Sample records for phoenix landins site

  1. Sulfur Mineralogy at the Mars Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R.V.; Golden, D.C.; Sutter, B.; Clark, B.C.; Boynton, W.V.; Hecht, M.H.; Kounaves, S.P.

    2009-01-01

    The Mars Phoenix Scout mission landed at the northernmost location (approx.68deg N) of any lander or rover on the martian surface. This paper compares the S mineralogy at the Phoenix landing site with S mineralogy of soils studied by previous Mars landers. S-bearing phases were not directly detected by the payload onboard the Phoenix spacecraft. Our objective is to derive the possible mineralogy of S-bearing phases at the Phoenix landing site based upon Phoenix measurements in combination with orbital measurements, terrestrial analog and Martian meteorite studies, and telescopic observations.

  2. 75 FR 17692 - Foreign-Trade Zone 75 -- Phoenix, Arizona, Application for Reorganization under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... following sites: Site 1 (338 acres) - within the 550-acre Phoenix Sky Harbor Center and adjacent air cargo terminal at the Phoenix Sky Harbor International Airport, Phoenix; Site 2 (18 acres) CC&F South Valley... to the Phoenix Sky Harbor International Airport, Phoenix. The grantee's proposed service area under...

  3. 77 FR 74457 - Foreign-Trade Zone 75-Phoenix, Arizona Application for Expansion (New Magnet Site) Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ..., Arizona Application for Expansion (New Magnet Site) Under Alternative Site Framework An application has...) adopted by the Board (15 CFR 400.2(c)) to include a new magnet site in Phoenix, Arizona. The application... zone project includes the following magnet sites: Site 1 (338 acres)--within the 550-acre Phoenix Sky...

  4. Martian Sunrise at Phoenix Landing Site, Sol 101

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This sequence of nine images taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the sun rising on the morning of the lander's 101st Martian day after landing.

    The images were taken on Sept. 5, 2008. The local solar times at the landing site for the nine images were between 1:23 a.m. and 1:41 a.m.

    The landing site is on far-northern Mars, and the mission started in late northern spring. For nearly the entire first 90 Martian days of the mission, the sun never set below the horizon. As the amount of sunshine each day declined steadily after that, so has the amount of electricity available for the solar-powered spacecraft.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  5. Solar Panel Buffeted by Wind at Phoenix Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing.

    The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site.

    These conditions were anticipated and the wind is not expected to do any harm to the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Thermophysical Properties of the Phoenix Mars Landing Site Study Regions

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Mellon, M. T.; Golombek, M. P.; Arvidson, R. E.

    2006-03-01

    Analysis of Phoenix Mars study regions places 4 of 5 in a previously-identified duricrust-dominated thermophysical unit which also contains the Viking and Spirit landing sites. Extrapolation of lander-observed properties to the study regions may be complicated by surface heterogeneity.

  7. Phoenix Test Sample Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Mark Left by First Dig at Phoenix Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The hole in the ground produced by the first Robotic Arm dig at the landing site of NASA's Phoenix Mars Mission appears to the right of the three largest rocks near the center of this image.

    The hole is the width of the scoop on the end of the arm, about 9 centimeters (3.5 inches). It resulted from a practice dig during the mission's seventh Martian day, or sol 7 (June 1, 2008). The lander's Surface Stereo Imager took this image later that sol. The image is in approximately true color, produced by combining exposures taken through different filters. The green band at upper left is a portion where imaging data was incomplete in for one of the filters.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Determining Size Distribution at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Mason, E. L.; Lemmon, M. T.

    2016-12-01

    Dust aerosols play a crucial role in determining atmospheric radiative heating on Mars through absorption and scattering of sunlight. How dust scatters and absorbs light is dependent on size, shape, composition, and quantity. Optical properties of the dust have been well constrained in the visible and near infrared wavelengths using various methods [Wolff et al. 2009, Lemmon et al. 2004]. In addition, the dust is nonspherical, and irregular shapes have shown to work well in determining effective particle size [Pollack et al. 1977]. Variance of the size distribution is less constrained but constitutes an important parameter in fully describing the dust. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to determine the size distribution and scattering properties of dust in the wavelength range of 400 to 1000 nm. In combination with a single-layer radiative transfer model, these surveys can be used to help constrain variance of the size distribution. We will present a discussion of seasonal size distribution as it pertains to the Phoenix landing site.

  10. Phoenix Mars Lander: Vortices and Dust Devils at the Landing Site

    NASA Astrophysics Data System (ADS)

    Ellehoj, M. D.; Taylor, P. A.; Gunnlaugsson, H. P.; Gheynani, B. T.; Drube, L.; von Holstein-Rathlou, C.; Whiteway, J.; Lemmon, M.; Madsen, M. B.; Fisher, D.; Volpe, R.; Smith, P.

    2008-12-01

    Near continuous measurements of temperatures and pressure on the Phoenix Mars Lander are used to identify the passage of vertically oriented vortex structures at the Phoenix landing site (126W, 68N) on Mars. Observations: During the Phoenix mission the pressure and temperature sensors frequently detected features passing over or close to the lander. Short duration (order 20 s) pressure drops of order 1-2 Pa, and often less, were observed relatively frequently, accompanied by increases in temperature. Similar features were observed from the Pathfinder mission, although in that case the reported pressure drops were often larger [1]. Statistics of the pressure drop features over the first 102 sols of the Phoenix mission shows that most of the events occur between noon and 15:00 LMST - the hottest part of the sol. Dust Raising: By assuming the concept of a vortex in cyclostrophic flow as well as various assumptions about the atmosphere, we obtain a pressure drop of 1.9 - 3.2 Pa if dust is to be raised. We only saw few pressure drops this large in Sols 0-102. However, the features do not need to pass directly over the lander and the pressures could be lower than the minima we measure. Furthermore, the response time of the pressure sensor is of order 3-5 s so it may not capture peak pressure perturbations. Thus, more dust devils may have occurred near the Phoenix site, but most of our detected vortices would be ghostly, dustless devils. Modelling: Using a Large Eddy Simulation model, we can simulate highly convective boundary layers on Mars [2]. The typical vortex has a diameter of 150 m, and extends up to 1 km. Further calculations give an incidence of 11 vortex events per day that could be compatible with the LES simulations. Deeper investigation of this is planned -but the numbers are roughly compatible. If the significant pressure signatures are limited to the center of the vortex then 5 per sol might be appropriate. The Phoenix mission has collected a unique set of

  11. Deepest Trenching at Phoenix Site on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander widened the deepest trench it has excavated, dubbed 'Stone Soup,' (in the lower half of this image) to collect a sample from about 18 centimeters (7 inches) below the surface for analysis by the lander's wet chemistry laboratory.

    Phoenix's Surface Stereo Imager took this image on Sol 95 (Aug. 30, 2008), the 95th Martian day since landing. For scale, the rock to the right of the Stone Soup trench is about 15 centimeters (6 inches) across. The lander's robotic arm scooped up a sample from the left half of the trench for delivery the following sol to the wet chemistry laboratory.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Phoenix Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    [figure removed for brevity, see original site] Left-eye view of a stereo pair [figure removed for brevity, see original site] Right-eye view of a stereo pair

    This image is a stereo, panoramic view of various trenches dug by NASA's Phoenix Mars Lander. The images that make up this panorama were taken by Phoenix's Surface Stereo Imager at about 4 p.m., local solar time at the landing site, on the 131st, Martian day, or sol, of the mission (Oct. 7, 2008).

    In figure 1, the trenches are labeled in orange and other features are labeled in blue. Figures 2 and 3 are the left- and right-eye members of a stereo pair.

    For scale, the 'Pet Donkey' trench just to the right of center is approximately 38 centimeters (15 inches) long and 31 to 34 centimeters (12 to 13 inches) wide. In addition, the rock in front of it, 'Headless,' is about 11.5 by 8.5 centimeters (4.5 by 3.3 inches), and about 5 centimeters (2 inches) tall.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Full-Circle Color Panorama of Phoenix Landing Site on Northern Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Mission Success Pan Click on image to view the movie

    This view combines more than 400 images taken during the first several weeks after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The movie makes a slow tour around highlights of the image.

    The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. The center of the image is the westward part of the scene. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the right half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama.

    This view comprises more than 100 different camera pointings, with images taken through three different filters at each pointing. It is presented here as a cylindrical projection.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Soluble sulfate in the martian soil at the Phoenix landing site

    NASA Astrophysics Data System (ADS)

    Kounaves, Samuel P.; Hecht, Michael H.; Kapit, Jason; Quinn, Richard C.; Catling, David C.; Clark, Benton C.; Ming, Douglas W.; Gospodinova, Kalina; Hredzak, Patricia; McElhoney, Kyle; Shusterman, Jennifer

    2010-05-01

    Sulfur has been detected by X-ray spectroscopy in martian soils at the Viking, Pathfinder, Opportunity and Spirit landing sites. Sulfates have been identified by OMEGA and CRISM in Valles Marineris and by the spectrometers on the MER rovers at Meridiani and Gusev. The ubiquitous presence of sulfur has been interpreted as a widely distributed sulfate mineralogy. One goal of the Wet Chemistry Laboratory (WCL) on NASA's Phoenix Mars Lander was to determine soluble sulfate in the martian soil. We report here the first in-situ measurement of soluble sulfate equivalent to ˜1.3(±0.5) wt% as SO4 in the soil. The results and models reveal SO42- predominately as MgSO4 with some CaSO4. If the soil had been wet in the past, epsomite and gypsum would be formed from evaporation. The WCL-derived salt composition indicates that if the soil at the Phoenix site were to form an aqueous solution by natural means, the water activity for a dilution of greater than ˜0.015 g H2O/g soil would be in the habitable range of known terrestrial halophilic microbes.

  15. Phoenix Lander Amid Disappearing Spring Ice

    NASA Image and Video Library

    2010-01-11

    NASA Phoenix Mars Lander, its backshell and heatshield visible within this enhanced-color image of the Phoenix landing site taken on Jan. 6, 2010 by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  16. Chemistry Lab for Phoenix Mars Lander

    NASA Image and Video Library

    2007-08-02

    The targeted landing site for NASA Phoenix Mars Lander is at about 68 degrees north latitude, 233 degrees east longitude in the Martian arctic. The Phoenix lander, which landed May 25, 2008 ceased its operations about six months later.

  17. Phoenix Test Sample Site in Color

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Phoenix Telltale Movie with Clouds, Sol 103

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander's telltale catches a breeze as clouds move over the landing site on Sol 103 (Sept. 7, 2008), the 103rd Martian day since landing.

    Phoenix's Surface Stereo Imager took this series of images during daily telltale monitoring around 3 p.m. local solar time and captured the clouds moving over the landing site.

    Phoenix can measure wind speed and direction by imaging the telltale, which is about about 10 centimeters (4 inches) tall. The telltale was built by the University of Aarhus, Denmark.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. How Phoenix Talks to Earth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for the animation

    This animation shows how NASA's Phoenix Mars Lander stays in contact with Earth. As NASA's Mars Odyssey orbiter passes overhead approximately every two hours, Phoenix transmits images and scientific data from the surface to the orbiter, which then relays the data to NASA's Deep Space Network of antennas on Earth. Similarly, NASA's Deep Space Network transmits instructions from Earth to Odyssey, which then relays the information to Phoenix.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. (Ca,Mg)-Carbonate and Mg-Carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander's Thermal Evolved Gas Analyzer (TEGA) Data Using Laboratory Simulations

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Morris, R. V.

    2011-01-01

    Calcium carbonate (4.5 wt. %) was detected in the soil at the Phoenix Landing site by the Phoenix Lander s The Thermal and Evolved Gas Analyzer [1]. TEGA operated at 12 mbar pressure, yet the detection of calcium carbonate is based on interpretations derived from thermal analysis literature of carbonates measured under ambient (1000 mbar) and vacuum (10(exp -3) mbar) conditions [2,3] as well as at 100 and 30 mbar [4,5] and one analysis at 12 mbar by the TEGA engineering qualification model (TEGA-EQM). Thermodynamics (Te = H/ S) dictate that pressure affects entropy ( S) which causes the temperature (Te) of mineral decomposition at one pressure to differ from Te obtained at another pressure. Thermal decomposition analyses of Fe-, Mg-, and Ca-bearing carbonates at 12 mbar is required to enhance the understanding of the TEGA results at TEGA operating pressures. The objectives of this work are to (1) evaluate the thermal and evolved gas behavior of a suite of Fe-, Mg-, Ca-carbonate minerals at 1000 and 12 mbar and (2) discuss possible emplacement mechanisms for the Phoenix carbonate.

  1. Phoenix Animation Looking North

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation is a series of images, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, combined into a panoramic view looking north from the lander. The area depicted is beyond the immediate workspace of the lander and shows a system of polygons and troughs that connect with the ones Phoenix will be investigating in depth.

    The images were taken on sol 14 (June 8, 2008) or the 14th Martian day after landing.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. How Phoenix Looks Under Itself

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of NASA's Phoenix Mars Lander reaching with its Robotic Arm and taking a picture of the surface underneath the lander. The image at the conclusion of the animation was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Stereo View of Phoenix Test Sample Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This anaglyph image, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows a stereoscopic 3D view of the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Phoenix's Lay of the Land

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Mars Lander shows the spacecraft's recent activity site as of the 23rd Martian day of the mission, or Sol 22 (June 16, 2008), after the spacecraft touched down on the Red Planet's northern polar plains. The mosaic was taken by the lander's Surface Stereo Imager (SSI). Parts of Phoenix can be seen in the foreground.

    The first two trenches dug by the lander's Robotic Arm, called 'Dodo' and 'Goldilocks,' were enlarged on the 19th Martian day of the mission, or Sol 18 (June 12, 2008), to form one trench, dubbed 'Dodo-Goldilocks.' Scoops of material taken from those trenches are informally called 'Baby Bear' and 'Mama Bear.' Baby Bear was carried to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, instrument for analysis, while Mama Bear was delivered to Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA, for a closer look.

    The color inset picture of the Dodo-Goldilocks trench, also taken with Phoenix's SSI, reveals white material thought to be ice.

    More recently, on Sol 22 (June 16, 2008), Phoenix's Robotic Arm began digging a trench, dubbed 'Snow White,' in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, and has been dubbed 'Croquet Ground.' The digging site has been nicknamed 'Wonderland.'

    The Snow White trench, seen here in an SSI image from Sol 22 (June 16, 2008) is about 2 centimeters (.8 inches) deep and 30 centimeters (12 inches) long. As of Sol 25 (June 19, 2008), the trench is 5 centimeters (2 inches deep) and the trench has been renamed 'Snow White 1,' as a second trench has been dug to its right and nicknamed 'Snow White 2.'

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems

  5. Stereo View of Phoenix Test Sample Site

    NASA Image and Video Library

    2008-06-02

    This anaglyph image, acquired by NASA’s Phoenix Lander’s Surface Stereo Imager on June 1, 2008, shows a stereoscopic 3D view of the so-called Knave of Hearts first-dig test area to the north of the lander. 3D glasses are necessary to view this image.

  6. Flyover Video of Phoenix Work Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This video shows an overhead view of NASA's Phoenix Mars Lander and the work area of the Robotic Arm.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Ice Lens Formation and Frost Heave at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Sizemore, H. G.; Remple, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavated by Phoenix. The leading hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metabolize and grow down to temperatures of at least 258 K.

  8. Winds at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.

    2008-12-01

    Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.

  9. Soil Properties Analysis of the Phoenix Landing Site Based on Trench Characteristics and Robotic Arm Forces

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Arvidson, R.; Bonitz, R.; Carsten, J.; Keller, H.; Lemmon, M.; Mellon, M. T.; Robinson, M.; Trebi-Ollennu, A.; Volpe, R.

    2008-12-01

    The Phoenix Mars lander has had access to polygonal terrain; specifically, two polygons and a trough. Slopes in the trenches and dump piles created from the interaction of the Phoenix robotic arm (RA) with the soil around its landing site are similar to those seen on previous missions, such as the MER and Viking missions. This indicates similar cohesion and angle of internal friction to previous landing sites. For example, trench slopes typically range from 44-72° and dump pile slopes range from 20-30°. There are at least two very different types of materials at the site: a layer of soil which goes down to several centimeters below the surface and, below that, a layer of icy soil. The RA can easily dig through the top layer of soil, often using 20-30N force. However, when it encounters icy soil, the RA requires tens of scrapes with the lower tungsten carbide blade on its scoop to progress even a few millimeters. To verify soil property parameters, we analyze the normal and shear stresses exerted on the soil by digging, scraping, and rasping with the RA.

  10. Phoenix Lander on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this artist's depiction of the spacecraft fully deployed on the surface of Mars.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California Institute of Technology in Pasadena.

  11. Landing Site Dispersion Analysis and Statistical Assessment for the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Bonfiglio, Eugene P.; Adams, Douglas; Craig, Lynn; Spencer, David A.; Strauss, William; Seelos, Frank P.; Seelos, Kimberly D.; Arvidson, Ray; Heet, Tabatha

    2008-01-01

    The Mars Phoenix Lander launched on August 4, 2007 and successfully landed on Mars 10 months later on May 25, 2008. Landing ellipse predicts and hazard maps were key in selecting safe surface targets for Phoenix. Hazard maps were based on terrain slopes, geomorphology maps and automated rock counts of MRO's High Resolution Imaging Science Experiment (HiRISE) images. The expected landing dispersion which led to the selection of Phoenix's surface target is discussed as well as the actual landing dispersion predicts determined during operations in the weeks, days, and hours before landing. A statistical assessment of these dispersions is performed, comparing the actual landing-safety probabilities to criteria levied by the project. Also discussed are applications for this statistical analysis which were used by the Phoenix project. These include using the statistical analysis used to verify the effectiveness of a pre-planned maneuver menu and calculating the probability of future maneuvers.

  12. Phoenix Telltale Movement

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of a camera pushing through NASA's Phoenix Mars Lander's Stereo Surface Imager (SSI). At the conclusion of the animation is a set of SSI images of the telltale taken on the first, second, and third days of the mission, or sols 1, 2, and 3 (May 26, 27, and 28, 2008). The last set of images were taken one minute apart and shows the telltale moving in the wind.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Wind-Related Topography in Phoenix's Region of Mars (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This movie shifts from a global zoom indicating the Phoenix landing area on Mars to a topographical map indicating relative elevations in the landing region. The elevations could affect wind patterns at the site.

    In particular, Phoenix is in a broad, shallow valley. The edge of the valley, about 150 meters (500 feet) above the floor, may provide enough of a slope to the east of Phoenix to explain winds coming from the east during nights at the site. Cooler, denser air could be sinking down the slope and toward the lander.

    Atmospheric scientists on the Phoenix team are analyzing wind patterns to distiguish effects of nearby topography from larger-scale movement of the atmosphere in the polar region.

    The elevation information for this topographical mapping comes from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. The blue-coded area is the valley floor. Orange and yellow indicate relatively higher elevations.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver. JPL managed the Mars Global Surveyor mission for the NASA Science Mission Directorate.

  14. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  15. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  16. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  17. Dark Skies and Clouds Move in at Phoenix site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Clouds of dust and ice swirl past the Surface Stereo Imager (SSI) camera on NASA's Phoenix Mars Lander in a series of images taken on the 132nd Martian day of the mission (Oct. 7, 2008). The images show the increase in storm activity and potential for snowfall.

    The solar powered spacecraft was disabled by decreased light from heavy dust storms in the area a few weeks later. The last communication heard from the lander occurred on Nov. 2, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Phoenix Lander on Mars (Stereo)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this stereo illustration of the spacecraft fully deployed on the surface of Mars. The image appears three-dimensional when viewed through red-green stereo glasses.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California

  19. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  20. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  1. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  2. Terrain Type for Phoenix Landing

    NASA Image and Video Library

    2007-07-09

    This view shows the texture of the ground in the area that was favored as a landing site for NASA Phoenix Mars Lander mission. The pattern resembles permafrost terrain on Earth, where cycles of thawing and freezing cause cracking into polygon shapes.

  3. Topographical Context of Phoenix Landing Region

    NASA Image and Video Library

    2007-08-02

    This area was designated Region D in the process of evaluating potential landing sites for NASA Phoenix Mars Lander. The topographical information is from the Mars Orbiter Laser Altimeter on NASA Mars Global Surveyor orbiter.

  4. Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  6. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, workers watch as an overhead crane lowers the heat shield toward a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  7. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  8. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left. The heat shield was removed from the Phoenix Mars Lander spacecraft at right. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  9. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft is ready for spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  10. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    An overhead crane lifts the backshell with the Phoenix Mars Lander inside off its work stand in the Payload Hazardous Servicing Facility. The spacecraft is being moved to a spin table (back left) for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  11. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  12. Animation of Panorama of Phoenix Landing Area Looking Southeast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of panoramic images taken by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 15 (June 9, 2008), the 15th Martian day after landing. The panorama looks to the southeast and shows rocks casting shadows, polygons on the surface and as the image looks to the horizon, Phoenix's backshell gleams in the distance.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Animation of Panorama of Phoenix's Solar Panel and Robotic Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of panorama images of NASA's Phoenix Mars Lander's solar panel and the lander's Robotic Arm with a sample in the scoop. The image was taken just before the sample was delivered to the Optical Microscope.

    The images making up this animation were taken by the lander's Surface Stereo Imager looking west during Phoenix's Sol 16 (June 10, 2008), or the 16th Martian day after landing. This view is a part of the 'mission success' panorama that will show the whole landing site in color.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. A Historical Search for the Occurrence of Habitable Ground Ice at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.

    2006-01-01

    A numerical model of the thermal history of Martian ground ice at the approximate location of the planned Phoenix landing site has been developed and used to identify instances of relatively warm ground ice over the last 10 Ma. Many terrestrial organisms are adapted to life at or below the freezing temperature of water, and we will use the approximate doubling time of terrestrial microbial populations as a function of temperature, is used as a metric against which to assess the "habitability" of Martian ground ice.

  15. Mars Exploration Program 2007 Phoenix landing site selection and characteristics

    USGS Publications Warehouse

    Arvidson, R.; Adams, D.; Bonfiglio, G.; Christensen, P.; Cull, S.; Golombek, M.; Guinn, J.; Guinness, E.; Heet, T.; Kirk, R.; Knudson, A.; Malin, M.; Mellon, M.; McEwen, A.; Mushkin, A.; Parker, T.; Seelos, F.; Seelos, K.; Smith, P.; Spencer, D.; Stein, T.; Tamppari, L.

    2009-01-01

    To ensure a successful touchdown and subsequent surface operations, the Mars Exploration Program 2007 Phoenix Lander must land within 65?? to 72?? north latitude, at an elevation less than -3.5 km. The landing site must have relatively low wind velocities and rock and slope distributions similar to or more benign than those found at the Viking Lander 2 site. Also, the site must have a soil cover of at least several centimeters over ice or icy soil to meet science objectives of evaluating the environmental and habitability implications of past and current near-polar environments. The most challenging aspects of site selection were the extensive rock fields associated with crater rims and ejecta deposits and the centers of polygons associated with patterned ground. An extensive acquisition campaign of Odyssey Thermal Emission Imaging Spectrometer predawn thermal IR images, together with ???0.31 m/pixel Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment images was implemented to find regions with acceptable rock populations and to support Monte Carlo landing simulations. The chosen site is located at 68.16?? north latitude, 233.35?? east longitude (areocentric), within a ???50 km wide (N-S) by ???300 km long (E-W) valley of relatively rock-free plains. Surfaces within the eastern portion of the valley are differentially eroded ejecta deposits from the relatively recent ???10-km-wide Heimdall crater and have fewer rocks than plains on the western portion of the valley. All surfaces exhibit polygonal ground, which is associated with fracture of icy soils, and are predicted to have only several centimeters of poorly sorted basaltic sand and dust over icy soil deposits. Copyright 2008 by the American Geophysical Union.

  16. Assessing Habitability: Lessons from the Phoenix Mission

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.

    2013-01-01

    The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of

  17. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  18. City of Phoenix - Energize Phoenix Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laloudakis, Dimitrios J.

    Energize Phoenix (EPHX) was designed as an ambitious, large-scale, three-year pilot program to provide energy efficiency upgrades in buildings, along Phoenix’s new Light Rail Corridor – part of a federal effort to reduce energy consumption and stimulate job growth, while simultaneously reducing the country’s carbon footprint and promoting a shift towards a green economy. The program was created through a 2010 competitive grant awarded to the City of Phoenix who managed the program in partnership with Arizona State University (ASU), the state’s largest university, and Arizona Public Service (APS), the state’s largest electricity provider. The U.S. Department of Energy (DOE)more » Better Buildings Neighborhood Program (BBNP) and the American Recovery and Reinvestment Act (ARRA) of 2009 provided $25M in funding for the EPHX program. The Light Rail Corridor runs through the heart of downtown Phoenix, making most high-rise and smaller commercial buildings eligible to participate in the EPHX program, along with a diverse mix of single and multi-family residential buildings. To ensure maximum impact and deeper market penetration, Energize Phoenix was subdivided into three unique parts: i. commercial rebate program, ii. commercial financing program, and iii. residential program Each component was managed by the City of Phoenix in partnership with APS. Phoenix was fortunate to partner with APS, which already operated robust commercial and residential rebate programs within its service territory. Phoenix tapped into the existing utility contractor network, provided specific training to over 100 contracting firms, and leveraged the APS rebate program structure (energy efficiency funding) to launch the EPHX commercial and residential rebate programs. The commercial finance program was coordinated and managed through a contract with National Bank of Arizona, NBAZ, which also provided project capital leveraging EPHX finance funds. Working in unison, approved

  19. Declining Sunshine for Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The yellow line on this graphic indicates the number of hours of sunlight each sol, or Martian day, at the Phoenix landing site's far-northern latitude, beginning with the entire Martian day (about 24 hours and 40 minutes) for the first 90 sols, then declining to no sunlight by about sol 300. The blue tick mark indicates that on Sol 124 (Sept. 29, 2008), the sun is above the horizon for about 20 hours.

    The brown vertical bar represents the period from Nov. 18 to Dec. 24, 2008, around the 'solar conjunction,' when the sun is close to the line between Mars and Earth, affecting communications.

    The green vertical rectangle represents the period from February to November 2009 when the Phoenix lander is expected to be encased in carbon-dioxide ice.

  20. Combustion of Organic Molecules by the Thermal Decomposition of Perchlorate Salts: Implications for Organics at the Mars Phoenix Scout Landing Site

    NASA Technical Reports Server (NTRS)

    Ming, D.W.; Morris, R.V.; Niles, B.; Lauer, H.V.; Archer, P.D.; Sutter, B.; Boynton, W.V.; Golden, D.C.

    2009-01-01

    The Mars 2007 Phoenix Scout Mission successfully landed on May 25, 2008 and operated on the northern plains of Mars for 150 sols. The primary mission objective was to study the history of water and evaluate the potential for past and present habitability in Martian arctic ice-rich soil [1]. Phoenix landed near 68 N latitude on polygonal terrain created by ice layers that are a few centimeters under loose soil materials. The Phoenix Mission is assessing the potential for habitability by searching for organic molecules in the ice or icy soils at the landing site. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. Phoenix searched for organic molecules by heating soil/ice samples in the Thermal and Evolved-Gas Analyzer (TEGA, [2]). TEGA consists of 8 differential scanning calorimeter (DSC) ovens integrated with a magnetic-sector mass spectrometer with a mass range of 2-140 daltons [2]. Endothermic and exothermic reactions are recorded by the TEGA DSC as samples are heated from ambient to 1000 C. Evolved gases, including any organic molecules and their fragments, are simultaneously measured by the mass spectrometer during heating. Phoenix TEGA data are still under analysis; however, no organic fragments have been identified to date in the evolved gas analysis (EGA). The MECA Wet Chemistry Lab (WCL) discovered a perchlorate salt in the Phoenix soils and a mass 32 peak evolved between 325 and 625 C for one surface sample dubbed Baby Bear [3]. The mass 32 peak is attributed to evolved O2 generated during the thermal decomposition of the perchlorate salt. Perchlorates are very strong oxidizers when heated, so it is possible that organic fragments evolved in the temperature range of 300-600 C were combusted by the O2 released during the thermal decomposition of the perchlorate salt. The byproduct of the combustion of organic molecules is CO2. There is a prominent release of CO2 between 200

  1. Water at the Phoenix landing site

    NASA Astrophysics Data System (ADS)

    Smith, Peter Hollingsworth

    The Phoenix mission investigated patterned ground and climate in the northern arctic region of Mars for 5 months starting May 25, 2008. A shallow ice table was uncovered by the robotic arm in a nearby polygon's edge and center at depths of 5-15 cm. In late summer snowfall and frost blanket the surface at night; water ice and vapor constantly interact with the soil. Analysis reveals an alkaline Ph with CaCO 3 , aqueous minerals, and salts making up several wt% of the soil; liquid water is implicated as having been important in creating these components. In combination with the oxidant perchlorate (~1 wt%), an energy source for terrestrial microbes, and a prior epoch of higher temperatures and humidity, this region may have been a habitable zone.

  2. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  3. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  4. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  5. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  6. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  7. How Phoenix Creates Color Images (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This simple animation shows how a color image is made from images taken by Phoenix.

    The Surface Stereo Imager captures the same scene with three different filters. The images are sent to Earth in black and white and the color is added by mission scientists.

    By contrast, consumer digital cameras and cell phones have filters built in and do all of the color processing within the camera itself.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASAaE(TM)s Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Martian Surface Beneath Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an image of the Martian surface beneath NASA's Phoenix Mars Lander. The image was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Phoenix Robotic Arm

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A vital instrument on NASA's Phoenix Mars Lander is the robotic arm, which will dig into the icy soil and bring samples back to the science deck of the spacecraft for analysis. In September 2006 at a Lockheed Martin Space Systems clean room facility near Denver, spacecraft technician Billy Jones inspects the arm during the assembly phase of the mission.

    Using the robotic arm -- built by the Jet Propulsion Laboratory, Pasadena -- the Phoenix mission will study the history of water and search for complex organic molecules in the ice-rich soil.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  10. Phoenix's New Neighborhood

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The center of the red circle on this map shows where NASA's Phoenix Mars Lander eased down to the surface of Mars, at approximately 68 degrees north latitude, 234 degrees east longitude. Before Phoenix landed, engineers had predicted it would land within the blue ellipse.

    Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis.

    The map shows a color-coded interpretation of geomorphic units categories based on the surface textures and contours. The geomorphic mapping is overlaid on a shaded relief map based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Phoenix Checks out its Work Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows a mosaic of images of the workspace reachable by the scoop on the robotic arm of NASA's Phoenix Mars Lander, along with some measurements of rock sizes.

    Phoenix was able to determine the size of the rocks based on three-dimensional views from stereoscopic images taken by the lander's 7-foot mast camera, called the Surface Stereo Imager. The stereo pair of images enable depth perception, much the way a pair of human eyes enable people to gauge the distance to nearby objects.

    The rock measurements were made by a visualization tool known as Viz, developed at NASA's Ames Research Laboratory. The shadow cast by the camera on the Martian surface appears somewhat disjointed because the camera took the images in the mosaic at different times of day.

    Scientists do not yet know the origin or composition of the flat, light-colored rocks on the surface in front of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Martian Surface as Seen by Phoenix

    NASA Image and Video Library

    2008-07-28

    This anaglyph was acquired by NASA Phoenix Lander; in the bottom left is a trench dug by Phoenix Robotic Arm. In the bottom right is one of Phoenix two solar panels. You will need 3-D glasses to view this image.

  13. Phoenix's Laser Beam in Action on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    The Surface Stereo Imager camera aboard NASA's Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog. The brighter area at the top of the beam is due to enhanced scattering of the laser light in a cloud. The Canadian-built lidar instrument emits pulses of laser light and records what is scattered back.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Soil on Phoenix's MECA

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows soil delivery to NASA's Phoenix Mars Lander's Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008).

    At the bottom of the image is the chute for delivering samples to MECA's microscopes. It is relatively clean due to the Phoenix team using methods such as sprinkling to minimize cross-contamination of samples. However, the cumulative effect of several sample deliveries can be seen in the soil piles on either side of the chute.

    On the right side are the four chemistry cells with soil residue piled up on exposed surfaces. The farthest cell has a large pile of material from an area of the Phoenix workspace called 'Stone Soup.' This area is deep in the trough at a polygon boundary, and its soil was so sticky it wouldn't even go through the funnel.

    One of Phoenix's solar panels is shown in the background of this image.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. SHARAD soundings and surface roughness at past, present, and proposed landing sites on Mars: Reflections at Phoenix may be attributable to deep ground ice

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Phillips, Roger J.; Campbell, Bruce A.; Mellon, Michael T.; Holt, John W.; Brothers, T. Charles

    2014-08-01

    We use the Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter to search for subsurface interfaces and characterize surface roughness at the landing sites of Viking Landers 1 and 2, Mars Pathfinder, the Mars Exploration Rovers Spirit and Opportunity, the Phoenix Mars lander, the Mars Science Laboratory Curiosity rover, and three other sites proposed for Curiosity. Only at the Phoenix site do we find clear evidence of subsurface radar returns, mapping out an interface that may be the base of ground ice at depths of ~15-66 m across 2900 km2 in the depression where the lander resides. At the Opportunity, Spirit, and candidate Curiosity sites, images and altimetry show layered materials tens to hundreds of meters thick extending tens to hundreds of kilometers laterally. These scales are well within SHARAD's resolution limits, so the lack of detections is attributable either to low density contrasts in layers of similar composition and internal structure or to signal attenuation within the shallowest layers. At each site, we use the radar return power to estimate surface roughness at scales of 10-100 m, a measure that is important for assessing physical properties, landing safety, and site trafficability. The strongest returns are found at the Opportunity site, indicating that Meridiani Planum is exceptionally smooth. Returns of moderate strength at the Spirit site reflect roughness more typical of Mars. Gale crater, Curiosity's ultimate destination, is the smoothest of the four proposed sites we examined, with Holden crater, Eberswalde crater, and Mawrth Vallis exhibiting progressively greater roughness.

  17. 2007 Mars Phoenix Entry, Descent, and Landing Simulation and Modeling Analysis

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Grover, Myron R.; Desai, Prasun N.; Queen, Eric M.

    2007-01-01

    This viewgraph presentation reviews the entry, descent, and landing of the 2007 Mars Phoenix lander. Aerodynamics characteristics along with Monte Carlo analyses are also presented for launch and landing site opportunities.

  18. Phoenix Society for Burn Survivors

    MedlinePlus

    ... Our Blog Taking Care of Yourself at Phoenix World Burn Congress 3 Oct 2017 Imagine this: a ... Menu Get Support Find Resources Our Programs Phoenix World Burn Congress Get Involved Ways to Give Who ...

  19. An Historical Search for Unfrozen Water at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Zent, Aaron

    2004-01-01

    The goal of this work is to explore the history of the high-latitude subsurface in the latitude range of the Phoenix landing site (65-75 deg. N). The approach is to use time-marching climate models to search for times, locations, and depths where thick films of unfrozen water might periodically occur. Thick films of unfrozen water (as distinct from ubiquitous monolayer water) are interesting for two reasons. First, multi-layer films of water may be bio-available. Second, patterned ground may require the occurrence of thick films of unfrozen water to facilitate the migration of particles and the development of excess pore ice, as reported by the Odyssey Gamma Ray Spectrometer (GRS) results. For the purposes of this work, we define conditions adequate to establish thick films of unfrozen water to be T greater than 268 K, and RH greater than 0.5. We start with the need to understand the atmospheric pressure. Because of the fact that we're looking at high latitudes, the seasonal cap buffers surface temperature for some part of the year. That directly affects the subsurface thermal regime, at least in the uppermost meter where we will be

  20. Phoenix Wet Chemistry Laboratory Units

    NASA Image and Video Library

    2008-06-26

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer MECA instrument on board NASA Phoenix Mars Lander. This image was taken before Phoenix launch on August 4, 2007.

  1. Composite View from Phoenix Lander

    NASA Image and Video Library

    2009-07-02

    This mosaic of images from the Surface Stereo Imager camera on NASA Phoenix Mars Lander shows several trenches dug by Phoenix, plus a corner of the spacecraft deck and the Martian arctic plain stretching to the horizon.

  2. Erosion Dynamics during Phoenix Landing on Mars

    NASA Astrophysics Data System (ADS)

    Mehta, M.; Renno, N. O.; Grover, R. M.; Sengupta, A.

    2008-12-01

    Unique from past planetary surface missions, the Phoenix spacecraft used pulsed retro-rockets to land on the northern polar region of Mars. Mainly viscous shear erosion caused by descent jets had minimally altered previous landing sites. Here we report novel simulations of surface modification by pulsed thruster plumes, and assess the erosion processes leading to the first exposure of ice below the Martian regolith. At Mars atmospheric pressure, we find that the repetitive injection of high pressure gas into porous soil by the pulsed engines leads to the propagation of cyclic radial shock waves within the soil. We show that these shock waves cause 'explosive erosion' and excavate the regolith down to the ice table in a radius of ~75 cm under the lander. Moreover, coarse and fine particles are ejected outward to a radius of 3 m and ~20 m from the thrusters, respectively. The results of our simulations are confirmed by images of the Phoenix landing site and provide important insights into the geology, glaciology and geomorphology of the landing site. These erosion dynamics may lead to ammonia hydrates and ammonium salts, but may demonstrate limited soil contamination. By comparing results from the landing site and our simulations, we come to the initial conclusions that the Martian arctic regolith has high porosity and permeability, mixture of fines with coarse particles, and exhibit cohesive stresses greater than 0.9 kPa.

  3. Zeroing In on Phoenix's Final Destination

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the latest estimate, marked by a green crosshair, of the location of NASA's Phoenix Mars Lander. Radio communications between Phoenix and spacecraft flying overhead have allowed engineers to narrow the lander's location to an area about 300 meters (984) long by 100 meters (328 feet) across, or about three football fields long and one football field wide.

