randall A; Michael, Todd P; McClung, C Robertson

    2010-12-07

    Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general.

  13. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity.

    PubMed

    Aapola, Ulla; Liiv, Ingrid; Peterson, Pärt

    2002-08-15

    DNMT3L is a regulator of imprint establishment of normally methylated maternal genomic sequences. DNMT3L shows high similarity to the de novo DNA methyltransferases, DNMT3A and DNMT3B, however, the amino acid residues needed for DNA cytosine methyltransferase activity have been lost from the DNMT3L protein sequence. Apart from methyltransferase activity, Dnmt3a and Dnmt3b serve as transcriptional repressors associating with histone deacetylase (HDAC) activity. Here we show that DNMT3L can also repress transcription by binding directly to HDAC1 protein. We have identified the PHD-like zinc finger of the ATRX domain as a main repression motif of DNMT3L, through which DNMT3L recruits the HDAC activity needed for transcriptional silencing. Furthermore, we show that DNMT3L protein contains an active nuclear localisation signal at amino acids 156-159. These results describe DNMT3L as a co-repressor protein and suggest that a transcriptionally repressed chromatin organisation through HDAC activity is needed for establishment of genomic imprints.

  14. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yan; Li, Fengling; Babault, Nicolas

    G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono- and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18more » (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.« less

  15. Computational fishing of new DNA methyltransferase inhibitors from natural products.

    PubMed

    Maldonado-Rojas, Wilson; Olivero-Verbel, Jesus; Marrero-Ponce, Yovani

    2015-07-01

    DNA methyltransferase inhibitors (DNMTis) have become an alternative for cancer therapies. However, only two DNMTis have been approved as anticancer drugs, although with some restrictions. Natural products (NPs) are a promising source of drugs. In order to find NPs with novel chemotypes as DNMTis, 47 compounds with known activity against these enzymes were used to build a LDA-based QSAR model for active/inactive molecules (93% accuracy) based on molecular descriptors. This classifier was employed to identify potential DNMTis on 800 NPs from NatProd Collection. 447 selected compounds were docked on two human DNA methyltransferase (DNMT) structures (PDB codes: 3SWR and 2QRV) using AutoDock Vina and Surflex-Dock, prioritizing according to their score values, contact patterns at 4 Å and molecular diversity. Six consensus NPs were identified as virtual hits against DNMTs, including 9,10-dihydro-12-hydroxygambogic, phloridzin, 2',4'-dihydroxychalcone 4'-glucoside, daunorubicin, pyrromycin and centaurein. This method is an innovative computational strategy for identifying DNMTis, useful in the identification of potent and selective anticancer drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy.

    PubMed

    Smith, Emily; Zhou, Wei; Shindiapina, Polina; Sif, Said; Li, Chenglong; Baiocchi, Robert A

    2018-05-21

    Exploration in the field of epigenetics has revealed the diverse roles of the protein arginine methyltransferase (PRMT) family of proteins in multiple disease states. These findings have led to the development of specific inhibitors and discovery of several new classes of drugs with potential to treat both benign and malignant conditions. Areas covered: We provide an overview on the role of PRMT enzymes in healthy and malignant cells, highlighting the role of arginine methylation in specific pathways relevant to cancer pathogenesis. Additionally, we describe structure and catalytic activity of PRMT and discuss the mechanisms of action of novel small molecule inhibitors of specific members of the arginine methyltransferase family. Expert opinion: As the field of PRMT biology advances, it's becoming clear that this class of enzymes is highly relevant to maintaining normal physiologic processes as well and disease pathogenesis. We discuss the potential impact of PRMT inhibitors as a broad class of drugs, including the pleiotropic effects, off target effects the need for more detailed PRMT-centric interactomes, and finally, the potential for targeting this class of enzymes in clinical development of experimental therapeutics for cancer.

  17. Arginine methyltransferase inhibitor 1 inhibits gastric cancer by downregulating eIF4E and targeting PRMT5.

    PubMed

    Zhang, Baolai; Zhang, Su; Zhu, Lijuan; Chen, Xue; Zhao, Yunfeng; Chao, Li; Zhou, Juanping; Wang, Xing; Zhang, Xinyang; Ma, Nengqian

    2017-12-01

    Arginine methylation is carried out by protein arginine methyltransferase (PRMTs) family. Arginine methyltransferase inhibitor 1 (AMI-1) is mainly used to inhibit type I PRMT activity in vitro. However, the effects of AMI-1 on type II PRMT5 activity and gastric cancer (GC) remain unclear. In this study, we provided the first evidence that AMI-1 significantly inhibited GC cell proliferation and migration while induced GC cell apoptosis, and reduced the expression of PRMT5, eukaryotic translation initiation factor 4E (eIF4E), symmetric dimethylation of histone 3 (H3R8me2s) and histone 4 (H4R3me2s). In addition, AMI-1 inhibited tumor growth, downregulated eIF4E, H4R3me2s and H3R8me2s expression in mice xenografts model of GC. Collectively, our results suggest that AMI-1 inhibits GC by downregulating eIF4E and targeting type II PRMT5. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The C. elegans PRMT-3 possesses a type III protein arginine methyltransferase activity.

    PubMed

    Takahashi, Yuta; Daitoku, Hiroaki; Yokoyama, Atsuko; Nakayama, Kimihiro; Kim, Jun-Dal; Fukamizu, Akiyoshi

    2011-04-01

    Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.

  19. Cloning, expression, purification and preliminary X-ray crystallographic analysis of mouse protein arginine methyltransferase 7.

    PubMed

    Cura, Vincent; Troffer-Charlier, Nathalie; Lambert, Marie-Annick; Bonnefond, Luc; Cavarelli, Jean

    2014-01-01

    Protein arginine methyltransferase 7 (PRMT7) is a unique but less characterized member of the family of protein arginine methyltransferases (PRMTs) that plays a role in male germline gene imprinting. PRMT7 is the only known PRMT member that catalyzes the monomethylation but not the dimethylation of the target arginine residues and harbours two catalytic domains in tandem. PRMT7 genes from five different species were cloned and expressed in Escherichia coli and Sf21 insect cells. Four gave soluble proteins from Sf21 cells, of which two were homogeneous and one gave crystals. The mouse PRMT7 structure was solved by the single anomalous dispersion method using a crystal soaked with thimerosal that diffracted to beyond 2.1 Å resolution. The crystal belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 97.4, c = 168.1 Å and one PRMT7 monomer in the asymmetric unit. The structure of another crystal form belonging to space group I222 was solved by molecular replacement.

  20. Cloning, expression, purification and preliminary X-­ray crystallographic analysis of mouse protein arginine methyltransferase 7

    PubMed Central

    Cura, Vincent; Troffer-Charlier, Nathalie; Lambert, Marie-Annick; Bonnefond, Luc; Cavarelli, Jean

    2014-01-01

    Protein arginine methyltransferase 7 (PRMT7) is a unique but less characterized member of the family of protein arginine methyltransferases (PRMTs) that plays a role in male germline gene imprinting. PRMT7 is the only known PRMT member that catalyzes the monomethylation but not the dimethylation of the target arginine residues and harbours two catalytic domains in tandem. PRMT7 genes from five different species were cloned and expressed in Escherichia coli and Sf21 insect cells. Four gave soluble proteins from Sf21 cells, of which two were homogeneous and one gave crystals. The mouse PRMT7 structure was solved by the single anomalous dispersion method using a crystal soaked with thimerosal that diffracted to beyond 2.1 Å resolution. The crystal belonged to space group P43212, with unit-cell parameters a = b = 97.4, c = 168.1 Å and one PRMT7 monomer in the asymmetric unit. The structure of another crystal form belonging to space group I222 was solved by molecular replacement. PMID:24419624

  1. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis

    PubMed Central

    Rivera-Millot, Alex; Lesne, Elodie; Solans, Luis; Coutte, Loic; Bertrand-Michel, Justine; Froguel, Philippe; Dhennin, Véronique; Hot, David; Locht, Camille; Antoine, Rudy

    2017-01-01

    The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen. PMID:28493897

  2. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana

    PubMed Central

    Hong, Sunghyun; Lutz, Kerry; Kerstetter, Randall A.; Michael, Todd P.; McClung, C. Robertson

    2010-01-01

    Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general. PMID:21097700

  3. Uncovering human METTL12 as a mitochondrial methyltransferase that modulates citrate synthase activity through metabolite-sensitive lysine methylation.

