Science.gov

Sample records for pheromone gene clusters

  1. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura

    PubMed Central

    Zhang, Ya-Nan; Zhu, Xiu-Yun; Fang, Li-Ping; He, Peng; Wang, Zhi-Qiang; Chen, Geng; Sun, Liang; Ye, Zhan-Feng; Deng, Dao-Gui; Li, Jin-Bu

    2015-01-01

    Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy. PMID:26445454

  2. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura.

    PubMed

    Zhang, Ya-Nan; Zhu, Xiu-Yun; Fang, Li-Ping; He, Peng; Wang, Zhi-Qiang; Chen, Geng; Sun, Liang; Ye, Zhan-Feng; Deng, Dao-Gui; Li, Jin-Bu

    2015-01-01

    Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy.

  3. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  4. Basidiomycete Mating Type Genes and Pheromone Signaling▿

    PubMed Central

    Raudaskoski, Marjatta; Kothe, Erika

    2010-01-01

    The genome sequences of the basidiomycete Agaricomycetes species Coprinopsis cinerea, Laccaria bicolor, Schizophyllum commune, Phanerochaete chrysosporium, and Postia placenta, as well as of Cryptococcus neoformans and Ustilago maydis, are now publicly available. Out of these fungi, C. cinerea, S. commune, and U. maydis, together with the budding yeast Saccharomyces cerevisiae, have been investigated for years genetically and molecularly for signaling in sexual reproduction. The comparison of the structure and organization of mating type genes in fungal genomes reveals an amazing conservation of genes regulating the sexual reproduction throughout the fungal kingdom. In agaricomycetes, two mating type loci, A, coding for homeodomain type transcription factors, and B, encoding a pheromone/receptor system, regulate the four typical mating interactions of tetrapolar species. Evidence for both A and B mating type genes can also be identified in basidiomycetes with bipolar systems, where only two mating interactions are seen. In some of these fungi, the B locus has lost its self/nonself discrimination ability and thus its specificity while retaining the other regulatory functions in development. In silico analyses now also permit the identification of putative components of the pheromone-dependent signaling pathways. Induction of these signaling cascades leads to development of dikaryotic mycelia, fruiting body formation, and meiotic spore production. In pheromone-dependent signaling, the role of heterotrimeric G proteins, components of a mitogen-activated protein kinase (MAPK) cascade, and cyclic AMP-dependent pathways can now be defined. Additionally, the pheromone-dependent signaling through monomeric, small GTPases potentially involved in creating the polarized cytoskeleton for reciprocal nuclear exchange and migration during mating is predicted. PMID:20190072

  5. Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis.

    PubMed

    Xia, Yi-Han; Zhang, Ya-Nan; Hou, Xiao-Qing; Li, Fei; Dong, Shuang-Lin

    2015-01-20

    The chemoreception role of moth ovipositor has long been suggested, but its molecular mechanism is mostly unknown. By transcriptomic analysis of the female ovipositor-pheromone glands (OV-PG) of Chilo suppressalis, we obtained 31 putative chemoreception genes (9 OBPs, 10 CSPs, 2 ORs, 1 SNMP, 8 CXEs and 1 AOX), in addition to 32 genes related to sex pheromone biosynthesis (1 FAS, 6 Dess, 10 FARs, 2 ACOs, 1 ACC, 4 FATPs, 3 ACBPs and 5 ELOs). Tissue expression profiles further revealed that CsupCSP2 and CsupCSP10 were OV-PG biased, while most chemoreception genes were highly and preferably expressed in antennae. This suggests that OV-PG employs mostly the same chemoreception proteins as in antennae, although the physiological roles of these proteins might be different in OV-PG. Of the 32 pheromone biosynthesis related genes, CsupDes4, CsupDes5 and CsupFAR2 are strongly OV-PG biased, and clustered with functionally validated genes from other moths, strongly indicating their involvement in specific step of the pheromone biosynthesis. Our study for the first time identified a large number of putative chemoreception genes, and provided an important basis for exploring the chemoreception mechanisms of OV-PG in C. suppressalis, as well as other moth species.

  6. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes.

    PubMed

    McGrath, Patrick T; Xu, Yifan; Ailion, Michael; Garrison, Jennifer L; Butcher, Rebecca A; Bargmann, Cornelia I

    2011-08-17

    Evolution can follow predictable genetic trajectories, indicating that discrete environmental shifts can select for reproducible genetic changes. Conspecific individuals are an important feature of an animal's environment, and a potential source of selective pressures. Here we show that adaptation of two Caenorhabditis species to growth at high density, a feature common to domestic environments, occurs by reproducible genetic changes to pheromone receptor genes. Chemical communication through pheromones that accumulate during high-density growth causes young nematode larvae to enter the long-lived but non-reproductive dauer stage. Two strains of Caenorhabditis elegans grown at high density have independently acquired multigenic resistance to pheromone-induced dauer formation. In each strain, resistance to the pheromone ascaroside C3 results from a deletion that disrupts the adjacent chemoreceptor genes serpentine receptor class g (srg)-36 and -37. Through misexpression experiments, we show that these genes encode redundant G-protein-coupled receptors for ascaroside C3. Multigenic resistance to dauer formation has also arisen in high-density cultures of a different nematode species, Caenorhabditis briggsae, resulting in part from deletion of an srg gene paralogous to srg-36 and srg-37. These results demonstrate rapid remodelling of the chemoreceptor repertoire as an adaptation to specific environments, and indicate that parallel changes to a common genetic substrate can affect life-history traits across species.

  7. Isolation and characterization of the Cryptococcus neoformans MATa pheromone gene.

    PubMed Central

    McClelland, Carol M; Fu, Jianmin; Woodlee, Gay L; Seymour, Tara S; Wickes, Brian L

    2002-01-01

    Cryptococcus neoformans is a heterothallic basidiomycete with two mating types, MATa and MATalpha. The mating pathway of this fungus has a number of conserved genes, including a MATalpha-specific pheromone (MFalpha1). A modified differential display strategy was used to identify a gene encoding the MATa pheromone. The gene, designated MFa1, is 42 amino acids in length and contains a conserved farnesylation motif. MFa1 is present in three linked copies that span a 20-kb fragment of MATa-specific DNA and maps to the MAT-containing chromosome. Transformation studies showed that MFa1 induced filament formation only in MATalpha cells, demonstrating that MFa1 is functionally conserved. Sequence analysis of the predicted Mfa1 and Mfalpha1 proteins revealed that, in contrast to other fungi such as Saccharomyces cerevisiae, the C. neoformans pheromone genes are structurally and functionally conserved. However, unlike the MFalpha1 gene, which is found in MATalpha strains of both varieties of C. neoformans, MFa1 is specific for the neoformans variety of C. neoformans. PMID:11901112

  8. Pheromone-regulated genes required for yeast mating differentiation.

    PubMed

    Erdman, S; Lin, L; Malczynski, M; Snyder, M

    1998-02-09

    Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for beta-galactosidase (beta-gal) expression in the presence and absence of alpha factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell-cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: beta-gal and Fig2::beta-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.

  9. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone.

    PubMed Central

    Dietzel, C; Kurjan, J

    1987-01-01

    Strains of both haploid mating types containing sst2 mutations are altered in response to pheromone; MATa sst2 cells are supersensitive to alpha-factor, and MAT alpha sst2 cells are supersensitive to a-factor. This phenotype suggests that SST2 encodes a component of the pheromone response pathway that is common to both mating types. We have cloned the SST2 gene by isolation of multicopy plasmids that complement the sst2-1 mutation. One such plasmid contained a 4.5-kilobase HindIII fragment that was able to complement the sst2-1 mutation in high or low copy number, integrated at the SST2 locus, and resulted in an sst2 phenotype when disrupted, indicating that this fragment contained the SST2 gene. We identified the functional region of the complementing DNA fragment by transposon mutagenesis. Sequencing of this fragment identified an open reading frame encoding 698 amino acids at a position that correlated well with the functional region. Expression of an Sst2-beta-galactosidase fusion was haploid specific and induced by exposure to pheromone. We discuss a model in which induction of the SST2 product results in inhibition of a component of the pheromone response pathway, resulting in desensitization to pheromone. PMID:2830483

  10. Synthetic pheromones and plant volatiles alter the expression of chemosensory genes in Spodoptera exigua

    PubMed Central

    Wan, Xinlong; Qian, Kai; Du, Yongjun

    2015-01-01

    Pheromone and plant odorants are important for insect mating, foraging food sources and oviposition. To understand the molecular mechanisms regulating pheromone and odorant signaling, we employed qRT-PCR to study the circadian rhythms of ABP, OBP, PBP, and OR gene expression in the beet armyworm, Spodoptera exigua and their responses after a pre-exposure to sex pheromone compounds or plant volatiles. The neuronal responses of male S. exigua to 20 chemical compounds were recorded at three specific time periods using the electroantennogram. The results showed a circadian rhythm in the expression profiles of some chemosensory genes in the antennae similar to their behavioral rhythm. The expression profiles of OR3, OR6, OR11, OR13, OR16, OR18, Orco, ABP2, OBP1, OBP7, and PBP1, and EAG responses to chemical compounds, as well as their circadian rhythm were significantly affected after exposure to synthetic sex pheromones and plant volatiles. These findings provide the first evidence that the gene expression of chemosensory genes and olfactory sensitivity to sex pheromones are affected by pre-exposing insects to pheromone compounds and plant volatiles. It helps to understand the molecular mechanisms underlying pheromone activity, and the application of sex pheromones and plant volatiles in mating disruption or mass trapping. PMID:26611815

  11. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport

    PubMed Central

    2013-01-01

    Background One of the challenges in insect chemical ecology is to understand how insect pheromones are synthesised, detected and degraded. Genome wide survey by comparative sequencing and gene specific expression profiling provide rich resources for this challenge. A. ipsilon is a destructive pest of many crops and further characterization of the genes involved in pheromone biosynthesis and transport could offer potential targets for disruption of their chemical communication and for crop protection. Results Here we report 454 next-generation sequencing of the A. ipsilon pheromone gland transcriptome, identification and expression profiling of genes putatively involved in pheromone production, transport and degradation. A total of 23473 unigenes were obtained from the transcriptome analysis, 86% of which were A. ipsilon specific. 42 transcripts encoded enzymes putatively involved in pheromone biosynthesis, of which 15 were specifically, or mainly, expressed in the pheromone glands at 5 to 120-fold higher levels than in the body. Two transcripts encoding for a fatty acid synthase and a desaturase were highly abundant in the transcriptome and expressed more than 40-fold higher in the glands than in the body. The transcripts encoding for 2 acetyl-CoA carboxylases, 1 fatty acid synthase, 2 desaturases, 3 acyl-CoA reductases, 2 alcohol oxidases, 2 aldehyde reductases and 3 acetyltransferases were expressed at a significantly higher level in the pheromone glands than in the body. 17 esterase transcripts were not gland-specific and 7 of these were expressed highly in the antennae. Seven transcripts encoding odorant binding proteins (OBPs) and 8 encoding chemosensory proteins (CSPs) were identified. Two CSP transcripts (AipsCSP2, AipsCSP8) were highly abundant in the pheromone gland transcriptome and this was confirmed by qRT-PCR. One OBP (AipsOBP6) were pheromone gland-enriched and three OBPs (AipsOBP1, AipsOBP2 and AipsOBP4) were antennal-enriched. Based on these studies

  12. Discovery of a disused desaturase gene from the pheromone gland of the moth Ascotis selenaria, which secretes an epoxyalkenyl sex pheromone.

    PubMed

    Fujii, Takeshi; Suzuki, Masataka G; Katsuma, Susumu; Ito, Katsuhiko; Rong, Yu; Matsumoto, Shogo; Ando, Tetsu; Ishikawa, Yukio

    2013-11-29

    Female Ascotis selenaria (Geometridae) moths use 3,4-epoxy-(Z,Z)-6,9-nonadecadiene, which is synthesized from linolenic acid, as the main component of their sex pheromone. While the use of dietary linolenic or linoleic fatty acid derivatives as sex pheromone components has been observed in moth species belonging to a few families including Geometridae, the majority of moths use derivatives of a common saturated fatty acid, palmitic acid, as their sex pheromone components. We attempted to gain insight into the differentiation of pheromone biosynthetic pathways in geometrids by analyzing the desaturase genes expressed in the pheromone gland of A. selenaria. We demonstrated that a Δ11-desaturase-like gene (Asdesat1) was specifically expressed in the pheromone gland of A. selenaria in spite of the absence of a desaturation step in the pheromone biosynthetic pathway in this species. Further analysis revealed that the presumed transmembrane domains were degenerated in Asdesat1. Phylogenetic analysis demonstrated that Asdesat1 anciently diverged from the lineage of Δ11-desaturases, which are currently widely used in the biosynthesis of sex pheromones by moths. These results suggest that an ancestral Δ11-desaturase became dysfunctional in A. selenaria after a shift in pheromone biosynthetic pathways.

  13. How flies respond to honey bee pheromone: the role of the foraging gene on reproductive response to queen mandibular pheromone

    NASA Astrophysics Data System (ADS)

    Camiletti, Alison L.; Awde, David N.; Thompson, Graham J.

    2014-01-01

    In this study we test one central prediction from sociogenomic theory—that social and non-social taxa share common genetic toolkits that regulate reproduction in response to environmental cues. We exposed Drosophila females of rover ( for R) and sitter ( for s) genotypes to an ovary-suppressing pheromone derived from the honeybee Apis mellifera. Surprisingly, queen mandibular pheromone (QMP) affected several measures of fitness in flies, and in a manner comparable to the pheromone's normal effect on bee workers. QMP-treated sitter flies had smaller ovaries that contained fewer eggs than did untreated controls. QMP-treated rover flies, by contrast, showed a more variable pattern that only sometimes resulted in ovary inhibition, while a third strain of fly that contains a sitter mutant allele in a rover background ( for s2) showed no ovarian response to QMP. Taken together, our results suggest that distinctly non-social insects have some capacity to respond to social cues, but that this response varies with fly genotype. In general, the interspecific response is consistent with a conserved gene set affecting reproductive physiology. The differential response among strains in particular suggests that for is itself important for modulating the fly's pheromonal response.

  14. A novel screen for genes associated with pheromone-induced sterility

    PubMed Central

    Camiletti, Alison L.; Percival-Smith, Anthony; Croft, Justin R.; Thompson, Graham J.

    2016-01-01

    For honey bee and other social insect colonies the ‘queen substance’ regulates colony reproduction rendering workers functionally sterile. The evolution of worker reproductive altruism is explained by inclusive fitness theory, but little is known of the genes involved or how they regulate the phenotypic expression of altruism. We previously showed that application of honeybee queen pheromone to virgin fruit flies suppresses fecundity. Here we exploit this finding to identify genes associated with the perception of an ovary-inhibiting social pheromone. Mutational and RNAi approaches in Drosophila reveal that the olfactory co-factor Orco together with receptors Or49b, Or56a and Or98a are potentially involved in the perception of queen pheromone and the suppression of fecundity. One of these, Or98a, is known to mediate female fly mating behaviour, and its predicted ligand is structurally similar to a methyl component of the queen pheromone. Our novel approach to finding genes associated with pheromone-induced sterility implies conserved reproductive regulation between social and pre-social orders, and further helps to identify candidate orthologues from the pheromone-responsive pathway that may regulate honeybee worker sterility. PMID:27786267

  15. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  16. Genetic mapping of male pheromone response in the European corn borer identifies candidate genes regulating neurogenesis

    PubMed Central

    Dekker, Teun; Heckel, David G.

    2016-01-01

    The sexual pheromone communication system of moths is a model system for studies of the evolution of reproductive isolation. Females emit a blend of volatile components that males detect at a distance. Species differences in female pheromone composition and male response directly reinforce reproductive isolation in nature, because even slight variations in the species-specific pheromone blend are usually rejected by the male. The mechanisms by which a new pheromone signal–response system could evolve are enigmatic, because any deviation from the optimally attractive blend should be selected against. Here we investigate the genetic mechanisms enabling a switch in male response. We used a quantitative trait locus-mapping approach to identify the genetic basis of male response in the two pheromone races of the European corn borer, Ostrinia nubilalis. Male response to a 99:1 vs. a 3:97 ratio of the E and Z isomers of the female pheromone is governed by a single, sex-linked locus. We found that the chromosomal region most tightly linked to this locus contains genes involved in neurogenesis but, in accordance with an earlier study, does not contain the odorant receptors expressed in the male antenna that detect the pheromone. This finding implies that differences in the development of neuronal pathways conveying information from the antenna, not differences in pheromone detection by the odorant receptors, are primarily responsible for the behavioral response differences among the males in this system. Comparison with other moth species reveals a previously unexplored mechanism by which male pheromone response can change in evolution. PMID:27698145

  17. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  18. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes

    PubMed Central

    Roelofs, Wendell; Glover, Thomas; Tang, Xian-Han; Sreng, Isabelle; Robbins, Paul; Eckenrode, Charles; Löfstedt, Christer; Hansson, Bill S.; Bengtsson, Bengt O.

    1987-01-01

    Inheritance patterns for sex pheromone production in females, pheromone detection on male antennal olfactory receptor cells, and male pheromone behavioral responses were studied in pheromonally distinct populations of European corn borers from New York State. Gas chromatographic analyses of pheromone glands, single sensillum recordings, and flight tunnel behavioral analyses were carried out on progeny from reciprocal crosses, as well as on progeny from subsequent F2 and maternal and paternal backcrosses. The data show that the production of the female pheromone blend primarily is controlled by a single autosomal factor, that pheromone-responding olfactory cells are controlled by another autosomal factor, and that behavioral response to pheromone is controlled by a sex-linked gene. F1 males were found to possess olfactory receptor cells that give spike amplitudes to the two pheromone isomers that are intermediate to those of the high and low amplitude cells of the parent populations. Fifty-five percent of the F1 males tested responded fully to pheromone sources ranging from the hybrid (E)-11-tetradecenyl acetate/(Z)-11-tetradecenyl acetate (E/Z) molar blend of 65:35 to the E/Z molar blend of 3:97 for the Z morph parents, but very few responded to the E/Z molar blend of 99:1 for the E morph parents. Data on the inheritance patterns support speculation that the Z morph is the ancestral and that the E morph is the derived European corn borer population. PMID:16593886

  19. The water-borne protein signals (pheromones) of the Antarctic ciliated protozoan Euplotes nobilii: structure of the gene coding for the En-6 pheromone.

    PubMed

    La Terza, Antonietta; Dobri, Nicoleta; Alimenti, Claudio; Vallesi, Adriana; Luporini, Pierangelo

    2009-01-01

    The marine Antarctic ciliate, Euplotes nobilii, secretes a family of water-borne signal proteins, denoted as pheromones, which control vegetative proliferation and mating in the cell. Based on the knowledge of the amino acid sequences of a set of these pheromones isolated from the culture supernatant of wild-type strains, we designed probes to identify their encoding genes in the cell somatic nucleus (macronucleus). The full-length gene of the pheromone En-6 was determined and found to contain an open-reading frame specific for the synthesis of the En-6 cytoplasmic precursor (pre-pro-En-6), which requires 2 proteolytic cleavages to remove the signal peptide (pre) and the prosegment before secretion of the mature protein. In contrast to the sequence variability that distinguishes the secreted pheromones, the pre- and pro-sequences appear to be tightly conserved and useful for the construction of probes to clone every other E. nobilii pheromone gene. Potential intron sequences in the coding region of the En-6 gene imply the synthesis of more En-6 isoforms.

  20. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation

    PubMed Central

    Houot, Benjamin; Gigot, Vincent; Robichon, Alain; Ferveur, Jean-François

    2017-01-01

    The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues. PMID:28067325

  1. Functional Evolution of a Multigene Family: Orthologous and Paralogous Pheromone Receptor Genes in the Turnip Moth, Agrotis segetum

    PubMed Central

    Zhang, Dan-Dan; Löfstedt, Christer

    2013-01-01

    Lepidopteran pheromone receptors (PRs), for which orthologies are evident among closely related species, provide an intriguing example of gene family evolution in terms of how new functions may arise. However, only a limited number of PRs have been functionally characterized so far and thus evolutionary scenarios suffer from elements of speculation. In this study we investigated the turnip moth Agrotis segetum, in which female moths produce a mixture of chemically related pheromone components that elicit specific responses from receptor cells on male antennae. We cloned nine A. segetum PR genes and the Orco gene by degenerate primer based RT-PCR. The nine PR genes, named as AsegOR1 and AsegOR3-10, fall into four distinct orthologous clusters of known lepidopteran PRs, of which one contains six paralogues. The paralogues are under relaxed selective pressure, contrasting with the purifying selection on other clusters. We identified the receptors AsegOR9, AsegOR4 and AsegOR5, specific for the respective homologous pheromone components (Z)-5-decenyl, (Z)-7-dodecenyl and (Z)-9-tetradecenyl acetates, by two-electrode voltage clamp recording from Xenopus laevis oocytes co-expressing Orco and each PR candidate. These receptors occur in three different orthologous clusters. We also found that the six paralogues with high sequence similarity vary dramatically in ligand selectivity and sensitivity. Different from AsegOR9, AsegOR6 showed a relatively large response to the behavioural antagonist (Z)-5-decenol, and a small response to (Z)-5-decenyl acetate. AsegOR1 was broadly tuned, but most responsive to (Z)-5-decenyl acetate, (Z)-7-dodecenyl acetate and the behavioural antagonist (Z)-8-dodecenyl acetate. AsegOR8 and AsegOR7, which differ from AsegOR6 and AsegOR1 by 7 and 10 aa respectively, showed much lower sensitivities. AsegOR10 showed only small responses to all the tested compounds. These results suggest that new receptors arise through gene duplication, and relaxed

  2. MFα1, the Gene Encoding the α Mating Pheromone of Candida albicans†

    PubMed Central

    Panwar, Sneh L.; Legrand, Melanie; Dignard, Daniel; Whiteway, Malcolm; Magee, Paul. T.

    2003-01-01

    Candida albicans, the single most frequently isolated human fungal pathogen, was thought to be asexual until the recent discovery of the mating-type-like locus (MTL). Homozygous MTL strains were constructed and shown to mate. Furthermore, it has been demonstrated that opaque-phase cells are more efficient in mating than white-phase cells. The similarity of the genes involved in the mating pathway in Saccharomyces cerevisiae and C. albicans includes at least one gene (KEX2) that is involved in the processing of the α mating pheromone in the two yeasts. Taking into account this similarity, we searched the C. albicans genome for sequences that would encode the α pheromone gene. Here we report the isolation and characterization of the gene MFα1, which codes for the precursor of the α mating pheromone in C. albicans. Two active α-peptides, 13 and 14 amino acids long, would be generated after the precursor molecule is processed in C. albicans. To examine the role of this gene in mating, we constructed an mfα1 null mutant of C. albicans. The mfα1 null mutant fails to mate as MTLα, while MTLa mfα1 cells are still mating competent. Experiments performed with the synthetic α-peptides show that they are capable of inducing growth arrest, as demonstrated by halo tests, and also induce shmooing in MTLa cells of C. albicans. These peptides are also able to complement the mating defect of an MTLα kex2 mutant strain when added exogenously, thereby confirming their roles as α mating pheromones. PMID:14665468

  3. Pheromone evolution, reproductive genes, and comparative transcriptomics in mediterranean earthworms (annelida, oligochaeta, hormogastridae).

    PubMed

    Novo, Marta; Riesgo, Ana; Fernández-Guerra, Antoni; Giribet, Gonzalo

    2013-07-01

    Animals inhabiting cryptic environments are often subjected to morphological stasis due to the lack of obvious agents driving selection, and hence chemical cues may be important drivers of sexual selection and individual recognition. Here, we provide a comparative analysis of de novo-assembled transcriptomes in two Mediterranean earthworm species with the objective to detect pheromone proteins and other reproductive genes that could be involved in cryptic speciation processes, as recently characterized in other earthworm species. cDNA libraries of unspecific tissue of Hormogaster samnitica and three different tissues of H. elisae were sequenced in an Illumina Genome Analyzer II or Hi-Seq. Two pheromones, Attractin and Temptin were detected in all tissue samples and both species. Attractin resulted in a reliable marker for phylogenetic inference. Temptin contained multiple paralogs and was slightly overexpressed in the digestive tissue, suggesting that these pheromones could be released with the casts. Genes involved in sexual determination and fertilization were highly expressed in reproductive tissue. This is thus the first detailed analysis of the molecular machinery of sexual reproduction in earthworms.

  4. The sex-inducing pheromone and wounding trigger the same set of genes in the multicellular green alga Volvox.

    PubMed

    Amon, P; Haas, E; Sumper, M

    1998-05-01

    The sex-inducing pheromone of the multicellular green alga Volvox carteri is a glycoprotein that triggers development of males and females at a concentration <10(-16) M. By differential screening of a cDNA library, two novel genes were identified that are transcribed under the control of this pheromone. Unexpectedly, one gene product was characterized as a lysozyme/chitinase, and the other gene product was shown to encode a polypeptide with a striking modular composition. This polypeptide has a cysteine protease domain separated by an extensin-like module from three repeats of a chitin binding domain. In higher plants, similar protein families are known to play an important role in defense against fungi. Indeed, we found that the same set of genes triggered by the sexual pheromone was also inducible in V. carteri by wounding.

  5. The sex-inducing pheromone and wounding trigger the same set of genes in the multicellular green alga Volvox.

    PubMed Central

    Amon, P; Haas, E; Sumper, M

    1998-01-01

    The sex-inducing pheromone of the multicellular green alga Volvox carteri is a glycoprotein that triggers development of males and females at a concentration <10(-16) M. By differential screening of a cDNA library, two novel genes were identified that are transcribed under the control of this pheromone. Unexpectedly, one gene product was characterized as a lysozyme/chitinase, and the other gene product was shown to encode a polypeptide with a striking modular composition. This polypeptide has a cysteine protease domain separated by an extensin-like module from three repeats of a chitin binding domain. In higher plants, similar protein families are known to play an important role in defense against fungi. Indeed, we found that the same set of genes triggered by the sexual pheromone was also inducible in V. carteri by wounding. PMID:9596636

  6. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii.

    PubMed

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.

  7. Clustering cancer gene expression data by projective clustering ensemble

    PubMed Central

    Yu, Xianxue; Yu, Guoxian

    2017-01-01

    Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920

  8. The water-born protein pheromones of the polar protozoan ciliate, Euplotes nobilii: Coding genes and molecular structures

    NASA Astrophysics Data System (ADS)

    Vallesi, Adriana; Alimenti, Claudio; Di Giuseppe, Graziano; Dini, Fernando; Pedrini, Bill; Wüthrich, Kurt; Luporini, Pierangelo

    2010-08-01

    The protozoan ciliate Euplotes nobilii found in Antarctic and Arctic coastal waters relies on secretion of water-soluble cell type-specific signal proteins (pheromones) to regulate its vegetative growth and sexual mating. For three of these psychrophilic pheromones we previously determined the three-dimensional structures by nuclear magnetic resonance (NMR) spectroscopy with protein solutions purified from the natural sources, which led to evidence that their adaptation to cold is primarily achieved by increased flexibility through an extension of regions free of regular secondary structures, and by increased exposure of negative charges on the protein surface. Then we cloned the coding genes of these E. nobilii pheromones from the transcriptionally active cell somatic nucleus (macronucleus) and characterized the full-length sequences. These sequences all contain an open reading frame of 252-285 nucleotides, which is specific for a cytoplasmic pheromone precursor that requires two proteolytic cleavages to remove a signal peptide and a pro segment before release of the mature protein into the extracellular environment. The 5‧ and 3‧ non-coding regions are two- to three-fold longer than the coding region and appear to be tightly conserved, probably in relation to the inclusion of intron sequences destined to be alternatively removed to play key regulatory roles in the mechanism of the pheromone gene expression.

  9. Association study of human VN1R1 pheromone receptor gene alleles and gender.

    PubMed

    Mitropoulos, Constantinos; Papachatzopoulou, Adamantia; Menounos, Panagiotis G; Kolonelou, Christina; Pappa, Magda; Bertolis, George; Gerou, Spiros; Patrinos, George P

    2007-01-01

    Pheromones are water-soluble chemicals that elicit neuroendocrine and physiological changes, while they also provide information about gender within individuals of the same species. VN1R1 is the only functional pheromone receptor in humans. We have undertaken a large mutation screening approach in 425 adult individuals from the Hellenic population to investigate whether the allelic differences, namely alleles 1a and 1b present in the human VN1R1 gene, are gender specific. Here we show that both VN1R1 1a and 1b alleles are found in chromosomes of both male and female subjects at frequency of 26.35% and 73.65%, respectively. Given the fact that those allelic differences potentially cause minor changes in the protein conformation and its transmembrane domains, as simulated by the TMHMM software, our data suggest that the allelic differences in the human VN1R1 gene are unlikely to be associated with gender and hence to contribute to distinct gender-specific behavior.

  10. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata

    PubMed Central

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  11. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata.

    PubMed

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-05

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone.

  12. Pheromone Signalling

    ERIC Educational Resources Information Center

    Hart, Adam G.

    2011-01-01

    Pheromones are chemicals used to communicate with members of the same species. First described in insects, pheromones are often used to attract mates but in social insects, such as ants and bees, pheromone use is much more sophisticated. For example, ants use pheromones to make foraging trails and the chemical and physical properties of the…

  13. Incomplete barriers to mitochondrial gene flow between pheromone races of the North American pine engraver, Ips pini (Say) (Coleoptera, Scolytidae)

    PubMed Central

    Cognato, A. I.; Seybold, S. J.; Sperling, F. A. H.

    1999-01-01

    The pine engraver Ips pini (Say) is known to include three pheromone races, but gene flow between these races has not been investigated. We used maternally inherited mitochondrial DNA (mtDNA) variation to infer gene flow between 22 widely distributed North American populations of I. pini for a total of 217 individuals, based on 354 bp of the cytochrome oxidase I gene. Gene flow was estimated cladistically as migrants per generation (Nm) and as haplotype variation between populations (Nst). Three distinct mtDNA haplotype lineages, generally corresponding to eastern (I), Rocky Mountain (II) and western (III) regions of North America, were resolved with a total of 34 distinct I. pini haplotypes. The distributions of these lineages were largely congruent with the geographical ranges of the 'New York', 'California' and 'Idaho–Montana' pheromone races. Only individuals with lineage I mtDNA were observed among eastern populations, whereas individuals with lineage II or III mtDNA predominated among western populations. Gene flow (Nm and Nst) was generally moderate between all populations. However, the presence of lineage I mtDNA on the eastern side of western North America and the absence of lineage II and III mtDNA in eastern North America suggest directional gene flow from east to west. These results indicate that female-controlled assortative mating among pheromone races may disrupt gene flow between conspecifics, reflecting incomplete pre-mating barriers.

  14. A plant factory for moth pheromone production.

    PubMed

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2014-02-25

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste.

  15. Pheromone production in bark beetles.

    PubMed

    Blomquist, Gary J; Figueroa-Teran, Rubi; Aw, Mory; Song, Minmin; Gorzalski, Andrew; Abbott, Nicole L; Chang, Eric; Tittiger, Claus

    2010-10-01

    The first aggregation pheromone components from bark beetles were identified in 1966 as a mixture of ipsdienol, ipsenol and verbenol. Since then, a number of additional components have been identified as both aggregation and anti-aggregation pheromones, with many of them being monoterpenoids or derived from monoterpenoids. The structural similarity between the major pheromone components of bark beetles and the monoterpenes found in the host trees, along with the association of monoterpenoid production with plant tissue, led to the paradigm that most if not all bark beetle pheromone components were derived from host tree precursors, often with a simple hydroxylation producing the pheromone. In the 1990 s there was a paradigm shift as evidence for de novo biosynthesis of pheromone components began to accumulate, and it is now recognized that most bark beetle monoterpenoid aggregation pheromone components are biosynthesized de novo. The bark beetle aggregation pheromones are released from the frass, which is consistent with the isoprenoid aggregation pheromones, including ipsdienol, ipsenol and frontalin, being produced in midgut tissue. It appears that exo-brevocomin is produced de novo in fat body tissue, and that verbenol, verbenone and verbenene are produced from dietary α-pinene in fat body tissue. Combined biochemical, molecular and functional genomics studies in Ips pini yielded the discovery and characterization of the enzymes that convert mevalonate pathway intermediates to pheromone components, including a novel bifunctional geranyl diphosphate synthase/myrcene synthase, a cytochrome P450 that hydroxylates myrcene to ipsdienol, and an oxidoreductase that interconverts ipsdienol and ipsdienone to achieve the appropriate stereochemistry of ipsdienol for pheromonal activity. Furthermore, the regulation of these genes and their corresponding enzymes proved complex and diverse in different species. Mevalonate pathway genes in pheromone producing male I. pini

  16. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals.

    PubMed

    Grus, Wendy E; Shi, Peng; Zhang, Ya-ping; Zhang, Jianzhi

    2005-04-19

    Pheromones are chemicals emitted and sensed by conspecifics to elicit social and sexual responses and are perceived in terrestrial vertebrates primarily by the vomeronasal organ (VNO). Pheromone receptors in the mammalian VNO are encoded by the V1R and V2R gene superfamilies. The V1R superfamily contains 187 and 102 putatively functional genes in the mouse and rat, respectively. To investigate whether this large repertoire size is typical among mammals with functional VNOs, we here describe the V1R repertoires of dog, cow, and opossum based on their draft genome sequences. The dog and cow have only 8 and 32 intact V1R genes, respectively. Thus, the intact V1R repertoire size varies by at least 23-fold among placental mammals with functional VNOs. To our knowledge, this size ratio represents the greatest among-species variation in gene family size of all mammalian gene families. Phylogenetic analysis of placental V1R genes suggests multiple losses of ancestral genes in carnivores and artiodactyls and gains of many new genes by gene duplication in rodents, manifesting massive gene births and deaths. We also identify 49 intact opossum V1R genes and discover independent expansions of the repertoire in placentals and marsupials. We further show a concordance between the V1R repertoire size and the complexity of VNO morphology, suggesting that the latter could indicate the sophistication of pheromone communications within species. In sum, our results demonstrate tremendous diversity and rapid evolution of mammalian V1R gene inventories and caution the generalization of VNO biology from rodents to all mammals.

  17. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals

    PubMed Central

    Grus, Wendy E.; Shi, Peng; Zhang, Ya-ping; Zhang, Jianzhi

    2005-01-01

    Pheromones are chemicals emitted and sensed by conspecifics to elicit social and sexual responses and are perceived in terrestrial vertebrates primarily by the vomeronasal organ (VNO). Pheromone receptors in the mammalian VNO are encoded by the V1R and V2R gene superfamilies. The V1R superfamily contains 187 and 102 putatively functional genes in the mouse and rat, respectively. To investigate whether this large repertoire size is typical among mammals with functional VNOs, we here describe the V1R repertoires of dog, cow, and opossum based on their draft genome sequences. The dog and cow have only 8 and 32 intact V1R genes, respectively. Thus, the intact V1R repertoire size varies by at least 23-fold among placental mammals with functional VNOs. To our knowledge, this size ratio represents the greatest among-species variation in gene family size of all mammalian gene families. Phylogenetic analysis of placental V1R genes suggests multiple losses of ancestral genes in carnivores and artiodactyls and gains of many new genes by gene duplication in rodents, manifesting massive gene births and deaths. We also identify 49 intact opossum V1R genes and discover independent expansions of the repertoire in placentals and marsupials. We further show a concordance between the V1R repertoire size and the complexity of VNO morphology, suggesting that the latter could indicate the sophistication of pheromone communications within species. In sum, our results demonstrate tremendous diversity and rapid evolution of mammalian V1R gene inventories and caution the generalization of VNO biology from rodents to all mammals. PMID:15790682

  18. Multiple Δ11-desaturase genes selectively used for sex pheromone biosynthesis are conserved in Ostrinia moth genomes.

    PubMed

    Fujii, Takeshi; Yasukochi, Yuji; Rong, Yu; Matsuo, Takashi; Ishikawa, Yukio

    2015-06-01

    Regulation of the expression of fatty acyl-CoA desaturases, which introduce a double bond into the fatty acid moiety of the substrate, is crucial for the production of species-specific sex pheromones in moths. In Ostrinia moths, two distinct Δ11-desaturases and a Δ14-desaturase are known to be selectively used in the biosynthesis of sex pheromones. Of the two Δ11-desaturases, one identified from Ostrinia nubilalis and Ostrinia scapulalis, Z/EΔ11, forms the Z and E isomers of a double bond at position 11, whereas the other identified from Ostrinia latipennis, LATPG1(=EΔ11), exclusively forms an E double bond at position 11. Since the retroposon(ezi)-fused, non-functional Δ11-desaturase gene, ezi-Δ11α, in the genomes of O. nubilalis and O. furnacalis was previously suggested to be an orthologue of latpg1, we here explored Z/EΔ11 orthologues in the genome of O. latipennis. We newly identified two Δ11-desaturase genes, latpg2 and latpg3, which were orthologous to ezi-Δ11β and Z/EΔ11, respectively. We found that an ezi-like element was integrated in intron 1 of latpg1, and confirmed that only latpg1 was expressed in the pheromone gland of O. latipennis. Thus, at least three Δ11-desaturase genes are present in the genome of O. latipennis, and latpg1 is selectively transcribed in the pheromone gland of this moth. The non-functionality of ezi-inserted desaturase genes in O. nubilalis and O. furnacalis may not be a direct consequence of the insertion of an ezi- or ezi-like element into the gene.

  19. A Bidirectional Circuit Switch Reroutes Pheromone Signals in Male and Female Brains

    PubMed Central

    Kohl, Johannes; Ostrovsky, Aaron D.; Frechter, Shahar; Jefferis, Gregory S.X.E.

    2013-01-01

    Summary The Drosophila sex pheromone cVA elicits different behaviors in males and females. First- and second-order olfactory neurons show identical pheromone responses, suggesting that sex genes differentially wire circuits deeper in the brain. Using in vivo whole-cell electrophysiology, we now show that two clusters of third-order olfactory neurons have dimorphic pheromone responses. One cluster responds in females; the other responds in males. These clusters are present in both sexes and share a common input pathway, but sex-specific wiring reroutes pheromone information. Regulating dendritic position, the fruitless transcription factor both connects the male-responsive cluster and disconnects the female-responsive cluster from pheromone input. Selective masculinization of third-order neurons transforms their morphology and pheromone responses, demonstrating that circuits can be functionally rewired by the cell-autonomous action of a switch gene. This bidirectional switch, analogous to an electrical changeover switch, provides a simple circuit logic to activate different behaviors in males and females. PMID:24360281

  20. Use of lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery.

    PubMed

    Diep, D B; Mathiesen, G; Eijsink, V G H; Nes, I F

    2009-01-01

    Lactobacilli are common microorganisms in diverse vegetables and meat products and several of these are also indigenous inhabitants in the gastro-intestinal (GI) tract of humans and animals where they are believed to have health promoting effects on the host. One of the highly appreciated probiotic effects is their ability to inhibit the growth of pathogens by producing antimicrobial peptides, so-called bacteriocins. Production of some bacteriocins has been shown to be strictly regulated through a quorum-sensing based mechanism mediated by a secreted peptide-pheromone (also called induction peptide; IP), a membrane-located sensor (histidine protein kinase; HPK) and a cytoplasmic response regulator (RR). The interaction between an IP and its sensor, which is highly specific, leads to activation of the cognate RR which in turn binds to regulated promoters and activates gene expression. The HPKs and RRs are built up by conserved modules, and the signalling between them within a network is efficient and directional, and can easily be activated by exogenously added synthetic IPs. Consequently, components from such regulatory networks have successfully been exploited in construction of a number of inducible gene expression systems. In this review, we discuss some well-characterised quorum sensing networks involved in bacteriocin production in lactobacilli, with special focus on the use of the regulatory components in gene expression and on lactobacilli as potential delivery vehicle for therapeutic and vaccine purposes.

  1. Behavioral and pheromonal phenotypes associated with expression of loss-of-function mutations in the sex-lethal gene of Drosophila melanogaster.

    PubMed

    Tompkins, L; McRobert, S P

    1995-02-01

    We have shown that female-specific functions of the sex determination gene Sex-lethal (Sxl) regulate sexual behavior and synthesis of the three major sex pheromones that have been identified in normal, sexually mature Drosophilia melanogaster males and virgin females. Diplo-X flies, heterozygous in trans for two partial loss-of-function Sxl mutations, elicit less courtship than normal females and produce large quantities of the inhibitory pheromones that normal males synthesize. In addition, the mutant flies fail to synthesize the female-predominant aphrodisiac pheromone or make very small quantities of this compound.

  2. Finding approximate gene clusters with Gecko 3

    PubMed Central

    Winter, Sascha; Jahn, Katharina; Wehner, Stefanie; Kuchenbecker, Leon; Marz, Manja; Stoye, Jens; Böcker, Sebastian

    2016-01-01

    Gene-order-based comparison of multiple genomes provides signals for functional analysis of genes and the evolutionary process of genome organization. Gene clusters are regions of co-localized genes on genomes of different species. The rapid increase in sequenced genomes necessitates bioinformatics tools for finding gene clusters in hundreds of genomes. Existing tools are often restricted to few (in many cases, only two) genomes, and often make restrictive assumptions such as short perfect conservation, conserved gene order or monophyletic gene clusters. We present Gecko 3, an open-source software for finding gene clusters in hundreds of bacterial genomes, that comes with an easy-to-use graphical user interface. The underlying gene cluster model is intuitive, can cope with low degrees of conservation as well as misannotations and is complemented by a sound statistical evaluation. To evaluate the biological benefit of Gecko 3 and to exemplify our method, we search for gene clusters in a dataset of 678 bacterial genomes using Synechocystis sp. PCC 6803 as a reference. We confirm detected gene clusters reviewing the literature and comparing them to a database of operons; we detect two novel clusters, which were confirmed by publicly available experimental RNA-Seq data. The computational analysis is carried out on a laptop computer in <40 min. PMID:27679480

  3. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.

  4. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  5. The evolution of pheromonal communication.

    PubMed

    Swaney, William T; Keverne, Eric B

    2009-06-25

    Small-brained rodents have been the principle focus for pheromonal research and have provided comprehensive insights into the chemosensory mechanisms that underpin pheromonal communication and the hugely important roles that pheromones play in behavioural regulation. However, pheromonal communication does not start or end with the mouse and the rat, and work in amphibians reveals much about the likely evolutionary origins of the chemosensory systems that mediate pheromonal effects. The dual olfactory organs (the main olfactory epithelium and the vomeronasal organ), their receptors and their separate projection pathways appear to have ancient evolutionary origins, appearing in the aquatic ancestors of all tetrapods during the Devonian period and so pre-dating the transition to land. While the vomeronasal organ has long been considered an exclusively pheromonal organ, accumulating evidence indicates that it is not the sole channel for the transduction of pheromonal information and that both olfactory systems have been co-opted for the detection of different pheromone signals over the course of evolution. This has also led to great diversity in the vomeronasal and olfactory receptor families, with enormous levels of gene diversity and inactivation of genes in different species. Finally, the evolution of trichromacy as well as huge increases in social complexity have minimised the role of pheromones in the lives of primates, leading to the total inactivation of the vomeronasal system in catarrhine primates while the brain increased in size and behaviour became emancipated from hormonal regulation.