    During landing, Phoenix traveled across the field of view shown here from the upper left to the lower right. The area outlined in blue represents the area where Phoenix was predicted to land before arriving on Mars. During Phoenix's descent through the Martian atmosphere to the surface of the Red Planet, continuous measurements of the distance the spacecraft traveled enabled engineers to narrow its location further to the circular area outlined in red.

    Using radio signals to home in on Phoenix's final location is sort of like trying to find a kitten by listening to the sound of its meows. As NASA's Odyssey spacecraft passes overhead, it receives radio transmissions from the lander. When Odyssey passes overhead again along a slightly different path, it receives new radio signals. With each successive pass, it is able to 'fix' the location of Phoenix a little more precisely.

    Meanwhile, NASA's Mars Reconnaissance Orbiter has taken actual images of the spacecraft on the surface, enabling scientists to match the lander's location to geologic features seen from orbit.

    The large crater to the right is 'Heimdall crater,' the slopes of which are visible in images of the parachute that lowered Phoenix to the surface, taken by the High Resolution Imaging Science Experiment instrument on the Mars Reconnaissance Orbiter. The map shown here is made up of topography data taken by NASA's Mars Global Surveyor. It shows exaggerated differences in the height of the terrain.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the

  4. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Rosiek, M.R.; Anderson, J.A.; Archinal, B.A.; Becker, K.J.; Cook, D.A.; Galuszka, D.M.; Geissler, P.E.; Hare, T.M.; Holmberg, I.M.; Keszthelyi, L.P.; Redding, B.L.; Delamere, W.A.; Gallagher, D.; Chapel, J.D.; Eliason, E.M.; King, R.; McEwen, A.S.

    2009-01-01

    The objectives of this paper are twofold: first, to report our estimates of the meter-to-decameter-scale topography and slopes of candidate landing sites for the Phoenix mission, based on analysis of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images with a typical pixel scale of 3 m and Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images at 0.3 m pixel-1 and, second, to document in detail the geometric calibration, software, and procedures on which the photogrammetric analysis of HiRISE data is based. A combination of optical design modeling, laboratory observations, star images, and Mars images form the basis for software in the U.S. Geological Survey Integrated Software for Imagers and Spectrometers (ISIS) 3 system that corrects the images for a variety of distortions with single-pixel or subpixel accuracy. Corrected images are analyzed in the commercial photogrammetric software SOCET SET (??BAE Systems), yielding digital topographic models (DTMs) with a grid spacing of 1 m (3-4 pixels) that require minimal interactive editing. Photoclinometry yields DTMs with single-pixel grid spacing. Slopes from MOC and HiRISE are comparable throughout the latitude zone of interest and compare favorably with those where past missions have landed successfully; only the Mars Exploration Rover (MER) B site in Meridiani Planum is smoother. MOC results at multiple locations have root-mean-square (RMS) bidirectional slopes of 0.8-4.5?? at baselines of 3-10 m. HiRISE stereopairs (one per final candidate site and one in the former site) yield 1.8-2.8?? slopes at 1-m baseline. Slopes at 1 m from photoclinometry are also in the range 2-3?? after correction for image blur. Slopes exceeding the 16?? Phoenix safety limit are extremely rare. Copyright 2008 by the American Geophysical Union.

  5. Thermal and Evolved Gas Analysis of Magnesium Perchlorate: Implications for Perchlorates in Soils at the Mars Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R.V.; Lauer, H. V.; Sutter, B.; Golden, D.C.; Boynton, W.V.

    2009-01-01

    Perchlorate salts were discovered in the soils around the Phoenix landing site on the northern plains of Mars [1]. Perchlorate was detected by an ion selective electrode that is part of the MECA Wet Chemistry Laboratory (WCL). The discovery of a mass 32 fragment (likely 02) by the Thermal and Evolved-Gas Analyzer (TEGA) provided additional confirmation of a strong oxidizer in the soils around the landing site. The purpose of this paper is to evaluate the thermal and evolved gas behavior of perchlorate salts using TEGA-like laboratory testbed instruments. TEGA ovens were fabricated from high purity Ni. Hence, an additional objective of this paper is to determine the effects that Ni might have on the evolved gas behavior of perchlorate salts.

  6. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Evidence for Calcium Carbonate at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Ming, D. W.; Sutter, B.; Arvidson, R. E.; Hoffman, J.; Niles, P. B.; Smith, P.

    2009-01-01

    The Phoenix mission has recently finished its study of the north polar environment of Mars with the aim to help understand both the current climate and to put constraints on past climate. An important part of understanding the past climate is the study of secondary minerals, those formed by reaction with volatile compounds such as H2O and CO2. This work describes observations made by the Thermal and Evolved-Gas Analyzer (TEGA) on the Phoenix Lander related to carbonate minerals. Carbonates are generally considered to be products of aqueous processes. A wet and warmer climate during the early history of Mars coupled with a much denser CO2 atmosphere are ideal conditions for the aqueous alteration of basaltic materials and the subsequent formation of carbonates. Carbonates (Mg- and Ca-rich) are predicted to be thermodynamically stable minerals in the present martian environment, however, there have been only a few indications of carbonates on the surface by a host of orbiting and landed missions to Mars. Carbonates (Mg-rich) have been suggested to be a component (2-5 wt %) of the martian global dust based upon orbital thermal emission spectroscopy. The identifications, based on the presence of a 1480 cm-1 absorption feature, are consistent with Mgcarbonates. A similar feature is observed in brighter, undisturbed soils by Mini-TES on the Gusev plains. Recently, Mg-rich carbonates have been identified in the Nili Fossae region by the CRISM instrument onboard the Mars Reconnaissance Orbiter. Carbonates have also been confirmed as aqueous alteration phases in martian meteorites so it is puzzling why there have not been more discoveries of carbonates by landers, rovers, and orbiters. Carbonates may hold important clues about the history of liquid water and aqueous processes on the surface of Mars.

  8. Physical Properties of the Icy Soil at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Keller, H.; Markiewicz, W. J.; Hviid, S. F.; Goetz, W.; Mellon, M. T.; El Maarry, M.; Madsen, M. B.; Smith, P.; Pike, W.; Zent, A.; Hecht, M. H.; Ming, D.; Staufer, U.

    2008-12-01

    The geomorphological setting of the subpolar terrain at the landing site is characterized by polygonal structures. These structures are generated by long term and periodic cycles of contraction and expansion of the subsurface icy soil. The physical properties of the covering soil layer effectively control the details of this process that has its counterpart on earth in (sub) polar regions including the Siberian tundra and in Antartica. One of the prime science goals of the Phoenix mission is to investigate the physical properties of the icy soil, how these processes are influenced by water vapour diffusion in the regolith and exchange of the water vapour with the atmosphere. It is important to understand these processes on diurnal, seasonal, and climatic time scales. Phoenix landed in the middle of one of the polygons. Its retro rockets cleared the ice table of the polygon underneath the jet assemblies from ca. 5 to 10 cm of loose cloddy regolith. Soil was piled up in the centre. The fact that the soil looked still cloddy similar to that in undisturbed areas suggests strong cohesiveness of the matrix material. The clumps were not destroyed by the blast. Excavated regolith material imaged in the scoop was made up of agglomerates of grains smaller than the best resolution of the Robotic Arm Camera (20 micron). Higher resolution images (4 micron) of the microscope corroborate that the soil is predominantly composed of agglomerates of very small particles with a mean size comparable to those observed in the Martian atmosphere. The Atomic Force Microscope reveals micron sized particles and smaller, partly of plate-like shape, indicating clay like particles. The matrix material of the soil is of reddish colour probably due to iron oxideadmixture. Only about 10% by volume of the soil are most often rounded grains between 40 to 100 micrometers of diameter. Some are glassy resembling micro tektites, and most of these are magnetic. The cohesiveness of the clumps and clods of

  9. A revised Pitzer model for low-temperature soluble salt assemblages at the Phoenix site, Mars

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2015-10-01

    The Wet Chemistry Laboratory (WCL) on the Mars Phoenix Lander measured ions in a soil-water extraction and found Na+, K+, H+ (pH), Ca2+, Mg2+, SO42-, ClO4-, and Cl-. Equilibrium models offer insights into salt phases that were originally present in the Phoenix soil, which dissolved to form the measured WCL solution; however, there are few experimental datasets for single cation perchlorates (ClO4-), and none for mixed perchlorates, at low temperatures, which are needed to build models. In this study, we measure ice and salt solubilities in binary and ternary solutions in the Na-Ca-Mg-ClO4 system, and then use this data, along with existing data, to construct a low-temperature Pitzer model for perchlorate brines. We then apply our model to a nominal WCL solution. Previous studies have modeled either freezing of a WCL solution or evaporation at a single temperature. For the first time, we model evaporation at subzero temperatures, which is relevant for dehydration conditions that might occur at the Phoenix site. Our model indicates that a freezing WCL solution will form ice, KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), calcite (CaCO3), meridianiite (MgSO4·11H2O), MgCl2·12H2O, NaClO4·2H2O, and Mg(ClO4)2·6H2O at the eutectic (209 K). The total water held in hydrated salt phases at the eutectic is ∼1.2 wt.%, which is much greater than hydrated water contents when evaporation is modeled at 298.15 K (∼0.3 wt.%). Evaporation of WCL solutions at lower temperatures (down to 210 K) results in lower water activities and the formation of more dehydrated minerals, e.g. kieserite (MgSO4·H2O) instead of meridianiite. Potentially habitable brines, with water activity aw > 0.6, can occur when soil temperatures are above 220 K and when the soil liquid water content is greater than 0.4 wt.% (100 ×gH2O gsoil-1). In general, modeling indicates that mineral assemblages derived from WCL-type solutions are characteristic of the soil temperature, water content, and water

  10. A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site

    USGS Publications Warehouse

    Mellon, M.T.; Boynton, W.V.; Feldman, W.C.; Arvidson, R. E.; Titus, Joshua T.N.; Bandfield, L.; Putzig, N.E.; Sizemore, H.G.

    2009-01-01

    We review multiple estimates of the ice table depth at potential Phoenix landing sites and consider the possible state and distribution of subsurface ice. A two-layer model of ice-rich material overlain by ice-free material is consistent with both the observational and theoretical lines of evidence. Results indicate ground ice to be shallow and ubiquitous, 2-6 cm below the surface. Undulations in the ice table depth are expected because of the thermodynamic effects of rocks, slopes, and soil variations on the scale of the Phoenix Lander and within the digging area, which can be advantageous for analysis of both dry surficial soils and buried ice-rich materials. The ground ice at the ice table to be sampled by the Phoenix Lander is expected to be geologically young because of recent climate oscillations. However, estimates of the ratio of soil to ice in the ice-rich subsurface layer suggest that that the ice content exceeds the available pore space, which is difficult to reconcile with existing ground ice stability and dynamics models. These high concentrations of ice may be the result of either the burial of surface snow during times of higher obliquity, initially high-porosity soils, or the migration of water along thin films. Measurement of the D/H ratio within the ice at the ice table and of the soil-to-ice ratio, as well as imaging ice-soil textures, will help determine if the ice is indeed young and if the models of the effects of climate change on the ground ice are reasonable. Copyright 2008 by the American Geophysical Union.

  11. Testing Phoenix Mars Lander Parachute in Idaho

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander will parachute for nearly three minutes as it descends through the Martian atmosphere on May 25, 2008. Extensive preparations for that crucial period included this drop test near Boise, Idaho, in October 2006.

    The parachute used for the Phoenix mission is similar to ones used by NASA's Viking landers in 1976. It is a 'disk-gap-band' type of parachute, referring to two fabric components -- a central disk and a cylindrical band -- separated by a gap.

    Although the Phoenix parachute has a smaller diameter (11.8 meters or 39 feet) than the parachute for the 2007 Mars Pathfinder landing (12.7 meters or 42 feet), its Viking configuration results in slightly larger drag area. The smaller physical size allows for a stronger system because, given the same mass and volume restrictions, a smaller parachute can be built using higher strength components. The Phoenix parachute is approximately 1.5 times stronger than Pathfinder's. Testing shows that it is nearly two times stronger than the maximum opening force expected during its use at Mars.

    Engineers used a dart-like weight for the drop testing in Idaho. On the Phoenix spacecraft, the parachute is attached the the backshell. The backshell is the upper portion of a capsule around the lander during the flight from Earth to Mars and protects Phoenix during the initial portion of the descent through Mars' atmosphere.

    Phoenix will deploy its parachute at about 12.6 kilometers (7.8 miles) in altitude and at a velocity of 1.7 times the speed of sound. A mortar on the spacecraft fires to deploy the parachute, propelling it away from the backshell into the supersonic flow. The mortar design for Phoenix is essentially the same as Pathfinder's. The parachute and mortar are collectively called the 'parachute decelerator system.' Pioneer Aerospace, South Windsor, Conn., produced this system for Phoenix. The same company provided the parachute decelerator systems for Pathfinder, Mars Polar

  12. Soil on Phoenix Deck

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager (SSI) of NASA's Phoenix Lander, shows Martian soil piled on top of the spacecraft's deck and some of its instruments. Visible in the upper-left portion of the image are several wet chemistry cells of the lander's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument on the lower right of the image is the Thermal and Evolved-Gas Analyzer. The excess sample delivered to the MECA's sample stage can be seen on the deck in the lower left portion of the image.

    This image was taken on Martian day, or sol, 142, on Saturday, Oct. 19, 2008. Phoenix landed on Mars' northern plains on May 25, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. AEROSOL SAMPLING AND ANALYSIS, PHOENIX, ARIZONA

    EPA Science Inventory

    An atmospheric sampling program was carried out in the greater Phoenix, Arizona metropolitan area in November, 1975. Objectives of the study were to measure aerosol mass flux through Phoenix and to characterize the aerosol according to particle type and size. The ultimate goal of...

  14. Deep 'Stone Soup' Trenching by Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Digging by NASA's Phoenix Mars Lander on Aug. 23, 2008, during the 88th sol (Martian day) since landing, reached a depth about three times greater than in any trench Phoenix has excavated. The deep trench, informally called 'Stone Soup' is at the borderline between two of the polygon-shaped hummocks that characterize the arctic plain where Phoenix landed.

    The lander's Surface Stereo Imager took this picture of Stone Soup trench on Sol 88 after the day's digging. The trench is about 25 centimeters (10 inches) wide and about 18 centimeters (7 inches) deep.

    When digging trenches near polygon centers, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters or 2 inches beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

    Stone Soup is toward the left, or west, end of the robotic arm's work area on the north side of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Vertical Distribution of Water at Phoenix

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Lemmon, M. T.

    2011-01-01

    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  16. Schematic Animation of Phoenix's Microscope Station

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows the workings of the microscope station of the Microscopy, Electrochemistry and Conductivity Analyzer (MECA) instrument suite of NASA's Phoenix Mars Lander.

    Samples are delivered to the horizontal portion of the sample wheel (yellow) that pokes outside an opening in the box enclosure. The wheel rotates to present the sample to the microscopes. The Optical Microscope (red) can see particles a little smaller than one-tenth the diameter of a human hair. The Atomic Force Microscope (pink) can see particles forty time smaller. The samples are on a variety of substrate surfaces, the small circles on the beveled edge of the sample wheel. For scale, the diameter of the wheel is about 14 centimeters (5.5 inches). Each substrate is a circle 3 millimeters (0.1 inch) in diameter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Photometric Properties of Soils at the Mars Phoenix Landing Site: Preliminary Analysis from CRISM EPF Data

    NASA Astrophysics Data System (ADS)

    Cull, S. C.; Arvidson, R. E.; Seelos, F.; Wolff, M. J.

    2010-03-01

    Using data from CRISM's Emission Phase Function observations, we attempt to constrain Phoenix soil scattering properties, including soil grain size, single-scattering albedo, and surface phase function.

  18. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov Websites

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  19. Phoenix Spacecraft Heat Shield Deployment Test

    NASA Image and Video Library

    2007-05-16

    In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  20. Zenith Movie showing Phoenix's Lidar Beam (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing.

    The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible.

    The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Phoenix model

    EPA Science Inventory

    Phoenix (formerly referred to as the Second Generation Model or SGM) is a global general equilibrium model designed to analyze energy-economy-climate related questions and policy implications in the medium- to long-term. This model disaggregates the global economy into 26 industr...

  2. Phoenix Mars Lander in Testing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  3. Overview of the Phoenix Entry, Descent and Landing System

    NASA Technical Reports Server (NTRS)

    Grover, Rob

    2005-01-01

    A viewgraph presentation on the entry, descent and landing system of Phoenix is shown. The topics include: 1) Phoenix Mission Goals; 2) Payload; 3) Aeroshell/Entry Comparison; 4) Entry Trajectory Comparison; 5) Phoenix EDL Timeline; 6) Hypersonic Phase; 7) Parachute Phase; 8) Terminal Descent Phase; and 9) EDL Communications.

  4. Phoenix Spacecraft Heat Shield Deployment Test

    NASA Image and Video Library

    2007-05-16

    In the Payload Hazardous Servicing Facility, a worker monitors the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  5. Dust Devil Tracks and Wind Streaks in the North Polar Region of Mars: A Study of the 2007 Phoenix Mars Lander Sites

    NASA Technical Reports Server (NTRS)

    Drake, Nathan B.; Tamppari, Leslie K.; Baker, R. David; Cantor, Bruce A.; Hale, Amy S.

    2006-01-01

    The 65-72 latitude band of the North Polar Region of Mars, where the 2007 Phoenix Mars Lander will land, was studied using satellite images from the Mars Global Surveyor (MGS) Mars Orbiter Camera Narrow-Angle (MOC-NA) camera. Dust devil tracks (DDT) and wind streaks (WS) were observed and recorded as surface evidence for winds. No active dust devils (DDs) were observed. 162 MOC-NA images, 10.3% of total images, contained DDT/WS. Phoenix landing Region C (295-315W) had the highest concentration of images containing DDT/WS per number of available images (20.9%); Region D (130-150W) had the lowest (3.5%). DDT and WS direction were recorded for Phoenix landing regions A (110-130W), B (240-260W), and C to infer local wind direction. Region A showed dominant northwest-southeast DDT/WS, Region B showed dominant north-south, east-west and northeast-southwest DDT/WS, and region C showed dominant west/northwest - east/southeast DDT/ WS. Results indicate the 2007 Phoenix Lander has the highest probability of landing near DDT/WS in landing Region C. Based on DDT/WS linearity, we infer Phoenix would likely encounter directionally consistent background wind in any of the three regions.

  6. False Color Terrain Model of Phoenix Workspace

    NASA Image and Video Library

    2008-05-28

    This is a terrain model of Phoenix Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix Surface Stereo Imager SSI.

  7. Effect of evaporation and freezing on the salt paragenesis and habitability of brines at the Phoenix landing site

    NASA Astrophysics Data System (ADS)

    Elsenousy, Amira; Hanley, Jennifer; Chevrier, Vincent F.

    2015-07-01

    The WCL (Wet Chemistry Lab) instrument on board the Phoenix Lander identified the soluble ionic composition of the soil at the landing site. However, few studies have been conducted to understand the parent salts of these soluble ions. Here we studied the possible salt assemblages at the Phoenix landing site using two different thermodynamic models: FREZCHEM and Geochemist's Workbench (GWB). Two precipitation pathways were used: evaporation (T > 0 °C using both FREZCHEM and GWB) and freezing (T < 0 °C using only FREZCHEM). Through applying three different models of initial ionic concentrations (from sulfate to chlorate/perchlorate dominated), we calculated the resulting precipitated minerals. The results-through both freezing and evaporation-showed some common minerals that precipitated regardless of the ionic initial concentration. These ubiquitous minerals are magnesium chlorate hexahydrate Mg(ClO3)2ṡ6H2O, potassium perchlorate (KClO4) and gypsum (CaSO4ṡ2H2O). Other minerals evidence specific precipitation pathway. Precipitation of highly hydrated salts such as meridianiite (MgSO4ṡ11H2O) and MgCl2ṡ12H2O indicate freezing pathway, while precipitation of the low hydrated salts (anhydrite, kieserite and epsomite) indicate evaporation. The present hydration states of the precipitated hydrated minerals probably reflect the ongoing thermal processing and recent seasonally varying humidity conditions at the landing site, but these hydration states might not reflect the original depositional conditions. The simulations also showed the absence of Ca-perchlorate in all models, mainly because of the formation of two main salts: KClO4 and gypsum which are major sinks for ClO-4 and Ca2+ respectively. Finally, in consideration to the Martian life, it might survive at the very low temperatures and low water activities of the liquids formed. However, besides the big and widely recognized challenges to life posed by those extreme environmental parameters (especially low

  8. Overview of the Phoenix Entry, Descent and Landing System Architecture

    NASA Technical Reports Server (NTRS)

    Grover, Myron R., III; Cichy, Benjamin D.; Desai, Prasun N.

    2008-01-01

    NASA s Phoenix Mars Lander began its journey to Mars from Cape Canaveral, Florida in August 2007, but its journey to the launch pad began many years earlier in 1997 as NASA s Mars Surveyor Program 2001 Lander. In the intervening years, the entry, descent and landing (EDL) system architecture went through a series of changes, resulting in the system flown to the surface of Mars on May 25th, 2008. Some changes, such as entry velocity and landing site elevation, were the result of differences in mission design. Other changes, including the removal of hypersonic guidance, the reformulation of the parachute deployment algorithm, and the addition of the backshell avoidance maneuver, were driven by constant efforts to augment system robustness. An overview of the Phoenix EDL system architecture is presented along with rationales driving these architectural changes.

  9. Mars 2007 Phoenix Scout Mission Organic Free Blank: Method to Distinguish Mars Organics from Terrestrial Organics

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Woida, R.; Sutter, B.; Lauer, H. V.; Shinohara, C.; Golden, D. C.; Boynton, W. V.; Arvidson, R. E.; Stewart, R. L.; hide

    2008-01-01

    The Mars 2007 Phoenix Scout Mission successfully launched on August 4, 2007, for a 10-month journey to Mars. The Phoenix spacecraft is scheduled to land on May 25, 2008. The primary mission objective is to study the history of water and evaluate the potential for past and present habitability in Martian arctic ice-rich soil [1]. Phoenix will land near 68 N latitude on polygonal terrain presumably created by ice layers that are expected to be a few centimeters under loose soil materials [2,3]. The Phoenix Mission will assess the potential for habitability by searching for organic molecules in ice or icy soils at the landing site. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. Phoenix will search for organic molecules by heating soil/ice samples in the Thermal and Evolved-Gas Analyzer (TEGA, [4]). TEGA consists of 8 differential scanning calorimeter (DSC) ovens integrated with a magnetic-sector mass spectrometer with a mass range of 2-140 daltons [4]. Endothermic and exothermic reactions are recorded by the TEGA DSC as samples are heated from ambient to approx.1000 C. Evolved gases, including organic molecules and fragments if present, are simultaneously measured by the mass spectrometer during heating.

  10. Phoenix Lowered into Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander was lowered into a thermal vacuum chamber at Lockheed Martin Space Systems, Denver, in December 2006.

    The spacecraft was folded in its aeroshell and underwent environmental testing that simulated the extreme conditions the spacecraft will see during its nine-and-a-half-month cruse to Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  11. False Color Terrain Model of Phoenix Workspace

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is a terrain model of Phoenix's Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix's Surface Stereo Imager (SSI). Red indicates low-lying areas that appear to be troughs. Blue indicates higher areas that appear to be polygons.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Phoenix Lidar Operation Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Phoenix Conductivity Probe Inserted into Martian Soil

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.'

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Work on Phoenix Science Deck

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Lockheed Martin Space Systems technicians Jim Young (left) and Jack Farmerie (right) work on the science deck of NASA's Phoenix Mars Lander.

    The spacecraft was built in a 100,000-class clean room near Denver under NASA's planetary protection practices to keep organics from being taken to Mars. The lander's robotic arm, built by the Jet Propulsion Laboratory, Pasadena, is seen at the top of the picture. The color and grey dots will be used to calibrate the spacecraft's Surface Stereoscopic Imager camera once the spacecraft has landed on the red planet.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  15. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. More Soil Delivered to Phoenix Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, documents the delivery of a soil sample from the 'Snow White' trench to the Wet Chemistry Laboratory. A small pile of soil is visible on the lower edge of the second cell from the top.This deck-mounted lab is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer (MECA).

    The delivery was made on Sept. 12, 2008, which was Sol 107 (the 107th Martian day) of the mission, which landed on May 25, 2008.

    The Wet Chemistry Laboratory mixes Martian soil with an aqueous solution from Earth as part of a process to identify soluble nutrients and other chemicals in the soil. Preliminary analysis of this soil confirms that it is alkaline, and composed of salts and other chemicals such as perchlorate, sodium, magnesium, chloride and potassium. This data validates prior results from that same location, said JPL's Michael Hecht, the lead scientist for MECA.

    In the coming days, the Phoenix team will also fill the final four of eight single-use ovens on another soil-analysis instrument, the Thermal and Evolved Gas Analyzer, or TEGA. The team's strategy is to deliver as many samples as possible before the power produced by Phoenix's solar panels declines due to the end of the Martian summer.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Rasp Tool on Phoenix Robotic Arm Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This close-up photograph taken at the Payload Interoperability Testbed at the University of Arizona, Tucson, shows the motorized rasp protruding from the bottom of the scoop on the engineering model of NASA's Phoenix Mars Lander's Robotic Arm.

    The rasp will be placed against the hard Martian surface to cut into the hard material and acquire an icy soil sample for analysis by Phoenix's scientific instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Deep 'Stone Soup' Trenching by Phoenix (Stereo)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Digging by NASA's Phoenix Mars Lander on Aug. 23, 2008, during the 88th sol (Martian day) since landing, reached a depth about three times greater than in any trench Phoenix has excavated. The deep trench, informally called 'Stone Soup' is at the borderline between two of the polygon-shaped hummocks that characterize the arctic plain where Phoenix landed.

    Stone Soup is in the center foreground of this stereo view, which appears three dimensional when seen through red-blue glasses. The view combines left-eye and right-eye images taken by the lander's Surface Stereo Imager on Sol 88 after the day's digging. The trench is about 25 centimeters (10 inches) wide and about 18 centimeters (7 inches) deep.

    When digging trenches near polygon centers, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters or 2 inches beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

    Stone Soup is toward the left, or west, end of the robotic arm's work area on the north side of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. View - Phoenix, AZ - Metropolitan Area - AZ

    NASA Image and Video Library

    1973-08-15

    S73-35078 (July-Sept. 1973) --- A nearly vertical view of the Phoenix, Arizona metropolitan area is seen in this Skylab 3 (second manning) Earth Resources Experiments Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. Also in the picture are Scottsdale, Paradise Valley, Tempe, Mesa, Komatke, Salt River Indian Reservation and part of the Gila River Indian Reservation. Features which can be delineated from the photograph include: cultural patterns defined by commercial, industrial, agricultural and residential areas; transportation networks consisting of major corridors, primary, secondary and feeder streets; major urban developments in the area such as airports, Squaw Peak City Park, Turf Paradise Race Track and the State Fairgrounds. Phoenix is one of the 27 census cities of interest under study by the U.S. Geological Survey and is the center of the Arizona Regional Ecological Test Site. A large number of investigators will be using the Skylab data. This photo will be compared to earlier ones to document changes in the urban area with time. The landscape is well defined in terms of mountains, alluvial fans and river flood plains. Several different types of natural vegetation and irrigated crop lands can be mapped. Geological features are not well displayed but mining activities are readily identified. Photo credit: NASA

  1. Abell 1033: birth of a radio phoenix

    DOE PAGES

    de Gasperin, F.; Ogrean, G. A.; van Weeren, R. J.; ...

    2015-02-26

    We report that extended steep-spectrum radio emission in a galaxy cluster is usually associated with a recent merger. However, given the complex scenario of galaxy cluster mergers, many of the discovered sources hardly fit into the strict boundaries of a precise taxonomy. This is especially true for radio phoenixes that do not have very well defined observational criteria. Radio phoenixes are aged radio galaxy lobes whose emission is reactivated by compression or other mechanisms. Here in this paper, we present the detection of a radio phoenix close to the moment of its formation. The source is located in Abell 1033,more » a peculiar galaxy cluster which underwent a recent merger. To support our claim, we present unpublished Westerbork Synthesis Radio Telescope and Chandra observations together with archival data from the Very Large Array and the Sloan Digital Sky Survey. We discover the presence of two subclusters displaced along the N–S direction. The two subclusters probably underwent a recent merger which is the cause of a moderately perturbed X-ray brightness distribution. A steep-spectrum extended radio source very close to an active galactic nucleus (AGN) is proposed to be a newly born radio phoenix: the AGN lobes have been displaced/compressed by shocks formed during the merger event. This scenario explains the source location, morphology, spectral index, and brightness. Finally, we show evidence of a density discontinuity close to the radio phoenix and discuss the consequences of its presence.« less

  2. Phoenix's 'Dodo' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was taken by NASA's Phoenix Mars Lander's Robotic Arm Camera (RAC) on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). The center of the image shows a trench informally called 'Dodo' after the second dig. 'Dodo' is located within the previously determined digging area, informally called 'Knave of Hearts.' The light square to the right of the trench is the Robotic Arm's Thermal and Electrical Conductivity Probe (TECP). The Robotic Arm has scraped to a bright surface which indicated the Arm has reached a solid structure underneath the surface, which has been seen in other images as well.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.

    2012-08-01

    Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative

  4. Underneath the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander took this image on Oct. 18, 2008, during the 142nd Martian day, or sol, since landing. The flat patch in the center of the image has the informal name 'Holy Cow,' based on researchers' reaction when they saw the initial image of it only a few days after the May 25, 2008 landing. Researchers first saw this flat patch in an image taken by the Robotic Arm Camera on May 30, the fifth Martian day of the mission.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. 78 FR 78298 - Proposed Establishment of Class E Airspace; Phoenix, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-0956; Airspace Docket No. 13-AWP-17] Proposed Establishment of Class E Airspace; Phoenix, AZ AGENCY... rulemaking (NPRM). SUMMARY: This action proposes to establish Class E airspace at the Phoenix VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Phoenix, AZ, to facilitate vectoring of...

  6. Phoenix Robotic Arm Rasp

    NASA Image and Video Library

    2008-07-15

    This photograph shows the rasp protruding from the back of the scoop on NASA Phoenix Mars Lander Robotic Arm engineering model in the Payload Interoperability Testbed at the University of Arizona, Tucson.

  7. Phoenix Conductivity Probe with Shadow and Toothmark

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left.

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. The Aqueous Chemistry of the Soils at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Kounaves, S. P.; Hecht, M. H.; Quinn, R.; West, S. J.; Young, S. M.; Clark, B. C.; Ming, D. W.; Boynton, W. V.; Gospodinova, K.; Kapit, J.; Deflores, L. P.; Smith, P. H.; Team, A

    2008-12-01

    The MECA Wet Chemistry Laboratory (WCL) analyses on the Phoenix Mars Lander have provided the first direct evidence of the soluble ionic components of the Martian soil. The analyses were performed on samples acquired from the surface (Rosy Red) and at the soil/ice interface approximately 4-5 cm under the surface (Sorceress). Even though the samples are from a rather unique site because of the high polar latitude and the polygon-patterned ground, they present a picture of a geochemical environment different from some previously hypothesized. Addition of 25mL of a water/calibrant solution to approximately 1cc of each of the soil samples resulted in the detection of a variety of ionic species, increased solution conductivity, and a slightly alkaline pH. The major constituent cations identified and quantified to date include Na+, K+, Mg2+, and Ca2+, while the anions included Cl- and ClO4-. Sulfate analysis was performed using a Ba2+ titration method. Even though carbonate and bicarbonate were not directly measured, their presence and quantification is supported by the alkaline pH of the solution, its buffering capacity after the addition of an acid, common ion effects, conductivity, and the modeled equilibrium species distribution of the system. The species distribution resulting from the modeling and consideration of additional interactions; dissolution, precipitation, ion exchange, ads/desorption, charge balance, the behavior over the several hours of monitoring, provided constraints for carbonate speciation and concentration and was used to formulate and test soil simulants. Results from the Thermal and Evolved Gas Analyzer (TEGA) also support the presence of a significant amount of calcite in the soil.

  9. Martian Arctic Dust Devil, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in the center of this image just below the horizon is estimated to be about 400 meters (about 1,300 feet) from Phoenix, and 4 meters (13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Phoenix Lidar Operation Animation

    NASA Image and Video Library

    2008-05-29

    This image from NASA Phoenix Mars Lander of the Canadian-built meteorological station lidar, which was successfully activated on Sol 2 by first opening its dust cover, then emitting rapid pulses of light.

  11. 'Rosy Red' Soil in Phoenix's Scoop

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows fine-grained material inside the Robotic Arm scoop as seen by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander on June 25, 2008, the 30th Martian day, or sol, of the mission.

    The image shows fine, fluffy, red soil particles collected in a sample called 'Rosy Red.' The sample was dug from the trench named 'Snow White' in the area called 'Wonderland.' Some of the Rosy Red sample was delivered to Phoenix's Optical Microscope and Wet Chemistry Laboratory for analysis.

    The RAC provides its own illumination, so the color seen in RAC images is color as seen on Earth, not color as it would appear on Mars.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Martian Dust Collected by Phoenix's Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Lander's Optical Microscope shows particles of Martian dust lying on the microscope's silicon substrate. The Robotic Arm sprinkled a sample of the soil from the Snow White trench onto the microscope on July 2, 2008, the 38th Martian day, or sol, of the mission after landing.

    Subsequently, the Atomic Force Microscope, or AFM, zoomed in one of the fine particles, creating the first-ever image of a particle of Mars' ubiquitous fine dust, the most highly magnified image ever seen from another world.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The AFM is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 200 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Phoenix Deepens Trenches on Mars (3D)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this anaglyph on Oct. 21, 2008, during the 145th Martian day, or sol. Phoenix landed on Mars' northern plains on May 25, 2008.

    The trench on the upper left, called 'Dodo-Goldilocks,' is about 38 centimeters (15 inches) long and 4 centimeters (1.5 inches) deep. The trench on the right, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the lower middle is called 'Stone Soup.'

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Phoenix - the First Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Goldstein, Barry; Shotwell, Robert

    2008-01-01

    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. This paper will highlight some of the key changes since the 2006 IEEE paper of the same name, as well as activities, challenges and problems encountered on the way to the launch pad. Phoenix Follows the water responding directly to the recently published data from Dr. William Boynton, PI (and Phoenix co-I) of the Mars Odyssey Gamma Ray Spectrometer (GRS). GRS data indicate extremely large quantities of water ice (up to 50% by mass) within the upper 50 cm of the northern polar regolith. Phoenix will land within the north polar region at 68.2 N, 233.4 W identified by GRS to harbor near surface water ice and provide in-situ confirmation of this extraordinary find. Our mission will investigate water in all its phases, and will investigate the history of water as evidenced in the soil characteristics that will be carefully examined by the powerful suite of onboard instrumentation. Access to the critical subsurface region expected to contain this information is made possible by a third generation robotic arm capable of excavating the expected Martian regolith to a depth of 1m. Phoenix has four primary science objectives: 1) Determine the polar climate and weather, interaction with the surface, and composition of the lower atmosphere around 70 N for at least 90 sols focusing on water, ice, dust, noble gases, and CO2. Determine the atmospheric characteristics during descent through the atmosphere. 2) Characterize the geomorphology and active processes shaping the northern plains and the physical properties of the near surface regolith focusing on the role of water. 3) Determine the aqueous mineralogy and chemistry as well as the adsorbed gases and organic content of the regolith. Verify the Odyssey

  16. Airborne dust and soil particles at the Phoenix landing site, Mars

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Drube, L.; Goetz, W.; Leer, K.; Falkenberg, T. V.; Gunnlaugsson, H. P.; Haspang, M. P.; Hviid, S. F.; Ellehøj, M. D.; Lemmon, M. T.

    2009-04-01

    The three iSweep targets on the Phoenix lander instrument deck utilize permanent magnets and 6 different background colors for studies of airborne dust [1]. The name iSweep is short for Improved Sweep Magnet experiments and derives from MER heritage [2, 3] as the rovers carried a sweep magnet, which is a very strong ring magnet built into an aluminum structure. Airborne dust is attracted and held by the magnet and the pattern formed depends on magnetic properties of the dust. The visible/near-infrared spectra acquired of the iSweep are rather similar to typical Martian dust and soil spectra. Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be studied. This is used to estimate the rate of dust accumulation and will be used to evaluate light scattering properties of the particles. Some particles raised by the retro-rockets during the final descent came to rest on the lander deck and spectra of these particles are studied and compared with those of airborne dust and with spectra obtained from other missions. High resolution images acquired by the Optical Microscope (OM) [4] showed subtle differences between different Phoenix soil samples in terms of particle size and color. Most samples contain orange dust (particles smaller than 10 micrometer) as their major component and silt-sized (50-80 micrometer large) subrounded particles. Both particle types are substantially magnetic. Based on results from the Mars Exploration Rovers, the magnetization of the silt-sized particles is believed to be caused by magnetite. Morphology, texture and color of these particles (ranging from colorless, red-brown to almost black) suggest a multiple origin: The darkest particles probably represent lithic fragments, while the brighter ones could be impact or volcanic glasses. [1] Leer K. et al. (2008) JGR, 113, E00A16. [2] Madsen M.B. et al. (2003) JGR, 108, 8069. [3] Madsen M.B. et al. (2008) JGR (in print). [4] Hecht M.H. et

  17. Martian Arctic Dust Devil and Phoenix Meteorology Mast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The vertical post near the left edge of this image is the mast of the Meteorological Station on Phoenix. The dust devil visible at the horizon just to the right of the mast is estimated to be 600 to 700 meters (about 2,000 to 2,300 feet) from Phoenix, and 4 to 5 meters (10 to 13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Phoenix Mars Lander with Solar Arrays Open

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  19. Team Huddle Before Lifting Phoenix into Test Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Spacecraft specialists huddle to discuss the critical lift of NASA's Phoenix Mars Lander into a thermal vacuum chamber.