    PubMed

    Małecki, Jędrzej; Jakobsson, Magnus E; Ho, Angela Y Y; Moen, Anders; Rustan, Arild C; Falnes, Pål Ø

    2017-10-27

    Lysine methylation is an important and much-studied posttranslational modification of nuclear and cytosolic proteins but is present also in mitochondria. However, the responsible mitochondrial lysine-specific methyltransferases (KMTs) remain largely elusive. Here, we investigated METTL12, a mitochondrial human S -adenosylmethionine (AdoMet)-dependent methyltransferase and found it to methylate a single protein in mitochondrial extracts, identified as citrate synthase (CS). Using several in vitro and in vivo approaches, we demonstrated that METTL12 methylates CS on Lys-395, which is localized in the CS active site. Interestingly, the METTL12-mediated methylation inhibited CS activity and was blocked by the CS substrate oxaloacetate. Moreover, METTL12 was strongly inhibited by the reaction product S -adenosylhomocysteine (AdoHcy). In summary, we have uncovered a novel human mitochondrial KMT that introduces a methyl modification into a metabolic enzyme and whose activity can be modulated by metabolic cues. Based on the established naming nomenclature for similar enzymes, we suggest that METTL12 be renamed CS-KMT (gene name CSKMT ). © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Analysis of hydrophobic interactions of antagonists with the beta2-adrenergic receptor.

    PubMed

    Novoseletsky, V N; Pyrkov, T V; Efremov, R G

    2010-01-01

    The adrenergic receptors mediate a wide variety of physiological responses, including vasodilatation and vasoconstriction, heart rate modulation, and others. Beta-adrenergic antagonists ('beta-blockers') thus constitute a widely used class of drugs in cardiovascular medicine as well as in management of anxiety, migraine, and glaucoma. The importance of the hydrophobic effect has been evidenced for a wide range of beta-blocker properties. To better understand the role of the hydrophobic effect in recognition of beta-blockers by their receptor, we carried out a molecular docking study combined with an original approach to estimate receptor-ligand hydrophobic interactions. The proposed method is based on automatic detection of molecular fragments in ligands and the analysis of their interactions with receptors separately. A series of beta-blockers, based on phenylethanolamines and phenoxypropanolamines, were docked to the beta2-adrenoceptor binding site in the crystal structure. Hydrophobic complementarity between the ligand and the receptor was calculated using the PLATINUM web-server (http://model.nmr.ru/platinum). Based on the analysis of the hydrophobic match for molecular fragments of beta-blockers, we have developed a new scoring function which efficiently predicts dissociation constant (pKd) with strong correlations (r(2) approximately 0.8) with experimental data.

  5. Current use of pharmacogenetic testing: a national survey of thiopurine methyltransferase testing prior to azathioprine prescription.

    PubMed

    Fargher, E A; Tricker, K; Newman, W; Elliott, R; Roberts, S A; Shaffer, J L; Bruce, I; Payne, K

    2007-04-01

    Azathioprine is an immunosuppressant prescribed for the treatment of inflammatory conditions and after organ transplantation. Risk of neutropaenia has limited the effective use of azathioprine (AZA) and driven requirements for careful monitoring and blood tests. Thiopurine methyltransferase (TPMT) is a genetically moderated key enzyme involved in the metabolism of AZA that can be used to stratify individuals into different levels of risk of developing neutropaenia. Two techniques can be used to measure TPMT status: enzyme-level testing (phenotype testing) and DNA based testing (genotype testing). To identify the current uptake of TPMT enzyme-level testing, TPMT genotype testing, and, the role of guidelines; to inform the prescribing and monitoring of AZA. A survey was mailed to a consultant dermatologist, gastroenterologist, and rheumatologist at every NHS Hospital Trust in England. The survey comprised mainly closed questions exploring: use of AZA and monitoring; use of TPMT enzyme-level testing and genotype testing; and, the role of guidelines to guide prescribing practice. A 70% (n=287) response rate was obtained. The majority of respondents reported prescribing AZA (99%, n=283). Prescribing and monitoring patterns differed between individual respondents and between the three disciplines. TPMT enzyme-level testing was reportedly used by 67% (n=189) of respondents, but this differed by discipline (dermatologists 94%, gastroenterologists 60%, rheumatologists 47%). In 91% of cases enzyme-level testing was carried out prior to prescribing AZA. Genotype testing is not typically available to NHS clinicians but 15 clinicians (six dermatologists, six gastroenterologists, three rheumatologists) reported using it. Most consultants (82%) reported using guidelines to inform their AZA prescribing and monitoring (dermatologists 81%, gastroenterologists 75%, rheumatologists 94%). Two-thirds of the consultants surveyed in England are using TPMT enzyme-level testing, prior to AZA treatment. Uptake differs between specialities. High uptake of TPMT enzyme-level testing by dermatologists, compared with gastroenterologists and rheumatologists, may reflect national guidelines advocating its use prior to AZA. Uptake of enzyme-level testing may alter in other specialties as other guidelines are developed.

  6. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes.

    PubMed

    Nga, Phan Thi; Parquet, Maria del Carmen; Lauber, Chris; Parida, Manmohan; Nabeshima, Takeshi; Yu, Fuxun; Thuy, Nguyen Thanh; Inoue, Shingo; Ito, Takashi; Okamoto, Kenta; Ichinose, Akitoyo; Snijder, Eric J; Morita, Kouichi; Gorbalenya, Alexander E

    2011-09-01

    Nidoviruses with large genomes (26.3-31.7 kb; 'large nidoviruses'), including Coronaviridae and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) viruses. Based on genome size, they are far separated from all other ssRNA+ viruses (below 19.6 kb), including the distantly related Arteriviridae (12.7-15.7 kb; 'small nidoviruses'). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3'-5'exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which we here provide evolutionary support using comparative genomics involving the newly discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. The genome of this enveloped 60-80 nm virus is 20,192 nt and has a nidovirus-like polycistronic organization including two large, partially overlapping open reading frames (ORF) 1a and 1b followed by several smaller 3'-proximal ORFs. Peptide sequencing assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3'-coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2'-O-methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the uridylate-specific endonuclease that - in deviation from the current paradigm - is present exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses and that its branch diverged from large nidoviruses early after they split from small nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus family and a missing link in the transition from small to large nidoviruses.

  7. Low-Level Environmental Cadmium Exposure Is Associated with DNA Hypomethylation in Argentinean Women

    PubMed Central

    Hossain, Mohammad Bakhtiar; Vahter, Marie; Concha, Gabriela

    2012-01-01

    Background: Cadmium, a common food pollutant, alters DNA methylation in vitro. Epigenetic effects might therefore partly explain cadmium’s toxicity, including its carcinogenicity; however, human data on epigenetic effects are lacking. Objective: We evaluated the effects of dietary cadmium exposure on DNA methylation, considering other environmental exposures, genetic predisposition, and gene expression. Methods: Concentrations of cadmium, arsenic, selenium, and zinc in blood and urine of nonsmoking women (n = 202) from the northern Argentinean Andes were measured by inductively coupled mass spectrometry. Methylation in CpG islands of LINE-1 (long interspersed nuclear element-1; a proxy for global DNA methylation) and promoter regions of p16 [cyclin-dependent kinase inhibitor 2A (CDKN2A)] and MLH1 (mutL homolog 1) in peripheral blood were measured by bisulfite polymerase chain reaction pyrosequencing. Genotyping (n = 172) for the DNA (cytosine-5-)-methyltransferase 1 gene (DNMT1 rs10854076 and rs2228611) and DNA (cytosine-5-)-methyltransferase 3 beta gene (DNMT3B rs2424913 and rs2424932) was performed with Sequenom iPLEX GOLD SNP genotyping; and gene expression (n = 90), with DirectHyb HumanHT-12 (version 3.0). Results: Cadmium exposure was low: median concentrations in blood and urine were 0.36 and 0.23 µg/L, respectively. Urinary cadmium (natural log transformed) was inversely associated with LINE-1 methylation (β = –0.50, p = 0.0070; β = –0.44, p = 0.026, adjusted for age and coca chewing) but not with p16 or MLH1 methylation. Both DNMT1 rs10854076 and DNMT1 rs2228611 polymorphisms modified associations between urinary cadmium and LINE-1 (p-values for interaction in adjusted models were 0.045 and 0.064, respectively). The rare genotypes demonstrated stronger hypomethylation with increasing urinary cadmium concentrations. Cadmium was inversely associated with DNMT3B (rS = –0.28, p = 0.0086) but not with DNMT1 expression (rS = –0.075, p = 0.48). Conclusion: Environmental cadmium exposure was associated with DNA hypomethylation in peripheral blood, and DNMT1 genotypes modified this association. The role of epigenetic modifications in cadmium-associated diseases needs clarification. PMID:22382075

  8. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.