  6. A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory

    PubMed Central

    2013-01-01

    Background Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co-expressing two key biosynthetic enzymes in a simple yeast cell factory. Results We first identified and functionally characterized a ∆11 Fatty-Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The ∆11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer’s yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 μg Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that

  7. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2012-01-01

    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.

  8. Multiple sex pheromone genes are expressed in the abdominal glands of the smooth newt (Lissotriton vulgaris) and Montandon's Newt (L. montandoni) (Salamandridae).

    PubMed

    Artur, Osikowski; Wiesław, Babik; Paweł, Grzmil; Jacek M, Szymura

    2008-06-01

    The smooth newt (Lissotriton "Triturus" vulgaris) and Montandon's newt (L."T." montandoni) are sister species exhibiting pronounced differences in male secondary sexual traits but nevertheless hybridizing and producing fertile hybrids in nature. Since pheromonal communication is an important aspect of the reproductive biology of urodeles, structural differentiation of peptide pheromones and their receptors may contribute to incipient reproductive isolation. The aim of the study was the identification of genes encoding putative courtship pheromone precursors in two newt species and the reconstruction of phylogenetic relationships among them. Our analyses were based on cDNA obtained from the transcripts from the abdominal glands of male newts. We identified five unique cDNA sequences encoding the putative pheromone precursors in L. vulgaris and three additional unique sequences in L. montandoni. The results indicate that in the abdominal glands of Lissotriton newts more than one pheromone-encoding gene is expressed and that these loci form a gene family. Phylogenetic analysis indicates that the divergence of at least some of these genes predates the radiation of European newts.

  9. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  10. Expression of a desaturase gene, desat1, in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila

    PubMed Central

    Bousquet, François; Nojima, Tetsuya; Houot, Benjamin; Chauvel, Isabelle; Chaudy, Sylvie; Dupas, Stéphane; Yamamoto, Daisuke; Ferveur, Jean-François

    2012-01-01

    Animals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control. We have identified a Drosophila melanogaster gene, desat1, that is involved in both the emission and the perception of sex pheromones. To explore the mechanism whereby these two aspects of communication interact, we investigated the relationship between the molecular structure, tissue-specific expression, and pheromonal phenotypes of desat1. We characterized the five desat1 transcripts—all of which yielded the same desaturase protein—and constructed transgenes with the different desat1 putative regulatory regions. Each region was used to target reporter transgenes with either (i) the fluorescent GFP marker to reveal desat1 tissue expression, or (ii) the desat1 RNAi sequence to determine the effects of genetic down-regulation on pheromonal phenotypes. We found that desat1 is expressed in a variety of neural and nonneural tissues, most of which are involved in reproductive functions. Our results suggest that distinct desat1 putative regulatory regions independently drive the expression in nonneural and in neural cells, such that the emission and perception of sex pheromones are precisely coordinated in this species. PMID:22114190

  11. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  12. Clustering gene expression data using graph separators.

    PubMed

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process.

  13. Phylogenomic analyses of KCNA gene clusters in vertebrates: why do gene clusters stay intact?

    PubMed Central

    Hoegg, Simone; Meyer, Axel

    2007-01-01

    Background Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained. Results We obtained KCNA coding sequences from basal ray-finned fishes (sturgeon, gar, bowfin) and confirmed that the duplication of these genes is specific to teleosts and therefore consistent with the fish-specific genome duplication (FSGD). Phylogenetic analyses of the genes suggest a basal position of the only intron containing KCNA gene in vertebrates (KCNA7). Sistergroup relationships of KCNA1/2 and KCNA3/6 support that a large-scale duplication gave rise to the two clusters found in the genome of tetrapods. We analyzed the intergenic regions of KCNA clusters in vertebrates and found that there are only a few conserved sequences shared between tetrapods and teleosts or between paralogous clusters. The orthologous teleost clusters, however, show sequence conservation in these regions. Conclusion The lack of overall conserved sequences in intergenic regions

  14. Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune.

    PubMed Central

    Fowler, T J; Mitton, M F; Vaillancourt, L J; Raper, C A

    2001-01-01

    Schizophyllum commune has thousands of mating types defined in part by numerous lipopeptide pheromones and their G-protein-coupled receptors. These molecules are encoded within multiple versions of two redundantly functioning B mating-type loci, B alpha and B beta. Compatible combinations of pheromones and receptors, produced by individuals of different B mating types, trigger a pathway of fertilization required for sexual development. Analysis of the B beta 2 mating-type locus revealed a large cluster of genes encoding a single pheromone receptor and eight different pheromones. Phenotypic effects of mutations within these genes indicated that small changes in both types of molecules could significantly alter their specificity of interaction. For example, a conservative amino acid substitution in a pheromone resulted in a gain of function toward one receptor and a loss of function with another. A two-amino-acid deletion from a receptor precluded the mutant pheromone from activating the mutant receptor, yet this receptor was activated by other pheromones. Sequence comparisons provided clues toward understanding how so many variants of these multigenic loci could have evolved through duplication and mutational divergence. A three-step model for the origin of new variants comparable to those found in nature is presented. PMID:11514441

  15. Clustering Genes of Common Evolutionary History.

    PubMed

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-06-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent-due to events such as incomplete lineage sorting or horizontal gene transfer-it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such "process-agnostic" approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward's method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl).

  16. Identification and Characterization of Pheromone Receptors and Interplay between Receptors and Pheromone Binding Proteins in the Diamondback Moth, Plutella xyllostella

    PubMed Central

    Sun, Mengjing; Liu, Yang; Walker, William B.; Liu, Chengcheng; Lin, Kejian; Gu, Shaohua; Zhang, Yongjun; Zhou, Jingjiang; Wang, Guirong

    2013-01-01

    Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic of pheromone receptors. In the Xenopus-based functional study and in situ hybridization, PxylOR4 is defined as another pheromone receptor in addition to the previously characterized PxylOR1. In the study of interaction between PRs and PBPs, PxylPBPs could increase the sensitivity of the complex expressing oocyte cells to the ligand pheromone component while decreasing the sensitivity to pheromone analogs. We deduce that activating pheromone receptors in olfactory receptor neurons requires some role of PBPs to pheromone/PBP complex. If the chemical signal is not the pheromone component, but instead, a pheromone analog with a similar structure, the complex would have a decreased ability to activate downstream pheromone receptors. PMID:23626773

  17. Identification and characterization of pheromone receptors and interplay between receptors and pheromone binding proteins in the diamondback moth, Plutella xyllostella.

    PubMed

    Sun, Mengjing; Liu, Yang; Walker, William B; Liu, Chengcheng; Lin, Kejian; Gu, Shaohua; Zhang, Yongjun; Zhou, Jingjiang; Wang, Guirong

    2013-01-01

    Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic of pheromone receptors. In the Xenopus-based functional study and in situ hybridization, PxylOR4 is defined as another pheromone receptor in addition to the previously characterized PxylOR1. In the study of interaction between PRs and PBPs, PxylPBPs could increase the sensitivity of the complex expressing oocyte cells to the ligand pheromone component while decreasing the sensitivity to pheromone analogs. We deduce that activating pheromone receptors in olfactory receptor neurons requires some role of PBPs to pheromone/PBP complex. If the chemical signal is not the pheromone component, but instead, a pheromone analog with a similar structure, the complex would have a decreased ability to activate downstream pheromone receptors.

  18. POG1, a novel yeast gene, promotes recovery from pheromone arrest via the G1 cyclin CLN2.

    PubMed Central

    Leza, M A; Elion, E A

    1999-01-01

    In the absence of a successful mating, pheromone-arrested Saccharomyces cerevisiae cells reenter the mitotic cycle through a recovery process that involves downregulation of the mating mitogen-activated protein kinase (MAPK) cascade. We have isolated a novel gene, POG1, whose promotion of recovery parallels that of the MAPK phosphatase Msg5. POG1 confers alpha-factor resistance when overexpressed and enhances alpha-factor sensitivity when deleted in the background of an msg5 mutant. Overexpression of POG1 inhibits alpha-factor-induced G1 arrest and transcriptional repression of the CLN1 and CLN2 genes. The block in transcriptional repression occurs at SCB/MCB promoter elements by a mechanism that requires Bck1 but not Cln3. Genetic tests strongly argue that POG1 promotes recovery through upregulation of the CLN2 gene and that the resulting Cln2 protein promotes recovery primarily through an effect on Ste20, an activator of the mating MAPK cascade. A pog1 cln3 double mutant displays synthetic mutant phenotypes shared by cell-wall integrity and actin cytoskeleton mutants, with no synthetic defect in the expression of CLN1 or CLN2. These and other results suggest that POG1 may regulate additional genes during vegetative growth and recovery. PMID:9927449

  19. Combined clustering models for the analysis of gene expression

    SciTech Connect

    Angelova, M. Ellman, J.

    2010-02-15

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  20. The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein.

    PubMed Central

    Kitamura, K; Shimoda, C

    1991-01-01

    The fission yeast Schizosaccharomyces pombe has two mating-types, h+ (P) and h- (M). The mam2 mutant exhibits an h(-)-specific sterile phenotype. Nucleotide sequencing of the mam2 gene isolated from an S. pombe genomic library revealed an open reading frame composed of 348 amino acids. The deduced mam2 product is a hydrophobic protein of 39 kDa that has significant sequence similarity (26.3% for identical amino acids) with the transmembrane domains of the Saccharomyces cerevisiae STE2 product, the alpha-pheromone receptor. Hydropathicity analysis suggests that the Mam2 protein contains seven possible membrane-spanning domains and a carboxy-terminal hydrophilic region. The mam2 gene was disrupted and found to be non-essential for growth. An h- haploid strain harbouring this disrupted null allele failed to respond to the pheromone of h+ cells, P-factor. These observations imply that the mam2 gene encodes a receptor for P-factor. Transcription of mam2 was induced only when strains containing functional mat1-M allele were cultured under conditions of nitrogen starvation. The mam2 gene was also transcribed in h+/h- diploid strains. The fact that the map1/mam2 homozygous diploid cells are incapable of sporulation implies that the pheromone signalling system is necessary for sporulation in diploid cells. Images PMID:1657593

  1. ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone

    PubMed Central

    Behrens, Maik; Frank, Oliver; Rawel, Harshadrai; Ahuja, Gaurav; Potting, Christoph; Hofmann, Thomas; Meyerhof, Wolfgang; Korsching, Sigrun

    2014-01-01

    The teleost v1r-related ora genes are a small, highly conserved olfactory receptor gene family of only six genes, whose direct orthologues can be identified in lineages as far as that of cartilaginous fish. However, no ligands for fish olfactory receptor class A related genes (ORA) had been uncovered so far. Here we have deorphanized the ORA1 receptor using heterologous expression and calcium imaging. We report that zebrafish ORA1 recognizes with high specificity and sensitivity 4-hydroxyphenylacetic acid. The carboxyl group of this compound is required in a particular distance from the aromatic ring, whereas the hydroxyl group in the para-position is not essential, but strongly enhances the binding efficacy. Low concentrations of 4-hydroxyphenylacetic acid elicit increases in oviposition frequency in zebrafish mating pairs. This effect is abolished by naris closure. We hypothesize that 4-hydroxyphenylacetic acid might function as a pheromone for reproductive behavior in zebrafish. ORA1 is ancestral to mammalian V1Rs, and its putative function as pheromone receptor is reminiscent of the role of several mammalian V1Rs as pheromone receptors. PMID:24831010

  2. What is a pheromone? Mammalian pheromones reconsidered.

    PubMed

    Stowers, Lisa; Marton, Tobias F

    2005-06-02

    Pheromone communication is a two-component system: signaling pheromones and receiving sensory neurons. Currently, pheromones remain enigmatic bioactive compounds, as only a few have been identified, but classical bioassays have suggested that they are nonvolatile, activate vomeronasal sensory neurons, and regulate innate social behaviors and neuroendocrine release. Recent discoveries of potential pheromones reveal that they may be more structurally and functionally diverse than previously defined.

  3. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  4. Evolution of Hox gene clusters in deuterostomes

    PubMed Central

    2013-01-01

    Hox genes, with their similar roles in animals as evolutionarily distant as humans and flies, have fascinated biologists since their discovery nearly 30 years ago. During the last two decades, reports on Hox genes from a still growing number of eumetazoan species have increased our knowledge on the Hox gene contents of a wide range of animal groups. In this review, we summarize the current Hox inventory among deuterostomes, not only in the well-known teleosts and tetrapods, but also in the earlier vertebrate and invertebrate groups. We draw an updated picture of the ancestral repertoires of the different lineages, a sort of “genome Hox bar-code” for most clades. This scenario allows us to infer differential gene or cluster losses and gains that occurred during deuterostome evolution, which might be causally linked to the morphological changes that led to these widely diverse animal taxa. Finally, we focus on the challenging family of posterior Hox genes, which probably originated through independent tandem duplication events at the origin of each of the ambulacrarian, cephalochordate and vertebrate/urochordate lineages. PMID:23819519

  5. Penicillium roqueforti PR toxin gene cluster characterization.

    PubMed

    Hidalgo, Pedro I; Poirier, Elisabeth; Ullán, Ricardo V; Piqueras, Justine; Meslet-Cladière, Laurence; Coton, Emmanuel; Coton, Monika

    2017-03-01

    PR toxin is a well-known isoprenoid mycotoxin almost solely produced by Penicillium roqueforti after growth on food or animal feed. This mycotoxin has been described as the most toxic produced by this species. In this study, an in silico analysis allowed identifying for the first time a 22.4-kb biosynthetic gene cluster involved in PR toxin biosynthesis in P. roqueforti. The pathway contains 11 open reading frames encoding for ten putative proteins including the major fungal terpene cyclase, aristolochene synthase, involved in the first farnesyl-diphosphate cyclization step as well as an oxidoreductase, an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes. Gene silencing was used to study three genes (ORF5, ORF6, and ORF8 encoding for an acetyltransferase and two P450 monooxygenases, respectively) and resulted in 20 to 40% PR toxin production reductions in all transformants proving the involvement of these genes and the corresponding enzyme activities in PR toxin biosynthesis. According to the considered silenced gene target, eremofortin A and B productions were also affected suggesting their involvement as biosynthetic intermediates in this pathway. A PR toxin biosynthesis pathway is proposed based on the most recent and available data.

  6. Comparative Genomics Uncovers Unique Gene Turnover and Evolutionary Rates in a Gene Family Involved in the Detection of Insect Cuticular Pheromones

    PubMed Central

    Torres-Oliva, Montserrat; Almeida, Francisca C.; Sánchez-Gracia, Alejandro; Rozas, Julio

    2016-01-01

    Chemoreception is an essential process for the survival and reproduction of animals. Many of the proteins responsible for recognizing and transmitting chemical stimuli in insects are encoded by genes that are members of moderately sized multigene families. The members of the CheB family are specialized in gustatory-mediated detection of long-chain hydrocarbon pheromones in Drosophila melanogaster and play a central role in triggering and modulating mating behavior in this species. Here, we present a comprehensive comparative genomic analysis of the CheB family across 12 species of the Drosophila genus. We have identified a total of 102 new CheB genes in the genomes of these species, including a functionally divergent member previously uncharacterized in D. melanogaster. We found that, despite its relatively small repertory size, the CheB family has undergone multiple gain and loss events and various episodes of diversifying selection during the divergence of the surveyed species. Present estimates of gene turnover and coding sequence substitution rates show that this family is evolving faster than any known Drosophila chemosensory family. To date, only other insect gustatory-related genes among these families had shown evolutionary dynamics close to those observed in CheBs. Our findings reveal the high adaptive potential of molecular components of the gustatory system in insects and anticipate a key role of genes involved in this sensory modality in species adaptation and diversification.

  7. Transcriptional activation by the sexual pheromone and wounding: a new gene family from Volvox encoding modular proteins with (hydroxy)proline-rich and metalloproteinase homology domains.

    PubMed

    Hallmann, A; Amon, P; Godl, K; Heitzer, M; Sumper, M

    2001-06-01

    The green alga Volvox represents the simplest kind of multicellular organism: it is composed of only two cell types, somatic and reproductive, making it suitable as a model system. The sexual development of males and females of Volvox carteri is triggered by a sex-inducing pheromone at a concentration of < 10-16 M. Early biochemical responses to the pheromone involve structural modifications within the extracellular matrix (ECM). By differential screenings of cDNA libraries made from mRNAs of pheromone-treated Volvox, four novel genes were identified that encode four closely related Volvox metalloproteinases that we use to define a new protein family, the VMPs. The existence of several features common to matrix glycoproteins, such as signal peptides, a (hydroxy)proline content of 12-25%, and Ser(Pro)2-4 repeats, suggest an extracellular localization of the VMPs within the ECM. Synthesis of VMP cDNAs is triggered not only by the sex-inducing pheromone, but also by wounding, and is restricted to the somatic cell type. Sequence comparisons suggest that the VMPs are members of the MB clan of zinc-dependent matrix metalloproteinases, although the putative zinc binding site of all VMPs is QEXXHXXGXXH rather than HEXXHXXGXXH. The presence of glutamine instead of histidine in the zinc binding motif suggests a novel family, or even clan, of peptidases. Like the matrixin family of human collagenases, Volvox VMPs exhibit a modular structure: they possess a metalloproteinase homology domain and a (hydroxy)proline-rich domain, and one of them, VMP4, also has two additional domains. Metalloproteinases seem to be crucial for biochemical modifications of the ECM during development or after wounding in the lower eukaryote Volvox with only two cell types, just as in higher organisms.

  8. Inferring the Recent Duplication History of a Gene Cluster

    NASA Astrophysics Data System (ADS)

    Song, Giltae; Zhang, Louxin; Vinař, Tomáš; Miller, Webb

    Much important evolutionary activity occurs in gene clusters, where a copy of a gene may be free to evolve new functions. Computational methods to extract evolutionary information from sequence data for such clusters are currently imperfect, in part because accurate sequence data are often lacking in these genomic regions, making the existing methods difficult to apply. We describe a new method for reconstructing the recent evolutionary history of gene clusters. The method’s performance is evaluated on simulated data and on actual human gene clusters.

  9. Computing gene expression data with a knowledge-based gene clustering approach.

    PubMed

    Rosa, Bruce A; Oh, Sookyung; Montgomery, Beronda L; Chen, Jin; Qin, Wensheng

    2010-01-01

    Computational analysis methods for gene expression data gathered in microarray experiments can be used to identify the functions of previously unstudied genes. While obtaining the expression data is not a difficult task, interpreting and extracting the information from the datasets is challenging. In this study, a knowledge-based approach which identifies and saves important functional genes before filtering based on variability and fold change differences was utilized to study light regulation. Two clustering methods were used to cluster the filtered datasets, and clusters containing a key light regulatory gene were located. The common genes to both of these clusters were identified, and the genes in the common cluster were ranked based on their coexpression to the key gene. This process was repeated for 11 key genes in 3 treatment combinations. The initial filtering method reduced the dataset size from 22,814 probes to an average of 1134 genes, and the resulting common cluster lists contained an average of only 14 genes. These common cluster lists scored higher gene enrichment scores than two individual clustering methods. In addition, the filtering method increased the proportion of light responsive genes in the dataset from 1.8% to 15.2%, and the cluster lists increased this proportion to 18.4%. The relatively short length of these common cluster lists compared to gene groups generated through typical clustering methods or coexpression networks narrows the search for novel functional genes while increasing the likelihood that they are biologically relevant.

  10. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The B4 resistance (R)-gene cluster, located in subtelomeric region of chromosome 4, is one of the largest clusters known in common bean (Phaseolus vulgaris, Pv). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-coil-Nucleotide-Binding-Site-Leucine-Rich...

  11. Efficient Computation of Approximate Gene Clusters Based on Reference Occurrences

    NASA Astrophysics Data System (ADS)

    Jahn, Katharina

    Whole genome comparison based on the analysis of gene cluster conservation has become a popular approach in comparative genomics. While gene order and gene content as a whole randomize over time, it is observed that certain groups of genes which are often functionally related remain co-located across species. However, the conservation is usually not perfect which turns the identification of these structures, often referred to as approximate gene clusters, into a challenging task. In this paper, we present a polynomial time algorithm that computes approximate gene clusters based on reference occurrences. We show that our approach yields highly comparable results to a more general approach and allows for approximate gene cluster detection in parameter ranges currently not feasible for non-reference based approaches.

  12. Prokaryotic Gene Clusters: A Rich Toolbox for Synthetic Biology

    PubMed Central

    Fischbach, Michael; Voigt, Christopher A.

    2014-01-01

    Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be “mixed-and-matched” to create a designer organism. PMID:21154668

  13. Aspergillus nidulans mutants defective in stc gene cluster regulation.

    PubMed Central

    Butchko, R A; Adams, T H; Keller, N P

    1999-01-01

    The genes involved in the biosynthesis of sterigmatocystin (ST), a toxic secondary metabolite produced by Aspergillus nidulans and an aflatoxin (AF) precursor in other Aspergillus spp., are clustered on chromosome IV of A. nidulans. The sterigmatocystin gene cluster (stc gene cluster) is regulated by the pathway-specific transcription factor aflR. The function of aflR appears to be conserved between ST- and AF-producing aspergilli, as are most of the other genes in the cluster. We describe a novel screen for detecting mutants defective in stc gene cluster activity by use of a genetic block early in the ST biosynthetic pathway that results in the accumulation of the first stable intermediate, norsolorinic acid (NOR), an orange-colored compound visible with the unaided eye. We have mutagenized this NOR-accumulating strain and have isolated 176 Nor(-) mutants, 83 of which appear to be wild type in growth and development. Sixty of these 83 mutations are linked to the stc gene cluster and are likely defects in aflR or known stc biosynthetic genes. Of the 23 mutations not linked to the stc gene cluster, 3 prevent accumulation of NOR due to the loss of aflR expression. PMID:10511551

  14. Mining Bacterial Genomes for Secondary Metabolite Gene Clusters.

    PubMed

    Adamek, Martina; Spohn, Marius; Stegmann, Evi; Ziemert, Nadine

    2017-01-01

    With the emergence of bacterial resistance against frequently used antibiotics, novel antibacterial compounds are urgently needed. Traditional bioactivity-guided drug discovery strategies involve laborious screening efforts and display high rediscovery rates. With the progress in next generation sequencing methods and the knowledge that the majority of antibiotics in clinical use are produced as secondary metabolites by bacteria, mining bacterial genomes for secondary metabolites with antimicrobial activity is a promising approach, which can guide a more time and cost-effective identification of novel compounds. However, what sounds easy to accomplish, comes with several challenges. To date, several tools for the prediction of secondary metabolite gene clusters are available, some of which are based on the detection of signature genes, while others are searching for specific patterns in gene content or regulation.Apart from the mere identification of gene clusters, several other factors such as determining cluster boundaries and assessing the novelty of the detected cluster are important. For this purpose, comparison of the predicted secondary metabolite genes with different cluster and compound databases is necessary. Furthermore, it is advisable to classify detected clusters into gene cluster families. So far, there is no standardized procedure for genome mining; however, different approaches to overcome all of these challenges exist and are addressed in this chapter. We give practical guidance on the workflow for secondary metabolite gene cluster identification, which includes the determination of gene cluster boundaries, addresses problems occurring with the use of draft genomes, and gives an outlook on the different methods for gene cluster classification. Based on comprehensible examples a protocol is set, which should enable the readers to mine their own genome data for interesting secondary metabolites.

  15. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis

    PubMed Central

    Noar, Roslyn D.; Daub, Margaret E.

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  16. Nonlinear model-based method for clustering periodically expressed genes.

    PubMed

    Tian, Li-Ping; Liu, Li-Zhi; Zhang, Qian-Wei; Wu, Fang-Xiang

    2011-01-01

    Clustering periodically expressed genes from their time-course expression data could help understand the molecular mechanism of those biological processes. In this paper, we propose a nonlinear model-based clustering method for periodically expressed gene profiles. As periodically expressed genes are associated with periodic biological processes, the proposed method naturally assumes that a periodically expressed gene dataset is generated by a number of periodical processes. Each periodical process is modelled by a linear combination of trigonometric sine and cosine functions in time plus a Gaussian noise term. A two stage method is proposed to estimate the model parameter, and a relocation-iteration algorithm is employed to assign each gene to an appropriate cluster. A bootstrapping method and an average adjusted Rand index (AARI) are employed to measure the quality of clustering. One synthetic dataset and two biological datasets were employed to evaluate the performance of the proposed method. The results show that our method allows the better quality clustering than other clustering methods (e.g., k-means) for periodically expressed gene data, and thus it is an effective cluster analysis method for periodically expressed gene data.

  17. Sesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus

    PubMed Central

    Chai, Hangzhen; Yin, Ru; Liu, Yongfeng; Meng, Huiying; Zhou, Xianqiang; Zhou, Guolin; Bi, Xupeng; Yang, Xue; Zhu, Tonghan; Zhu, Weiming; Deng, Zixin; Hong, Kui

    2016-01-01

    Terpenoids are the most diverse and abundant natural products among which sesterterpenes account for less than 2%, with very few reports on their biosynthesis. Ophiobolins are tricyclic 5–8–5 ring sesterterpenes with potential pharmaceutical application. Aspergillus ustus 094102 from mangrove rizhosphere produces ophiobolin and other terpenes. We obtained five gene cluster knockout mutants, with altered ophiobolin yield using genome sequencing and in silico analysis, combined with in vivo genetic manipulation. Involvement of the five gene clusters in ophiobolin synthesis was confirmed by investigation of the five key terpene synthesis relevant enzymes in each gene cluster, either by gene deletion and complementation or in vitro verification of protein function. The results demonstrate that ophiobolin skeleton biosynthesis involves five gene clusters, which are responsible for C15, C20, C25, and C30 terpenoid biosynthesis. PMID:27273151

  18. Pheromones cause disease: pheromone/odourant transduction.

    PubMed

    Nicholson, B

    2001-09-01

    This paper compares two models of the sense of smell and demonstrates that the new model has advantages over the accepted model with implications for medical research. The accepted transduction model had an odourant or pheromone contacting an aqueous sensory lymph then movement through it to a receptor membrane beneath. If the odourant or pheromone were non-soluble, the odourant/pheromone supposedly would be bound to a soluble protein in the lymph to be carried across. Thus, an odourant/carrier protein complex physically moved through the receptor lymph/mucus to interact with a membrane bound receptor. After the membranous receptor interaction, the molecule would be deactivated and any odourant/pheromone-binding protein recycled. This new electrical chemosensory model being proposed here has the pheromone or other odourant generating an electrical event in the extra-cellular mucus. Before the pheromone arrives, proteins of the 'carrier class' dissolved in the receptor mucus slowly and continuously sequester ions. A sensed pheromonal chemical species sorbs to the mucus and immediately binds to the now ion-holding dissolved protein. The binding of the pheromone to the protein causes a measurable conformational change in the pheromone/odourant-binding protein, desequestering ions. Releasing the bound ions changes the potential differences across a nearby super-sensitive dendritic membrane resulting in dendrite excitation. Pheromones will be implicated in the aetiology of the infectious, psychiatric and autoimmune diseases. This is the third article in a series of twelve to systematically explore this contention (see references 1-9).

  19. Genomic analyses of bacterial porin-cytochrome gene clusters

    DOE PAGES

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less

  20. Vomeronasal organ and human pheromones.

    PubMed

    Trotier, D

    2011-09-01

    For many organisms, pheromonal communication is of particular importance in managing various aspects of reproduction. In tetrapods, the vomeronasal (Jacobson's) organ specializes in detecting pheromones in biological substrates of congeners. This information triggers behavioral changes associated, in the case of certain pheromones, with neuroendocrine correlates. In human embryos, the organ develops and the nerve fibers constitute a substrate for the migration of GnRH-secreting cells from the olfactory placode toward the hypothalamus. After this essential step for subsequent secretion of sex hormones by the anterior hypophysis, the organ regresses and the neural connections disappear. The vomeronasal cavities can still be observed by endoscopy in some adults, but they lack sensory neurons and nerve fibers. The genes which code for vomeronasal receptor proteins and the specific ionic channels involved in the transduction process are mutated and nonfunctional in humans. In addition, no accessory olfactory bulbs, which receive information from the vomeronasal receptor cells, are found. The vomeronasal sensory function is thus nonoperational in humans. Nevertheless, several steroids are considered to be putative human pheromones; some activate the anterior hypothalamus, but the effects observed are not comparable to those in other mammals. The signaling process (by neuronal detection and transmission to the brain or by systemic effect) remains to be clearly elucidated.

  1. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca.

    PubMed

    Temme, Karsten; Zhao, Dehua; Voigt, Christopher A

    2012-05-01

    Bacterial genes associated with a single trait are often grouped in a contiguous unit of the genome known as a gene cluster. It is difficult to genetically manipulate many gene clusters because of complex, redundant, and integrated host regulation. We have developed a systematic approach to completely specify the genetics of a gene cluster by rebuilding it from the bottom up using only synthetic, well-characterized parts. This process removes all native regulation, including that which is undiscovered. First, all noncoding DNA, regulatory proteins, and nonessential genes are removed. The codons of essential genes are changed to create a DNA sequence as divergent as possible from the wild-type (WT) gene. Recoded genes are computationally scanned to eliminate internal regulation. They are organized into operons and placed under the control of synthetic parts (promoters, ribosome binding sites, and terminators) that are functionally separated by spacer parts. Finally, a controller consisting of genetic sensors and circuits regulates the conditions and dynamics of gene expression. We applied this approach to an agriculturally relevant gene cluster from Klebsiella oxytoca encoding the nitrogen fixation pathway for converting atmospheric N(2) to ammonia. The native gene cluster consists of 20 genes in seven operons and is encoded in 23.5 kb of DNA. We constructed a "refactored" gene cluster that shares little DNA sequence identity with WT and for which the function of every genetic part is defined. This work demonstrates the potential for synthetic biology tools to rewrite the genetics encoding complex biological functions to facilitate access, engineering, and transferability.

  2. Clustering Algorithms: Their Application to Gene Expression Data

    PubMed Central

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure. PMID:27932867

  3. Entropy-based cluster validation and estimation of the number of clusters in gene expression data.

    PubMed

    Novoselova, Natalia; Tom, Igor

    2012-10-01

    Many external and internal validity measures have been proposed in order to estimate the number of clusters in gene expression data but as a rule they do not consider the analysis of the stability of the groupings produced by a clustering algorithm. Based on the approach assessing the predictive power or stability of a partitioning, we propose the new measure of cluster validation and the selection procedure to determine the suitable number of clusters. The validity measure is based on the estimation of the "clearness" of the consensus matrix, which is the result of a resampling clustering scheme or consensus clustering. According to the proposed selection procedure the stable clustering result is determined with the reference to the validity measure for the null hypothesis encoding for the absence of clusters. The final number of clusters is selected by analyzing the distance between the validity plots for initial and permutated data sets. We applied the selection procedure to estimate the clustering results on several datasets. As a result the proposed procedure produced an accurate and robust estimate of the number of clusters, which are in agreement with the biological knowledge and gold standards of cluster quality.

  4. The human RHOX gene cluster: target genes and functional analysis of gene variants in infertile men.

    PubMed

    Borgmann, Jennifer; Tüttelmann, Frank; Dworniczak, Bernd; Röpke, Albrecht; Song, Hye-Won; Kliesch, Sabine; Wilkinson, Miles F; Laurentino, Sandra; Gromoll, Jörg

    2016-09-15

    The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.

  5. Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus.

    PubMed Central

    Xu, H W; Wall, J D

    1991-01-01

    Three cosmids previously shown to contain information necessary for the expression of uptake of hydrogenase in Rhodobacter capsulatus were found to be present in a cluster on the chromosome. Earlier genetic experiments suggested the presence of at least six genes essential for hydrogenase activity that are now shown to be in a region of approximately 18 kb that includes the structural genes for the enzyme. A potential response regulator gene was sequenced as a part of the hup gene region. PMID:2007559

  6. Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis.

    PubMed

    Koh, Esther G L; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V; Brenner, Sydney; Venkatesh, Byrappa

    2003-02-04

    The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes.

  7. 3D visualization of gene clusters and networks

    NASA Astrophysics Data System (ADS)

    Zhang, Leishi; Sheng, Weiguo; Liu, Xiaohui

    2005-03-01

    In this paper, we try to provide a global view of DNA microarray gene expression data analysis and modeling process by combining novel and effective visualization techniques with data mining algorithms. An integrated framework has been proposed to model and visualize short, high-dimensional gene expression data. The framework reduces the dimensionality of variables before applying appropriate temporal modeling method. Prototype has been built using Java3D to visualize the framework. The prototype takes gene expression data as input, clusters the genes, displays the clustering results using a novel graph layout algorithm, models individual gene clusters using Dynamic Bayesian Network and then visualizes the modeling results using simple but effective visualization techniques.

  8. A yeast pheromone-based inter-species communication system.

    PubMed

    Hennig, Stefan; Clemens, André; Rödel, Gerhard; Ostermann, Kai

    2015-02-01

    We report on a pheromone-based inter-species communication system, allowing for a controlled cell-cell communication between the two species Saccharomyces cerevisiae and Schizosaccharomyces pombe as a proof of principle. It exploits the mating response pathways of the two yeast species employing the pheromones, α- or P-factor, as signaling molecules. The authentic and chimeric pheromone-encoding genes were engineered to code for the P-factor in S. cerevisiae and the α-factor in S. pombe. Upon transformation of the respective constructs, cells were enabled to express the mating pheromone of the opposite species. The supernatant of cultures of S. pombe cells expressing α-factor were able to induce a G1 arrest in the cell cycle, a change in morphology to the typical shmoo effect and expression driven by the pheromone-responsive FIG1 promoter in S. cerevisiae. The supernatant of cultures of S. cerevisiae cells expressing P-factor similarly induced cell cycle arrest in G1, an alteration in morphology typical for mating as well as the activation of the pheromone-responsive promoters of the rep1 and sxa2 genes in a pheromone-hypersensitive reporter strain of S. pombe. Apparently, both heterologous pheromones were correctly processed and secreted in an active form by the cells of the other species. Our data clearly show that the species-specific pheromone systems of yeast species can be exploited for a controlled inter-species communication.

  9. SMART: Unique Splitting-While-Merging Framework for Gene Clustering

    PubMed Central

    Fa, Rui; Roberts, David J.; Nandi, Asoke K.

    2014-01-01

    Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms. PMID:24714159

  10. Identifying a gene expression signature of cluster headache in blood

    PubMed Central

    Eising, Else; Pelzer, Nadine; Vijfhuizen, Lisanne S.; Vries, Boukje de; Ferrari, Michel D.; ‘t Hoen, Peter A. C.; Terwindt, Gisela M.; van den Maagdenberg, Arn M. J. M.

    2017-01-01

    Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache. PMID:28074859

  11. Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.

    PubMed Central

    Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.

    2012-01-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343

  12. Minimum spanning trees for gene expression data clustering.

    PubMed

    Xu, Y; Olman, V; Xu, D

    2001-01-01

    This paper describes a new framework for microarray gene-expression data clustering. The foundation of this framework is a minimum spanning tree (MST) representation of a set of multi-dimensional gene expression data. A key property of this representation is that each cluster of the expression data corresponds to one subtree of the MST, which rigorously converts a multi-dimensional clustering problem to a tree partitioning problem. We have demonstrated that though the inter-data relationship is greatly simplified in the MST representation, no essential information is lost for the purpose of clustering. Two key advantages in representing a set of multi-dimensional data as an MST are: (1) the simple structure of a tree facilitates efficient implementations of rigorous clustering algorithms, which otherwise are highly computationally challenging; and (2) as an MST-based clustering does not depend on detailed geometric shape of a cluster, it can overcome many of the problems faced by classical clustering algorithms. Based on the MST representation, we have developed a number of rigorous and efficient clustering algorithms, including two with guaranteed global optimality. We have implemented these algorithms as a computer software EXCAVATOR. To demonstrate its effectiveness, we have tested it on two data sets, i.e., expression data from yeast Saccharomyces cerevisiae, and Arabidopsis expression data in response to chitin elicitation.

  13. From pheromones to behavior.

    PubMed

    Tirindelli, Roberto; Dibattista, Michele; Pifferi, Simone; Menini, Anna

    2009-07-01

    In recent years, considerable progress has been achieved in the comprehension of the profound effects of pheromones on reproductive physiology and behavior. Pheromones have been classified as molecules released by individuals and responsible for the elicitation of specific behavioral expressions in members of the same species. These signaling molecules, often chemically unrelated, are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. The standard view of pheromone sensing was based on the assumption that most mammals have two separated olfactory systems with different functional roles: the main olfactory system for recognizing conventional odorant molecules and the vomeronasal system specifically dedicated to the detection of pheromones. However, recent studies have reexamined this traditional interpretation showing that both the main olfactory and the vomeronasal systems are actively involved in pheromonal communication. The current knowledge on the behavioral, physiological, and molecular aspects of pheromone detection in mammals is discussed in this review.

  14. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation.

    PubMed

    Osbourn, Anne

    2010-10-01

    Microbes and plants produce a huge array of secondary metabolites that have important ecological functions. These molecules have long been exploited in medicine as antibiotics, anticancer and anti-infective agents and for a wide range of other applications. Gene clusters for secondary metabolic pathways are common in bacteria and filamentous fungi, and examples have now been discovered in plants. Here, current knowledge of gene clusters across the kingdoms is evaluated with the aim of trying to understand the rules behind cluster existence and evolution. Such knowledge will be crucial in learning how to activate the enormous number of 'silent' gene clusters being revealed by whole-genome sequencing and hence in making available a wealth of novel compounds for evaluation as drug leads and other bioactives. It could also facilitate the development of crop plants with enhanced pest or disease resistance, improved nutritional qualities and/or elevated levels of high-value products.

  15. Clustering gene expression data using a diffraction‐inspired framework

    PubMed Central

    2012-01-01

    Background The recent developments in microarray technology has allowed for the simultaneous measurement of gene expression levels. The large amount of captured data challenges conventional statistical tools for analysing and finding inherent correlations between genes and samples. The unsupervised clustering approach is often used, resulting in the development of a wide variety of algorithms. Typical clustering algorithms require selecting certain parameters to operate, for instance the number of expected clusters, as well as defining a similarity measure to quantify the distance between data points. The diffraction‐based clustering algorithm however is designed to overcome this necessity for user‐defined parameters, as it is able to automatically search the data for any underlying structure. Methods The diffraction‐based clustering algorithm presented in this paper is tested using five well‐known expression datasets pertaining to cancerous tissue samples. The clustering results are then compared to those results obtained from conventional algorithms such as the k‐means, fuzzy c‐means, self‐organising map, hierarchical clustering algorithm, Gaussian mixture model and density‐based spatial clustering of applications with noise (DBSCAN). The performance of each algorithm is measured using an average external criterion and an average validity index. Results The diffraction‐based clustering algorithm is shown to be independent of the number of clusters as the algorithm searches the feature space and requires no form of parameter selection. The results show that the diffraction‐based clustering algorithm performs significantly better on the real biological datasets compared to the other existing algorithms. Conclusion The results of the diffraction‐based clustering algorithm presented in this paper suggest that the method can provide researchers with a new tool for successfully analysing microarray data. PMID:23164195

  16. Heterologous Expression of Novobiocin and Clorobiocin Biosynthetic Gene Clusters

    PubMed Central

    Eustáquio, Alessandra S.; Gust, Bertolt; Galm, Ute; Li, Shu-Ming; Chater, Keith F.; Heide, Lutz

    2005-01-01

    A method was developed for the heterologous expression of biosynthetic gene clusters in different Streptomyces strains and for the modification of these clusters by single or multiple gene replacements or gene deletions with unprecedented speed and versatility. λ-Red-mediated homologous recombination was used for genetic modification of the gene clusters, and the attachment site and integrase of phage φC31 were employed for the integration of these clusters into the heterologous hosts. This method was used to express the gene clusters of the aminocoumarin antibiotics novobiocin and clorobiocin in the well-studied strains Streptomyces coelicolor and Streptomyces lividans, which, in contrast to the natural producers, can be easily genetically manipulated. S. coelicolor M512 derivatives produced the respective antibiotic in yields comparable to those of natural producer strains, whereas S. lividans TK24 derivatives were at least five times less productive. This method could also be used to carry out functional investigations. Shortening of the cosmids' inserts showed which genes are essential for antibiotic production. PMID:15870333

  17. Characterization of the Largest Effector Gene Cluster of Ustilago maydis

    PubMed Central

    Vincon, Volker; Kahmann, Regine

    2014-01-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function. PMID:24992561

  18. Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes

    PubMed Central

    Pope, Welkin H.; Jacobs-Sera, Deborah; Best, Aaron A.; Broussard, Gregory W.; Connerly, Pamela L.; Dedrick, Rebekah M.; Kremer, Timothy A.; Offner, Susan; Ogiefo, Amenawon H.; Pizzorno, Marie C.; Rockenbach, Kate; Russell, Daniel A.; Stowe, Emily L.; Stukey, Joseph; Thibault, Sarah A.; Conway, James F.; Hendrix, Roger W.; Hatfull, Graham F.

    2013-01-01

    Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. PMID:23874930

  19. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  20. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  1. Clustered Genes Involved in Cyclopiazonic Acid Production are Next to the Aflatoxin Biosynthesis Gene Cluster in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA), an indole-tetramic acid toxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins (AFs). AF biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. fla...

  2. Genomic analyses of bacterial porin-cytochrome gene clusters

    SciTech Connect

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular

  3. Transcriptional regulation of the novobiocin biosynthetic gene cluster.

    PubMed

    Dangel, Volker; Härle, Johannes; Goerke, Christiane; Wolz, Christiane; Gust, Bertolt; Pernodet, Jean-Luc; Heide, Lutz

    2009-12-01

    The aminocoumarin antibiotic novobiocin is a gyrase inhibitor formed by a Streptomyces strain. The biosynthetic gene cluster of novobiocin spans 23.4 kb and contains 20 coding sequences, among them the two regulatory genes novE and novG. We investigated the location of transcriptional promoters within this cluster by insertion of transcriptional terminator cassettes and RT-PCR analysis of the resulting mutants. The cluster was found to contain eight DNA regions with promoter activity. The regulatory protein NovG binds to a previously identified binding site within the promoter region located upstream of novH, but apparently not to any of the other seven promoters. Quantitative real-time PCR was used to compare the number of transcripts in a strain carrying an intact novobiocin cluster with strains carrying mutated clusters. Both in-frame deletion of the regulatory gene novG and insertion of a terminator cassette into the biosynthetic gene novH led to a strong reduction of the number of transcripts of the genes located between novH and novW. This suggested that these 16 biosynthetic genes form a single operon. Three internal promoters are located within this operon but appear to be of minor importance, if any, under our experimental conditions. Transcription of novG was found to depend on the presence of NovE, suggesting that the two regulatory genes, novE and novG, act in a cascade-like mechanism. The resistance gene gyrB(R), encoding an aminocoumarin-resistant gyrase B subunit, may initially be co-transcribed with the genes from novH to novW. However, when the gyrase inhibitor novobiocin accumulates in the cultures, gyrB(R) is transcribed from its own promoter. Previous work has suggested that this promoter is controlled by the superhelical density of chromosomal DNA.