    In December 2006, the spacecraft was in a cruise configuration prior to going into environmental testing at a Lockheed Martin Space Systems facility near Denver. At all stages of assembly and testing, the spacecraft is handled with extreme care and refinement.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  20. Results of the Phoenix Relative Humidity Sensor Recalibration

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Fischer, E.; Renno, N. O.

    2017-12-01

    We show results of the recalibration of the Thermal and Electrical Conductivity Probe (TECP) relative humidity (RH) sensor of the Phoenix Mars lander [Zent et al., 2009]. Due to uncertainties in its pre-flight calibration, which partially overlapped the environmental conditions found at the Phoenix landing site [Tamppari et al., 2010], only the raw, unprocessed output of the TECP RH sensor is available in NASA's Planetary Data System (PDS). The sensor's calibration was revised in 2016 to correct for inaccuracies at the lowest temperatures [Zent et al., 2016], but the new processed RH values were not posted in the PDS. We have been using a spare engineering unit of the TECP to recalibrate the sensor in the full range of Phoenix landing site conditions in the Michigan Mars Environmental Chamber (MMEC) [Fischer et al., 2016]. We compare raw output data of the engineering unit in the MMEC with that of the flight unit from the preflight calibration. We observed that the engineering unit's RH sensor output was shifted to higher values compared to the flight unit's output at the same conditions of temperature and humidity. Based on this shift, we use a translation function that fits the in-situ measurements of the flight unit into the engineering unit output space. To improve the accuracy of this function, we use additional observations corresponding to saturated conditions when near-surface fog was observed [Whiteway et al., 2009], as well as observations around noon when the RH is expected to be below 5%. The entire range of conditions observed on the Martian surface is covered in our recalibration. The raw output of the sensor is used to obtain a new calibration function. This allows us to obtain high-level RH data at Martian polar conditions. The recalibrated data will be posted in the PDS. REFERENCES: Fischer, E., et al. (2016), Astrobiology, 16, 12, doi: 10.1089/ast.2016.1525. Tamppari, L. K., et al. (2010), J. Geophys. Res., 115, E00E17, doi:10.1029/2009JE003415

  1. In Brief: NASA's Phoenix spacecraft lands on Mars

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    After a 9.5-month, 679-million-kilometer flight from Florida, NASA's Phoenix spacecraft made a soft landing in Vastitas Borealis in Mars's northern polar region on 25 May. The lander, whose camera already has returned some spectacular images, is on a 3-month mission to examine the area and dig into the soil of this site-chosen for its likelihood of having frozen water near the surface-and analyze samples. In addition to a robotic arm and robotic arm camera, the lander's instruments include a surface stereo imager; thermal and evolved-gas analyzer; microscopy, electrochemistry, and conductivity analyzer; and a meteorological station that is tracking daily weather and seasonal changes.

  2. Phoenix Makes an Impression on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the first impression dubbed Yeti and looking like a wide footprint -- made on the Martian soil by the Robotic Arm scoop on Sol 6, the sixth Martian day of the mission, (May 31, 2008).

    Touching the ground is the first step toward scooping up soil and ice and delivering the samples to the lander's experiments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Digibaro pressure instrument onboard the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  4. Mars Phoenix Entry, Descent, and Landing Simulation Design and Modelling Analysis

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The 2007 Mars Phoenix Lander was launched in August of 2007 on a ten month cruise to reach the northern plains of Mars in May 2008. Its mission continues NASA s pursuit to find evidence of water on Mars. Phoenix carries upon it a slew of science instruments to study soil and ice samples from the northern region of the planet, an area previously undiscovered by robotic landers. In order for these science instruments to be useful, it was necessary for Phoenix to perform a safe entry, descent, and landing (EDL) onto the surface of Mars. The EDL design was defined through simulation and analysis of the various phases of the descent. An overview of the simulation and various models developed to characterize the EDL performance is provided. Monte Carlo statistical analysis was performed to assess the performance and robustness of the Phoenix EDL system and are presented in this paper. Using these simulation and modelling tools throughout the design and into the operations phase, the Mars Phoenix EDL was a success on May 25, 2008.

  5. How Phoenix Looks Under Itself

    NASA Image and Video Library

    2008-06-04

    NASA Phoenix Mars Lander reaching with its Robotic Arm and taking a picture of the surface underneath the lander. The light feature in the middle of the image below the leg is informally called Holy Cow.

  6. Phoenix Violence Prevention Initiative.

    ERIC Educational Resources Information Center

    Waits, Mary Jo; Johnson, Ryan; Silverstein, Rustin

    This report describes seven categories of violent crime in Phoenix, Arizona, and provides causes, facts, preventative programs, and lessons learned pertaining to each category of violence. The categories are: (1) prenatal and early childhood; (2) families; (3) individual youth; (4) schools; (5) neighborhood and community; (6) workplace; and (7)…

  7. Greening America's Capitals - Phoenix, AZ

    EPA Pesticide Factsheets

    This report shows design concepts to make pedestrians and bicyclists safer while maintaining on-street parking and providing space for a future streetcar or trolley in Phoenix, AZ. It also shows green infrastructure strategies for arid places.

  8. Effects of the Phoenix Lander descent thruster plume on the Martian surface

    NASA Astrophysics Data System (ADS)

    Plemmons, D. H.; Mehta, M.; Clark, B. C.; Kounaves, S. P.; Peach, L. L.; Renno, N. O.; Tamppari, L.; Young, S. M. M.

    2008-08-01

    The exhaust plume of Phoenix's hydrazine monopropellant pulsed descent thrusters will impact the surface of Mars during its descent and landing phase in the northern polar region. Experimental and computational studies have been performed to characterize the chemical compounds in the thruster exhausts. No undecomposed hydrazine is observed above the instrument detection limit of 0.2%. Forty-five percent ammonia is measured in the exhaust at steady state. Water vapor is observed at a level of 0.25%, consistent with fuel purity analysis results. Moreover, the dynamic interactions of the thruster plumes with the ground have been studied. Large pressure overshoots are produced at the ground during the ramp-up and ramp-down phases of the duty cycle of Phoenix's pulsed engines. These pressure overshoots are superimposed on the 10 Hz quasi-steady ground pressure perturbations with amplitude of about 5 kPa (at touchdown altitude) and have a maximum amplitude of about 20-40 kPa. A theoretical explanation for the physics that causes these pressure perturbations is briefly described in this article. The potential for soil erosion and uplifting at the landing site is also discussed. The objectives of the research described in this article are to provide empirical and theoretical data for the Phoenix Science Team to mitigate any potential problem. The data will also be used to ensure proper interpretation of the results from on-board scientific instrumentation when Martian soil samples are analyzed.

  9. Phoenix Missile Hypersonic Testbed (PMHT): System Concept Overview

    NASA Technical Reports Server (NTRS)

    Jones, Thomas P.

    2007-01-01

    A viewgraph presentation of the Phoenix Missile Hypersonic Testbed (PMHT) is shown. The contents include: 1) Need and Goals; 2) Phoenix Missile Hypersonic Testbed; 3) PMHT Concept; 4) Development Objectives; 5) Possible Research Payloads; 6) Possible Research Program Participants; 7) PMHT Configuration; 8) AIM-54 Internal Hardware Schematic; 9) PMHT Configuration; 10) New Guidance and Armament Section Profiles; 11) Nomenclature; 12) PMHT Stack; 13) Systems Concept; 14) PMHT Preflight Activities; 15) Notional Ground Path; and 16) Sample Theoretical Trajectories.

  10. Phoenix Deepens Trenches on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this false color image on Oct. 21, 2008, during the 145th Martian day, or sol, since landing. The bluish-white areas seen in these trenches are part of an ice layer beneath the soil.

    The trench on the upper left, called 'Dodo-Goldilocks,' is about 38 centimeters (15 inches) long and 4 centimeters (1.5 inches) deep. The trench on the right, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the lower middle is called 'Stone Soup.'

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Phoenix, AZ, USA

    NASA Image and Video Library

    1973-06-22

    SL2-03-200 (22 June 1973) --- The city of Phoenix, AZ (33.5N, 112.0W) can be seen in good detail in this color infrared scene. Situated among truck crop agriculture fields, the color infrared photo depicts the vegetated fields as shades of red making the agriculture stand out in this desert environment. To the east, Lake Theodore Roosevelt and dam can be easily seen. Photo credit: NASA

  12. Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site.

    PubMed

    Fischer, E; Martínez, G M; Rennó, N O

    2016-12-01

    In the last few years, water ice and salts capable of melting this ice and producing liquid saline water (brine) have been detected on Mars. Moreover, indirect evidence for brine has been found in multiple areas of the planet. Here, we simulate full diurnal cycles of temperature and atmospheric water vapor content at the Phoenix landing site for the first time and show experimentally that, in spite of the low Mars-like chamber temperature, brine forms minutes after the ground temperature exceeds the eutectic temperature of salts in contact with water ice. Moreover, we show that the brine stays liquid for most of the diurnal cycle when enough water ice is available to compensate for evaporation. This is predicted to occur seasonally in areas of the polar region where the temperature exceeds the eutectic value and frost or snow is deposited on saline soils, or where water ice and salts coexist in the shallow subsurface. This is important because the existence of liquid water is a key requirement for habitability. Key Words: Mars-Ice-Perchlorates-Brine-Water-Raman spectroscopy. Astrobiology 16, 937-948.

  13. Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Martínez, G. M.; Rennó, N. O.

    2016-12-01

    In the last few years, water ice and salts capable of melting this ice and producing liquid saline water (brine) have been detected on Mars. Moreover, indirect evidence for brine has been found in multiple areas of the planet. Here, we simulate full diurnal cycles of temperature and atmospheric water vapor content at the Phoenix landing site for the first time and show experimentally that, in spite of the low Mars-like chamber temperature, brine forms minutes after the ground temperature exceeds the eutectic temperature of salts in contact with water ice. Moreover, we show that the brine stays liquid for most of the diurnal cycle when enough water ice is available to compensate for evaporation. This is predicted to occur seasonally in areas of the polar region where the temperature exceeds the eutectic value and frost or snow is deposited on saline soils, or where water ice and salts coexist in the shallow subsurface. This is important because the existence of liquid water is a key requirement for habitability.

  14. Phoenix Carries Soil to Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab delivery funnel on Sol 29, the 29th Martian day after landing, or June 24, 2008. The soil will be delivered to the instrument on Sol 30.

    This image has been enhanced to brighten the scene.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Cave Buttes Dam Master Plan, Phoenix, Arizona and Vicinity (Including New River).

    DTIC Science & Technology

    1982-03-01

    Mar. 1975 Arizona, Hydrology, Part 1 3 New River and Phoenix City Streams, Mar. 1976 July 1977 Arizona, Design Memorandum No. 3, (SPD App) General ...with Maricopa County, Arizona CEQ) 3 New River and Phoenix City Streams, Arizona, Design Memorandum No. 3, General Design Memorandum--Phase II, Project...Hydrology Part 2 3 New River and Phoenix City Streams, Arizona, Design Memorandum No. 3, General Design Memorandum--Phase II, Project Design Part 3

  16. Martian Dust Devil Movie, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west of the lander in four frames shot about 50 seconds apart from each other between 11:53 a.m. and 11:56 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in this sequence was about 1,000 meters (about 3,300 feet) from the lander when the first frame was taken, and had moved to about 1,700 meters (about 5,600 feet) away by the time the last frame was taken about two and a half minutes later. The dust devil was moving westward at an estimated speed of 5 meters per second (11 miles per hour), which is similar to typical late-morning wind speed and direction indicated by the telltale wind gauge on Phoenix.

    This dust devil is about 5 meters (16 feet) in diameter. This is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those..

    The image has been enhanced to make the dust devil easier to see. Some of the frame-to-frame differences in the appearance of foreground rocks is because each frame was taken through a different color filter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Alternative Fuels Data Center: Phoenix Utility Fleet Drives Smarter with

    Science.gov Websites

    electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a BiodieselA> Phoenix Utility Fleet Drives Smarter with Biodiesel to someone by E-mail Share ... Aug. 26, 2017 Phoenix Utility Fleet Drives Smarter with Biodiesel Watch how a utility company in

  18. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Bruno, Cy

    2012-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single

  19. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small

  20. Temperature Measurements Taken by Phoenix Spacecraft

    NASA Image and Video Library

    2008-09-30

    This chart plots the minimum daily atmospheric temperature measured by NASA Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased.

  1. Discovering Diversity Downtown: Questioning Phoenix

    ERIC Educational Resources Information Center

    Talmage, Craig A.; Dombrowski, Rosemarie; Pstross, Mikulas; Peterson, C. Bjørn; Knopf, Richard C.

    2015-01-01

    Applied community learning experiences for university students are promising endeavors in downtown urban environments. Past research is applied to help better comprehend a community engagement initiative conducted in downtown Phoenix, Arizona. The initiative aimed to illuminate the socio-cultural diversity of the downtown area utilizing…

  2. Digging Movie from Phoenix's Sol 18

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander recorded the images combined into this movie of the lander's Robotic Arm enlarging and combining the two trenches informally named 'Dodo' (left) and 'Goldilocks.'

    The 21 images in this sequence were taken over a period of about 2 hours during Phoenix's Sol 18 (June 13, 2008), or the 18th Martian day since landing.

    The main purpose of the Sol 18 dig was to dig deeper for learning the depth of a hard underlying layer. A bright layer, possibly ice, was increasingly exposed as the digging progressed. Further digging and scraping in the combined Dodo-Goldilocks trench was planned for subsequent sols.

    The combined trench is about 20 centimeters (about 8 inches) wide. The depth at the end of the Sol 18 digging is 5 to 6 centimeters (about 2 inches).

    The Goldilocks trench was the source of soil samples 'Baby Bear' and 'Mama Bear,' which were collected on earlier sols and delivered to instruments on the lander deck. The Dodo trench was originally dug for practice in collecting and depositing soil samples.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Maps of the Martian Landing Sites and Rover Traverses: Viking 1 and 2, Mars Pathfinder, and Phoenix Landers, and the Mars Exploration Rovers.

    NASA Astrophysics Data System (ADS)

    Parker, T. J.; Calef, F. J., III; Deen, R. G.; Gengl, H.

    2016-12-01

    The traverse maps produced tactically for the MER and MSL rover missions are the first step in placing the observations made by each vehicle into a local and regional geologic context. For the MER, Phoenix and MSL missions, 25cm/pixel HiRISE data is available for accurately localizing the vehicles. Viking and Mars Pathfinder, however, relied on Viking Orbiter images of several tens of m/pixel to triangulate to horizon features visible both from the ground and from orbit. After Pathfinder, MGS MOC images became available for these landing sites, enabling much better correlations to horizon features and localization predictions to be made, that were then corroborated with HiRISE images beginning 9 years ago. By combining topography data from MGS, Mars Express, and stereo processing of MRO CTX and HiRISE images into orthomosaics (ORRs) and digital elevation models (DEMs), it is possible to localize all the landers and rover positions to an accuracy of a few tens of meters with respect to the Mars global control net, and to better than half a meter with respect to other features within a HiRISE orthomosaic. JPL's MIPL produces point clouds of the MER Navcam stereo images that can be processed into 1cm/pixel ORR/DEMs that are then georeferenced to a HiRISE/CTX base map and DEM. This allows compilation of seamless mosaics of the lander and rover camera-based ORR/DEMs with the HiRISE ORR/DEM that can be viewed in 3 dimensions with GIS programs with that capability. We are re-processing the Viking Lander, Mars Pathfinder, and Phoenix lander data to allow similar ORR/DEM products to be made for those missions. For the fixed landers and Spirit, we will compile merged surface/CTX/HiRISE ORR/DEMs, that will enable accurate local and regional mapping of these landing sites, and allow comparisons of the results from these missions to be made with current and future surface missions.

  4. 78 FR 56859 - Foreign-Trade Zone 75-Phoenix, Arizona, Authorization of Limited Production Activity, Honeywell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-41-2013] Foreign-Trade Zone 75--Phoenix, Arizona, Authorization of Limited Production Activity, Honeywell Aerospace, Inc. (Aircraft Engines, Systems and Components), Phoenix and Tempe, Arizona On May 3, 2013, the City of Phoenix, grantee of FTZ 75...

  5. Sprinkle Test by Phoenix's Robotic Arm (Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander used its Robotic Arm during the mission's 15th Martian day since landing (June 9, 2008) to test a 'sprinkle' method for delivering small samples of soil to instruments on the lander deck. This sequence of four images from the spacecraft's Surface Stereo Imager covers a period of 20 minutes from beginning to end of the activity.

    In the single delivery of a soil sample to a Phoenix instrument prior to this test, the arm brought the scooped up soil over the instrument's opened door and turned over the scoop to release the soil. The sprinkle technique, by contrast, holds the scoop at a steady angle and vibrates the scoop by running the motorized rasp located beneath the scoop. This gently jostles some material out of the scoop to the target below.

    For this test, the target was near the upper end the cover of the Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA. The cover is 20 centimeters (7.9 inches) across. The scoop is about 8.5 centimeters (3.3 inches) across.

    Based on the test's success in delivering a small quantity and fine-size particles, the Phoenix team plans to use the sprinkle method for delivering samples to MECA and to the Thermal and Evolved-Gas Analyzer, or TEGA. The next planned delivery is to MECA's Optical Microscope, via the port in the MECA cover visible at the bottom of these images.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Development of an urban truck travel model for the Phoenix metropolitan area

    DOT National Transportation Integrated Search

    1992-02-01

    The primary objectives of the Phoenix urban truck travel model project were to conduct a travel survey of commercial vehicles operating within the Phoenix metropolitan area and to use the data collected in this survey to develop commerial vehicle tri...

  7. ESEA Title I Program Evaluation [Phoenix Union High School System, Arizona].

    ERIC Educational Resources Information Center

    Estes, Gary D.; And Others

    In accordance with the intent of compensatory educational programs supported by Elementary Secondary Education Act Title I funds, the Phoenix Union High School System has implemented supplementary programs during the 1974-75 school year at four of the District's 11 high schools: Carl Hayden, North, Phoenix Union, and South Mountain, and at the…

  8. Phoenix Twilight (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this artist's concept illustration, NASA's Phoenix Mars Lander begins to shut down operations as winter sets in. The far-northern latitudes on Mars experience no sunlight during winter. This will mark the end of the mission because the solar panels can no longer charge the batteries on the lander. Frost covering the region as the atmosphere cools will bury the lander in ice.

  9. Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site

    PubMed Central

    Martínez, G.M.; Rennó, N.O.

    2016-01-01

    Abstract In the last few years, water ice and salts capable of melting this ice and producing liquid saline water (brine) have been detected on Mars. Moreover, indirect evidence for brine has been found in multiple areas of the planet. Here, we simulate full diurnal cycles of temperature and atmospheric water vapor content at the Phoenix landing site for the first time and show experimentally that, in spite of the low Mars-like chamber temperature, brine forms minutes after the ground temperature exceeds the eutectic temperature of salts in contact with water ice. Moreover, we show that the brine stays liquid for most of the diurnal cycle when enough water ice is available to compensate for evaporation. This is predicted to occur seasonally in areas of the polar region where the temperature exceeds the eutectic value and frost or snow is deposited on saline soils, or where water ice and salts coexist in the shallow subsurface. This is important because the existence of liquid water is a key requirement for habitability. Key Words: Mars—Ice—Perchlorates—Brine—Water—Raman spectroscopy. Astrobiology 16, 937–948. PMID:27912028

  10. Floral development in Phoenix dactylifera

    Treesearch

    Darleen A. De Mason; Kenneth W. Stolte; Brent Tisserat

    1982-01-01

    Inflorescence primordia in the date palm (Phoenix dactylifera L.) differentiate within axillary buds in November in the Coachella Valley, California. The rachillae are initiated as small mounds without subtending bracts on the flattened apex of the rachis and are enclosed by the prophyll. A single bract subtends each flower primordium. Flower...

  11. The Phoenix Scout Mission

    NASA Astrophysics Data System (ADS)

    Smith, P. H.

    2003-12-01

    Phoenix will restore the 2001 lander to flight condition and select a scientic payload from instruments flown on Mars Polar Lander and delivered for the 2001 lander. Landing in May 2008 at the beginning of northern Summer, Phoenix will explore the subsurface ice layers discovered by Odyssey scientists at about 70 N latitude. Descent and panoramic imaging will reveal the small scale geology of this ice-rich region and a robotic arm will dig layer by layer beneath the surface. A German-supplied camera on the arm will examine the trench walls for stratigraphic clues to the origin of the region. Two instruments on the deck will receive samples taken from various depths from the surface to an impermeable ice layer. A thermal evolved gas analyzer (TEGA) will accept samples in one of eight ovens, heating the samples to 1000C will performing differential scanning calorimetry on them. The gases are piped to a mass spectrometer and all species between 1 and 140 Da are identified. Altered minerals (clays, carbonates,etc.) and organics materials can be clearly identified by the multi-dimensional nature (mass, temperature, and depth) of this experiment. Isotopic ratios for hydrogen, neon, argon, carbon, and nitrogen will give clues to the history of the soils and ices. The MECA instrument performs microscopy, electro-chemistry, and conductivity measurments on samples. Bringing water from Earth and mixing it in a sealed cell with samples creates the same conditions as when the ice melts beneath the surface and allows us to determine the acqueous chemistry of the soils. Acidity, redox potential, and salt content are all acquired giving us the first idea of what the biological potential of this habitat might be. Microscopes examine the grain structures and the thermal and electrical conductivity of the soil is examined with a special probe on the scoop. A Canadian MET station uses a lidar to measure the depth of the boundary layer and also pressure and temperature throughout

  12. Preparing the Phoenix Lander for Mars

    NASA Image and Video Library

    2005-06-01

    The Phoenix lander, housed in a 100,000-class clean room at Lockheed Martin Space Systems facilities near Denver, Colo. Shown here, the lander is contained inside the backshell portion of the aeroshell with the heat shield removed.

  13. Color Image of Phoenix Lander on Mars Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an enhanced-color image from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera. It shows the Phoenix lander with its solar panels deployed on the Mars surface. The spacecraft appears more blue than it would in reality.

    The blue/green and red filters on the HiRISE camera were used to make this picture.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Geologie study off gravels of the Agua Fria River, Phoenix, AZ

    USGS Publications Warehouse

    Langer, W.H.; Dewitt, E.; Adams, D.T.; O'Briens, T.

    2010-01-01

    The annual consumption of sand and gravel aggregate in 2006 in the Phoenix, AZ metropolitan area was about 76 Mt (84 million st) (USGS, 2009), or about 18 t (20 st) per capita. Quaternary alluvial deposits in the modern stream channel of the Agua Fria River west of Phoenix are mined and processed to provide some of this aggregate to the greater Phoenix area. The Agua Fria drainage basin (Fig. 1) is characterized by rugged mountains with high elevations and steep stream gradients in the north, and by broad alluvial filled basins separated by elongated faultblock mountain ranges in the south. The Agua Fria River, the basin’s main drainage, flows south from Prescott, AZ and west of Phoenix to the Gila River. The Waddel Dam impounds Lake Pleasant and greatly limits the flow of the Agua Fria River south of the lake. The southern portion of the watershed, south of Lake Pleasant, opens out into a broad valley where the river flows through urban and agricultural lands to its confluence with the Gila River, a tributary of the Colorado River.

  15. Phoenix Conductivity Probe after Extraction from Martian Soil on Sol 99

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Surface Stereo Imager on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. This imaging served as a check of whether soil had stuck to the needles.

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Mesoscale simulations of atmospheric flow and tracer transport in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Ostoja-Starzewski, Martin

    2006-09-01

    Large urban centres located within confining rugged or complex terrain can frequently experience episodes of high concentrations of lower atmospheric pollution. Metropolitan Phoenix, Arizona (United States), is a good example, as the general population is occasionally subjected to high levels of lower atmospheric ozone, carbon monoxide and suspended particulate matter. As a result of dramatic but continuous increase in population, the accompanying environmental stresses and the local atmospheric circulation that dominates the background flow, an accurate simulation of the mesoscale pollutant transport across Phoenix and similar urban areas is becoming increasingly important. This is particularly the case in an airshed, such as that of Phoenix, where the local atmospheric circulation is complicated by the complex terrain of the area.

  17. Earthshots: Satellite images of environmental change - Phoenix, Arizona, USA

    USGS Publications Warehouse

    Adamson, Thomas

    2013-01-01

    Phoenix doesn’t have many cloudy days, so it’s perfect for studying urban growth with satellite images. Scientists and city planners study population growth and urban expansion in fast-growing cities like Phoenix to determine the changes that have occurred over time and to see how those changes impact the surrounding environment, affect the availability of natural resources such as water, and alter the landscape and how it’s used. That information can help people plan for future changes as cities continue to grow.

  18. Overnight Changes Recorded by Phoenix Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This graph presents simplified data from overnight measurements by the Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander from noon of the mission's 70th Martian day, or sol, to noon the following sol (Aug. 5 to Aug. 6, 2008).

    The graph shows that water disappeared from the atmosphere overnight, at the same time that electrical measurements detected changes consistent with addition of water to the soil.

    Water in soil appears to increase overnight, when water in the atmosphere disappears.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Phoenix Transit Sunday Dial-a-Ride

    DOT National Transportation Integrated Search

    1983-06-01

    A local taxi operator began subsidized dial-a-ride service in Phoenix, AR, when the city found that Sunday fixed-route transit service would be more costly. Regular cabs and wheelchair vans are billed at a fixed hourly rate less fares collected. Over...

  20. Entry, Descent, and Landing Operations Analysis for the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The Mars Phoenix lander was launched August 4, 2007 and remained in cruise for ten months before landing in the northern plains of Mars in May 2008. The one-month Entry, Descent, and Landing (EDL) operations phase prior to entry consisted of daily analyses, meetings, and decisions necessary to determine if trajectory correction maneuvers and environmental parameter updates to the spacecraft were required. An overview of the Phoenix EDL trajectory simulation and analysis that was performed during the EDL approach and operations phase is described in detail. The evolution of the Monte Carlo statistics and footprint ellipse during the final approach phase is also provided. The EDL operations effort accurately delivered the Phoenix lander to the desired landing region on May 25, 2008.

  1. Dinosaur or Phoenix: Nuclear Bombers in the 21st Century

    DTIC Science & Technology

    2010-04-12

    REPORT DATE 02-04-10 2. REPORT TYPE Master’s Thesis 3. DATES COVERED 31-07-09 to 16-06-10 4. TITLE AND SUBTITLE Dinosaur or Phoenix: Nuclear...WARFIGHTING SCHOOL DINOSAUR OR PHOENIX: NUCLEAR BOMBERS IN THE 21ST CENTURY by John W. Morehead Colonel, United States Air Force A paper...can argue Secretary Gates’ decision to halt development of a follow-on bomber indicates the DOD views nuclear bombers as dinosaurs no longer needed as

  2. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project. c2005 Elsevier Ltd. All rights reserved.

  3. Working End of Robotic Arm on Phoenix

    NASA Image and Video Library

    2007-08-02

    This illustration shows some of the components on and near the end of the robotic arm on NASA Phoenix Mars Lander. Primary and secondary blades on the scoop that aided in the collection of soil samples.

  4. Sprinkle Test by Phoenix Robotic Arm Movie

    NASA Image and Video Library

    2008-06-10

    NASA Phoenix Mars Lander used its Robotic Arm during the mission 15th Martian day since landing June 9, 2008 to test a prinkle method for delivering small samples of soil to instruments on the lander deck.

  5. RadNet Air Data From Phoenix, AZ

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Phoenix, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. Census Cities experiment in urban change detection. [mapping of land use changes in San Francisco, Washington D.C., Phoenix, Tucson, Boston, New Haven, Cedar Rapids, and Pontiac

    NASA Technical Reports Server (NTRS)

    Wray, J. R. (Principal Investigator); Milazzo, V. A.

    1974-01-01

    The author has identified the following significant results. Mapping of 1970 and 1972 land use from high-flight photography has been completed for all test sites: San Francisco, Washington, Phoenix, Tucson, Boston, New Haven, Cedar Rapids, and Pontiac. Area analysis of 1970 and 1972 land use has been completed for each of the mandatory urban areas. All 44 sections of the 1970 land use maps of the San Francisco test site have been officially released through USGS Open File at 1:62,500. Five thousand copies of the Washington one-sheet color 1970 land use map, census tract map, and point line identification map are being printed by USGS Publication Division. ERTS-1 imagery for each of the eight test sites is being received and analyzed. Color infrared photo enlargements at 1:100,000 of ERTS-1 MSS images of Phoenix taken on October 16, 1972 and May 2, 1973 are being analyzed to determine to what level land use and land use changes can be identified and to what extent the ERTS-1 imagery can be used in updating the 1970 aircraft photo-derived land use data base. Work is proceeding on the analysis of ERTS-1 imagery by computer manipulation of ERTS-1 MSS data in digital format. ERTS-1 CCT maps at 1:24,000 are being analyzed for two dates over Washington and Phoenix. Anniversary tape sets have been received at Purdue LARS for some additional urban test sites.

  7. 76 FR 58035 - Notice of Inventory Completion: U.S. Department of the Interior, Bureau of Reclamation, Phoenix...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    .... Department of the Interior, Bureau of Reclamation, Phoenix Area Office, Phoenix, AZ and Arizona State Museum... Bureau of Reclamation, Phoenix Area Office and Arizona State Museum have completed an inventory of a... in the physical custody of the Arizona State Museum, University of Arizona, Tucson, AZ. The human...

  8. Rasp Tool on Phoenix Robotic Arm Model

    NASA Image and Video Library

    2008-07-15

    This close-up photograph taken at the Payload Interoperability Testbed at the University of Arizona, Tucson, shows the motorized rasp protruding from the bottom of the scoop on the engineering model of NASA Phoenix Mars Lander Robotic Arm.

  9. Stable Isotope Measurements of Martian Atmospheric CO2 at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Niles, Paul B.; Boynton, William V.; Hoffman, John H.; Ming, Douglas W.; Hamara, Dave

    2010-09-01

    Carbon dioxide is a primary component of the martian atmosphere and reacts readily with water and silicate rocks. Thus, the stable isotopic composition of CO2 can reveal much about the history of volatiles on the planet. The Mars Phoenix spacecraft measurements of carbon isotopes [referenced to the Vienna Pee Dee belemnite (VPDB)] [δ13CVPDB = -2.5 ± 4.3 per mil (‰)] and oxygen isotopes [referenced to the Vienna standard mean ocean water (VSMOW)] (δ18OVSMOW = 31.0 ± 5.7‰), reported here, indicate that CO2 is heavily influenced by modern volcanic degassing and equilibration with liquid water. When combined with data from the martian meteorites, a general model can be constructed that constrains the history of water, volcanism, atmospheric evolution, and weathering on Mars. This suggests that low-temperature water-rock interaction has been dominant throughout martian history, carbonate formation is active and ongoing, and recent volcanic degassing has played a substantial role in the composition of the modern atmosphere.

  10. Phoenix Lander on Mars with Surrounding Terrain, Vertical Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a vertical projection that combines more than 500 exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle on the spacecraft is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image. The height of the lander's meteorology mast, extending toward the southwest, appears exaggerated because that mast is taller than the camera mast.

    This view in approximately true color covers an area about 30 meters by 30 meters (about 100 feet by 100 feet). The landing site is at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The ground surface around the lander has polygonal patterning similar to patterns in permafrost areas on Earth.

    This view comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm is cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Independent Review Support for Phoenix Mars Mission Robotic Arm Brush Motor Failure

    NASA Technical Reports Server (NTRS)

    McManamen, John P.; Pellicciotti, Joseph; DeKramer, Cornelis; Dube, Michael J.; Peeler, Deborah; Muirhead, Brian K.; Sevilla, Donald R.; Sabahi, Dara; Knopp, Michael D.

    2007-01-01

    The Phoenix Project requested the NASA Engineering and Safety Center (NESC) perform an independent peer review of the Robotic Arm (RA) Direct Current (DC) motor brush anomalies that originated during the Mars Exploration Rover (MER) Project and recurred during the Phoenix Project. The request was to evaluate the Phoenix Project investigation efforts and provide an independent risk assessment. This includes a recommendation for additional work and assessment of the flight worthiness of the RA DC motors. Based on the investigation and findings contained within this report, the IRT concurs with the risk assessment Failure Cause / Corrective Action (FC/CA) by the project, "Failure Effect Rating "3"; Major Degradation or Total Loss of Function, Failure Cause/Corrective Action Rating Currently "4"; Unknown Cause, Uncertainty in Corrective Action."

  12. Phoenix Mission Lander on Mars, Artist Concept

    NASA Image and Video Library

    2005-06-01

    NASA Phoenix Mars Lander, landed on May 25, 2008, and explored the history of water and monitored polar climate on Mars until communications ended in November, 2008, about six months after landing, when its solar panels ceased operating in the winter.

  13. Phoenix Laser Beam in Action on Mars

    NASA Image and Video Library

    2008-09-30

    The Surface Stereo Imager camera aboard NASA Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog.

  14. Phoenix La Mancha Trench in 3-D

    NASA Image and Video Library

    2008-10-09

    This anaglyph was taken by NASA Phoenix Mars Lander Surface Stereo Imager Oct. 7, 2008. The anaglyph highlights the depth of the trench, informally named La Mancha, and reveals the ice layer beneath the soil surface. 3D glasses are necessary.

  15. Phoenix Again Carries Soil to Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab Cell 1 delivery funnel on Sol 41, the 42nd Martian day after landing, or July 6, 2008, after a soil sample was delivered to the instrument.

    The instrument's Cell 1 is second one from the foreground of the image. The first cell, Cell 0, received a soil sample two weeks earlier.

    This image has been enhanced to brighten the scene.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Overnight Changes Recorded by Phoenix Conductivity Probe

    NASA Image and Video Library

    2008-12-15

    This graph presents simplified data from overnight measurements by the Thermal and Electrical Conductivity Probe on NASA Phoenix Mars Lander from noon of the mission 70th Martian day, or sol, to noon the following sol Aug. 5 to Aug. 6, 2008.

  17. The Phoenix Mars Lander Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  18. Environmental Assurance Program for the Phoenix Mars Mission

    NASA Technical Reports Server (NTRS)

    Man, Kin F.; Natour, Maher C.; Hoffman, Alan R.

    2008-01-01

    The Phoenix Mars mission involves delivering a stationary science lander on to the surface of Mars in the polar region within the latitude band 65 deg N to 72 deg N. Its primary objective is to perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, subsurface, and atmosphere. The Phoenix spacecraft was launched on August 4, 2007 and will arrive at Mars in May 2008. The lander includes a suite of seven (7) science instruments. This mission is baselined for up to 90 sols (Martian days) of digging, sampling, and analysis. Operating at the Mars polar region creates a challenging environment for the Phoenix landed subsystems and instruments with Mars surface temperature extremes between -120 deg C to 25 deg C and diurnal thermal cycling in excess of 145 deg C. Some engineering and science hardware inside the lander were qualification tested up to 80 deg C to account for self heating. Furthermore, many of the hardware for this mission were inherited from earlier missions: the lander from the Mars Surveyor Program 2001 (MSP'01) and instruments from the MSP'01 and the Mars Polar Lander. Ensuring all the hardware was properly qualified and flight acceptance tested to meet the environments for this mission required defining and implementing an environmental assurance program that included a detailed heritage review coupled with tailored flight acceptance testing. A heritage review process with defined acceptance success criteria was developed and is presented in this paper together with the lessons learned in its implementation. This paper also provides a detailed description of the environmental assurance program of the Phoenix Mars mission. This program includes assembly/subsystem and system level testing in the areas of dynamics, thermal, and electromagnetic compatibility, as well as venting/pressure, dust, radiation, and meteoroid analyses to meet the challenging environment of this mission.

  19. Color Image of Phoenix Lander on Mars Surface

    NASA Image and Video Library

    2008-05-27

    This is an enhanced-color image from Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment HiRISE camera. It shows the NASA Mars Phoenix lander with its solar panels deployed on the Mars surface

  20. Phoenix Union High School District #210 Adult Academy Evaluation Report, 1980-81. Research Services Report No. 33:08:80/81:010.