    PubMed Central

    Møller, Michael T N; Samari, Hamid R; Fengsrud, Monica; Strømhaug, Per E; øStvold, Anne C; Seglen, Per O

    2003-01-01

    Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels. Phosphorylation of GNMT would thus seem to play no role in regulation of the intracellular AdoMet/AdoHcy ratio, but could be involved in other GNMT functions, such as the binding of folates or aromatic hydrocarbons. PMID:12697024

  9. Identification and characterization of a catechol-o-methyltransferase cDNA in the catfish Heteropneustes fossilis: Tissue, sex and seasonal variations, and effects of gonadotropin and 2-hydroxyestradiol-17β on mRNA expression.

    PubMed

    Chaube, R; Rawat, A; Inbaraj, R M; Bobe, J; Guiguen, Y; Fostier, A; Joy, K P

    2017-05-15

    Catechol-O-methyltransferase (COMT) is involved in the methylation and inactivation of endogenous and xenobiotic catechol compounds, and serves as a common biochemical link in the catecholamine and catecholestrogen metabolism. Studies on cloning, sequencing and function characterization comt gene in lower vertebrates like fish are fewer. In the present study, a full-length comt cDNA of 1442bp with an open-reading frame (ORF) of 792bp, and start codon (ATG) at nucleotide 162 and stop codon (TAG) at nucleotide 953 was isolated and characterized in the stinging catfish Heteropneustes fossilis (accession No. KT597925). The ORF codes for a protein of 263 amino acid residues, which is also validated by the catfish transcriptome data analysis. The catfish Comt shared conserved putative structural regions important for S-adenosyl methionine (AdoMet)- and catechol-binding, transmembrane regions, two glycosylation sites (N-65 and N-91) at the N-terminus and two phosphorylation sites (Ser-235 and Thr-240) at the C-terminus. The gene was expressed in all tissues examined and the expression showed significant sex dimorphic distribution with high levels in females. The transcript was abundant in the liver, brain and gonads and low in muscles. The transcripts showed significant seasonal variations in the brain and ovary, increased progressively to the peak levels in spawning phase and then declined. The brain and ovarian comt mRNA levels showed periovulatory changes after in vivo and in vitro human chorionic gonadotropin (hCG) treatments with high fold increases at 16 and 24h in the brain and at 16h in the ovary. The catecholestrogen 2-hydroxyE 2 up regulated ovarian comt expression in vitro with the highest fold increase at 16h. The mRNA and protein was localized in the follicular layer of the vitellogenic follicles and in the cytoplasm of primary follicles. The data were discussed in relation to catecholamine and catecholestrogen-mediated functions in the brain and ovary of the stinging catfish. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested formore » methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.« less

  11. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2

    DOE PAGES

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen; ...

    2015-03-30

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex withmore » LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. As a result, these findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.« less

  12. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    PubMed

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex withmore » LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. As a result, these findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.« less

  14. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    PubMed Central

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  15. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    PubMed

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  16. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity.

    PubMed

    Gursoy-Yuzugullu, Ozge; Carman, Chelsea; Serafim, Rodolfo Bortolozo; Myronakis, Marios; Valente, Valeria; Price, Brendan D

    2017-04-11

    Radiation therapy is widely used to treat human malignancies, but many tumor types, including gliomas, exhibit significant radioresistance. Radiation therapy creates DNA double-strand breaks (DSBs), and DSB repair is linked to rapid changes in epigenetic modifications, including increased histone methylation. This increased histone methylation recruits DNA repair proteins which can then alter the local chromatin structure and promote repair. Consequently, combining inhibitors of specific histone methyltransferases with radiation therapy may increase tumor radiosensitivity, particularly in tumors with significant therapeutic resistance. Here, we demonstrate that inhibitors of the H4K20 methyltransferase SETD8 (UNC-0379) and the H3K9 methyltransferase G9a (BIX-01294) are effective radiosensitizers of human glioma cells. UNC-0379 blocked H4K20 methylation and reduced recruitment of the 53BP1 protein to DSBs, although this loss of 53BP1 caused only limited changes in radiosensitivity. In contrast, loss of H3K9 methylation through G9a inhibition with BIX-01294 increased radiosensitivity of a panel of glioma cells (SER2Gy range: 1.5 - 2.9). Further, loss of H3K9 methylation reduced DSB signaling dependent on H3K9, including reduced activation of the Tip60 acetyltransferase, loss of ATM signaling and reduced phosphorylation of the KAP-1 repressor. In addition, BIX-0194 inhibited DSB repair through both the homologous recombination and nonhomologous end-joining pathways. Inhibition of G9a and loss of H3K9 methylation is therefore an effective approach for increasing radiosensitivity of glioma cells. These results suggest that combining inhibitors of histone methyltransferases which are critical for DSB repair with radiation therapy may provide a new therapeutic route for sensitizing gliomas and other tumors to radiation therapy.

  17. Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast1[C][W][OA

    PubMed Central

    Wang, Keri; Senthil-Kumar, Muthappa; Ryu, Choong-Min; Kang, Li; Mysore, Kirankumar S.

    2012-01-01

    Bacterial pathogens colonize a host plant by growing between the cells by utilizing the nutrients present in apoplastic space. While successful pathogens manipulate the plant cell membrane to retrieve more nutrients from the cell, the counteracting plant defense mechanism against nonhost pathogens to restrict the nutrient efflux into the apoplast is not clear. To identify the genes involved in nonhost resistance against bacterial pathogens, we developed a virus-induced gene-silencing-based fast-forward genetics screen in Nicotiana benthamiana. Silencing of N. benthamiana SQUALENE SYNTHASE, a key gene in phytosterol biosynthesis, not only compromised nonhost resistance to few pathovars of Pseudomonas syringae and Xanthomonas campestris, but also enhanced the growth of the host pathogen P. syringae pv tabaci by increasing nutrient efflux into the apoplast. An Arabidopsis (Arabidopsis thaliana) sterol methyltransferase mutant (sterol methyltransferase2) involved in sterol biosynthesis also compromised plant innate immunity against bacterial pathogens. The Arabidopsis cytochrome P450 CYP710A1, which encodes C22-sterol desaturase that converts β-sitosterol to stigmasterol, was dramatically induced upon inoculation with nonhost pathogens. An Arabidopsis Atcyp710A1 null mutant compromised both nonhost and basal resistance while overexpressors of AtCYP710A1 enhanced resistance to host pathogens. Our data implicate the involvement of sterols in plant innate immunity against bacterial infections by regulating nutrient efflux into the apoplast. PMID:22298683

  18. Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland.

    PubMed

    Rath, Martin F; Coon, Steven L; Amaral, Fernanda G; Weller, Joan L; Møller, Morten; Klein, David C

    2016-05-01

    The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes.

  19. Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity.

    PubMed

    Murphy, James; Klumpp, Jochen; Mahony, Jennifer; O'Connell-Motherway, Mary; Nauta, Arjen; van Sinderen, Douwe

    2014-10-01

    So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return. Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages. SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.

  20. Catechol-O-Methyltransferase moderates effect of stress mindset on affect and cognition

    PubMed Central

    Akinola, Modupe; Turnwald, Bradley P.; Kaptchuk, Ted J.; Hall, Kathryn T.

    2018-01-01

    There is evidence that altering stress mindset—the belief that stress is enhancing vs. debilitating—can change cognitive, affective and physiological responses to stress. However individual differences in responsiveness to stress mindset manipulations have not been explored. Given the previously established role of catecholamines in both placebo effects and stress, we hypothesized that genetic variation in catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, would moderate responses to an intervention intended to alter participants’ mindsets about stress. Participants (N = 107) were exposed to a stress mindset manipulation (videos highlighting either the enhancing or debilitating effects of stress) prior to engaging in a Trier Social Stress task and subsequent cognitive tasks. The associations of the COMT rs4680 polymorphism with the effect of stress mindset video manipulations on cognitive and affective responses were examined. Genetic variation at rs4680 modified the effects of stress mindset on affective and cognitive responses to stress. Individuals homozygous for rs4680 low-activity allele (met/met) were responsive to the stress-is-enhancing mindset manipulation as indicated by greater increases in positive affect, improved cognitive functioning, and happiness bias in response to stress. Conversely, individuals homozygous for the high-activity allele (val/val) were not as responsive to the stress mindset manipulation. These results suggest that responses to stress mindset intervention may vary with COMT genotype. These findings contribute to the understanding of gene by environment interactions for mindset interventions and stress reactivity and therefore warrant further investigations. PMID:29677196

  1. Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland

    PubMed Central

    Coon, Steven L.; Amaral, Fernanda G.; Weller, Joan L.; Møller, Morten; Klein, David C.

    2016-01-01

    The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes. PMID:26950199

  2. An Alternative Mechanism for the Methylation of Phosphoethanolamine Catalyzed by Plasmodium falciparum Phosphoethanolamine Methyltransferase*♦

    PubMed Central

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.; Guallar, Victor

    2014-01-01

    The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT. PMID:25288796

  3. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5.