  4. An Agent-Based Clustering Approach for Gene Selection in Gene Expression Microarray.

    PubMed

    Ramos, Juan; Castellanos-Garzón, José A; González-Briones, Alfonso; de Paz, Juan F; Corchado, Juan M

    2017-03-09

    Gene selection is a major research area in microarray analysis, which seeks to discover differentially expressed genes for a particular target annotation. Such genes also often called informative genes are able to differentiate tissue samples belonging to different classes of the studied disease. Despite the fact that there is a wide number of proposals, the complexity imposed by this problem remains a challenge today. This research proposes a gene selection approach by means of a clustering-based multi-agent system. This proposal manages different filter methods and gene clustering through coordinated agents to discover informative gene subsets. To assess the reliability of our approach, we have used four important and public gene expression datasets, two Lung cancer datasets, Colon and Leukemia cancer dataset. The achieved results have been validated through cluster validity measures, visual analytics, a classifier and compared with other gene selection methods, proving the reliability of our proposal.

  5. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters.

    PubMed

    Santini, Simona; Boore, Jeffrey L; Meyer, Axel

    2003-06-01

    Comparisons of DNA sequences among evolutionarily distantly related genomes permit identification of conserved functional regions in noncoding DNA. Hox genes are highly conserved in vertebrates, occur in clusters, and are uninterrupted by other genes. We aligned (PipMaker) the nucleotide sequences of the HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human, and mouse, which are separated by approximately 500 million years of evolution. In support of our approach, several identified putative regulatory elements known to regulate the expression of Hox genes were recovered. The majority of the newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac database). The regulatory intergenic regions located between the genes that are expressed most anteriorly in the embryo are longer and apparently more evolutionarily conserved than those at the other end of Hox clusters. Different presumed regulatory sequences are retained in either the Aalpha or Abeta duplicated Hox clusters in the fish lineages. This suggests that the conserved elements are involved in different gene regulatory networks and supports the duplication-deletion-complementation model of functional divergence of duplicated genes.

  6. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes.

    PubMed

    Tran, Robert K; Henikoff, Jorja G; Zilberman, Daniel; Ditt, Renata F; Jacobsen, Steven E; Henikoff, Steven

    2005-01-26

    Cytosine DNA methylation in vertebrates is widespread, but methylation in plants is found almost exclusively at transposable elements and repetitive DNA. Within regions of methylation, methylcytosines are typically found in CG, CNG, and asymmetric contexts. CG sites are maintained by a plant homolog of mammalian Dnmt1 acting on hemi-methylated DNA after replication. Methylation of CNG and asymmetric sites appears to be maintained at each cell cycle by other mechanisms. We report a new type of DNA methylation in Arabidopsis, dense CG methylation clusters found at scattered sites throughout the genome. These clusters lack non-CG methylation and are preferentially found in genes, although they are relatively deficient toward the 5' end. CG methylation clusters are present in lines derived from different accessions and in mutants that eliminate de novo methylation, indicating that CG methylation clusters are stably maintained at specific sites. Because 5-methylcytosine is mutagenic, the appearance of CG methylation clusters over evolutionary time predicts a genome-wide deficiency of CG dinucleotides and an excess of C(A/T)G trinucleotides within transcribed regions. This is exactly what we find, implying that CG methylation clusters have contributed profoundly to plant gene evolution. We suggest that CG methylation clusters silence cryptic promoters that arise sporadically within transcription units.

  7. Phage cluster relationships identified through single gene analysis

    PubMed Central

    2013-01-01

    Background Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. Results A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. Conclusions TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification. PMID:23777341

  8. Mating pheromones of heterobasidiomycetous yeasts

    NASA Astrophysics Data System (ADS)

    Kamiya, Y.; Sakurai, A.

    1981-03-01

    Two mating pheromones, which induce mating tube formation, were isolated from Rhodosporidium toruloides (rhodotorucine A) and Tremella mesenterica (tremerogen A-10). These mating pheromones are lipophilic oligopeptides having S-alkylated cysteine at the C-terminus but different amino acid sequences. Synthetic analogues of these pheromones revealed the structure-activity relationships. Metabolism of rhodotorucine A was also studied by using labeled pheromones.

  9. Pheromones: a new ergogenic aid in sport?

    PubMed

    Papaloucas, Marios; Kyriazi, Kyriaki; Kouloulias, Vassilis

    2015-10-01

    Nowadays, antidoping laboratories are improving detection methods to confirm the use of forbidden substances. These tests are based both on direct identification of new substances or their metabolites and on indirect evaluation of changes in gene, protein, or metabolite patterns (genomics, proteomics, or metabolomics). The World Anti-Doping Agency (WADA) officially monitors anabolic steroids, hormones, growth factors, β-agonists, hormone and metabolic modulators, masking agents, street drugs, manipulation of blood and blood components, chemical and physical manipulation, gene doping, stimulants, narcotics, glucocorticosteroids, and β-blockers. However, several other substances are under review by WADA. Pheromones accomplish the structure and function of life from its first step, while they have an impact on the body's performance. Both testosterone and pheromones have an ergogenic effect that could potentially affect an athlete's performance. The authors share their questions concerning the potential impact of pheromones in sports.

  10. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering

    PubMed Central

    Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample. PMID:27764138

  11. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering.

    PubMed

    Wu, Lingxiang; Chen, Xiujie; Zhang, Denan; Zhang, Wubing; Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample.

  12. Stereochemical studies on pheromonal communications

    PubMed Central

    MORI, Kenji

    2014-01-01

    Pheromonal communications are heavily dependent on the stereochemistry of pheromones. Their enantioselective syntheses could establish the absolute configuration of the naturally occurring pheromones, and clarified the unique relationships between absolute configuration and bioactivity. For example, neither the (R)- nor (S)-enantiomer of sulcatol, the aggregation pheromone of an ambrosia beetle, is behaviorally active, while their mixture is bioactive. Recent results as summarized in the present review further illustrate the unique and diverse relationships between stereochemistry and bioactivity of pheromones. PMID:25504227

  13. Evolutionary ecology of beta-lactam gene clusters in animals.

    PubMed

    Suring, Wouter; Meusemann, Karen; Blanke, Alexander; Mariën, Janine; Schol, Tim; Agamennone, Valeria; Faddeeva-Vakhrusheva, Anna; Berg, Matty P; Brouwer, Bram; van Straalen, Nico M; Roelofs, Dick

    2017-03-18

    Beta-lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil-dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta-lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analyzed the distribution of beta-lactam biosynthesis genes throughout the animal kingdom and identified a beta-lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta-lactam compound was detected in vivo using an ELISA beta-lactam assay. The gene cluster also contains an ABC transporter which is co-regulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta-lactam biosynthesis genes are present in over 60% of springtail families but they are absent from genome- and transcript libraries of other animals including close relatives of springtails (Protura, Diplura, and insects). The presence of beta-lactam genes is strongly correlated with an eudaphic (soil-living) lifestyle. Beta-lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species. This article is protected by copyright. All rights reserved.

  14. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster

    PubMed Central

    Bilyk, Oksana; Sekurova, Olga N.; Zotchev, Sergey B.; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the “capture” vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  15. Generalized gene adjacencies, graph bandwidth, and clusters in yeast evolution.

    PubMed

    Zhu, Qian; Adam, Zaky; Choi, Vicky; Sankoff, David

    2009-01-01

    We present a parameterized definition of gene clusters that allows us to control the emphasis placed on conserved order within a cluster. Though motivated by biological rather than mathematical considerations, this parameter turns out to be closely related to the bandwidth parameter of a graph. Our focus will be on how this parameter affects the characteristics of clusters: how numerous they are, how large they are, how rearranged they are, and to what extent they are preserved from ancestor to descendant in a phylogenetic tree. We infer the latter property by dynamic programming optimization of the presence of individual edges at the ancestral nodes of the phylogeny. We apply our analysis to a set of genomes drawn from the Yeast Gene Order Browser.

  16. PEACE: Parallel Environment for Assembly and Clustering of Gene Expression.

    PubMed

    Rao, D M; Moler, J C; Ozden, M; Zhang, Y; Liang, C; Karro, J E

    2010-07-01

    We present PEACE, a stand-alone tool for high-throughput ab initio clustering of transcript fragment sequences produced by Next Generation or Sanger Sequencing technologies. It is freely available from www.peace-tools.org. Installed and managed through a downloadable user-friendly graphical user interface (GUI), PEACE can process large data sets of transcript fragments of length 50 bases or greater, grouping the fragments by gene associations with a sensitivity comparable to leading clustering tools. Once clustered, the user can employ the GUI's analysis functions, facilitating the easy collection of statistics and allowing them to single out specific clusters for more comprehensive study or assembly. Using a novel minimum spanning tree-based clustering method, PEACE is the equal of leading tools in the literature, with an interface making it accessible to any user. It produces results of quality virtually identical to those of the WCD tool when applied to Sanger sequences, significantly improved results over WCD and TGICL when applied to the products of Next Generation Sequencing Technology and significantly improved results over Cap3 in both cases. In short, PEACE provides an intuitive GUI and a feature-rich, parallel clustering engine that proves to be a valuable addition to the leading cDNA clustering tools.

  17. Uncoupling primer and releaser responses to pheromone in honey bees

    NASA Astrophysics Data System (ADS)

    Grozinger, Christina M.; Fischer, Patrick; Hampton, Jacob E.

    2007-05-01

    Pheromones produce dramatic behavioral and physiological responses in a wide variety of species. Releaser pheromones elicit rapid responses within seconds or minutes, while primer pheromones produce long-term changes which may take days to manifest. Honeybee queen mandibular pheromone (QMP) elicits multiple distinct behavioral and physiological responses in worker bees, as both a releaser and primer, and thus produces responses on vastly different time scales. In this study, we demonstrate that releaser and primer responses to QMP can be uncoupled. First, treatment with the juvenile hormone analog methoprene leaves a releaser response (attraction to QMP) intact, but modulates QMP’s primer effects on sucrose responsiveness. Secondly, two components of QMP (9-ODA and 9-HDA) do not elicit a releaser response (attraction) but are as effective as QMP at modulating a primer response, downregulation of foraging-related brain gene expression. These results suggest that different responses to a single pheromone may be produced via distinct pathways.

  18. An alanine tRNA gene cluster from Nephila clavipes.

    PubMed

    Luciano, E; Candelas, G C

    1996-06-01

    We report the sequence of a 2.3-kb genomic DNA fragment from the orb-web spider, Nephila clavipes (Nc). The fragment contains four regions of high homology to tRNA(Ala). The members of this irregularly spaced cluster of genes are oriented in the same direction and have the same anticodon (GCA), but their sequence differs at several positions. Initiation and termination signals, as well as consensus intragenic promoter sequences characteristic of tRNA genes, have been identified in all genes. tRNA(Ala) are involved in the regulation of the fibroin synthesis in the large ampullate Nc glands.

  19. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    SciTech Connect

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  20. Causes and consequences of variability in peptide mating pheromones of ascomycete fungi.

    PubMed

    Martin, Simon H; Wingfield, Brenda D; Wingfield, Michael J; Steenkamp, Emma T

    2011-07-01

    The reproductive genes of fungi, like those of many other organisms, are thought to diversify rapidly. This phenomenon could be associated with the formation of reproductive barriers and speciation. Ascomycetes produce two classes of mating type-specific peptide pheromones. These are required for recognition between the mating types of heterothallic species. Little is known regarding the diversity or the extent of species specificity in pheromone peptides among these fungi. We compared the putative protein-coding DNA sequences of the 2 pheromone classes from 70 species of Ascomycetes. The data set included previously described pheromones and putative pheromones identified from genomic sequences. In addition, pheromone genes from 12 Fusarium species in the Gibberella fujikuroi complex were amplified and sequenced. Pheromones were largely conserved among species in this complex and, therefore, cannot alone account for the reproductive barriers observed between these species. In contrast, pheromone peptides were highly diverse among many other Ascomycetes, with evidence for both positive diversifying selection and relaxed selective constraint. Repeats of the α-factor-like pheromone, which occur in tandem arrays of variable copy number, were found to be conserved through purifying selection and not concerted evolution. This implies that sequence specificity may be important for pheromone reception and that interspecific differences may indeed be associated with functional divergence. Our findings also suggest that frequent duplication and loss causes the tandem repeats to experience "birth-and-death" evolution, which could in fact facilitate interspecific divergence of pheromone peptide sequences.

  1. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  2. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  3. TRPC channels in pheromone sensing.

    PubMed

    Kiselyov, Kirill; van Rossum, Damian B; Patterson, Randen L

    2010-01-01

    Pheromone recognition relies on an amplification cascade that is triggered by pheromone binding to G protein-coupled receptors (GPCR). The first step in translation of GPCR activation by pheromones in the vomeronasal organ and main olfactory epithelium (MOE) into a cellular response is the activation of a transient receptor potential (TRP) family member, TRPC2 [Zufall, F., Ukhanov, K., Lucas, P., Liman, E. R., and Leinders-Zufall, T. (2005). Neurobiology of TRPC2: From gene to behavior. Pflugers Arch.451, 61-71; Yildirim, E., and Birnbaumer, L. (2007). TRPC2: Molecular biology and functional importance. Handb. Exp. Pharmacol. 53-75]. The members of the canonical (TRPC) family of TRP channels mediate membrane permeability, specifically, Ca(2+) influx into the cytoplasm in response to activation of GPCR and tyrosine kinase receptors by hormones, neurotransmitters, and growth factors [Nilius, B. (2007). TRP channels in disease. Biochim. Biophys. Acta1772, 805-812; Venkatachalam, K., and Montell, C. (2007). TRP channels. Annu. Rev. Biochem.76, 387-417]. Mechanisms of their activation have been the focus of intense interest during the last decade. The data obtained from studies of TRPC2 have resulted in a better understanding of ion channel physiology and led to novel paradigms in modern cell biology [Lucas, P., Ukhanov, K., Leinders-Zufall, T., and Zufall, F. (2003). A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: Mechanism of pheromone transduction. Neuron40, 551-561; Stowers, L., Holy, T. E., Meister, M., Dulac, C., and Koentges, G. (2002). Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science295, 1493-1500; Leypold, B. G., Yu, C. R., Leinders-Zufall, T., Kim, M. M., Zufall, F., and Axel, R. (2002). Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl. Acad. Sci. USA99, 6376-6381]. Although TRPC2 activation by pheromones presents one of the most straightforward

  4. Pheromone reception in mammals.

    PubMed

    Bigiani, A; Mucignat-Caretta, C; Montani, G; Tirindelli, R

    2005-01-01

    Pheromonal communication is the most convenient way to transfer information regarding gender and social status in animals of the same species with the holistic goal of sustaining reproduction. This type of information exchange is based on pheromones, molecules often chemically unrelated, that are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. So profound is the relevance of pheromones over the evolutionary process that a specific peripheral organ devoted to their recognition, namely the vomeronasal organ of Jacobson, and a related central pathway arose in most vertebrate species. Although the vomeronasal system is well developed in reptiles and amphibians, most mammals strongly rely on pheromonal communication. Humans use pheromones too; evidence on the existence of a specialized organ for their detection, however, is very elusive indeed. In the present review, we will focus our attention on the behavioral, physiological, and molecular aspects of pheromone detection in mammals. We will discuss the responses to pheromonal stimulation in different animal species, emphasizing the complicacy of this type of communication. In the light of the most recent results, we will also discuss the complex organization of the transduction molecules that underlie pheromone detection and signal transmission from vomeronasal neurons to the higher centers of the brain. Communication is a primary feature of living organisms, allowing the coordination of different behavioral paradigms among individuals. Communication has evolved through a variety of different strategies, and each species refined its own preferred communication medium. From a phylogenetic point of view, the most widespread and ancient way of communication is through chemical signals named pheromones: it occurs in all taxa, from prokaryotes to eukaryotes. The release of specific pheromones into the environment is a sensitive and definite way to send messages to

  5. Pheromone Transduction in Moths

    PubMed Central

    Stengl, Monika

    2010-01-01

    Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth's physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors. PMID:21228914

  6. Expression profile based gene clusters for ischemic stroke detection Whole blood gene clusters for ischemic stroke detection

    PubMed Central

    Adamski, Mateusz G; Li, Yan; Wagner, Erin; Yu, Hua; Seales-Bailey, Chloe; Soper, Steven A; Murphy, Michael; Baird, Alison E

    2014-01-01

    In microarray studies alterations in gene expression in circulating leukocytes have shown utility for ischemic stroke diagnosis. We studied forty candidate markers identified in three gene expression profiles to (1) quantitate individual transcript expression, (2) identify transcript clusters and (3) assess the clinical diagnostic utility of the clusters identified for ischemic stroke detection. Using high throughput next generation qPCR 16 of the 40 transcripts were significantly up-regulated in stroke patients relative to control subjects (p<0.05). Six clusters of between 5 and 7 transcripts discriminated between stroke and control (p values between 1.01e-9 and 0.03). A 7 transcript cluster containing PLBD1, PYGL, BST1, DUSP1, FOS, VCAN and FCGR1A showed high accuracy for stroke classification (AUC=0.854). These results validate and improve upon the diagnostic value of transcripts identified in microarray studies for ischemic stroke. The clusters identified show promise for acute ischemic stroke detection. PMID:25135788

  7. Transcription mediated insulation and interference direct gene cluster expression switches

    PubMed Central

    Nguyen, Tania; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-01-01

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change. DOI: http://dx.doi.org/10.7554/eLife.03635.001 PMID:25407679

  8. Identification of genes and gene clusters involved in mycotoxin synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research methods to identify and characterize genes involved in mycotoxin biosynthetic pathways have evolved considerably over the years. Before whole genome sequences were available (e.g. pre-genomics), work focused primarily on chemistry, biosynthetic mutant strains and molecular analysis of sing...

  9. Molecular switches for pheromone release from a moth pheromone-binding protein

    SciTech Connect

    Xu Wei; Leal, Walter S.

    2008-08-08

    Pheromone-binding proteins (PBPs) are involved in the uptake of pheromones from pores on the antennae, transport through an aqueous environment surrounding the olfactory receptor neurons, and fast delivery to pheromone receptors. We tested the hypothesis that a C-terminal segment and a flexible loop are involved in the release of pheromones to membrane-bound receptors. We expressed in Escherichia coli 11 mutants of the PBP from the silkworm moth, BmorPBP, taking into consideration structural differences between the forms with high and low binding affinity. The N-terminus was truncated and His-69, His-70 and His-95 at the base of a flexible loop, and a cluster of acidic residues at the C-terminus were mutated. Binding assays and circular dichroism analyses support a mechanism involving protonation of acidic residues Asp-132 and Glu-141 at the C-terminus and histidines, His-70 and His-95, in the base of a loop covering the binding pocket. The former leads to the formation of a new {alpha}-helix, which competes with pheromone for the binding pocket, whereas positive charge repulsion of the histidines opens the opposite side of the binding pocket.

  10. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  11. Reconstructing Histories of Complex Gene Clusters on a Phylogeny

    NASA Astrophysics Data System (ADS)

    Vinař, Tomáš; Brejová, Broňa; Song, Giltae; Siepel, Adam

    Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. These clusters are one of the major sources of evolutionary innovation, and they are linked to multiple diseases, including HIV and a variety of cancers. Understanding their evolutionary histories is a key to the application of comparative genomics methods in these regions of the genome. We propose a probabilistic model of gene cluster evolution on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate use of our methods in their analysis. Supplementary materials are located at http://compbio.fmph.uniba.sk/suppl/09recombcg/

  12. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  13. The Synthesis of Lepidoptera Pheromones

    NASA Astrophysics Data System (ADS)

    Matveeva, Elena D.; Kurts, A. L.; Bundel', Yurii G.

    1986-07-01

    The review surveys the data in numerous publications of the synthesis of the pheromones of scale-winged insects (Lepidoptera). Attention is concentrated on problems of the sterospecific synthesis of pheromones. The bibliography includes 217 references.

  14. Cyclopiazonic acid biosynthesis gene cluster gene cpaM is required for speradine A biosynthesis.

    PubMed

    Tokuoka, Masafumi; Kikuchi, Tomoki; Shinohara, Yasutomo; Koyama, Akifumi; Iio, Shin-Ichiro; Kubota, Takaaki; Kobayashi, Jun'ichi; Koyama, Yasuji; Totsuka, Akira; Shindo, Hitoshi; Sato, Kazuo

    2015-01-01

    Speradine A is a derivative of cyclopiazonic acid (CPA) found in culture of an Aspergillus tamarii isolate. Heterologous expression of a predicted methyltransferase gene, cpaM, in the cpa biosynthesis gene cluster of A. tamarii resulted in the speradine A production in a 2-oxoCPA producing A. oryzae strain, indicating cpaM is involved in the speradine A biosynthesis.

  15. Analysis of lamprey clustered Fox genes: insight into Fox gene evolution and expression in vertebrates.

    PubMed

    Wotton, Karl R; Shimeld, Sebastian M

    2011-12-01

    In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome.

  16. Comparative genomic analysis of sixty mycobacteriophage genomes: Genome clustering, gene acquisition and gene size

    PubMed Central

    Hatfull, Graham F.; Jacobs-Sera, Deborah; Lawrence, Jeffrey G.; Pope, Welkin H.; Russell, Daniel A.; Ko, Ching-Chung; Weber, Rebecca J.; Patel, Manisha C.; Germane, Katherine L.; Edgar, Robert H.; Hoyte, Natasha N.; Bowman, Charles A.; Tantoco, Anthony T.; Paladin, Elizabeth C.; Myers, Marlana S.; Smith, Alexis L.; Grace, Molly S.; Pham, Thuy T.; O'Brien, Matthew B.; Vogelsberger, Amy M.; Hryckowian, Andrew J.; Wynalek, Jessica L.; Donis-Keller, Helen; Bogel, Matt W.; Peebles, Craig L.; Cresawn, Steve G.; Hendrix, Roger W.

    2010-01-01

    Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of sixty – all infecting a common bacterial host – provides further insight into their diversity and evolution. Of the sixty phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, five of which can be further divided into subclusters; five genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the six genomes in cluster D share more than 97.5% average nucleotide similarity with each other. In contrast, similarity between the two genomes in Cluster I is barely detectable by diagonal plot analysis. The total of 6,858 predicted ORFs have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit smaller average size than genes of their host (205 residues compared to 315), phage genes in higher flux average only ∼100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains. PMID:20064525

  17. Volatile Hydrocarbon Pheromones from Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews literature about hydrocarbons from beetles that serve as long-range pheromones. The most thoroughly studied beetles that use volatile hydrocarbon pheromones belong to the family Nitidulidae in the genera Carpophilus and Colopterus. Published pheromone research deals with behav...

  18. Laboratory Syntheses of Insect Pheromones.

    ERIC Educational Resources Information Center

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  19. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi.

    PubMed

    Slot, Jason C; Rokas, Antonis

    2011-01-25

    Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK:

  20. Transcriptional Analysis of Essential Genes of the Escherichia coli Fatty Acid Biosynthesis Gene Cluster by Functional Replacement with the Analogous Salmonella typhimurium Gene Cluster

    PubMed Central

    Zhang, Yan; Cronan, John E.

    1998-01-01

    The genes encoding several key fatty acid biosynthetic enzymes (called the fab cluster) are clustered in the order plsX-fabH-fabD-fabG-acpP-fabF at min 24 of the Escherichia coli chromosome. A difficulty in analysis of the fab cluster by the polar allele duplication approach (Y. Zhang and J. E. Cronan, Jr., J. Bacteriol. 178:3614–3620, 1996) is that several of these genes are essential for the growth of E. coli. We overcame this complication by use of the fab gene cluster of Salmonella typhimurium, a close relative of E. coli, to provide functions necessary for growth. The S. typhimurium fab cluster was isolated by complementation of an E. coli fabD mutant and was found to encode proteins with >94% homology to those of E. coli. However, the S. typhimurium sequences cannot recombine with the E. coli sequences required to direct polar allele duplication via homologous recombination. Using this approach, we found that although approximately 60% of the plsX transcripts initiate at promoters located far upstream and include the upstream rpmF ribosomal protein gene, a promoter located upstream of the plsX coding sequence (probably within the upstream gene, rpmF) is sufficient for normal growth. We have also found that the fabG gene is obligatorily cotranscribed with upstream genes. Insertion of a transcription terminator cassette (Ω-Cm cassette) between the fabD and fabG genes of the E. coli chromosome abolished fabG transcription and blocked cell growth, thus providing the first indication that fabG is an essential gene. Insertion of the Ω-Cm cassette between fabH and fabD caused greatly decreased transcription of the fabD and fabG genes and slower cellular growth, indicating that fabD has only a weak promoter(s). PMID:9642179

  1. Genetic evidence for the coexistence of pheromone perception and full trichromatic vision in howler monkeys.

    PubMed

    Webb, David M; Cortés-Ortiz, Liliana; Zhang, Jianzhi

    2004-04-01

    Vertebrate pheromones are water-soluble chemicals perceived mainly by the vomeronasal organ (VNO) for intraspecific communications. Humans, apes, and Old World (OW) monkeys lack functional genes responsible for the pheromone signal transduction and are generally insensitive to vomeronasal pheromones. It has been hypothesized that the evolutionary deterioration of pheromone sensitivity occurred because pheromone communication became redundant after the emergence of full trichromatic color vision via the duplication of the X-chromosome-linked red/green opsin gene in the common ancestor of hominoids and OW monkeys. Interestingly, full trichromacy also evolved in the New World (NW) howler monkeys via an independent duplication of the same gene. Here we sequenced from three species of howler monkeys an essential component of the VNO pheromone transduction pathway, the gene encoding the ion channel TRP2. In contrast to those of hominoids and OW monkeys, the howler TRP2 sequences have none of the characteristics of pseudogenes. This and other observations indicate that howler monkeys have maintained both their systems of pheromone communication and full trichromatic vision, suggesting that the presence of full trichromacy alone does not lead to the loss of pheromone communication. We suggest that the ecological differences between OW and NW primates, particularly in habitat selection, may have also affected the evolution of pheromone perception.

  2. Pheromone Autodetection: Evidence and Implications

    PubMed Central

    Holdcraft, Robert; Rodriguez-Saona, Cesar; Stelinski, Lukasz L.

    2016-01-01

    Olfactory communication research with insects utilizing sex pheromones has focused on the effects of pheromones on signal receivers. Early pheromone detection studies using the silkworm moth, Bombyx mori L., and Saturniids led to the assumption that emitters, especially females, are unable to detect their own pheromone. Pheromone anosmia, i.e., the inability of females to detect their conspecific sex pheromone, was often assumed, and initially little attention was paid to female behaviors that may result from autodetection, i.e., the ability of females to detect their sex pheromone. Detection of conspecific pheromone plumes from nearby females may provide information to improve chances of mating success and progeny survival. Since the first documented example in 1972, numerous occurrences of autodetection have been observed and verified in field and laboratory studies. We summarize here a significant portion of research relating to autodetection. Electrophysiological and behavioral investigations, as well as expression patterns of proteins involved in pheromone autodetection are included. We discuss problems inherent in defining a boundary between sex and aggregation pheromones considering the occurrence of autodetection, and summarize hypothesized selection pressures favoring autodetection. Importance of including autodetection studies in future work is emphasized by complications arising from a lack of knowledge combined with expanding the use of pheromones in agriculture. PMID:27120623

  3. Gene clusters reflecting macrodomain structure respond to nucleoid perturbations.

    PubMed

    Scolari, Vittore F; Bassetti, Bruno; Sclavi, Bianca; Lagomarsino, Marco Cosentino

    2011-03-01

    Focusing on the DNA-bridging nucleoid proteins Fis and H-NS, and integrating several independent experimental and bioinformatic data sources, we investigate the links between chromosomal spatial organization and global transcriptional regulation. By means of a novel multi-scale spatial aggregation analysis, we uncover the existence of contiguous clusters of nucleoid-perturbation sensitive genes along the genome, whose expression is affected by a combination of topological DNA state and nucleoid-shaping protein occupancy. The clusters correlate well with the macrodomain structure of the genome. The most significant of them lay symmetrically at the edges of the Ter macrodomain and involve all of the flagellar and chemotaxis machinery, in addition to key regulators of biofilm formation, suggesting that the regulation of the physical state of the chromosome by the nucleoid proteins plays an important role in coordinating the transcriptional response leading to the switch between a motile and a biofilm lifestyle.

  4. Discovery of a widely distributed toxin biosynthetic gene cluster

    PubMed Central

    Lee, Shaun W.; Mitchell, Douglas A.; Markley, Andrew L.; Hensler, Mary E.; Gonzalez, David; Wohlrab, Aaron; Dorrestein, Pieter C.; Nizet, Victor; Dixon, Jack E.

    2008-01-01

    Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes. PMID:18375757

  5. EasyCluster: a fast and efficient gene-oriented clustering tool for large-scale transcriptome data

    PubMed Central

    Picardi, Ernesto; Mignone, Flavio; Pesole, Graziano

    2009-01-01

    Background ESTs and full-length cDNAs represent an invaluable source of evidence for inferring reliable gene structures and discovering potential alternative splicing events. In newly sequenced genomes, these tasks may not be practicable owing to the lack of appropriate training sets. However, when expression data are available, they can be used to build EST clusters related to specific genomic transcribed loci. Common strategies recently employed to this end are based on sequence similarity between transcripts and can lead, in specific conditions, to inconsistent and erroneous clustering. In order to improve the cluster building and facilitate all downstream annotation analyses, we developed a simple genome-based methodology to generate gene-oriented clusters of ESTs when a genomic sequence and a pool of related expressed sequences are provided. Our procedure has been implemented in the software EasyCluster and takes into account the spliced nature of ESTs after an ad hoc genomic mapping. Methods EasyCluster uses the well-known GMAP program in order to perform a very quick EST-to-genome mapping in addition to the detection of reliable splice sites. Given a genomic sequence and a pool of ESTs/FL-cDNAs, EasyCluster starts building genomic and EST local databases and runs GMAP. Subsequently, it parses results creating an initial collection of pseudo-clusters by grouping ESTs according to the overlap of their genomic coordinates on the same strand. In the final step, EasyCluster refines the clustering by again running GMAP on each pseudo-cluster and groups together ESTs sharing at least one splice site. Results The higher accuracy of EasyCluster with respect to other clustering tools has been verified by means of a manually cured benchmark of human EST clusters. Additional datasets including the Unigene cluster Hs.122986 and ESTs related to the human HOXA gene family have also been used to demonstrate the better clustering capability of EasyCluster over current genome

  6. Nutrient-dependent/pheromone-controlled adaptive evolution: a model

    PubMed Central

    Kohl, James Vaughn

    2013-01-01

    Background The prenatal migration of gonadotropin-releasing hormone (GnRH) neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods This model details how chemical ecology drives adaptive evolution via: (1) ecological niche construction, (2) social niche construction, (3) neurogenic niche construction, and (4) socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH) and systems biology. Results Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively fit individuals

  7. From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants.

    PubMed

    Chu, Hoi Yee; Wegel, Eva; Osbourn, Anne

    2011-04-01

    Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.

  8. Toward Awakening Cryptic Secondary Metabolite Gene Clusters in Filamentous Fungi

    PubMed Central

    Lim, Fang Yun; Sanchez, James F.; Wang, Clay C.C.; Keller, Nancy P.

    2013-01-01

    Mining for novel natural compounds is of eminent importance owing to the continuous need for new pharmaceuticals. Filamentous fungi are historically known to harbor the genetic capacity for an arsenal of natural compounds, both beneficial and detrimental to humans. The majority of these metabolites are still cryptic or silent under standard laboratory culture conditions. Mining for these cryptic natural products can be an excellent source for identifying new compound classes. Capitalizing on the current knowledge on how secondary metabolite gene clusters are regulated has allowed the research community to unlock many hidden fungal treasures, as described in this chapter. PMID:23084945

  9. Molecular Characterization of Neurally Expressing Genes in the Para Sodium Channel Gene Cluster of Drosophila

    PubMed Central

    Hong, C. S.; Ganetzky, B.

    1996-01-01

    To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism. PMID:8849894

  10. Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi.

    PubMed

    Martín, Juan F; Liras, Paloma

    2016-02-01

    The biosynthesis of secondary metabolites in fungi is catalyzed by enzymes encoded by genes linked in clusters that are frequently co-regulated at the transcriptional level. Formation of gene clusters may take place by de novo assembly of genes recruited from other cellular functions, but also novel gene clusters are formed by reorganization of progenitor clusters and are distributed by horizontal gene transfer. This article reviews (i) the published information on the roquefortine/meleagrin/neoxaline gene clusters of Penicillium chrysogenum (Penicillium rubens) and the short roquefortine cluster of Penicillium roqueforti, and (ii) the correlation of the genes present in those clusters with the enzymes and metabolites derived from these pathways. The P. chrysogenum roq/mel cluster consists of seven genes and includes a gene (roqT) encoding a 12-TMS transporter protein of the MFS family. Interestingly, the orthologous P. roquefortine gene cluster has only four genes and the roqT gene is present as a residual pseudogene that encodes only small peptides. Two of the genes present in the central region of the P. chrysogenum roq/mel cluster have been lost during the evolutionary formation of the short cluster and the order of the structural genes in the cluster has been rearranged. The two lost genes encode a N1 atom hydroxylase (nox) and a roquefortine scaffold-reorganizing oxygenase (sro). As a consequence P. roqueforti has lost the ability to convert the roquefortine-type carbon skeleton to the glandicoline/meleagrin-type scaffold and is unable to produce glandicoline B, meleagrin and neoxaline. The loss of this genetic information is not recent and occurred probably millions of years ago when a progenitor Penicillium strain got adapted to life in a few rich habitats such as cheese, fermented cereal grains or silage. P. roqueforti may be considered as a "domesticated" variant of a progenitor common to contemporary P. chrysogenum and related Penicillia.

  11. Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes

    PubMed Central

    Azevedo, Analice C.; Bento, Cláudia B. P.; Ruiz, Jeronimo C.; Queiroz, Marisa V.

    2015-01-01

    Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides. PMID:26253660

  12. Gene prioritization and clustering by multi-view text mining

    PubMed Central

    2010-01-01

    Background Text mining has become a useful tool for biologists trying to understand the genetics of diseases. In particular, it can help identify the most interesting candidate genes for a disease for further experimental analysis. Many text mining approaches have been introduced, but the effect of disease-gene identification varies in different text mining models. Thus, the idea of incorporating more text mining models may be beneficial to obtain more refined and accurate knowledge. However, how to effectively combine these models still remains a challenging question in machine learning. In particular, it is a non-trivial issue to guarantee that the integrated model performs better than the best individual model. Results We present a multi-view approach to retrieve biomedical knowledge using different controlled vocabularies. These controlled vocabularies are selected on the basis of nine well-known bio-ontologies and are applied to index the vast amounts of gene-based free-text information available in the MEDLINE repository. The text mining result specified by a vocabulary is considered as a view and the obtained multiple views are integrated by multi-source learning algorithms. We investigate the effect of integration in two fundamental computational disease gene identification tasks: gene prioritization and gene clustering. The performance of the proposed approach is systematically evaluated and compared on real benchmark data sets. In both tasks, the multi-view approach demonstrates significantly better performance than other comparing methods. Conclusions In practical research, the relevance of specific vocabulary pertaining to the task is usually unknown. In such case, multi-view text mining is a superior and promising strategy for text-based disease gene identification. PMID:20074336

  13. Mating disruption of Lobesia botrana (Lepidoptera: Tortricidae): effect of pheromone formulations and concentrations.

    PubMed

    Gordon, Dvora; Zahavi, Tirtza; Anshelevich, Leonid; Harel, Miriam; Ovadia, Shmulik; Dunkelblum, Ezra; Harari, Ally Rachel

    2005-02-01

    The reluctance of Israeli vine growers to adopt the mating disruption technique to control the moth Lobesia botrana Den. & Schiff. has been attributed to the high cost of this method compared with that of traditional insecticide control. In this study, we tested the possibility of reducing the cost, first by testing different pheromone formulations (and thus open the market for competition) and second by reducing the pheromone concentration used in vineyards. Comparisons were made between two pheromone formulations--Shin-Etsu (Tokyo, Japan) at 165 g/ha and Concep (Sutera, Bend, OR) at 150 g/ha--and between two concentrations of Shin-Etsu, 165 and 110 g/ha. Pheromone dispensers were placed at the onset of the second moth generation. Comparison of the numbers of clusters infested with eggs and larvae of L. botrana showed no significant differences in the performance, either between the two formulations, or between the two tested concentrations. The results suggest that 1) the two formulations are equally effective, and 2) a low pheromone concentration is sufficient to maintain good control of small populations of L. botrana. However, when the population is high, pest control efficacy is not improved by increasing the pheromone concentration. Therefore, in the interest of reducing the relatively high cost of mating disruption, we emphasize that increasing the pheromone concentration does not provide improved control of high populations of L. botrana. The cost of mating disruption can be diminished by reducing the applied pheromone concentration and by using the least expensive pheromone formulations

  14. Gravitation field algorithm and its application in gene cluster

    PubMed Central

    2010-01-01

    Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA) which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM) of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab) are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA. PMID:20854683

  15. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    SciTech Connect

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  16. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    PubMed

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  17. Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella.

    PubMed

    Sun, Mengjing; Liu, Yang; Wang, Guirong

    2013-01-01

    Pheromone binding proteins (PBPs) play a key role in transporting hydrophobic sex pheromone components emitted by con-specific female across aqueous sensillar lymph to the surface of olfactory receptor neurons. A number of PBPs have been cloned, however, details of their function are still largely unknown. Here three pheromone binding protein genes in the diamondback moth, Plutella xyllotella were cloned. The three PxylPBP genes are not only expressed in chemosensory tissues but also expressed in female reproductive organs and male legs. To better understand the functions of PxylPBPs in the initial steps of pheromone recognition, three PxylPBPs were expressed in Escherichia coli and the ligand-binding specificities of purified recombinant PBPs were investigated. Fluorescence binding assays indicate that three PxylPBPs not only robustly bound all four sex pheromone components but also significantly bound pheromone analogs with at least one double bond, while weakly bound tested plant volatiles. Although pheromone analogs bound PBPs, they could not elicit the moth's electrophysiological response. These experiments provide evidence that PxylPBPs have limited selectivity of pheromone components and analogs and some downstream components such as odor receptors might be involved in selectivity and specificity of pheromone perception in P. xyllotella.

  18. Parallel evolutionary events in the haptoglobin gene clusters of rhesus monkey and human

    SciTech Connect

    Erickson, L.M.; Maeda, N.

    1994-08-01

    Parallel occurrences of evolutionary events in the haptoglobin gene clusters of rhesus monkeys and humans were studied. We found six different haplotypes among 11 individuals from two rhesus monkey families. The six haplotypes include two types of haptoglobin gene clusters: one type with a single gene and the other with two genes. DNA sequence analysis indicates that the one-gene and the two-gene clusters were both formed by unequal homologous crossovers between two genes of an ancestral three-gene cluster, near exon 5, the longest exon of the gene. This exon is also the location where a separate unequal homologous crossover occured in the human lineage, forming the human two-gene haptoglobin gene cluster from an ancestral three-gene cluster. The occurrence of independent homologous unequal crossovers in rhesus monkey and in human within the same region of DNA suggests that the evolutionary history of the haptoglobin gene cluster in primates is the consequence of frequent homologous pairings facilitated by the longest and most conserved exon of the gene. 27 refs., 7 figs., 1 tab.

  19. Identification of the cluster control region for the protocadherin-beta genes located beyond the protocadherin-gamma cluster.

    PubMed

    Yokota, Shinnichi; Hirayama, Teruyoshi; Hirano, Keizo; Kaneko, Ryosuke; Toyoda, Shunsuke; Kawamura, Yoshimi; Hirabayashi, Masumi; Hirabayashi, Takahiro; Yagi, Takeshi

    2011-09-09

    The clustered protocadherins (Pcdhs), Pcdh-α, -β, and -γ, are transmembrane proteins constituting a subgroup of the cadherin superfamily. Each Pcdh cluster is arranged in tandem on the same chromosome. Each of the three Pcdh clusters shows stochastic and combinatorial expression in individual neurons, thus generating a hugely diverse set of possible cell surface molecules. Therefore, the clustered Pcdhs are candidates for determining neuronal molecular diversity. Here, we showed that the targeted deletion of DNase I hypersensitive (HS) site HS5-1, previously identified as a Pcdh-α regulatory element in vitro, affects especially the expression of specific Pcdh-α isoforms in vivo. We also identified a Pcdh-β cluster control region (CCR) containing six HS sites (HS16, 17, 17', 18, 19, and 20) downstream of the Pcdh-γ cluster. This CCR comprehensively activates the expression of the Pcdh-β gene cluster in cis, and its deletion dramatically decreases their expression levels. Deleting the CCR nonuniformly down-regulates some Pcdh-γ isoforms and does not affect Pcdh-α expression. Thus, the CCR effect extends beyond the 320-kb region containing the Pcdh-γ cluster to activate the upstream Pcdh-β genes. Thus, we concluded that the CCR is a highly specific regulatory unit for Pcdh-β expression on the clustered Pcdh genomic locus. These findings suggest that each Pcdh cluster is controlled by distinct regulatory elements that activate their expression and that the stochastic gene regulation of the clustered Pcdhs is controlled by the complex chromatin architecture of the clustered Pcdh locus.

  20. Nucleotide polymorphism in colicin E2 gene clusters: evidence for nonneutral evolution.

    PubMed

    Tan, Y; Riley, M A

    1997-06-01

    To explore the molecular mechanisms behind the diversification of colicin gene clusters, we examined DNA sequence polymorphism for the colicin gene clusters of 14 colicin E2 (ColE2) plasmids obtained from natural isolates of Escherichia coli. Two types of ColE2 plasmids are revealed, with type II gene clusters generated by recombination between type I ColE2 and ColE7 gene clusters. The levels and patterns of DNA polymorphism are different between the two types. Type I polymorphism is distributed evenly along the gene cluster, while type II accumulates polymorphism at an elevated rate in the 5' end of the colicin gene. These differences may be explained by recombinational origins of type II gene clusters. The pattern of divergence between the ColE2 gene cluster and its close relative ColE9 is not correlated with the pattern of polymorphism within ColE2, suggesting that this gene cluster is not evolving in a neutral fashion. A statistical test confirms significant departures from the predictions of neutrality. These data lend further support to the hypothesis that colicin gene clusters may evolve under the influence of nonneutral forces.

  1. Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching.