    ERIC Educational Resources Information Center

    Norris, Carol A.; Wheeler, Linda

    The Adult Reading Academy, a federally-funded service of the Phoenix Union High School District, serves native- and foreign-born adult students who are deficient in the basic skills of reading, writing, arithmetic, and oral communication. In 1980/81, the program served 476 students at 17 sites. Approximately 24 percent of the clients served were…

  1. The Domestication Syndrome in Phoenix dactylifera Seeds: Toward the Identification of Wild Date Palm Populations

    PubMed Central

    Gros-Balthazard, Muriel; Newton, Claire; Ivorra, Sarah; Pierre, Marie-Hélène; Terral, Jean-Frédéric

    2016-01-01

    Investigating crop origins is a priority to understand the evolution of plants under domestication, develop strategies for conservation and valorization of agrobiodiversity and acquire fundamental knowledge for cultivar improvement. The date palm (Phoenix dactylifera L.) belongs to the genus Phoenix, which comprises 14 species morphologically very close, sometimes hardly distinguishable. It has been cultivated for millennia in the Middle East and in North Africa and constitutes the keystone of oasis agriculture. Yet, its origins remain poorly understood as no wild populations are identified. Uncultivated populations have been described but they might represent feral, i.e. formerly cultivated, abandoned forms rather than truly wild populations. In this context, this study based on morphometrics applied to 1625 Phoenix seeds aims to (1) differentiate Phoenix species and (2) depict the domestication syndrome observed in cultivated date palm seeds using other Phoenix species as a “wild” reference. This will help discriminate truly wild from feral forms, thus providing new insights into the evolutionary history of this species. Seed size was evaluated using four parameters: length, width, thickness and dorsal view surface. Seed shape was quantified using outline analyses based on the Elliptic Fourier Transform method. The size and shape of seeds allowed an accurate differentiation of Phoenix species. The cultivated date palm shows distinctive size and shape features, compared to other Phoenix species: seeds are longer and elongated. This morphological shift may be interpreted as a domestication syndrome, resulting from the long-term history of cultivation, selection and human-mediated dispersion. Based on seed attributes, some uncultivated date palms from Oman may be identified as wild. This opens new prospects regarding the possible existence and characterization of relict wild populations and consequently for the understanding of the date palm origins. Finally, we

  2. The Domestication Syndrome in Phoenix dactylifera Seeds: Toward the Identification of Wild Date Palm Populations.

    PubMed

    Gros-Balthazard, Muriel; Newton, Claire; Ivorra, Sarah; Pierre, Marie-Hélène; Pintaud, Jean-Christophe; Terral, Jean-Frédéric

    2016-01-01

    Investigating crop origins is a priority to understand the evolution of plants under domestication, develop strategies for conservation and valorization of agrobiodiversity and acquire fundamental knowledge for cultivar improvement. The date palm (Phoenix dactylifera L.) belongs to the genus Phoenix, which comprises 14 species morphologically very close, sometimes hardly distinguishable. It has been cultivated for millennia in the Middle East and in North Africa and constitutes the keystone of oasis agriculture. Yet, its origins remain poorly understood as no wild populations are identified. Uncultivated populations have been described but they might represent feral, i.e. formerly cultivated, abandoned forms rather than truly wild populations. In this context, this study based on morphometrics applied to 1625 Phoenix seeds aims to (1) differentiate Phoenix species and (2) depict the domestication syndrome observed in cultivated date palm seeds using other Phoenix species as a "wild" reference. This will help discriminate truly wild from feral forms, thus providing new insights into the evolutionary history of this species. Seed size was evaluated using four parameters: length, width, thickness and dorsal view surface. Seed shape was quantified using outline analyses based on the Elliptic Fourier Transform method. The size and shape of seeds allowed an accurate differentiation of Phoenix species. The cultivated date palm shows distinctive size and shape features, compared to other Phoenix species: seeds are longer and elongated. This morphological shift may be interpreted as a domestication syndrome, resulting from the long-term history of cultivation, selection and human-mediated dispersion. Based on seed attributes, some uncultivated date palms from Oman may be identified as wild. This opens new prospects regarding the possible existence and characterization of relict wild populations and consequently for the understanding of the date palm origins. Finally, we

  3. Phoenix Violence Prevention Initiative, Phase II Report.

    ERIC Educational Resources Information Center

    Waits, Mary Jo; Johnson, Ryan; Kornreich, Toby; Klym, Mark; Leland, Karen

    In 1996, drawing from religious, educational, social services, media, neighborhoods, nonprofits, and health-providing sectors of the community, the Phoenix Violence Prevention Initiative (PVPI) was conceived. During Phase One of the initiative, the following seven points regarding prevention and prevention design strategies were assembled: (1)…

  4. Phoenix Robotic Arm's Workspace After 90 Sols

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the first 90 Martian days, or sols, after its May 25, 2008, landing on an arctic plain of Mars, NASA's Phoenix Mars Lander dug several trenches in the workspace reachable with the lander's robotic arm.

    The lander's Surface Stereo Imager camera recorded this view of the workspace on Sol 90, early afternoon local Mars time (overnight Aug. 25 to Aug. 26, 2008). The shadow of the the camera itself, atop its mast, is just left of the center of the image and roughly a third of a meter (one foot) wide.

    The workspace is on the north side of the lander. The trench just to the right of center is called 'Neverland.'

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Analysis of the Phoenix Mission's Thermal and Electrical Conductivity Probe (TECP) Relative Humidity Data

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Martinez, G.; Renno, N. O.; Tamppari, L.; Zent, A.

    2015-12-01

    With funding from NASA's Mars Data Analysis Program, we plan to enhance the scientific return of the Phoenix mission by producing and archiving high-level relative humidity (RH) data from the measurements made by the Thermal and Electrical Conductivity Probe (TECP). Values of temperature and RH covered in the pre-flight calibration [1] overlap only partially with the environmental conditions found at the Phoenix landing site [2,3]. In particular, there is no overlap at dawn, when temperatures are the lowest and the expected RH is the highest [4] and in the middle of the day, when temperatures are relatively high and the expected RH is very low [5]. Here we plan to produce high-level RH data by calibrating an Engineering Model of the TECP in the Michigan Mars Environmental Chamber (MMEC). The MMEC is capable of simulating the entire range of environmental conditions found at the Phoenix landing site. The MMEC is a cylindrical chamber with internal diameter of 64 cm and length of 160 cm. It is capable of simulating temperatures ranging from 145 to 500 K, CO2 pressures ranging from 10 to 105 Pa, and relative humidity ranging from nearly 0 to 100% [6]. The analysis of high-level RH data has the potential to shed light on the formation of liquid brines at Mars' polar latitudes, where it is most likely to occur [7]. In addition, the RH sensor aboard Curiosity is similar to that on the TECP [8], allowing a direct comparison of the near-surface RH measurements at these two different locations on the surface of Mars. REFERENCES: [1] Zent, A. P., et al, 2009, JGR (1991-2012) 114.E3. [2] Tamppari, L. K., et al. 2010, JGR, 115, E00E17. [3] Davy, R., et al., 2010, JGR, 115, E00E13. [4] Whiteway, J., et al., 2009, Science, 325, 68-70. [5] Savijärvi, H., and A. Määttänen, 2010, Q. J. R. Meteorol. Soc., 136, 1497-1505. [6] Fischer, E., et al., 2014, GRL, 41, 4456-4462. [7] Martínez, G., and Rennó, N., 2013, Space Sci. Rev., 175, 29-51. [8] Harri, A-M., et al., 2014, JGR 119

  6. Discovery Learning: Zombie, Phoenix, or Elephant?

    ERIC Educational Resources Information Center

    Bakker, Arthur

    2018-01-01

    Discovery learning continues to be a topic of heated debate. It has been called a zombie, and this special issue raises the question whether it may be a phoenix arising from the ashes to which the topic was burnt. However, in this commentary I propose it is more like an elephant--a huge topic approached by many people who address different…

  7. Phoenix Dodo Trench

    NASA Image and Video Library

    2008-06-04

    This image was taken by NASA's Phoenix Mars Lander's Robotic Arm Camera (RAC) on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). The center of the image shows a trench informally called "Dodo" after the second dig. "Dodo" is located within the previously determined digging area, informally called "Knave of Hearts." The light square to the right of the trench is the Robotic Arm's Thermal and Electrical Conductivity Probe (TECP). The Robotic Arm has scraped to a bright surface which indicated the Arm has reached a solid structure underneath the surface, which has been seen in other images as well. http://photojournal.jpl.nasa.gov/catalog/PIA10763

  8. Panorama of Phoenix Solar Panel and Robotic Arm

    NASA Image and Video Library

    2008-06-13

    This panorama image of NASA’s Phoenix Mars Lander’s solar panel and the lander’s Robotic Arm with a sample in the scoop. The image was taken just before the sample was delivered to the Optical Microscope.

  9. Phoenix Mars Lander's Chemistry Lab in a Box

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The wet chemistry laboratory on NASA's Phoenix Mars Lander has four teacup-size beakers. This photograph shows one of them. The laboratory is part of the spacecraft's Microscopy, Electrochemistry and Conductivity Analyzer.

    Each beaker will be used only once, for assessing soluble chemicals in a sample of Martian soil by mixing water with the sample to a soupy consistency and keeping it warm enough to remain liquid during the analysis.

    On the inner surface of the beaker are 26 sensors, mostly electrodes behind selectively permeable membranes or gels. Some sensors will give information about the acidity or alkalinity of the soil sample. Others will gauge concentrations of such ions as chlorides, bromides, magnesium, calcium and potassium. Comparisons of the concentrations of water-soluble ions in soil samples from different depths below the surface of the landing site may provide clues to the history of the water in the soil.

  10. Phoenix Indian School: The Second Half-Century.

    ERIC Educational Resources Information Center

    Parker, Dorothy R.

    This book recounts the Phoenix Indian School's history from 1935 to its closing in 1990. In the 1930s, the Bureau of Indian Affairs' philosophy of assimilation declined in importance, as evidenced by termination of the boarding school's militaristic discipline, greater recognition of tribal traditions, and early experimentation in bilingual…

  11. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi.

    PubMed

    Gómez-Vidal, S; Lopez-Llorca, L V; Jansson, H -B; Salinas, J

    2006-01-01

    Light and scanning electron microscopy together with fungal isolation techniques were used to detect entomopathogenic fungi within young and adult date palm (Phoenix dactylifera) petioles and to assess fungal survival in leaf tissues. The entomopathogenic fungi Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium c.f. psalliotae survived inside leaf tissues at least 30 days after inoculation. Entomopathogenic fungi colonized inoculated petioles endophytically and were recovered up to 3cm from the inoculation site. Fungi were detected inside the parenchyma and sparsely within vascular tissue using microscopy techniques. Our results show that the entomopathogenic fungi used in this study survived and colonized date palm tissues in bioassays both under laboratory and field experimental conditions with no evidence of significant damage.

  12. Carpological analysis of Phoenix (Arecaceae): contributions to the taxonomy and evolutionary history of the genus

    USDA-ARS?s Scientific Manuscript database

    The main purpose of this study was, first, to analyze the morphology of seeds of Phoenix spp. and relevant cultivars and to assess the taxonomic value of the information generated as a means of studying the systematics and evolutionary history of the genus Phoenix. We then analyzed seed morphologica...

  13. 78 FR 48413 - Foreign-Trade Zone 75-Phoenix, Arizona, Authorization of Production Activity, Orbital Sciences...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-33-2013] Foreign-Trade Zone 75--Phoenix, Arizona, Authorization of Production Activity, Orbital Sciences Corporation, (Satellites and Spacecraft Launch Vehicles); Gilbert, Arizona On April 2, 2013, the City of Phoenix, grantee of FTZ 75, submitted a notification of proposed production activity...

  14. Phoenix: Preliminary design of a high speed civil transport

    NASA Technical Reports Server (NTRS)

    Aguilar, Joseph; Davis, Steven; Jett, Brian; Ringo, Leslie; Stob, John; Wood, Bill

    1992-01-01

    The goal of the Phoenix Design Project was to develop a second generation high speed civil transport (HSCT) that will meet the needs of the traveler and airline industry beginning in the 21st century. The primary emphasis of the HSCT is to take advantage of the growing needs of the Pacific Basin and the passengers who are involved in that growth. A passenger load of 150 persons, a mission range of 5150 nautical miles, and a cruise speed of Mach 2.5 constitutes the primary design points of this HSCT. The design concept is made possible with the use of a well designed double delta wing and four mixed flow engines. Passenger comfort, compatibility with existing airport infrastructure, and cost competitive with current subsonic aircraft make the Phoenix a viable aircraft for the future.

  15. Results from the Phoenix Urban Heat Island (UHI) experiment: effects at the local, neighbourhood and urban scales

    NASA Astrophysics Data System (ADS)

    di Sabatino, S.; Leo, L. S.; Hedquist, B. C.; Carter, W.; Fernando, H. J. S.

    2009-04-01

    This paper reports on the analysis of results from a large urban heat island experiment (UHI) performed in Phoenix (AZ) in April 2008. From 1960 to 2000, the city of Phoenix experienced a minimum temperature rise of 0.47 °C per decade, which is one of the highest rates in the world for a city of this size (Golden, 2004). Contemporaneously, the city has recorded a rapid enlargement and large portion of the land and desert vegetation have been replaced by buildings, asphalt and concrete (Brazel et al., 2007, Emmanuel and Fernando, 2007). Besides, model predictions show that minimum air temperatures for Phoenix metropolitan area in future years might be even higher than 38 °C. In order to make general statements and mitigation strategies of the UHI phenomenon in Phoenix and other cities in hot arid climates, a one-day intensive experiment was conducted on the 4th-5th April 2008 to collect surface and ambient temperatures within various landscapes in Central Phoenix. Inter alia, infrared thermography (IRT) was used for UHI mapping. The aim was to investigate UHI modifications within the city of Phoenix at three spatial scales i.e. the local (Central Business District, CBD), the neighborhood and the city scales. This was achieved by combining IRT measurements taken at ground level by mobile equipment (automobile-mounted and pedicab) and at high elevation by a helicopter. At local scale detailed thermographic images of about twenty building façades and several street canyons were collected. In total, about two thousand images were taken during the 24-hour campaign. Image analysis provides detailed information on building surface and pavement temperatures at fine resolution (Hedquist et al. 2009, Di Sabatino et al. 2009). This unique dataset allows us several investigations on local air temperature dependence on albedo, building thermal inertia, building shape and orientation and sky view factors. Besides, the mosaic of building façade temperatures are being analyzed

  16. Confirmation of Soluble Sulfate at the Phoenix Landing Site: Implications for Martian Geochemistry and Habitability

    NASA Technical Reports Server (NTRS)

    Kounaves, S. P.; Hecht, M. H.; Kapit, J.; Quinn, R. C.; Catling, D. C.; Clark, B. C.; Ming, D. W.; Gospodinova, K.; Hredzak, P.; McElhoney, K.; hide

    2010-01-01

    Over the past several decades, elemental sulfur in martian soils and rocks has been detected by a number of missions using X-ray spectroscopy [1-3]. Optical spectroscopy has also provided evidence for widespread sulfates on Mars [4,5]. The ubiquitous presence of sulfur in soils has been interpreted as a widely distributed sulfate mineralogy [6]. However, direct confirmation as to the identity and solubility of the sulfur species in martian soil has never been obtained. One goal of the Wet Chemistry Laboratory (WCL) [7] on board the 2007 Phoenix Mars Lander [8] was to determine soluble sulfate in the martian soil. The WCL received three primary samples. Each sample was added to 25 mL of leaching solution and analysed for solvated ionic species, pH, and conductivity [9,10]. The analysis also showed a discrepancy between charge balance, ionic strength, and conductivity, suggesting unidentified anionic species.

  17. Identification and antimicrobial susceptibility testing of Staphylococcus vitulinus by the BD phoenix automated microbiology system.

    PubMed

    Cirković, Ivana; Hauschild, Tomasz; Jezek, Petr; Dimitrijević, Vladimir; Vuković, Dragana; Stepanović, Srdjan

    2008-08-01

    This study evaluated the performance of the BD Phoenix system for the identification (ID) and antimicrobial susceptibility testing (AST) of Staphylococcus vitulinus. Of the 10 S. vitulinus isolates included in the study, 2 were obtained from the Czech Collection of Microorganisms, 5 from the environment, 2 from human clinical samples, and 1 from an animal source. The results of conventional biochemical and molecular tests were used for the reference method for ID, while antimicrobial susceptibility testing performed in accordance with Clinical and Laboratory Standards Institute recommendations and PCR for the mecA gene were the reference for AST. Three isolates were incorrectly identified by the BD Phoenix system; one of these was incorrectly identified to the genus level, and two to the species level. The results of AST by the BD Phoenix system were in agreement with those by the reference method used. While the results of susceptibility testing compared favorably, the 70% accuracy of the Phoenix system for identification of this unusual staphylococcal species was not fully satisfactory.

  18. Six Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The landing site chosen for NASA's Phoenix Mars Lander, at about 68 degrees north latitude, is much farther north than the sites where previous spacecraft have landed on Mars.

    Color coding on this map indicates relative elevations based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Red is higher elevation; blue is lower elevation. In longitude, the map extends from 70 degrees (north) to minus 70 degrees (south).

  19. Effective control measures at high particulate pollution areas : analysis of data from the 2000 Phoenix Greenwood study

    DOT National Transportation Integrated Search

    2005-02-01

    Annual average PM10 concentrations at the Greenwood monitoring station in western Phoenix have : exceeded EPAs annual average air quality standard and are higher on average than values observed at the : West Phoenix monitor, which is located just ...

  20. Web-Based Geographic Information System Tool for Accessing Hanford Site Environmental Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, Mark B.; Seiple, Timothy E.; Watson, David J.

    Data volume, complexity, and access issues pose severe challenges for analysts, regulators and stakeholders attempting to efficiently use legacy data to support decision making at the U.S. Department of Energy’s (DOE) Hanford Site. DOE has partnered with the Pacific Northwest National Laboratory (PNNL) on the PHOENIX (PNNL-Hanford Online Environmental Information System) project, which seeks to address data access, transparency, and integration challenges at Hanford to provide effective decision support. PHOENIX is a family of spatially-enabled web applications providing quick access to decades of valuable scientific data and insight through intuitive query, visualization, and analysis tools. PHOENIX realizes broad, public accessibilitymore » by relying only on ubiquitous web-browsers, eliminating the need for specialized software. It accommodates a wide range of users with intuitive user interfaces that require little or no training to quickly obtain and visualize data. Currently, PHOENIX is actively hosting three applications focused on groundwater monitoring, groundwater clean-up performance reporting, and in-tank monitoring. PHOENIX-based applications are being used to streamline investigative and analytical processes at Hanford, saving time and money. But more importantly, by integrating previously isolated datasets and developing relevant visualization and analysis tools, PHOENIX applications are enabling DOE to discover new correlations hidden in legacy data, allowing them to more effectively address complex issues at Hanford.« less

  1. Field Survey of Heavy Metal Uptake by Naturally Occurring Saltwater and Freshwater Marsh Plants.

    DTIC Science & Technology

    1981-06-01

    addressing the 67 bioconcentration of heavy metal contaminants via marsh plants. In a previous greenhouse hydroponic s-tudy, Lee, Sturgis, and Landin...1976) found that Cyperus esculentus, Spirtina patens, S. alterniflora, and Distichlis spicata accumulated heavy metals from the hydroponic solu...referenced as the hydroponic study, the disposal site study, and the greenhouse study, respectively. Ac- cordingly, a field survey and sampling study

  2. Vaccination Coverage among Kindergarten Children in Phoenix, Arizona

    ERIC Educational Resources Information Center

    Frimpong, Jemima A.; Rivers, Patrick A.; Bae, Sejong

    2008-01-01

    Objective: To evaluate school immunization records and document the immunization coverage and compliance level of children enrolled in kindergarten in Phoenix during the 2001-2002 school year. The purpose was to obtain information on: 1) immunization status by age two; 2) under-immunization in kindergarten; 3) administration error; and 4)…

  3. 25. AERIAL VIEW LOOKING NORTHWEST SHOWING (from left) CONGDON, PHOENIX, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. AERIAL VIEW LOOKING NORTHWEST SHOWING (from left) CONGDON, PHOENIX, HARMONY, AND INDUSTRY MILLS, AND PUBLIC SERVICE ELECTRIC CO. - Great Falls S. U. M. Historic District, Oliver Street, Paterson, Passaic County, NJ

  4. McMurdo Dry Valleys, Antarctica - A Mars Phoenix Mission Analog

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Anderson, R. M.; Archer, D.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Ming, Douglas W.; Moore, Q.; Quinn, J. E.; Smith, P. H.; hide

    2010-01-01

    The Phoenix mission (PHX; May 25 - Nov. 2, 2008) studied the north polar region of Mars (68deg N) to understand the history of water and potential for habitability. Phoenix carried with it a wet chemistry lab (WCL) capable of determining the basic solution chemistry of the soil and the pH value, a thermal and evolved-gas analyzer capable of determining the mineralogy of the soil and detecting ice, microscopes capable of seeing soil particle shapes, sizes and colors at very high resolution, and a soil probe (TECP) capable of detecting unfrozen water in the soil. PHX coincided with an international effort to study the Earth s polar regions named the International Polar Year (IPY; 2007-2008). The best known Earth analog to the Martian high-northern plains, where Phoenix landed, are the McMurdo Dry Valleys (MDV), Antarctica (Fig. 1). Thus, the IPY afforded a unique opportunity to study the MDV with the same foci - history of water and habitability - as PHX. In austral summer 2007, our team took engineering models of WCL and TECP into the MDV and performed analgous measurements. We also collected sterile samples and analyzed them in our home laboratories using state-of-the-art tools. While PHX was not designed to perform biologic analyses, we were able to do so with the MDV analog samples collected.

  5. Using Credit Cards To Pay Bus Fares in Phoenix

    DOT National Transportation Integrated Search

    1996-01-01

    In 1991 the City of Phoenix Public Transit System, first in the nation to install magnetic card readers on the electronic fareboxes in its buses, implemented a program known as Bus Card Plus, which billed employers for trips made by employees using e...

  6. PHOENIX IR Spectra of CO in the Sun and the Stars

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.; Valenti, J. A.; Hinkle, K. H.; Johns-Krull, C. M.; Wiedemann, G. R.

    1998-05-01

    We report high-resolution (R ~ 5*E(4) ) spectra of the 2143 cm(-1) (4.7 mu m) interval---containing lines from the fundamental (Delta v =1) bands of carbon monoxide---in the Sun and other late-type stars, obtained with the PHOENIX cryogenic infrared spectrometer. The solar work was conducted at the McMath-Pierce telescope during the period 21--26 April 1997, while the stellar observations were obtained on the night of 6 December 1997 at the Kitt Peak 2.1-m. Comparisons of spatially-averaged spectra from the long-slit observations of the Sun with very high-resolution Fourier transform spectrometer scans permitted an evalution of the PHOENIX instrumental profile (affected by flexing of the grating owing to unequal thermal coefficients of the epoxy replica and the silicon substrate). The profile information subsequently was applied in comparisons of the stellar data sets with CO spectra synthesized using a variety of prototype thermal structure models. On the stellar side, we concentrated on bright K-type giants whose broad CO profiles are fully resolved at PHOENIX resolution. Our intent was to test the degree of thermal heterogeneity in the outer layers of the red giant atmospheres; analogous to the ``thermal bifurcation'' effects deduced in the solar context (namely, the dichotomy between classical hot chromosphere and the controversial cool ``COmosphere''). Our spectral analyses provide a preview of the power of PHOENIX for high-resolution infrared spectroscopy of stars; to be realized in the coming months when the original grating is replaced with an improved version. [-2mm] The observations were obtained at the National Optical Astronomy Observatories, which is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. This work was supported by NSF grant AST-9618505.

  7. 3D Modeling of Spectra and Light Curves of Hot Jupiters with PHOENIX; a First Approach

    NASA Astrophysics Data System (ADS)

    Jiménez-Torres, J. J.

    2016-04-01

    A detailed global circulation model was used to feed the PHOENIX code and calculate 3D spectra and light curves of hot Jupiters. Cloud free and dusty radiative fluxes for the planet HD179949b were modeled to show differences between them. The PHOENIX simulations can explain the broad features of the observed 8 μm light curves, including the fact that the planet-star flux ratio peaks before the secondary eclipse. The PHOENIX reflection spectrum matches the Spitzer secondary-eclipse depth at 3.6 μm and underpredicts eclipse depths at 4.5, 5.8 and 8.0 μm. These discrepancies result from the chemical composition and suggest the incorporation of different metallicities in future studies.

  8. 52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING EAST. CURRENT LOCATION OF THE REAL-TIME WATER QUALITY MONITORING STATION Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  9. Comparison of BD Phoenix to Vitek 2, MicroScan MICroSTREP, and Etest for Antimicrobial Susceptibility Testing of Streptococcus pneumoniae▿

    PubMed Central

    Mittman, Scott A.; Huard, Richard C.; Della-Latta, Phyllis; Whittier, Susan

    2009-01-01

    The performance of the BD Phoenix Automated Microbiology System (BD Diagnostic Systems) was compared to those of the Vitek 2 (bioMérieux), the MicroScan MICroSTREP plus (Siemens), and Etest (bioMérieux) for antibiotic susceptibility tests (AST) of 311 clinical isolates of Streptococcus pneumoniae. The overall essential agreement (EA) between each test system and the reference microdilution broth reference method for S. pneumoniae AST results was >95%. For Phoenix, the EAs of individual antimicrobial agents ranged from 90.4% (clindamycin) to 100% (vancomycin and gatifloxacin). The categorical agreements (CA) of Phoenix, Vitek 2, MicroScan, and Etest for penicillin were 95.5%, 94.2%, 98.7%, and 97.7%, respectively. The overall CA for Phoenix was 99.3% (1 very major error [VME] and 29 minor errors [mEs]), that for Vitek 2 was 98.8% (7 VMEs and 28 mEs), and those for MicroScan and Etest were 99.5% each (19 and 13 mEs, respectively). The average times to results for Phoenix, Vitek 2, and the manual methods were 12.1 h, 9.8 h, and 24 h, respectively. From these data, the Phoenix AST results demonstrated a high degree of agreement with all systems evaluated, although fewer VMEs were observed with the Phoenix than with the Vitek 2. Overall, both automated systems provided reliable AST results for the S. pneumoniae-antibiotic combinations in half the time required for the manual methods, rendering them more suitable for the demands of expedited reporting in the clinical setting. PMID:19741088

  10. Associations between air pollution and mortality in Phoenix, 1995-1997.

    PubMed Central

    Mar, T F; Norris, G A; Koenig, J Q; Larson, T V

    2000-01-01

    We evaluated the association between mortality outcomes in elderly individuals and particulate matter (PM) of varying aerodynamic diameters (in micrometers) [PM(10), PM(2.5), and PM(CF )(PM(10) minus PM(2.5))], and selected particulate and gaseous phase pollutants in Phoenix, Arizona, using 3 years of daily data (1995-1997). Although source apportionment and epidemiologic methods have been previously combined to investigate the effects of air pollution on mortality, this is the first study to use detailed PM composition data in a time-series analysis of mortality. Phoenix is in the arid Southwest and has approximately 1 million residents (9. 7% of the residents are > 65 years of age). PM data were obtained from the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory Platform in central Phoenix. We obtained gaseous pollutant data, specifically carbon monoxide, nitrogen dioxide, ozone, and sulfur dioxide data, from the EPA Aerometric Information Retrieval System Database. We used Poisson regression analysis to evaluate the associations between air pollution and nonaccidental mortality and cardiovascular mortality. Total mortality was significantly associated with CO and NO(2) (p < 0.05) and weakly associated with SO(2), PM(10), and PM(CF) (p < 0. 10). Cardiovascular mortality was significantly associated with CO, NO(2), SO(2), PM(2.5), PM(10), PM(CF) (p < 0.05), and elemental carbon. Factor analysis revealed that both combustion-related pollutants and secondary aerosols (sulfates) were associated with cardiovascular mortality. PMID:10753094

  11. Ground truth report 1975 Phoenix microwave experiment. [Joint Soil Moisture Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Direct measurements of soil moisture obtained in conjunction with aircraft data flights near Phoenix, Arizona in March, 1975 are summarized. The data were collected for the Joint Soil Moisture Experiment.

  12. Chemistry Lab for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The science payload of NASA's Phoenix Mars Lander includes a multi-tool instrument named the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument's wet chemistry laboratory, prominent in this photograph, will measure a range of chemical properties of Martian soil samples, such as the presence of dissolved salts and the level of acidity or alkalinity. Other tools that are parts of the instrument are microscopes that will examine samples' mineral grains and a probe that will check the soil's thermal and electrical properties.

  13. Public School Choice and Student Mobility in Metropolitan Phoenix

    ERIC Educational Resources Information Center

    Powers, Jeanne M.; Topper, Amelia M.; Silver, Michael

    2012-01-01

    Arizona's interdistrict open enrollment and charter schools laws allow families to send their children to the public schools of their choice. We assessed how public school choice affected elementary school enrollments in 27 metropolitan Phoenix school districts. Student mobility rates varied widely between districts and by location. The higher…

  14. NASA's Phoenix Lander on Mars, Nearly a Decade Later

    NASA Image and Video Library

    2018-02-20

    This is one of two images taken nearly a decade apart of NASA's Mars Phoenix Lander and related hardware around the mission's May 25, 2008, landing site on far-northern Mars. By late 2017, dust had obscured much of what was visible two months after the landing. Both images were taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The one with three patches of darker ground -- where landing events removed dust -- was taken on July 20, 2008. It is Fig. 1, an excerpt of HiRISE observation PSP_009290_2485. The one with a more even coating of pale dust throughout the area was taken on Dec. 21, 2017. It is Fig. 2, an excerpt of HiRISE observation ESP_053451_2485. Both cover an area roughly 300 meters wide at 68 degrees north latitude, 234 degrees east longitude, and the two are closely matched in viewing and illumination geometry, from about five Martian years apart in northern hemisphere summers. An animation comparing the two images shows a number of changes between mid-2008 and late 2017. The lander (top) appears darker, and is now covered by dust. The dark spot created by the heat shield impact (right) is brighter, again due to dust deposition. The back shell and parachute (bottom) shows a darker parachute and brighter area of impact disturbance, thanks again to deposits of dust. We also see that the parachute has shifted in the wind, moving to the east. In August 2008, Phoenix completed its three-month mission studying Martian ice, soil and atmosphere. The lander worked for two additional months before reduced sunlight caused energy to become insufficient to keep the lander functioning. The solar-powered robot was not designed to survive through the dark and cold conditions of a Martian arctic winter. An animation and both images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22223

  15. Genetic erosion of Phoenix dactylifera L.: Perceptible, probable or possible?

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity of date palm (Phoenix dactylefera L.) encompasses genetic differences among and within species, subspecies, populations, cultivars, and individual clones in traditional oases and plantations. Components of this diversity can be estimated, throughout the tree’s ontogeny, at the phen...

  16. Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Lemmon, Mark T.; Rafkin, Scot C. R.; Francis, Raymond; Pla-Garcia, Jorge; de la Torre Juárez, Manuel; Bean, Keri; Kass, David; Haberle, Robert; Newman, Claire; Mischna, Michael; Vasavada, Ashwin; Rennó, Nilton; Bell, Jim; Calef, Fred; Cantor, Bruce; Mcconnochie, Timothy H.; Harri, Ari-Matti; Genzer, Maria; Wong, Michael; Smith, Michael D.; Javier Martín-Torres, F.; Zorzano, María-Paz; Kemppinen, Osku; McCullough, Emily

    2015-05-01

    We report on the first 360 sols (LS 150° to 5°), representing just over half a Martian year, of atmospheric monitoring movies acquired using the NavCam imager from the Mars Science Laboratory (MSL) Rover Curiosity. Such movies reveal faint clouds that are difficult to discern in single images. The data set acquired was divided into two different classifications depending upon the orientation and intent of the observation. Up to sol 360, 73 Zenith movies and 79 Supra-Horizon movies have been acquired and time-variable features could be discerned in 25 of each. The data set from MSL is compared to similar observations made by the Surface Stereo Imager (SSI) onboard the Phoenix Lander and suggests a much drier environment at Gale Crater (4.6°S) during this season than was observed in Green Valley (68.2°N) as would be expected based on latitude and the global water cycle. The optical depth of the variable component of clouds seen in images with features are up to 0.047 ± 0.009 with a granularity to the features observed which averages 3.8°. MCS also observes clouds during the same period of comparable optical depth at 30 and 50 km that would suggest a cloud spacing of 2.0 to 3.3 km. Multiple motions visible in atmospheric movies support the presence of two distinct layers of clouds. At Gale Crater, these clouds are likely caused by atmospheric waves given the regular spacing of features observed in many Zenith movies and decreased spacing towards the horizon in sunset movies consistent with clouds forming at a constant elevation. Reanalysis of Phoenix data in the light of the NavCam equatorial dataset suggests that clouds may have been more frequent in the earlier portion of the Phoenix mission than was previously thought.

  17. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  18. The Phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer.

    PubMed

    Abramowitz, Matthew C; Li, Tiaynu; Buyyounouski, Mark K; Ross, Eric; Uzzo, Robert G; Pollack, Alan; Horwitz, Eric M

    2008-01-01

    The American Society for Therapeutic Radiology and Oncology (ASTRO) definition of biochemical failure (BF) incorporates backdating, resulting in an artificial flattening of Kaplan-Meier curves and overly favorable estimates when follow-up is short. The nadir + 2 ng/mL (Nadir + 2; Phoenix) definition reduces these artifacts. The objective of the current study was to compare ASTRO and Phoenix BF estimates as determinants of distant metastasis (DM), cause-specific mortality (CSM), and overall mortality (OM). A total of 1831 patients with T1-4N0M0 prostate cancer were treated with external beam radiotherapy (RT) using conventional or three-dimensional conformal methods to at least 60 grays (Gy). The median follow-up was 71 months and the median RT dose was 72 Gy (range, 60-79 Gy). Cox regression models incorporating BF as a time-dependent covariate were used for both univariate and multivariate analyses. Other covariates included in the analyses were T classification, Gleason score, neoadjuvant/adjuvant androgen deprivation, age, RT dose, and pretreatment prostate-specific antigen. BF was observed in 389 men (21%) using the Phoenix definition and 460 men (25%) using the ASTRO definition. DM was observed in 84 patients (5%), 48 patients (3%) patients died of prostate cancer, and 404 patients (22%) died of any cause. The Phoenix definition of BF was found to be a significant predictor of DM, CSM, and OM, after controlling for other significant covariates. The ASTRO definition was found to be associated with CSM and DM, but not OM. The Phoenix definition of BF is a more robust determinant of patient outcome compared with the ASTRO definition. The correlation with mortality, including OM, and the independence of this correlation from the use of neoadjuvant/adjuvant androgen deprivation, supports the use of Nadir + 2 in prostate cancer clinical trials of RT with or without androgen deprivation.

  19. Martian Soil Delivery to Analytical Instrument on Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm of NASA's Phoenix Mars Lander released a sample of Martian soil onto a screened opening of the lander's Thermal and Evolved-Gas Analyzer (TEGA) during the 12th Martian day, or sol, since landing (June 6, 2008). TEGA did not confirm that any of the sample had passed through the screen.

    The Robotic Arm Camera took this image on Sol 12. Soil from the sample delivery is visible on the sloped surface of TEGA, which has a series of parallel doors. The two doors for the targeted cell of TEGA are the one positioned vertically, at far right, and the one partially open just to the left of that one. The soil between those two doors is resting on a screen designed to let fine particles through while keeping bigger ones Efrom clogging the interior of the instrument. Each door is about 10 centimeters (4 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Zooming in on Landing Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Zooming in on Landing Site

    This animation zooms in on the area on Mars where NASA's Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter.

    The first shot shows the spacecraft's landing ellipse in green, the area where Phoenix has a high probability of landing. It then zooms in to show the region's arctic terrain. This polar landscape is relatively free of rocks, with only about 1 to 2 rocks 1.5 meters (4.9 feet) or larger in an area about as big as two football fields.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

  1. ASSOCIATIONS BETWEEN AIR POLLUTION AND MORTALITY IN PHOENIX, 1995-1997

    EPA Science Inventory

    We evaluated the association between mortality outcomes in elderly individuals and particulate matter (PM) of varying aerodynamic diameters (in micrometers) [PM10, PM2.5, and PMCF (PM10 minus PM2.5)], and selected particulate and gaseous phase pollutants in Phoenix, Arizona, us...

  2. EnviroAtlas - Phoenix, AZ - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This dataset presents environmental benefits of the urban forest in 2,434 block groups in Phoenix, Arizona. Carbon attributes, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. Temperature reduction values for Phoenix will be added when they become available. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. Greater Phoenix Forward: Sustaining and Enhancing the Human-Services Infrastructure

    ERIC Educational Resources Information Center

    Morrison Institute for Public Policy, Arizona State University, 2008

    2008-01-01

    This report provides descriptive data for understanding the status of human services in Greater Phoenix, describes provocative issues that certain populations and providers face, and offers a starting point for determining Maricopa Valley's aspirations for tomorrow's human-services infrastructure. This report describes an array of populations that…

  4. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled.

    PubMed

    Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2010-04-01

    The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolates from the facility demonstrated that there was also a shift in predominant cultivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning.

  5. Revisiting haboobs in the southwestern United States: An observational case study of the 5 July 2011 Phoenix dust storm

    NASA Astrophysics Data System (ADS)

    Raman, Aishwarya; Arellano, Avelino F.; Brost, John J.

    2014-06-01

    Convectively-driven dust storms (or haboobs) are common phenomena in the southwestern United States. However, studies about haboobs in this region are limited. Here, we investigate the state and fate of a massive haboob that hit Phoenix, Arizona on 5 July 2011 using satellite, radar, and ground-based observations. This haboob was a result of strong outflow boundaries (with peak wind gusts of 29 m s-1) from storms that were initiated in the southeast of Tucson. In particular, we find three major outflow systems (based on radar data) that were generated by forward propagating storms, ultimately merging near Phoenix. This resulted in peak hourly PM10 and PM2.5 concentrations of 1974 μg m-3 and 907 μg m-3 at US EPA stations near Phoenix. The high PM concentration is consistent in space and time with the dust wall movement based on our analysis of radar data on hydrometeor classification. Enhanced aerosol loadings over metropolitan Phoenix were also observed on 6 July from NASA Terra/Aqua MODIS aerosol optical depth (AOD) retrievals (AOD > 0.8). We infer from CALIOP vertical feature masks and HYSPLIT back trajectories that remnants of the haboob were transported to northwest of Phoenix on 6 July at 2-4 km above ground level. Ratios of PM2.5 to PM10 from IMPROVE stations also imply low-level transport to the east of Phoenix on 8 July. Finally, we find that this haboob, which had local and regional impacts, is atypical of other dust events in this region. We note from this analysis that extreme events such as this haboob require an integrated air quality observing system to provide a more comprehensive assessment of these events.

  6. Phoenix Lander's Thermal Evolved Gas Analyzer: Differential Scanning Calorimeter and Mass Spectrometer Database Development

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Lauer, H. V.; Golden, D. C.; Ming, D. W.; Boynton, W. V.