    PubMed

    Tabata, Takanori; Kokura, Kenji; Ten Dijke, Peter; Ishii, Shunsuke

    2009-01-01

    The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.

  4. Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone.

    PubMed

    Hurd, P J; Whitmarsh, A J; Baldwin, G S; Kelly, S M; Waltho, J P; Price, N C; Connolly, B A; Hornby, D P

    1999-02-19

    DNA duplexes in which the target cytosine base is replaced by 2-H pyrimidinone have previously been shown to bind with a significantly greater affinity to C5-cytosine DNA methyltransferases than unmodified DNA. Here, it is shown that 2-H pyrimidinone, when incorporated into DNA duplexes containing the recognition sites for M.HgaI-2 and M.MspI, elicits the formation of inhibitory covalent nucleoprotein complexes. We have found that although covalent complexes are formed between 2-H pyrimidinone-modified DNA and both M.HgaI-2 and M.MspI, the kinetics of complex formation are quite distinct in each case. Moreover, the formation of a covalent complex is still observed between 2-H pyrimidinone DNA and M.MspI in which the active-site cysteine residue is replaced by serine or threonine. Covalent complex formation between M.MspI and 2-H pyrimidinone occurs as a direct result of nucleophilic attack by the residue at the catalytic position, which is enhanced by the absence of the 4-amino function in the base. The substitution of the catalytic cysteine residue by tyrosine or chemical modification of the wild-type enzyme with N-ethylmaleimide, abolishes covalent interaction. Nevertheless the 2-H pyrimidinone-substituted duplex still binds to M.MspI with a greater affinity than a standard cognate duplex, since the 2-H pyrimidinone base is mis-paired with guanine. Copyright 1999 Academic Press.

  5. Reduced Susceptibility of DNA Methyltransferase 1 Hypomorphic (Dnmt1N/+) Mice to Hepatic Steatosis upon Feeding Liquid Alcohol Diet

    PubMed Central

    Yu, Lianbo; Zhang, Xiaoli; Majumder, Sarmila; Motiwala, Tasneem; Khan, Nuzhat; Belury, Martha; McClain, Craig; Jacob, Samson; Ghoshal, Kalpana

    2012-01-01

    Background Methylation at C-5 (5-mdC) of CpG base pairs, the most abundant epigenetic modification of DNA, is catalyzed by 3 essential DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b). Aberrations in DNA methylation and Dnmts are linked to different diseases including cancer. However, their role in alcoholic liver disease (ALD) has not been elucidated. Methodology/Principal Findings Dnmt1 wild type (Dnmt1 +/+) and hypomorphic (Dnmt1 N/+) male mice that express reduced level of Dnmt1 were fed Lieber-DeCarli liquid diet containing ethanol for 6 weeks. Control mice were pair-fed calorie-matched alcohol-free liquid diet, and Dnmtase activity, 5-mdC content, gene expression profile and liver histopathology were evaluated. Ethanol feeding caused pronounced decrease in hepatic Dnmtase activity in Dnmt1 +/+ mice due to decrease in Dnmt1 and Dnmt3b protein levels and upregulation of miR-148 and miR-152 that target both Dnmt1 and Dnmt3b. Microarray and qPCR analysis showed that the genes involved in lipid, xenobiotic and glutathione metabolism, mitochondrial function and cell proliferation were dysregulated in the wild type mice fed alcohol. Surprisingly, Dnmt1 N/+ mice were less susceptible to alcoholic steatosis compared to Dnmt1 +/+ mice. Expression of several key genes involved in alcohol (Aldh3b1), lipid (Ppara, Lepr, Vldlr, Agpat9) and xenobiotic (Cyp39a1) metabolism, and oxidative stress (Mt-1, Fmo3) were significantly (P<0.05) altered in Dnmt1 N/+ mice relative to the wild type mice fed alcohol diet. However, CpG islands encompassing the promoter regions of Agpat9, Lepr, Mt1 and Ppara were methylation-free in both genotypes irrespective of the diet, suggesting that promoter methylation does not regulate their expression. Similarly, 5-mdC content of the liver genome, as measured by LC-MS/MS analysis, was not affected by alcohol diet in the wild type or hypomorphic mice. Conclusions/Significance Although feeding alcohol diet reduced Dnmtase activity, the loss of one copy of Dnmt1 protected mice from alcoholic hepatosteatosis by dysregulating genes involved in lipid metabolism and oxidative stress. PMID:22905112

  6. Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.).

    PubMed

    Fujino, Kenji; Sekiguchi, Hiroshi

    2011-08-01

    Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0-13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.

  7. Development of a Time-Resolved Fluorescence Resonance Energy Transfer Ultrahigh-Throughput Screening Assay for Targeting the NSD3 and MYC Interaction. | Office of Cancer Genomics

    Cancer.gov

    Epigenetic modulators play critical roles in reprogramming of cellular functions, emerging as a new class of promising therapeutic targets. Nuclear receptor binding SET domain protein 3 (NSD3) is a member of the lysine methyltransferase family. Interestingly, the short isoform of NSD3 without the methyltransferase fragment, NSD3S, exhibits oncogenic activity in a wide range of cancers. We recently showed that NSD3S interacts with MYC, a central regulator of tumorigenesis, suggesting a mechanism by which NSD3S regulates cell proliferation through engaging MYC.

  8. No association between catechol-O-methyltransferase polymorphisms and neurotic disorders among mainland Chinese university students.

    PubMed

    Kou, Changgui; Meng, Xiangfei; Xie, Bing; Shi, Jieping; Yu, Qiong; Yu, Yaqin; D'Arcy, Carl

    2012-07-30

    This study investigates the genetic association between catechol-O-methyltransferase (COMT) gene polymorphisms and neurotic disorders. Data were derived from a case-control association study of 255 undergraduates affected by neurotic disorders and 269 matched healthy undergraduate controls. The polymorphisms of eight tag single nucleotide polymorphisms (SNPs) on the COMT gene were tested using polymerase chain reaction (PCR)-based Ligase Detection Reaction (PCR-LDR). The eight tag SNPs on the COMT gene assessed were not associated with neurotic disorders. Our finding suggests that the COMT gene may not be a susceptibility gene for neurotic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.

    PubMed

    Chu, Yuzhuo; Guo, Hong

    2015-09-01

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  10. QM/MM MD and free energy simulation study of methyl transfer processes catalyzed by PKMTs and PRMTs.

    PubMed

    Chu, Yuzhuo; Guo, Hong

    2015-01-16

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here we review the results of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  11. An easy-to-perform photometric assay for methyltransferase activity measurements.

    PubMed

    Schäberle, Till F; Siba, Christian; Höver, Thomas; König, Gabriele M

    2013-01-01

    Methyltransferases (MTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a suitable substrate. Such methylations are important modifications in secondary metabolisms, especially on natural products produced by polyketide synthases and nonribosomal peptide synthetases, many of which are of special interest due to their prominent pharmacological activities (e.g., lovastatin, cyclosporin). To gain basic biochemical knowledge on the methylation process, it is of immense relevance to simplify methods concerning experimental problems caused by a large variety in substrates. Here, we present a photometric method to analyze MT activity by measuring SAM consumption in a coupled enzyme assay. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader

    PubMed Central

    Yang, Xin; Yang, Ying; Sun, Bao-Fa; Chen, Yu-Sheng; Xu, Jia-Wei; Lai, Wei-Yi; Li, Ang; Wang, Xing; Bhattarai, Devi Prasad; Xiao, Wen; Sun, Hui-Ying; Zhu, Qin; Ma, Hai-Li; Adhikari, Samir; Sun, Min; Hao, Ya-Juan; Zhang, Bing; Huang, Chun-Min; Huang, Niu; Jiang, Gui-Bin; Zhao, Yong-Liang; Wang, Hai-Lin; Sun, Ying-Pu; Yang, Yun-Gui

    2017-01-01

    5-methylcytosine (m5C) is a post-transcriptional RNA modification identified in both stable and highly abundant tRNAs and rRNAs, and in mRNAs. However, its regulatory role in mRNA metabolism is still largely unknown. Here, we reveal that m5C modification is enriched in CG-rich regions and in regions immediately downstream of translation initiation sites and has conserved, tissue-specific and dynamic features across mammalian transcriptomes. Moreover, m5C formation in mRNAs is mainly catalyzed by the RNA methyltransferase NSUN2, and m5C is specifically recognized by the mRNA export adaptor ALYREF as shown by in vitro and in vivo studies. NSUN2 modulates ALYREF's nuclear-cytoplasmic shuttling, RNA-binding affinity and associated mRNA export. Dysregulation of ALYREF-mediated mRNA export upon NSUN2 depletion could be restored by reconstitution of wild-type but not methyltransferase-defective NSUN2. Our study provides comprehensive m5C profiles of mammalian transcriptomes and suggests an essential role for m5C modification in mRNA export and post-transcriptional regulation. PMID:28418038

  13. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    DOE PAGES

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; ...