    PubMed

    Dejong, Chris A; Chen, Gregory M; Li, Haoxin; Johnston, Chad W; Edwards, Mclean R; Rees, Philip N; Skinnider, Michael A; Webster, Andrew L H; Magarvey, Nathan A

    2016-12-01

    Polyketides (PKs) and nonribosomal peptides (NRPs) are profoundly important natural products, forming the foundations of many therapeutic regimes. Decades of research have revealed over 11,000 PK and NRP structures, and genome sequencing is uncovering new PK and NRP gene clusters at an unprecedented rate. However, only ∼10% of PK and NRPs are currently associated with gene clusters, and it is unclear how many of these orphan gene clusters encode previously isolated molecules. Therefore, to efficiently guide the discovery of new molecules, we must first systematically de-orphan emergent gene clusters from genomes. Here we provide to our knowledge the first comprehensive retro-biosynthetic program, generalized retro-biosynthetic assembly prediction engine (GRAPE), for PK and NRP families and introduce a computational pipeline, global alignment for natural products cheminformatics (GARLIC), to uncover how observed biosynthetic gene clusters relate to known molecules, leading to the identification of gene clusters that encode new molecules.

  2. Lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family.

    PubMed

    Ikeda, Daisuke; Ono, Yosuke; Hirano, Shigeki; Kan-no, Nobuhiro; Watabe, Shugo

    2013-01-01

    Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5'-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.

  3. Identification of lethal cluster of genes in the yeast transcription network

    NASA Astrophysics Data System (ADS)

    Rho, K.; Jeong, H.; Kahng, B.

    2006-05-01

    Identification of essential or lethal genes would be one of the ultimate goals in drug designs. Here we introduce an in silico method to select the cluster with a high population of lethal genes, called lethal cluster, through microarray assay. We construct a gene transcription network based on the microarray expression level. Links are added one by one in the descending order of the Pearson correlation coefficients between two genes. As the link density p increases, two meaningful link densities pm and ps are observed. At pm, which is smaller than the percolation threshold, the number of disconnected clusters is maximum, and the lethal genes are highly concentrated in a certain cluster that needs to be identified. Thus the deletion of all genes in that cluster could efficiently lead to a lethal inviable mutant. This lethal cluster can be identified by an in silico method. As p increases further beyond the percolation threshold, the power law behavior in the degree distribution of a giant cluster appears at ps. We measure the degree of each gene at ps. With the information pertaining to the degrees of each gene at ps, we return to the point pm and calculate the mean degree of genes of each cluster. We find that the lethal cluster has the largest mean degree.

  4. Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum.

    PubMed

    Dineen, Sean S; Bradshaw, Marite; Karasek, Charles E; Johnson, Eric A

    2004-06-01

    The nucleotide sequences of the upstream regions of the botulinum neurotoxin type A1 (BoNT/A1) cluster of Clostridium botulinum strain NCTC 2916 and the BoNT/A2 cluster of strain Kyoto-F were determined. A novel gene, designated orfx3, was identified following the orfx2 gene in both clusters. ORF-X2 and ORF-X3 exhibit similarity to the BoNT cluster associated P-47 protein. The BoNT/A1 and BoNT/A2 clusters share a similar gene arrangement, but exhibit differences in the spacing between certain genes. Sequences with similarity to transposases were identified in these intergenic regions, suggesting that these differences arose from an ancestral insertion event. Transcriptional analysis of the BoNT/A2 cluster revealed that the genes of the cluster are primarily synthesized as three polycistronic transcripts. Two divergent polycistronic transcripts, one encoding the orfx1, orfx2, and orfx3 genes, the second encoding the p47, ntnh, and bont/a2 genes, are transcribed from conserved BoNT cluster promoters. The third polycistronic transcript, expressed at low levels, encodes the positive regulatory botR gene and the orfx genes. This is the first complete analysis of a botulinum toxin A2 cluster.

  5. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies

    PubMed Central

    Dion, Emilie; Monteiro, Antónia; Yew, Joanne Y.

    2016-01-01

    Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season. PMID:27966579

  6. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies.

    PubMed

    Dion, Emilie; Monteiro, Antónia; Yew, Joanne Y

    2016-12-14

    Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season.

  7. Mutational and Phylogenetic Analyses of the Mycobacterial mbt Gene Cluster ▿§

    PubMed Central

    Chavadi, Sivagami Sundaram; Stirrett, Karen L.; Edupuganti, Uthamaphani R.; Vergnolle, Olivia; Sadhanandan, Gigani; Marchiano, Emily; Martin, Che; Qiu, Wei-Gang; Soll, Clifford E.; Quadri, Luis E. N.

    2011-01-01

    The mycobactin siderophore system is present in many Mycobacterium species, including M. tuberculosis and other clinically relevant mycobacteria. This siderophore system is believed to be utilized by both pathogenic and nonpathogenic mycobacteria for iron acquisition in both in vivo and ex vivo iron-limiting environments, respectively. Several M. tuberculosis genes located in a so-called mbt gene cluster have been predicted to be required for the biosynthesis of the core scaffold of mycobactin based on sequence analysis. A systematic and controlled mutational analysis probing the hypothesized essential nature of each of these genes for mycobactin production has been lacking. The degree of conservation of mbt gene cluster orthologs remains to be investigated as well. In this study, we sought to conclusively establish whether each of nine mbt genes was required for mycobactin production and to examine the conservation of gene clusters orthologous to the M. tuberculosis mbt gene cluster in other bacteria. We report a systematic mutational analysis of the mbt gene cluster ortholog found in Mycobacterium smegmatis. This mutational analysis demonstrates that eight of the nine mbt genes investigated are essential for mycobactin production. Our genome mining and phylogenetic analyses reveal the presence of orthologous mbt gene clusters in several bacterial species. These gene clusters display significant organizational differences originating from an intricate evolutionary path that might have included horizontal gene transfers. Altogether, the findings reported herein advance our understanding of the genetic requirements for the biosynthesis of an important mycobacterial secondary metabolite with relevance to virulence. PMID:21873494

  8. A Special Local Clustering Algorithm for Identifying the Genes Associated With Alzheimer’s Disease

    PubMed Central

    Pang, Chao-Yang; Hu, Wei; Hu, Ben-Qiong; Shi, Ying; Vanderburg, Charles R.; Rogers, Jack T.

    2010-01-01

    Clustering is the grouping of similar objects into a class. Local clustering feature refers to the phenomenon whereby one group of data is separated from another, and the data from these different groups are clustered locally. A compact class is defined as one cluster in which all similar elements cluster tightly within the cluster. Herein, the essence of the local clustering feature, revealed by mathematical manipulation, results in a novel clustering algorithm termed as the special local clustering (SLC) algorithm that was used to process gene microarray data related to Alzheimer’s disease (AD). SLC algorithm was able to group together genes with similar expression patterns and identify significantly varied gene expression values as isolated points. If a gene belongs to a compact class in control data and appears as an isolated point in incipient, moderate and/or severe AD gene microarray data, this gene is possibly associated with AD. Application of a clustering algorithm in disease-associated gene identification such as in AD is rarely reported. PMID:20089478

  9. Translating biosynthetic gene clusters into fungal armor and weaponry

    PubMed Central

    Keller, Nancy P

    2015-01-01

    Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs. PMID:26284674

  10. Enzymology of aminoglycoside biosynthesis-deduction from gene clusters.

    PubMed

    Wehmeier, Udo F; Piepersberg, Wolfgang

    2009-01-01

    The classical aminoglycosides are, with very few exceptions, typically actinobacterial secondary metabolites with antimicrobial activities all mediated by inhibiting translation on the 30S subunit of the bacterial ribosome. Some chemically related natural products inhibit glucosidases by mimicking oligo-alpha-1,4-glucosides. The biochemistry of the aminoglycoside biosynthetic pathways is still a developing field since none of the pathways has been analyzed to completeness as yet. In this chapter we treat the enzymology of aminoglycoside biosyntheses as far as it becomes apparent from recent investigations based on the availability of DNA sequence data of biosynthetic gene clusters for all major structural classes of these bacterial metabolites. We give a more general overview of the field, including descriptions of some key enzymes in various aminoglycoside pathways, whereas in Chapter 20 provides a detailed account of the better-studied enzymology thus far known for the neomycin and butirosin pathways.

  11. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones.

    PubMed

    Ding, Bao-Jian; Lager, Ida; Bansal, Sunil; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2016-04-01

    Many moth pheromones are composed of mixtures of acetates of long-chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl-CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non-insect acetyltransferase alternative, we expressed a plant-derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with Ea DAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27- and 10-fold higher in vivo and in vitro efficiency, respectively, compared to Ea DAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast.

  12. Clustered Genes Encoding the Methyltransferases of Methanogenesis from Monomethylamine

    PubMed Central

    Burke, Stephen A.; Lo, Sam L.; Krzycki, Joseph A.

    1998-01-01

    Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen. PMID:9642198

  13. Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine.

    PubMed

    Burke, S A; Lo, S L; Krzycki, J A

    1998-07-01

    Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen.

  14. Specificity of the TraA-DNA interaction in the regulation of the pPD1-encoded sex pheromone response in Enterococcus faecalis.

    PubMed

    Folli, Claudia; Mangiarotti, Laura; Folloni, Silvia; Alfieri, Beatrice; Gobbo, Marina; Berni, Rodolfo; Rivetti, Claudio

    2008-07-25

    The Enterococcus faecalis conjugative plasmid pPD1 encodes proteins responsible for the mating response to the sex pheromone cPD1 secreted by a recipient cell. This response involves the respectively negative and positive determinants traA and traE, the pheromone-inhibitor determinant ipd and structural genes participating in the conjugation process. TraA is capable of binding to key sites within the regulatory gene cluster. The binding of TraA to cognate sites is modulated by the pheromone (cPD1) and the pheromone-inhibitor (iPD1) peptides. Using atomic force microscopy and classic biochemical techniques, we mapped and characterized the TraA-DNA interactions within the pPD1 regulatory gene cluster and the role of TraA in the transcription regulation of the sex pheromone response. A previous report showed that TraA binds to three adjacent sites (tab1, tab2 and tab3) located upstream of the ipd promoter region. Here, we provide direct evidence for such interactions and show that TraA alone or in the presence of iPD1 inhibits ipd transcription by preferentially binding to tab1, whereas in the presence of saturating cPD1, the overall binding to the tab sites decreases, TraA preferentially binds to tab3 and the ipd repression is relieved. Moreover, TraA alone or in the presence of iPD1 binds to two non-adjacent sites within the ipd terminators T1 and T2, an interaction that is also relieved in the presence of cPD1. The binding of TraA to the termination region of ipd may play an important role in controlling traE and traF expression via a transcriptional read-through mechanism already postulated for the pAD1 plasmid. TraA may also regulate its own expression by binding to a site in the proximity of the traA promoter, which has been relocated 200 bp downstream of the ipd gene. A model for the TraA-mediated regulation of the pPD1-encoded sex pheromone response is presented.

  15. Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer.

    PubMed

    Jogler, Christian; Kube, Michael; Schübbe, Sabrina; Ullrich, Susanne; Teeling, Hanno; Bazylinski, Dennis A; Reinhardt, Richard; Schüler, Dirk

    2009-05-01

    The organization of magnetosome genes was analysed in all available complete or partial genomic sequences of magnetotactic bacteria (MTB), including the magnetosome island (MAI) of the magnetotactic marine vibrio strain MV-1 determined in this study. The MAI was found to differ in gene content and organization between Magnetospirillum species and strains MV-1 or MC-1. Although a similar organization of magnetosome genes was found in all MTB, distinct variations in gene order and sequence similarity were uncovered that may account for the observed diversity of biomineralization, cell biology and magnetotaxis found in various MTB. While several magnetosome genes were present in all MTB, others were confined to Magnetospirillum species, indicating that the minimal set of genes required for magnetosome biomineralization might be smaller than previously suggested. A number of novel candidate genes were implicated in magnetosome formation by gene cluster comparison. Based on phylogenetic and compositional evidence we present a model for the evolution of magnetotaxis within the Alphaproteobacteria, which suggests the independent horizontal transfer of magnetosome genes from an unknown ancestor of magnetospirilla into strains MC-1 and MV-1.

  16. Barrier activity in Candida albicans mediates pheromone degradation and promotes mating.

    PubMed

    Schaefer, Dana; Côte, Pierre; Whiteway, Malcolm; Bennett, Richard J

    2007-06-01

    Mating in Candida albicans and Saccharomyces cerevisiae is regulated by the secretion of peptide pheromones that initiate the mating process. An important regulator of pheromone activity in S. cerevisiae is barrier activity, involving an extracellular aspartyl protease encoded by the BAR1 gene that degrades the alpha pheromone. We have characterized an equivalent barrier activity in C. albicans and demonstrate that the loss of C. albicans BAR1 activity results in opaque a cells exhibiting hypersensitivity to alpha pheromone. Hypersensitivity to pheromone is clearly seen in halo assays; in response to alpha pheromone, a lawn of C. albicans Deltabar1 mutant cells produces a marked zone in which cell growth is inhibited, whereas wild-type strains fail to show halo formation. C. albicans mutants lacking BAR1 also exhibit a striking mating defect in a cells, but not in alpha cells, due to overstimulation of the response to alpha pheromone. The block to mating occurs prior to cell fusion, as very few mating zygotes were observed in mixes of Deltabar1 a and alpha cells. Finally, in a barrier assay using a highly pheromone-sensitive strain, we were able to demonstrate that barrier activity in C. albicans is dependent on Bar1p. These studies reveal that a barrier activity to alpha pheromone exists in C. albicans and that the activity is analogous to that caused by Bar1p in S. cerevisiae.

  17. Characterization and expression analysis of the exopolysaccharide gene cluster in Lactobacillus fermentum TDS030603.

    PubMed

    Dan, Tong; Fukuda, Kenji; Sugai-Bannai, Michiko; Takakuwa, Naoya; Motoshima, Hidemasa; Urashima, Tadasu

    2009-12-01

    Part of the exopolysaccharide gene cluster of Lactobacillus fermentum TDS030603 was characterized. It consists of 11,890 base pairs and is located in the chromosomal DNA, 13 open reading frames of which were encoded. Out of the 13 open reading frames, six were found to be involved in exopolysaccharide synthesis; however, five were similar to transposase genes of other lactobacilli, and two were functionally unrelated. Expression analysis revealed that the exopolysaccharide synthesis-related genes were expressed during cultivation. Southern analysis using specific primers for the exopolysaccharide genes indicated that duplication of the gene cluster did not occur. The plasmid-cured strain maintained its capacity for exopolysaccharide production, confirming that the exopolysaccharide gene cluster of this strain is located in the chromosomal DNA, similarly to thermophilic lactic acid bacteria. Our results indicate that this exopolysaccharide gene cluster is likely to be functional, although extensive gene rearrangement occurs.

  18. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    PubMed

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    display a different cellular localization compared to that of the gsdf gene indicating that the later gene is not co-regulated. Interestingly, our study identifies new clustered genes that are specifically expressed in previtellogenic oocytes (nup54, aff1, klhl8, sdad1).

  19. Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility.

    PubMed

    Richardson, Marcy E; Bleiziffer, Andreas; Tüttelmann, Frank; Gromoll, Jörg; Wilkinson, Miles F

    2014-01-01

    The X-linked RHOX cluster encodes a set of homeobox genes that are selectively expressed in the reproductive tract. Members of the RHOX cluster regulate target genes important for spermatogenesis promote male fertility in mice. Studies show that demethylating agents strongly upregulate the expression of mouse Rhox genes, suggesting that they are regulated by DNA methylation. However, whether this extends to human RHOX genes, whether DNA methylation directly regulates RHOX gene transcription and how this relates to human male infertility are unknown. To address these issues, we first defined the promoter regions of human RHOX genes and performed gain- and loss-of-function experiments to determine whether human RHOX gene transcription is regulated by DNA methylation. Our results indicated that DNA methylation is necessary and sufficient to silence human RHOX gene expression. To determine whether RHOX cluster methylation associates with male infertility, we evaluated the methylation status of RHOX genes in sperm from a large cohort of infertility patients. Linear regression analysis revealed a strong association between RHOX gene cluster hypermethylation and three independent types of semen abnormalities. Hypermethylation was restricted specifically to the RHOX cluster; we did not observe it in genes immediately adjacent to it on the X chromosome. Our results strongly suggest that human RHOX homeobox genes are under an epigenetic control mechanism that is aberrantly regulated in infertility patients. We propose that hypermethylation of the RHOX gene cluster serves as a marker for idiopathic infertility and that it is a candidate to exert a causal role in male infertility.

  20. Characterization and expression of the gene encoding En-MAPK1, an intestinal cell kinase (ICK)-like kinase activated by the autocrine pheromone-signaling loop in the Polar Ciliate, Euplotes nobilii.

    PubMed

    Candelori, Annalisa; Luporini, Pierangelo; Alimenti, Claudio; Vallesi, Adriana

    2013-04-03

    In the protozoan ciliate Euplotes, a transduction pathway resulting in a mitogenic cell growth response is activated by autocrine receptor binding of cell type-specific, water-borne signaling protein pheromones. In Euplotes raikovi, a marine species of temperate waters, this transduction pathway was previously shown to involve the phosphorylation of a nuclear protein kinase structurally similar to the intestinal-cell and male germ cell-associated kinases described in mammals. In E. nobilii, which is phylogenetically closely related to E. raikovi but inhabits Antarctic and Arctic waters, we have now characterized a gene encoding a structurally homologous kinase. The expression of this gene requires +1 translational frameshifting and a process of intron splicing for the production of the active protein, designated En-MAPK1, which contains amino acid substitutions of potential significance for cold-adaptation.

  1. Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster

    PubMed Central

    Luo, Yunzi; Huang, Hua; Liang, Jing; Wang, Meng; Lu, Lu; Shao, Zengyi; Cobb, Ryan E.; Zhao, Huimin

    2014-01-01

    Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of them have not been characterized. Here we apply a plug and play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three potential PTMs. This gene cluster is highly conserved in phylogenetically diverse bacterial strains and contains an unusual hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) which resembles iterative PKSs known in fungi. To further characterize this gene cluster, we use the same synthetic biology approach to create a series of gene deletion constructs and elucidate the biosynthetic steps for the formation of the polycyclic system. The strategy we employ bypasses the traditional laborious processes to elicit gene cluster expression and should be generally applicable to many other silent or cryptic gene clusters for discovery and characterization of new natural products. PMID:24305602

  2. A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data.

    PubMed

    Chen, Sui-Pi; Huang, Guan-Hua

    2014-06-01

    This paper uses a Bayesian formulation of a clustering procedure to identify gene-gene interactions under case-control studies, called the Algorithm via Bayesian Clustering to Detect Epistasis (ABCDE). The ABCDE uses Dirichlet process mixtures to model SNP marker partitions, and uses the Gibbs weighted Chinese restaurant sampling to simulate posterior distributions of these partitions. Unlike the representative Bayesian epistasis detection algorithm BEAM, which partitions markers into three groups, the ABCDE can be evaluated at any given partition, regardless of the number of groups. This study also develops permutation tests to validate the disease association for SNP subsets identified by the ABCDE, which can yield results that are more robust to model specification and prior assumptions. This study examines the performance of the ABCDE and compares it with the BEAM using various simulated data and a schizophrenia SNP dataset.

  3. Sex pheromone recognition and characterization of three pheromone-binding proteins in the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae)

    PubMed Central

    Mao, Aping; Zhou, Jing; Bin Mao; Zheng, Ya; Wang, Yufeng; Li, Daiqin; Wang, Pan; Liu, Kaiyu; Wang, Xiaoping; Ai, Hui

    2016-01-01

    Pheromone-binding proteins (PBPs) are essential for the filtering, binding and transporting of sex pheromones across sensillum lymph to membrane-associated pheromone receptors of moths. In this study, three novel PBP genes were expressed in Escherichia coli to examine their involvement in the sex pheromone perception of Maruca vitrata. Fluorescence binding experiments indicated that MvitPBP1-3 had strong binding affinities with four sex pheromones. Moreover, molecular docking results demonstrated that six amino acid residues of three MvitPBPs were involved in the binding of the sex pheromones. These results suggested that MvitPBP1-3 might play critical roles in the perception of female sex pheromones. Additionally, the binding capacity of MvitPBP3 with the host-plant floral volatiles was high and was similar to that of MvitGOBP2. Furthermore, sequence alignment and docking analysis showed that both MvitGOBP2 and MvitPBP3 possessed an identical key binding site (arginine, R130/R140) and a similar protein pocket structure around the binding cavity. Therefore, we hypothesized that MvitPBP3 and MvitGOBP2 might have synergistic roles in binding different volatile ligands. In combination, the use of synthetic sex pheromones and floral volatiles from host-plant may be used in the exploration for more efficient monitoring and integrated management strategies for the legume pod borer in the field. PMID:27698435

  4. Unusual mutation clusters provide insight into class I gene conversion mechanisms.

    PubMed Central

    Pease, L R; Horton, R M; Pullen, J K; Yun, T J

    1993-01-01

    Genetic diversity among the K and D alleles of the mouse major histocompatibility complex is generated by gene conversion among members of the class I multigene family. The majority of known class I mutants contain clusters of nucleotide changes that can be traced to linked family members. However, the details of the gene conversion mechanism are not known. The bm3 and bm23 mutations represent exceptions to the usual pattern and provide insight into intermediates generated during the gene conversion process. Both of these variants contain clusters of five nucleotide substitutions, but they differ from the classic conversion mutants in the important respect that no donor gene for either mutation could be identified in the parental genome. Nevertheless, both mutation clusters are composed of individual mutations that do exist within the parent. Therefore, they are not random and appear to be templated. Significantly, the bm3 and bm23 mutation clusters are divided into overlapping regions that match class I genes which have functioned as donor genes in other characterized gene conversion events. The unusual structure of the mutation clusters indicates an underlying gene conversion mechanism that can generate mutation clusters as a result of the interaction of three genes in a single genetic event. The unusual mutation clusters are consistent with a hypothetical gene conversion model involving extrachromosomal intermediates. Images PMID:8321237

  5. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans.

    PubMed

    Lin, Ching-Hsuan; Kabrawala, Shail; Fox, Emily P; Nobile, Clarissa J; Johnson, Alexander D; Bennett, Richard J

    2013-01-01

    Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced - under a specialized set of conditions - to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such "pheromone-stimulated" biofilms with that of "conventional" C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former.

  6. A hypothesis to explain how laeA specifically regulates certain secondary metabolite biosynthesis gene clusters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosynthesis of mycotoxins involves transcriptional co-regulation of sets of clustered genes. We hypothesize that specific control of transcription of genes in these clusters by LaeA, a global regulator of secondary metabolite production and development in aspergilli and other filamentous fungi, re...

  7. Fragmentation of an aflatoxin-like gene cluster in a forest pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary metabolic pathway genes are typically clustered in fungi. An exception to this paradigm is seen for genes required for the production of dothistromin, an aflatoxin-like virulence factor produced by the pine needle pathogen Dothistroma septosporum. In contrast to the tight clustering of gen...

  8. Rough-fuzzy clustering for grouping functionally similar genes from microarray data.

    PubMed

    Maji, Pradipta; Paul, Sushmita

    2013-01-01

    Gene expression data clustering is one of the important tasks of functional genomics as it provides a powerful tool for studying functional relationships of genes in a biological process. Identifying coexpressed groups of genes represents the basic challenge in gene clustering problem. In this regard, a gene clustering algorithm, termed as robust rough-fuzzy c-means, is proposed judiciously integrating the merits of rough sets and fuzzy sets. While the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in cluster definition, the integration of probabilistic and possibilistic memberships of fuzzy sets enables efficient handling of overlapping partitions in noisy environment. The concept of possibilistic lower bound and probabilistic boundary of a cluster, introduced in robust rough-fuzzy c-means, enables efficient selection of gene clusters. An efficient method is proposed to select initial prototypes of different gene clusters, which enables the proposed c-means algorithm to converge to an optimum or near optimum solutions and helps to discover coexpressed gene clusters. The effectiveness of the algorithm, along with a comparison with other algorithms, is demonstrated both qualitatively and quantitatively on 14 yeast microarray data sets.

  9. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants1[OPEN

    PubMed Central

    Zhang, Peifen; Kim, Taehyong; Banf, Michael; Chavali, Arvind K.; Nilo-Poyanco, Ricardo; Bernard, Thomas

    2017-01-01

    Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters. PMID:28228535

  10. A phylogenomic gene cluster resource: The phylogeneticallyinferred groups (PhlGs) database

    SciTech Connect

    Dehal, Paramvir S.; Boore, Jeffrey L.

    2005-08-25

    We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community.

  11. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species.

    SciTech Connect

    Li, J.; Romine, Margaret F.; Ward, M.

    2007-08-01

    A conserved cluster of chemotaxis genes was identified from the genome sequences of fifteen Shewanella species. An in-frame deletion of the cheA-3 gene, which is located in this cluster, was created in S. oneidensis MR-1 and the gene shown to be essential for chemotactic responses to anaerobic electron acceptors. The CheA-3 protein showed strong similarity to Vibrio cholerae CheA-2 and P. aeruginosa CheA-1, two proteins that are also essential for chemotaxis. The genes encoding these proteins were shown to be located in chemotaxis gene clusters closely related to the cheA-3-containing cluster in Shewanella species. The results of this study suggest that a combination of gene neighborhood and homology analyses may be used to predict which cheA genes are essential for chemotaxis in groups of closely related microorganisms.

  12. Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination

    PubMed Central

    Reynolds, David L.; Hofmeister, Brigitte T.; Cliffe, Laura; Siegel, T. Nicolai; Anderson, Britta A.; Beverley, Stephen M.; Schmitz, Robert J.; Sabatini, Robert

    2016-01-01

    Summary The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription. PMID:27125778

  13. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms.

    PubMed

    Chiang, Yi-Ming; Chang, Shu-Lin; Oakley, Berl R; Wang, Clay C C

    2011-02-01

    Secondary metabolites from microorganisms have a broad spectrum of applications, particularly in therapeutics. The growing number of sequenced microbial genomes has revealed a remarkably large number of natural product biosynthetic clusters for which the products are still unknown. These cryptic clusters are potentially a treasure house of medically useful compounds. The recent development of new methodologies has made it possible to begin unlock this treasure house, to discover new natural products and to determine their biosynthesis pathways. This review will highlight some of the most recent strategies to activate silent biosynthetic gene clusters and to elucidate their corresponding products and pathways.

  14. Horizontal Transfer and Death of a Fungal Secondary Metabolic Gene Cluster

    PubMed Central

    Campbell, Matthew A.; Rokas, Antonis; Slot, Jason C.

    2012-01-01

    A cluster composed of four structural and two regulatory genes found in several species of the fungal genus Fusarium (class Sordariomycetes) is responsible for the production of the red pigment bikaverin. We discovered that the unrelated fungus Botrytis cinerea (class Leotiomycetes) contains a cluster of five genes that is highly similar in sequence and gene order to the Fusarium bikaverin cluster. Synteny conservation, nucleotide composition, and phylogenetic analyses of the cluster genes indicate that the B. cinerea cluster was acquired via horizontal transfer from a Fusarium donor. Upon or subsequent to the transfer, the B. cinerea gene cluster became inactivated; one of the four structural genes is missing, two others are pseudogenes, and the fourth structural gene shows an accelerated rate of nonsynonymous substitutions along the B. cinerea lineage, consistent with relaxation of selective constraints. Interestingly, the bik4 regulatory gene is still intact and presumably functional, whereas bik5, which is a pathway-specific regulator, also shows a mild but significant acceleration of evolutionary rate along the B. cinerea lineage. This selective preservation of the bik4 regulator suggests that its conservation is due to its likely involvement in other non–bikaverin-related biological processes in B. cinerea. Thus, in addition to novel metabolism, horizontal transfer of wholesale metabolic gene clusters might also be contributing novel regulation. PMID:22294497

  15. A modified recombineering protocol for the genetic manipulation of gene clusters in Aspergillus fumigatus.

    PubMed

    Alcazar-Fuoli, Laura; Cairns, Timothy; Lopez, Jordi F; Zonja, Bozo; Pérez, Sandra; Barceló, Damià; Igarashi, Yasuhiro; Bowyer, Paul; Bignell, Elaine

    2014-01-01

    Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge.

  16. A Modified Recombineering Protocol for the Genetic Manipulation of Gene Clusters in Aspergillus fumigatus

    PubMed Central

    Alcazar-Fuoli, Laura; Cairns, Timothy; Lopez, Jordi F.; Zonja, Bozo; Pérez, Sandra; Barceló, Damià; Igarashi, Yasuhiro; Bowyer, Paul; Bignell, Elaine

    2014-01-01

    Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge. PMID:25372385

  17. Odor and pheromone detection in Drosophila melanogaster.

    PubMed

    Smith, Dean P

    2007-08-01

    Drosophila melanogaster has proven to be a useful model system to probe the mechanisms underlying the detection, discrimination, and perception of volatile odorants. The relatively small receptor repertoire of 62 odorant receptors makes the goal of understanding odor responses from the total receptor repertoire approachable in this system, and recent work has been directed toward this goal. In addition, new work not only sheds light but also raises more questions about the initial steps in odor perception in this system. Odorant receptor genes in Drosophila are predicted to encode seven transmembrane receptors, but surprising data suggest that these receptors may be inverted in the plasma membrane compared to classical G-protein coupled receptors. Finally, although some Drosophila odorant receptors are activated directly by odorant molecules, detection of a volatile pheromone, 11-cis vaccenyl acetate requires an extracellular adapter protein called LUSH for activation of pheromone sensitive neurons. Because pheromones are used by insects to trigger mating and other behaviors, these insights may herald new approaches to control behavior in pathogenic and agricultural pest insects.

  18. Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum.

    PubMed

    Nijland, Jeroen G; Ebbendorf, Bjorg; Woszczynska, Marta; Boer, Rémon; Bovenberg, Roel A L; Driessen, Arnold J M

    2010-11-01

    Industrial penicillin production levels by the filamentous fungus Penicillium chrysogenum increased dramatically by classical strain improvement. High-yielding strains contain multiple copies of the penicillin biosynthetic gene cluster that encodes three key enzymes of the β-lactam biosynthetic pathway. We have analyzed the gene cluster dose effect on penicillin production using the high-yielding P. chrysogenum strain DS17690 that was cured from its native clusters. The amount of penicillin V produced increased with the penicillin biosynthetic gene cluster number but was saturated at high copy numbers. Likewise, transcript levels of the biosynthetic genes pcbAB [δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase], pcbC (isopenicillin N synthase), and penDE (acyltransferase) correlated with the cluster copy number. Remarkably, the protein level of acyltransferase, which localizes to peroxisomes, was saturated already at low cluster copy numbers. At higher copy numbers, intracellular levels of isopenicillin N increased, suggesting that the acyltransferase reaction presents a limiting step at a high gene dose. Since the number and appearance of the peroxisomes did not change significantly with the gene cluster copy number, we conclude that the acyltransferase activity is limiting for penicillin biosynthesis at high biosynthetic gene cluster copy numbers. These results suggest that at a high penicillin production level, productivity is limited by the peroxisomal acyltransferase import activity and/or the availability of coenzyme A (CoA)-activated side chains.

  19. Improving the computational efficiency of recursive cluster elimination for gene selection.

    PubMed

    Luo, Lin-Kai; Huang, Deng-Feng; Ye, Ling-Jun; Zhou, Qi-Feng; Shao, Gui-Fang; Peng, Hong

    2011-01-01

    The gene expression data are usually provided with a large number of genes and a relatively small number of samples, which brings a lot of new challenges. Selecting those informative genes becomes the main issue in microarray data analysis. Recursive cluster elimination based on support vector machine (SVM-RCE) has shown the better classification accuracy on some microarray data sets than recursive feature elimination based on support vector machine (SVM-RFE). However, SVM-RCE is extremely time-consuming. In this paper, we propose an improved method of SVM-RCE called ISVM-RCE. ISVM-RCE first trains a SVM model with all clusters, then applies the infinite norm of weight coefficient vector in each cluster to score the cluster, finally eliminates the gene clusters with the lowest score. In addition, ISVM-RCE eliminates genes within the clusters instead of removing a cluster of genes when the number of clusters is small. We have tested ISVM-RCE on six gene expression data sets and compared their performances with SVM-RCE and linear-discriminant-analysis-based RFE (LDA-RFE). The experiment results on these data sets show that ISVM-RCE greatly reduces the time cost of SVM-RCE, meanwhile obtains comparable classification performance as SVM-RCE, while LDA-RFE is not stable.

  20. Genes for iron-sulphur cluster assembly are targets of abiotic stress in rice, Oryza sativa.

    PubMed

    Liang, Xuejiao; Qin, Lu; Liu, Peiwei; Wang, Meihuan; Ye, Hong

    2014-03-01

    Iron-sulphur (Fe-S) cluster assembly occurs in chloroplasts, mitochondria and cytosol, involving dozens of genes in higher plants. In this study, we have identified 41 putative Fe-S cluster assembly genes in rice (Oryza sativa) genome, and the expression of all genes was verified. To investigate the role of Fe-S cluster assembly as a metabolic pathway, we applied abiotic stresses to rice seedlings and analysed Fe-S cluster assembly gene expression by qRT-PCR. Our data showed that genes for Fe-S cluster assembly in chloroplasts of leaves are particularly sensitive to heavy metal treatments, and that Fe-S cluster assembly genes in roots were up-regulated in response to iron toxicity, oxidative stress and some heavy metal assault. The effect of each stress treatment on the Fe-S cluster assembly machinery demonstrated an unexpected tissue or organelle specificity, suggesting that the physiological relevance of the Fe-S cluster assembly is more complex than thought. Furthermore, our results may reveal potential candidate genes for molecular breeding of rice.

  1. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    DOE PAGES

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; ...

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bontmore » gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.« less

  2. Using Multi-Instance Hierarchical Clustering Learning System to Predict Yeast Gene Function

    PubMed Central

    Liao, Bo; Li, Yun; Jiang, Yan; Cai, Lijun

    2014-01-01

    Time-course gene expression datasets, which record continuous biological processes of genes, have recently been used to predict gene function. However, only few positive genes can be obtained from annotation databases, such as gene ontology (GO). To obtain more useful information and effectively predict gene function, gene annotations are clustered together to form a learnable and effective learning system. In this paper, we propose a novel multi-instance hierarchical clustering (MIHC) method to establish a learning system by clustering GO and compare this method with other learning system establishment methods. Multi-label support vector machine classifier and multi-label K-nearest neighbor classifier are used to verify these methods in four yeast time-course gene expression datasets. The MIHC method shows good performance, which serves as a guide to annotators or refines the annotation in detail. PMID:24621610

  3. The urease gene cluster of Vibrio parahaemolyticus does not influence the expression of the thermostable direct hemolysin (TDH) gene or the TDH-related hemolysin gene.

    PubMed

    Nakaguchi, Yoshitsugu; Okuda, Jun; Iida, Tetsuya; Nishibuchi, Mitsuaki

    2003-01-01

    In order to investigate why the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH) of Vibrio parahaemolyticus are produced at low levels from urease-positive strains, the effect of the functional urease gene cluster of V. parahaemolyticus on the expression of the tdh and trh genes was examined. Transcriptional lacZ fusions with the tdh1, tdh2, trh1 and trh2 genes representing variants of the tdh and trh genes were integrated into the chromosome of an Escherichia coli strain and a urease-negative V. parahaemolyticus strain. The plasmid-borne urease gene cluster introduced and expressed in these constructs did not affect expression of any of the fusion genes. The amount of TDH produced from a Kanagawa phenomenon-positive V. parahaemolyticus did not change by introduction of the urease gene cluster either. It was concluded therefore that the urease gene cluster is not involved in the regulation of tdh and trh expression.

  4. Co-option and evolution of non-olfactory proteinaceous pheromones in a terrestrial lungless salamander.

    PubMed

    Doty, Kari A; Wilburn, Damien B; Bowen, Kathleen E; Feldhoff, Pamela W; Feldhoff, Richard C

    2016-03-01

    Gene co-option is a major force in the evolution of novel biological functions. In plethodontid salamanders, males deliver proteinaceous courtship pheromones to the female olfactory system or transdermally to the bloodstream. Molecular studies identified three families of highly duplicated, rapidly evolving pheromones (PRF, PMF, and SPF). Analyses for Plethodon salamanders revealed pheromone mixtures of primarily PRF and PMF. The current study demonstrates that in Desmognathus ocoee--a plesiomorphic species with transdermal delivery--SPF is the major pheromone component representing >30% of total protein. Chromatographic profiles of D. ocoee pheromones were consistent from May through October. LC/MS-MS analysis suggested uniform SPF isoform expression between individual male D. ocoee. A gene ancestry for SPF with the Three-Finger Protein superfamily was supported by intron-exon boundaries, but not by the disulfide bonding pattern. Further analysis of the pheromone mixture revealed paralogs to peptide hormones that contained mutations in receptor binding regions, such that these novel molecules may alter female physiology by acting as hormone agonists/antagonists. Cumulatively, gene co-option, duplication, and neofunctionalization have permitted recruitment of additional gene families for pheromone activity. Such independent co-option events may be playing a key role in salamander speciation by altering male traits that influence reproductive success.

  5. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters

    PubMed Central

    Seyedsayamdost, Mohammad R.

    2014-01-01

    Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as “cryptic” or “silent” to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria. PMID:24808135

  6. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    PubMed Central

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  7. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites

    PubMed Central

    KOMATSU, MAMORU; KOMATSU, KYOKO; KOIWAI, HANAE; YAMADA, YUUKI; KOZONE, IKUKO; IZUMIKAWA, MIHO; HASHIMOTO, JUNKO; TAKAGI, MOTOKI; OMURA, SATOSHI; SHIN-YA, KAZUO; CANE, DAVID E.; IKEDA, HARUO

    2014-01-01

    An industrial microorganism Streptomyces avermitilis, which is a producer of anthelmintic macrocyclic lactones, avermectins, has been constructed as a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis. Twenty of the entire biosynthetic gene clusters for secondary metabolites were successively cloned and introduced into a versatile model host S. avermitilis SUKA17 or 22. Almost all S. avermitilis transformants carrying the entire gene cluster produced metabolites as a result of the expression of biosynthetic gene clusters introduced. A few transformants were unable to produce metabolites but their production was restored by the expression of biosynthetic genes using an alternative promoter or the expression of a regulatory gene in the gene cluster that controls the expression of biosynthetic genes in the cluster using an alternative promoter. Production of metabolites in some transformants of the versatile host was higher than that of the original producers and cryptic biosynthetic gene clusters in the original producer were also expressed in a versatile host. PMID:23654282

  8. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters.

    PubMed

    Du, Deyao; Zhu, Yu; Wei, Junhong; Tian, Yuqing; Niu, Guoqing; Tan, Huarong

    2013-07-01

    Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.

  9. Two Neuronal G Proteins Are Involved in Chemosensation of the Caenorhabditis Elegans Dauer-Inducing Pheromone

    PubMed Central

    Zwaal, R. R.; Mendel, J. E.; Sternberg, P. W.; Plasterk, RHA.

    1997-01-01

    Caenorhabditis elegans uses chemosensation to determine its course of development. Young larvae can arrest as dauer larvae in response to increasing population density, which they measure by a nematode-excreted pheromone, and decreasing food supply. Dauer larvae can resume development in response to a decrease in pheromone and increase in food concentration. We show here that two novel G protein alpha subunits (GPA-2 and GPA-3) show promoter activity in subsets of chemosensory neurons and are involved in the decision to form dauer larvae primarily through the response to dauer pheromone. Dominant activating mutations in these G proteins result in constitutive, pheromone-independent dauer formation, whereas inactivation results in reduced sensitivity to pheromone, and, under certain conditions, an alteration in the response to food. Interactions between gpa-2, gpa-3 and other genes controlling dauer formation suggest that these G proteins may act in parallel to regulate the neuronal decision making that precedes dauer formation. PMID:9055081

  10. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis.

    PubMed

    Ikeda, Atsuko; Muneoka, Tetsuya; Murakami, Suguru; Hirota, Ayaka; Yabuki, Yukari; Karashima, Takefumi; Nakazono, Kota; Tsuruno, Masahiro; Pichler, Harald; Shirahige, Katsuhiko; Kodama, Yukiko; Shimamoto, Toshi; Mizuta, Keiko; Funato, Kouichi

    2015-07-15

    In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.

  11. The B-type lamin is required for somatic repression of testis-specific gene clusters

    PubMed Central

    Shevelyov, Y. Y.; Lavrov, S. A.; Mikhaylova, L. M.; Nurminsky, I. D.; Kulathinal, R. J.; Egorova, K. S.; Rozovsky, Y. M.; Nurminsky, D. I.

    2009-01-01

    Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of diverse species. The genes coordinately misexpressed in diverse diseases are also found in similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression of large multigenic regions both in normal development and in its pathological disruptions. Studies on individual loci suggest that silent clusters of coregulated genes are embedded in repressed chromatin domains, often localized to the nuclear periphery. To test this model at the genome-wide scale, we studied transcriptional regulation of large testis-specific gene clusters in somatic tissues of Drosophila. These gene clusters showed a drastic paucity of known expressed transgene insertions, indicating that they indeed are embedded in repressed chromatin. Bioinformatics analysis suggested the major role for the B-type lamin, LamDmo, in repression of large testis-specific gene clusters, showing that in somatic cells as many as three-quarters of these clusters interact with LamDmo. Ablation of LamDmo by using mutants and RNAi led to detachment of testis-specific clusters from nuclear envelope and to their selective transcriptional up-regulation in somatic cells, thus providing the first direct evidence for involvement of the B-type lamin in tissue-specific gene repression. Finally, we found that transcriptional activation of the lamina-bound testis-specific gene cluster in male germ line is coupled with its translocation away from the nuclear envelope. Our studies, which directly link nuclear architecture with coordinated regulation of tissue-specific genes, advance understanding of the mechanisms underlying both normal cell differentiation and developmental disorders caused by lesions in the B-type lamins and interacting proteins. PMID:19218438

  12. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine

    PubMed Central

    Hsu, Chih-Yao; Wu, Chung-Shien; Chaw, Shu-Miaw

    2016-01-01

    Many genes in the plastid genomes (plastomes) of plants are organized as gene clusters, in which genes are co-transcribed, resembling bacterial operons. These plastid operons are highly conserved, even among conifers, whose plastomes are highly rearranged relative to other seed plants. We have determined the complete plastome sequence of Sciadopitys verticillata (Japanese umbrella pine), the sole member of Sciadopityaceae. The Sciadopitys plastome is characterized by extensive inversions, pseudogenization of four tRNA genes after tandem duplications, and a unique pair of 370-bp inverted repeats involved in the formation of isomeric plastomes. We showed that plastomic inversions in Sciadopitys have led to shuffling of the remote conserved operons, resulting in the birth of four chimeric gene clusters. Our data also demonstrated that the relocated genes can be co-transcribed in these chimeric gene clusters. The plastome of Sciadopitys advances our current understanding of how the conifer plastomes have evolved toward increased diversity and complexity. PMID:27269365

  13. Identification and characterization of a fatty acyl reductase from a Spodoptera littoralis female gland involved in pheromone biosynthesis.