    2008-01-01

    The Mars Scout Phoenix lander will land in the north polar region of Mars in May, 2008. One objective of the Phoenix lander is to search for evidence of past life in the form of molecular organics that may be preserved in the subsurface soil. The Thermal Evolved Gas Analyzer (TEGA) was developed to detect these organics by coupling a simultaneous differential thermal analyzer (SDTA) with a mass spectrometer. Martian soil will be heated to approx.1000 C and potential organic decomposition products such as CO2, CH4 etc. will be examined for with the MS. TEGA s SDTA will also assess the presence of endothermic and exothermic reactions that are characteristic of soil organics and minerals as the soil is heated. The MS in addition to detecting organic decompositon products, will also assess the levels of soil inorganic volatiles such as H2O, SO2, and CO2. Organic detection has a high priority for this mission; however, TEGA has the ability to provide valuable insight into the mineralogical composition of the soil. The overall goal of this work is to develop a TEGA database of minerals that will serve as a reference for the interpretation of Phoenix-TEGA. Previous databases for the ill-fated Mars Polar Lander (MPL)-TEGA instrument only went to 725 C. Furthermore, the MPL-TEGA could only detect CO2 and H2O while the Phoenix-TEGA MS can examine up to 144 atomic mass units. The higher temperature Phoenix-TEGA SDTA coupled with the more capable MS indicates that a higher temperature database is required for TEGA interpretation. The overall goal of this work is to develop a differential scanning calorimeter (DSC) database of minerals along with corresponding MS data of evolved gases that can used to interpret TEGA data during and after mission operations. While SDTA and DSC measurement techniques are slightly different (SDTA does not use a reference pan), the results are fundamentally similar and thus DSC is a useful technique in providing comparative data for the TEGA

  7. The Flight of the Phoenix: Interpersonal Aspects of Project Management

    ERIC Educational Resources Information Center

    Huffman, Brian J.; Kilian, Claire McCarty

    2012-01-01

    Although many classroom exercises use movies to focus on management and organizational behavior issues, none of those do so in the context of project management. This article presents such an exercise using "The Flight of the Phoenix", an incredibly rich story for any management class, which provides clear examples of organizational behavior…

  8. 3D Visualization for Phoenix Mars Lander Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Keely, Leslie; Lees, David; Stoker, Carol

    2012-01-01

    Planetary surface exploration missions present considerable operational challenges in the form of substantial communication delays, limited communication windows, and limited communication bandwidth. A 3D visualization software was developed and delivered to the 2008 Phoenix Mars Lander (PML) mission. The components of the system include an interactive 3D visualization environment called Mercator, terrain reconstruction software called the Ames Stereo Pipeline, and a server providing distributed access to terrain models. The software was successfully utilized during the mission for science analysis, site understanding, and science operations activity planning. A terrain server was implemented that provided distribution of terrain models from a central repository to clients running the Mercator software. The Ames Stereo Pipeline generates accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. These terrain models can then be visualized within the Mercator environment. The central cross-cutting goal for these tools is to provide an easy-to-use, high-quality, full-featured visualization environment that enhances the mission science team s ability to develop low-risk productive science activity plans. In addition, for the Mercator and Viz visualization environments, extensibility and adaptability to different missions and application areas are key design goals.

  9. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The land use of the Phoenix Quadrangle in Arizona had been mapped previously from aerial photographs and recorded in a computer data bank. During the ERTS experiment, changes in land use were detected, first with the ERTS-simulation photographs, then with the ERTS-1 images when they became available. In each case, the I2S color additive viewer was used as the primary image enhancement tool, operated in a multispectral mode. A search was made for a method of creating hard copy color composite images of the best combinations of multiband composites from ERTS-1, mostly by photographic and diazo processes. The I2S viewer was also used to enhance changes between successive images by quick flip techniques or by registering with different color filters. Improved interpretation of land use change resulted, and a map of changes in the Phoenix Quadrangle was compiled using magnified ERTS-1 images alone. The first level of a standard land use classification system was successfully used. Between the ERTS-1 images for August and November, some differences were detected that could be caused by seasonal characteristics of vegetation or by change in use.

  10. Microscopes for NASA's Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    One part of the Microscopy, Electrochemistry, and Conductivity Analyzer instrument for NASA's Phoenix Mars Lander is a pair of telescopes with a special wheel (on the right in this photograph) for presenting samples to be inspected with the microscopes. A horizontally mounted optical microscope (on the left in this photograph) and an atomic force microscope will examine soil particles and possibly ice particles.

    The shapes and the size distributions of soil particles may tell scientists about environmental conditions the material has experienced. Tumbling rounds the edges. Repeated wetting and freezing causes cracking. Clay minerals formed during long exposure to water have distinctive, platy particles shapes.

  11. University of Phoenix Says Test Scores Vindicate Its Academic Model

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    2008-01-01

    The University of Phoenix is often derided by traditional academics for caring more about its bottom line than about academic quality, and every year, the annual report issued by its parent company focuses more on profits than student performance. This article reports that the institution that has become the largest private university in North…

  12. EnviroAtlas - Phoenix, AZ - One Meter Resolution Urban Land Cover Data (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Phoenix, AZ land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near-infrared) aerial photography taken from June through September, 2010 at 1 m spatial resolution. Seven land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, shrubs, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 598 land cover reference points yielded an overall accuracy of 69.2%. The area mapped includes the entirety of the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area, which was classified by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University. The land cover dataset also includes an area of approximately 625 square kilometers which is located north of Phoenix. This section was classified by the EPA land cover classification team. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each at

  13. Thermal and Evolved Gas Analysis of Geologic Samples Containing Organic Materials: Implications for the 2007 Mars Phoenix Scout Mission

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, Douglas W.; Golden, D. C.; Boynton, W. V.

    2006-01-01

    The Thermal and Evolved Gas Analyzer (TEGA) instrument scheduled to fly onboard the 2007 Mars Phoenix Scout Mission will perform differential scanning calorimetry (DSC) and evolved gas analysis (EGA) of soil samples and ice collected from the surface and subsurface at a northern landing site on Mars. We have been developing a sample characterization data library using a laboratory DSC integrated with a quadrupole mass spectrometer to support the interpretations of TEGA data returned during the mission. The laboratory TEGA test-bed instrument has been modified to operate under conditions similar to TEGA, i.e., reduced pressure (e.g., 100 torr) and reduced carrier gas flow rates. We have previously developed a TEGA data library for a variety of volatile-bearing mineral phases, including Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates. Here we examine the thermal and evolved gas properties of samples that contain organics. One of the primary objectives of the Phoenix Scout Mission is to search for habitable zones by assessing organic or biologically interesting materials in icy soil. Nitrogen is currently the carrier gas that will be used for TEGA. In this study, we examine two possible modes of detecting organics in geologic samples; i.e., pyrolysis using N2 as the carrier gas and combustion using O2 as the carrier gas.

  14. NPDES Permit for Phoenix Production Company – Rolff Lake Unit in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-002494, Phoenix Production Company is authorized to discharge from its Rolff Lake Unit wastewater treatment facility in Fremont County, Wyoming, to an unnamed ephemeral tributary of Dry Creek, which is tributary to the Wind River.

  15. NPDES Permit for Phoenix Production Company – Sheldon Dome Field in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0024953, Phoenix Production Company is authorized to discharge from its Sheldon Dome Field wastewater treatment facility in Fremont County, Wyoming, to an unnamed ephemeral tributary of Dry Creek, which is tributary to the Wind River.

  16. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  17. Counter-Rotating Magellan and Trinidad Microplates at the Mesozoic Pacific-Phoenix-Farallon Triple Junction

    NASA Astrophysics Data System (ADS)

    Schouten, H.; Smith, D. K.

    2005-12-01

    Magellan and Trinidad microplates developed at the Mesozoic triple junction between the Pacific, Phoenix and Farallon plates; the microplates were instrumental in the transition from a transform-ridge-transform to a ridge-ridge-ridge triple junction, which took several tens of millions of years. Contrasting qualitative models for the evolution of these microplates [e.g., Tamaki and Larson, 1988; Nakanishi et al., 1992] provide meager insight in the mechanics of microplate evolution and triple junction transformation. We propose a quantitative model for the evolution of Magellan and Trinidad microplates based on the edge-driven microplate kinematic principles [Schouten et al., 1993] that have provided successful quantitative solutions for the motions of Easter, Juan Fernandez, and Galapagos microplates. In these edge-driven solutions, two angular velocity vectors (describing motion between microplate and driving plates) are located on the microplate boundaries at the tip of rifts that propagate between microplate and driving plates. The rift propagation leaves pseudofaults on microplate and driving plates; the pseudofaults, which can be recognized in the seafloor topography, then become proxies for the trajectories of the angular velocity vectors from which a quantitative solution of microplate motion is derived. Using the estimated seafloor topography of the region and published marine magnetic anomaly lineations we propose the following scenario. The Magellan microplate rotated counterclockwise as evidenced by the fanning of magnetic lineations about the Magellan Trough and the rotation of the older Mid-Pac Mountains lineation set. The Trinidad microplate rotated clockwise relative to the Pacific plate to judge from the wedge-shaped region about the Trinidad trough that has its narrow tip on the Victoria fracture zone (recognized in the estimated seafloor topograpy). The clockwise motion of the Trinidad microplate was driven by Pacific-Phoenix motion; the

  18. Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions

    NASA Technical Reports Server (NTRS)

    Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at <30 mbar while most calcite literature thermal data was obtained at 1000 mbar or higher pressures.

  19. Phoenix Telemetry Processor

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice

    2013-01-01

    Phxtelemproc is a C/C++ based telemetry processing program that processes SFDU telemetry packets from the Telemetry Data System (TDS). It generates Experiment Data Records (EDRs) for several instruments including surface stereo imager (SSI); robotic arm camera (RAC); robotic arm (RA); microscopy, electrochemistry, and conductivity analyzer (MECA); and the optical microscope (OM). It processes both uncompressed and compressed telemetry, and incorporates unique subroutines for the following compression algorithms: JPEG Arithmetic, JPEG Huffman, Rice, LUT3, RA, and SX4. This program was in the critical path for the daily command cycle of the Phoenix mission. The products generated by this program were part of the RA commanding process, as well as the SSI, RAC, OM, and MECA image and science analysis process. Its output products were used to advance science of the near polar regions of Mars, and were used to prove that water is found in abundance there. Phxtelemproc is part of the MIPL (Multi-mission Image Processing Laboratory) system. This software produced Level 1 products used to analyze images returned by in situ spacecraft. It ultimately assisted in operations, planning, commanding, science, and outreach.

  20. Analysis of Effectiveness of Phoenix Entry Reaction Control System

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Glass, Christopher E.; Desai, Prasun, N.; VanNorman, John W.

    2008-01-01

    Interaction between the external flowfield and the reaction control system (RCS) thruster plumes of the Phoenix capsule during entry has been investigated. The analysis covered rarefied, transitional, hypersonic and supersonic flight regimes. Performance of pitch, yaw and roll control authority channels was evaluated, with specific emphasis on the yaw channel due to its low nominal yaw control authority. Because Phoenix had already been constructed and its RCS could not be modified before flight, an assessment of RCS efficacy along the trajectory was needed to determine possible issues and to make necessary software changes. Effectiveness of the system at various regimes was evaluated using a hybrid DSMC-CFD technique, based on DSMC Analysis Code (DAC) code and General Aerodynamic Simulation Program (GASP), the LAURA (Langley Aerothermal Upwind Relaxation Algorithm) code, and the FUN3D (Fully Unstructured 3D) code. Results of the analysis at hypersonic and supersonic conditions suggest a significant aero-RCS interference which reduced the efficacy of the thrusters and could likely produce control reversal. Very little aero-RCS interference was predicted in rarefied and transitional regimes. A recommendation was made to the project to widen controller system deadbands to minimize (if not eliminate) the use of RCS thrusters through hypersonic and supersonic flight regimes, where their performance would be uncertain.

  1. Morning Frost in Trench Dug by Phoenix, Sol 113

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench.

    The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench.

    This image is presented in approximately true color.

    The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide.

    Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  2. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The land use of the Phoenix Quadrangle in Arizona had been mapped previously from aerial photographs and recorded in a computer data bank. During the ERTS-1 experiment, changes in land use were detected using only the ERTS-1 images. The I2S color additive viewer was used as the principal image enhancement tool, operated in a multispectral mode. Hard copy color composite images of the best multiband combinations from ERTS-1 were made by photographic and diazo processes. The I2S viewer was also used to enhance changes between successive images by quick flip techniques or by registering with different color filters. More recently, a Bausch and Lomb zoom transferscope has been used for the same purpose. Improved interpretation of land use change resulted, and a map of changes within the Phoenix Quadrangle was compiled. The first level of a proposed standard land use classification system was sucessfully used. ERTS-1 underflight photography was used to check the accuracy of the ERTS-1 image interpretation. It was found that the total areas of change detected in the photos were comparable with the total areas of change detected in the ERTS-1 images.

  3. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    PubMed

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  4. After Rasping by Phoenix in 'Snow White' Trench, Sol 60

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander used the motorized rasp on the back of its robotic arm scoop during the mission's 60th Martian day, or sol, (July 26, 2008) to penetrate a hard layer at the bottom of a trench informally called 'Snow White.' This view, taken by the lander's Surface Stereo Imager and presented in approximately true color, shows the trench later the same sol.

    Most of the 16 holes left by a four-by-four array of rasp placements are visible in the central area of the image.

    A total 3 cubic centimeters, or about half a teaspoon, of material was collected in the scoop. Material in the scoop was collected both by the turning rasp, which threw material into the scoop through an opening at the back of the scoop, and by the scoop's front blade, which was run over the rasped area to pick up more shavings.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Discovery of a stellar overdensity in Eridanus-Phoenix in the dark energy survey

    DOE PAGES

    Li, T. S.; Balbinot, E.; Mondrik, N.; ...

    2016-01-27

    We report the discovery of an excess of main sequence turn-off stars in the direction of the constellations of Eridanus and Phoenix from the first year data of the Dark Energy Survey (DES). The Eridanus-Phoenix (EriPhe) overdensity is centered around l~285 deg and b~-60 deg and spans at least 30 deg in longitude and 10 deg in latitude. The Poisson significance of the detection is at least 9 sigma. The stellar population in the overdense region is similar in brightness and color to that of the nearby globular cluster NGC 1261, indicating that the heliocentric distance of EriPhe is aboutmore » d~16 kpc. The extent of EriPhe in projection is therefore at least ~4 kpc by ~3 kpc. On the sky, this overdensity is located between NGC 1261 and a new stellar stream discovered by DES at a similar heliocentric distance, the so-called Phoenix Stream. Given their similar distance and proximity to each other, it is possible that these three structures may be kinematically associated. Alternatively, the EriPhe overdensity is morphologically similar to the Virgo overdensity and the Hercules-Aquila cloud, which also lie at a similar Galactocentric distance. These three overdensities lie along a polar plane separated by ~120 deg and may share a common origin. Spectroscopic follow-up observations of the stars in EriPhe are required to fully understand the nature of this overdensity.« less

  6. A New Chapter: Elderly Urban Indians and Political Activism in Phoenix.

    ERIC Educational Resources Information Center

    Liebow, Edward B.

    Life history interviews with 22 elderly Indians (16 women, 6 men, aged 60 to 81) in Phoenix suggest that for many of them the Indian Senior Center offers a sociable arena where they assume activist roles, directly addressing aging-related issues concerning health care, transportation, and emotional stress management. They engage in fund-raising…

  7. Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.

    2008-01-01

    A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.

  8. EnviroAtlas -Phoenix, AZ- One Meter Resolution Urban Land Cover Data (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Phoenix, AZ land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near-infrared) aerial photography taken from June through September, 2010 at 1 m spatial resolution. Seven land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, shrubland, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 598 land cover reference points yielded an overall accuracy of 69.2%. The area mapped includes the entirety of the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area, which was classified by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University. The land cover dataset also includes an area of approximately 625 square kilometers which is located north of Phoenix. This section was classified by the EPA land cover classification team. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data

  9. Short-range transit plan for the Phoenix urbanized area : fiscal years 1982-1986

    DOT National Transportation Integrated Search

    1981-07-21

    Report presents the FY 1980-81 update of the Phoenix, Arizona, urbanized area Short Range Transit Plan. It describes a five-year plan to guide improvements of the public transportation sytem. Planning aspects of the report will be incorporated into t...

  10. Would Phoenix Dactyflera Pollen (palm seed) be considered as a treatment agent against Males' infertility? A systematic review.

    PubMed

    Fallahi, Soghra; Rajaei, Minoo; Malekzadeh, Kianoosh; Kalantar, Seyed Mehdi

    2015-12-01

    Oxidative stress is a key factor involved in male infertility, which is due to an unnatural increase in environmental free radicals. In the majority of cases, this has a negative effect on a male's ability to impregnate a female. Currently, it is believed that spermatozoa can be protected against the damages induced by oxidative stress by saturating sperm with antioxidants. The antioxidant role of phoenix dactylifera pollen is capable of collecting the reactive oxygen and neutralizing it in and out of body cells. The present research provides a review of the antioxidant roles of phoenix dactylifera pollen on male infertility. This research is based on English-Language studies and articles found by comprehensively reviewing electronic databases, websites, books, and academic articles over the last 10 years. The phenolic compounds of phoenix dactylifera pollen, due to the existing polyphenols, are strong chelators of heavy metals. Therefore, they are effective in eliminating environmental hydroxyl radicals. Moreover, these plants have high capacities of eliminating hydroxyl free radicals, picrylhydrazyl, diphenyl and phoenix dactylifera pollen and also inhibiting glutathione-S-transferase (GST). Currently, the use of herbal antioxidants to neutralize reactive oxygen species (ROS) and reduce the negative effects of oxidative stress on body cells and tissues has attracted researchers' attention. Various substances, such as flavonoids and catechins, perform their antioxidant role by increasing the concentration of glutathione peroxidase. The final product of this process is an increase in the number of motile sperm, which can have significant effects on fertility.

  11. Superfund record of decision amendment (EPA region 9): Litchfield Airport Area, AKA: Phoenix-Goodyear Airport, Goodyear/Avondale, AZ, December 22, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This document provides a brief background of the site, a summary of the remedy selected in the 1989 ROD (PB90-203498) and how that remedy was modified by the 1991 (PB95-463105) and 1993 (PB95-963104) ESDs, a description of how this ESD affects the remedy originally selected by EPA in the 1989 ROD, and an explanation of why EPA is making these changes to the ROD. EPA is issuing this third ESD to the 1989 ROD in order to take into account information received by EPA after EPA`s issuance of the 1991 and 1993 ESDs. The southern portion of the site consistsmore » of the Loral Defense Systems-Arizona (Loral) property and the Phoenix-Goodyear Airport property and any groundwater contamination emanating from these areas. The northern portion of the site consists of the Unidynamics property and any groundwater contamination emanating from these areas.« less

  12. Comparison of Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometer to BD Phoenix Automated Microbiology System for Identification of Gram-Negative Bacilli▿

    PubMed Central

    Saffert, Ryan T.; Cunningham, Scott A.; Ihde, Sherry M.; Monson Jobe, Kristine E.; Mandrekar, Jayawant; Patel, Robin

    2011-01-01

    We compared the BD Phoenix automated microbiology system to the Bruker Biotyper (version 2.0) matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) system for identification of Gram-negative bacilli, using biochemical testing and/or genetic sequencing to resolve discordant results. The BD Phoenix correctly identified 363 (83%) and 330 (75%) isolates to the genus and species level, respectively. The Bruker Biotyper correctly identified 408 (93%) and 360 (82%) isolates to the genus and species level, respectively. The 440 isolates were grouped into common (308) and infrequent (132) isolates in the clinical laboratory. For the 308 common isolates, the BD Phoenix and Bruker Biotyper correctly identified 294 (95%) and 296 (96%) of the isolates to the genus level, respectively. For species identification, the BD Phoenix and Bruker Biotyper correctly identified 93% of the common isolates (285 and 286, respectively). In contrast, for the 132 infrequent isolates, the Bruker Biotyper correctly identified 112 (85%) and 74 (56%) isolates to the genus and species level, respectively, compared to the BD Phoenix, which identified only 69 (52%) and 45 (34%) isolates to the genus and species level, respectively. Statistically, the Bruker Biotyper overall outperformed the BD Phoenix for identification of Gram-negative bacilli to the genus (P < 0.0001) and species (P = 0.0005) level in this sample set. When isolates were categorized as common or infrequent isolates, there was statistically no difference between the instruments for identification of common Gram-negative bacilli (P > 0.05). However, the Bruker Biotyper outperformed the BD Phoenix for identification of infrequently isolated Gram-negative bacilli (P < 0.0001). PMID:21209160

  13. SOURCE APPORTIONMENT OF PHOENIX PM2.5 AEROSOL WITH THE UNMIX RECEPTOR MODEL

    EPA Science Inventory

    The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall percentage source contribution estimates (SCE) for five source categories: ga...

  14. Possibilities for the detection of hydrogen peroxide-water-based life on Mars by the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2009-04-01

    The Phoenix Lander landed on Mars on 25 May 2008. It has instruments on board to explore the geology and climate of subpolar Mars and to explore if life ever arose on Mars. Although the Phoenix mission is not a life detection mission per se, it will look for the presence of organic compounds and other evidence to support or discredit the notion of past or present life. The possibility of extant life on Mars has been raised by a reinterpretation of the Viking biology experiments [Houtkooper, J. M., Schulze-Makuch, D., 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. International Journal of Astrobiology 6, 147-152]. The results of these experiments are in accordance with life based on a mixture of water and hydrogen peroxide instead of water. The near-surface conditions on Mars would give an evolutionary advantage to organisms employing a mixture of H 2O 2 and H 2O in their intracellular fluid: the mixture has a low freezing point, is hygroscopic and provides a source of oxygen. The H 2O 2-H 2O hypothesis also explains the Viking results in a logically consistent way. With regard to its compatibility with cellular contents, H 2O 2 is used for a variety of purposes in terran biochemistry. The ability of the anticipated organisms to withstand low temperatures and the relatively high water vapor content of the atmosphere in the Martian arctic, means that Phoenix will land in an area not inimical to H 2O 2-H 2O-based life. Phoenix has a suite of instruments which may be able to detect the signatures of such putative organisms.

  15. Visual Analytics for the Food-Water-Energy Nexus in the Phoenix Active Management Area

    NASA Astrophysics Data System (ADS)

    Maciejewski, R.; Mascaro, G.; White, D. D.; Ruddell, B. L.; Aggarwal, R.; Sarjoughian, H.

    2016-12-01

    The Phoenix Active Management Area (AMA) is an administrative region of 14,500 km2 identified by the Arizona Department of Water Resources with the aim of reaching and maintaining the safe yield (i.e. balance between annual amount of groundwater withdrawn and recharged) by 2025. The AMA includes the Phoenix metropolitan area, which has experienced a dramatic population growth over the last decades with a progressive conversion of agricultural land into residential land. As a result of these changes, the water and energy demand as well as the food production in the region have significantly evolved over the last 30 years. Given the arid climate, a crucial role to support this growth has been the creation of a complex water supply system based on renewable and non-renewable resources, including the energy-intensive Central Arizona Project. In this talk, we present a preliminary characterization of the evolution in time of the feedbacks between food, water, and energy in the Phoenix AMA by analyzing secondary data (available from water and energy providers, irrigation districts, and municipalities), as well as satellite imagery and primary data collected by the authors. A preliminary visual analytics framework is also discussed describing current design practices and ideas for exploring networked components and cascading impacts within the FEW Nexus. This analysis and framework represent the first steps towards the development of an integrated modeling, visualization, and decision support infrastructure for comprehensive FEW systems decision making at decision-relevant temporal and spatial scales.

  16. Ethnographic Evaluation of the MESA Program at a South-Central Phoenix High School.

    ERIC Educational Resources Information Center

    Jaramillo, James A.

    MESA (Mathematics, Engineering, and Science Achievement) is a program designed to increase the number of underrepresented ethnic groups in professions related to mathematics, engineering, and the physical sciences. This paper describes and evaluates the MESA program at Jarama High School, Phoenix (Arizona), using informal interviews and…

  17. An Extraordinary Partnership between Arizona State University and the City of Phoenix

    ERIC Educational Resources Information Center

    Friedman, Debra

    2009-01-01

    The Arizona State University Downtown Phoenix campus is a grand-scale exemplar of a city-university partnership. Its demonstrated impacts are economic, social, and educational, transforming both the city and the university. The magnitude of the investment of $223 million by the citizens of a city in a state university is unparalleled in higher…

  18. Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Reavis, K. J.; Wasklewicz, T. A.

    2014-12-01

    Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.

  19. A comparative climate analysis of heat-related emergency 911 dispatches: Chicago, Illinois and Phoenix, Arizona USA 2003 to 2006.

    PubMed

    Hartz, Donna A; Brazel, Anthony J; Golden, Jay S

    2013-09-01

    Research into the health impacts of heat has proliferated since 2000. Temperature increases could exacerbate the increased heat already experienced by urban populations due to urbanization. Heat-related mortality studies have found that hot southern cities in North America have not experienced the summer increases in mortality found in their more northern counterparts. Heat-related morbidity studies have not assessed this possible regional difference. This comparison study uses data from emergency 911 dispatches [referred to as heat-related dispatches (HRD)] identified by responders as heat-related for two United States cities located in different regions with very different climates: Chicago, Illinois in the upper midwest and Phoenix, Arizona in the southwest. Phoenix's climate is hot and arid. Chicago's climate is more temperate, but can also experience days with unusually high temperatures combined with high humidity. This study examines the relationships between rising HRD and daily temperatures: maximum (Tmax); apparent (ATmax): minimum (Tmin) and two energy balance indices (PET and UTCI). Phoenix had more HRD cumulatively, over a longer warm weather season, but did not experience the large spikes in HRD that occurred in Chicago, even though it was routinely subjected to much hotter weather conditions. Statistical analyses showed the strongest relationships to daily ATmax for both cities. Phoenix's lack of HRD spikes, similar to the summer mortality patterns for southern cities, suggests an avenue for future research to better understand the dynamics of possible physiological or behavioral adaption that seems to reduce residents' vulnerability to heat.

  20. A comparative climate analysis of heat-related emergency 911 dispatches: Chicago, Illinois and Phoenix, Arizona USA 2003 to 2006

    NASA Astrophysics Data System (ADS)

    Hartz, Donna A.; Brazel, Anthony J.; Golden, Jay S.

    2013-09-01

    Research into the health impacts of heat has proliferated since 2000. Temperature increases could exacerbate the increased heat already experienced by urban populations due to urbanization. Heat-related mortality studies have found that hot southern cities in North America have not experienced the summer increases in mortality found in their more northern counterparts. Heat-related morbidity studies have not assessed this possible regional difference. This comparison study uses data from emergency 911 dispatches [referred to as heat-related dispatches (HRD)] identified by responders as heat-related for two United States cities located in different regions with very different climates: Chicago, Illinois in the upper midwest and Phoenix, Arizona in the southwest. Phoenix's climate is hot and arid. Chicago's climate is more temperate, but can also experience days with unusually high temperatures combined with high humidity. This study examines the relationships between rising HRD and daily temperatures: maximum (Tmax); apparent (ATmax): minimum (Tmin) and two energy balance indices (PET and UTCI). Phoenix had more HRD cumulatively, over a longer warm weather season, but did not experience the large spikes in HRD that occurred in Chicago, even though it was routinely subjected to much hotter weather conditions. Statistical analyses showed the strongest relationships to daily ATmax for both cities. Phoenix's lack of HRD spikes, similar to the summer mortality patterns for southern cities, suggests an avenue for future research to better understand the dynamics of possible physiological or behavioral adaption that seems to reduce residents' vulnerability to heat.

  1. VizieR Online Data Catalog: RR Lyrae population in the Phoenix dwarf galaxy (Ordonez+, 2014)

    NASA Astrophysics Data System (ADS)

    Ordonez, A. J.; Yang, S.-C.; Sarajedini, A.

    2017-06-01

    The HST/WFPC2 images of the two target fields around Phoenix used in this study were retrieved from the Mikulski Archive for Space Telescopes. The original observing campaign (PI: A. Aparicio; GO-8706) was intended to study the spatial structure and the stellar age and metallicity distribution of this dwarf galaxy. Therefore, it provides deep time-series photometry with fairly good quality for detecting legitimate RR Lyrae variable candidates. Images were taken in both the F555W and F814W filters. A total of two fields were observed: one centered on Phoenix itself, and the other on the outskirts of the galaxy 2.7' from the centered field. The total observed field of view with these observations is equal to 11.4 arcmin2 on the sky. (3 data files).

  2. Comparing Baltimore and Phoenix

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 'zoom lens' aboard NASA's Terra spacecraft acquired these views of two U.S. cities: Baltimore, Maryland (left), and Phoenix, Arizona (right). Acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), red in these false-colored images indicates vegetation. The turquoise pixels show paved areas while darker greens and browns show bare earth and rock surfaces. The 'true' constructed nature of these cities is not easy to see. Ecologists now accept human beings and our activities as a significant factor in studying the Earth's ecology. ASTER data are being used to better understand urban ecology, in particular how humans build their cities and affect the surrounding environment. At the recent American Geophysical Union (AGU) meeting in Boston, Will Stefanov of Arizona State University presented the first set of ASTER images of the urban 'skeletons' of the amount of built structures in twelve cities around the world. He also discussed the Urban Environmental Monitoring project, in which scientists are examining 100 urban centers to look for common features (or lack of them) in global city structure as well as to monitor their changes over time.

  3. Endosporoideus gen. nov., a mitosporic fungus on Phoenix hanceana.

    PubMed

    Ho, Wai Hong; Yanna; Hyde, Kevin D; Goh, Teik Khiang

    2005-01-01

    Endosporoideus pedicellata gen. et sp, nov. is described and illustrated from decaying petioles of Phoenix hanceana collected from grassland in Tai Mo Shan, Hong Kong. The genus is unique in producing solitary, phragmosporous conidia. The conidia comprise a brown to dark brown inner-wall layer and thick, hyaline outer-wall layer and are produced holoblastically from determinate conidiogenous cells on micronematous, mononematous conidiophores. Cells of conidia may disarticulate at the septa. Representative steps in conidiogenesis of E. pedicellata are illustrated with light micrographs, and details of the conidiogenous events are interpreted schematically.

  4. Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.

    2018-02-01

    The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.

  5. The ecological importance of mixed-severity fires: Nature's phoenix [Book Review

    Treesearch

    Carolyn H. Sieg

    2016-01-01

    The stated goal of a recent book, The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix, edited by Dominick A. DellaSala and Chad T. Hansen, is to provide a global reference on the benefits of mixed- and high-severity fires. Note that the goal is not to provide an objective reference on the ecological aspects of mixed- and high-severity fires. Rather, the...

  6. Addendum to ESEA Title I Program Evaluation [Phoenix Union High School System, Arizona].

    ERIC Educational Resources Information Center

    Estes, Gary D.

    An Elementary Secondary Education Act Title I English/Writing project was continued at two Phoenix Union high schools, Carl Hayden and North High Schools, in 1974-75. Although the objectives and instructional method (individualized, diagnostic, prescriptive approach) were the same at the two schools, the entry level skills and abilities of the…

  7. Influence of Noise Barriers on Near-Road and On-Road Air Quality: Results from Phoenix

    EPA Science Inventory

    The presentation describes field study results quantifying the impact of roadside barriers under real-world conditions in Phoenix, Arizona. Public health concerns regarding adverse health effects for populations spending significant amounts of time near high traffic roadways has ...

  8. Radio variability in the Phoenix Deep Survey at 1.4 GHz

    NASA Astrophysics Data System (ADS)

    Hancock, P. J.; Drury, J. A.; Bell, M. E.; Murphy, T.; Gaensler, B. M.

    2016-09-01

    We use archival data from the Phoenix Deep Survey to investigate the variable radio source population above 1 mJy beam-1 at 1.4 GHz. Given the similarity of this survey to other such surveys we take the opportunity to investigate the conflicting results which have appeared in the literature. Two previous surveys for variability conducted with the Very Large Array (VLA) achieved a sensitivity of 1 mJy beam-1. However, one survey found an areal density of radio variables on time-scales of decades that is a factor of ˜4 times greater than a second survey which was conducted on time-scales of less than a few years. In the Phoenix deep field we measure the density of variable radio sources to be ρ = 0.98 deg-2 on time-scales of 6 months to 8 yr. We make use of Wide-field Infrared Survey Explorer infrared cross-ids, and identify all variable sources as an active galactic nucleus of some description. We suggest that the discrepancy between previous VLA results is due to the different time-scales probed by each of the surveys, and that radio variability at 1.4 GHz is greatest on time-scales of 2-5 yr.

  9. 76 FR 51461 - Notice of Release From Quitclaim Deed and Federal Grant Assurance Obligations for Phoenix-Mesa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... of approximately 1,727 square feet of airport property at Phoenix-Mesa Gateway, Mesa, Arizona, from... conditions contained in the Quitclaim Deed and Grant Assurance obligations for approximately 1,727 square...

  10. Atmospheric Condensation in the Mars Phoenix TECP and MET Data

    NASA Technical Reports Server (NTRS)

    Zent, A. P.

    2015-01-01

    A new calibration function for the humidity sensor in the Thermal and Electrical Conductivity Probe (TECP), a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) on the Phoenix Mars mission has been developed. The data is now cast in terms of Frost Point (T(sub f)) and some flight data, taken when the atmosphere is independently known to be saturated, is included in the calibration data set. Combined with data from the Meteorology Mast air temperature sensors, a very sensitive detection of atmospheric saturation becomes possible (Figure 1).

  11. Project Phoenix and beyond. Pesek Lecture.

    PubMed

    Tarter, J

    1997-01-01

    Although there are no federally funded projects at this time, SETI (the search for extraterrestrial intelligence) is a vigorous exploratory science. There are currently eight observational programs on telescopes around the world, of which the Phoenix Project is the most comprehensive. Most of these projects are rooted in the conclusions of the pioneering studies of the early 1970's that are summarized in the Cyclops Report. Technology has experienced an exponential growth over the past two and a half decades. It is reasonable to reassess the Cyclops conclusions as SETI enters the next century. Listening for radio signals is still the preferred method of searching, however new technologies are making searches at other wavelengths possible and are modifying the ways in which the radio searches can and should be conducted. It may be economically feasible to undertake the construction of very large telescopes that can simultaneously provide multiple beams on the sky for use by SETI and the radioastronomy community.

  12. Pesek lecture project Phoenix and beyond

    NASA Astrophysics Data System (ADS)

    Tarter, Jill

    Although there are no federally funded projects at this time, SETI (the search for extraterrestrial intelligence) is a vigorous exploratory science. There are currently eight observational programs on telescopes around the world, of which the Phoenix Project is the most comprehensive. Most of these projects are rooted in the conclusions of the pioneering studies of the early 1970's that are summarized in the Cyclops Report1. Technology has experienced an exponential growth over the past two and a half decades. It is reasonable to reassess the Cyclops conclusions as SETI enters the next century. Listening for radio signals is still the preferred method of searching, however new technologies are making searches at other wavelengths possible and are modifying the ways in which the radio searches can and should be conducted. It may be economically feasible to undertake the construction of very large telescopes that can simultaneously provide multiple beams on the sky for use by SETI and the radioastronomy community.

  13. CARDIOVASCULAR MORTALITY IN PHOENIX: PM1 IS A BETTER INDICATOR THAN PM2.5.

    EPA Science Inventory

    EPA has obtained a 3-year database of particulate matter (PM) in Phoenix, AZ from 1995 - 1997 that includes elemental analysis by XRF of daily PM2.5. During this time period PM1 and PM2.5 TEOMs were run simultaneously for about 7 months during two periods of the year. Regressio...

  14. Pedagogies of Self-Humanization: Collaborating to Engage Trauma in the Phoenix Players Theatre Group

    ERIC Educational Resources Information Center

    Fesette, Nick; Levitt, Bruce

    2017-01-01

    The Phoenix Players Theatre Group was founded by incarcerated theatre artists located in a maximum-security prison with the aim of creating a space where they can be witnessed in order to initiate a process of personal, cultural, and sociopolitical transformation. This article integrates research from trauma theory with theatre and social justice…

  15. Industrial Design: A Phoenix Reborn from the Ashes of Technology Education--A Case History

    ERIC Educational Resources Information Center

    Greenwald, Martin; Feigler, Denis

    2009-01-01

    Like the "phoenix," technology education (TE) can, under the right circumstances, give life to new programs--curricula with different emphases and directions from technology education, yet sharing a common heritage: the belief that applied technology will continue to shape the world. How that shaping process takes place--and the problems that it…

  16. Morning Frost in Trench Dug by Phoenix, Sol 113 (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench.

    The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench.

    This image is presented in false color that enhances the visibility of the frost.

    The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide.

    Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  17. 78 FR 24158 - Foreign-Trade Zone (FTZ) 75-Phoenix, Arizona; Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-33-2013] Foreign-Trade Zone (FTZ) 75-Phoenix... benefits on such items. Public comment is invited from interested parties. Submissions shall be addressed... Executive Secretary, Foreign-Trade Zones Board, Room 21013, U.S. Department of Commerce, 1401 Constitution...

  18. Sublimation of Exposed Snow Queen Surface Water Ice as Observed by the Phoenix Mars Lander

    NASA Astrophysics Data System (ADS)

    Markiewicz, W. J.; Keller, H. U.; Kossacki, K. J.; Mellon, M. T.; Stubbe, H. F.; Bos, B. J.; Woida, R.; Drube, L.; Leer, K.; Madsen, M. B.; Goetz, W.; El Maarry, M. R.; Smith, P.