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less

  14. The arginine methyltransferase Rmt2 is enriched in the nucleus and co-purifies with the nuclear porins Nup49, Nup57 and Nup100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsson, Ida; Berrez, Jean-Marc; Leipus, Arunas

    2007-05-15

    Arginine methylation is a post-translational modification of proteins implicated in RNA processing, protein compartmentalization, signal transduction, transcriptional regulation and DNA repair. In a screen for proteins associated with the nuclear envelope in the yeast Saccharomyces cerevisiae, we have identified the arginine methyltransferase Rmt2, previously shown to methylate the ribosomal protein L12. By indirect immunofluorescence and subcellular fractionations we demonstrate here that Rmt2 has nuclear and cytoplasmic localizations. Biochemical analysis of a fraction enriched in nuclei reveals that nuclear Rmt2 is resistant to extractions with salt and detergent, indicating an association with structural components. This was supported by affinity purification experimentsmore » with TAP-tagged Rmt2. Rmt2 was found to co-purify with the nucleoporins Nup49, Nup57 and Nup100, revealing a novel link between arginine methyltransferases and the nuclear pore complex. In addition, a genome-wide transcription study of the rmt2{delta} mutant shows significant downregulation of the transcription of MYO1, encoding the Type II myosin heavy chain required for cytokinesis and cell separation.« less

  15. The story of protein arginine methylation: characterization, regulation, and function.

    PubMed

    Peng, Chao; Wong, Catherine Cl

    2017-02-01

    Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.

  16. mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription.

    PubMed

    Varshney, Dhaval; Lombardi, Olivia; Schweikert, Gabriele; Dunn, Sianadh; Suska, Olga; Cowling, Victoria H

    2018-05-01

    mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less

  18. Biosynthesis of diphthamide in the yeast Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.Y.C.

    1985-01-01

    Inactivation of EF-2 by diphtheria toxin requires the presence of a posttranslationally synthesized amino acid residue, diphthamide. The present work was undertaken to study the biosynthetic mechanism of diphthamide synthesis in the yeast Saccharomyces cerevisiae in order to gain better understanding of the biological roles of this unique amino acid residue. Thirty-one haploid ADP-ribosylation-negative mutants, comprising 5 complementation groups, were obtained. One of these mutants contains a toxin-resistant form of EF-2 which can be converted to a toxin-sensitive form through the methylation reaction catalyzed by a S-AdoMet:EF-2 methyltransferase enzyme which is present in other yeast strains. The (/sup 3/He)methylated residuemore » in the EF-2 modified by the methyltransferase in the presence of S-Ado-L-(/sup 3/H-methyl)-Met has been analyzed chromatographically following both acid and enzymatic hydrolysis. At the conclusion of the reaction, all of the radiolabel was recovered as diphthine (the unamidated form of diphthamide). The authors conclude that the S-AdoMet:EF-2-methyltransferase is specific for the addition of at least the last two of the three methyl groups present in diphthine.« less

  19. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1.

    PubMed

    Leung, Danny; Du, Tingting; Wagner, Ulrich; Xie, Wei; Lee, Ah Young; Goyal, Preeti; Li, Yujing; Szulwach, Keith E; Jin, Peng; Lorincz, Matthew C; Ren, Bing

    2014-05-06

    During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed.

  20. Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage.

    PubMed

    Rockah-Shmuel, Liat; Tawfik, Dan S

    2012-12-01

    DNA-binding and modifying proteins show high specificity but also exhibit a certain level of promiscuity. Such latent promiscuous activities comprise the starting points for new protein functions, but this hypothesis presents a paradox: a new activity can only evolve if it already exists. How then, do novel activities evolve? DNA methyltransferases, for example, are highly divergent in their target sites, but how transitions toward novel sites occur remains unknown. We performed laboratory evolution of the DNA methyltransferase M.HaeIII. We found that new target sites emerged primarily through expansion of the original site, GGCC, and the subsequent shrinkage of evolved expanded sites. Variants evolved for sites that are promiscuously methylated by M.HaeIII [GG((A)/(T))CC and GGCGCC] carried mutations in 'gate-keeper' residues. They could thereby methylate novel target sites such as GCGC and GGATCC that were neither selected for nor present in M.HaeIII. These 'generalist' intermediates were further evolved to obtain variants with novel target specificities. Our results demonstrate the ease by which new DNA-binding and modifying specificities evolve and the mechanism by which they occur at both the protein and DNA levels.

  1. Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: Identification of a gene encoding MTHB-methyltransferase.

    PubMed

    Kageyama, Hakuto; Tanaka, Yoshito; Shibata, Ayumi; Waditee-Sirisattha, Rungaroon; Takabe, Teruhiro

    2018-05-01

    Dimethylsulfoniopropionate (DMSP) is one of the most abundant molecules on earth and plays a pivotal role in the marine sulfur cycle. DMSP is believed to be synthesized from methionine by a four-step reaction pathway in marine algae. The genes responsible for biosynthesis of DMSP remain unidentified. A diatom Thalassiosira pseudonana CCMP1335 is an important component of marine ecosystems and contributes greatly to the world's primary production. In this study, through genome search, in vivo activity and functional studies of cDNA products, a gene encoding Thalassiosira methyltransferase (TpMMT) which catalyzes the key step of DMSP synthesis formation of 4-methylthio-2-hydroxybutyrate (DMSHB) from 4-methylthio-2-oxobutyrate (MTHB), was identified. The amino acid sequence of TpMMT was homologous to the methyltransferase from Phaeodactylum tricornutum CCAP 1055/1, but not the recently identified bacterium gene. High salinity and nitrogen limitation stresses caused the increase of DMSP content and TpMMT protein in Thalassiosira. In addition to TpMMT, the enzyme activities for the first three steps could be detected and enhanced under high salinity, suggesting the importance of four-step DMSP synthetic pathway in Thalassiosira. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of largemore » heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.« less

  3. Purification and Characterization of S-Adenosyl-l-Methionine: Desoxyhemigossypol-6-O-Methyltransferase from Cotton Plants. An Enzyme Capable of Methylating the Defense Terpenoids of Cotton1

    PubMed Central

    Liu, Jinggao; Benedict, Chauncey R.; Stipanovic, Robert D.; Bell, Alois A.

    1999-01-01

    Cotton contains a unique group of terpenoids including desoxyhemigossypol, hemigossypol, gossypol, hemigossypolone, and the heliocides that are part of the plant's defense system against pathogenic fungi and insects. Desoxyhemigossypol is a key intermediate in the biosynthesis of these compounds. We have isolated, purified, and characterized from cotton stele tissue infected with Verticillium dahliae a methyltransferase (S-adenosyl-l-Met: desoxyhemigossypol-6-O-methyltransferase) that specifically methylates the 6-position of desoxyhemigossypol to form desoxyhemigossypol-6-methyl ether with a Km value of 4.5 μm for desoxyhemigossypol and a Kcat/Km of 5.08 × 104 s−1 (mol/L)−1. The molecular mass of the native enzyme is 81.4 kD and is dissociated into two subunits of 41.2 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. The enzymatic reaction does not require Mg+2 and is inhibited 98% with 10 mm p-chloromercuribenzoate. Desoxyhemigossypol-6-methyl ether leads to the biosynthesis of methylated hemigossypol, gossypol, hemigossypolone, and the heliocides, which lowers their effectiveness as phytoalexins and insecticides. PMID:10557251

  4. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    PubMed

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. Copyright © 2013. Published by Elsevier Ltd.

  5. RNA-methyltransferase TrmA is a dual-specific enzyme responsible for C5-methylation of uridine in both tmRNA and tRNA

    PubMed Central

    Ranaei-Siadat, Ehsan; Fabret, Céline; Seijo, Bili; Dardel, Frédéric; Grosjean, Henri; Nonin-Lecomte, Sylvie

    2013-01-01

    In bacteria, trans-translation rescues stalled ribosomes by the combined action of tmRNA (transfer-mRNA) and its associated protein SmpB. The tmRNA 5′ and 3′ ends fold into a tRNA-like domain (TLD), which shares structural and functional similarities with tRNAs. As in tRNAs, the UUC sequence of the T-arm of the TLD is post-transcriptionally modified to m5UψC. In tRNAs of gram-negative bacteria, formation of m5U is catalyzed by the SAM-dependent methyltransferase TrmA, while formation of m5U at two different positions in rRNA is catalyzed by distinct site-specific methyltransferases RlmC and RlmD. Here, we show that m5U formation in tmRNAs is exclusively due to TrmA and should be considered as a dual-specific enzyme. The evidence comes from the lack of m5U in purified tmRNA or TLD variants recovered from an Escherichia coli mutant strain deleted of the trmA gene. Detection of m5U in RNA was performed by NMR analysis. PMID:23603891

  6. A Set of Regioselective O-Methyltransferases Gives Rise to the Complex Pattern of Methoxylated Flavones in Sweet Basil1[C][W][OA

    PubMed Central

    Berim, Anna; Hyatt, David C.; Gang, David R.