    PubMed

    Carot-Sans, G; Muñoz, L; Piulachs, M D; Guerrero, A; Rosell, G

    2015-02-01

    Fatty acyl-CoA reductases (FARs), the enzymes that catalyse reduction of a fatty acyl-CoA to the corresponding alcohol in insect pheromone biosynthesis, are postulated to play an important role in determining the proportion of each component in the pheromone blend. For the first time, we have isolated and characterized from the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae) a FAR cDNA (Slit-FAR1), which appeared to be expressed only in the pheromone gland and was undetectable in other female tissues, such as fat body, ovaries, wings, legs or thorax. The encoded protein has been successfully expressed in a recombinant system, and the recombinant enzyme is able to produce the intermediate fatty acid alcohols of the pheromone biosynthesis of S. littoralis from the corresponding acyl-CoA precursors. The kinetic variables Km and Vmax, which have been calculated for each acyl-CoA pheromone precursor, suggest that in S. littoralis pheromone biosynthesis other biosynthetic enzymes (e.g. desaturases, acetyl transferase) should also contribute to the final ratio of components of the pheromone blend. In a phylogenetic analysis, Slit-FAR1 appeared grouped in a cluster of other FARs involved in the pheromone biosynthesis of other insects, with little or non-specificity for the natural pheromone precursors.

  14. Origin and diversification of a salamander sex pheromone system.

    PubMed

    Janssenswillen, Sunita; Vandebergh, Wim; Treer, Dag; Willaert, Bert; Maex, Margo; Van Bocxlaer, Ines; Bossuyt, Franky

    2015-02-01

    Sex pheromones form an important facet of reproductive strategies in many organisms throughout the Animal Kingdom. One of the oldest known sex pheromones in vertebrates are proteins of the Sodefrin Precursor-like Factor (SPF) system, which already had a courtship function in early salamanders. The subsequent evolution of salamanders is characterized by a diversification in courtship and reproduction, but little is known on how the SPF pheromone system diversified in relation to changing courtship strategies. Here, we combined transcriptomic, genomic, and phylogenetic analyses to investigate the evolution of the SPF pheromone system in nine salamandrid species with distinct courtship displays. First, we show that SPF originated from vertebrate three-finger proteins and diversified through multiple gene duplications in salamanders, while remaining a single copy in frogs. Next, we demonstrate that tail-fanning newts have retained a high phylogenetic diversity of SPFs, whereas loss of tail-fanning has been associated with a reduced importance or loss of SPF expression in the cloacal region. Finally, we show that the attractant decapeptide sodefrin is cleaved from larger SPF precursors that originated by a 62 bp insertion and consequent frameshift in an ancestral Cynops lineage. This led to the birth of a new decapeptide that rapidly evolved a pheromone function independently from uncleaved proteins.

  15. Improved efficiency in amplification of Escherichia coli o-antigen gene clusters using genome-wide sequence comparison

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: In many bacteria including E. coli, genes encoding O-antigens are clustered in the chromosome, with a 39-bp JUMPstart sequence and gnd gene located upstream and downstream of the cluster, respectively. For determining the DNA sequence of the E. coli O-antigen gene cluster, one set of P...

  16. Comparative and Genetic Analyses of the Putative Vibrio cholerae Lipopolysaccharide Core Oligosaccharide Biosynthesis (wav) Gene Cluster

    PubMed Central

    Nesper, Jutta; Kraiß, Anita; Schild, Stefan; Blaβ, Julia; Klose, Karl E.; Bockemühl, Jochen; Reidl, Joachim

    2002-01-01

    We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence. PMID:11953379

  17. Isolation and Characterization of the Gibberellin Biosynthetic Gene Cluster in Sphaceloma manihoticola▿ †

    PubMed Central

    Bömke, Christiane; Rojas, Maria Cecilia; Gong, Fan; Hedden, Peter; Tudzynski, Bettina

    2008-01-01

    Gibberellins (GAs) are tetracyclic diterpenoid phytohormones that were first identified as secondary metabolites of the fungus Fusarium fujikuroi (teleomorph, Gibberella fujikuroi). GAs were also found in the cassava pathogen Sphaceloma manihoticola, but the spectrum of GAs differed from that in F. fujikuroi. In contrast to F. fujikuroi, the GA biosynthetic pathway has not been studied in detail in S. manihoticola, and none of the GA biosynthetic genes have been cloned from the species. Here, we present the identification of the GA biosynthetic gene cluster from S. manihoticola consisting of five genes encoding a bifunctional ent-copalyl/ent-kaurene synthase (CPS/KS), a pathway-specific geranylgeranyl diphosphate synthase (GGS2), and three cytochrome P450 monooxygenases. The functions of all of the genes were analyzed either by a gene replacement approach or by complementing the corresponding F. fujikuroi mutants. The cluster organization and gene functions are similar to those in F. fujikuroi. However, the two border genes in the Fusarium cluster encoding the GA4 desaturase (DES) and the 13-hydroxylase (P450-3) are absent in the S. manihoticola GA gene cluster, consistent with the spectrum of GAs produced by this fungus. The close similarity between the two GA gene clusters, the identical gene functions, and the conserved intron positions suggest a common evolutionary origin despite the distant relatedness of the two fungi. PMID:18567680

  18. A rough set based rational clustering framework for determining correlated genes.

    PubMed

    Jeyaswamidoss, Jeba Emilyn; Thangaraj, Kesavan; Ramar, Kadarkarai; Chitra, Muthusamy

    2016-06-01

    Cluster analysis plays a foremost role in identifying groups of genes that show similar behavior under a set of experimental conditions. Several clustering algorithms have been proposed for identifying gene behaviors and to understand their significance. The principal aim of this work is to develop an intelligent rough clustering technique, which will efficiently remove the irrelevant dimensions in a high-dimensional space and obtain appropriate meaningful clusters. This paper proposes a novel biclustering technique that is based on rough set theory. The proposed algorithm uses correlation coefficient as a similarity measure to simultaneously cluster both the rows and columns of a gene expression data matrix and mean squared residue to generate the initial biclusters. Furthermore, the biclusters are refined to form the lower and upper boundaries by determining the membership of the genes in the clusters using mean squared residue. The algorithm is illustrated with yeast gene expression data and the experiment proves the effectiveness of the method. The main advantage is that it overcomes the problem of selection of initial clusters and also the restriction of one object belonging to only one cluster by allowing overlapping of biclusters.

  19. Modeling and visualizing uncertainty in gene expression clusters using dirichlet process mixtures.

    PubMed

    Rasmussen, Carl Edward; de la Cruz, Bernard J; Ghahramani, Zoubin; Wild, David L

    2009-01-01

    Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture (DPM) models provide a nonparametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model-based clustering methods have been to short time series data. In this paper, we present a case study of the application of nonparametric Bayesian clustering methods to the clustering of high-dimensional nontime series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a DPM model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.

  20. Regulation of Isoprenoid Pheromone Biosynthesis in Bumblebee Males.

    PubMed

    Prchalová, Darina; Buček, Aleš; Brabcová, Jana; Žáček, Petr; Kindl, Jiří; Valterová, Irena; Pichová, Iva

    2016-02-02

    Males of the closely related species Bombus terrestris and Bombus lucorum attract conspecific females by completely different marking pheromones. MP of B. terrestris and B. lucorum pheromones contain mainly isoprenoid (ISP) compounds and fatty acid derivatives, respectively. Here, we studied the regulation of ISP biosynthesis in both bumblebees. RNA-seq and qRT-PCR analyses indicated that acetoacetyl-CoA thiolase (AACT), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and farnesyl diphosphate synthase (FPPS) transcripts are abundant in the B. terrestris labial gland. Maximal abundance of these transcripts correlated well with AACT enzymatic activity detected in the LG extracts. In contrast, transcript abundances of AACT, HMGR, and FPPS in B. lucorum were low, and AACT activity was not detected in LGs. These results suggest that transcriptional regulation plays a key role in the control of ISP biosynthetic gene expression and ISP pheromone biosynthesis in bumblebee males.

  1. Leveraging long sequencing reads to investigate R-gene clustering and variation in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-pathogen interactions are of prime importance to modern agriculture. Plants utilize various types of resistance genes to mitigate pathogen damage. Identification of the specific gene responsible for a specific resistance can be difficult due to duplication and clustering within R-gene families....

  2. The joy of sex pheromones

    PubMed Central

    Gomez-Diaz, Carolina; Benton, Richard

    2013-01-01

    Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems. EMBO reports advance online publication 13 September 2013; doi:10.1038/embor.2013.140 PMID:24030282

  3. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    PubMed

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of E<10(-5)) are included in 27 clusters. Five clusters are associated with metabolism, containing P450 genes restricted to the Brassica family and predicted to be involved in secondary metabolism. Operon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary

  4. Pheromone-inducible conjugation in Enterococcus faecalis

    PubMed Central

    Kozlowicz, Briana K.; Dworkin, Martin; Dunny, Gary M.

    2009-01-01

    Pheromone-inducible transfer of the plasmid pCF10 in Enterococcus faecalis is regulated using a complicated network of proteins and RNAs. The plasmid itself has been assembled from parts garnered from a variety of sources, and many aspects of the system resemble a biological kluge. Recently several new functions of various pCF10 gene products that participate in regulation of plasmid transfer have been identified. The results indicate that selective pressures controlling the evolution of the plasmid have produced a highly complex regulatory network with multiple biological functions that may serve well as a model for the evolution of biological complexity. PMID:16503196

  5. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    PubMed Central

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on

  6. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea.

    PubMed

    Larsson, John; Celepli, Narin; Ininbergs, Karolina; Dupont, Christopher L; Yooseph, Shibu; Bergman, Bigitta; Ekman, Martin

    2014-09-01

    Photoautotrophic picocyanobacteria harvest light via phycobilisomes (PBS) consisting of the pigments phycocyanin (PC) and phycoerythrin (PE), encoded by genes in conserved gene clusters. The presence and arrangement of these gene clusters give picocyanobacteria characteristic light absorption properties and allow the colonization of specific ecological niches. To date, a full understanding of the evolution and distribution of the PBS gene cluster in picocyanobacteria has been hampered by the scarcity of genome sequences from fresh- and brackish water-adapted strains. To remediate this, we analysed genomes assembled from metagenomic samples collected along a natural salinity gradient, and over the course of a growth season, in the Baltic Sea. We found that while PBS gene clusters in picocyanobacteria sampled in marine habitats were highly similar to known references, brackish-adapted genotypes harboured a novel type not seen in previously sequenced genomes. Phylogenetic analyses showed that the novel gene cluster belonged to a clade of uncultivated picocyanobacteria that dominate the brackish Baltic Sea throughout the summer season, but are uncommon in other examined aquatic ecosystems. Further, our data suggest that the PE genes were lost in the ancestor of PC-containing coastal picocyanobacteria and that multiple horizontal gene transfer events have re-introduced PE genes into brackish-adapted strains, including the novel clade discovered here.

  7. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    PubMed

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification.

  8. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition

    PubMed Central

    Fu, Jun; Wenzel, Silke C.; Perlova, Olena; Wang, Junping; Gross, Frank; Tang, Zhiru; Yin, Yulong; Stewart, A. Francis; Zhang, Youming

    2008-01-01

    Horizontal gene transfer by transposition has been widely used for transgenesis in prokaryotes. However, conjugation has been preferred for transfer of large transgenes, despite greater restrictions of host range. We examine the possibility that transposons can be used to deliver large transgenes to heterologous hosts. This possibility is particularly relevant to the expression of large secondary metabolite gene clusters in various heterologous hosts. Recently, we showed that the engineering of large gene clusters like type I polyketide/nonribosomal peptide pathways for heterologous expression is no longer a bottleneck. Here, we apply recombineering to engineer either the epothilone (epo) or myxochromide S (mchS) gene cluster for transpositional delivery and expression in heterologous hosts. The 58-kb epo gene cluster was fully reconstituted from two clones by stitching. Then, the epo promoter was exchanged for a promoter active in the heterologous host, followed by engineering into the MycoMar transposon. A similar process was applied to the mchS gene cluster. The engineered gene clusters were transferred and expressed in the heterologous hosts Myxococcus xanthus and Pseudomonas putida. We achieved the largest transposition yet reported for any system and suggest that delivery by transposon will become the method of choice for delivery of large transgenes, particularly not only for metabolic engineering but also for general transgenesis in prokaryotes and eukaryotes. PMID:18701643

  9. Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia farcinica▿ §

    PubMed Central

    Hoshino, Yasutaka; Chiba, Kazuhiro; Ishino, Keiko; Fukai, Toshio; Igarashi, Yasuhiro; Yazawa, Katsukiyo; Mikami, Yuzuru; Ishikawa, Jun

    2011-01-01

    We identified the biosynthetic gene clusters of the siderophore nocobactin NA. The nbt clusters, which were discovered as genes highly homologous to the mycobactin biosynthesis genes by the genomic sequencing of Nocardia farcinica IFM 10152, consist of 10 genes separately located at two genomic regions. The gene organization of the nbt clusters and the predicted functions of the nbt genes, particularly the cyclization and epimerization domains, were in good agreement with the chemical structure of nocobactin NA. Disruptions of the nbtA and nbtE genes, respectively, reduced and abolished the productivity of nocobactin NA. The heterologous expression of the nbtS gene revealed that this gene encoded a salicylate synthase. These results indicate that the nbt clusters are responsible for the biosynthesis of nocobactin NA. We also found putative IdeR-binding sequences upstream of the nbtA, -G, -H, -S, and -T genes, whose expression was more than 10-fold higher in the low-iron condition than in the high-iron condition. These results suggest that nbt genes are regulated coordinately by IdeR protein in an iron-dependent manner. The ΔnbtE mutant was found to be impaired in cytotoxicity against J774A.1 cells, suggesting that nocobactin NA production is required for virulence of N. farcinica. PMID:21097631

  10. Chiral methyl-branched pheromones.

    PubMed

    Ando, Tetsu; Yamakawa, Rei

    2015-07-01

    Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems.

  11. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  12. Comparative genomic analysis of secondary metabolite biosynthetic gene clusters in 207 isolates of Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are known for their ability to produce secondary metabolites (SMs), including plant hormones, pigments, mycotoxins, and other compounds with potential agricultural, pharmaceutical, and biotechnological impact. Understanding the distribution of SM biosynthetic gene clusters across th...

  13. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    DOE PAGES

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; ...

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance

  14. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    SciTech Connect

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong -Guan; Tiedje, James M.

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of

  15. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    SciTech Connect

    Data Analysis and Visualization and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  16. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster.

    PubMed

    Vicente, M; Gomez, M J; Ayala, J A

    1998-04-01

    The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles.

  17. A stationary wavelet entropy-based clustering approach accurately predicts gene expression.

    PubMed

    Nguyen, Nha; Vo, An; Choi, Inchan; Won, Kyoung-Jae

    2015-03-01

    Studying epigenetic landscapes is important to understand the condition for gene regulation. Clustering is a useful approach to study epigenetic landscapes by grouping genes based on their epigenetic conditions. However, classical clustering approaches that often use a representative value of the signals in a fixed-sized window do not fully use the information written in the epigenetic landscapes. Clustering approaches to maximize the information of the epigenetic signals are necessary for better understanding gene regulatory environments. For effective clustering of multidimensional epigenetic signals, we developed a method called Dewer, which uses the entropy of stationary wavelet of epigenetic signals inside enriched regions for gene clustering. Interestingly, the gene expression levels were highly correlated with the entropy levels of epigenetic signals. Dewer separates genes better than a window-based approach in the assessment using gene expression and achieved a correlation coefficient above 0.9 without using any training procedure. Our results show that the changes of the epigenetic signals are useful to study gene regulation.

  18. Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33.

    PubMed

    Achour-Rokbani, Asma; Cordi, Audrey; Poupin, Pascal; Bauda, Pascale; Billard, Patrick

    2010-02-01

    The arsenic resistance gene cluster of Microbacterium sp. A33 contains a novel pair of genes (arsTX) encoding a thioredoxin system that are cotranscribed with an unusual arsRC2 fusion gene, ACR3, and arsC1 in an operon divergent from arsC3. The whole ars gene cluster is required to complement an Escherichia coli ars mutant. ArsRC2 negatively regulates the expression of the pentacistronic operon. ArsC1 and ArsC3 are related to thioredoxin-dependent arsenate reductases; however, ArsC3 lacks the two distal catalytic cysteine residues of this class of enzymes.

  19. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  20. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, genes involved in biosynthesis of a secondary metabolite (SM) are often located adjacent to one another in the genome and are coordinately regulated. These SM biosynthetic gene clusters typically encode enzymes, one or more transcription factors, and a transport protein. Fusaric acid is a ...

  1. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties.

    PubMed

    Schiemann, Sabrina M; Martín-Durán, José M; Børve, Aina; Vellutini, Bruno C; Passamaneck, Yale J; Hejnol, Andreas

    2017-02-22

    Temporal collinearity is often considered the main force preserving Hox gene clusters in animal genomes. Studies that combine genomic and gene expression data are scarce, however, particularly in invertebrates like the Lophotrochozoa. As a result, the temporal collinearity hypothesis is currently built on poorly supported foundations. Here we characterize the complement, cluster, and expression of Hox genes in two brachiopod species, Terebratalia transversa and Novocrania anomalaT. transversa has a split cluster with 10 genes (lab, pb, Hox3, Dfd, Scr, Lox5, Antp, Lox4, Post2, and Post1), whereas N. anomala has 9 genes (apparently missing Post1). Our in situ hybridization, real-time quantitative PCR, and stage-specific transcriptomic analyses show that brachiopod Hox genes are neither strictly temporally nor spatially collinear; only pb (in T. transversa), Hox3 (in both brachiopods), and Dfd (in both brachiopods) show staggered mesodermal expression. Thus, our findings support the idea that temporal collinearity might contribute to keeping Hox genes clustered. Remarkably, expression of the Hox genes in both brachiopod species demonstrates cooption of Hox genes in the chaetae and shell fields, two major lophotrochozoan morphological novelties. The shared and specific expression of Hox genes, together with Arx, Zic, and Notch pathway components in chaetae and shell fields in brachiopods, mollusks, and annelids provide molecular evidence supporting the conservation of the molecular basis for these lophotrochozoan hallmarks.

  2. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties

    PubMed Central

    Schiemann, Sabrina M.; Martín-Durán, José M.; Børve, Aina; Passamaneck, Yale J.

    2017-01-01

    Temporal collinearity is often considered the main force preserving Hox gene clusters in animal genomes. Studies that combine genomic and gene expression data are scarce, however, particularly in invertebrates like the Lophotrochozoa. As a result, the temporal collinearity hypothesis is currently built on poorly supported foundations. Here we characterize the complement, cluster, and expression of Hox genes in two brachiopod species, Terebratalia transversa and Novocrania anomala. T. transversa has a split cluster with 10 genes (lab, pb, Hox3, Dfd, Scr, Lox5, Antp, Lox4, Post2, and Post1), whereas N. anomala has 9 genes (apparently missing Post1). Our in situ hybridization, real-time quantitative PCR, and stage-specific transcriptomic analyses show that brachiopod Hox genes are neither strictly temporally nor spatially collinear; only pb (in T. transversa), Hox3 (in both brachiopods), and Dfd (in both brachiopods) show staggered mesodermal expression. Thus, our findings support the idea that temporal collinearity might contribute to keeping Hox genes clustered. Remarkably, expression of the Hox genes in both brachiopod species demonstrates cooption of Hox genes in the chaetae and shell fields, two major lophotrochozoan morphological novelties. The shared and specific expression of Hox genes, together with Arx, Zic, and Notch pathway components in chaetae and shell fields in brachiopods, mollusks, and annelids provide molecular evidence supporting the conservation of the molecular basis for these lophotrochozoan hallmarks. PMID:28228521

  3. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    SciTech Connect

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  4. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    SciTech Connect

    Cameron, R A; Rowen, L; Nesbitt, R; Bloom, S; Rast, J P; Berney, K; Arenas-Mena, C; Martinez, P; Lucas, S; Richardson, P M; Davidson, E H; Peterson, K J; Hood, L

    2005-10-11

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is : 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  5. United we stand: big roles for small RNA gene clusters.

    PubMed

    Felden, Brice; Paillard, Luc

    2017-02-01

    Prokaryotes and eukaryotes evolved relatively similar RNA-based molecular mechanisms to fight potentially deleterious nucleic acids coming from phages, transposons, or viruses. Short RNAs guide effector complexes toward their targets to be silenced or eliminated. These short immunity RNAs are transcribed from clustered loci. Unexpectedly and strikingly, bacterial and eukaryotic immunity RNA clusters share substantial functional and mechanistic resemblances in fighting nucleic acid intruders.

  6. Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products.

    PubMed

    Gubbens, Jacob; Zhu, Hua; Girard, Geneviève; Song, Lijiang; Florea, Bogdan I; Aston, Philip; Ichinose, Koji; Filippov, Dmitri V; Choi, Young H; Overkleeft, Herman S; Challis, Gregory L; van Wezel, Gilles P

    2014-06-19

    Information on gene clusters for natural product biosynthesis is accumulating rapidly because of the current boom of available genome sequencing data. However, linking a natural product to a specific gene cluster remains challenging. Here, we present a widely applicable strategy for the identification of gene clusters for specific natural products, which we name natural product proteomining. The method is based on using fluctuating growth conditions that ensure differential biosynthesis of the bioactivity of interest. Subsequent combination of metabolomics and quantitative proteomics establishes correlations between abundance of natural products and concomitant changes in the protein pool, which allows identification of the relevant biosynthetic gene cluster. We used this approach to elucidate gene clusters for different natural products in Bacillus and Streptomyces, including a novel juglomycin-type antibiotic. Natural product proteomining does not require prior knowledge of the gene cluster or secondary metabolite and therefore represents a general strategy for identification of all types of gene clusters.

  7. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters

    PubMed Central

    Gomez‐Escribano, Juan Pablo; Bibb, Mervyn J.

    2011-01-01

    Summary We have constructed derivatives of Streptomyces coelicolor M145 as hosts for the heterologous expression of secondary metabolite gene clusters. To remove potentially competitive sinks of carbon and nitrogen, and to provide a host devoid of antibiotic activity, we deleted four endogenous secondary metabolite gene clusters from S. coelicolor M145 – those for actinorhodin, prodiginine, CPK and CDA biosynthesis. We then introduced point mutations into rpoB and rpsL to pleiotropically increase the level of secondary metabolite production. Introduction of the native actinorhodin gene cluster and of gene clusters for the heterologous production of chloramphenicol and congocidine revealed dramatic increases in antibiotic production compared with the parental strain. In addition to lacking antibacterial activity, the engineered strains possess relatively simple extracellular metabolite profiles. When combined with liquid chromatography and mass spectrometry, we believe that these genetically engineered strains will markedly facilitate the discovery of new compounds by heterologous expression of cloned gene clusters, particularly the numerous cryptic secondary metabolic gene clusters that are prevalent within actinomycete genome sequences. PMID:21342466

  8. Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni

    PubMed Central

    Hoegg, Simone; Boore, Jeffrey L; Kuehl, Jennifer V; Meyer, Axel

    2007-01-01

    Background Teleost fish have seven paralogous clusters of Hox genes stemming from two complete genome duplications early in vertebrate evolution, and an additional genome duplication during the evolution of ray-finned fish, followed by the secondary loss of one cluster. Gene duplications on the one hand, and the evolution of regulatory sequences on the other, are thought to be among the most important mechanisms for the evolution of new gene functions. Cichlid fish, the largest family of vertebrates with about 2500 species, are famous examples of speciation and morphological diversity. Since this diversity could be based on regulatory changes, we chose to study the coding as well as putative regulatory regions of their Hox clusters within a comparative genomic framework. Results We sequenced and characterized all seven Hox clusters of Astatotilapia burtoni, a haplochromine cichlid fish. Comparative analyses with data from other teleost fish such as zebrafish, two species of pufferfish, stickleback and medaka were performed. We traced losses of genes and microRNAs of Hox clusters, the medaka lineage seems to have lost more microRNAs than the other fish lineages. We found that each teleost genome studied so far has a unique set of Hox genes. The hoxb7a gene was lost independently several times during teleost evolution, the most recent event being within the radiation of East African cichlid fish. The conserved non-coding sequences (CNS) encompass a surprisingly large part of the clusters, especially in the HoxAa, HoxCa, and HoxDa clusters. Across all clusters, we observe a trend towards an increased content of CNS towards the anterior end. Conclusion The gene content of Hox clusters in teleost fishes is more variable than expected, with each species studied so far having a different set. Although the highest loss rate of Hox genes occurred immediately after whole genome duplications, our analyses showed that gene loss continued and is still ongoing in all teleost

  9. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers.

    PubMed

    Holman, Luke; Trontti, Kalevi; Helanterä, Heikki

    2016-01-01

    DNA methylation is emerging as an important regulator of polyphenism in the social insects. Research has concentrated on differences in methylation between queens and workers, though we hypothesized that methylation is involved in mediating other flexible phenotypes, including pheromone-dependent changes in worker behaviour and physiology. Here, we find that exposure to queen pheromone affects the expression of two DNA methyltransferase genes in Apis mellifera honeybees and in two species of Lasius ants, but not in Bombus terrestris bumblebees. These results suggest that queen pheromones influence the worker methylome, pointing to a novel proximate mechanism for these key social signals.

  10. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers

    PubMed Central

    Holman, Luke; Trontti, Kalevi; Helanterä, Heikki

    2016-01-01

    DNA methylation is emerging as an important regulator of polyphenism in the social insects. Research has concentrated on differences in methylation between queens and workers, though we hypothesized that methylation is involved in mediating other flexible phenotypes, including pheromone-dependent changes in worker behaviour and physiology. Here, we find that exposure to queen pheromone affects the expression of two DNA methyltransferase genes in Apis mellifera honeybees and in two species of Lasius ants, but not in Bombus terrestris bumblebees. These results suggest that queen pheromones influence the worker methylome, pointing to a novel proximate mechanism for these key social signals. PMID:26814223

  11. Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones

    PubMed Central

    Cattaneo, Alberto Maria; Gonzalez, Francisco; Bengtsson, Jonas M.; Corey, Elizabeth A.; Jacquin-Joly, Emmanuelle; Montagné, Nicolas; Salvagnin, Umberto; Walker, William B.; Witzgall, Peter; Anfora, Gianfranco; Bobkov, Yuriy V.

    2017-01-01

    Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication. PMID:28117454

  12. Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones.

    PubMed

    Cattaneo, Alberto Maria; Gonzalez, Francisco; Bengtsson, Jonas M; Corey, Elizabeth A; Jacquin-Joly, Emmanuelle; Montagné, Nicolas; Salvagnin, Umberto; Walker, William B; Witzgall, Peter; Anfora, Gianfranco; Bobkov, Yuriy V

    2017-01-24

    Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication.

  13. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    PubMed Central

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  14. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    PubMed

    Glenn, Anthony E; Davis, C Britton; Gao, Minglu; Gold, Scott E; Mitchell, Trevor R; Proctor, Robert H; Stewart, Jane E; Snook, Maurice E

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence.

  15. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae.

    PubMed

    Chen, Huiqin; Lee, Miin-Huey; Daub, Margret E; Chung, Kuang-Ren

    2007-05-01

    We describe a core gene cluster, comprised of eight genes (designated CTB1-8), and associated with cercosporin toxin production in Cercospora nicotianae. Sequence analysis identified 10 putative open reading frames (ORFs) flanking the previously characterized CTB1 and CTB3 genes that encode, respectively, the polyketide synthase and a dual methyltransferase/monooxygenase required for cercosporin production. Expression of eight of the genes was co-ordinately induced under cercosporin-producing conditions and was regulated by the Zn(II)Cys(6) transcriptional activator, CTB8. Expression of the genes, affected by nitrogen and carbon sources and pH, was also controlled by another transcription activator, CRG1, previously shown to regulate cercosporin production and resistance. Disruption of the CTB2 gene encoding a methyltransferase or the CTB8 gene yielded mutants that were completely defective in cercosporin production and inhibitory expression of the other CTB cluster genes. Similar 'feedback' transcriptional inhibition was observed when the CTB1, or CTB3 but not CTB4 gene was inactivated. Expression of four ORFs located on the two distal ends of the cluster did not correlate with cercosporin biosynthesis and did not show regulation by CTB8, suggesting that the biosynthetic cluster was limited to CTB1-8. A biosynthetic pathway and a regulatory network leading to cercosporin formation are proposed.

  16. β-globin gene cluster haplotypes in ethnic minority populations of southwest China

    PubMed Central

    Sun, Hao; Liu, Hongxian; Huang, Kai; Lin, Keqin; Huang, Xiaoqin; Chu, Jiayou; Ma, Shaohui; Yang, Zhaoqing

    2017-01-01

    The genetic diversity and relationships among ethnic minority populations of southwest China were investigated using seven polymorphic restriction enzyme sites in the β-globin gene cluster. The haplotypes of 1392 chromosomes from ten ethnic populations living in southwest China were determined. Linkage equilibrium and recombination hotspot were found between the 5′ sites and 3′ sites of the β-globin gene cluster. 5′ haplotypes 2 (+−−−), 6 (−++−+), 9 (−++++) and 3′ haplotype FW3 (−+) were the predominant haplotypes. Notably, haplotype 9 frequency was significantly high in the southwest populations, indicating their difference with other Chinese. The interpopulation differentiation of southwest Chinese minority populations is less than those in populations of northern China and other continents. Phylogenetic analysis shows that populations sharing same ethnic origin or language clustered to each other, indicating current β-globin cluster diversity in the Chinese populations reflects their ethnic origin and linguistic affiliations to a great extent. This study characterizes β-globin gene cluster haplotypes in southwest Chinese minorities for the first time, and reveals the genetic variability and affinity of these populations using β-globin cluster haplotype frequencies. The results suggest that ethnic origin plays an important role in shaping variations of the β-globin gene cluster in the southwestern ethnic populations of China. PMID:28205625

  17. The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster

    PubMed Central

    Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.

    2013-01-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  18. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes.

    PubMed Central

    Smith, D J; Burnham, M K; Bull, J H; Hodgson, J E; Ward, J M; Browne, P; Brown, J; Barton, B; Earl, A J; Turner, G

    1990-01-01

    A cosmid clone containing closely linked beta-lactam antibiotic biosynthetic genes was isolated from a gene library of Flavobacterium sp. SC 12,154. The location within the cluster of the DNA thought to contain the gene for delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), the first step in the beta-lactam antibiotic biosynthetic pathway, was identified by a novel method. This DNA facilitated the isolation, by cross-hybridization, of the corresponding DNA from Streptomyces clavuligerus ATCC 27064, Penicillium chrysogenum Oli13 and Aspergillus nidulans R153. Evidence was obtained which confirmed that the cross-hybridizing sequences contained the ACVS gene. In each case the ACVS gene was found to be closely linked to other beta-lactam biosynthetic genes and constituted part of a gene cluster. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2107074

  19. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters

    PubMed Central

    Cimermancic, Peter; Medema, Marnix H.; Claesen, Jan; Kurita, Kenji; Wieland Brown, Laura C.; Mavrommatis, Konstantinos; Pati, Amrita; Godfrey, Paul A.; Koehrsen, Michael; Clardy, Jon; Birren, Bruce W.; Takano, Eriko; Sali, Andrej; Linington, Roger G.; Fischbach, Michael A.

    2014-01-01

    Summary Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology. PMID:25036635

  20. Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005

    PubMed Central

    Widdick, D. A.; Dodd, H. M.; Barraille, P.; White, J.; Stein, T. H.; Chater, K. F.; Gasson, M. J.; Bibb, M. J.

    2003-01-01

    Lantibiotics are ribosomally synthesized oligopeptide antibiotics that contain lanthionine bridges derived by the posttranslational modification of amino acid residues. Here, we describe the cinnamycin biosynthetic gene cluster (cin) from Streptomyces cinnamoneus cinnamoneus DSM 40005, the first, to our knowledge, lantibiotic gene cluster from a high G+C bacterium to be cloned and sequenced. The cin cluster contains many genes not found in lantibiotic clusters from low G+C Gram-positive bacteria, including a Streptomyces antibiotic regulatory protein regulatory gene, and lacks others found in such clusters, such as a LanT-type transporter and a LanP-type protease. Transfer of the cin cluster to Streptomyces lividans resulted in heterologous production of cinnamycin. Furthermore, modification of the cinnamycin structural gene (cinA) led to production of two naturally occurring lantibiotics, duramycin and duramycin B, closely resembling cinnamycin, whereas attempts to make a more widely diverged derivative, duramycin C, failed to generate biologically active material. These results provide a basis for future attempts to construct extensive libraries of cinnamycin variants. PMID:12642677

  1. Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts.

    PubMed

    Guo, Baocheng; Gan, Xiaoni; He, Shunping

    2010-03-15

    Compared with other diploid teleosts (2n=48), anguilloid fish have a specialized karyotype (2n=38) and remarkable morphological variation, and represent one basal group species of teleosts. To investigate the Hox gene/cluster inventory in basal teleosts, a PCR-based survey of Hox genes in the Japanese eel (Anguilla japonica) was conducted with both gene-specific and homeobox-targeted degenerate primers. Our data provide evidence that at least 34 distinct Hox genes exist in the Japanese eel genome and that they represent eight Hox clusters. Duplication of Hox genes in the Japanese eel appears to be the result of the fish-specific genome duplication (FSGD) event. The Japanese eel shared the FSGD event with other teleosts such as zebrafish and pufferfish. A member of Hox paralog group one (HoxA1b) was preserved in the Japanese eel but was lost in other teleosts. Available Hox data revealed that the Hox cluster evolved distinctly in different teleost lineages. All duplicated Hox clusters were retained after the FSGD event in basal teleosts like in the Japanese eel, whereas crown teleosts lost one cluster (HoxCb or HoxDb). Based on current teleostean phylogeny, the HoxDb cluster was lost independently in the teleost lineages Otocephala and Euteleostei.

  2. Shared Gene Structures and Clusters of Mutually Exclusive Spliced Exons within the Metazoan Muscle Myosin Heavy Chain Genes

    PubMed Central

    Kollmar, Martin; Hatje, Klas

    2014-01-01

    Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc) protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs). The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes) and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis). Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both) have independently been developed several times

  3. Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis

    PubMed Central

    2013-01-01

    Background The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868. Results The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases. Conclusions Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom. PMID:23688303

  4. Spider pheromones - a structural perspective.

    PubMed

    Schulz, Stefan

    2013-01-01

    Spiders use pheromones for sexual communication, as do other animals such as insects. Nevertheless, knowledge about their chemical structure, function, and biosynthesis is only now being unraveled. Many studies have shown the existence of spider pheromones, but the responsible compounds have been elucidated in only a few cases. This review focuses on a structural approach because we need to know the involved chemistry if we are to understand fully the function of a pheromonal communication system. Pheromones from members of the spider families Pholcidae, Araneidae, Linyphiidae, Agenelidae, and Ctenidae are currently being identified and will be discussed in this review. Some of these compounds belong to compound classes not known from other arthropod pheromones, such as citric acid derivatives or acylated amino acids, whereas others originate from more common fatty acid metabolism. Their putative biosynthesis, their function, and the identification methods used will be discussed. Furthermore, other semiochemicals and the chemistry of apolar surface lipids that potentially might be used by spiders for communication are described briefly.

  5. Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859.

    PubMed

    Cho, Hee-Jung; Park, Young-Jin; Noh, Tae-Hwan; Kim, Yeong-Tae; Kim, Jeong-Gu; Song, Eun-Sung; Lee, Dong-Hee; Lee, Byoung-Moo

    2008-06-01

    Xanthomonas oryzae pathovar oryzae is the causal agent of rice bacterial blight. The plant pathogenic bacterium X. oryzae pv. oryzae expresses a type III secretion system that is necessary for both the pathogenicity in susceptible hosts and the induction of the hypersensitive response in resistant plants. This specialized protein transport system is encoded by a 32.18kb hrp (hypersensitive response and pathogenicity) gene cluster. The hrp gene cluster is composed of nine hrp, nine hrc (hrp conserved) and eight hpa (hrp-associated) genes and is controlled by HrpG and HrpX, which are known as regulators of the hrp gene cluster. Before mutational analysis of these hrp genes, the transcriptional linkages of the core region of the hrp gene cluster from hpaB to hrcC of the X. oryzae pv. oryzae KACC10859 was determined and the non-polarity of EZTn5 insertional mutagenesis was demonstrated by reverse transcription polymerase chain reaction. Pathogenicity assays of these non-polar hrp mutants were carried out on the susceptible rice cultivar, Milyang-23. According to the results of these assays, all hrp-hrc, except hrpF, and hpaB mutants lost their pathogenicity, which indicates that most hrp-hrc genes encode essential pathogenicity factors. On the other hand, most hpa mutants showed decreased virulence in a different pattern, i.e., hpa genes are not essential but are important for pathogenicity.

  6. A block mixture model to map eQTLs for gene clustering and networking.

    PubMed

    Wang, Ningtao; Gosik, Kirk; Li, Runze; Lindsay, Bruce; Wu, Rongling

    2016-02-19

    To study how genes function in a cellular and physiological process, a general procedure is to classify gene expression profiles into categories based on their similarity and reconstruct a regulatory network for functional elements. However, this procedure has not been implemented with the genetic mechanisms that underlie the organization of gene clusters and networks, despite much effort made to map expression quantitative trait loci (eQTLs) that affect the expression of individual genes. Here we address this issue by developing a computational approach that integrates gene clustering and network reconstruction with genetic mapping into a unifying framework. The approach can not only identify specific eQTLs that control how genes are clustered and organized toward biological functions, but also enable the investigation of the biological mechanisms that individual eQTLs perturb in a signaling pathway. We applied the new approach to characterize the effects of eQTLs on the structure and organization of gene clusters in Caenorhabditis elegans. This study provides the first characterization, to our knowledge, of the effects of genetic variants on the regulatory network of gene expression. The approach developed can also facilitate the genetic dissection of other dynamic processes, including development, physiology and disease progression in any organisms.

  7. Degeneration of aflatoxin gene cluster in Aspergillus flavus from Africa and North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is the primary causal agent of food and feed contamination with the toxic fungal metabolites aflatoxins. Aflatoxin-producing potential of A. flavus is known to vary among isolates. The genes involved in aflatoxin biosynthesis are clustered together and the order of genes within th...

  8. Clustering change patterns using Fourier transformation with time-course gene expression data.

    PubMed

    Kim, Jaehee

    2011-01-01

    To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a period of time because biologically related gene groups can share the same change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. This work is aimed at discovering gene groups with similar change patterns which share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. We applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns.

  9. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates.

    PubMed

    Chang, Perng-Kuang; Horn, Bruce W; Dorner, Joe W

    2005-11-01

    Aspergillus flavus populations are genetically diverse. Isolates that produce either, neither, or both aflatoxins and cyclopiazonic acid (CPA) are present in the field. We investigated defects in the aflatoxin gene cluster in 38 nonaflatoxigenic A. flavus isolates collected from southern United States. PCR assays using aflatoxin-gene-specific primers grouped these isolates into eight (A-H) deletion patterns. Patterns C, E, G, and H, which contain 40 kb deletions, were examined for their sequence breakpoints. Pattern C has one breakpoint in the cypA 3' untranslated region (UTR) and another in the verA coding region. Pattern E has a breakpoint in the amdA coding region and another in the ver1 5'UTR. Pattern G contains a deletion identical to the one found in pattern C and has another deletion that extends from the cypA coding region to one end of the chromosome as suggested by the presence of telomeric sequence repeats, CCCTAATGTTGA. Pattern H has a deletion of the entire aflatoxin gene cluster from the hexA coding region in the sugar utilization gene cluster to the telomeric region. Thus, deletions in the aflatoxin gene cluster among A. flavus isolates are not rare, and the patterns appear to be diverse. Genetic drift may be a driving force that is responsible for the loss of the entire aflatoxin gene cluster in nonaflatoxigenic A. flavus isolates when aflatoxins have lost their adaptive value in nature.

  10. Fine mapping of disease genes via haplotype clustering.

    PubMed

    Waldron, E R B; Whittaker, J C; Balding, D J

    2006-02-01

    We propose an algorithm for analysing SNP-based population association studies, which is a development of that introduced by Molitor et al. [2003: Am J Hum Genet 73:1368-1384]. It uses clustering of haplotypes to overcome the major limitations of many current haplotype-based approaches. We define a between-haplotype score that is simple, yet appears to capture much of the information about evolutionary relatedness of the haplotypes in the vicinity of a (unobserved) putative causal locus. Haplotype clusters can then be defined via a putative ancestral haplotype and a cut-off distance. The number of an individual's two haplotypes that lie within the cluster predicts the individual's genotype at the causal locus. This predicted genotype can then be investigated for association with the phenotype of interest. We implement our approach within a Markov-chain Monte Carlo algorithm that, in effect, searches over locations and ancestral haplotypes to identify large, case-rich clusters. The algorithm successfully fine-maps a causal mutation in a test analysis using real data, and achieves almost 98% accuracy in predicting the genotype at the causal locus. A simulation study indicates that the new algorithm is substantially superior to alternative approaches, and it also allows us to identify situations in which multi-point approaches can substantially improve over single-SNP analyses. Our algorithm runs quickly and there is scope for extension to a wide range of disease models and genomic scales.

  11. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans.

    PubMed

    Neal, Scott J; Park, JiSoo; DiTirro, Danielle; Yoon, Jason; Shibuya, Mayumi; Choi, Woochan; Schroeder, Frank C; Butcher, Rebecca A; Kim, Kyuhyung; Sengupta, Piali

    2016-05-03

    Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.

  12. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans

    PubMed Central

    Neal, Scott J.; Park, JiSoo; DiTirro, Danielle; Yoon, Jason; Shibuya, Mayumi; Choi, Woochan; Schroeder, Frank C.; Butcher, Rebecca A.; Kim, Kyuhyung; Sengupta, Piali

    2016-01-01

    Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation. PMID:26976437

  13. Evidence for directional selection acting on pheromone-binding proteins in the genus Choristoneura.

    PubMed

    Willett, C S

    2000-04-01

    Patterns of nucleotide variation consistent with the action of natural selection have been discovered at a number of different gene loci. Here, pheromone-binding proteins (PBPs) are examined to determine if selection has acted to fix amino acid changes in PBPs in lineages in which pheromone changes have occurred. PBPs from five different species of moths in the genus Choristoneura were sequenced, along with the PBP of Argyrotaenia velutinana, which serves as an outgroup. Three independent major pheromone changes are represented within this group of five Choristoneura species. Two different lineages show evidence for selection based on polymorphism and divergence comparisons and comparisons of rates of replacement evolution to silent and noncoding evolution. Along one of these lineages, leading to Choristoneura fumiferana, there has been a change to an aldehyde pheromone from an acetate pheromone. The second branch does not appear to be associated with a major pheromone change. Other branches in the tree show a trend toward greater replacement fixation than expected under neutrality. This trend could reflect undetected selective events within this group of PBPs. Selection appears to have acted to fix amino acid changes in the PBP of moths from the genus Choristoneura, but it is not clear that this selection is due to pheromone changes between species.