    2008-12-01

    One of the first images obtained by the Robotic Arm Camera on the Mars Phoenix Lander was that of the surface beneath the spacecraft. This image, taken on sol 4 (Martian day) of the mission, was intended to check the stability of the footpads of the lander and to document the effect the retro-rockets had on the Martian surface. Not completely unexpected the image revealed an oval shaped, relatively bright and apparently smooth object, later named Snow Queen, surrounded by the regolith similar to that already seen throughout the landscape of the landing site. The object was suspected to be the surface of the ice table uncovered by the blast of the retro-rockets during touchdown. High resolution HiRISE images of the landing site from orbit, show a roughly circular dark region of about 40 m diameter with the lander in the center. A plausible explanation for this region being darker than the rest of the visible Martian Northern Planes (here polygonal patterns) is that a thin layer of the material ejected by the retro-rockets covered the original surface. Alternatively the thrusters may have removed the fine surface dust during the last stages of the descent. A simple estimate requires that about 10 cm of the surface material underneath the lander is needed to be ejected and redistributed to create the observed dark circular region. 10 cm is comparable to 4-5 cm predicted depth at which the ice table was expected to be found at the latitude of the Phoenix landing site. The models also predicted that exposed water ice should sublimate at a rate not faster but probably close to 1 mm per sol. Snow Queen was further documented on sols 5, 6 and 21 with no obvious changes detected. The following time it was imaged was on sol 45, 24 sols after the previous observation. This time some clear changes were obvious. Several small cracks, most likely due to thermal cycling and sublimation of water ice appeared. Nevertheless, the bulk of Snow Queen surface remained smooth. The next

  19. 75 FR 63139 - Approval and Promulgation of Implementation Plans-Maricopa County (Phoenix) PM-10 Nonattainment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... Promulgation of Implementation Plans--Maricopa County (Phoenix) PM-10 Nonattainment Area; Serious Area Plan for... implementation plan (SIP) revisions submitted by the State of Arizona to meet, among other requirements, section... (Maricopa area). Specifically, EPA proposed to disapprove provisions of the 189(d) plan because they do not...

  20. Influence of urban form on landscape pattern and connectivity in metropolitan regions: a comparative case study of Phoenix, AZ, USA, and Izmir, Turkey.

    PubMed

    Park, Sohyun; Hepcan, Çiğdem C; Hepcan, Şerif; Cook, Edward A

    2014-10-01

    Although ecological connectivity conservation in urban areas has recently been recognized as an important issue, less is known about its relationship to urban form and landscape pattern. This study investigates how urban morphology influences regional ecosystem pattern and landscape connectivity. Two metropolitan landscapes, Phoenix, AZ, USA, and Izmir, Turkey, were compared, both of which are fast-growing regions in their national context. A wide range of variables were considered for identifying natural and urban properties. The natural characteristics include typology of urban ecosystems, urban to natural cover ratio, dominant habitat type, urban biodiversity, landscape context, and connectivity conservation efforts. Urban parameters examine urban form, urban extent, urban cover proportion, growth rate, populations, urban gradient, major drivers of urbanization, urban density, and mode/approach of urban development. Twelve landscape metrics were measured and compared across the natural patches. Results show that there is little difference in landscape connectivity in the rural zones of Phoenix and Izmir, although Phoenix has slightly higher connectivity values. The connectivity variance in urbanized areas, however, is significantly dependent on the region. For example, Phoenix urban zones have substantially lower connectivity than either urban or suburban zones in Izmir. Findings demonstrate that small and compact urban settlements with more dense populations are more likely to conserve landscape connectivity compared to multiple-concentric but amalgamated urban form spreading all over the landscape (aka urban sprawl).

  1. Martian Multimedia: The Agony and Ecstasy of Communicating Real-Time, Authentic Science During the Phoenix Mars Mission

    NASA Astrophysics Data System (ADS)

    Bitter, C.; Buxner, S. R.

    2009-03-01

    The Phoenix Mars Mission faced robust communication challenges requiring real-time solutions. Managing the message from Mars and ensuring the highest quality of science data and news releases were our top priorities during mission surface operations.

  2. Phoenix 100 versus Vitek 2 in the Identification of Gram-Positive and Gram-Negative Bacteria: a Comprehensive Meta-Analysis▿†

    PubMed Central

    Chatzigeorgiou, Kalliopi-Stavroula; Sergentanis, Theodoros N.; Tsiodras, Sotirios; Hamodrakas, Stavros J.; Bagos, Pantelis G.

    2011-01-01

    Phoenix 100 and Vitek 2 (operating with the current colorimetric cards) are commonly used in hospital laboratories for rapid identification of microorganisms. The present meta-analysis aims to evaluate and compare their performance on Gram-positive and Gram-negative bacteria. The MEDLINE database was searched up to October 2010 for the retrieval of relevant articles. Pooled correct identification rates were derived from random-effects models, using the arcsine transformation. Separate analyses were conducted at the genus and species levels; subanalyses and meta-regression were undertaken to reveal meaningful system- and study-related modifiers. A total of 29 (6,635 isolates) and 19 (4,363 isolates) articles were eligible for Phoenix and colorimetric Vitek 2, respectively. No significant differences were observed between Phoenix and Vitek 2 either at the genus (97.70% versus 97.59%, P = 0.919) or the species (92.51% versus 88.77%, P = 0.149) level. Studies conducted with conventional comparator methods tended to report significantly better results compared to those using molecular reference techniques. Speciation of Staphylococcus aureus was significantly more accurate in comparison to coagulase-negative staphylococci by both Phoenix (99.78% versus 88.42%, P < 0.00001) and Vitek 2 (98.22% versus 91.89%, P = 0.043). Vitek 2 also reached higher correct identification rates for Gram-negative fermenters versus nonfermenters at the genus (99.60% versus 95.90%, P = 0.004) and the species (97.42% versus 84.85%, P = 0.003) level. In conclusion, the accuracy of both systems seems modified by underlying sample- and comparator method-related parameters. Future simultaneous assessment of the instruments against molecular comparator procedures may facilitate interpretation of the current observations. PMID:21752980

  3. Date palm (Phoenix dactylifera)dispersal to the Americas: Historical evidence of the Spanish introduction

    USDA-ARS?s Scientific Manuscript database

    Date palm (Phoenix dactylifera) groves are found in the Americas from the south-west USA (36°N lat.) to Chile (21°S lat.) and eastward to the Caribbean Islands; from Venezuela, 63°W long. to 117°W long. (USA) and at elevations from 0-2,000 m. However, successful production of ripe dates is possible ...

  4. Urban Land Cover Type Influences CO2 Fluxes within Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Perez-Ruiz, E. R.; Vivoni, E. R.; Templeton, N. P.

    2017-12-01

    Urbanization is accompanied by the modification of land surface characteristics that should have an impact on local energy, water and carbon cycles. For instance, despite their relative small land area, cities are responsible for more than 70% of the global anthropogenic CO2 emissions. Nevertheless, relatively little is known on the dynamics of urban carbon fluxes or net ecosystem exchange (NEE), in particular over the multitude of land cover patches present within cities. In this study, we present a comparison of NEE measurements in four urban patches in the Phoenix metropolitan area. A mobile eddy covariance (EC) tower was deployed at a xeric landscaping, a parking lot and a mesic landscaping during consecutive, short-term ( 40 days) sampling periods and compared to a reference site (REF) in a suburban neighborhood over a longer deployment ( 9 months). Based on the datasets, we analyze the diurnal cycle and the daily and seasonal variations of NEE in the context of the measured meteorological conditions, including the surface energy budget. EC observations were then related to vegetation conditions through a satellite-based Normalized Difference Vegetation Index (NDVI) and to anthropogenic activities through local traffic counts. All deployment sites showed important differences in NEE with respect to the REF location due to the influence of the urban patch area sampled within the EC footprint. Daily NEE values at all sites exhibited differences among days of the week that were linked to traffic conditions, with higher values during weekdays and lower values during weekends. The diurnal behavior of NEE showed different trends depending on the amount of vegetation and the proximity to nearby roads. Minimum midday (around noon) values of NEE were noted where urban plants absorbed CO2, while maximum peaks of NEE occurred during rush hours (around 8 am and 6 pm) where the traffic influence was high. Overall, three of the four sites with low to moderate vegetation

  5. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

  6. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    USDA-ARS?s Scientific Manuscript database

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  7. Adobe, rammed earth and wood: An energy-based environmental analysis of residential construction in Phoenix, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gossen, C.L.

    1996-10-01

    More than 90% of the new single-family dwellings built in the Phoenix Metropolitan Area consists of wood frame construction. Using adobe and rammed earth as alternatives in residential wall construction are the main focus of this study. The study examines the process of home construction, concentrating on the environmental impacts of energy embodied in the four stages: extraction, transportation, construction, and operation. These four stages were applied to three prototypes built in the Phoenix Area throughout one year. The results are compared to determine which has the lowest environmental costs and most likely to benefit sustainability. The study requires amore » comparative analysis rather than a definite choice of a better prototype. The information provides assistance to the builder/designer with options about environmental impacts and the whole energy spectrum. Wherein previous research was based on performance standards of operation, one must also consider environmental impacts and externalities.« less

  8. Urban effects on regional climate: a case study in the Phoenix and Tucson ‘sun’ corridor

    USGS Publications Warehouse

    Zhao Yang,; Francina Dominguez,; Hoshin Gupta,; Xubin Zeng,; Norman, Laura M.

    2016-01-01

    Land use and land cover change (LULCC) due to urban expansion alter the surface albedo, heat capacity, and thermal conductivity of the surface. Consequently, the energy balance in urban regions is different from that of natural surfaces. To evaluate the changes in regional climate that could arise due to projected urbanization in the Phoenix-Tucson corridor, Arizona, we applied the coupled WRF-NOAH-UCM (which includes a detailed urban radiation scheme) to this region. Land cover changes were represented using land cover data for 2005 and projections to 2050, and historical North American Regional Reanalysis (NARR) data were used to specify the lateral boundary conditions. Results suggest that temperature changes will be well defined, reflecting the urban heat island (UHI) effect within areas experiencing LULCC. Changes in precipitation are less robust, but seem to indicate reductions in precipitation over the mountainous regions northeast of Phoenix and decreased evening precipitation over the newly-urbanized area.

  9. Analysis of Phoenix Anomalies and IV & V Findings Applied to the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Larson, Steve

    2012-01-01

    NASA IV&V was established in 1993 to improve safety and cost-effectiveness of mission critical software. Since its inception the tools and strategies employed by IV&V have evolved. This paper examines how lessons learned from the Phoenix project were developed and applied to the GRAIL project. Shortly after selection, the GRAIL project initiated a review of the issues documented by IV&V for Phoenix. The motivation was twofold: the learn as much as possible about the types of issues that arose from the flight software product line slated for use on GRAIL, and to identify opportunities for improving the effectiveness of IV&V on GRAIL. The IV&V Facility provided a database dump containing 893 issues. These were categorized into 16 bins, and then analyzed according to whether the project responded by changing the affected artifacts or using as-is. The results of this analysis were compared to a similar assessment of post-launch anomalies documented by the project. Results of the analysis were discussed with the IV&V team assigned to GRAIL. These discussions led to changes in the way both the project and IV&V approached the IV&V task, and improved the efficiency of the activity.

  10. Mars Phoenix Scout Thermal Evolved Gas Analyzer (TEGA) Database: Thermal Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Niles, P. B.; Stein, T. C.; Hamara, D.; Boynton, W. V.; Ming, D. W.

    2017-01-01

    The Mars Phoenix Scout Lander mission in 2008 examined the history of water, searched for organics, and evaluated the potential for past/present microbial habitability in a martian arctic ice-rich soil [1]. The Thermal Evolved Gas Analyzer (TEGA) instrument measured the isotopic composition of atmospheric CO2 and detected volatile bearing mineralogy (perchlorate, carbonate, hydrated mineral phases) in the martian soil [2-7]. The TEGA data are archived at the Planetary Data System (PDS) Geosciences Node but are reported in forms that require further processing to be of use to the non-TEGA expert. The soil and blank TEGA thermal data are reported as duty cycle and must be converted to differential power (mW) to allow for enthalpy calculations of exothermic/endothermic transitions. The exothermic/endothermic temperatures are also used to determine what phases (inorganic/organic) are present in the sample. The objectives of this work are to: 1) Describe how interpretable thermal data can be created from TEGA data sets on the PDS and 2) Provide additional thermal data interpretation of two Phoenix soils (Baby Bear, Wicked Witch) and include interpretations from three unreported soils (Rosy Red 1, 2, and Burning Coals).

  11. From Mars to Media: The Phoenix Mars Mission and the Challenges of Real-Time, Multimedia Science Communication and Public Education

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Bitter, C.

    2008-12-01

    Although the Mars Exploration Rovers, Mars Reconnaissance Orbiter, and Mars Odyssey Missions set the standard for science communication and public education about Mars, the Phoenix Mission was presented with robust new communication challenges and opportunities. The new frontier includes Web 2.0, international forums, internal and external blogs, social networking sites, as well as the traditional media and education outlets for communicating science and information. We will explore the highlights and difficulties of managing the 'message from Mars' in our current multimedia saturated world while balancing authentic science discoveries, public expectations, and communication demands. Our goal is to create a more science savvy public and a more communication oriented science community for the future. The key issues are helping the public and our scientists distinguish between information and knowledge and managing the content that connects the two.

  12. NASA Satellite Captures Super Bowl Cities - Phoenix

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Phoenix, Arizona acquired November 28, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Relationship between particulate matter and childhood asthma - basis of a future warning system for central Phoenix

    NASA Astrophysics Data System (ADS)

    Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.

    2012-03-01

    Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.

  14. Relationship between particulate matter and childhood asthma - basis of a future warning system for Central Phoenix

    NASA Astrophysics Data System (ADS)

    Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.

    2011-10-01

    Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.

  15. From water to life: from Phoenix to EXOMARS

    NASA Astrophysics Data System (ADS)

    Giorgio, V.

    Latest news: there definitely is water on Mars. NASA issued the announcement following measurements performed by the Phoenix Mars Lander spacecraft on samples gathered from the planet's surface. Such a discovery confirms what the scientific community has long posited: some kind of life form could have developed on Mars, and may still be there; a kind of life form that was undoubtedly able to adapt to the Red Planet's harshest environmental conditions. However, scientists won't stop here: quite the contrary, they intend to keep going. The next step is to find evidence of that life, traces of its past or current existence. That is the task that was assigned to EXOMARS European Mission, whose main purpose is carrying out research into Exobiology, that is to say research into the origin, evolution and spreading of life across the universe.

  16. Cost implications of intraprocedural thrombotic events and bleeding in percutaneous coronary intervention: Results from the CHAMPION PHOENIX ECONOMICS Study.

    PubMed

    Tamez, Hector; Généreux, Philip; Yeh, Robert W; Amin, Amit P; Fan, Weihong; White, Harvey D; Kirtane, Ajay J; Stone, Gregg W; Gibson, C Michael; Harrington, Robert A; Bhatt, Deepak L; Pinto, Duane S

    2018-05-04

    Despite improvements in percutaneous coronary intervention (PCI), intraprocedural thrombotic events (IPTE) and bleeding complications occur and are prognostically important. These have not been included in prior economic studies. PHOENIX ECONOMICS was a substudy of the CHAMPION PHOENIX trial, evaluating cangrelor during PCI. Hospital bills were reviewed from 1,171 patients enrolled at 22 of 63 US sites. Costs were estimated using standard methods including resource-based accounting, hospital billing data, and the Medicare fee schedule. Bleeding and IPTE, defined as abrupt vessel closure (transient or sustained), new/suspected thrombus, new clot on wire/catheter, no reflow, side-branch occlusion, procedural stent thrombosis or urgent need for CABG were identified. Costs were calculated according to whether a complication occurred and type of event. Multivariate analyses were used to estimate the incremental costs of IPTE and postprocedural events. IPTE occurred in 4.3% and were associated with higher catheterization laboratory and overall index hospitalization costs by $2,734 (95%CI $1,117, $4,351; P = 0.001) and $6,354 (95% CI $4,122, $8,586; P < 0.001), respectively. IPTE were associated with MI (35.4% vs. 3.6%; P < 0.001), out-of-laboratory stent thrombosis (4.2% vs. 0.1%; 0 = 0.005), ischemia driven revascularization (12.5% vs. 0.3%; P < 0.001), but not mortality (2.1% vs. 0.2%; P = 0.12) vs. no procedural thrombotic complication. By comparison, ACUITY minor bleeding increased hospitalization cost by $1,416 (95%CI = 312, $2,519; P = 0.012). ACUITY major bleeding increased cost of hospitalization by $7,894 (95%CI $4,154, $11,635; P < 0.001). IPTE and bleeding complications, though infrequent, are associated with substantial increased cost. These complications should be collected in economic assessments of PCI. © 2018 Wiley Periodicals, Inc.

  17. A genome-wide survey of date palm cultivars supports two independent domestication events in Phoenix dactylifera

    USDA-ARS?s Scientific Manuscript database

    The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is a key fruit crop in many arid regions of the world. There are hundreds of commercial cultivars with distinct fruit shapes, colors and sizes growing mainly from the west of North Africa to India. However, the origin o...

  18. RS-34 Phoenix In-Space Propulsion System Applied to Active Debris Removal Mission

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Burnside, Christopher G.

    2014-01-01

    In-space propulsion is a high percentage of the cost when considering Active Debris Removal mission. For this reason it is desired to research if existing designs with slight modification would meet mission requirements to aid in reducing cost of the overall mission. Such a system capable of rendezvous, close proximity operations, and de-orbit of Envisat class resident space objects has been identified in the existing RS-34 Phoenix. RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC has obtained permission from the USAF to obtain all the remaining RS-34 stages for re-use opportunities. The MSFC Advanced Concepts Office (ACO) was commissioned to lead a study for evaluation of the Rocketdyne produced RS-34 propulsion system as it applies to an active debris removal design reference mission for resident space object targets including Envisat. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy payloads at multiple orbital locations. The RS-34 Concept Study lead by sought to further understand application for a similar orbital debris design reference mission to provide propulsive capability for rendezvous, close proximity operations to support the capture phase of the mission, and deorbit of single or multiple large class resident space objects. Multiple configurations varying the degree of modification were identified to trade for dry mass optimization and

  19. The U.S. Department of Energy Office of Indian Energy Policy and Programs Phoenix, Arizona, Roundtable Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The Phoenix, Arizona, Roundtable on Tribal Energy Policy convened at 8:30 a.m., Tuesday, April 5th, at the downtown Phoenix Hyatt. The meeting was hosted by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (DOE Office of Indian Energy) and facilitated by the Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute). Approximately thirty-eight people attended the meeting, including representatives of ten different tribes, as well as representatives of the Colorado Indian Tribes, the All Indian Pueblo Council and the Inter-Tribal Council of Arizona. Interested state, federal, university, NGO and industry representatives also were present. Amore » full list of attendees is at the end of this summary. DOE representatives were Tracey LeBeau, Directory of the DOE Office of Indian Energy, Pilar Thomas, Deputy Director-Policy of the DOE Office of Indian Energy, and David Conrad, Director of Tribal and Intergovernmental Affairs, DOE Office of Congressional and Intergovernmental Affairs.« less

  20. 1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON THE WESTERN CANAL, LOOKING NORTH. THE OLD PLANT IS ON THE RIGHT BANK, NEAREST THE CANAL. THE NEW PLANT IS ON THE LEFT BANK AT THE END OF THE INLET CANAL. THE KYRENE DITCH RUNS OUT OF THE BOTTOM OF THE PICTURE, AND PART OF THE SWITCHYARD FOR THE KYRENE STEAM PLANT IS VISIBLE AT LOWER RIGHT. c. 1955 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  1. Establishment, management, and maintenance of the phoenix islands protected area.

    PubMed

    Rotjan, Randi; Jamieson, Regen; Carr, Ben; Kaufman, Les; Mangubhai, Sangeeta; Obura, David; Pierce, Ray; Rimon, Betarim; Ris, Bud; Sandin, Stuart; Shelley, Peter; Sumaila, U Rashid; Taei, Sue; Tausig, Heather; Teroroko, Tukabu; Thorrold, Simon; Wikgren, Brooke; Toatu, Teuea; Stone, Greg

    2014-01-01

    The Republic of Kiribati's Phoenix Islands Protected Area (PIPA), located in the equatorial central Pacific, is the largest and deepest UNESCO World Heritage site on earth. Created in 2008, it was the first Marine Protected Area (MPA) of its kind (at the time of inception, the largest in the world) and includes eight low-lying islands, shallow coral reefs, submerged shallow and deep seamounts and extensive open-ocean and ocean floor habitat. Due to their isolation, the shallow reef habitats have been protected de facto from severe exploitation, though the surrounding waters have been continually fished for large pelagics and whales over many decades. PIPA was created under a partnership between the Government of Kiribati and the international non-governmental organizations-Conservation International and the New England Aquarium. PIPA has a unique conservation strategy as the first marine MPA to use a conservation contract mechanism with a corresponding Conservation Trust established to be both a sustainable financing mechanism and a check-and-balance to the oversight and maintenance of the MPA. As PIPA moves forward with its management objectives, it is well positioned to be a global model for large MPA design and implementation in similar contexts. The islands and shallow reefs have already shown benefits from protection, though the pending full closure of PIPA (and assessments thereof) will be critical for determining success of the MPA as a refuge for open-ocean pelagic and deep-sea marine life. As global ocean resources are continually being extracted to support a growing global population, PIPA's closure is both timely and of global significance.

  2. Hearing Before the United States Commission on Civil Rights (Phoenix, Arizona, November 17-18, 1972).

    ERIC Educational Resources Information Center

    Commission on Civil Rights, Washington, DC.

    The U.S. Commission on Civil Rights held two days of hearings in Phoenix to investigate the civil rights status of Arizona Indian Tribes, to ascertain the nature and extent of their problems, and to try to arrive at a means to rectify those problems. The testimony offered at the public session came from representatives of local, state, Federal and…

  3. Spectral Modeling of Ground Ices Exposed by Trenching at the Phoenix Mars Landing Site

    NASA Astrophysics Data System (ADS)

    Cull, S.; Arvidson, R. E.; Blaney, D.; Morris, R. V.

    2008-12-01

    The Phoenix Lander, which landed on the northern plains of Mars on 25 May 2008, used its Robotic Arm (RA) to dig six trenches during its nominal 90-sol mission: Dodo-Goldilocks, Snow White, Cupboard, Neverland, Burn Alive, and Stone Soup. During excavation of the first five of these, the RA encountered hard material interpreted to be the ice table, and the Stereo Surface Imager (SSI) imaged the exposed materials using 15 filters spanning a wavelength range from 445 to 1001 nm. Materials exposed in the Dodo- Goldilocks and Snow White trenches are spectroscopically dissimilar: Dodo-Goldilocks hard material is brighter relative to the surrounding soil, and has a distinct downturn around 800 nm resulting from a dusty ice with low soil-to-ice ratio. Snow White hard stuff varies in brightness and spectral shape depending on the phase angle, with low-phase angle images showing dark material and higher phase angles showing more soil-like material. The Snow White material does not have the strong 800-nm downturn seen in Dodo- Goldilocks, because the soil-to-ice ratio is high as inferred by the rapid development of a sublimation lag; however, the albedo variation with phase angle could be due to strong forward-scattering at low phase angles, consistent with icy material. A modified Hapke model is used to estimate the relative abundances of water ice and dust in the Dodo- Goldilocks and Snow White materials, with dehydrated palagonite as an analogue for dust . The ice exposed at Dodo-Goldilocks must be relatively dust-free, since only a small amount of dust is needed to obscure water ice absorptions. In our modeling, we find that as little as 5 wt% 20-um dust is enough to completely mask the 1001 nm absorption in 1-mm grain size water ice. Dodo-Goldilocks spectra can have up to a 20% drop in reflectance from 800 nm to 1001 nm, which is best-matched in our Hapke model by water ice with path lengths on the order of 2-3 mm. The Snow White dark materials typically have a small

  4. A Needs Assessment of Phoenix South Catchment Area Children: The Responses of Parents, Neighbors, and Teachers.

    ERIC Educational Resources Information Center

    Balk, David

    Summarized in this document are results from a survey conducted from 1975 to 1977 with parents, neighbors, and fifth-grade teachers as part of a needs assessment of Phoenix, Arizona, South Catchment Area children. A questionnaire consisting of 34 items, generated from studies reviewed in the area of children's behavioral symptoms and strengths,…

  5. 40 CFR Table C-5 to Subpart C of... - Summary of Comparability Field Testing Campaign Site and Seasonal Requirements for Class II and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Angeles basin or California Central Valley Western city such as Denver, Salt Lake City, or Albuquerque Midwestern city Northeastern or mid-Atlantic city. Test site characteristics Relatively high PM2.5, nitrates... area Los Angeles basin or California Central Valley Western city such as Las Vegas or Phoenix...

  6. A Scenario Based Assessment of Future Groundwater Resources in the Phoenix Active Management Area

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Lant, T. W.

    2007-12-01

    The availability of future water supplies in central Arizona depends on the interaction of multiple physical and human systems: climate, hydrology, water and land-use policy, urbanization, and regulation. The problem in assessing future water supplies requires untangling these drivers and recasting the issue in a way that acknowledges the inherent uncertainties in climate and population growth predictions while offering meaningful metrics for outcomes under alternative scenarios. Further, the drivers, policy options, and outcomes are spatially heterogeneous - surface water supplies, new urban developments and changes in land-use will not be shared uniformly across the region. Consequently, different geographic regions of the Phoenix metropolitan area will be more vulnerable to shortages in water availability, and these potential vulnerabilities will be more or less severe depending on which factors cause the shortage. The results of this research will make several contributions to existing literature and research products for groundwater conservation and future urban planning. It will provide location specific metrics of water vulnerability and offer a novel approach to groundwater analysis; it will demonstrate the XLRM framework with an application to central Arizona Water resources. Lastly, it will add to the WaterSim climate model by spatializing the groundwater component for the Phoenix Active Management Area.

  7. Regional Land Use Mapping: the Phoenix Pilot Project

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Place, J. L.

    1971-01-01

    The Phoenix Pilot Program has been designed to make effective use of past experience in making land use maps and collecting land use information. Conclusions reached from the project are: (1) Land use maps and accompanying statistical information of reasonable accuracy and quality can be compiled at a scale of 1:250,000 from orbital imagery. (2) Orbital imagery used in conjunction with other sources of information when available can significantly enhance the collection and analysis of land use information. (3) Orbital imagery combined with modern computer technology will help resolve the problem of obtaining land use data quickly and on a regular basis, which will greatly enhance the usefulness of such data in regional planning, land management, and other applied programs. (4) Agreement on a framework or scheme of land use classification for use with orbital imagery will be necessary for effective use of land use data.

  8. An Analysis of Enrollment, Facilities, and Grade Organization. Phoenix-Talent School District #4, Jackson County, Oregon.

    ERIC Educational Resources Information Center

    Erickson, Kenneth A.; And Others

    This publication presents the report of a study team that examined the facilities and grade organization of the Phoenix-Talent (Oregon) School District in light of the district's present and anticipated enrollment as of November 1971 and recommended a number of changes in both areas. Chapter 1 presents a brief overview of chapter 3 and also…

  9. Historical evidence of the Spanish introduction of date palm (Phoenix dactylifera L., Arecaceae) into the Americas

    USDA-ARS?s Scientific Manuscript database

    America’s date palm (Phoenix dactylifera L.) groves can be found from 36o N Lat. (USA) to 21o S Lat. (Chile) and from 63o W Long. (Venezuela) to 117o W Long. (USA), at elevations from sea level 2000 m (Colombia). However, successful production of ripe dates is possible only in the arid regions of Pe...

  10. Land use mapping and modelling for the Phoenix quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Experimentation with 70mm squares cut from ERTS-1 9.5 inch MSS positive transparencies in an I2S color additive viewer, a Richardson film production viewer at 10X magnification, and in a microfiche viewer at 12X and 18X magnification has indicated that band 5 photography provides the most useful interpretable data. In the I2S viewer high intensities of blue and red light in bands 4 and 6 respectively enhance faint vegetation patterns not easily detectable. Slides produced from 35mm color transparencies made by photographing the I2S viewing screen are suitable visual aids for use during presentation. Interpretation of MSS transparencies allowed compilation of a map of land use change in the Phoenix quadrangle.

  11. 78 FR 52759 - Expansion of Foreign-Trade Zone 75 Under Alternative Site Framework; Phoenix, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ..., docketed 12-07-2012) for authority to expand the zone under the ASF to include an additional magnet site...-year ASF sunset provision for magnet sites that would terminate authority for Site 9 if not activated...

  12. On pressure measurement and seasonal pressure variations during the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Taylor, Peter A.; Kahanpää, Henrik; Weng, Wensong; Akingunola, Ayodeji; Cook, Clive; Daly, Mike; Dickinson, Cameron; Harri, Ari-Matti; Hill, Darren; Hipkin, Victoria; Polkko, Jouni; Whiteway, Jim

    2010-03-01

    In situ surface pressures measured at 2 s intervals during the 150 sol Phoenix mission are presented and seasonal variations discussed. The lightweight Barocap®/Thermocap® pressure sensor system performed moderately well. However, the original data processing routine had problems because the thermal environment of the sensor was subject to more rapid variations than had been expected. Hence, the data processing routine was updated after Phoenix landed. Further evaluation and the development of a correction are needed since the temperature dependences of the Barocap sensor heads have drifted after the calibration of the sensor. The inaccuracy caused by this appears when the temperature of the unit rises above 0°C. This frequently affects data in the afternoons and precludes a full study of diurnal pressure variations at this time. Short-term fluctuations, on time scales of order 20 s are unaffected and are reported in a separate paper in this issue. Seasonal variations are not significantly affected by this problem and show general agreement with previous measurements from Mars. During the 151 sol mission the surface pressure dropped from around 860 Pa to a minimum (daily average) of 724 Pa on sol 140 (Ls 143). This local minimum occurred several sols earlier than expected based on GCM studies and Viking data. Since battery power was lost on sol 151 we are not sure if the timing of the minimum that we saw could have been advanced by a low-pressure meteorological event. On sol 95 (Ls 122), we also saw a relatively low-pressure feature. This was accompanied by a large number of vertical vortex events, characterized by short, localized (in time), low-pressure perturbations.

  13. NASA Satellite Captures Super Bowl Cities - Phoenix [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Phoenix, Arizona acquired November 28, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Atmospheric results from the Phoenix Mars Mission

    NASA Astrophysics Data System (ADS)

    Smith, Peter

    The Phoenix Mission operated in the northern plains of Mars for 5 months starting May 25, 2008 spanning solar longitudes from 78 to 143 (summer). Throughout this period a diverse set of atmospheric measurements were taken and analyzed. The data sets provide information on the diurnal temperatures at 2 m above the surface, diurnal pressure, wind vectors, cloud properties, dust devils, the boundary layer, and humidity. In addition, coordinated observations were obtained with orbital instruments from Mars Reconnaissance Orbiter, Odyssey, and Mars Express. The measurements have been compared with predictions from Global Climate Models and found to agree in most regards. Taken as a whole this represents a unique description of the summer weather in a heretofore unexplored region of Mars. The Canadian LIDAR experiment gives us the first direct measurement of the boundary layer height. The first 90 sols of the mission were conducted under dusty conditions and the height of the dust layer was determined as 4-5 km above the surface. After 90 sols, the dust dispersed and water ice clouds were seen at ever lower altitudes and the boundary layer dropped to as low as 3 km. Snowfall was observed and frost imaged on the surface. Winds swirled around the lander completing a full circle each sol; typical wind speeds were 5-10 m/s. From near surface humidity measurements, a diurnal cycle sublimates ice and adsorbed water from the surface soil as the Sun heats it forming water ice clouds at the boundary layer. As temperatures cool in the night the water is returned as snow and frost to the soil. Temperatures ranged from -30 C to -90 C, but never exceed the melting point; even though atmospheric pressures are always above the triple point, liquid water is not allowed at this time. The lack of dune forms and the presence of dust devils suggest that wind erosion is a strong force despite the constant dust fall observed on the spacecraft deck. Local dust storms are often seen by the

  15. Project PHOENIX SETI Observations at Parkes

    NASA Astrophysics Data System (ADS)

    Backus, P. R.

    1995-12-01

    For sixteen weeks (February to June of 1995), Project Phoenix had the exclusive use of the 64 m Parkes radio telescope in New South Wales, Australia, as well as another element of the Australian Telescope National Facility (ATNF), the 22 m Mopra telescope, 200 km to the north at Coonabarabran. With these two telescopes, we conducted a targeted search of nearly two hundred solar-type stars covering the frequency range from 1.2 to 3 GHz. The signal detection system was optimized to detect narrowband signals (presumed to be transmitted by another technological civilization) originating in the vicinity of these targets. The system was sensitive to signals that were continuously present, or pulsed regularly, even if their frequencies drifted, or changed slowly in time. Many signals of precisely this nature were detected, but all were coming from our own technology! All manner of transmitters, from microwave ovens to satellite downlinks, are rapidly making this naturally quiet portion of the electromagnetic spectrum extremely noisy. The use of the two widely separated telescopes as a pseudo-interferometer was essential to discriminate against signals of terrestrial origin. The architecture and performance of the system and the results of the observing campaign are presented in this paper.

  16. Outreach Opportunities for Early Career Scientists at the Phoenix ComiCon

    NASA Astrophysics Data System (ADS)

    Horodyskyj, L.; Walker, S. I.; Forrester, J. H.

    2014-12-01

    The Phoenix ComiCon (PCC) is a rapidly growing annual four-day pop culture event, featuring guests, costuming, exhibits, and discussion panels for popular sci-fi, fantasy, horror, and anime franchises. In 2013, PCC began experimenting with science discussion panels. The popularity of the science programming resulted in an expansion of the track for 2014, which Horodyskyj was responsible for coordinating. Thirty hours of programming were scheduled, including 25 discussion panels, NASA's FameLab, and a Mars room. Panelists included industry specialists, established scientists, STEM outreach enthusiasts, and early career scientists. The majority of the panelists were early career scientists recruited from planetary sciences and biology departments at ASU and UA. Panel topics included cosmology, biotechnology, artificial intelligence, space exploration, astrobiology, and the cross-linkages of each with pop culture. Formats consisted of Q&A, presentations, and interactive game shows. Although most panels were aimed at the general audience, some panels were more specialized. PCC 2014 attracted 77,818 attendees. The science programming received rave reviews from the audience, the PCC management, and the panelists themselves. Many panel rooms were filled to capacity and required crowd control to limit attendance. We observed the formation of science "groupies" who sought out the science panels exclusively and requested more information on other science public events in the Phoenix area. We distributed surveys to several select sessions to evaluate audience reasons for attending the science panels and their opinion of the scientists they observed. We will present the results of these surveys. As the PCC continues to grow at an exponential rate, the science programming will continue to expand. We will discuss ideas for continued expansion of the PCC science programming both to serve the public and as a unique public outreach opportunity for early career scientists.

  17. Aerodynamics for the Mars Phoenix Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark

    2008-01-01

    Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.

  18. John C. Lincoln Health Network recognized for community service. Phoenix institution wins prestigious Foster G. Mcgaw Prize.

    PubMed

    Rees, Tom

    2003-01-01

    John C. Lincoln Health Network, Phoenix, was awarded the Foster G. McGaw Prize for excellence in community service, one of the healthcare field's most prestigious honors. The network serves a broad geographic area and nearly a dozen communities. Those communities most challenged by poverty, hunger, poor housing and crime are the focus of most of the health network's efforts.

  19. Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the "phoenix soliton".

    PubMed

    Peleg, Or; Segev, Mordechai; Bartal, Guy; Christodoulides, Demetrios N; Moiseyev, Nimrod

    2009-04-24

    We formulate wave propagation in arrays of subwavelength waveguides with sharp index contrasts and demonstrate the collapse of bands into evanescent modes and lattice solitons with superluminal phase velocity. We find a self-reviving soliton ("phoenix soliton") comprised of coupled forward- and backward-propagating light, originating solely from evanescent bands. In the linear regime, all Bloch waves comprising this beam decay, whereas a proper nonlinearity assembles them into a propagating self-trapped beam. Finally, we simulate the dynamics of such a beam and observe breakup into temporal pulses, indicating a new kind of slow-light gap solitons, trapped in time and in one transverse dimension.

  20. Analysis of Phoenix Anomalies and IV and V Findings Applied to the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Larson, Steve

    2012-01-01

    Analysis of patterns in IV&V findings and their correlation with post-launch anomalies allowed GRAIL to make more efficient use of IV&V services . Fewer issues. . Higher fix rate. . Better communication. . Increased volume of potential issues vetted, at lower cost. . Hard to make predictions of post-launch performance based on IV&V findings . Phoenix made sound fix/use as-is decisions . Things that were fixed eliminated some problems, but hard to quantify. . Broad predictive success in one area, but inverse relationship in others.

  1. A Parent Volunteer Program for the 5th and 6th Grades To Teach Spanish: The Phoenix Experiment.

    ERIC Educational Resources Information Center

    Acquafredda, Miriam

    A Madison School District (Phoenix, Arizona) program in which parent volunteers teach Spanish to fifth and sixth graders is described. The program originated with the author, who as a parent volunteer had been teaching Spanish to her child's class. First, a brief account is given of the history of foreign languages in the elementary school (FLES)…

  2. The Phoenix search results at Parkes

    NASA Astrophysics Data System (ADS)

    Backus, Peter R.

    For 16 weeks (February to June of 1995), Project Phoenix had the exclusive use of the 64 m Parkes radio telescope in New South Wales, Australia, as well as another element of the Australian Telescope National Facility (ATNF), the 22 m Mopra telescope, 200 km to the north at Coonabarabran. With these two telescopes, we conducted a targeted search of nearly two hundred solar-type stars covering the frequency range from 1.2-3 GHz. The signal detection system described in the paper by Dreher [1]was optimized to detect narrowband signals (presumed to be transmitted by another technological civilization) originating in the vicinity of these targets. The system was sensitive to signals that were continuously present, or pulsed regularly, even if their frequencies drifted, or changed slowly in time. Many signals of precisely this nature were detected—coming from our own technology! All manner of transmitters, from microwave ovens to satellite downlinks, are rapidly making this naturally quiet portion of the electromagnetic spectrum extremely noisy. The use of the two widely separated telescopes as a pseudo-interferometer was essential to discriminate against signals of terrestrial origin. The performance of the system and the results of the observing campaign are presented in this paper, while the cooperative science observations that were undertaken with Australian PIs are described in a companion paper.