    2012-01-01

    Polymethoxylated flavonoids occur in a number of plant families, including the Lamiaceae. To date, the metabolic pathways giving rise to the diversity of these compounds have not been studied. Analysis of our expressed sequence tag database for four sweet basil (Ocimum basilicum) lines afforded identification of candidate flavonoid O-methyltransferase genes. Recombinant proteins displayed distinct substrate preferences and product specificities that can account for all detected 7-/6-/4′-methylated, 8-unsubstituted flavones. Their biochemical specialization revealed only certain metabolic routes to be highly favorable and therefore likely in vivo. Flavonoid O-methyltransferases catalyzing 4′- and 6-O-methylations shared high identity (approximately 90%), indicating that subtle sequence changes led to functional differentiation. Structure homology modeling suggested the involvement of several amino acid residues in defining the proteins’ stringent regioselectivities. The roles of these individual residues were confirmed by site-directed mutagenesis, revealing two discrete mechanisms as a basis for the switch between 6- and 4′-O-methylation of two different substrates. These findings delineate major pathways in a large segment of the flavone metabolic network and provide a foundation for its further elucidation. PMID:22923679

  7. An Alternative Pathway for Formononetin Biosynthesis in Pueraria lobata

    PubMed Central

    Li, Jia; Li, Changfu; Gou, Junbo; Wang, Xin; Fan, Rongyan; Zhang, Yansheng

    2016-01-01

    The O-methylation is an important tailing process in Pueraria lobata isoflavone metabolism, but the molecular mechanism governing it remains not elucidated. This manuscript describes the mining of key O-methyltransferases (OMTs) involved in the process. Using our previously constructed P. lobata transcriptome, the OMT candidates were searched, extensively analyzed, and their functions were investigated by expression in yeast, Escherichia coli, or Glycine max hairy roots. Here, we report the identification of the key OMT gene responsible for formononetin production in P. lobata (designated as PlOMT9). PlOMT9 primarily functions as an isoflavone-specific 4′-O-methyltransferase, although it shows high sequence identities with isoflavone 7-O-methyltransferases. Moreover, unlike the previously reported OMTs that catalyze the 4′-O-methylation for formononetin biosynthesis at the isoflavanone stage, PlOMT9 performs this modifying step at the isoflavone level, using daidzein rather than 2,7,4′-trihydroxy-isoflavanone as the substrate. Gene expression analyses and metabolite profiling supported its proposed roles in P. lobata. Using the system of transgenic G. max hairy roots, the role of PlOMT9 in the biosynthesis of formononetin was further demonstrated in vivo. PMID:27379141

  8. An Alternative Pathway for Formononetin Biosynthesis in Pueraria lobata.

    PubMed

    Li, Jia; Li, Changfu; Gou, Junbo; Wang, Xin; Fan, Rongyan; Zhang, Yansheng

    2016-01-01

    The O-methylation is an important tailing process in Pueraria lobata isoflavone metabolism, but the molecular mechanism governing it remains not elucidated. This manuscript describes the mining of key O-methyltransferases (OMTs) involved in the process. Using our previously constructed P. lobata transcriptome, the OMT candidates were searched, extensively analyzed, and their functions were investigated by expression in yeast, Escherichia coli, or Glycine max hairy roots. Here, we report the identification of the key OMT gene responsible for formononetin production in P. lobata (designated as PlOMT9). PlOMT9 primarily functions as an isoflavone-specific 4'-O-methyltransferase, although it shows high sequence identities with isoflavone 7-O-methyltransferases. Moreover, unlike the previously reported OMTs that catalyze the 4'-O-methylation for formononetin biosynthesis at the isoflavanone stage, PlOMT9 performs this modifying step at the isoflavone level, using daidzein rather than 2,7,4'-trihydroxy-isoflavanone as the substrate. Gene expression analyses and metabolite profiling supported its proposed roles in P. lobata. Using the system of transgenic G. max hairy roots, the role of PlOMT9 in the biosynthesis of formononetin was further demonstrated in vivo.

  9. The SUVR4 Histone Lysine Methyltransferase Binds Ubiquitin and Converts H3K9me1 to H3K9me3 on Transposon Chromatin in Arabidopsis

    PubMed Central

    Veiseth, Silje V.; Rahman, Mohummad A.; Yap, Kyoko L.; Fischer, Andreas; Egge-Jacobsen, Wolfgang; Reuter, Gunter; Zhou, Ming-Ming; Aalen, Reidunn B.; Thorstensen, Tage

    2011-01-01

    Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation–dependent and –independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity. PMID:21423664

  10. Phosphoethanolamine-N-methyltransferase is a potential biomarker for the diagnosis of P. knowlesi and P. falciparum malaria

    PubMed Central

    2018-01-01

    Background Plasmodium knowlesi is recognised as the main cause of human malaria in Southeast Asia. The disease is often misdiagnosed as P. falciparum or P. malariae infections by microscopy, and the disease is difficult to eliminate due to its presence in both humans and monkeys. P. knowlesi infections can rapidly cause severe disease and require prompt diagnosis and treatment. No protein biomarker exists for the rapid diagnostic test (RDT) detection of P. knowlesi infections. Plasmodium knowlesi infections can be diagnosed by PCR. Methods and principal findings Phosphoethanolamine-N-methyltransferase (PMT) is involved in malaria lipid biosynthesis and is not found in the human host. The P. falciparum, P. vivax and P. knowlesi PMT proteins were recombinantly expressed in BL21(DE3) Escherichia coli host cells, affinity purified and used to raise antibodies in chickens. Antibodies against each recombinant PMT protein all detected all three recombinant proteins and the native 29 kDa P. falciparum PMT protein on western blots and in ELISA. Antibodies against a PMT epitope (PLENNQYTDEGVKC) common to all three PMT orthologues detected all three proteins. Antibodies against unique peptides from each orthologue of PMT, PfCEVEHKYLHENKE, PvVYSIKEYNSLKDC, PkLYPTDEYNSLKDC detected only the parent protein in western blots and P. falciparum infected red blood cell lysates or blood lysates spiked with the respective proteins. Similar concentrations of PfPMT and the control, PfLDH, were detected in the same parasite lysate. The recombinant PfPMT protein was detected by a human anti-malaria antibody pool. Conclusion PMT, like the pan-specific LDH biomarker used in RDT tests, is both soluble, present at comparable concentrations in the parasite and constitutes a promising antimalarial drug target. PMT is absent from the human proteome. PMT has the potential as a biomarker for human malaria and in particular as the first P. knowlesi specific protein with diagnostic potential for the identification of a P. knowlesi infection. PMID:29505599

  11. Choline Intake, Plasma Riboflavin, and the Phosphatidylethanolamine N-Methyltransferase G5465A Genotype Predict Plasma Homocysteine in Folate-Deplete Mexican-American Men with the Methylenetetrahydrofolate Reductase 677TT Genotype12

    PubMed Central

    Caudill, Marie A.; Dellschaft, Neele; Solis, Claudia; Hinkis, Sabrina; Ivanov, Alexandre A.; Nash-Barboza, Susan; Randall, Katharine E.; Jackson, Brandi; Solomita, Gina N.; Vermeylen, Francoise

    2009-01-01

    We previously showed that provision of the folate recommended dietary allowance and either 300, 550, 1100, or 2200 mg/d choline for 12 wk resulted in diminished folate status and a tripling of plasma total homocysteine (tHcy) in men with the methylenetetrahydrofolate reductase (MTHFR) 677TT genotype. However, the substantial variation in tHcy within the 677TT genotype at wk 12 implied that several factors were interacting with this genotype to affect homocysteine. As an extension of this work, the present study sought to identify the main predictors of wk-12 plasma tHcy, alone and together with the MTHFR C677T genotype (29 TT, 31 CC), using linear regression analysis. A basic model explaining 82.5% of the variation (i.e. adjusted R2 = 0.825) was constructed. However, the effects of the variables within this model were dependent upon the MTHFR C677T genotype (P for interaction ≤ 0.021). Within the 677TT genotype, serum folate (P = 0.005) and plasma riboflavin (P = 0.002) were strong negative predictors (inversely related) explaining 12 and 15%, respectively, of the variation in tHcy, whereas choline intake (P = 0.003) and serum creatinine (P < 0.001) were strong positive predictors, explaining 19 and 25% of the variation. None of these variables, except creatinine (P = 0.021), correlated with tHcy within the 677CC genotype. Of the 8 additional polymorphisms tested, none appeared to influence tHcy. However, when creatinine was not in the model, the phosphatidylethanolamine N-methyltransferase 5465G→A variant predicted lower tHcy (P < 0.001); an effect confined to the MTHFR 677TT genotype. Thus, in folate-deplete men, several factors with roles in 1-carbon metabolism interact with the MTHFR C677T genotype to affect plasma tHcy. PMID:19211833

  12. Phosphoethanolamine-N-methyltransferase is a potential biomarker for the diagnosis of P. knowlesi and P. falciparum malaria.