  14. An ABC Transporter Is Required for Secretion of Peptide Sex Pheromones in Enterococcus faecalis

    PubMed Central

    Varahan, Sriram; Harms, Nathan; Gilmore, Michael S.; Tomich, John M.

    2014-01-01

    ABSTRACT Enterococci are leading causes of hospital-acquired infection in the United States and continue to develop resistances to new antibiotics. Many Enterococcus faecalis isolates harbor pheromone-responsive plasmids that mediate horizontal transfer of even large blocks of chromosomal genes, resulting in hospital-adapted strains over a quarter of whose genomes consist of mobile elements. Pheromones to which the donor cells respond derive from lipoprotein signal peptides. Using a novel bacterial killing assay dependent on the presence of sex pheromones, we screened a transposon mutant library for functions that relate to the production and/or activity of the effector pheromone. Here we describe a previously uncharacterized, but well-conserved, ABC transporter that contributes to pheromone production. Using three distinct pheromone-dependent mating systems, we show that mutants defective in expressing this transporter display a 5- to 6-order-of-magnitude reduction in conjugation efficiency. In addition, we demonstrate that the ABC transporter mutant displays an altered biofilm architecture, with a significant reduction in biofilm biomass compared to that of its isogenic parent, suggesting that pheromone activity also influences biofilm development. The conservation of this peptide transporter across the Firmicutes suggests that it may also play an important role in cell-cell communication in other species within this important phylum. PMID:25249282

  15. Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation.

    PubMed Central

    Caldwell, G A; Naider, F; Becker, J M

    1995-01-01

    In a variety of fungal species, mating between haploid cells is initiated by the action of peptide pheromones. The identification and characterization of several fungal pheromones has revealed that they have common structural features classifying them as lipopeptides. In the course of biosynthesis, these pheromones undergo a series of posttranslational processing events prior to export. One common modification is the attachment of an isoprenoid group to the C terminus of the pheromone precursor. Genetic and biochemical investigations of this biosynthetic pathway have led to the elucidation of genes and enzymes which are responsible for isoprenylation of other polypeptides including the nuclear lamins, several vesicular transport proteins, and the oncogene product Ras. The alpha-factor of Saccharomyces cerevisiae serves as a model for studying the biosynthesis, export, and bioactivity of lipopeptide pheromones. In addition to being isoprenylated with a farnesyl group, the alpha-factor is secreted by a novel peptide export pathway utilizing a yeast homolog of the mammalian multidrug resistance P-glycoprotein. The identification of putative lipopeptide-encoding loci within other fungi, including the human immunodeficiency virus-associated opportunistic pathogen Cryptococcus neoformans and the plant pathogen Ustilago maydis, has stimulated much interest in understanding possible roles for pheromones in fungal proliferation and pathogenicity. Knowledge of variations within the processing, export, and receptor-mediated signal transduction pathways associated with different fungal lipopeptide pheromones will continue to provide insights into similar mechanisms which exist in higher eukaryotes. PMID:7565412

  16. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  17. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    PubMed Central

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-01-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi. PMID:27143514

  18. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

    PubMed

    Lin, Wei; Pan, Yongxin

    2015-04-01

    The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature.

  19. Co-clustering phenome–genome for phenotype classification and disease gene discovery

    PubMed Central

    Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui

    2012-01-01

    Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708

  20. Paradigm of Tunable Clustering Using Binarization of Consensus Partition Matrices (Bi-CoPaM) for Gene Discovery

    PubMed Central

    Abu-Jamous, Basel; Fa, Rui; Roberts, David J.; Nandi, Asoke K.

    2013-01-01

    Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies. PMID:23409186

  1. Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis.

    PubMed

    Hidese, Ryota; Mihara, Hisaaki; Kurihara, Tatsuo; Esaki, Nobuyoshi

    2014-03-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-(14)C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-(14)C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.

  2. Trajectory Clustering: a Non-Parametric Method for Grouping Gene Expression Time Courses, with Applications to Mammary Development

    PubMed Central

    Phang, T.L.; Neville, M.C.; Rudolph, M.; Hunter, L.

    2008-01-01

    Trajectory clustering is a novel and statistically well-founded method for clustering time series data from gene expression arrays. Trajectory clustering uses non-parametric statistics and is hence not sensitive to the particular distributions underlying gene expression data. Each cluster is clearly defined in terms of direction of change of expression for successive time points (its ‘trajectory’), and therefore has easily appreciated biological meaning. Applying the method to a dataset from mouse mammary gland development, we demonstrate that it produces different clusters than Hierarchical, K-means, and Jackknife clustering methods, even when those methods are applied to differences between successive time points. Compared to all of the other methods, trajectory clustering was better able to match a manual clustering by a domain expert, and was better able to cluster groups of genes with known related functions. PMID:12603041

  3. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture

    PubMed Central

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong-Guan

    2016-01-01

    ABSTRACT   Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. PMID:27073098

  4. The role of nutrient regulation and the Gpa2 protein in the mating pheromone response of C. albicans.

    PubMed

    Bennett, Richard J; Johnson, Alexander D

    2006-10-01

    Although traditionally classified as asexual, the human fungal pathogen Candida albicans can undergo highly efficient mating. A key component of this mating is the response to pheromone, which is mediated by a conserved kinase cascade that transduces the signal from the pheromone receptor to a transcriptional response in the nucleus. In this paper we show (i) that the detailed response of C. albicans to the alpha pheromone differs among clinical isolates, (ii) that the response depends critically on nutritional conditions, (iii) that the entire response is mediated by the Ste2 receptor, and (iv) that, in terms of genes induced, the response to alpha pheromone in C. albicans shows only marginal overlap with the response in Saccharomyces cerevisiae. We further investigated the nutritional control of pheromone induction and identify the GPA2 gene as a critical component. We found that Deltagpa2/Deltagpa2 mutants are hypersensitive to pheromone and, unlike wild-type strains, show efficient cell cycle arrest (including the formation of characteristic halos on solid medium) in response to mating pheromone. These results indicate that C. albicans, like several other fungal species but unlike S. cerevisiae, integrates signals from a nutrient-sensing pathway with those of the pheromone response MAP kinase pathway to generate the final transcriptional response.

  5. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster.

    PubMed

    Thanapipatsiri, Anyarat; Gomez-Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J; Al-Bassam, Mahmoud; Chandra, Govind; Thamchaipenet, Arinthip; Challis, Gregory L; Bibb, Mervyn J

    2016-11-17

    Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases.

  6. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster

    PubMed Central

    Thanapipatsiri, Anyarat; Gomez‐Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J.; Al‐Bassam, Mahmoud; Chandra, Govind

    2016-01-01

    Abstract Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one—vemR—that encodes a transcriptional activator of the large ATP‐binding LuxR‐like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co‐expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin‐producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases. PMID:27605017

  7. Unbiased Functional Clustering of Gene Variants with a Phenotypic-Linkage Network

    PubMed Central

    Honti, Frantisek; Meader, Stephen; Webber, Caleb

    2014-01-01

    Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function of many genes is unknown and their classification to pathways is scant, functional associations between genes are often inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern molecular pathways relevant to complex disease, we have inferred functional associations between human genes from diverse data types and assessed them with a novel phenotype-based method. Examining the functional association between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional associations among genes mutated in the same disease even after accounting for significant sequencing study bias and demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders. PMID:25166029

  8. MS/MS networking guided analysis of molecule and gene cluster families.

    PubMed

    Nguyen, Don Duy; Wu, Cheng-Hsuan; Moree, Wilna J; Lamsa, Anne; Medema, Marnix H; Zhao, Xiling; Gavilan, Ronnie G; Aparicio, Marystella; Atencio, Librada; Jackson, Chanaye; Ballesteros, Javier; Sanchez, Joel; Watrous, Jeramie D; Phelan, Vanessa V; van de Wiel, Corine; Kersten, Roland D; Mehnaz, Samina; De Mot, René; Shank, Elizabeth A; Charusanti, Pep; Nagarajan, Harish; Duggan, Brendan M; Moore, Bradley S; Bandeira, Nuno; Palsson, Bernhard Ø; Pogliano, Kit; Gutiérrez, Marcelino; Dorrestein, Pieter C

    2013-07-09

    The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779(T). The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family-gene cluster families of hundreds or more diverse organisms in one single MS/MS network.

  9. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria.

    PubMed

    Wang, Hao; Fewer, David P; Sivonen, Kaarina

    2011-01-01

    Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups according to their gene organization and domain composition. This classification is supported by phylogenetic analysis, which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.

  10. Bacterial Biosynthetic Gene Clusters Encoding the Anti-cancer Haterumalide Class of Molecules

    PubMed Central

    Matilla, Miguel A.; Stöckmann, Henning; Leeper, Finian J.; Salmond, George P. C.

    2012-01-01

    Haterumalides are halogenated macrolides with strong antitumor properties, making them attractive targets for chemical synthesis. Unfortunately, current synthetic routes to these molecules are inefficient. The potent haterumalide, oocydin A, was previously identified from two plant-associated bacteria through its high bioactivity against plant pathogenic fungi and oomycetes. In this study, we describe oocydin A (ooc) biosynthetic gene clusters identified by genome sequencing, comparative genomics, and chemical analysis in four plant-associated enterobacteria of the Serratia and Dickeya genera. Disruption of the ooc gene cluster abolished oocydin A production and bioactivity against fungi and oomycetes. The ooc gene clusters span between 77 and 80 kb and encode five multimodular polyketide synthase (PKS) proteins, a hydroxymethylglutaryl-CoA synthase cassette and three flavin-dependent tailoring enzymes. The presence of two free-standing acyltransferase proteins classifies the oocydin A gene cluster within the growing family of trans-AT PKSs. The amino acid sequences and organization of the PKS domains are consistent with the chemical predictions and functional peculiarities associated with trans-acyltransferase PKS. Based on extensive in silico analysis of the gene cluster, we propose a biosynthetic model for the production of oocydin A and, by extension, for other members of the haterumalide family of halogenated macrolides exhibiting anti-cancer, anti-fungal, and other interesting biological properties. PMID:23012376

  11. Operon and non-operon gene clusters in the C. elegans genome.

    PubMed

    Blumenthal, Thomas; Davis, Paul; Garrido-Lecca, Alfonso

    2015-04-28

    Nearly 15% of the ~20,000 C. elegans genes are contained in operons, multigene clusters controlled by a single promoter. The vast majority of these are of a type where the genes in the cluster are ~100 bp apart and the pre-mRNA is processed by 3' end formation accompanied by trans-splicing. A spliced leader, SL2, is specialized for operon processing. Here we summarize current knowledge on several variations on this theme including: (1) hybrid operons, which have additional promoters between genes; (2) operons with exceptionally long (> 1 kb) intercistronic regions; (3) operons with a second 3' end formation site close to the trans-splice site; (4) alternative operons, in which the exons are sometimes spliced as a single gene and sometimes as two genes; (5) SL1-type operons, which use SL1 instead of SL2 to trans-splice and in which there is no intercistronic space; (6) operons that make dicistronic mRNAs; and (7) non-operon gene clusters, in which either two genes use a single exon as the 3' end of one and the 5' end of the next, or the 3' UTR of one gene serves as the outron of the next. Each of these variations is relatively infrequent, but together they show a remarkable variety of tight-linkage gene arrangements in the C. elegans genome.

  12. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster.

    PubMed

    Balakrishnan, Bijinu; Karki, Suman; Chiu, Shih-Hau; Kim, Hyun-Ju; Suh, Jae-Won; Nam, Bora; Yoon, Yeo-Min; Chen, Chien-Chi; Kwon, Hyung-Jin

    2013-07-01

    Monascus spp. produce several well-known polyketides such as monacolin K, citrinin, and azaphilone pigments. In this study, the azaphilone pigment biosynthetic gene cluster was identified through T-DNA random mutagenesis in Monascus purpureus. The albino mutant W13 bears a T-DNA insertion upstream of a transcriptional regulator gene (mppR1). The transcription of mppR1 and the nearby polyketide synthase gene (MpPKS5) was significantly repressed in the W13 mutant. Targeted inactivation of MpPKS5 also gave rise to an albino mutant, confirming that mppR1 and MpPKS5 belong to an azaphilone pigment biosynthetic gene cluster. This M. purpureus sequence was used to identify the whole biosynthetic gene cluster in the Monascus pilosus genome. MpPKS5 contains SAT/KS/AT/PT/ACP/MT/R domains, and this domain organization is preserved in other azaphilone polyketide synthases. This biosynthetic gene cluster also encodes fatty acid synthase (FAS), which is predicted to assist the synthesis of 3-oxooactanoyl-CoA and 3-oxodecanoyl-CoA. These 3-oxoacyl compounds are proposed to be incorporated into the azaphilone backbone to complete the pigment biosynthesis. A monooxygenase gene (an azaH and tropB homolog) that is located far downstream of the FAS gene is proposed to be involved in pyrone ring formation. A homology search on other fungal genome sequences suggests that this azaphilone pigment gene cluster also exists in the Penicillium marneffei and Talaromyces stipitatus genomes.

  13. Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces viridochromogenes

    PubMed Central

    Wang, Yang; Chen, Ying; Shen, Qirong; Yin, Xihou

    2011-01-01

    The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912 bp of S. viridochromogenes genomic sequence revealed the putative las cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins. PMID:21640802

  14. Identification of a Cellobiose Utilization Gene Cluster with Cryptic β-Galactosidase Activity in Vibrio fischeri▿

    PubMed Central

    Adin, Dawn M.; Visick, Karen L.; Stabb, Eric V.

    2008-01-01

    Cellobiose utilization is a variable trait that is often used to differentiate members of the family Vibrionaceae. We investigated how Vibrio fischeri ES114 utilizes cellobiose and found a cluster of genes required for growth on this β-1,4-linked glucose disaccharide. This cluster includes genes annotated as a phosphotransferase system II (celA, celB, and celC), a glucokinase (celK), and a glucosidase (celG). Directly downstream of celCBGKA is celI, which encodes a LacI family regulator that represses cel transcription in the absence of cellobiose. When the celCBGKAI gene cluster was transferred to cellobiose-negative strains of Vibrio and Photobacterium, the cluster conferred the ability to utilize cellobiose. Genomic analyses of naturally cellobiose-positive Vibrio species revealed that V. salmonicida has a homolog of the celCBGKAI cluster, but V. vulnificus does not. Moreover, bioinformatic analyses revealed that CelG and CelK share the greatest homology with glucosidases and glucokinases in the phylum Firmicutes. These observations suggest that distinct genes for cellobiose utilization have been acquired by different lineages within the family Vibrionaceae. In addition, the loss of the celI regulator, but not the structural genes, attenuated the ability of V. fischeri to compete for colonization of its natural host, Euprymna scolopes, suggesting that repression of the cel gene cluster is important in this symbiosis. Finally, we show that the V. fischeri cellobioase (CelG) preferentially cleaves β-d-glucose linkages but also cleaves β-d-galactose-linked substrates such as 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal), a finding that has important implications for the use of lacZ as a marker or reporter gene in V. fischeri. PMID:18487409

  15. Pheromone signaling during sexual reproduction in algae.

    PubMed

    Frenkel, Johannes; Vyverman, Wim; Pohnert, Georg

    2014-08-01

    Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.

  16. The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots

    PubMed Central

    Christie, Nanette; Tobias, Peri A.; Naidoo, Sanushka; Külheim, Carsten

    2016-01-01

    Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience. PMID:26793216

  17. Sequencing and mapping hemoglobin gene clusters in the australian model dasyurid marsupial sminthopsis macroura

    SciTech Connect

    De Leo, A.A.; Wheeler, D.; Lefevre, C.; Cheng, Jan-Fang; Hope, R.; Kuliwaba, J.; Nicholas, K.R.; Westermanc, M.; Graves, J.A.M.

    2004-07-26

    Comparing globin genes and their flanking sequences across many species has allowed globin gene evolution to be reconstructed in great detail. Marsupial globin sequences have proved to be of exceptional significance. A previous finding of a beta-like omega gene in the alpha cluster in the tammar wallaby suggested that the alpha and beta cluster evolved via genome duplication and loss rather than tandem duplication. To confirm and extend this important finding we isolated and sequenced BACs containing the alpha and beta loci from the distantly related Australian marsupial Sminthopsis macroura. We report that the alpha gene lies in the same BAC as the beta-like omega gene, implying that the alpha-omega juxtaposition is likely to be conserved in all marsupials. The LUC7L gene was found 3' of the S. macroura alpha locus, a gene order shared with humans but not mouse, chicken or fugu. Sequencing a BAC contig that contained the S. macroura beta globin and epsilon globin loci showed that the globin cluster is flanked by olfactory genes, demonstrating a gene arrangement conserved for over 180 MY. Analysis of the region 5' to the S. macroura epsilon globin gene revealed a region similar to the eutherian LCR, containing sequences and potential transcription factor binding sites with homology to eutherian hypersensitive sites 1 to 5. FISH mapping of BACs containing S. macroura alpha and beta globin genes located the beta globin cluster on chromosome 3q and the alpha locus close to the centromere on 1q, resolving contradictory map locations obtained by previous radioactive in situ hybridization.

  18. Epigenetic Characterization of the Growth Hormone Gene Identifies SmcHD1 as a Regulator of Autosomal Gene Clusters

    PubMed Central

    Massah, Shabnam; Hollebakken, Robert; Labrecque, Mark P.; Kolybaba, Addie M.; Beischlag, Timothy V.; Prefontaine, Gratien G.

    2014-01-01

    Regulatory elements for the mouse growth hormone (GH) gene are located distally in a putative locus control region (LCR) in addition to key elements in the promoter proximal region. The role of promoter DNA methylation for GH gene regulation is not well understood. Pit-1 is a POU transcription factor required for normal pituitary development and obligatory for GH gene expression. In mammals, Pit-1 mutations eliminate GH production resulting in a dwarf phenotype. In this study, dwarf mice illustrated that Pit-1 function was obligatory for GH promoter hypomethylation. By monitoring promoter methylation levels during developmental GH expression we found that the GH promoter became hypomethylated coincident with gene expression. We identified a promoter differentially methylated region (DMR) that was used to characterize a methylation-dependent DNA binding activity. Upon DNA affinity purification using the DMR and nuclear extracts, we identified structural maintenance of chromosomes hinge domain containing -1 (SmcHD1). To better understand the role of SmcHD1 in genome-wide gene expression, we performed microarray analysis and compared changes in gene expression upon reduced levels of SmcHD1 in human cells. Knock-down of SmcHD1 in human embryonic kidney (HEK293) cells revealed a disproportionate number of up-regulated genes were located on the X-chromosome, but also suggested regulation of genes on non-sex chromosomes. Among those, we identified several genes located in the protocadherin β cluster. In addition, we found that imprinted genes in the H19/Igf2 cluster associated with Beckwith-Wiedemann and Silver-Russell syndromes (BWS & SRS) were dysregulated. For the first time using human cells, we showed that SmcHD1 is an important regulator of imprinted and clustered genes. PMID:24818964

  19. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    PubMed

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  20. Bacillus subtilis acyl carrier protein is encoded in a cluster of lipid biosynthesis genes.

    PubMed Central

    Morbidoni, H R; de Mendoza, D; Cronan, J E

    1996-01-01

    A cluster of Bacillus subtilis fatty acid synthetic genes was isolated by complementation of an Escherichia coli fabD mutant encoding a thermosensitive malonyl coenzyme A-acyl carrier protein transacylase. The B. subtilis genomic segment contains genes that encode three fatty acid synthetic proteins, malonyl coenzyme A-acyl carrier protein transacylase (fabD), 3-ketoacyl-acyl carrier protein reductase (fabG), and the N-terminal 14 amino acid residues of acyl carrier protein (acpP). Also present is a sequence that encodes a homolog of E. coli plsX, a gene that plays a poorly understood role in phospholipid synthesis. The B. subtilis plsX gene weakly complemented an E. coli plsX mutant. The order of genes in the cluster is plsX fabD fabG acpP, the same order found in E. coli, except that in E. coli the fabH gene lies between plsX and fabD. The absence of fabH in the B. subtilis cluster is consistent with the different fatty acid compositions of the two organisms. The amino acid sequence of B. subtilis acyl carrier protein was obtained by sequencing the purified protein, and the sequence obtained strongly resembled that of E. coli acyl carrier protein, except that most of the protein retained the initiating methionine residue. The B. subtilis fab cluster was mapped to the 135 to 145 degrees region of the chromosome. PMID:8759840

  1. Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering

    PubMed Central

    Aibar, Sara; Fontanillo, Celia; Droste, Conrad; De Las Rivas, Javier

    2015-01-01

    Summary: Functional Gene Networks (FGNet) is an R/Bioconductor package that generates gene networks derived from the results of functional enrichment analysis (FEA) and annotation clustering. The sets of genes enriched with specific biological terms (obtained from a FEA platform) are transformed into a network by establishing links between genes based on common functional annotations and common clusters. The network provides a new view of FEA results revealing gene modules with similar functions and genes that are related to multiple functions. In addition to building the functional network, FGNet analyses the similarity between the groups of genes and provides a distance heatmap and a bipartite network of functionally overlapping genes. The application includes an interface to directly perform FEA queries using different external tools: DAVID, GeneTerm Linker, TopGO or GAGE; and a graphical interface to facilitate the use. Availability and implementation: FGNet is available in Bioconductor, including a tutorial. URL: http://bioconductor.org/packages/release/bioc/html/FGNet.html Contact: jrivas@usal.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25600944

  2. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    NASA Astrophysics Data System (ADS)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  3. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria

    PubMed Central

    Nakazawa, Hidekazu; Arakaki, Atsushi; Narita-Yamada, Sachiko; Yashiro, Isao; Jinno, Koji; Aoki, Natsuko; Tsuruyama, Ai; Okamura, Yoshiko; Tanikawa, Satoshi; Fujita, Nobuyuki; Takeyama, Haruko; Matsunaga, Tadashi

    2009-01-01

    Magnetotactic bacteria are ubiquitous microorganisms that synthesize intracellular magnetite particles (magnetosomes) by accumulating Fe ions from aquatic environments. Recent molecular studies, including comprehensive proteomic, transcriptomic, and genomic analyses, have considerably improved our hypotheses of the magnetosome-formation mechanism. However, most of these studies have been conducted using pure-cultured bacterial strains of α-proteobacteria. Here, we report the whole-genome sequence of Desulfovibrio magneticus strain RS-1, the only isolate of magnetotactic microorganisms classified under δ-proteobacteria. Comparative genomics of the RS-1 and four α-proteobacterial strains revealed the presence of three separate gene regions (nuo and mamAB-like gene clusters, and gene region of a cryptic plasmid) conserved in all magnetotactic bacteria. The nuo gene cluster, encoding NADH dehydrogenase (complex I), was also common to the genomes of three iron-reducing bacteria exhibiting uncontrolled extracellular and/or intracellular magnetite synthesis. A cryptic plasmid, pDMC1, encodes three homologous genes that exhibit high similarities with those of other magnetotactic bacterial strains. In addition, the mamAB-like gene cluster, encoding the key components for magnetosome formation such as iron transport and magnetosome alignment, was conserved only in the genomes of magnetotactic bacteria as a similar genomic island-like structure. Our findings suggest the presence of core genetic components for magnetosome biosynthesis; these genes may have been acquired into the magnetotactic bacterial genomes by multiple gene-transfer events during proteobacterial evolution. PMID:19675025

  4. Organization, expression and evolution of a disease resistance gene cluster in soybean.

    PubMed Central

    Graham, Michelle A; Marek, Laura Fredrick; Shoemaker, Randy C

    2002-01-01

    PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar "Williams 82" [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca(2+)-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process. PMID:12524363

  5. Delineation of metabolic gene clusters in plant genomes by chromatin signatures

    PubMed Central

    Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T.; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J.; Kumar, S. Vinod; Freemont, Paul S.; Osbourn, Anne

    2016-01-01

    Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. PMID:26895889

  6. Gene microarray data analysis using parallel point-symmetry-based clustering.

    PubMed

    Sarkar, Anasua; Maulik, Ujjwal

    2015-01-01

    Identification of co-expressed genes is the central goal in microarray gene expression analysis. Point-symmetry-based clustering is an important unsupervised learning technique for recognising symmetrical convex- or non-convex-shaped clusters. To enable fast clustering of large microarray data, we propose a distributed time-efficient scalable approach for point-symmetry-based K-Means algorithm. A natural basis for analysing gene expression data using symmetry-based algorithm is to group together genes with similar symmetrical expression patterns. This new parallel implementation also satisfies linear speedup in timing without sacrificing the quality of clustering solution on large microarray data sets. The parallel point-symmetry-based K-Means algorithm is compared with another new parallel symmetry-based K-Means and existing parallel K-Means over eight artificial and benchmark microarray data sets, to demonstrate its superiority, in both timing and validity. The statistical analysis is also performed to establish the significance of this message-passing-interface based point-symmetry K-Means implementation. We also analysed the biological relevance of clustering solutions.

  7. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae.

    PubMed Central

    Doi, K; Gartner, A; Ammerer, G; Errede, B; Shinkawa, H; Sugimoto, K; Matsumoto, K

    1994-01-01

    Pheromone-stimulated yeast cells and haploid gpa1 deletion mutants arrest their cell cycle in G1. Overexpression of a novel gene called MSG5 suppresses this inhibition of cell division. Loss of MSG5 function leads to a diminished adaptive response to pheromone. Genetic analysis indicates that MSG5 acts at a stage where the protein kinases STE7 and FUS3 function to transmit the pheromone-induced signal. Since loss of MSG5 function causes an increase in FUS3 enzyme activity but not STE7 activity, we propose that MSG5 impinges on the pathway at FUS3. Sequence analysis suggests that MSG5 encodes a protein tyrosine phosphatase. This is supported by the finding that recombinant MSG5 has phosphatase activity in vitro and is able to inactivate autophosphorylated FUS3. Thus MSG5 might stimulate recovery from pheromone by regulating the phosphorylation state of FUS3. Images PMID:8306972

  8. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta

    PubMed Central

    Moeys, Sara; Frenkel, Johannes; Lembke, Christine; Gillard, Jeroen T. F.; Devos, Valerie; Van den Berge, Koen; Bouillon, Barbara; Huysman, Marie J. J.; De Decker, Sam; Scharf, Julia; Bones, Atle; Brembu, Tore; Winge, Per; Sabbe, Koen; Vuylsteke, Marnik; Clement, Lieven; De Veylder, Lieven; Pohnert, Georg; Vyverman, Wim

    2016-01-01

    Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum. PMID:26786712

  9. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates.

    PubMed

    Zhang, Jianzhi; Webb, David M

    2003-07-08

    Pheromones are water-soluble chemicals released and sensed by individuals of the same species to elicit social and reproductive behaviors or physiological changes; they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. Humans and some related primates possess only vestigial VNOs and have no or significantly reduced ability to detect pheromones, a phenomenon not well understood at the molecular level. Here we show that genes encoding the TRP2 ion channel and V1R pheromone receptors, two components of the vomeronasal pheromone signal transduction pathway, have been impaired and removed from functional constraints since shortly before the separation of hominoids and Old World monkeys approximately 23 million years ago, and that the random inactivation of pheromone receptor genes is an ongoing process even in present-day humans. The phylogenetic distribution of vomeronasal pheromone insensitivity is concordant with those of conspicuous female sexual swelling and male trichromatic color vision, suggesting that a vision-based signaling-sensory mechanism may have in part replaced the VNO-mediated chemical-based system in the social/reproductive activities of hominoids and Old World monkeys (catarrhines).

  10. Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance.

    PubMed

    Vinatzer, B A; Patocchi, A; Gianfranceschi, L; Tartarini, S; Zhang, H B; Gessler, C; Sansavini, S

    2001-04-01

    Scab caused by the fungal pathogen Venturia inaequalis is the most common disease of cultivated apple (Malus x domestica Borkh.). Monogenic resistance against scab is found in some small-fruited wild Malus species and has been used in apple breeding for scab resistance. Vf resistance of Malus floribunda 821 is the most widely used scab resistance source. Because breeding a high-quality cultivar in perennial fruit trees takes dozens of years, cloning disease resistance genes and using them in the transformation of high-quality apple varieties would be advantageous. We report the identification of a cluster of receptor-like genes with homology to the Cladosporium fulvum (Cf) resistance gene family of tomato on bacterial artificial chromosome clones derived from the Vf scab resistance locus. Three members of the cluster were sequenced completely. Similar to the Cf gene family of tomato, the deduced amino acid sequences coded by these genes contain an extracellular leucine-rich repeat domain and a transmembrane domain. The transcription of three members of the cluster was determined by reverse transcriptionpolymerase chain reaction to be constitutive, and the transcription and translation start of one member was verified by 5' rapid amplification of cDNA ends. We discuss the parallels between Cf resistance of tomato and Vf resistance of apple and the possibility that one of the members of the gene cluster is the Vf gene. Cf homologs from other regions of the apple genome also were identified and are likely to present other scab resistance genes.

  11. The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication.

    PubMed

    Kuraku, Shigehiro; Meyer, Axel

    2009-01-01

    Hox genes are known to specify spatial identities along the anterior-posterior axis during embryogenesis. In vertebrates and most other deuterostomes, they are arranged in sets of uninterrupted clusters on chromosomes, and are in most cases expressed in a "colinear" fashion, in which genes closer to the 3-end of the Hox clusters are expressed earlier and more anteriorly and genes close to the 5-end of the clusters later and more posteriorly. In this review, we summarize the current understanding of how Hox gene clusters have been modified from basal lineages of deuterostomes to diverse taxa of vertebrates. Our parsimony reconstruction of Hox cluster architecture at various stages of vertebrate evolution highlights that the variation in Hox cluster structures among jawed vertebrates is mostly due to secondary lineage-specific gene losses and an additional genome duplication that occurred in the actinopterygian stem lineage, the teleost-specific genome duplication (TSGD).

  12. Evaporation rate of emulsion and oil-base emulsion pheromones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of pheromone evaporation rate is critical to distribute pheromone containers effectively in the forest, orchard and field. There are several factors influencing the pheromone evaporation rate that include wind speed, container size and porosity, release area, temperature, humidity, pherom...

  13. Hormones and pheromones in regulation of insect behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both pheromones and hormones are well recognized regulators of insect biology. However, the interactions between hormones and pheromones in coordinating insect biology are less well understood. We have studied the interactions between juvenile hormone, its precursor methyl farnesoate, and pheromon...

  14. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum.

    PubMed

    Tannous, Joanna; El Khoury, Rhoda; Snini, Selma P; Lippi, Yannick; El Khoury, André; Atoui, Ali; Lteif, Roger; Oswald, Isabelle P; Puel, Olivier

    2014-10-17

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60-70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of the mechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products.

  15. Organization of the human keratin type II gene cluster at 12q13

    SciTech Connect

    Yoon, S.J.; LeBlanc-Straceski, J.; Krauter, K.

    1994-12-01

    Keratin proteins constitute intermediate filaments and are the major differentiation products of mammalian epithelial cells. The epithelial keratins are classified into two groups, type I and type II, and one member of each group is expressed in a given epithelial cell differentiation stage. Mutations in type I and type II keratin genes have now been implicated in three different human genetic disorders, epidermolysis bullosa simplex, epidermolytic hyperkeratosis, and epidermolytic palmoplantar keratoderma. Members of the type I keratins are mapped to human chromosome 17, and the type II keratin genes are mapped to chromosome 12. To understand the organization of the type II keratin genes on chromosome 12, we isolated several yeast artificial chromosomes carrying these keratin genes and examined them in detail. We show that eight already known type II keratin genes are located in a cluster at 12q13, and their relative organization reflects their evolutionary relationship. We also determined that a type I keratin gene, KRT8, is located next to its partner, KRT18, in this cluster. Careful examination of the cluster also revealed that there may be a number of additional keratin genes at this locus that have not been described previously. 41 refs., 3 figs., 1 tab.

  16. Intact cluster and chordate-like expression of ParaHox genes in a sea star

    PubMed Central

    2013-01-01

    Background The ParaHox genes are thought to be major players in patterning the gut of several bilaterian taxa. Though this is a fundamental role that these transcription factors play, their activities are not limited to the endoderm and extend to both ectodermal and mesodermal tissues. Three genes compose the ParaHox group: Gsx, Xlox and Cdx. In some taxa (mostly chordates but to some degree also in protostomes) the three genes are arranged into a genomic cluster, in a similar fashion to what has been shown for the better-known Hox genes. Sea urchins possess the full complement of ParaHox genes but they are all dispersed throughout the genome, an arrangement that, perhaps, represented the primitive condition for all echinoderms. In order to understand the evolutionary history of this group of genes we cloned and characterized all ParaHox genes, studied their expression patterns and identified their genomic loci in a member of an earlier branching group of echinoderms, the asteroid Patiria miniata. Results We identified the three ParaHox orthologs in the genome of P. miniata. While one of them, PmGsx is provided as maternal message, with no zygotic activation afterwards, the other two, PmLox and PmCdx are expressed during embryogenesis, within restricted domains of both endoderm and ectoderm. Screening of a Patiria bacterial artificial chromosome (BAC) library led to the identification of a clone containing the three genes. The transcriptional directions of PmGsx and PmLox are opposed to that of the PmCdx gene within the cluster. Conclusions The identification of P. miniata ParaHox genes has revealed the fact that these genes are clustered in the genome, in contrast to what has been reported for echinoids. Since the presence of an intact cluster, or at least a partial cluster, has been reported in chordates and polychaetes respectively, it becomes clear that within echinoderms, sea urchins have modified the original bilaterian arrangement. Moreover, the sea star

  17. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean1[W

    PubMed Central

    David, Perrine; Chen, Nicolas W.G.; Pedrosa-Harand, Andrea; Thareau, Vincent; Sévignac, Mireille; Cannon, Steven B.; Debouck, Daniel; Langin, Thierry; Geffroy, Valérie

    2009-01-01

    The B4 resistance (R) gene cluster is one of the largest clusters known in common bean (Phaseolus vulgaris [Pv]). It is located in a peculiar genomic environment in the subtelomeric region of the short arm of chromosome 4, adjacent to two heterochromatic blocks (knobs). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-Coil-Nucleotide-Binding-Site-Leucine-Rich-Repeat (CNL). Conserved microsynteny was observed between the Pv B4 locus and corresponding regions of Medicago truncatula and Lotus japonicus in chromosomes Mt6 and Lj2, respectively. The notable exception was the CNL sequences, which were completely absent in these regions. The origin of the Pv B4-CNL sequences was investigated through phylogenetic analysis, which reveals that, in the Pv genome, paralogous CNL genes are shared among nonhomologous chromosomes (4 and 11). Together, our results suggest that Pv B4-CNL was derived from CNL sequences from another cluster, the Co-2 cluster, through an ectopic recombination event. Integration of the soybean (Glycine max) genome data enables us to date more precisely this event and also to infer that a single CNL moved from the Co-2 to the B4 cluster. Moreover, we identified a new 528-bp satellite repeat, referred to as khipu, specific to the Phaseolus genus, present both between B4-CNL sequences and in the two knobs identified at the B4 R gene cluster. The khipu repeat is present on most chromosomal termini, indicating the existence of frequent ectopic recombination events in Pv subtelomeric regions. Our results highlight the importance of ectopic recombination in R gene evolution. PMID:19776165

  18. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and…

  19. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids.

    PubMed

    Krubasik, P; Sandmann, G

    2000-04-01

    The carotenogenic (crt) gene cluster from Brevibacterium linens, a member of the commercially important group of coryneform bacteria, was cloned and identified. An expression library of B. linens genes was constructed and a fragment of the crt cluster was obtained by functional complementation of a colourless B. flavum mutant, screening transformed cells for production of a yellow pigment. Subsequent screening of a cosmid library resulted in the cloning of the whole crt cluster from B. linens. All genes necessary for the synthesis of the aromatic carotenoid isorenieratene were identified on the basis of sequence homologies. In addition a novel type of lycopene cyclase was identified by complementation of a lycopene-accumulating B. flavum mutant. Two genes, named crt Yc and crt Yd, which code for polypeptides of 125 and 107 amino acids, respectively, are necessary to convert lycopene to beta-carotene. The amino acid sequences of these polypeptides show no similarity to any of the known lycopene cyclases. This is the first example of a carotenoid biosynthetic conversion in which two different gene products are involved, probably forming a heterodimer.

  20. Isolation of Hox Cluster Genes from Insects Reveals an Accelerated Sequence Evolution Rate

    PubMed Central

    Hadrys, Heike; Simon, Sabrina; Kaune, Barbara; Schmitt, Oliver; Schöner, Anja; Jakob, Wolfgang; Schierwater, Bernd

    2012-01-01

    Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution. PMID:22685537

  1. Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae.

    PubMed

    Zheng, Jian-Ting; Wang, Sheng-Lan; Yang, Ke-Qian

    2007-09-01

    Streptomyces venezuelae ISP5230 produces a group of jadomycin congeners with cytotoxic activities. To improve jadomycin fermentation process, a genetic engineering strategy was designed to replace a 3.4-kb regulatory region of jad gene cluster that contains four regulatory genes (3' end 272 bp of jadW2, jadW3, jadR2, and jadR1) and the native promoter upstream of jadJ (P(J)) with the ermEp* promoter sequence so that ermEp* drives the expression of the jadomycin biosynthetic genes from jadJ in the engineered strain. As expected, the mutant strain produced jadomycin B without ethanol treatment, and the yield increased to about twofold that of the stressed wild-type. These results indicated that manipulation of the regulation of a biosynthetic gene cluster is an effective strategy to increase product yield.

  2. Identification of a gene cluster associated with triclosan catabolism.

    PubMed

    Kagle, Jeanne M; Paxson, Clayton; Johnstone, Precious; Hay, Anthony G

    2015-06-01

    Aerobic degradation of bis-aryl ethers like the antimicrobial triclosan typically proceeds through oxygenase-dependent catabolic pathways. Although several studies have reported on bacteria capable of degrading triclosan aerobically, there are no reports describing the genes responsible for this process. In this study, a gene encoding the large subunit of a putative triclosan oxygenase, designated tcsA was identified in a triclosan-degrading fosmid clone from a DNA library of Sphingomonas sp. RD1. Consistent with tcsA's similarity to two-part dioxygenases, a putative FMN-dependent ferredoxin reductase, designated tcsB was found immediately downstream of tcsA. Both tcsAB were found in the midst of a putative chlorocatechol degradation operon. We show that RD1 produces hydroxytriclosan and chlorocatechols during triclosan degradation and that tcsA is induced by triclosan. This is the first study to report on the genetics of triclosan degradation.

  3. Genetic and Transcriptional Analyses of the Flagellar Gene Cluster in Actinoplanes missouriensis

    PubMed Central

    Jang, Moon-Sun; Mouri, Yoshihiro; Uchida, Kaoru; Aizawa, Shin-Ichi; Hayakawa, Masayuki; Fujita, Nobuyuki; Tezuka, Takeaki

    2016-01-01

    ABSTRACT Actinoplanes missouriensis, a Gram-positive and soil-inhabiting bacterium, is a member of the rare actinomycetes. The filamentous cells produce sporangia, which contain hundreds of flagellated spores that can swim rapidly for a short period of time until they find niches for germination. These swimming cells are called zoospores, and the mechanism of this unique temporal flagellation has not been elucidated. Here, we report all of the flagellar genes in the bacterial genome and their expected function and contribution for flagellar morphogenesis. We identified a large flagellar gene cluster composed of 33 genes that encode the majority of proteins essential for assembling the functional flagella of Gram-positive bacteria. One noted exception to the cluster was the location of the fliQ gene, which was separated from the cluster. We examined the involvement of four genes in flagellar biosynthesis by gene disruption, fliQ, fliC, fliK, and lytA. Furthermore, we performed a transcriptional analysis of the flagellar genes using RNA samples prepared from A. missouriensis grown on a sporangium-producing agar medium for 1, 3, 6, and 40 days. We demonstrated that the transcription of the flagellar genes was activated in conjunction with sporangium formation. Eleven transcriptional start points of the flagellar genes were determined using the rapid amplification of cDNA 5′ ends (RACE) procedure, which revealed the highly conserved promoter sequence CTCA(N15–17)GCCGAA. This result suggests that a sigma factor is responsible for the transcription of all flagellar genes and that the flagellar structure assembles simultaneously. IMPORTANCE The biology of a zoospore is very interesting from the viewpoint of morphogenesis, survival strategy, and evolution. Here, we analyzed flagellar genes in A. missouriensis, which produces sporangia containing hundreds of flagellated spores each. Zoospores released from the sporangia swim for a short time before germination occurs

  4. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens.

    PubMed

    Karray, Fatma; Darbon, Emmanuelle; Oestreicher, Nathalie; Dominguez, Hélène; Tuphile, Karine; Gagnat, Josette; Blondelet-Rouault, Marie-Hélène; Gerbaud, Claude; Pernodet, Jean-Luc

    2007-12-01

    Spiramycin, a 16-membered macrolide antibiotic used in human medicine, is produced by Streptomyces ambofaciens; it comprises a polyketide lactone, platenolide, to which three deoxyhexose sugars are attached. In order to characterize the gene cluster governing the biosynthesis of spiramycin, several overlapping cosmids were isolated from an S. ambofaciens gene library, by hybridization with various probes (spiramycin resistance or biosynthetic genes, tylosin biosynthetic genes), and the sequences of their inserts were determined. Sequence analysis showed that the spiramycin biosynthetic gene cluster spanned a region of over 85 kb of contiguous DNA. In addition to the five previously described genes that encode the type I polyketide synthase involved in platenolide biosynthesis, 45 other genes have been identified. It was possible to propose a function for most of the inferred proteins in spiramycin biosynthesis, in its regulation, in resistance to the produced antibiotic or in the provision of extender units for the polyketide synthase. Two of these genes, predicted to be involved in deoxysugar biosynthesis, were inactivated by gene replacement, and the resulting mutants were unable to produce spiramycin, thus confirming their involvement in spiramycin biosynthesis. This work reveals the main features of spiramycin biosynthesis and constitutes a first step towards a detailed molecular analysis of the production of this medically important antibiotic.

  5. A novel harmony search-K means hybrid algorithm for clustering gene expression data.

    PubMed

    Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu

    2013-01-01

    Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.

  6. A gene cluster for the synthesis of serotype g-specific polysaccharide antigen in Aggregatibacter actinomycetemcomitans.