  3. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly.

    PubMed

    Derecho, I; McCoy, K B; Vaishampayan, P; Venkateswaran, K; Mogul, R

    2014-10-01

    The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions.

  4. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel.

    PubMed

    Müller, Heike M; Schäfer, Nadine; Bauer, Hubert; Geiger, Dietmar; Lautner, Silke; Fromm, Jörg; Riederer, Markus; Bueno, Amauri; Nussbaumer, Thomas; Mayer, Klaus; Alquraishi, Saleh A; Alfarhan, Ahmed H; Neher, Erwin; Al-Rasheid, Khaled A S; Ache, Peter; Hedrich, Rainer

    2017-10-01

    Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl - medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. The Phoenix TECP Relative Humidity Sensor: Revised Results

    NASA Technical Reports Server (NTRS)

    Zent, Aaron

    2014-01-01

    The original calibration function of the RH sensor on the Phoenix mission's Thermal and Electrical Conductivity Sensor (TECP), has been revised to correct the erroneously-published original calibration equation, to demonstrate the value of this unique data set, and to improve characterization of H2O exchange between the martian regolith and atmosphere. TECP returned two data streams, the temperature of the electronics analog board (Tb) and the digital 12-bit output of the RH sensor (DN), both of which are required to uniquely specify the H2O abundance. Because the original flight instrument calibration was performed against a pair of hygrometers that measured frost point (Tf), the revised calibration equation is also cast in terms of frost point. The choice of functional form for the calibration function is minimally constrained. A series of profiles across the calibration data cloud at constant DN and Tb does not reveal any evidence of a complex functional form. Therefore, a series of polynomials in both DN and Tb was investigated, along with several non-linear functions of DN and Tb.

  6. Chemical composition and antioxidant activity of seed oil of two Algerian date palm cultivars (Phoenix dactylifera).

    PubMed

    Boukouada, Mustapha; Ghiaba, Zineb; Gourine, Nadhir; Bombarda, Isabelle; Saidi, Mokhtar; Yousfi, Mohamed

    2014-12-01

    The fatty acid composition of date seed oil from two different date palm (Phoenix dactylifera L.) cultivars, locally known as Degla-Baïdha and Tafezouine, were investigated. GC analysis revealed the presence of five dominant fatty acids: oleic C18:1 (46.51; 39.15%), lauric C12:0 (22.1; 28.5%), myristic C14:0 (10.7; 11.4%), palmitic C16:0 (9.6; 8.7%) and linoleic C18:2 (6.9; 6.1%). The oils was characterised by a low content of tocopherols (0.53; 1.41 μg/g). The antioxidant activity of the oils was investigated using the DPPH*(1,1-di-phenyl-2-picryl-hydrazyl) scavenging assay. The oils had a weak bleaching effect on DPPH* free radicals. This study showed that the qualities of the tested oils are highly comparable with those of some commercial seed oils of other plants. Furthermore, a statistical analysis using the hierarchy ascendant classification method was conducted in order to highlight the similarities and/or the differences regarding the contents of the main fatty acids found in some common plants and in the five most famous cultivars of Phoenix dactylifera of south eastern Algeria (Tafezouine, Degla-Baïdha, Deglet-Nour, Ghars, Tamdjouhert).

  7. Charting novel allergens from date palm pollen (Phoenix sylvestris) using homology driven proteomics.

    PubMed

    Saha, Bodhisattwa; Bhattacharya, Swati Gupta

    2017-08-08

    Pollen grains from Phoenix sylvestris (date palm), a commonly cultivated tree in India has been found to cause severe allergic diseases in an increasing percentage of hypersensitive individuals. To unearth its allergenic components, pollen protein were profiled by two-dimensional gel electrophoresis followed by immunoblotting with date palm pollen sensitive patient sera. Allergens were identified by MALDI-TOF/TOF employing a layered proteomic approach combining conventional database dependent search and manual de novo sequencing followed by homology-based search as Phoenix sylvestris is unsequenced. Derivatization of tryptic peptides by acetylation has been demonstrated to differentiate the 'b' from the 'y' ions facilitating efficient de novo sequencing. Ten allergenic proteins were identified, out of which six showed homology with known allergens while others were reported for the first time. Amongst these, isoflavone reductase, beta-conglycinin, S-adenosyl methionine synthase, 1, 4 glucan synthase and beta-galactosidase were commonly reported as allergens from coconut pollen and presumably responsible for cross-reactivity. One of the allergens had IgE binding epitope recognized by its glycan moiety. The allergenic potency of date palm pollen has been demonstrated using in vitro tests. The identified allergens can be used to develop vaccines for immunotherapy against date palm pollen allergy. Identification of allergenic proteins from sources harboring them is essential in developing therapeutic interventions. This is the first comprehensive study on the identification of allergens from Phoenix sylvestris (date palm) pollen, one of the major aeroallergens in India using a proteomic approach. Proteomic methods are being increasingly used to identify allergens. However, since many of these proteins arise from species which are un-sequenced, it becomes difficult to interpret those using conventional proteomics. Date palm being an unsequenced species, the Ig

  8. A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006.

    PubMed

    Golden, Jay S; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick

    2008-07-01

    Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003-surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5 degrees C (96 degrees F) was recorded, breaking the previous all-time high minimum temperature record of 33.8 degrees C (93 degrees F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001-2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity).

  9. Organic Combustion in the Presence of Ca-Carbonate and Mg-Perchlorate: A Possible Source for the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Archer, Douglas; Ming, D.; Niles, P.; Sutter, B.; Lauer, H.

    2012-01-01

    Two of the most important discoveries of the Phoenix Lander were the detection of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in landing site soils. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander could heat samples up to approx.1000 C and monitor evolved gases with a mass spectrometer. TEGA detected a low (approx.350 C) and high (approx.750 C) temperature CO2 release. The high temp release was attributed to the thermal decomposition of Ca-carbonate (calcite). The low temperature CO2 release could be due to desorption of CO2, decomposition of a different carbonate mineral, or the combustion of organic material. A new hypothesis has also been proposed that the low temperature CO2 release could be due to the early breakdown of calcite in the presence of the decomposition products of certain perchlorate salts [3]. We have investigated whether or not this new hypothesis is also compatible with organic combustion. Magnesium perchlorate is stable as Mg(ClO4)2-6H2O on the martian surface [4]. During thermal decomposition, this perchlorate salt releases H2O, Cl2, and O2 gases. The Cl2 can react with water to form HCl which then reacts with calcite, releasing CO2 below the standard thermal decomposition temperature of calcite. However, when using concentrations of perchlorate and calcite similar to what was detected by Phoenix, the ratio of high:low temperature CO2 evolved is much larger in the lab, indicating that although this process might contribute to the low temp CO2 release, it cannot account for all of it. While H2O and Cl2 cause calcite decomposition, the O2 evolved during perchlorate decomposition can lead to the combustion of any reduced carbon present in the sample [5]. We investigate the possible contribution of organic molecules to the low temperature CO2 release seen on Mars.

  10. A Study of the Physiological Factors Affecting the Nature of the Adult Learner in the Phoenix Air National Guard.

    ERIC Educational Resources Information Center

    Torbert, James Brison

    An investigation reviewed current literature in the field of physiological factors affecting the adult learning environment. These findings were compared to the academic learning environment at the Phoenix Air National Guard. The end product was a set of recommendations for management to implement in order to improve the learning climate for the…

  11. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway

    PubMed Central

    2009-01-01

    Background Increasing reports of carbapenem resistant Acinetobacter baumannii infections are of serious concern. Reliable susceptibility testing results remains a critical issue for the clinical outcome. Automated systems are increasingly used for species identification and susceptibility testing. This study was organized to evaluate the accuracies of three widely used automated susceptibility testing methods for testing the imipenem susceptibilities of A. baumannii isolates, by comparing to the validated test methods. Methods Selected 112 clinical isolates of A. baumanii collected between January 2003 and May 2006 were tested to confirm imipenem susceptibility results. Strains were tested against imipenem by the reference broth microdilution (BMD), disk diffusion (DD), Etest, BD Phoenix, MicroScan WalkAway and Vitek 2 automated systems. Data were analysed by comparing the results from each test method to those produced by the reference BMD test. Results MicroScan performed true identification of all A. baumannii strains while Vitek 2 unidentified one strain, Phoenix unidentified two strains and misidentified two strains. Eighty seven of the strains (78%) were resistant to imipenem by BMD. Etest, Vitek 2 and BD Phoenix produced acceptable error rates when tested against imipenem. Etest showed the best performance with only two minor errors (1.8%). Vitek 2 produced eight minor errors(7.2%). BD Phoenix produced three major errors (2.8%). DD produced two very major errors (1.8%) (slightly higher (0.3%) than the acceptable limit) and three major errors (2.7%). MicroScan showed the worst performance in susceptibility testing with unacceptable error rates; 28 very major (25%) and 50 minor errors (44.6%). Conclusion Reporting errors for A. baumannii against imipenem do exist in susceptibility testing systems. We suggest clinical laboratories using MicroScan system for routine use should consider using a second, independent antimicrobial susceptibility testing method to

  12. Mega drought in the Colorado River Basin, water supply, and adaptive scenario planning for the Phoenix Metropolitan Area; simulations using WaterSim 5.

    NASA Astrophysics Data System (ADS)

    Sampson, D. A.

    2015-12-01

    The Decision Center for a Desert City (DCDC), a boundary organization, bridges science and policy (to foster knowledge-based decision making); we study how decisions are made in the face of uncertainty. Our water policy and management model for the Phoenix Metropolitan Area (hereafter "Phoenix"), termed WaterSim, represents one such bridging mechanism. We evaluated the effect of varying the length of drought on water availability for Phoenix. We examined droughts (starting in 2000) lasting 15, 25, and 50 years. We picked a 60-year window of runoff estimates from the paleo reconstruction data for the Colorado River (CO) (1121 through 1180 A.D.), and the two local rivers (1391 through 1450 A.D.), and assumed that the proportional difference in median flow between these periods and the long-term record represented an estimate of potential drought reductions on river flows. This resulted in a 12%, and 19% reduction in flows for the CO River and the Salt-Verde (SV) Rivers, respectively. WaterSim uses 30-year trace periods from the historical flow records to simulate river flow for future projections. We used each 30-year trace from the historical record (1906 to present, CO River; 1945 to present SV Rivers) , and default settings, to simulate 60 year projections of Lake Mead elevation and the accompanying Colorado River water shortages to Phoenix. Overall, elevations for Lake Mead fell below the 1st shortage sharing tier (1075 ft) in 83% of the simulations; 74% of the simulations fell below the 2nd tier (1050 ft), and 64% fell below the 3rd (1025 ft). Length of drought, however, determined the shortage tiers met. Median elevations for droughts ending in 2015, 2025, and 2050 were 1036, 1019, and 967 feet msl, respectively. We present the plausible water futures with adaptive anticipatory scenario planning for the projected reductions in surface water availability to demonstrate decision points for water conservation measures to effectively manage shortage conditions.

  13. National Indian Child Conference: Tomorrow Can Be Better for Indian Children (1st, Phoenix, Arizona, November 13-16, 1978).

    ERIC Educational Resources Information Center

    Save the Children, Albuquerque, NM.

    Selected conference proceedings (keynote addresses and workshop presentations) are compiled in this report of the first National Indian Child Conference, held in Phoenix, November 13-16, 1978, and attended by 1,800 people representing over 100 tribes in the United States and Canada. The text of eight addresses are included; they cover a wide range…

  14. Summary of Results from the Mars Phoenix Lander's Thermal Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Hoffman, J.; Lauer, H. V.; Golden, D. C.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect evolved volatiles and organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS) that can detect masses in the 2 to 140 dalton range [1]. Five Martian soils were individually heated to 1000 C in the DSC ovens where evolved gases from mineral decompostion products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil.

  15. Service Networks and Patterns of Utilization: Mental Health Programs, Indian Health Service (IHS). Volume 8: Phoenix Area, 1966-1974.

    ERIC Educational Resources Information Center

    Attneave, Carolyn L.; Beiser, Morton

    The eighth volume in a 10-volume report on the historical development (1966-1973) of the 8 administrative Area Offices of the Indian Health Service (IHS) Mental Health Programs, this report presents information on the Phoenix Area Office and the Tucson Sub-Area Office. Included in this document are: (1) The Context: Political and Geographic (the…

  16. Crater Morphology in the Phoenix Landing Ellipse: Insights Into Net Erosion and Ice Table Depth

    NASA Technical Reports Server (NTRS)

    Noe Dobrea, E. Z.; Stoker, C. R.; McKay, C. P.; Davila, A. F.; Krco, M.

    2015-01-01

    Icebreaker [1] is a Discovery class mission being developed for future flight opportunities. Under this mission concept, the Icebreaker payload is carried on a stationary lander, and lands in the same landing ellipse as Phoenix. Samples are acquired from the subsurface using a drilling system that penetrates into materials which may include loose or cemented soil, icy soil, pure ice, rocks, or mixtures of these. To avoid the complexity of mating additional strings, the drill is single-string, limiting it to a total length of 1 m.

  17. Vegetative community control of freshwater availability: Phoenix Islands case study

    NASA Astrophysics Data System (ADS)

    Engels, M.; Heinse, R.

    2014-12-01

    On small low islands with limited freshwater resources, terrestrial plant communities play a large role in moderating freshwater availability. Freshwater demands of vegetative communities are variable depending on the composition of the community. Hence, changes to community structure from production crop introductions, non-native species invasions, and climate change, may have significant implications for freshwater availability. Understanding how vegetative community changes impact freshwater availability will allow for better management and forecasting of limited freshwater supplies. To better understand these dynamics, we investigated three small tropical atolls in the Phoenix Island Protected Area, Kiribati. Despite their close proximity, these islands receive varying amounts of rainfall, are host to different plant communities and two of the islands have abandoned coconut plantations. Using electromagnetic induction, ground penetrating radar, soil samples, climate and satellite data, we present preliminary estimates of vegetative water demand for different tropical plant communities.

  18. The social impacts of the heat-health watch/warning system in Phoenix, Arizona: assessing the perceived risk and response of the public.

    PubMed

    Kalkstein, Adam J; Sheridan, Scott C

    2007-10-01

    Heat is the leading weather-related killer in the United States. Although previous research suggests that social influences affect human responses to natural disaster warnings, no studies have examined the social impacts of heat or heat warnings on a population. Here, 201 surveys were distributed in Metropolitan Phoenix to determine the social impacts of the heat warning system, or more specifically, to gauge risk perception and warning response. Consistent with previous research, increased risk perception of heat results in increased response to a warning. Different social factors such as sex, race, age, and income all play an important role in determining whether or not people will respond to a warning. In particular, there is a strong sense of perceived risk to the heat among Hispanics which translates to increased response when heat warnings are issued. Based on these findings, suggestions are presented to help improve the Phoenix Heat Warning System.

  19. A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006

    NASA Astrophysics Data System (ADS)

    Golden, Jay S.; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick

    2008-07-01

    Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003—surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5°C (96°F) was recorded, breaking the previous all-time high minimum temperature record of 33.8°C (93°F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001 2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity).

  20. A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations in Phoenix dactylifera.

    PubMed

    Mathew, Lisa S; Seidel, Michael A; George, Binu; Mathew, Sweety; Spannagl, Manuel; Haberer, Georg; Torres, Maria F; Al-Dous, Eman K; Al-Azwani, Eman K; Diboun, Ilhem; Krueger, Robert R; Mayer, Klaus F X; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A

    2015-05-08

    The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors, and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain, and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm-growing regions, including four Phoenix species as the outgroup. Here, for the first time, we generate genome-wide genotyping data for 13,000-65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm. Copyright © 2015 Mathew et al.

  1. A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations in Phoenix dactylifera

    PubMed Central

    Mathew, Lisa S.; Seidel, Michael A.; George, Binu; Mathew, Sweety; Spannagl, Manuel; Haberer, Georg; Torres, Maria F.; Al-Dous, Eman K.; Al-Azwani, Eman K.; Diboun, Ilhem; Krueger, Robert R.; Mayer, Klaus F. X.; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A.

    2015-01-01

    The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors, and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain, and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm–growing regions, including four Phoenix species as the outgroup. Here, for the first time, we generate genome-wide genotyping data for 13,000–65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm. PMID:25957276

  2. Navigation Challenges of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark

    2008-01-01

    The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.

  3. A Possible Organic Contribution to the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Archer, P. D. Jr.; Lauer, H. V., Jr.; Sutter, B.; Ming, D. W.; Niles, P. B.; Boynton, W. V.

    2012-01-01

    Two of the most important discoveries of the Phoenix Mars Lander were the discovery of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in the soils at the landing site in the martian northern plains. The Thermal and Evolved Gas Analyzer (TEGA) instrument was one of the tools that made this discovery. After soil samples were delivered to TEGA and transferred into small ovens, the samples could be heated up to approx.1000 C and the gases that evolved during heating were monitored by a mass spectrometer. A CO2 signal was detected at high temperature (approx.750 C) that has been attributed to calcium carbonate decomposition. In addition to this CO2 release, a lower temperature signal was seen. This lower temperature CO2 release was postulated to be one of three things: 1) desorption of CO2, 2) decomposition of a different carbonate mineral, or 3) CO2 released due to organic combustion. Cannon et al. [3] present another novel hypothesis involving the interaction of decomposition products of a perchlorate salt and calcium carbonate.

  4. Real-Time Modeling of Cross-Body Flow for Torpedo Tube Recovery of the Phoenix Autonomous Underwater Vehicle (AUV)

    DTIC Science & Technology

    1998-03-01

    34Numerical Recipes in C," second edition, Cambridge University Press, Cambridge England, 1992. Marco, David , "Autonomous Control of Underwater...in the viewer. -202- LIST OF REFERENCES Ames, Andrea L., Nadeau, David R., Moreland, John L., VRML 2.0 Sourcebook, Second edition, John Wiley...McGhee, Bob, "The Phoenix Autonomous Underwater Vehicle," AI-Based Mobile Robots, editors David Kortenkamp, Pete Bonasso and Robin Murphy, MJT/AAAI

  5. Copper toxicity and date palm (Phoenix dactylifera) seedling tolerance: Monitoring of related biomarkers.

    PubMed

    Chaâbene, Zayneb; Hakim, Imen Rekik; Rorat, Agnieszka; Elleuch, Amine; Mejdoub, Hafedh; Vandenbulcke, Franck

    2018-03-01

    Date palm (Phoenix dactylifera) seeds were exposed to different copper (Cu) solutions to examine plant stress responses. Low Cu concentrations (0.02 and 0.2 mM) caused an increase of seed germination, whereas higher Cu amounts (2 mM) significantly inhibited seed germination, delayed hypocotyl elongation, increased seedling mortality, and reduced the germination index by more than 90%. Metal-related toxicity symptoms appeared after 15 d of 2 mM of Cu exposure. Biochemical activities such as amylase activity and redox balance elements were examined to study the relationship between external Cu amount and internal plant response. The present study showed that amylolytic activity was dose- and time-dependent. Likewise, H 2 O 2 production increased after exposure to Cu, which was correlated with thiobarbituric acid reactive substance (TBARS) accumulation. Furthermore at low Cu concentrations, superoxide dismutase (SOD) and catalase (CAT) activities increased, suggesting that date palm seed stimulated its metal homeostasis networks. However, the highest cupric ion amounts increased cell oxidant accumulation and reduced enzyme production. Gene expression level measures of P. dactylifera phytochelatin synthase (Pdpcs) and P. dactylifera metallothionein (Pdmt) encoding genes have been carried out to investigate the implication of PdPCS and PdMT proteins in Cu homeostasis and/or its sequestration. Phoenix dactylifera metallothionein induction reached a peak after 30 d of exposure to 0.2 mM of Cu. However, it was down-regulated in plants exposed to higher Cu concentrations. In the same conditions, Pdpcs was overexpressed during 1 mo of exposure before it decreased thereafter. These observations provide a new insight into date palm cell response to Cu, a metal that can be toxic but that is also an essential element. Environ Toxicol Chem 2018;37:797-806. © 2017 SETAC. © 2017 SETAC.

  6. Proceeding On : Parallelisation Of Critical Code Passages In PHOENIX/3D

    NASA Astrophysics Data System (ADS)

    Arkenberg, Mario; Wichert, Viktoria; Hauschildt, Peter H.

    2016-10-01

    Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach here, by introducing especially adapted, parallel numerical methods and correspondingly parallelising time critical code passages. In the following, we present our work on PHOENIX/3D.While parallelisation is generally worthwhile, it requires revision of time-consuming subroutines with respect to separability of localised data and variables in order to determine the optimal approach. Of course, the same applies to the code structure. The importance of this ongoing work can be showcased by recently derived benchmark results, which were generated utilis- ing MPI and OpenMP. Furthermore, the need for a careful and thorough choice of an adequate, machine dependent setup is discussed.

  7. Phenomenological Inquiry into Phoenix Rising Yoga Therapy.

    PubMed

    Sneed, Jenilee; Hammer, Tonya

    2018-04-26

    There is growing recognition within psychology and other disciplines that body experience may be as important as cognitive and emotional experience. However, psychology has few psychotherapeutic interventions to support the integration of mind and body within therapy. Phoenix Rising Yoga Therapy (PRYT) is a form of mind-body therapy that uses yoga posture, touch, and psychotherapeutic dialogue to facilitate growth and healing. The current study explored the phenomenological experience of four women who each received five PRYT sessions. Research questions posed were: (1) What are the clients' experiences of the phenomena of PRYT? and (2) How does receiving PRYT sessions impact the clients' lives? The following themes emerged from the data as the essence of PRYT sessions: mindfulness, self-awareness, mind-body connection, in vivo experience of new behaviors, client-directed, empowerment, and life changes. These themes show significance in the mind-body connection and that it is important to consider alternative modalities such as PRYT for clients. Each participant noted greater insight into mind-body connection. They noticed the effect of cognition and emotion on the body, observed how the body can be used to improve coping through movement and breathing, and experienced different thoughts and emotions associated with different areas of their bodies. Although these results are not necessarily generalizable, they offer interesting theoretical implications for embodied interventions.

  8. Chemical Composition of Date Palm (Phoenix dactylifera L.) Seed Oil from Six Saudi Arabian Cultivars.

    PubMed

    Nehdi, Imeddedine Arbi; Sbihi, Hassen Mohamed; Tan, Chin Ping; Rashid, Umer; Al-Resayes, Saud Ibrahim

    2018-03-01

    This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein. This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia. © 2018 Institute of Food Technologists®.

  9. Evaluating the Phoenix definition of biochemical failure after (125)I prostate brachytherapy: Can PSA kinetics distinguish PSA failures from PSA bounces?

    PubMed

    Thompson, Anna; Keyes, Mira; Pickles, Tom; Palma, David; Moravan, Veronika; Spadinger, Ingrid; Lapointe, Vincent; Morris, W James

    2010-10-01

    To evaluate the prostate-specific antigen (PSA) kinetics of PSA failure (PSAf) and PSA bounce (PSAb) after permanent (125)I prostate brachytherapy (PB). The study included 1,006 consecutive low and "low tier" intermediate-risk patients treated with (125)I PB, with a potential minimum follow-up of 4 years. Patients who met the Phoenix definition of biochemical failure (nadir + 2 ng/mL(-1)) were identified. If the PSA subsequently fell to ≤0.5 ng/mL(-1)without intervention, this was considered a PSAb. All others were scored as true PSAf. Patient, tumor and dosimetric characteristics were compared between groups using the chi-square test and analysis of variance to evaluate factors associated with PSAf or PSAb. Median follow-up was 54 months. Of the 1,006 men, 57 patients triggered the Phoenix definition of PSA failure, 32 (56%) were true PSAf, and 25 PSAb (44%). The median time to trigger nadir + 2 was 20.6 months (range, 6-36) vs. 49 mo (range, 12-83) for PSAb vs. PSAf groups (p < 0.001). The PSAb patients were significantly younger (p < 0.0001), had shorter time to reach the nadir (median 6 vs. 11.5 months, p = 0.001) and had a shorter PSA doubling time (p = 0.05). Men younger than age 70 who trigger nadir +2 PSA failure within 38 months of implant have an 80% likelihood of having PSAb and 20% chance of PSAf. With adequate follow-up, 44% of PSA failures by the Phoenix definition in our cohort were found to be benign PSA bounces. Our study reinforces the need for adequate follow-up when reporting PB PSA outcomes, to ensure accurate estimates of treatment efficacy and to avoid unnecessary secondary interventions. 2010. Published by Elsevier Inc. All rights reserved.

  10. Possible Calcite and Magnesium Perchlorate Interaction in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Cannon, K. M.; Sutter, B.; Ming, D. W.; Boynton, W. V.; Quinn, R. C.

    2012-01-01

    The Mars Phoenix Lander's TEGA instrument detected a calcium carbonate phase decomposing at high temperatures (approx.700 C) from the Wicked Witch soil sample [1]. TEGA also detected a lower temperature CO2 release between 400 C and 680 C [1]. Possible explanations given for this lower temperature CO2 release include thermal decomposition of Mg or Fe carbonates, a zeolitictype desorption reaction, or combustion of organic compounds in the soil [2]. The detection of 0.6 wt % soluble perchlorate by the Wet Chemistry Laboratory (WCL) on Phoenix [3] has implications for the possibility of organic molecules in the soil. Ming et al. [4] demonstrated that perchlorates could have oxidized organic compounds to CO2 in TEGA, preventing detection of their characteristic mass fragments. Here, we propose that a perchlorate salt and calcium carbonate present in martian soil reacted to produce the 400 C - 680 C TEGA CO2 release. The parent salts of the perchlorate on Mars are unknown, but geochemical models using WCL data support the possible dominance of Mg-perchlorate salts [5]. Mg(ClO4)2 6H2O is the stable phase at ambient martian conditions [6], and breaks down at lower temperatures than carbonates giving off Cl2 and HCl gas [7,8]. Devlin and Herley [7] report two exotherms at 410-478 C and 473-533 C which correspond to the decomposition of Mg(ClO4)2.

  11. Reactive Sequencing for Autonomous Navigation Evolving from Phoenix Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher A.; Riedel, Joseph E.; Vaughan, Andrew T.

    2010-01-01

    Virtual Machine Language (VML) is an award-winning advanced procedural sequencing language in use on NASA deep-space missions since 1997, and was used for the successful entry, descent, and landing (EDL) of the Phoenix spacecraft onto the surface of Mars. Phoenix EDL utilized a state-oriented operations architecture which executed within the constraints of the existing VML 2.0 flight capability, compatible with the linear "land or die" nature of the mission. The intricacies of Phoenix EDL included the planned discarding of portions of the vehicle, the complex communications management for relay through on-orbit assets, the presence of temporally indeterminate physical events, and the need to rapidly catch up four days of sequencing should a reboot of the spacecraft flight computer occur shortly before atmospheric entry. These formidable operational challenges led to new techniques for packaging and coordinating reusable sequences called blocks using one-way synchronization via VML sequencing global variable events. The coordinated blocks acted as an ensemble to land the spacecraft, while individually managing various elements in as simple a fashion as possible. This paper outlines prototype VML 2.1 flight capabilities that have evolved from the one-way synchronization techniques in order to implement even more ambitious autonomous mission capabilities. Target missions for these new capabilities include autonomous touch-and-go sampling of cometary and asteroidal bodies, lunar landing of robotic missions, and ultimately landing of crewed lunar vehicles. Close proximity guidance, navigation, and control operations, on-orbit rendezvous, and descent and landing events featured in these missions require elaborate abort capability, manifesting highly non-linear scenarios that are so complex as to overtax traditional sequencing, or even the sort of one-way coordinated sequencing used during EDL. Foreseeing advanced command and control needs for small body and lunar landing

  12. The Socio-Economic Impact of Student Loan Debt on African American Graduates of the University of Phoenix Residing in Philadelphia, Pennsylvania

    ERIC Educational Resources Information Center

    Daniels, Terrence D.

    2017-01-01

    Little is known about the long-term socio-economic impact of student loan debt on African-American graduates of the University of Phoenix who reside in Philadelphia, Pennsylvania. The purpose of this case study is to examine the socio-economic impact of student loan debt on these students five years after receiving a degree from this for-profit…

  13. Mt Pamola, the Electromagnetic Field, EMF, Thunderbird, Mothman and Environmental Monitoring Signals Via the Southern Constellation Phoenix As Detectable In Potato Cave, Acton, MA.

    NASA Astrophysics Data System (ADS)

    Pecora, Andrea S.; Pawa Matagamon, Sagamo

    2004-03-01

    Just below the peak of Mt Pamola in ME, at the juncture with the Knife Edge, downwardly arcing segments of Earths EMF, are manifested by a faint lotus-blossom-blue, neon-like glow at 3 pm some sunny afternoons. Similarly hued glows, and horizontal but variable-arced segmented trajectories, are somewhat periodically detectable under certain conditions in chambers at Acton, MA. These phenomena curiously have the filled-in profile that precisely matches the outline of the southern constellation Phoenix, which is never visible above the nighttime horizon locally. The stick-figure representation of the constellation Canis Major can also be detected in a chamber at Americas Stonehenge, two hours before it has arisen, at certain times. The sequence of phenomena visible at Acton correctly correlates with eclipses and other alignments of our solar system. Phoenix, a.k.a. Thunderbird and Mothman, is detectable elsewhere in MA.

  14. Zooming in on Landing Site

    NASA Image and Video Library

    2008-05-24

    This animation zooms in on the area on Mars where NASA Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  15. High-Resolution Topomapping of Mars: Life After MER Site Selection

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Soricone, R.; Ross, K.; Weller, L.; Rosiek, M.; Redding, B.; Galuszka, D.; Haldemann, A. F. C.

    2004-01-01

    In this abstract we describe our ongoing use of high-resolution images from the Mars Global Surveyor Mars Orbiter Camera Narrow-Angle subsystem (MGS MOC-NA) to derive quantitative topographic and slope data for the martian surface at 3 - 10-m resolution. Our efforts over the past several years focused on assessment of candidate landing sites for the Mars Exploration Rovers (MER) and culminated in the selection of sites in Gusev crater and Meridiani Planum as safe as well as scientifically compelling. As of this writing, MER-A (Spirit) has landed safely in Gusev and we are performing a limited amount of additional mapping near the landing point to support localization of the lander and rover operations planning. The primary focus of our work, however, has been extending our techniques to sample a variety of geologic terrains planetwide to support both a variety of geoscientific studies and planning and data analysis for missions such as Mars Express, Mars Reconnaissance Orbiter, and Phoenix.

  16. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity

    NASA Astrophysics Data System (ADS)

    Zayed, Mervat F.; Eisa, Wael H.

    2014-03-01

    A green synthesis route was reported to explore the reducing and capping potential of Phoenix dactylifera extract for the synthesis of gold nanoparticles. The processes of nucleation and growth of gold nanoparticles were followed by monitoring the absorption spectra during the reaction. The size and morphology of these nanoparticles was typically imaged using transmission electron microscopy (TEM). The particle size ranged between 32 and 45 nm and are spherical in shape. Fourier transform infrared (FTIR) analysis suggests that the synthesized gold nanoparticles might be stabilized through the interactions of hydroxyl and carbonyl groups in the carbohydrates, flavonoids, tannins and phenolic acids present in P. dactylifera. The as-synthesized Au colloids exhibited good catalytic activity for the degradation of 4-nitrophenol.

  17. The Mars Phoenix Thermal Evolved-Gas Analysis: The Role of an Organic Free Blank in the Search for Organics

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, Douglas W.; Sutter, B.; Golden, D. C.; Morris, Richard V.; Boynton, W. V.

    2008-01-01

    The Thermal Evolved-Gas Analyzer (TEGA) instrument onboard the 2007 Phoenix Lander will perform differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. Data from the instrument will be compared with Mars analog mineral standards, collected under TEGA Mars-like conditions to identify the volatile-bearing mineral phases [1] (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) found in the Martian soil. Concurrently, the instrument will be looking for indications of organics that might also be present in the soil. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. The spacecraft will certainly bring organic contaminants to Mars even though numerous steps were taken to minimize contamination during the spacecraft assembly and testing. It will be essential to distinguish possible Mars organics from terrestrial contamination when TEGA instrument begins analyzing icy soils. To address the above, an Organic Free Blank (OFB) was designed, built, tested, and mounted on the Phoenix spacecraft providing a baseline for distinguishing Mars organics from terrestrial organic contamination. Our objective in this report is to describe some of the considerations used in selecting the OFB material and then report on the processing and analysis of the final candidate material

  18. Thermal and Electrical Conductivity Probe for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander will assess how heat and electricity move through Martian soil from one spike or needle to another of a four-spike electronic fork that will be pushed into the soil at different stages of digging by the lander's Robotic Arm.

    The four-spike tool, called the thermal and electrical conductivity probe, is in the middle-right of this photo, mounted near the end of the arm near the lander's scoop (upper left).

    In one type of experiment with this tool, a pulse of heat will be put into one spike, and the rate at which the temperature rises on the nearby spike will be recorded, along with the rate at which the heated spike cools. A little bit of ice can make a big difference in how well soil conducts heat. Similarly, soil's electrical conductivity -- also tested with this tool -- is a sensitive

    indicator of moisture in the soil. This device adapts technology used in soil-moisture gauges for irrigation-control systems. The conductivity probe has an additional role besides soil analysis. It will serve as a hunidity sensor when held in the air.

  19. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Changes in the land use in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a land use classification system proposed for use with ERTS images. Seasonal changes were studied on successive ERTS-1 images, particularly large scale color composite transparencies for August, October, February, and May, and this seasonal variation aided delineation of land use boundaries. Types of equipment used to aid interpretation included color additive viewer, a twenty-power magnifier, a density slicer, and a diazo copy machine. A Zoom Transfer Scope was used for scale and photogrammetric adjustments. Types of changes detected have been: (1) cropland or rangeland developed as new residential areas; (2) rangeland converted to new cropland or to new reservoirs; and (3) possibly new activity by the mining industries. A map of land use previously compiled from air photos was updated in this manner. ERTS-1 images complemented air photos: the photos gave detail on a one-shot basis; the ERTS-1 images provided currency and revealed seasonal variation in vegetation which aided interpretation of land use.

  20. Testing the H2O2-H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix lander.

    PubMed

    Schulze-Makuch, Dirk; Turse, Carol; Houtkooper, Joop M; McKay, Christopher P

    2008-04-01

    In the time since the Viking life-detection experiments were conducted on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the martian surface chemistry and the Viking lander results remain puzzling. Nonbiological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Plumb et al., 1989; Quinn and Zent, 1999; Klein, 1999; Yen et al., 2000), but problems remain regarding the lifetime, source, and abundance of that oxidant to account for the Viking observations (Zent and McKay, 1994). Alternatively, a hypothesis that favors the biological origin of a strong oxidizer has recently been advanced (Houtkooper and Schulze-Makuch, 2007). Here, we report on laboratory experiments that simulate the experiments to be conducted by the Thermal and Evolved Gas Analyzer (TEGA) instrument of the Phoenix lander, which is to descend on Mars in May 2008. Our experiments provide a baseline for an unbiased test for chemical versus biological responses, which can be applied at the time the Phoenix lander transmits its first results from the martian surface.

  1. Stakeholder Views on the Roles, Challenges, and Future Prospects of Korean and Chinese Heritage Language-Community Language Schools in Phoenix: A Comparative Study

    ERIC Educational Resources Information Center

    You, Byeong-keun; Liu, Na

    2011-01-01

    This study examines stakeholders' perspectives on Korean and Chinese heritage language and community language (HL-CL) schools and education in the Phoenix Metropolitan Area, Arizona. It investigates and compares the roles, major challenges, and future prospects of Korean and Chinese HL-CL schools as viewed by principals, teachers, and parents. To…

  2. Spatio-Temporal Analysis of Urban Heat Island and Urban Metabolism by Satellite Imagery over the Phoenix Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Zhan, S.; Kuai, X.; Zhan, Q.

    2015-12-01

    The goal of this research is to combine DMSP-OLS nighttime light data with Landsat imagery and use spatio-temporal analysis methods to evaluate the relationships between urbanization processes and temperature variation in Phoenix metropolitan area. The urbanization process is a combination of both land use change within the existing urban environment as well as urban sprawl that enlarges the urban area through the transformation of rural areas to urban structures. These transformations modify the overall urban climate environment, resulting in higher nighttime temperatures in urban areas compared to the surrounding rural environment. This is a well-known and well-studied phenomenon referred to as the urban heat island effect (UHI). What is unknown is the direct relationship between the urbanization process and the mechanisms of the UHI. To better understand this interaction, this research focuses on using nighttime light satellite imagery to delineate and detect urban extent changes and utilizing existing land use/land cover map or newly classified imagery from Landsat to analyze the internal urban land use variations. These data are combined with summer and winter land surface temperature data extracted from Landsat. We developed a time series of these combined data for Phoenix, AZ from 1992 to 2013 to analyze the relationships among land use change, land surface temperature and urban growth.

  3. Ice Clouds in Martian Arctic (Accelerated Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Clouds scoot across the Martian sky in a movie clip consisting of 10 frames taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander.

    This clip accelerates the motion. The camera took these 10 frames over a 10-minute period from 2:52 p.m. to 3:02 p.m. local solar time at the Phoenix site during Sol 94 (Aug. 29), the 94th Martian day since landing.

    Particles of water-ice make up these clouds, like ice-crystal cirrus clouds on Earth. Ice hazes have been common at the Phoenix site in recent days.

    The camera took these images as part of a campaign by the Phoenix team to see clouds and track winds. The view is toward slightly west of due south, so the clouds are moving westward or west-northwestward.

    The clouds are a dramatic visualization of the Martian water cycle. The water vapor comes off the north pole during the peak of summer. The northern-Mars summer has just passed its peak water-vapor abundance at the Phoenix site. The atmospheric water is available to form into clouds, fog and frost, such as the lander has been observing recently.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Jia, Y.; Clements, A.