    PubMed

    Krause, Robert G E; Goldring, J P Dean

    2018-01-01

    Plasmodium knowlesi is recognised as the main cause of human malaria in Southeast Asia. The disease is often misdiagnosed as P. falciparum or P. malariae infections by microscopy, and the disease is difficult to eliminate due to its presence in both humans and monkeys. P. knowlesi infections can rapidly cause severe disease and require prompt diagnosis and treatment. No protein biomarker exists for the rapid diagnostic test (RDT) detection of P. knowlesi infections. Plasmodium knowlesi infections can be diagnosed by PCR. Phosphoethanolamine-N-methyltransferase (PMT) is involved in malaria lipid biosynthesis and is not found in the human host. The P. falciparum, P. vivax and P. knowlesi PMT proteins were recombinantly expressed in BL21(DE3) Escherichia coli host cells, affinity purified and used to raise antibodies in chickens. Antibodies against each recombinant PMT protein all detected all three recombinant proteins and the native 29 kDa P. falciparum PMT protein on western blots and in ELISA. Antibodies against a PMT epitope (PLENNQYTDEGVKC) common to all three PMT orthologues detected all three proteins. Antibodies against unique peptides from each orthologue of PMT, PfCEVEHKYLHENKE, PvVYSIKEYNSLKDC, PkLYPTDEYNSLKDC detected only the parent protein in western blots and P. falciparum infected red blood cell lysates or blood lysates spiked with the respective proteins. Similar concentrations of PfPMT and the control, PfLDH, were detected in the same parasite lysate. The recombinant PfPMT protein was detected by a human anti-malaria antibody pool. PMT, like the pan-specific LDH biomarker used in RDT tests, is both soluble, present at comparable concentrations in the parasite and constitutes a promising antimalarial drug target. PMT is absent from the human proteome. PMT has the potential as a biomarker for human malaria and in particular as the first P. knowlesi specific protein with diagnostic potential for the identification of a P. knowlesi infection.

  13. Thiopurine methyltransferase genotype-phenotype discordance and thiopurine active metabolite formation in childhood acute lymphoblastic leukaemia.

    PubMed

    Lennard, Lynne; Cartwright, Cher Suzanne; Wade, Rachel; Richards, Susan M; Vora, Ajay

    2013-07-01

    In children with acute lymphoblastic leukaemia (ALL) bone marrow activity can influence red blood cell (RBC) kinetics, the surrogate tissue for thiopurine methyltransferase (TPMT) measurements. The aim of this study was to investigate TPMT phenotype-genotype concordance in ALL, and the influence of TPMT on thiopurine metabolite formation. We measured TPMT (activity, as units ml(-1) packed RBCs and genotype) at diagnosis (n = 1150) and TPMT and thioguanine nucleotide (TGN) and methylmercaptopurine nucleotide (MeMPN) metabolites (pmol/8 × 10(8) RBCs) during chemotherapy (n = 1131) in children randomized to thioguanine or mercaptopurine on the United Kingdom trial ALL97. Median TPMT activity at diagnosis (8.5 units) was significantly lower than during chemotherapy (13.8 units, median difference 5.1 units, 95% confidence interval (CI) 4.8, 5.4, P < 0.0001). At diagnosis genotype-phenotype was discordant. During chemotherapy the overall concordance was 92%, but this fell to 55% in the intermediate activity cohort (45% had wild-type genotypes). For both thiopurines TGN concentrations differed by TPMT status. For mercaptopurine, median TGNs were higher in TPMT heterozygous genotype (754 pmol) than wild-type (360 pmol) patients (median difference 406 pmol, 95% CI 332, 478, P < 0.0001), whilst median MeMPNs, products of the TPMT reaction, were higher in wild-type (10 650 pmol) than heterozygous patients (3868 pmol) (P < 0.0001). In TPMT intermediate activity patients with a wild-type genotype, TGN (median 366 pmol) and MeMPN (median 8590 pmol) concentrations were similar to those in wild-type, high activity patients. In childhood ALL, TPMT activity should not be used to predict heterozygosity particularly in blood samples obtained at disease diagnosis. Genotype is a better predictor of TGN accumulation during chemotherapy. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  14. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava.

    PubMed

    Wei, Yunxie; Liu, Guoyin; Bai, Yujing; Xia, Feiyu; He, Chaozu; Shi, Haitao; Foyer, Christine

    2017-10-13

    Similar to the situation in animals, melatonin biosynthesis is regulated by four sequential enzymatic steps in plants. Although the melatonin synthesis genes have been identified in various plants, the upstream transcription factors of them remain unknown. In this study on cassava (Manihot esculenta), we found that MeWRKY79 and heat-shock transcription factor 20 (MeHsf20) targeted the W-box and the heat-stress elements (HSEs) in the promoter of N-acetylserotonin O-methyltransferase 2 (MeASMT2), respectively. The interaction between MeWRKY79, MeHsf20, and the MeASMT2 promoter was evidenced by the activation of promoter activity and chromatin immunoprecipitation (ChIP) in cassava protoplasts, and by an in vitro electrophoretic mobility shift assay (EMSA). The transcripts of MeWRKY79, MeHsf20, and MeASMT2 were all regulated by a 22-amino acid flagellin peptide (flg22) and by Xanthomonas axonopodis pv manihotis (Xam). In common with the phenotype of MeASMT2, transient expression of MeWRKY79 and MeHsf20 in Nicotiana benthamiana leaves conferred improved disease resistance. Through virus-induced gene silencing (VIGS) in cassava, we found that MeWRKY79- and MeHsf20-silenced plants showed lower transcripts of MeASMT2 and less accumulation of melatonin, which resulted in disease sensitivity that could be reversed by exogenous melatonin. Taken together, these results indicate that MeASMT2 is a target of MeWRKY79 and MeHsf20 in plant disease resistance. This study identifies novel upstream transcription factors of melatonin synthesis genes in cassava, thus extending our knowledge of the complex modulation of melatonin synthesis in plant defense. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. [Glycine-N-methyltransferase and Malignant Diseases of the Prostate].

    PubMed

    Heger, Z; Eckschlager, T; Stiborová, M; Adam, V

    Prostate cancer (PC) constitutes a heterogeneous group of diseases with high prevalence rates that are still increasing, particularly in western countries. Since 1980, prostate specific antigen (PSA) and other diagnostic approaches have been used for PC screening; however, some of these approaches are often deemed painful and cause invasive damage of tissue. Therefore, molecular approaches to PC diagnosis are attracting increasing attention, potentially providing patients with less stressful situations and providing better diagnoses and even prognostic information. Recent metabolomic and genomic studies have suggested that biomolecules can be used as diagnostic or prognostic markers or as targets for the development of novel therapeutic modalities. One of these molecules is glycine-N-methyltransferase (GNMT), an enzyme that plays a pivotal role in the biochemical conversion of glycine to sarcosine. The link between this molecule (encoded by homonymous gene - GNMT) and PC has been confirmed at several levels, and thus GNMT can be considered a promising target for the development of advanced diagnostic and/or prognostic approaches. The aim of this study was to analyse the physiological role of GNMT and to examine in greater detail its connection with PC at different levels, including gene structure, gene expression, and metabolism, in which GNMT plays an important role, not only in controlling the methylation status of cells, but also the metabolism of folic acid and methionine. Last but not least, we discuss the importance of cellular methylation processes and the link between their aberrations and PC development.Key words: glycine - folic acid - metabolism - methylation - sarcosineThis work was supported by GA CR 16-18917S, League against Cancer Prague (project 2022015) and Czech Ministry of Health - RVO, UH Motol 00064203.The authors declare they have no potential confl icts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 9. 2. 2016Accepted: 20. 3. 2016.

  16. Glycine N-methyltransferase affects the metabolism of aflatoxin B{sub 1} and blocks its carcinogenic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, C.-H.; AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan; Hung, J.-H.