    PubMed

    Tsuzukibashi, Osamu; Saito, Masanori; Kobayashi, Taira; Umezawa, Koji; Nagahama, Fumio; Hiroi, Takachika; Hirasawa, Masatomo; Takada, Kazuko

    2014-04-01

    Aggregatibacter actinomycetemcomitans is an important pathogen related to aggressively progressive periodontal breakdown in adolescents and adults. The species can be divided into six serotypes (a-f) according to their surface carbohydrate antigens. Recently, a new serotype g of A. actinomycetemcomitans was proposed. The aim of the present study was to sequence the gene cluster associated with the biosynthesis of the serotype g-specific polysaccharide antigen and develop serotype-specific primers for PCR assay to identify serotype g strains of A. actinomycetemcomitans. The serotype-specific polysaccharide (SSPS) gene cluster of the NUM-Aa 4039 strain contained 21 genes in 21,842-bp nucleotides. The similarity of the SSPS gene cluster sequence was 96.7 % compared with that of the serotype e strain. Seventeen serotype g genes showed more than 90 % homology both in nucleotide and amino acids to the serotype e strain. Three additional genes with 1,579 bp in NUM-Aa 4039 were inserted into the corresponding ORF13 of the serotype e strain. The serotype g-specific primers were designed from the insertion region of NUM-Aa 4039. Serotypes of the a-f strains were not amplified by serotype-specific g primers; only NUM-Aa 4039 showed an amplicon band. The NUM-Aa 4039 strain was three genes in the SSPS gene cluster different from those of serotype e strain. The specific primers derived from these different regions are useful for identification and distribution of serotype g strain among A. actinomycetemcomitans from clinical samples.

  7. Detection of a Gene Cluster That Is Dispensable for Human Herpesvirus 6 Replication and Latency

    PubMed Central

    Kondo, Kazuhiro; Nozaki, Hideo; Shimada, Kazuya; Yamanishi, Koichi

    2003-01-01

    The U3-U7 gene cluster of human herpesvirus 6 (HHV-6) was replaced with an enhanced green fluorescent protein-puromycin gene cassette containing the cytomegalovirus major immediate-early promoter. Neither viral replication in T cells nor latency and reactivation in macrophages was impaired. During HHV-6 latency, the cytomegalovirus promoter used the transcription start sites employed in cytomegalovirus latency. PMID:12970461

  8. Cloning of ascidian homeobox genes provides evidence for a primordial chordate cluster.

    PubMed

    Di Gregorio, A; Spagnuolo, A; Ristoratore, F; Pischetola, M; Aniello, F; Branno, M; Cariello, L; Di Lauro, R

    1995-04-24

    In order to isolate genes important in controlling embryonic development in Tunicates, a genomic library from the ascidian Ciona intestinalis was screened with a degenerate oligodeoxyribonucleotide encoding the third helix of Antennapedia-type homeoboxes. Fourteen C. intestinalis homeobox genes, corresponding to several classes of homeodomains, have been identified. Five of the isolated homeoboxes show their highest homology to members of the Vertebrate HOX clusters. mRNAs for two of the isolated homeoboxes are present in unfertilized C. intestinalis eggs.

  9. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria

    SciTech Connect

    Field, K.G.; Gordon, D.; Wright, T.

    1997-01-01

    Small-subunit (SSU) ribosomal DNA (rDNA) gene clusters are phylogenetically related sets of SSU rRNA genes, commonly encountered in genes amplified from natural populations. Genetic variability in gene clusters could result form artifacts (polymerase error or PCR chimera formation), microevolution (variation among rrn copies within strains), or macroevolution (genetic divergence correlated with long-term evolutionary divergence). To better understand gene clusters, this study assessed genetic diversity and distribution of a single environmental SSU rDNA gene cluster, the SAR11 cluster. SAR11 cluster genes, from an uncultured group of the {alpha} subclass of the class Proteobacteria, have been recovered from coastal and midoceanic waters of the North Atlantic and Pacific. We cloned and bidirectionally sequenced 23 new SAR11 cluster 16S rRNA genes, from 80 and 250 m im the Sargasso Sea and from surface coastal waters of the Atlantic and Pacific, and analyzed them with previously published sequences. Two SAR11 genes were obviously PCR chimeras, but the biological (nonchimeric) origins of most subgroups within the cluster were confirmed by independent recovery from separate gene libraries. Using group-specific oligonucleotide probes, we analyzed depth profiles of nucleic acids, targeting both amplified rDNAs and bulk RNAs. Two subgroups within the SAR11 cluster showed different highly depth-specific distributions. We conclude that some of the genetic diversity within the SAR11 gene cluster represents macroevolutionary divergence correlated with niche specialization. Furthermore, we demonstrate the utility for marine microbial ecology of oligonucleotide probes based on gene sequences amplified from natural populations and show that a detailed knowledge of sequence variability may be needed to effectively design these probes. 48 refs., 7 figs., 3 tabs.

  10. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  11. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum.

    PubMed

    Chooi, Yit-Heng; Cacho, Ralph; Tang, Yi

    2010-05-28

    Penicillium aethiopicum produces two structurally interesting and biologically active polyketides: the tetracycline-like viridicatumtoxin 1 and the classic antifungal agent griseofulvin 2. Here, we report the concurrent discovery of the two corresponding biosynthetic gene clusters (vrt and gsf) by 454 shotgun sequencing. Gene deletions confirmed that two nonreducing PKSs (NRPKSs), vrtA and gsfA, are required for the biosynthesis of 1 and 2, respectively. Both PKSs share similar domain architectures and lack a C-terminal thioesterase domain. We identified gsfI as the chlorinase involved in the biosynthesis of 2, because deletion of gsfI resulted in the accumulation of decholorogriseofulvin 3. Comparative analysis with the P. chrysogenum genome revealed that both clusters are embedded within conserved syntenic regions of P. aethiopicum chromosomes. Discovery of the vrt and gsf clusters provided the basis for genetic and biochemical studies of the pathways.

  12. Isolation of Sorangium cellulosum carrying epothilone gene clusters.

    PubMed

    Hyun, Hyesook; Chung, Jinwoo; Kim, Jihoon; Lee, Jong Suk; Kwon, Byoung-Mog; Son, Kwang-Hee; Cho, Kyungyun

    2008-08-01

    Epothilone and its analogs are a potent new class of anticancer compounds produced by myxobacteria. Thus, in an effort to identify new myxobacterial strains producing epothilone and its analogs, cellulose-degrading myxobacteria were isolated from Korean soils, and 13 strains carrying epothilone biosynthetic gene homologs were screened using a polymerase chain reaction. A migration assay revealed that Sorangium cellulosum KYC3013, 3016, 3017, and 3018 all produced microtubule-stabilizing compounds, and an LCMS/ MS analysis showed that S. cellulosum KYC3013 synthesized epothilone A.

  13. GenClust: A genetic algorithm for clustering gene expression data

    PubMed Central

    Di Gesú, Vito; Giancarlo, Raffaele; Lo Bosco, Giosué; Raimondi, Alessandra; Scaturro, Davide

    2005-01-01

    Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, compact and easy to update; (b) it can be used naturally in conjunction with data driven internal validation methods. We have experimented with the FOM methodology, specifically conceived for validating clusters of gene expression data. The validity of GenClust has been assessed experimentally on real data sets, both with the use of validation measures and in comparison with other algorithms, i.e., Average Link, Cast, Click and K-means. Conclusion Experiments show that none of the algorithms we have used is markedly superior to the others across data sets and validation measures; i.e., in many cases the observed differences between the worst and best performing algorithm may be statistically insignificant and they could be considered equivalent. However, there are cases in which an algorithm may be better than others and therefore worthwhile. In particular, experiments for GenClust show that, although simple in its data representation, it converges very rapidly to a local optimum and that its ability to identify meaningful clusters is comparable, and sometimes superior, to that of more sophisticated algorithms. In addition, it is well suited for use in conjunction with data driven internal validation measures and, in particular, the FOM methodology. PMID:16336639

  14. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria.

    PubMed

    Zhang, Qi; Doroghazi, James R; Zhao, Xiling; Walker, Mark C; van der Donk, Wilfred A

    2015-07-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.

  15. Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in Actinobacteria

    PubMed Central

    Zhang, Qi; Doroghazi, James R.; Zhao, Xiling; Walker, Mark C.

    2015-01-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities. PMID:25888176

  16. Characterization of the Tunicamycin Gene Cluster Unveiling Unique Steps Involved in its Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an aß-1,1-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamy...

  17. Resolving misassembled cattle immune gene clusters with hierarchical, long read sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal health is a critical component of productivity; however, current genomic selection genotyping tools have a paucity of genetic markers within key immune gene clusters (IGC) involved in the cattle innate and adaptive immune systems. With diseases such as Bovine Tuberculosis and Johne’s disease ...

  18. Identification and Characterization of a Gene Cluster Mediating Enteroaggregative Escherichia Coli Aggregative Adherence Fimbria I Biogenesis

    DTIC Science & Technology

    1994-08-01

    adherent E. coli ( DAEC ). respectively. The LA ties to other known fimbrial biogenesis systems of pathogenic pattern is typified by the formation of...agg gene cluster is configured similarly to 60 to 80% of DAEC strains share relatedness with F1845 the determinants of members of the Dr adhesin

  19. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    PubMed

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  20. Supra-operonic clusters of functionally related genes (SOCs) are a source of horizontal gene co-transfers

    PubMed Central

    Pang, Tin Yau; Lercher, Martin J.

    2017-01-01

    Adaptation of bacteria occurs predominantly via horizontal gene transfer (HGT). While it is widely recognized that horizontal acquisitions frequently encompass multiple genes, it is unclear what the size distribution of successfully transferred DNA segments looks like and what evolutionary forces shape this distribution. Here, we identified 1790 gene family pairs that were consistently co-gained on the same branches across a phylogeny of 53 E. coli strains. We estimated a lower limit of their genomic distances at the time they were transferred to their host genomes; this distribution shows a sharp upper bound at 30 kb. The same gene-pairs can have larger distances (up to 70 kb) in other genomes. These more distant pairs likely represent recent acquisitions via transduction that involve the co-transfer of excised prophage genes, as they are almost always associated with intervening phage-associated genes. The observed distribution of genomic distances of co-transferred genes is much broader than expected from a model based on the co-transfer of genes within operons; instead, this distribution is highly consistent with the size distribution of supra-operonic clusters (SOCs), groups of co-occurring and co-functioning genes that extend beyond operons. Thus, we propose that SOCs form a basic unit of horizontal gene transfer. PMID:28067311

  1. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...

  2. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.

    PubMed

    Kang, Hahk-Soo; Charlop-Powers, Zachary; Brady, Sean F

    2016-09-16

    The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene-cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.

  3. The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...

  4. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 55 secondary metabolite biosynthesis gene clusters are predicted to be present in the Aspergillus flavus genome. In spite of this the biosynthesis of only a few metabolites, such as the aflatoxin, cyclopiazonic acid and aflatrem, has been correlated with a particular gene cluster. Using RN...

  5. A hybrid NRPS-PKS gene cluster related to the bleomycin family of antitumor antibiotics in Alteromonas macleodii strains.

    PubMed

    Mizuno, Carolina Megumi; Kimes, Nikole E; López-Pérez, Mario; Ausó, Eva; Rodriguez-Valera, Francisco; Ghai, Rohit

    2013-01-01

    Although numerous marine bacteria are known to produce antibiotics via hybrid NRPS-PKS gene clusters, none have been previously described in an Alteromonas species. In this study, we describe in detail a novel hybrid NRPS-PKS cluster identified in the plasmid of the Alteromonasmacleodii strain AltDE1 and analyze its relatedness to other similar gene clusters in a sequence-based characterization. This is a mobile cluster, flanked by transposase-like genes, that has even been found inserted into the chromosome of some Alteromonasmacleodii strains. The cluster contains separate genes for NRPS and PKS activity. The sole PKS gene appears to carry a novel acyltransferase domain, quite divergent from those currently characterized. The predicted specificities of the adenylation domains of the NRPS genes suggest that the final compound has a backbone very similar to bleomycin related compounds. However, the lack of genes involved in sugar biosynthesis indicates that the final product is not a glycopeptide. Even in the absence of these genes, the presence of the cluster appears to confer complete or partial resistance to phleomycin, which may be attributed to a bleomycin-resistance-like protein identified within the cluster. This also suggests that the compound still shares significant structural similarity to bleomycin. Moreover, transcriptomic evidence indicates that the NRPS-PKS cluster is expressed. Such sequence-based approaches will be crucial to fully explore and analyze the diversity and potential of secondary metabolite production, especially from increasingly important sources like marine microbes.

  6. Zebrafish olfactory receptor ORA1 recognizes a putative reproductive pheromone

    PubMed Central

    Ahuja, Gaurav; Korsching, Sigrun

    2014-01-01

    Teleost v1r-related ora genes constitute a small and highly conserved olfactory receptor gene family, and their direct orthologs are present in lineages as distant as cartilaginous fishes. Recently, the first member of the ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic acid with high sensitivity and specificity. This compound elicits olfactory-mediated oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a reproductive pheromone for pHPAA itself or a related substance. This association of an odor and its cognate receptor with an oviposition response may provide a molecular basis for studying neural circuits involved in fish reproduction. PMID:26842458

  7. Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis.

    PubMed Central

    Wyckoff, E E; Stoebner, J A; Reed, K E; Payne, S M

    1997-01-01

    Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis. PMID:9371453

  8. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus

    PubMed Central

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-01-01

    Nematodes and insects are the two most speciose animal phyla and nematode–insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny. DOI: http://dx.doi.org/10.7554/eLife.03229.001 PMID:25317948

  9. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus.

    PubMed

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-10-15

    Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny.

  10. Assessment of pheromone response in biofilm forming clinical isolates of high level gentamicin resistant Enterococcus faecalis.

    PubMed

    Jayanthi, S; Ananthasubramanian, M; Appalaraju, B

    2008-01-01

    Twenty five clinical isolates of high level gentamicin resistant Enterococcus faecalis were tested for their biofilm formation and pheromone responsiveness. The biofilm assay was carried out using microtiter plate method. Two isolates out of the 25 (8%) were high biofilm formers and 19 (76%) and four (16%) isolates were moderate and weak biofilm formers respectively. All the isolates responded to pheromones of E. faecalis FA2-2 strain. On addition of pheromone producing E. faecalis FA2-2 strain to these isolates, seven of 19 (37%) moderate biofilm formers developed into high biofilm formers. Similarly one of the 4 (25%) weak biofilm formers developed into high level biofilm former. Twelve (48%) of the 25 isolates were transconjugated by cross streak method using gentamicin as selective marker. This proves that the genetic factor for gentamicin resistance is present in the pheromone responsive plasmid. Among these twelve transaconjugants, seven isolates and one isolate were high biofilm formers on addition of E. faecalis FA2-2 and prior to its addition respectively. Out of the total 25 isolates, eight transconjugants for gentamicin resistance could turn to high biofilm formers on addition of the pheromone producing strain. All the isolates were resistant to more than two antibiotics tested. All the isolates were sensitive to vancomycin. The results indicate the significance of this nosocomial pathogen in biofilm formation and the role of pheromone responding clinical isolates of E. faecalis in spread of multidrug resistance genes.

  11. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster.

    PubMed Central

    Elsinghorst, E A; Mortlock, R P

    1994-01-01

    To metabolize the uncommon pentose D-arabinose, enteric bacteria often recruit the enzymes of the L-fucose pathway by a regulatory mutation. However, Escherichia coli B can grow on D-arabinose without the requirement of a mutation, using some of the L-fucose enzymes and a D-ribulokinase that is distinct from the L-fuculokinase of the L-fucose pathway. To study this naturally occurring D-arabinose pathway, we cloned and partially characterized the E. coli B L-fucose-D-arabinose gene cluster and compared it with the L-fucose gene cluster of E. coli K-12. The order of the fucA, -P, -I, and -K genes was the same in the two E. coli strains. However, the E. coli B gene cluster contained a 5.2-kb segment located between the fucA and fucP genes that was not present in E. coli K-12. This segment carried the darK gene, which encodes the D-ribulokinase needed for growth on D-arabinose by E. coli B. The darK gene was not homologous with any of the L-fucose genes or with chromosomal DNA from other D-arabinose-utilizing bacteria. D-Ribulokinase and L-fuculokinase were purified to apparent homogeneity and partially characterized. The molecular weights, substrate specificities, and kinetic parameters of these two enzymes were very dissimilar, which together with DNA hybridization analysis, suggested that these enzymes are not related. D-Arabinose metabolism by E. coli B appears to be the result of acquisitive evolution, but the source of the darK gene has not been determined. Images PMID:7961494

  12. Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum.

    PubMed

    Kallscheuer, Nicolai; Vogt, Michael; Kappelmann, Jannick; Krumbach, Karin; Noack, Stephan; Bott, Michael; Marienhagen, Jan

    2016-02-01

    Phenylpropanoids as abundant, lignin-derived compounds represent sustainable feedstocks for biotechnological production processes. We found that the biotechnologically important soil bacterium Corynebacterium glutamicum is able to grow on phenylpropanoids such as p-coumaric acid, ferulic acid, caffeic acid, and 3-(4-hydroxyphenyl)propionic acid as sole carbon and energy sources. Global gene expression analyses identified a gene cluster (cg0340-cg0341 and cg0344-cg0347), which showed increased transcription levels in response to phenylpropanoids. The gene cg0340 (designated phdT) encodes for a putative transporter protein, whereas cg0341 and cg0344-cg0347 (phdA-E) encode enzymes involved in the β-oxidation of phenylpropanoids. The phd gene cluster is transcriptionally controlled by a MarR-type repressor encoded by cg0343 (phdR). Cultivation experiments conducted with C. glutamicum strains carrying single-gene deletions showed that loss of phdA, phdB, phdC, or phdE abolished growth of C. glutamicum with all phenylpropanoid substrates tested. The deletion of phdD (encoding for putative acyl-CoA dehydrogenase) additionally abolished growth with the α,β-saturated phenylpropanoid 3-(4-hydroxyphenyl)propionic acid. However, the observed growth defect of all constructed single-gene deletion strains could be abolished through plasmid-borne expression of the respective genes. These results and the intracellular accumulation of pathway intermediates determined via LC-ESI-MS/MS in single-gene deletion mutants showed that the phd gene cluster encodes for a CoA-dependent, β-oxidative deacetylation pathway, which is essential for the utilization of phenylpropanoids in C. glutamicum.

  13. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus).

    PubMed

    Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B; Wu, Hong; Johnson, Nicholas S; Li, Weiming

    2013-08-01

    Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1h exposure. After 2h exposure, 3kACA increased lGnRH-I and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.

  14. Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans.

    PubMed

    Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M

    2010-02-26

    Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.

  15. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B.; Wu, Hong; Johnson, Nicholas S.; Li, Weiming

    2013-01-01

    Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRHI and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.

  16. Evolutionary dynamics of rRNA gene clusters in cichlid fish

    PubMed Central

    2012-01-01

    Background Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and convergent adaptive radiation, which has led to extensive ecological diversity. Results The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22 African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids. The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome. Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds. The rRNA genes were frequently flanked by transposable elements (TEs) and spread throughout the genome, complementing the FISH analysis that detect only clustered copies of rRNA genes. Conclusions The organization of rRNA gene clusters seems to reflect their intense and particular evolutionary pathway and not the evolutionary history of the associated taxa. The possible role of TEs as one source of rRNA gene movement, that could generates the spreading of ribosomal clusters/copies, is discussed. The present paper reinforces the notion that the integration of cytogenetic data and genomic analysis provides a more complete picture for

  17. Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity.

    PubMed

    Vijayan, Vinoy; Thistle, Rob; Liu, Tong; Starostina, Elena; Pikielny, Claudio W

    2014-03-01

    As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating

  18. Classification and Clustering on Microarray Data for Gene Functional Prediction Using R.

    PubMed

    López-Kleine, Liliana; Kleine, Liliana López; Montaño, Rosa; Torres-Avilés, Francisco

    2016-01-01

    Gene expression data (microarrays and RNA-sequencing data) as well as other kinds of genomic data can be extracted from publicly available genomic data. Here, we explain how to apply multivariate cluster and classification methods on gene expression data. These methods have become very popular and are implemented in freely available software in order to predict the participation of gene products in a specific functional category of interest. Taking into account the availability of data and of these methods, every biological study should apply them in order to obtain knowledge on the organism studied and functional category of interest. A special emphasis is made on the nonlinear kernel classification methods.

  19. Phenotype-Dependent Coexpression Gene Clusters: Application to Normal and Premature Ageing.

    PubMed

    Wang, Kun; Das, Avinash; Xiong, Zheng-Mei; Cao, Kan; Hannenhalli, Sridhar

    2015-01-01

    Hutchinson Gilford progeria syndrome (HGPS) is a rare genetic disease with symptoms of aging at a very early age. Its molecular basis is not entirely clear, although profound gene expression changes have been reported, and there are some known and other presumed overlaps with normal aging process. Identification of genes with agingor HGPS-associated expression changes is thus an important problem. However, standard regression approaches are currently unsuitable for this task due to limited sample sizes, thus motivating development of alternative approaches. Here, we report a novel iterative multiple regression approach that leverages co-expressed gene clusters to identify gene clusters whose expression co-varies with age and/or HGPS. We have applied our approach to novel RNA-seq profiles in fibroblast cell cultures at three different cellular ages, both from HGPS patients and normal samples. After establishing the robustness of our approach, we perform a comparative investigation of biological processes underlying normal aging and HGPS. Our results recapitulate previously known processes underlying aging as well as suggest numerous unique processes underlying aging and HGPS. The approach could also be useful in detecting phenotype-dependent co-expression gene clusters in other contexts with limited sample sizes.

  20. Natural and engineered hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster.

    PubMed

    Seip, Britta; Galinski, Erwin A; Kurz, Matthias

    2011-02-01

    We report on the presence of a functional hydroxyectoine biosynthesis gene cluster, ectABCD-ask, in Pseudomonas stutzeri DSM5190(T) and evaluate the suitability of P. stutzeri DSM5190(T) for hydroxyectoine production. Furthermore, we present information on heterologous de novo production of the compatible solute hydroxyectoine in Escherichia coli. In this host, the P. stutzeri gene cluster remained under the control of its salt-induced native promoters. We also noted the absence of trehalose when hydroxyectoine genes were expressed, as well as a remarkable inhibitory effect of externally applied betaine on hydroxyectoine synthesis. The specific heterologous production rate in E. coli under the conditions employed exceeded that of the natural producer Pseudomonas stutzeri and, for the first time, enabled effective hydroxyectoine production at low salinity (2%), with the added advantage of simple product processing due to the absence of other cosolutes.

  1. Regularized Non-negative Matrix Factorization for Identifying Differential Genes and Clustering Samples: a Survey.

    PubMed

    Liu, Jin-Xing; Wang, Dong; Gao, Ying-Lian; Zheng, Chun-Hou; Xu, Yong; Yu, Jiguo

    2017-02-07

    Non-negative Matrix Factorization (NMF), a classical method for dimensionality reduction, has been applied in many fields. It is based on the idea that negative numbers are physically meaningless in various data-processing tasks. Apart from its contribution to conventional data analysis, the recent overwhelming interest in NMF is due to its newly discovered ability to solve challenging data mining and machine learning problems, especially in relation to gene expression data. This survey paper mainly focuses on research examining the application of NMF to identify differentially expressed genes and to cluster samples, and the main NMF models, properties, principles, and algorithms with its various generalizations, extensions, and modifications are summarized. The experimental results demonstrate the performance of the various NMF algorithms in identifying differentially expressed genes and clustering samples.

  2. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    PubMed Central

    Cacho, Ralph A.; Tang, Yi; Chooi, Yit-Heng

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of SMs of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work. PMID:25642215

  3. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608

    PubMed Central

    2013-01-01

    Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showed high similarities with typical type I PKS genes. However, the starting module of PKS gene was confirmed to be specific for isobutyrate by sequence comparison of an acyltransferase domain. In downstream of PKS region, the genes for methoxymalonate biosynthesis were located, among which a gene for FkbH-like protein was assumed to play an important role in the production of methoxymalonyl-CoA from glyceryl-CoA. Further the genes encoding flavensomycinyl-ACP biosynthesis for the post-PKS tailoring were also found in the upstream of PKS region. By gene disruption experiments of a dehydratase domain of module 12 and an FkbH-like protein, this gene cluster was confirmed to be involved in the biosynthesis of bafilomycin. PMID:23663353

  4. DMRT gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions.

    PubMed

    El-Mogharbel, Nisrine; Wakefield, Matthew; Deakin, Janine E; Tsend-Ayush, Enkhjargal; Grützner, Frank; Alsop, Amber; Ezaz, Tariq; Marshall Graves, Jennifer A

    2007-01-01

    We isolated and characterized a cluster of platypus DMRT genes and compared their arrangement, location, and sequence across vertebrates. The DMRT gene cluster on human 9p24.3 harbors, in order, DMRT1, DMRT3, and DMRT2, which share a DM domain. DMRT1 is highly conserved and involved in sexual development in vertebrates, and deletions in this region cause sex reversal in humans. Sequence comparisons of DMRT genes between species have been valuable in identifying exons, control regions, and conserved nongenic regions (CNGs). The addition of platypus sequences is expected to be particularly valuable, since monotremes fill a gap in the vertebrate genome coverage. We therefore isolated and fully sequenced platypus BAC clones containing DMRT3 and DMRT2 as well as DMRT1 and then generated multispecies alignments and ran prediction programs followed by experimental verification to annotate this gene cluster. We found that the three genes have 58-66% identity to their human orthologues, lie in the same order as in other vertebrates, and colocate on 1 of the 10 platypus sex chromosomes, X5. We also predict that optimal annotation of the newly sequenced platypus genome will be challenging. The analysis of platypus sequence revealed differences in structure and sequence of the DMRT gene cluster. Multispecies comparison was particularly effective for detecting CNGs, revealing several novel potential regulatory regions within DMRT3 and DMRT2 as well as DMRT1. RT-PCR indicated that platypus DMRT1 and DMRT3 are expressed specifically in the adult testis (and not ovary), but DMRT2 has a wider expression profile, as it does for other mammals. The platypus DMRT1 expression pattern, and its location on an X chromosome, suggests an involvement in monotreme sexual development.

  5. Interrogating the function of metazoan histones using engineered gene clusters

    PubMed Central

    McKay, Daniel J.; Klusza, Stephen; Penke, Taylor J.R.; Meers, Michael P.; Curry, Kaitlin P.; McDaniel, Stephen L.; Malek, Pamela Y.; Cooper, Stephen W.; Tatomer, Deirdre C.; Lieb, Jason D.; Strahl, Brian D.; Duronio, Robert J.; Matera, A. Gregory

    2015-01-01

    SUMMARY Histones and their post-translational modifications influence the regulation of many DNA-dependent processes. Although an essential role for histone-modifying enzymes in these processes is well established, defining the specific contribution of individual histone residues remains a challenge because many histone-modifying enzymes have non-histone targets. This challenge is exacerbated by the paucity of suitable approaches to genetically engineer histone genes in metazoans. Here, we describe a facile platform in Drosophila for generating and analyzing any desired histone genotype, and we use it to test the in vivo function of three histone residues. We demonstrate that H4K20 is neither essential for DNA replication nor for completion of development, unlike conclusions drawn from analyses of H4K20 methyltransferases. We also show that H3K36 is required for viability and H3K27 is essential for maintenance of cellular identity during development. These findings highlight the power of engineering histones to interrogate genome structure and function in animals. PMID:25669886

  6. A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum

    PubMed Central

    Tejera Nevado, Paloma; Bifeld, Eugenia; Höhn, Katharina

    2016-01-01

    The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum. Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu2+ challenge but not under sodium arsenite, Cd2+, or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance. PMID:27324767

  7. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis.

    PubMed

    Ladero, Victor; Rattray, Fergal P; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2011-09-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution.

  8. A Comparison of Fuzzy Clustering Approaches for Quantification of Microarray Gene Expression

    PubMed Central

    WANG, YU-PING; GUNAMPALLY, MAHESWAR; CHEN, JIE; BITTEL, DOUGLAS; BUTLER, MERLIN G.; CAI, WEI-WEN

    2016-01-01

    Despite the widespread application of microarray imaging for biomedical imaging research, barriers still exist regarding its reliability for clinical use. A critical major problem lies in accurate spot segmentation and the quantification of gene expression level (mRNA) from the microarray images. A variety of commercial and research freeware packages are available, but most cannot handle array spots with complex shapes such as donuts and scratches. Clustering approaches such as k-means and mixture models were introduced to overcome this difficulty, which use the hard labeling of each pixel. In this paper, we apply fuzzy clustering approaches for spot segmentation, which provides soft labeling of the pixel. We compare several fuzzy clustering approaches for microarray analysis and provide a comprehensive study of these approaches for spot segmentation. We show that possiblistic c-means clustering (PCM) provides the best performance in terms of stability criterion when testing on both a variety of simulated and real microarray images. In addition, we compared three statistical criteria in measuring gene expression levels and show that a new asymptotically unbiased statistic is able to quantify the gene expression level more accurately. PMID:28163819

  9. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles.

    PubMed

    Piel, Jörn

    2002-10-29

    Many drug candidates from marine and terrestrial invertebrates are suspected metabolites of uncultured bacterial symbionts. The antitumor polyketides of the pederin family, isolated from beetles and sponges, are an example. Drug development from such sources is commonly hampered by low yields and the difficulty of sustaining invertebrate cultures. To obtain insight into the true producer and find alternative supplies of these rare drug candidates, the putative pederin biosynthesis genes were cloned from total DNA of Paederus fuscipes beetles, which use this compound for chemical defense. Sequence analysis of the gene cluster and adjacent regions revealed the presence of ORFs with typical bacterial architecture and homologies. The ped cluster, which is present only in beetle specimens with high pederin content, is located on a 54-kb region bordered by transposase pseudogenes and encodes a mixed modular polyketide synthase/nonribosomal peptide synthetase. Notably, none of the modules contains regions with homology to acyltransferase domains, but two copies of isolated monodomain acyltransferase genes were found at the upstream end of the cluster. In line with an involvement in pederin biosynthesis, the upstream cluster region perfectly mirrors pederin structure. The unexpected presence of additional polyketide synthase/nonribosomal peptide synthetase modules reveals surprising insights into the evolutionary relationship between pederin-type pathways in beetles and sponges.

  10. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product.

    PubMed

    Singh, Mangal; Chaudhary, Sandeep; Sareen, Dipti

    2017-03-01

    Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically important antibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid, followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, the knowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of the ever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thus deciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is the substrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtH homolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequenced genome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPS gene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.

  11. Pheromone disruption of Argentine ant trail integrity

    USGS Publications Warehouse

    Suckling, D.M.; Peck, R.W.; Manning, L.M.; Stringer, L.D.; Cappadonna, J.; El-Sayed, A. M.

    2008-01-01

    Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. ?? 2008 Springer Science+Business Media, LLC.

  12. The Histidine Decarboxylase Gene Cluster of Lactobacillus parabuchneri Was Gained by Horizontal Gene Transfer and Is Mobile within the Species

    PubMed Central

    Wüthrich, Daniel; Berthoud, Hélène; Wechsler, Daniel; Eugster, Elisabeth; Irmler, Stefan; Bruggmann, Rémy

    2017-01-01

    Histamine in food can cause intolerance reactions in consumers. Lactobacillus parabuchneri (L. parabuchneri) is one of the major causes of elevated histamine levels in cheese. Despite its significant economic impact and negative influence on human health, no genomic study has been published so far. We sequenced and analyzed 18 L. parabuchneri strains of which 12 were histamine positive and 6 were histamine negative. We determined the complete genome of the histamine positive strain FAM21731 with PacBio as well as Illumina and the genomes of the remaining 17 strains using the Illumina technology. We developed the synteny aware ortholog finding algorithm SynOrf to compare the genomes and we show that the histidine decarboxylase (HDC) gene cluster is located in a genomic island. It is very likely that the HDC gene cluster was transferred from other lactobacilli, as it is highly conserved within several lactobacilli species. Furthermore, we have evidence that the HDC gene cluster was transferred within the L. parabuchneri species. PMID:28261177

  13. A novel cyanide-inducible gene cluster helps protect Pseudomonas aeruginosa from cyanide.

    PubMed

    Frangipani, Emanuela; Pérez-Martínez, Isabel; Williams, Huw D; Cherbuin, Gaëtan; Haas, Dieter

    2014-02-01

    Pseudomonas aeruginosa produces the toxic secondary metabolite hydrogen cyanide (HCN) at high cell population densities and low aeration. Here, we investigated the impact of HCN as a signal in cell-cell communication by comparing the transcriptome of the wild-type strain PAO1 to that of an HCN-negative mutant under cyanogenic conditions. HCN repressed four genes and induced 12 genes. While the individual functions of these genes are unknown, with one exception (i.e. a ferredoxin-dependent reductase), a highly inducible six-gene cluster (PA4129-PA4134) was found to be crucial for protection of P. aeruginosa from external HCN intoxication. A double mutant deleted for PA4129-PA4134 and cioAB (encoding cyanide-insensitive oxidase) did not grow with 100 μM KCN, whereas the corresponding single mutants were essentially unaffected, suggesting a synergistic action of the PA4129-PA4134 gene products and cyanide-insensitive oxidase.

  14. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine.

    PubMed

    Winzer, Thilo; Gazda, Valeria; He, Zhesi; Kaminski, Filip; Kern, Marcelo; Larson, Tony R; Li, Yi; Meade, Fergus; Teodor, Roxana; Vaistij, Fabián E; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2012-06-29

    Noscapine is an antitumor alkaloid from opium poppy that binds tubulin, arrests metaphase, and induces apoptosis in dividing human cells. Elucidation of the biosynthetic pathway will enable improvement in the commercial production of noscapine and related bioactive molecules. Transcriptomic analysis revealed the exclusive expression of 10 genes encoding five distinct enzyme classes in a high noscapine-producing poppy variety, HN1. Analysis of an F(2) mapping population indicated that these genes are tightly linked in HN1, and bacterial artificial chromosome sequencing confirmed that they exist as a complex gene cluster for plant alkaloids. Virus-induced gene silencing resulted in accumulation of pathway intermediates, allowing gene function to be linked to noscapine synthesis and a novel biosynthetic pathway to be proposed.

  15. Localization of the {alpha}7 integrin gene (ITGA7) on human chromosome 12q13: Clustering of integrin and Hox genes implies parallel evolution of these gene families

    SciTech Connect

    Wang, W.; Wu, W.; Kaufman, S.J.

    1995-04-10

    Expression of the {alpha}7 integrin gene (ITGA7) is developmentally regulated during the formation of skeletal muscle. Increased levels of expression and production of isoforms containing different cytoplasmic and extracellular domains accompany myogenesis. To determine whether a single or multiple {alpha}7 gene(s) underlie the structural diversity in this alpha chain that accompanies development, we have examined the rat and human genomes by Southern blotting and in situ hybridization. Our results demonstrate that there is only one {alpha}7 gene in both the rat and the human genomes. In the human, ITGA7 is present on chromosome 12q13. Phylogenetic analysis of the integrin alpha chain sequences suggests that the early integrin genes evolved in two pathways to form the I-integrins and the non-I-integrins. The I-integrin alpha chains contain an additional sequence of approximately 180 amino acids and arose as a result of an early insertion into the non-I-gene. The I-chain subfamily further evolved by duplications within the same chromosome. The non-I-integrin alpha chain genes are localized in clusters on chromosomes 2, 12, and 17, and this closely coincides with the localization of the human homeobox gene clusters. Non-I-integrin alpha chain genes appear to have evolved in parallel and in proximity to the Hox clusters. Thus, the Hox genes that underlie the design of body structure and the Integrin genes that underlie informed cell-cell and cell-matrix interactions appear to have evolved in parallel and coordinate fashions. 52 refs., 5 figs., 2 tabs.

  16. MeSH key terms for validation and annotation of gene expression clusters

    SciTech Connect

    Rechtsteiner, A.; Rocha, L. M.

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert who had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes

  17. Molecular cloning and characterization of the human beta-like globin gene cluster.

    PubMed

    Fritsch, E F; Lawn, R M; Maniatis, T

    1980-04-01

    The genes encoding human embryonic (epsilon), fetal (G gamma, A gamma) and adult (delta, beta) beta-like globin polypeptides were isolated as a set of overlapping cloned DNA fragments from bacteriophage lambda libraries of high molecular weight (15-20 kb) chromosomal DNA. The 65 kb of DNA represented in these overlapping clones contains the genes for all five beta-like polypeptides, including the embryonic epsilon-globin gene, for which the chromosomal location was previously unknown. All five genes are transcribed from the same DNA strand and are arranged in the order 5'-epsilon-(13.3 kb)-G gamma-(3.5 kb)-A gamma-(13.9 kb)-delta-(5.4 kb)-beta-3'. Thus the genes are positioned on the chromosome in the order of their expression during development. In addition to the five known beta-like globin genes, we have detected two other beta-like globin sequences which do not correspond to known polypeptides. One of these sequences has been mapped to the A gamma-delta intergenic region while the other is located 6-9 kb 5' to the epsilon gene. Cross hybridization experiments between the intergenic sequences of the gene cluster have revealed a nonglobin repeat sequence (*) which is interspersed with the globin genes in the following manner: 5'-**epsilon-*G gamma-A gamma*-**delta-beta*-3'. Fine structure mapping of the region located 5' to the delta-globin gene revealed two repeats with a maximum size of 400 bp, which are separated by approximately 700 bp of DNA not repeated within the cluster. Preliminary experiments indicate that this repeat family is also repeated many times in the human genome.

  18. Comparative human-horse sequence analysis of the CYP3A subfamily gene cluster.

    PubMed

    Schmitz, A; Demmel, S; Peters, L M; Leeb, T; Mevissen, M; Haase, B

    2010-12-01

    Cytochrome P450 enzymes (CYP450s) represent a superfamily of haem-thiolate proteins. CYP450s are most abundant in the liver, a major site of drug metabolism, and play key roles in the metabolism of a variety of substrates, including drugs and environmental contaminants. Interaction of two or more different drugs with the same enzyme can account for adverse effects and failure of therapy. Human CYP3A4 metabolizes about 50% of all known drugs, but little is known about the orthologous CYP450s in horses. We report here the genomic organization of the equine CYP3A gene cluster as well as a comparative analysis with the human CYP3A gene cluster. The equine CYP450 genes of the 3A family are located on ECA 13 between 6.97-7.53 Mb, in a region syntenic to HSA 7 99.05-99.35 Mb. Seven potential, closely linked equine CYP3A genes were found, in contrast to only four genes in the human genome. RNA was isolated from an equine liver sample, and the approximately 1.5-kb coding sequence of six CYP3A genes could be amplified by RT-PCR. Sequencing of the RT-PCR products revealed numerous hitherto unknown single nucleotide polymorphisms (SNPs) in these six CYP3A genes, and one 6-bp deletion compared to the reference sequence (EquCab2.0). The presence of the variants was confirmed in a sample of genomic DNA from the same horse. In conclusion, orthologous genes for the CYP3A family exist in horses, but their number differs from those of the human CYP3A gene family. CYP450 genes of the same family show high homology within and between mammalian species, but can be highly polymorphic.

  19. Interference in Pheromone-Responsive Conjugation of a High-Level Bacitracin Resistant Enterococcus faecalis Plasmid of Poultry Origin

    PubMed Central

    Tremblay, Cindy-Love; Archambault, Marie

    2013-01-01

    The current study reports on contact interference of a high-level bacitracin- resistant pheromone-responsive plasmid of Enterococcus faecalis strain 543 of poultry origin during conjugative transfer of bcr antimicrobial resistance genes using a polyclonal antiserum aggregation substance44–560 (AS). After induction with pheromones produced by the recipient strain E. faecalis JH2-2, clumping of the donor E. faecalis strain 543 was observed as well as high transfer frequencies of bcr in short time broth mating. Filter mating assays from donor strain E. faecalis 543 to the recipient strain E. faecalis JH2-2 revealed conjugative transfer of asa1 (AS), bcrRAB and traB (negative regulator pheromone response) genes. The presence of these genes in transconjugants was confirmed by antimicrobial susceptibility testing, PCR, Southern hybridization and sequencing. A significant reduction in formation of aggregates was observed when the polyclonal anti-AS44–560 was added in the pheromone-responsive conjugation experiments as compared to the induced state. Moreover, interference of anti-AS44–560 antibodies in pheromone-responsive conjugation was demonstrated by a reduction in horizontal transfer of asa1 and bcr genes between E. faecalis strain 543 and E. faecalis JH2-2. Reducing the pheromone-responsive conjugation of E. faecalis is of interest because of its clinical importance in the horizontal transfer of antimicrobial resistance. PMID:24030654

  20. Genome Mining for Radical SAM Protein Determinants Reveals Multiple Sactibiotic-Like Gene Clusters

    PubMed Central

    Murphy, Kiera; O'Sullivan, Orla; Rea, Mary C.; Cotter, Paul D.; Ross, R. Paul; Hill, Colin

    2011-01-01

    Thuricin CD is a two-component bacteriocin produced by Bacillus thuringiensis that kills a wide range of clinically significant Clostridium difficile. This bacteriocin has recently been characterized and consists of two distinct peptides, Trnβ and Trnα, which both possess 3 intrapeptide sulphur to α-carbon bridges and act synergistically. Indeed, thuricin CD and subtilosin A are the only antimicrobials known to possess these unusual structures and are known as the sactibiotics (sulplur to alpha carbon-containing antibiotics). Analysis of the thuricin CD-associated gene cluster revealed the presence of genes encoding two highly unusual SAM proteins (TrnC and TrnD) which are proposed to be responsible for these unusual post-translational modifications. On the basis of the frequently high conservation among enzymes responsible for the post-translational modification of specific antimicrobials, we performed an in silico screen for novel thuricin CD–like gene clusters using the TrnC and TrnD radical SAM proteins as driver sequences to perform an initial homology search against the complete non-redundant database. Fifteen novel thuricin CD–like gene clusters were identified, based on the presence of TrnC and TrnD homologues in the context of neighbouring genes encoding potential bacteriocin structural peptides. Moreover, metagenomic analysis revealed that TrnC or TrnD homologs are present in a variety of metagenomic environments, suggesting a widespread distribution of thuricin-like operons in a variety of environments. In-silico analysis of radical SAM proteins is sufficient to identify novel putative sactibiotic clusters. PMID:21760885

  1. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663

    PubMed Central

    Saleh, Orwah; Flinspach, Katrin; Westrich, Lucia; Kulik, Andreas; Gust, Bertolt; Fiedler, Hans-Peter

    2012-01-01

    Summary The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid) and L-glutamine (L-Gln), with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces. PMID:22509222

  2. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Martin, K. A.; Abdi, F.; Widger, W. R.; Fox, G. E.

    1997-01-01

    Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

  3. Analysis of the human [alpha]-globin gene cluster in transgenic mice

    SciTech Connect

    Sharpe, J.A.; Vyas, P.; Higgs, D.R.; Wood, W.G. ); Wells, D.J. ); Whitelaw, E. )

    1993-11-15

    A 350-bp segment of DNA associated with an erythroid-specific DNase I-hypersensitive site (HS -40), upstream of the [alpha]-globin gene cluster, has been identified as the major tissue-specific regulator of the [alpha]-globin genes. However, this element does not direct copy number-dependent or developmentally stable expression of the human genes in transgenic mice. To determine whether additional upstream hypersensitive sites could provide more complete regulation of [alpha] gene expression, the authors have studied 17 lines of transgenic mice bearing various DNA fragments containing HSs -33, -10, -8, and -4, in addition to HS -40. Position-independent, high-level expression of the human [zeta]- and [alpha]-globin genes was consistently observed in embryonic erythroid cells. However, the additional HSs did not confer copy-number dependence, alter the level of expression, or prevent the variable down-regulation of expression in adults. These results suggest that the region upstream of the human [alpha]-globin genes is not equivalent to that upstream of the [beta] locus and that although the two clusters are coordinately expressed, there may be differences in their regulation.