    Previously, we reported that glycine N-methyltransferase (GNMT) knockout mice develop chronic hepatitis and hepatocellular carcinoma (HCC) spontaneously. For this study we used a phosphoenolpyruvate carboxykinase promoter to establish a GNMT transgenic (TG) mouse model. Animals were intraperitoneally inoculated with aflatoxin B{sub 1} (AFB{sub 1}) and monitored for 11 months, during which neither male nor female GNMT-TG mice developed HCC. In contrast, 4 of 6 (67%) male wild-type mice developed HCC. Immunofluorescent antibody test showed that GNMT was translocated into nuclei after AFB{sub 1} treatment. Competitive enzyme immunoassays indicated that after AFB{sub 1} treatment, the AFB{sub 1}-DNA adducts formed in stablemore » clones expressing GNMT reduced 51.4% compared to the vector control clones. Experiments using recombinant adenoviruses carrying GNMT cDNA (Ad-GNMT) further demonstrated that the GNMT-related inhibition of AFB{sub 1}-DNA adducts formation is dose-dependent. HPLC analysis of the metabolites of AFB{sub 1} in the cultural supernatants of cells exposed to AFB{sub 1} showed that the AFM{sub 1} level in the GNMT group was significantly higher than the control group, indicating the presence of GNMT can enhance the detoxification pathway of AFB{sub 1}. Cytotoxicity assay showed that the GNMT group had higher survival rate than the control group after they were treated with AFB{sub 1}. Automated docking experiments showed that AFB{sub 1} binds to the S-adenosylmethionine binding domain of GNMT. Affinity sensor assay demonstrated that the dissociation constant for GNMT-AFB{sub 1} interaction is 44.9 {mu}M. Therefore, GNMT is a tumor suppressor for HCC and it exerts protective effects in hepatocytes via direct interaction with AFB{sub 1}, resulting in reduced AFB{sub 1}-DNA adducts formation and cell death.« less

  17. Functional Characterization of Glycine N-Methyltransferase and Its Interactive Protein DEPDC6/DEPTOR in Hepatocellular Carcinoma

    PubMed Central

    Yen, Chia-Hung; Lu, Yao-Cheng; Li, Chung-Hsien; Lee, Cheng-Ming; Chen, Chia-Yen; Cheng, Ming-Yuan; Huang, Shiu-Feng; Chen, Kuen-Feng; Cheng, Ann-Lii; Liao, Li-Ying; Lee, Yan-Hwa Wu; Chen, Yi-Ming Arthur

    2012-01-01

    Glycine N-methyltransferase (GNMT) is a tumor suppressor for hepatocellular carcinoma (HCC). High rates of Gnmt knockout mice developed HCC. Epigenetic alteration and dysregulation of several pathways including wingless-type MMTV integration site (Wnt), mitogen-activated protein kinase (MAPK) and Janus kinase and signal transducer and activator of transcription (JAK-STAT) are associated with HCC development in Gnmt knockout mice. We hypothesized that GNMT may regulate signal transduction through interacting with other proteins directly. In this report, we identified a mammalian target of rapamycin (mTOR) inhibitor (DEP domain containing MTOR-interacting protein [DEPDC6/DEPTOR]) as a GNMT-binding protein by using yeast two-hybrid screening. Fluorescence resonance energy transfer assay demonstrated that the C-terminal half of GNMT interact with the PSD-95/Dlg1/ZO-1 (PDZ) domain of DEPDC6/DEPTOR. Immunohistochemical staining showed that 27.5% (14/51) of HCC patients had higher expression levels of DEPDC6/DEPTOR in the tumorous tissues than in tumor-adjacent tissues, especially among HCC patients with hepatitis B viral infection (odds ratio 10.3, 95% confidence interval [CI] 1.05–11.3) or patients with poor prognosis (death hazard ratio 4.51, 95% CI 1.60–12.7). In terms of molecular mechanism, knockdown of DEPDC6/DEPTOR expression in HuH-7 cells caused S6K and 4E-BP activation, but suppressed Akt. Overexpression of DEPDC6/DEPTOR activated Akt and increased survival of HCC cells. Overexpression of GNMT caused activation of mTOR/raptor downstream signaling and delayed G2/M cell cycle progression, which altogether resulted in cellular senescence. Furthermore, GNMT reduced proliferation of HuH-7 cells and sensitized them to rapamycin treatment both in vitro and in vivo. In conclusion, GNMT regulates HCC growth in part through interacting with DEPDC6/DEPTOR and modulating mTOR/raptor signaling pathway. Both GNMT and DEPDC6/DEPTOR are potential targets for developing therapeutics for HCC. PMID:22160218

  18. Catechol-O-Methyltransferase Genotypes and Parenting Influence on Long-Term Executive Functioning After Moderate to Severe Early Childhood Traumatic Brain Injury: An Exploratory Study.

    PubMed

    Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L

    To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and environmental factors related to recovery after traumatic brain injury in children.

  19. pUL69 of Human Cytomegalovirus Recruits the Cellular Protein Arginine Methyltransferase 6 via a Domain That Is Crucial for mRNA Export and Efficient Viral Replication.

    PubMed

    Thomas, Marco; Sonntag, Eric; Müller, Regina; Schmidt, Stefanie; Zielke, Barbara; Fossen, Torgils; Stamminger, Thomas

    2015-09-01

    The regulatory protein pUL69 of human cytomegalovirus acts as a viral mRNA export factor, facilitating the cytoplasmic accumulation of unspliced RNA via interaction with the cellular mRNA export factor UAP56. Here we provide evidence for a posttranslational modification of pUL69 via arginine methylation within the functionally important N terminus. First, we demonstrated a specific immunoprecipitation of full-length pUL69 as well as pUL69aa1-146 by a mono/dimethylarginine-specific antibody. Second, we observed a specific electrophoretic mobility shift upon overexpression of the catalytically active protein arginine methyltransferase 6 (PRMT6). Third, a direct interaction of pUL69 and PRMT6 was confirmed by yeast two-hybrid and coimmunoprecipitation analyses. We mapped the PRMT6 interaction motif to the pUL69 N terminus and identified critical amino acids within the arginine-rich R1 box of pUL69 that were crucial for PRMT6 and/or UAP56 recruitment. In order to test the impact of putative methylation substrates on the functions of pUL69, we constructed various pUL69 derivatives harboring arginine-to-alanine substitutions and tested them for RNA export activity. Thus, we were able to discriminate between arginines within the R1 box of pUL69 that were crucial for UAP56/PRMT6-interaction and/or mRNA export activity. Remarkably, nuclear magnetic resonance (NMR) analyses revealed the same α-helical structures for pUL69 sequences encoding either the wild type R1/R2 boxes or a UAP56/PRMT6 binding-deficient derivative, thereby excluding the possibility that R/A amino acid substitutions within R1 affected the secondary structure of pUL69. We therefore conclude that the pUL69 N terminus is methylated by PRMT6 and that this critically affects the functions of pUL69 for efficient mRNA export and replication of human cytomegalovirus. The UL69 protein of human cytomegalovirus is a multifunctional regulatory protein that acts as a viral RNA export factor with a critical role for efficient replication. Here, we demonstrate that pUL69 is posttranslationally modified via arginine methylation and that the protein methyltransferase PRMT6 mediates this modification. Furthermore, arginine residues with a crucial function for RNA export and for binding of the cellular RNA export factor UAP56 as well as PRMT6 were mapped within the arginine-rich R1 motif of pUL69. Importantly, we demonstrated that mutation of those arginines did not alter the secondary structure of R1, suggesting that they may serve as critical methylation substrates. In summary, our study reveals a novel posttranslational modification of pUL69 which has a significant impact on the function of this important viral regulatory protein. Since PRMTs appear to be amenable to selective inhibition by small molecules, this may constitute a novel target for antiviral therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Intramolecular interactions contributing for the conformational preference of bioactive diphenhydramine: Manifestation of the gauche effect

    NASA Astrophysics Data System (ADS)

    de Rezende, Fátima M. P.; Andrade, Laize A. F.; Freitas, Matheus P.

    2015-08-01

    Diphenhydramine is an antihistamine used to treat some symptoms of allergies and the common cold. It is usually marketed as the hydrochloride salt, and both the neutral and cation forms have the O-C-C-N fragment. The gauche effect is well known in fluorine-containing chains, because its main origin is hyperconjugative and the σ∗C-F is a low-lying acceptor orbital, allowing electron delocalization in the conformation where F and an adjacent electronegative substituent in an ethane fragment are in the gauche orientation. Our experimental (NMR) and theoretical findings indicate that diphenhydramine exhibits the gauche effect, since the preferential conformations have the O-C-C-N moiety in this orientation due especially to antiperiplanar σC-H → σ∗C-O and σC-H → σ∗C-N interactions. This conformational preference is strengthened in the protonated form due to an incremental electrostatic gauche effect. Because the gauche conformation matches the bioactive structure of diphenhydramine complexed with histamine methyltransferase, it is suggested that intramolecular interactions, and not only induced fit, rule its bioactive form.

Top