  4. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    NASA Technical Reports Server (NTRS)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  5. Structure of Peptide Sex Pheromone Receptor PrgX and PrgX/Pheromone Complexes and Regulation of Conjugation in Enterococcus faecalis

    SciTech Connect

    Shi,K.; Brown, C.; Gu, Z.; Kozlowicz, B.; Dunny, G.; Ohlendorf, D.; Earhart, C.

    2005-01-01

    Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone binding destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.

  6. Two Group A Streptococcal Peptide Pheromones Act through Opposing Rgg Regulators to Control Biofilm Development

    PubMed Central

    Chang, Jennifer C.; LaSarre, Breah; Jimenez, Juan C.; Aggarwal, Chaitanya; Federle, Michael J.

    2011-01-01

    Streptococcus pyogenes (Group A Streptococcus, GAS) is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3) have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG), and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp) and a metalloprotease (eep), supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1). These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide receptors across the

  7. Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development.

    PubMed

    Chang, Jennifer C; LaSarre, Breah; Jimenez, Juan C; Aggarwal, Chaitanya; Federle, Michael J

    2011-08-01

    Streptococcus pyogenes (Group A Streptococcus, GAS) is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3) have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG), and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp) and a metalloprotease (eep), supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1). These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide receptors across the

  8. Onto-CC: a web server for identifying Gene Ontology conceptual clusters

    PubMed Central

    Romero-Zaliz, R.; del Val, C.; Cobb, J. P.; Zwir, I.

    2008-01-01

    The Gene Ontology (GO) vocabulary has been extensively explored to analyze the functions of coexpressed genes. However, despite its extended use in Biology and Medical Sciences, there are still high levels of uncertainty about which ontology (i.e. Molecular Process, Cellular Component or Molecular Function) should be used, and at which level of specificity. Moreover, the GO database can contain incomplete information resulting from human annotations, or highly influenced by the available knowledge about a specific branch in an ontology. In spite of these drawbacks, there is a trend to ignore these problems and even use GO terms to conduct searches of gene expression profiles (i.e. expression + GO) instead of more cautious approaches that just consider them as an independent source of validation (i.e. expression versus GO). Consequently, propagating the uncertainty and producing biased analysis of the required gene grouping hypotheses. We proposed a web tool, Onto-CC, as an automatic method specially suited for independent explanation/validation of gene grouping hypotheses (e.g. coexpressed genes) based on GO clusters (i.e. expression versus GO). Onto-CC approach reduces the uncertainty of the queries by identifying optimal conceptual clusters that combine terms from different ontologies simultaneously, as well as terms defined at different levels of specificity in the GO hierarchy. To do so, we implemented the EMO-CC methodology to find clusters in structural databases [GO Directed acyclic Graph (DAG) tree], inspired on Conceptual Clustering algorithms. This approach allows the management of optimal cluster sets as potential parallel hypotheses, guided by multiobjective/multimodal optimization techniques. Therefore, we can generate alternative and, still, optimal explanations of queries that can provide new insights for a given problem. Onto-CC has been successfully used to test different medical and biological hypotheses including the explanation and prediction of

  9. Beyond aflatoxin: four distinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters

    PubMed Central

    Georgianna, D. Ryan; Fedorova, Natalie D.; Burroughs, James L.; Dolezal, Andrea L.; Bok, J.; Horowitz-Brown, S.; Woloshuk, Charles P.; Yu, Jiujiang; Keller, Nancy P.; Payne, Gary A.

    2014-01-01

    SUMMARY Species of Aspergillus produce a diverse array of secondary metabolites, and recent genomic analysis predicts that these species have the capacity to synthesize many more compounds. It has been possible to infer the presence of 55 gene clusters associated with secondary metabolism in A. flavus, however, only three metabolic pathways - aflatoxin, cyclopiazonic acid (CPA), and aflatrem - have been assigned to these clusters. To gain insight into the regulation of, and infer ecological significance for the 55 secondary metabolite gene clusters predicted in A. flavus, we examined their expression over 28 diverse conditions. Variables included culture media and temperature, fungal development, colonization of developing maize seeds, and misexpression of laeA, a global regulator of secondary metabolism. Hierarchical clustering analysis of expression profiles allowed us to categorize the gene clusters into four distinct clades. Gene clusters for the production of aflatoxins, CPA, and seven other unknown compound(s) were identified as belonging to one clade. To further explore the relationships found by gene expression analysis, aflatoxin and CPA production were quantified under five different cell culture environments known to be conducive or non-conducive for aflatoxin biosynthesis and during colonization of developing maize seeds. Results from these studies showed that secondary metabolism gene clusters have distinctive gene expression profiles. Aflatoxin and CPA were found to have unique regulation but are similar enough that they would be expected to co-occur in substrates colonized with A. flavus. PMID:20447271

  10. Cluster Analysis of Tumor Suppressor Genes in Canine Leukocytes Identifies Activation State

    PubMed Central

    Daly, Julie-Anne; Mortlock, Sally-Anne; Taylor, Rosanne M.; Williamson, Peter

    2015-01-01

    Cells of the immune system undergo activation and subsequent proliferation in the normal course of an immune response. Infrequently, the molecular and cellular events that underlie the mechanisms of proliferation are dysregulated and may lead to oncogenesis, leading to tumor formation. The most common forms of immunological cancers are lymphomas, which in dogs account for 8%–20% of all cancers, affecting up to 1.2% of the dog population. Key genes involved in negatively regulating proliferation of lymphocytes include a group classified as tumor suppressor genes (TSGs). These genes are also known to be associated with progression of lymphoma in humans, mice, and dogs and are potential candidates for pathological grading and diagnosis. The aim of the present study was to analyze TSG profiles in stimulated leukocytes from dogs to identify genes that discriminate an activated phenotype. A total of 554 TSGs and three gene set collections were analyzed from microarray data. Cluster analysis of three subsets of genes discriminated between stimulated and unstimulated cells. These included 20 most upregulated and downregulated TSGs, TSG in hallmark gene sets significantly enriched in active cells, and a selection of candidate TSGs, p15 (CDKN2B), p18 (CDKN2C), p19 (CDKN1A), p21 (CDKN2A), p27 (CDKN1B), and p53 (TP53) in the third set. Analysis of two subsets suggested that these genes or a subset of these genes may be used as a specialized PCR set for additional analysis. PMID:27478369

  11. A highly divergent gene cluster in honey bees encodes a novel silk family.

    PubMed

    Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S

    2006-11-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.

  12. Sensing odorants and pheromones with chemosensory receptors.

    PubMed

    Touhara, Kazushige; Vosshall, Leslie B

    2009-01-01

    Olfaction is a critical sensory modality that allows living things to acquire chemical information from the external world. The olfactory system processes two major classes of stimuli: (a) general odorants, small molecules derived from food or the environment that signal the presence of food, fire, or predators, and (b) pheromones, molecules released from individuals of the same species that convey social or sexual cues. Chemosensory receptors are broadly classified, by the ligands that activate them, into odorant or pheromone receptors. Peripheral sensory neurons expressing either odorant or pheromone receptors send signals to separate odor- and pheromone-processing centers in the brain to elicit distinct behavioral and neuroendocrinological outputs. General odorants activate receptors in a combinatorial fashion, whereas pheromones activate narrowly tuned receptors that activate sexually dimorphic neural circuits in the brain. We review recent progress on chemosensory receptor structure, function, and circuitry in vertebrates and invertebrates from the point of view of the molecular biology and physiology of these sensory systems.

  13. Cloning of type 8 capsule genes and analysis of gene clusters for the production of different capsular polysaccharides in Staphylococcus aureus.

    PubMed

    Sau, S; Lee, C Y

    1996-04-01

    Eleven serotypes of capsular polysaccharide from Staphylococcus aureus have been reported. We have previously cloned a cluster of type 1 capsule (cap1) genes responsible for type 1 capsular polysaccharide biosynthesis in S. aureus M. To clone the type 8 capsule (cap8) genes, a plasmid library of type 8 strain Becker was screened with a labelled DNA fragment containing the cap1 genes under low-stringency conditions. One recombinant plasmid containing a 14-kb insert was chosen for further study and found to complement 14 of the 18 type 8 capsule-negative (Cap8-) mutants used in the study. Additional library screening, subcloning, and complementation experiments showed that all of the 18 Cap8- mutants were complemented by DNA fragments derived from a 20.5-kb contiguous region of the Becker chromosome. The mutants were mapped into six complementation groups, indicating that the cap8 genes are clustered. By Southern hybridization analyses under high-stringency conditions, we found that DNA fragments containing the cap8 gene cluster show extensive homology with all 17 strains tested, including type 1 strains. By further Southern analyses and cloning of the cap8-related homolog from strain M, we show that strain M carries an additional capsule gene cluster different from the cap1 gene cluster. In addition, by using DNA fragments containing different regions of the cap8 gene cluster as probes to hybridize DNA from different strains, we found that the central region of the cap8 gene cluster hybridizes only to DNAs from certain strains tested whereas the flanking regions hybridize to DNAs of all strains tested. Thus, the cap8 gene clusters and its closely related homologs are likely to have organizations similar to those of the encapsulation genes of other bacterial systems.

  14. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  15. Gene regulatory network clustering for graph layout based on microarray gene expression data.

    PubMed

    Kojima, Kaname; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru

    2010-01-01

    We propose a statistical model realizing simultaneous estimation of gene regulatory network and gene module identification from time series gene expression data from microarray experiments. Under the assumption that genes in the same module are densely connected, the proposed method detects gene modules based on the variational Bayesian technique. The model can also incorporate existing biological prior knowledge such as protein subcellular localization. We apply the proposed model to the time series data from a synthetically generated network and verified the effectiveness of the proposed model. The proposed model is also applied the time series microarray data from HeLa cell. Detected gene module information gives the great help on drawing the estimated gene network.

  16. Structure and gene cluster of the O-antigen of Enterobacter cloacae G3421.

    PubMed

    Perepelov, Andrei V; Filatov, Andrei V; Wang, Min; Shashkov, Alexander S; Wang, Lei; Knirel, Yuriy A

    2016-06-02

    The O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Enterobacter cloacae G3421 and studied by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy. In addition, partial solvolysis with anhydrous trifluoroacetic acid was applied, which cleaved selectively the α-l-rhamnopyranosidic linkages. The following structure of the branched hexasaccharide repeating unit was established. The O-polysaccharide studied shares the β-l-Rhap-(1→4)-α-l-Rhap-(1→2)-α-l-Rhap trisaccharide fragment with the O-polysaccharide of Shigella boydii type 18. The O-antigen gene cluster of E. cloacae G3421 was sequenced. Functions of genes in the cluster, including those for glycosyltransferases, were tentatively assigned by a comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure.

  17. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons.

    PubMed

    Hirayama, Teruyoshi; Tarusawa, Etsuko; Yoshimura, Yumiko; Galjart, Niels; Yagi, Takeshi

    2012-08-30

    The CCCTC-binding factor (CTCF) is a key molecule for chromatin conformational changes that promote cellular diversity, but nothing is known about its role in neurons. Here, we produced mice with a conditional knockout (cKO) of CTCF in postmitotic projection neurons, mostly in the dorsal telencephalon. The CTCF-cKO mice exhibited postnatal growth retardation and abnormal behavior and had defects in functional somatosensory mapping in the brain. In terms of gene expression, 390 transcripts were expressed at significantly different levels between CTCF-deficient and control cortex and hippocampus. In particular, the levels of 53 isoforms of the clustered protocadherin (Pcdh) genes, which are stochastically expressed in each neuron, declined markedly. Each CTCF-deficient neuron showed defects in dendritic arborization and spine density during brain development. Their excitatory postsynaptic currents showed normal amplitude but occurred with low frequency. Our results indicate that CTCF regulates functional neural development and neuronal diversity by controlling clustered Pcdh expression.

  18. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD

    PubMed Central

    Martínez-Flores, Irma; Pérez-Morales, Deyanira; Sánchez-Pérez, Mishael; Paredes, Claudia C.; Collado-Vides, Julio; Salgado, Heladia; Bustamante, Víctor H.

    2016-01-01

    A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes. PMID:27886269

  19. The phn Genes of Burkholderia sp. Strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Catabolism

    PubMed Central

    Laurie, Andrew D.; Lloyd-Jones, Gareth

    1999-01-01

    Cloning and molecular ecological studies have underestimated the diversity of polycyclic aromatic hydrocarbon (PAH) catabolic genes by emphasizing classical nah-like (nah, ndo, pah, and dox) sequences. Here we report the description of a divergent set of PAH catabolic genes, the phn genes, which although isofunctional to the classical nah-like genes, show very low homology. This phn locus, which contains nine open reading frames (ORFs), was isolated on an 11.5-kb HindIII fragment from phenanthrene-degrading Burkholderia sp. strain RP007. The phn genes are significantly different in sequence and gene order from previously characterized genes for PAH degradation. They are transcribed by RP007 when grown at the expense of either naphthalene or phenanthrene, while in Escherichia coli the recombinant phn enzymes have been shown to be capable of oxidizing both naphthalene and phenanthrene to predicted metabolites. The locus encodes iron sulfur protein α and β subunits of a PAH initial dioxygenase but lacks the ferredoxin and reductase components. The dihydrodiol dehydrogenase of the RP007 pathway, PhnB, shows greater similarity to analogous dehydrogenases from described biphenyl pathways than to those characterized from naphthalene/phenanthrene pathways. An unusual extradiol dioxygenase, PhnC, shows no similarity to other extradiol dioxygenases for naphthalene or biphenyl oxidation but is the first member of the recently proposed class III extradiol dioxygenases that is specific for polycyclic arene diols. Upstream of the phn catabolic genes are two putative regulatory genes, phnR and phnS. Sequence homology suggests that phnS is a LysR-type transcriptional activator and that phnR, which is divergently transcribed with respect to phnSFECDAcAdB, is a member of the ς54-dependent family of positive transcriptional regulators. Reverse transcriptase PCR experiments suggest that this gene cluster is coordinately expressed and is under regulatory control which may involve

  20. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds.

    PubMed

    Grosse-Wilde, Ewald; Gohl, Thomas; Bouché, Elisabeth; Breer, Heinz; Krieger, Jürgen

    2007-04-01

    Males of the moth species Heliothis virescens are able to detect the female-released pheromone with remarkable sensitivity and specificity, distinguishing between highly related pheromonal compounds. In the past, electrophysiological studies succeeded in assigning sensory hairs to identified compounds revealing three functional types of long sensilla trichodea housing neurons specifically responding to distinct semiochemicals. The specific responsiveness implies that the sensory neurons express different receptor types tuned to pheromone components. In this study we demonstrate that heterologously expressed candidate pheromone receptors from Heliothis responded to several pheromonal compounds, including the major sex-pheromone component Z-11-hexadecenal indicating a limited specificity of each receptor type. Nonetheless, based on functional analysis and in situ hybridization studies the analysed receptor types could tentatively be assigned to types of long sensilla trichodea, containing the pheromone-binding proteins (PBPs) HvirPBP1 and HvirPBP2 in the sensillum lymph. Substituting organic solvent with PBPs to solubilize the hydrophobic pheromone compounds in functional assays revealed an increase in sensitivity and especially specificity. It was found that in the presence of HvirPBP2, cells expressing the receptor type HR13 specifically responded to the main component of the sex pheromone blend only. The data provide further evidence that a combination of a distinct receptor type and binding protein underlie the specific response observed in the detection of a pheromone component in vivo.

  1. PROCESS FLOW FOR CLASSIFICATION AND CLUSTERING OF FRUIT FLY GENE EXPRESSION PATTERNS

    PubMed Central

    Heffel, Andreas; Stadler, Peter F.; Prohaska, Sonja J.; Kauer, Gerhard; Kuska, Jens-Peer

    2009-01-01

    The rapidly growing collection of fruit fly embryo images makes automated Image Segmentation and classification an indispensable requirement for a large-scale analysis of in situ hybridization (ISH) – gene expression patterns (GEP). We present here such an automated process flow for Segmenting, Classification, and Clustering large-scale sets of Drosophila melanogaster GEP that is capable of dealing with most of the complications implicated in the images. PMID:20046820

  2. Evolution of a Bitter Taste Receptor Gene Cluster in a New World Sparrow

    PubMed Central

    Davis, Jamie K.; Lowman, Josh J.; Thomas, Pamela J.; ten Hallers, Boudewijn F. H.; Koriabine, Maxim; Huynh, Lynn Y.; Maney, Donna L.; de Jong, Pieter J.; Martin, Christa L.; Thomas, James W.

    2010-01-01

    Bitter taste perception likely evolved as a protective mechanism against the ingestion of harmful compounds in food. The evolution of the taste receptor type 2 (TAS2R) gene family, which encodes the chemoreceptors that are directly responsible for the detection of bitter compounds, has therefore been of considerable interest. Though TAS2R repertoires have been characterized for a number of species, to date the complement of TAS2Rs from just one bird, the chicken, which had a notably small number of TAS2Rs, has been established. Here, we used targeted mapping and genomic sequencing in the white-throated sparrow (Zonotrichia albicollis) and sample sequencing in other closely related birds to reconstruct the history of a TAS2R gene cluster physically linked to the break points of an evolutionary chromosomal rearrangement. In the white-throated sparrow, this TAS2R cluster encodes up to 18 functional bitter taste receptors and likely underwent a large expansion that predates and/or coincides with the radiation of the Emberizinae subfamily into the New World. In addition to signatures of gene birth-and-death evolution within this cluster, estimates of Ka/Ks for the songbird TAS2Rs were similar to those previously observed in mammals, including humans. Finally, comparison of the complete genomic sequence of the cluster from two common haplotypes in the white-throated sparrow revealed a number of nonsynonymous variants and differences in functional gene content within this species. These results suggest that interspecies and intraspecies genetic variability does exist in avian TAS2Rs and that these differences could contribute to variation in bitter taste perception in birds. PMID:20624740

  3. Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees

    PubMed Central

    He, Xu Jiang; Zhang, Xue Chuan; Jiang, Wu Jun; Barron, Andrew B.; Zhang, Jian Hui; Zeng, Zhi Jiang

    2016-01-01

    Cooperative brood care is diagnostic of animal societies. This is particularly true for the advanced social insects, and the honey bee is the best understood of the insect societies. A brood pheromone signaling the presence of larvae in a bee colony has been characterised and well studied, but here we explored whether honey bee larvae actively signal their food needs pheromonally to workers. We show that starving honey bee larvae signal to workers via increased production of the volatile pheromone E-β-ocimene. Analysis of volatile pheromones produced by food-deprived and fed larvae with gas chromatography-mass spectrometry showed that starving larvae produced more E-β-ocimene. Behavioural analyses showed that adding E-β-ocimene to empty cells increased the number of worker visits to those cells, and similarly adding E-β-ocimene to larvae increased worker visitation rate to the larvae. RNA-seq and qRT-PCR analysis identified 3 genes in the E-β-ocimene biosynthetic pathway that were upregulated in larvae following 30 minutes of starvation, and these genes also upregulated in 2-day old larvae compared to 4-day old larvae (2-day old larvae produce the most E-β-ocimene). This identifies a pheromonal mechanism by which brood can beg for food from workers to influence the allocation of resources within the colony. PMID:26924295

  4. Characterization of a cytochrome c gene located at the gene cluster for chlorate respiration in Ideonella dechloratans.

    PubMed

    Bohlin, Jan; Bäcklund, Anna Smedja; Gustavsson, Niklas; Wahlberg, Sara; Nilsson, Thomas

    2010-08-20

    Anaerobic chlorate respiration requires electron transport from the bacterial inner membrane to the soluble periplasmic chlorate reductase. We have recently demonstrated that soluble c cytochromes function as electron carriers for chlorate reduction in Ideonella dechloratans (Smedja Bäcklund et al. 2009). In the present work, we describe a gene encoding soluble c-type cytochrome [cyt; GenBank ID: EU768872] located close to the gene cluster for chlorate reduction in I. dechloratans. The predicted amino acid sequence does not match any of the peptide masses or partial sequences obtained earlier from periplasmic c cytochromes. The gene, without the predicted signal sequence, was expressed heterologously in E. coli and the recombinant protein was purified, refolded and reconstituted with heme. The reconstituted protein shows spectral properties characteristic for c cytochromes, with an absorption maximum at 553 nm for the alpha band in the reduced state. Pyridine hemochrome analysis demonstrates the formation of covalently bound heme.

  5. Comparative analysis of a conserved zinc finger gene cluster on human chromosome 19q and mouse chromosome 7.

    PubMed

    Shannon, M; Ashworth, L K; Mucenski, M L; Lamerdin, J E; Branscomb, E; Stubbs, L

    1996-04-01

    Several lines of evidence now suggest that many of the zinc-finger-containing (ZNF) genes in the human genome are arranged in clusters. However, little is known about the structure or function of the clusters or about their conservation throughout evolution. Here, we report the analysis of a conserved ZNF gene cluster located in human chromosome 19q13.2 and mouse chromosome 7. Our results indicate that the human cluster consists of at least 10 related Kruppel-associated box (KRAB)-containing ZNF genes organized in tandem over a distance of 350-450 kb. Two cDNA clones representing genes in the murine cluster have been studied in detail. The KRAB A domains of these genes are nearly identical and are highly similar to human 19q13.2-derived KRAB sequences, but DNA-binding ZNF domains and other portions of the genes differ considerably. The two murine genes display distinct expression patterns, but are coexpressed in some adult tissues. These studies pave the way for a systematic analysis of the evolution of structure and function of genes within the numerous clustered ZNF families located on human chromosome 19 and elsewhere in the human and mouse genomes.

  6. Structure and gene cluster of the O-antigen of Escherichia coli O133.

    PubMed

    Shashkov, Alexander S; Zhang, Yuanyuan; Sun, Qiangzheng; Guo, Xi; Senchenkova, Sof'ya N; Perepelov, Andrei V; Knirel, Yuriy A

    2016-07-22

    The O-specific polysaccharide (O-antigen) of Escherichia coli O133 was obtained by mild acid hydrolysis of the lipopolysaccharide of E. coli O133. The structure of the hexasaccharide repeating unit of the polysaccharide was elucidated by (1)H and (13)C NMR spectroscopy, including a two-dimensional (1)H-(1)H ROESY experiment: Functions of genes in the O-antigen gene cluster were putatively identified by comparison with sequences in the available databases and, particularly, an encoded predicted multifunctional glycosyltransferase was assigned to three α-l-rhamnosidic linkages.

  7. Identification and characterization of the carbapenem MM 4550 and its gene cluster in Streptomyces argenteolus ATCC 11009

    PubMed Central

    Li, Rongfeng; Lloyd, Evan P.; Moshos, Kristos A.

    2014-01-01

    Nearly 50 naturally-occurring carbapenem β-lactam antibiotics, most produced by Streptomyces, have been identified. The structural diversity of these compounds is limited to variance of the C-2 and C-6 side chains as well as the stereochemistry at C-5/C-6. These structural motifs are of interest both for their antibiotic effects and their biosynthesis. While the thienamycin gene cluster is the only active gene cluster publically available in this group, more comparative information is needed to understand the genetic basis of these structural differences. We report here the identification of MM 4550, a member of the olivanic acids, as the major carbapenem produced by S. argenteolus ATCC 11009. Its gene cluster was also identified by degenerate PCR and targeted gene inactivation. Sequence analysis revealed that genes encoding the biosynthesis of the bicyclic core and the C-6 and C-2 side chains are well conserved in the MM 4550 and thienamycin gene clusters. Three new genes, cmmSu, cmm17 and cmmPah were found in the new cluster and their putative functions in the sulfonation and epimerization of MM 4550 are proposed. Gene inactivation showed that, in addition to cmmI, two new genes, cmm22/23, encode a two-component response system thought to regulate the production of MM 4550. Overexpression of cmmI, cmm22 and cmm23 promoted MM 4550 production in an engineered strain. Finally, the involvement and putative roles of all genes in the MM 4550 cluster are proposed based on the results of bioinformatics analysis, gene inactivation, and analysis of disruption mutants. Overall, the differences between the thienamycin and MM 4550 gene clusters are reflected in characteristic structural elements and provide new insights into the biosynthesis of the complex carbapenems. PMID:24420617

  8. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens.

    PubMed

    Pernodet, J L; Boccard, F; Alegre, M T; Gagnat, J; Guérineau, M

    1989-06-30

    The Streptomyces ambofaciens genome contains four rRNA gene clusters. These copies are called rrnA, B, C and D. The complete nucleotide (nt) sequence of rrnD has been determined. These genes possess striking similarity with other eubacterial rRNA genes. Comparison with other rRNA sequences allowed the putative localization of the sequences encoding mature rRNAs. The structural genes are arranged in the order 16S-23S-5S and are tightly linked. The mature rRNAs are predicted to contain 1528, 3120 and 120 nt, for the 16S, 23S and 5S rRNAs, respectively. The 23S rRNA is, to our knowledge, the longest of all sequenced prokaryotic 23S rRNAs. When compared to other large rRNAs it shows insertions at positions where they are also present in archaebacterial and in eukaryotic large rRNAs. Secondary structure models of S. ambofaciens rRNAs are proposed, based upon those existing for other bacterial rRNAs. Positions of putative transcription start points and of a termination signal are suggested. The corresponding putative primary transcript, containing the 16S, 23S and 5S rRNAs plus flanking regions, was folded into a secondary structure, and sequences possibly involved in rRNA maturation are described. The G + C content of the rRNA gene cluster is low (57%) compared with the overall G + C content of Streptomyces DNA (73%).

  9. Patterning in time and space: HoxB cluster gene expression in the developing chick embryo.

    PubMed

    Gouveia, Analuce; Marcelino, Hugo M; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P

    2015-01-01

    The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.

  10. Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin.

    PubMed

    Felnagle, Elizabeth A; Rondon, Michelle R; Berti, Andrew D; Crosby, Heidi A; Thomas, Michael G

    2007-07-01

    Capreomycin (CMN) belongs to the tuberactinomycin family of nonribosomal peptide antibiotics that are essential components of the drug arsenal for the treatment of multidrug-resistant tuberculosis. Members of this antibiotic family target the ribosomes of sensitive bacteria and disrupt the function of both subunits of the ribosome. Resistance to these antibiotics in Mycobacterium species arises due to mutations in the genes coding for the 16S or 23S rRNA but can also arise due to mutations in a gene coding for an rRNA-modifying enzyme, TlyA. While Mycobacterium species develop resistance due to alterations in the drug target, it has been proposed that the CMN-producing bacterium, Saccharothrix mutabilis subsp. capreolus, uses CMN modification as a mechanism for resistance rather than ribosome modification. To better understand CMN biosynthesis and resistance in S. mutabilis subsp. capreolus, we focused on the identification of the CMN biosynthetic gene cluster in this bacterium. Here, we describe the cloning and sequence analysis of the CMN biosynthetic gene cluster from S. mutabilis subsp. capreolus ATCC 23892. We provide evidence for the heterologous production of CMN in the genetically tractable bacterium Streptomyces lividans 1326. Finally, we present data supporting the existence of an additional CMN resistance gene. Initial work suggests that this resistance gene codes for an rRNA-modifying enzyme that results in the formation of CMN-resistant ribosomes that are also resistant to the aminoglycoside antibiotic kanamycin. Thus, S. mutabilis subsp. capreolus may also use ribosome modification as a mechanism for CMN resistance.

  11. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes.

    PubMed

    Hill, Karen K; Smith, Theresa J

    2013-01-01

    Clostridium botulinum is a species of spore-forming anaerobic bacteria defined by the expression of any one or two of seven serologically distinct botulinum neurotoxins (BoNTs) designated BoNT/A-G. This Gram-positive bacterium was first identified in 1897 and since then the paralyzing and lethal effects of its toxin have resulted in the recognition of different forms of the intoxication known as food-borne, infant, or wound botulism. Early microbiological and biochemical characterization of C. botulinum isolates revealed that the bacteria within the species had different characteristics and expressed different toxin types. To organize the variable bacterial traits within the species, Group I-IV designations were created. Interestingly, it was observed that isolates within different Groups could express the same toxin type and conversely a single Group could express different toxin types. This discordant phylogeny between the toxin and the host bacteria indicated that horizontal gene transfer of the toxin was responsible for the variation observed within the species. The recent availability of multiple C. botulinum genomic sequences has offered the ability to bioinformatically analyze the locations of the bont genes, the composition of their toxin gene clusters, and the genes flanking these regions to understand their variation. Comparison of the genomic sequences representing multiple serotypes indicates that the bont genes are not in random locations. Instead the analyses revealed specific regions where the toxin genes occur within the genomes representing serotype A, B, C, E, and F C. botulinum strains and C. butyricum type E strains. The genomic analyses have provided evidence of horizontal gene transfer, site-specific insertion, and recombination events. These events have contributed to the variation observed among the neurotoxins, the toxin gene clusters and the bacteria that contain them, and has supported the historical microbiological, and biochemical

  12. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    PubMed Central

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  13. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  14. The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855

  15. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365.

    PubMed

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas; Rohrer, Sabrina; Niedermeyer, Timo Horst Johannes; Stegmann, Evi; Weber, Tilmann; Wohlleben, Wolfgang

    2016-03-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus Tü 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC-MS analyses, most of the uncharacterized gene clusters are not expressed under standard laboratory conditions. With this study we aimed to characterize the genome information of S. collinus Tü 365 to make use of gene clusters, which previously have not been described for this strain. We were able to connect the gene clusters of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products.

  16. Clustering of Two Genes Putatively Involved in Cyanate Detoxification Evolved Recently and Independently in Multiple Fungal Lineages

    PubMed Central

    Elmore, M. Holly; McGary, Kriston L.; Wisecaver, Jennifer H.; Slot, Jason C.; Geiser, David M.; Sink, Stacy; O’Donnell, Kerry; Rokas, Antonis

    2015-01-01

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trace its evolution across Ascomycetes, and examine the evolutionary dynamics of its spread among lineages of the Fusarium oxysporum species complex (hereafter referred to as the FOSC), a cosmopolitan clade of purportedly clonal vascular wilt plant pathogens. Phylogenetic analysis of fungal cyanase and carbonic anhydrase genes reveals that the CCA gene cluster arose independently at least twice and is now present in three lineages, namely Cochliobolus lunatus, Oidiodendron maius, and the FOSC. Genome-wide surveys within the FOSC indicate that the CCA gene cluster varies in copy number across isolates, is always located on accessory chromosomes, and is absent in FOSC’s closest relatives. Phylogenetic reconstruction of the CCA gene cluster in 163 FOSC strains from a wide variety of hosts suggests a recent history of rampant transfers between isolates. We hypothesize that the independent formation of the CCA gene cluster in different fungal lineages and its spread across FOSC strains may be associated with resistance to plant-produced cyanates or to use of cyanate fungicides in agriculture. PMID:25663439

  17. Overproduction of Ristomycin A by Activation of a Silent Gene Cluster in Amycolatopsis japonicum MG417-CF17

    PubMed Central

    Spohn, Marius; Kirchner, Norbert; Kulik, Andreas; Jochim, Angelika; Wolf, Felix; Muenzer, Patrick; Borst, Oliver; Gross, Harald; Wohlleben, Wolfgang

    2014-01-01

    The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under standard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbrAba), into A. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-bbrAba synthesizes ristomycin A. PMID:25114137

  18. Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas

    PubMed Central

    Van Sluys, Marie-Anne; White, Frank F.; Ryan, Robert P.; Dow, J. Maxwell; Rabinowicz, Pablo; Salzberg, Steven L.; Leach, Jan E.; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J.

    2008-01-01

    Background Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. Methodology/Principal Findings To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Conclusions/Significance Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale

  19. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255.

    PubMed

    van den Berg, Marco A; Westerlaken, Ilja; Leeflang, Chris; Kerkman, Richard; Bovenberg, Roel A L

    2007-09-01

    Industrial strain improvement via classical mutagenesis is a black box approach. In an attempt to learn from and understand the mutations introduced, we cloned and characterized the amplified region of industrial penicillin production strains. Upon amplification of this region Penicillium chrysogenum is capable of producing an increased amount of antibiotics, as was previously reported [Barredo, J.L., Diez, B., Alvarez, E., Martín, J.F., 1989a. Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high yielding strains of Penicillium chrysogenum. Curr. Genet. 16, 453-459; Newbert, R.W., Barton, B., Greaves, P., Harper, J., Turner, G., 1997. Analysis of a commercially improved Penicillium chrysogenum strain series, involvement of recombinogenic regions in amplification and deletion of the penicillin gene cluster. J. Ind. Microbiol. 19, 18-27]. Bioinformatic analysis of the central 56.9kb, present as six direct repeats in the strains analyzed in this study, predicted 15 Open Reading Frames (ORFs). Besides the three penicillin biosynthetic genes (pcbAB, pcbC and penDE) only one ORF has an orthologue of known function in the database: the Saccharomyces cerevisiae gene ERG25. Surprisingly, many genes known to encode direct or indirect steps beta-lactam biosynthesis like phenyl acetic acid CoA ligase and transporters are not present. Detailed analyses reveal a detectable transcript for most of the predicted ORFs under the conditions tested. We have studied the role of these in relation to penicillin production and amplification of the biosynthetic gene cluster. In contrast to what was expected, the genes encoding the three penicillin biosynthetic enzymes alone are sufficient to restore full beta-lactam synthesis in a mutant lacking the complete region. Therefore, the role of the other 12 ORFs in this region seems irrelevant for penicillin biosynthesis.

  20. Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs)

    PubMed Central

    2013-01-01

    Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation. PMID:24088245

  1. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome

    PubMed Central

    Shin, Jessica; Monti, Stefano; Aires, Daniel J.; Duvic, Madeleine; Golub, Todd

    2007-01-01

    Cutaneous T-cell lymphoma (CTCL) is defined by infiltration of activated and malignant T cells in the skin. The clinical manifestations and prognosis in CTCL are highly variable. In this study, we hypothesized that gene expression analysis in lesional skin biopsies can improve understanding of the disease and its management. Based on 63 skin samples, we performed consensus clustering, revealing 3 patient clusters. Of these, 2 clusters tended to differentiate limited CTCL (stages IA and IB) from more extensive CTCL (stages IB and III). Stage IB patients appeared in both clusters, but those in the limited CTCL cluster were more responsive to treatment than those in the more extensive CTCL cluster. The third cluster was enriched in lymphocyte activation genes and was associated with a high proportion of tumor (stage IIB) lesions. Survival analysis revealed significant differences in event-free survival between clusters, with poorest survival seen in the activated lymphocyte cluster. Using supervised analysis, we further characterized genes significantly associated with lower-stage/treatment-responsive CTCL versus higher-stage/treatment-resistant CTCL. We conclude that transcriptional profiling of CTCL skin lesions reveals clinically relevant signatures, correlating with differences in survival and response to treatment. Additional prospective long-term studies to validate and refine these findings appear warranted. PMID:17638852

  2. Cloning and characterization of the polyether salinomycin biosynthesis gene cluster of Streptomyces albus XM211.

    PubMed

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing; Bai, Linquan

    2012-02-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity.

  3. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti.

    PubMed

    Del-Cid, Abdiel; Gil-Durán, Carlos; Vaca, Inmaculada; Rojas-Aedo, Juan F; García-Rico, Ramón O; Levicán, Gloria; Chávez, Renato

    2016-01-01

    The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes.

  4. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti

    PubMed Central

    Del-Cid, Abdiel; Gil-Durán, Carlos; Vaca, Inmaculada; Rojas-Aedo, Juan F.; García-Rico, Ramón O.; Levicán, Gloria; Chávez, Renato

    2016-01-01

    The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes. PMID:26751579

  5. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species

    SciTech Connect

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.

    2015-04-09

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.

  6. Anticancer drug clustering in lung cancer based on gene expression profiles and sensitivity database

    PubMed Central

    Gemma, Akihiko; Li, Cai; Sugiyama, Yuka; Matsuda, Kuniko; Seike, Yoko; Kosaihira, Seiji; Minegishi, Yuji; Noro, Rintaro; Nara, Michiya; Seike, Masahiro; Yoshimura, Akinobu; Shionoya, Aki; Kawakami, Akiko; Ogawa, Naoki; Uesaka, Haruka; Kudoh, Shoji

    2006-01-01

    background The effect of current therapies in improving the survival of lung cancer patients remains far from satisfactory. It is consequently desirable to find more appropriate therapeutic opportunities based on informed insights. A molecular pharmacological analysis was undertaken to design an improved chemotherapeutic strategy for advanced lung cancer. Methods We related the cytotoxic activity of each of commonly used anti-cancer agents (docetaxel, paclitaxel, gemcitabine, vinorelbine, 5-FU, SN38, cisplatin (CDDP), and carboplatin (CBDCA)) to corresponding expression pattern in each of the cell lines using a modified NCI program. Results We performed gene expression analysis in lung cancer cell lines using cDNA filter and high-density oligonucleotide arrays. We also examined the sensitivity of these cell lines to these drugs via MTT assay. To obtain our reproducible gene-drug sensitivity correlation data, we separately analyzed two sets of lung cancer cell lines, namely 10 and 19. In our gene-drug correlation analyses, gemcitabine consistently belonged to an isolated cluster in a reproducible fashion. On the other hand, docetaxel, paclitaxel, 5-FU, SN-38, CBDCA and CDDP were gathered together into one large cluster. Conclusion These results suggest that chemotherapy regimens including gemcitabine should be evaluated in second-line chemotherapy in cases where the first-line chemotherapy did not include this drug. Gene expression-drug sensitivity correlations, as provided by the NCI program, may yield improved therapeutic options for treatment of specific tumor types. PMID:16813650

  7. Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans.

    PubMed

    Böer, Erik; Schröter, Anja; Bode, Rüdiger; Piontek, Michael; Kunze, Gotthard

    2009-02-01

    In Arxula adeninivorans nitrate assimilation is mediated by the combined actions of a nitrate transporter, a nitrate reductase and a nitrite reductase. Single-copy genes for these activities (AYNT1, AYNR1, AYNI1, respectively) form a 9103 bp gene cluster localized on chromosome 2. The 3210 bp AYNI1 ORF codes for a protein of 1070 amino acids, which exhibits a high degree of identity to nitrite reductases from the yeasts Pichia anomala (58%), Hansenula polymorpha (58%) and Dekkera bruxellensis (54%). The second ORF (AYNR1, 2535 bp) encodes a nitrate reductase of 845 residues that shows significant (51%) identity to nitrate reductases of P. anomala and H. polymorpha. The third ORF in the cluster (AYNT1, 1518 bp) specifies a nitrate transporter with 506 amino acids, which is 46% identical to that of H. polymorpha. The three genes are independently expressed upon induction with NaNO(3). We quantitatively analysed the promoter activities by qRT-PCR and after fusing individual promoter fragments to the phytase (phyK) gene from Klebsiella sp. ASR1. The AYNI1 promoter was found to exhibit the highest activity, followed by the AYNT1 and AYNR1 elements. Direct measurements of nitrate and nitrite reductase activities performed after induction with NaNO(3) are compatible with these results. Both enzymes show optimal activity at around 42 degrees C and near-neutral pH, and require FAD as a co-factor and NADPH as electron donor.

  8. Identification and molecular characterization of four new large deletions in the beta-globin gene cluster.

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Couprie, Nicole; Francina, Alain

    2009-01-01

    Despite the fact that mutations in the human beta-globin gene cluster are essentially point mutations, a significant number of large deletions have also been described. We present here four new large deletions in the beta-globin gene cluster that have been identified on patients displaying an atypical hemoglobin phenotype (high HbF) at routine analysis. The first deletion, which spreads over 2.0 kb, removes the entire beta-globin gene, including its promoter, and is associated with a typical beta-thal minor phenotype. The three other deletions are larger (19.7 to 23.9 kb) and remove both the delta and beta-globin genes. Phenotypically, they look like an HPFH-deletion as they are associated with normal hematological parameters. The precise localization of their 5' and 3' breakpoints gives new insights about the differences between HPFH and (deltabeta)(0)-thalassemia at the molecular level. The importance of detection of these deletions in prenatal diagnosis and newborn screening of hemoglobinopathies is also discussed.

  9. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum.

    PubMed

    Spiering, Martin J; Moon, Christina D; Wilkinson, Heather H; Schardl, Christopher L

    2005-03-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P < 0.01) and loline-alkaloid accumulation in culture (P < 0.001) compared to vector-only controls, indicating involvement of lolC in biosynthesis of lolines. The predicted LolU protein has a DNA-binding site signature, and the relationships of other lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.

  10. Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium

    PubMed Central

    Lohße, Anna; Kolinko, Isabel; Raschdorf, Oliver; Uebe, René; Borg, Sarah; Brachmann, Andreas; Plitzko, Jürgen M.; Müller, Rolf; Zhang, Youming

    2016-01-01

    ABSTRACT Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of

  11. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    PubMed

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  12. Male sex pheromones and the phylogeographic structure of the Lutzomyia longipalpis species complex (Diptera: Psychodidae) from Brazil and Venezuela.

    PubMed

    Watts, Phillip C; Hamilton, J Gordon C; Ward, Richard D; Noyes, Harry A; Souza, Nataly A; Kemp, Stephen J; Feliciangeli, M Dora; Brazil, Reginaldo; Maingon, Rhayza D C

    2005-10-01

    Lutzomyia longipalpis, a sibling complex, is the main vector of Leishmania chagasi/infantum. Discriminating between siblings is important as they may differ in vectorial capacity. Lutzomyia longipalpis populations display distinct male sex pheromone chemotypes. We investigated the phylogeographic pattern of variation at microsatellite loci from 11 populations from Brazil and Venezuela related to their male pheromone. Temporal genetic differentiation was mostly not significant at the same site. Spatial genetic differentiation was, however, strong, although there was only a weak relationship between genetic differentiation and the geographic distance separating the samples (r2 < 0.10); geographic separation explained a much greater (54-97%) percentage of the genetic differences among populations when samples with the same pheromone type were analyzed separately. A cluster analysis showed five groups: Lu. cruzi (Brazil) and Lu. pseudolongipalpis (Venezuela) as separate species, two (mostly 9-methyl-germacrene-B) Venezuelan and Brazilian groups, and a very distinct cluster of Brazilian cembrene populations.

  13. The Glucuronic Acid Utilization Gene Cluster from Bacillus stearothermophilus T-6

    PubMed Central

    Shulami, Smadar; Gat, Orit; Sonenshein, Abraham L.; Shoham, Yuval

    1999-01-01

    A λ-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting β-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a β-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of α-d-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-α-(4-O-methyl