    2008-12-01

    In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results

  5. Not for School, but for Life: Lessons from the Historical Archaeology of the Phoenix Indian School. Office of Cultural Resource Management Report #95.

    ERIC Educational Resources Information Center

    Lindauer, Owen

    The Phoenix Indian School, which served as a coeducational federal boarding school for American Indian students between 1891 and 1990, was partially excavated in 1995. Drawing upon written records, books, student recollections, and the school newspaper, this report summarizes what was learned from the excavation about life at the school. The first…

  6. Notes on the Planning and Assault Phases of the Sicilian Campaign. Part 1. Introduction

    DTIC Science & Technology

    1943-10-01

    epended on another decision v-hich could not be taken in default of still a. third - unable to lay down even so much as a system cnCd time progrmnme...ccand tlhe policy of allaowingr beach groups a clear 2 hours before landins wheeled vehicles was .mply repaid in terml.s of beach roadvway, rine and

  7. High-Density 16S Microarray and Clone Library-Based Microbial Community Composition of the Phoenix Spacecraft Assembly Clean Room

    NASA Astrophysics Data System (ADS)

    Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri

    2010-06-01

    The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.

  8. High-density 16S microarray and clone library-based microbial community composition of the Phoenix spacecraft assembly clean room.

    PubMed

    Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri

    2010-06-01

    The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.

  9. Historical Archaeology of the United States Industrial Indian School at Phoenix: Investigations of a Turn of the Century Trash Dump. Anthropological Field Studies Number 42.

    ERIC Educational Resources Information Center

    Lindauer, Owen; Ferguson, Deborah; Glass, Margaret; Hatfield, Virginia; McKenna, Jeanette A.; Dering, Phil

    The Phoenix Indian School served as a coeducational, federal educational institution for American Indian primary and secondary students between 1891 and 1990. Covering 10 blocks and enrolling over 600 Indian children aged 8-18, this boarding school used education to assimilate students into Anglo-American culture. This monograph describes…

  10. Searching for 300, 000 Degree Gas in the Core of the Phoenix Cluster with HST-COS

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2013-10-01

    The high central density of the intracluster medium in some galaxy clusters suggests that the hot 10,000,000K gas should cool completely in less than a Hubble time. In these clusters, simple cooling models predict 100-1000 solar masses per year of cooling gas should fuel massive starbursts in the central galaxy. The fact that the typical central cluster galaxy is a massive, "red and dead" elliptical galaxy, with little evidence for a cool ISM, has led to the realization of the "cooling flow problem". It is now thought that mechanical feedback from the central supermassive blackhole, in the form of radio-blown bubbles, is offsetting cooling, leading to an exceptionally precise {residuals of less than 10 percent} balance between cooling and feedback in nearly every galaxy cluster in the local Universe. In the recently-discovered Phoenix cluster, where z=0.596, we observe an 800 solar mass per year starburst within the central galaxy which accounts for about 30 percent of the classical cooling prediction for this system. We speculate that this may represent the first "true" cooling flow, with the factor of 3 difference between cooling and star formation being attributed to star formation efficiency, rather than a problem with cooling. In order to test these predictions, we propose far-UV spectroscopic observations of the OVI 1032A emission line, which probes 10^5.5K gas, in the central galaxy of the Phoenix cluster. If detected at the expected levels, this would provide compelling evidence that the starburst is, indeed, fueled by runaway cooling of the intracluster medium, confirming the presence of the first, bonafide cooling flow.

  11. Deposition of extreme-tolerant bacterial strains isolated during different phases of Phoenix spacecraft assembly in a public culture collection.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Benardini, James N; Rooney, Alejandro P; Spry, J Andy

    2014-01-01

    Extreme-tolerant bacteria (82 strains; 67 species) isolated during various assembly phases of the Phoenix spacecraft were permanently archived within the U.S. Department of Agriculture's Agricultural Research Service Culture Collection in Peoria, Illinois. This represents the first microbial collection of spacecraft-associated surfaces within the United States to be deposited into a freely available, government-funded culture collection. Archiving extreme-tolerant microorganisms from NASA mission(s) will provide opportunities for scientists who are involved in exploring microbes that can tolerate extreme conditions.

  12. Change in land use in the Phoenix (1:250,000) Quadrangle, Arizona between 1970 and 1973: ERTS as an aid in a nationwide program for mapping general land use. [Phoenix Quadrangle, Arizona

    NASA Technical Reports Server (NTRS)

    Place, J. L.

    1974-01-01

    Changes in land use between 1970 and 1973 in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a standard land use classification system proposed for use with ERTS images. Types of changes detected have been: (1) new residential development of former cropland and rangeland; (2) new cropland from the desert; and (3) new reservoir fill-up. The seasonal changing of vegetation patterns in ERTS has complemented air photos in delimiting the boundaries of some land use types. ERTS images, in combination with other sources of information, can assist in mapping the generalized land use of the fifty states by the standard 1:250,000 quadrangles. Several states are already working cooperatively in this type of mapping.

  13. Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm Phoenix canariensis1[OPEN

    PubMed Central

    Bartuce, Allison; Free, Heather C.A.; Smith, Bronwen G.

    2017-01-01

    The cell walls of leaf base tissues of the Canary Island date palm (Phoenix canariensis) contain lignins with the most complex compositions described to date. The lignin composition varies by tissue region and is derived from traditional monolignols (ML) along with an unprecedented range of ML conjugates: ML-acetate, ML-benzoate, ML-p-hydroxybenzoate, ML-vanillate, ML-p-coumarate, and ML-ferulate. The specific functions of such complex lignin compositions are unknown. However, the distribution of the ML conjugates varies depending on the tissue region, indicating that they may play specific roles in the cell walls of these tissues and/or in the plant’s defense system. PMID:28894022

  14. NASA Dryden aircraft and avionics technicians install the nose cone on an inert Phoenix missile prior to a fit check on the center's F-15B research aircraft.

    NASA Image and Video Library

    2006-11-13

    NASA Dryden aircraft and avionics technicians (from left) Bryan Hookland, Art Cope, Herman Rijfkogel and Jonathan Richards install the nose cone on a Phoenix missile prior to a fit check on the center's F-15B research aircraft.

  15. Does the spatial arrangement of vegetation and anthropogenic land cover features matter? Case studies of urban warming and cooling in Phoenix and Las Vegas

    NASA Astrophysics Data System (ADS)

    Myint, S. W.; Zheng, B.; Fan, C.; Kaplan, S.; Brazel, A.; Middel, A.; Smith, M.

    2014-12-01

    While the relationship between fractional cover of anthropogenic and vegetation features and the urban heat island has been well studied, the effect of spatial arrangements (e.g., clustered, dispersed) of these features on urban warming or cooling are not well understood. The goal of this study is to examine if and how spatial configuration of land cover features influence land surface temperatures (LST) in urban areas. This study focuses on Phoenix, AZ and Las Vegas, NV that have undergone dramatic urban expansion. The data used to classify detailed urban land cover types include Geoeye-1 (Las Vegas) and QuickBird (Phoenix). The Geoeye-1 image (3 m resolution) was acquired on October 12, 2011 and the QuickBird image (2.4 m resolution) was taken on May 29, 2007. Classification was performed using object based image analysis (OBIA). We employed a spatial autocorrelation approach (i.e., Moran's I) that measures the spatial dependence of a point to its neighboring points and describes how clustered or dispersed points are arranged in space. We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on June 10, 2011 and nighttime on October 17, 2011) and Las Vegas (daytime on July 6, 2005 and nighttime on August 27, 2005) to examine daytime and nighttime LST with regards to the spatial arrangement of anthropogenic and vegetation features. We spatially correlate Moran's I values of each land cover per surface temperature, and develop regression models. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, a clustered spatial arrangement of anthropogenic land-cover features, especially impervious surfaces, significantly elevates surface temperatures. Results from this study suggest that the spatial configuration of anthropogenic and vegetation features influence urban warming and cooling.

  16. Phoenix Magnetic Properties Experiments Using the Surface Stereo Imager and the MECA Microscopy Station

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Drube, L.; Falkenberg, T. V.; Haspang, M. P.; Ellehoj, M.; Leer, K.; Olsen, L. D.; Goetz, W.; Hviid, S. F.; Gunnlaugsson, H. P.; Hecht, M. H.; Parrat, D.; Lemmon, M. T.; Morris, R. V.; Pike, T.; Sykulska, H.; Vijendran, S.; Britt, D.; Staufer, U.; Marshall, J.; Smith, P. H.

    2008-12-01

    Phoenix carries as part of its scientific payload a series of magnetic properties experiments designed to utilize onboard instruments for the investigation of airborne dust, air-fall samples stirred by the retro-rockets of the lander, and sampled surface and sub-surface material from the northern plains of Mars. One of the aims of these experiments on Phoenix is to investigate any possible differences between airborne dust and soils found on the northern plains from similar samples in the equatorial region of Mars. The magnetic properties experiments are designed to control the pattern of dust attracted to or accumulated on the surfaces to enable interpretation of these patterns in terms of certain magnetic properties of the dust forming the patterns. The Surface Stereo Imager (SSI) provides multi-spectral information about dust accumulated on three iSweep targets on the lander instrument deck. The iSweeps utilize built in permanent magnets and 6 different background colors for the dust compared to only 1 for the MER sweep magnet. Simultaneously these iSweep targets are used as in-situ radiometric calibration targets for the SSI. The visible/near-infrared spectra acquired so far are similar to typical Martian dust and soil spectra. Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be estimated. High resolution images (4 micrometers/px) acquired by the Optical Microscope (OM) showed subtle differences between different soil samples in particle size distribution, color and morphology. Most samples contain (typically 50 micrometer) large, subrounded particles that are substantially magnetic. The colors of these particles range from red, brown to (almost) black. Based on results from the Mars Exploration Rovers, these dark particles are believed to be enriched in magnetite. Occasionally, also very bright, whitish particles were found on the magnet substrates, likely held by cohesion forces to the magnet

  17. Martian airfall dust on smooth, inclined surfaces as observed on the Phoenix Mars Lander telltale mirror

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Ha, Taesung; Lemmon, Mark T.; Gunnlaugsson, Haraldur Páll

    2015-10-01

    The telltale mirror, a smooth inclined surface raised over 1 m above the deck of the Phoenix Mars Lander, was observed by the Surface Stereo Imager (SSI) several times per sol during the Phoenix Mars Lander mission. These observations were combined with a radiative transfer model to determine the thickness of dust on the wind telltale mirror as a function of time. 239 telltale sequences were analyzed and dustiness was determined on a diurnal and seasonal basis. The thickness of accumulated dust did not follow any particular diurnal or seasonal trend. The dust thickness on the mirror over the mission was 0.82±0.39 μm, which suggests a similar thickness to the modal scattering particle diameter. This suggests that inclining a surface beyond the angle of repose and polishing it to remove surface imperfections is an effective way to mitigate the accumulation of dust to less than a micron over a wide range of meteorological conditions and could be beneficial for surfaces which can tolerate some dust but not thick accumulations, such as solar panels. However, such a surface will not remain completely dust free through this action alone and mechanical or electrical clearing must be employed to remove adhered dust if a pristine surface is required. The single-scattering phase function of the dust on the mirror was consistent with the single-scattering phase function of martian aerosol dust at 450 nm, suggesting that this result is inconsistent with models of the atmosphere which require vertically or horizontally separated components or broad size distributions to explain the scattering behavior of these aerosols in the blue. The single-scattering behavior of the dust on the mirror is also consistent with Hapke modeling of spherical particles. The presence of a monolayer of particles would tend to support the spherical conclusion: such particles would be most strongly adhered electrostatically.

  18. Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1982-01-01

    The interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS 7-5/7+5) for five planting dates of wheat for 1978-79 and 1979-80 in Phoenix. Intercepted PAR was calculated from a model driven by leaf area index and stage of growth. Linear relationships were found between greenness and normalized difference with a separate model representing growth and senescence of the crop. Normalized difference was a significantly better model and would be easier to apply than the empirically derived greenness parameter. For the leaf area growth portion of the season the model between PAR interception and normalized difference was the same over years, however, for the leaf senescence the models showed more variability due to the lack of data on measured interception in sparse canopies. Normalized difference could be used to estimate PAR interception directly for crop growth models.

  19. 76 FR 51462 - Notice of Release of an Easement Restriction at Phoenix-Mesa Gateway Airport, Mesa, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ...The Federal Aviation Administration (FAA) proposes to rule and invites public comment on the application for a release of a U.S. Air Force easement restriction covering 52.6 acres of property abutting Phoenix-Mesa Gateway, Mesa, Arizona, from all conditions contained in a grant of an easement, since the easement is not needed for civilian airport purposes. In exchange for the easement, the airport will receive 19 acres of land and a new avigation easement. Reuse of the land under the easement will remain compatible and not interfere with the airport or its operation. The interest of civil aviation is properly served by the release.

  20. Mid-Level Soil Sample for Oven Number Seven

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Soil from a sample called Burning Coals was delivered through the doors of cell number seven (left) of the Thermal and Evolved-Gas Analyzer on NASA's Phoenix Mars Lander on Aug. 20, 2008, during the 85th Martian day, or sol, since Phoenix landed.

    This image from Phoenix's Robotic Arm Camera shows some of the soil on the screen beneath the doors. One of the cell's two doors is fully open, the other partially open.

    This soil sample comes from an intermediate depth between the ground surface and the hard, underground icy layer at the Phoenix site.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Learning to Live on a Mars Day: Fatigue Countermeasures during the Phoenix Mars Lander Mission

    PubMed Central

    Barger, Laura K.; Sullivan, Jason P.; Vincent, Andrea S.; Fiedler, Edna R.; McKenna, Laurence M.; Flynn-Evans, Erin E.; Gilliland, Kirby; Sipes, Walter E.; Smith, Peter H.; Brainard, George C.; Lockley, Steven W.

    2012-01-01

    Study Objectives: To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Design: Operational field study. Setting: PML Science Operations Center. Participants: Scientific and technical personnel supporting PML mission. Interventions: Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Measurements and Results: Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P < 0.001). Self-reported levels of fatigue and sleepiness also significantly increased when work was scheduled at an inappropriate circadian phase (P < 0.001). Prolonged wakefulness (≥ 21 h) was associated with a decline in performance and alertness (P < 0.03 and P < 0.0001, respectively). Conclusions: The ability of the participants to adapt successfully to the Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions. Citation: Barger LK; Sullivan JP; Vincent AS; Fiedler ER; McKenna LM; Flynn-Evans EE

  2. Effect of date (Phoenix dactylifera L.) seed extract on stability of olive oil.

    PubMed

    Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2015-02-01

    In this study, the antioxidant effect of date (Phoenix dactylifera L., Arecaceae) seed extracts at different concentrations (0.5 %, 1.0 % and 1.5 %) on the oxidative stability of olive oil at 60 °C was determined. Butylated hydroxyanisole (BHA) was used as positive control in the experiment. All extracts exhibited antioxidant activity compared to BHA up to 21 days. When antioxidant effect of extract concentrations were compared with BHA, the effect of 0.5 % extract concentration was more remarkable for olive oil up to 21 days. After 14 days of assay, all of seed extracts was effective at 60 °C in comparison with control. On the other hand, an important increase was observed in both the peroxide and free fatty acidity values during the experiment period. It concluded that date seed extract could be used as a oxidative inhibitor agent in oil and oil products.

  3. River Rampage: Navigating Your Off-Site Adventure.

    ERIC Educational Resources Information Center

    Wheat, Ann; Munoz-Weingarten, Sandy

    1996-01-01

    The City of Phoenix offers a five-day river-based camping experience to at-risk and disabled teens. Describes how professional river outfitters are contracted to run the trips, staffing considerations, liability and safety considerations, and camper orientation. Evaluation showed that participants received lasting measurable benefits, including…

  4. Supernova Light Curves and Spectra from Two Different Codes: Supernu and Phoenix

    NASA Astrophysics Data System (ADS)

    Van Rossum, Daniel R; Wollaeger, Ryan T

    2014-08-01

    The observed similarities between light curve shapes from Type Ia supernovae, and in particular the correlation of light curve shape and brightness, have been actively studied for more than two decades. In recent years, hydronamic simulations of white dwarf explosions have advanced greatly, and multiple mechanisms that could potentially produce Type Ia supernovae have been explored in detail. The question which of the proposed mechanisms is (or are) possibly realized in nature remains challenging to answer, but detailed synthetic light curves and spectra from explosion simulations are very helpful and important guidelines towards answering this question.We present results from a newly developed radiation transport code, Supernu. Supernu solves the supernova radiation transfer problem uses a novel technique based on a hybrid between Implicit Monte Carlo and Discrete Diffusion Monte Carlo. This technique enhances the efficiency with respect to traditional implicit monte carlo codes and thus lends itself perfectly for multi-dimensional simulations. We show direct comparisons of light curves and spectra from Type Ia simulations with Supernu versus the legacy Phoenix code.

  5. Surface Stereo Imager on Mars, Face-On

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image is a view of NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) as seen by the lander's Robotic Arm Camera. This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The mast-mounted SSI, which provided the images used in the 360 degree panoramic view of Phoenix's landing site, is about 4 inches tall and 8 inches long. The two 'eyes' of the SSI seen in this image can take photos to create three-dimensional views of the landing site.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Revealing Thermal Instabilities in the Core of the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2017-08-01

    The Phoenix cluster is the most relaxed cluster known, and hosts the strongest cool core of any cluster yet discovered. At the center of this cluster is a massive starburst galaxy, with a SFR of 500-1000 Msun/yr, seemingly satisfying the early cooling flow predictions, despite the presence of strong AGN feedback from the central supermassive black hole. Here we propose deep narrow-band imaging of the central 120 kpc of the cluster, to map the warm (10^4K) ionized gas via the [O II] emission line. In low-z clusters, such as Perseus and Abell 1795, the warm, ionized phase is of critical importance to map out thermal instabilities in the hot gas, and maps of Halpha and [O II] have been used for decades to understand how (and how not) cooling proceeds in the intracluster medium. The data proposed for here, combined with deep ALMA data, a recently-approved Large Chandra Program, and recently-approved multi-frequency JVLA data, will allow us to probe the cooling ICM, the cool, filamentary gas, the cold molecular gas, the star-forming population, and the AGN jets all on scales of <10 kpc. This multi-observatory campaign, focusing on the most extreme cooling cluster, will lead to a more complete understanding of how and why thermal instabilities develop in the hot ICM of cool core clusters.

  7. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the phoenix metropolitan region of USA

    NASA Astrophysics Data System (ADS)

    Pope, Ronald; Wu, Jianguo; Boone, Christopher

    2016-11-01

    Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.

  8. Tissue and cellular localization of tannins in Tunisian dates (Phoenix dactylifera L.) by light and transmission electron microscopy.

    PubMed

    Hammouda, Hédi; Alvarado, Camille; Bouchet, Brigitte; Kalthoum-Chérif, Jamila; Trabelsi-Ayadi, Malika; Guyot, Sylvain

    2014-07-16

    A histological approach including light microscopy and transmission electron microscopy (TEM) was used to provide accurate information on the localization of condensed tannins in the edible tissues and in the stone of date fruits (Phoenix dactylifera L.). Light microscopy was carried out on fresh tissues after staining by 4-dimethylaminocinnamaldehyde (DMACA) for a specific detection of condensed tannins. Thus, whether under light microscopy or transmission electron microscopy (TEM), results showed that tannins are not located in the epidermis but more deeply in the mesocarp in the vacuole of very large cells. Regarding the stones, tannins are found in a specific cell layer located at 50 μm from the sclereid cells of the testa.

  9. Antileishmanial Activity of Date (Phoenix dactylifera L) Fruit and Pit Extracts In Vitro.

    PubMed

    Albakhit, Sedighe; Khademvatan, Shahram; Doudi, Monir; Foroutan-Rad, Masoud

    2016-10-01

    Leishmaniasis is considered as a major public health problem worldwide. Current drugs in treatment of leishmaniasis have some limitations; thus, the current study was aimed to assess the methanolic extracts of pit and fruit of Phoenix dactylifera against Leishmania major promastigotes. L major promastigotes were cultured in RPMI 1640 and incubated at 25°C ± 1°C for 24, 48, and 72 hours. For obtaining the IC50 (half maximal inhibitory concentration) value, MTT assay was employed. Furthermore, promastigotes were examined in terms of morphology under light microscope. About 48 hours after treatment, IC50s were estimated 23 μg/mL and 500 mg/mL for methanolic extracts of pit and fruit of P dactylifera, respectively. Both extracts exhibited a dose and time-dependent antileishmanial activity against L major parasites. Also, some visible morphological changes were seen. This finding revealed both date fruit and pit, are effective against L major promastigotes. Further studies should be designed in future based on apoptosis induction in vitro and in vivo. © The Author(s) 2016.

  10. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm)

    PubMed Central

    Safronov, Omid; Kreuzwieser, Jürgen; Haberer, Georg; Alyousif, Mohamed S.; Schulze, Waltraud; Al-Harbi, Naif; Arab, Leila; Ache, Peter; Stempfl, Thomas; Kruse, Joerg; Mayer, Klaus X.; Hedrich, Rainer; Rennenberg, Heinz

    2017-01-01

    Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera, under mild heat, drought and combined heat and drought by transcriptomic and metabolomic profiling. In transcriptomics data, combined heat and drought resembled heat response, whereas in metabolomics data it was more similar to drought. In both conditions, soluble carbohydrates, such as fucose, and glucose derivatives, were increased, suggesting a switch to carbohydrate metabolism and cell wall biogenesis. This result is consistent with the evidence from transcriptomics and cis-motif analysis. In addition, transcriptomics data showed transcriptional activation of genes related to reactive oxygen species in all three conditions (drought, heat, and combined heat and drought), suggesting increased activity of enzymatic antioxidant systems in cytosol, chloroplast and peroxisome. Finally, the genes that were differentially expressed in heat and combined heat and drought stresses were significantly enriched for circadian and diurnal rhythm motifs, suggesting new stress avoidance strategies. PMID:28570677

  11. One Day Every 216 Years, Three Days Each Decan. Rebirth Cycle of Pythagoras, Phoenix, Hazon Gabriel, and Christian Dogma of Resurrection Can Be Explained by the Metonic Cycle

    NASA Astrophysics Data System (ADS)

    Rothwangl, S.

    2009-08-01

    This article explains how the Metonic cycle is at the base of the period of 216 years Pythagoras believed in being reborn after that period. It shows how this period calendrically is related to other mythological worldviews such as the Phoenix myth, the Hebrean Hazon Gabriel, and the Christian dogma of resurrection on the third day.

  12. A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.

    We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less

  13. Perchlorate Found by Phoenix Could Provide a Mobile Brine Sludge at the Bed of Mars Northern Ice Cap that Would Allow Flow with Very Low Basal Temperatures: Possible Mechanism for Water Table Re-Charge

    NASA Astrophysics Data System (ADS)

    Fisher, D. A.; Hecht, M.; Kounaves, S.; Catling, D.

    2009-03-01

    The north cap of Mars has basal temperature that precludes the flow of ice. Phoenix discovered polar soils contain perchlorate salts. These salts depress the melting point so it could form a sludge that provides a mobile bed that moves the ice outwards.

  14. Surface Stereo Imager on Mars, Side View

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image is a view of NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) as seen by the lander's Robotic Arm Camera. This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The mast-mounted SSI, which provided the images used in the 360 degree panoramic view of Phoenix's landing site, is about 4 inches tall and 8 inches long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Electric and hybrid vehicle program; Site Operator Program

    NASA Astrophysics Data System (ADS)

    Warren, J. F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  16. Are Right Wing Extremists in Scandinavia a Threat to Government Personnel and the Societal Mainstream? A Prognosis.

    DTIC Science & Technology

    2001-04-12

    football teams and pop groups make appeals in order to awaken the politicians and the public to the threat. Moreover, numerous episodes from the...Öhman, was killed by a handful of immigrants, and almost at the same time neo-Nazis killed a punk , Ronny Landin. The persons convicted of killing the...terms the person killing the neo-Nazi, while doing the opposite concerning the neo-Nazi killing the punk . In other words, in one case the perpetrators

  17. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.

    PubMed

    Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A

    2011-10-01

    Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the

  18. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development.

    PubMed

    Xin, Chengqi; Liu, Wanfei; Lin, Qiang; Zhang, Xiaowei; Cui, Peng; Li, Fusen; Zhang, Guangyu; Pan, Linlin; Al-Amer, Ali; Mei, Hailiang; Al-Mssallem, Ibrahim S; Hu, Songnian; Al-Johi, Hasan Awad; Yu, Jun

    2015-04-01

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development. Copyright © 2015. Published by Elsevier Inc.

  19. Water Planning in Phoenix: Managing Risk in the Face of Climatic Uncertainty

    NASA Astrophysics Data System (ADS)

    Gober, P.

    2009-12-01

    The Decision Center for a Desert City (DCDC) was founded in 2004 to develop scientifically-credible support tools to improve water management decisions in the face of growing climatic uncertainty and rapid urbanization in metropolitan Phoenix. At the center of DCDC's effort is WaterSim, a model that integrates information about water supply from groundwater, the Colorado River, and upstream watersheds and water demand from land use change and population growth. Decision levers enable users to manipulate model outcomes in response to climate change scenarios, drought conditions, population growth rates, technology innovations, lifestyle changes, and policy decisions. WaterSim allows users to examine the risks of water shortage from global climate change, the tradeoffs between groundwater sustainability and lifestyle choices, the effects of various policy decisions, and the consequences of delaying policy for the exposure to risk. WaterSim is an important point of contact for DCDC’s relationships with local decision makers. Knowledge, tools, and visualizations are co-produced—by scientists and policy makers, and the Center’s social scientists mine this co-production process for new insights about model development and application. WaterSim is less a static scientific product and more a dynamic process of engagement between decision makers and scientists.

  20. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.

    2014-12-01

    Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.

  1. ESTSS at 20 years: “a phoenix gently rising from a lava flow of European trauma”

    PubMed Central

    Ørner, Roderick J.

    2013-01-01

    Roderick J. Ørner, who was President between 1997 and 1999, traces the phoenix-like origins of the European Society for Traumatic Stress Studies (ESTSS) from an informal business meeting called during the 1st European Conference on Traumatic Stress (ECOTS) in 1987 to its emergence into a formally constituted society. He dwells on the challenges of tendering a trauma society within a continent where trauma has been and remains endemic. ESTSS successes are noted along with a number of personal reflections on activities that give rise to concern for the present as well as its future prospects. Denial of survivors’ experiences and turning away from survivors’ narratives by reframing their experiences to accommodate helpers’ theory-driven imperatives are viewed with alarm. Arguments are presented for making human rights, memory, and ethics core elements of a distinctive European psycho traumatology, which will secure current ESTSS viability and future integrity. PMID:23755328

  2. Localization of the magnetic field in a plasma flow in laboratory simulations of astrophysical jets at the KPF-4-PHOENIX installation

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. N.; Anan'ev, S. S.; Voitenko, D. A.; Krauz, V. I.; Astapenko, G. I.; Markoliya, A. I.; Myalton, V. V.

    2017-09-01

    The results of experiments aimed at investigating axial plasma flows forming during the compression of a current-plasma sheath are presented. These experiments were carried out at the KPF-4-PHOENIX plasma-focus installation, as part of a program of laboratory simulations of astrophysical jets. The plasma flows were generated in a discharge when the chamber was filled with the working gas (argon) at initial pressures of 0.5-2 Torr. Experimental data obtained using a magnetic probe and optical diagnostics are compared. The data obtained can be used to determine the location of trapped magnetic field relative to regions of intense optical glow in the plasma flow.

  3. Polybrominated diphenyl ether metabolism in field collected fish from the Gila River, Arizona, USA-Levels, possible sources, and patterns

    USGS Publications Warehouse

    Echols, Kathy R.; Peterman, Paul H.; Hinck, Jo Ellen; Orazio, Carl E.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) were determined in fish collected from the Gila River, Arizona, a tributary of the Colorado River in the lower part of the Colorado River Basin. Fish samples were collected at sites on the Gila River downstream from Hayden, Phoenix, and Arlington, Arizona in late summer 2003. The Gila River is ephemeral upstream of the Phoenix urban area due to dams and irrigation projects and has limited perennial flow downstream of Phoenix due to wastewater and irrigation return flows. Fifty PBDE congeners were analyzed by high resolution gas chromatography/high resolution mass spectrometry using labeled surrogate standards in composite samples of male and female common carp (Cyrpinus carpio), largemouth bass (Micropterus salmoides) and channel catfish (Ictalurus punctatus). The predominant PBDE congeners detected and quantified were 47, 100, 153, 49, 28, and 17. Concentrations of total PBDEs in these fish ranged from 1.4 to 12700 ng g-1 wet weight, which are some of the highest concentrations reported in fish from the United States. Differences in metabolism of several PBDE congeners by carp is clear at the Phoenix site; congeners with at least one ring of 2,4,5-substitution are preferentially metabolized as are congeners with 2,3,4-substitution.

  4. Nighttime Clouds in Martian Arctic (Accelerated Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    An angry looking sky is captured in a movie clip consisting of 10 frames taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander.

    The clip accelerates the motion. The images were take around 3 a.m. local solar time at the Phoenix site during Sol 95 (Aug. 30), the 95th Martian day since landing.

    The swirling clouds may be moving generally in a westward direction over the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Mahaffy, P. R.; Atreya, S.; Pavlov, A. A.; Trainer, M.; Webster, C. R.; Wong, M.

    2014-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments.

  6. Date (Phoenix dactylifera L.) fruit soluble phenolics composition and anti-atherogenic properties in nine Israeli varieties.

    PubMed

    Borochov-Neori, Hamutal; Judeinstein, Sylvie; Greenberg, Amnon; Volkova, Nina; Rosenblat, Mira; Aviram, Michael

    2013-05-08

    Date (Phoenix dactylifera L.) fruit soluble phenolics composition and anti-atherogenic properties were examined in nine diverse Israeli grown varieties. Ethanol and acetone extracts of 'Amari', 'Barhi', 'Deglet Noor', 'Deri', 'Hadrawi', 'Hallawi', 'Hayani', 'Medjool', and 'Zahidi' fruit were analyzed for phenolics composition by RP-HPLC and tested for anti-atherogenicity by measuring their effects on LDL susceptibility to copper ion- and free radical-induced oxidation, and on serum-mediated cholesterol efflux from macrophages. The most frequently detected phenolics were hydroxybenzoates, hydroxycinnamates, and flavonols. Significant differences in phenolics composition were established between varieties as well as extraction solvents. All extracts inhibited LDL oxidation, and most extracts also stimulated cholesterol removal from macrophages. Considerable varietal differences were measured in the levels of the bioactivities. Also, acetone extracts exhibited a significantly higher anti-atherogenic potency for most varieties. The presence of soluble ingredients with anti-atherogenic capacities in dates and the possible involvement of phenolics are discussed.

  7. First article test noise survey of the A/F32T-9 large turbo fan engine enclosed noise suppressor system, Sky Harbor IAP (International Airport), Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffery C.; Fairman, Terry M.

    1987-06-01

    The A/F32T-9 Large Turbofan Engine, Enclosed Noise Suppressor System (T-9 NSS) at Sky Harbor International Airport, Phoenix, Arizona was surveyed to determine noise levels at 100 meters. With an F101 engine operating at afterburner power the highest measured Overall Sound Level, A-Weighted (OASLA) was 88.7 dB(A). The measured OASLA values exceeded the 77 dB(A) criterion at all but five of the twenty-four sampling positions.

  8. Educating Homeless Children. Hearing before the Subcommittee on Early Childhood, Youth and Families of the Committee on Education and the Workforce. House of Representatives, One Hundred Sixth Congress, Second Session (Phoenix, Arizona, September 5, 2000).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and the Workforce.

    This hearing before the Subcommittee on Early Childhood, Youth and Families of the Committee on Education and the Workforce, House of Representatives, which was held in Phoenix, Arizona, focused on ensuring equal educational opportunities for homeless children. After an opening statement by the Honorable Matt Solomon, Subcommittee on Early…

  9. Molecular Identification of Sex in Phoenix dactylifera Using Inter Simple Sequence Repeat Markers.

    PubMed

    Al-Ameri, Abdulhafed A; Al-Qurainy, Fahad; Gaafar, Abdel-Rhman Z; Khan, Salim; Nadeem, M

    2016-01-01

    Early sex identification of Date Palm (Phoenix dactylifera L.) at seedling stage is an economically desirable objective, which will significantly increase the profits of seed based cultivation. The utilization of molecular markers at this stage for early and rapid identification of sex is important due to the lack of morphological markers. In this study, a total of two hundred Inter Simple Sequence Repeat (ISSR) primers were screened among male and female Date palm plants to identify putative sex-specific marker, out of which only two primers (IS_A02 and IS_A71) were found to be associated with sex. The primer IS_A02 produced a unique band of size 390 bp and was found clearly in all female plants, while it was absent in all male plants. Contrary to this, the primer IS_A71 produced a unique band of size 380 bp and was clearly found in all male plants, whereas it was absent in all the female plants. Subsequently, these specific fragments were excised, purified, and sequenced for the development of sequence specific markers further in future for the implementation on dioecious Date Palm for sex determination. These markers are efficient, highly reliable, and reproducible for sex identification at the early stage of seedling.

  10. Avian Hosts of West Nile Virus in Arizona

    PubMed Central

    Komar, Nicholas; Panella, Nicholas A.; Young, Ginger R.; Brault, Aaron C.; Levy, Craig E.

    2013-01-01

    West Nile virus (WNV) causes sporadic outbreaks of human encephalitis in Phoenix, Arizona. To identify amplifying hosts of WNV in the Phoenix area, we blood-sampled resident birds and measured antibody prevalence following an outbreak in the East Valley of metropolitan Phoenix during summer, 2010. House sparrow (Passer domesticus), house finch (Haemorhous mexicanus), great-tailed grackle (Quiscalus mexicanus), and mourning dove (Zenaida macroura) accounted for most WNV infections among locally resident birds. These species roost communally after early summer breeding. In September 2010, Culex vector-avian host contact was 3-fold greater at communal bird roosts compared with control sites, as determined by densities of resting mosquitoes with previous vertebrate contact (i.e., blood-engorged or gravid mosquitoes). Because of the low competence of mourning doves, these were considered weak amplifiers but potentially effective free-ranging sentinels. Highly competent sparrows, finches, and grackles were predicted to be key amplifying hosts for WNV in suburban Phoenix. PMID:23857022

  11. Mars: Periglacial Morphology and Implications for Future Landing Sites

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Schurmeier, Lauren; McKay, Christopher; Davila, Alfonso; Stoker, Carol; Marinova, Margarita; Wilhelm, Mary Beth

    2015-01-01

    At the Mars Phoenix landing site and in much of the Martian northern plains, there is ice-cemented ground beneath a layer of dry permafrost. Unlike most permafrost on Earth, though, this ice is not liquid at any time of year. However, in past epochs at higher obliquity the surface conditions during summer may have resulted in warmer conditions and possible melting. This situation indicates that the ice-cemented ground in the north polar plains is likely to be a candidate for the most recently habitable place on Mars as near-surface ice likely provided adequate water activity approximately 5 Myr ago. The high elevation Dry Valleys of Antarctica provide the best analog on Earth of Martian ground ice. These locations are the only places on Earth where ice-cemented ground is found beneath dry permafrost. The Dry Valleys are a hyper-arid polar desert environment and in locations above 1500 m elevation, such as University Valley, air temperatures do not exceed 0 C. Thus, similarly to Mars, liquid water is largely absent here and instead the hydrologic cycle is dominated by frozen ice and vapor phase processes such as sublimation. These conditions make the high elevation Dry Valleys a key Mars analog location where periglacial processes and geomorphic features can be studied in situ. This talk will focus on studies of University Valley as a Mars analog for periglacial morphology and ice stability. We will review a landing site selection study encompassing this information gleaned from the Antarctic terrestrial analog studies plus Mars spacecraft data analysis to identify candidate landing sites for a future mission to search for life on Mars.

  12. Crucible of Creativity: Testing Public Outreach Activities at the Phoenix Comicon

    NASA Astrophysics Data System (ADS)

    Horodyskyj, L.

    2015-12-01

    The Phoenix Comicon (PCC) is a growing four-day pop culture event that features guests, costuming, exhibits, and discussion panels for popular sci-fi, fantasy, horror, and anime franchises. The 2014 and 2015 shows (which drew 75,000+ unique attendees each) featured a science programming track coordinated and organized by Horodyskyj. The track consisted of discussion panels, mixers, shows, interactive displays, and signature events (over 30 hours of programming each year). Topics ranged from planetary sciences to biotechnology to artificial intelligence and event staff were recruited from all levels of experience in academia, industry, and STEM outreach. The PCC science programming track for both 2014 and 2015 received very positive feedback from the audience, PCC management, and even scientists who participated in the event. Panelists and staff received frequent unsolicited praise about the content and events, and surveys showed requests for more science content in future years. Demand for good science programming, especially the kind that links the audience to local scientists, is high. The unique organizational structure of PCC, which draws heavily on the fan community rather than industry professionals, provides a rich test bed for public outreach activities generated by scientists themselves. In 2014, we tested science-based game shows, such as the bloody Exoplanet Survivor. In 2015, we ran a science interactivity booth and an interactive stage show about forensics based on the BBC series Sherlock. I will detail some of the successes and failures of these various events and what we're planning for 2016.

  13. Morning Frost on Martian Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A thin layer of water frost is visible on the ground around NASA's Phoenix Mars Lander in this image taken by the Surface Stereo Imager at 6 a.m. on Sol 79 (August 14, 2008), the 79th Martian day after landing. The frost begins to disappear shortly after 6 a.m. as the sun rises on the Phoenix landing site.

    The sun was about 22 degrees above the horizon when the image was taken, enhancing the detail of the polygons, troughs and rocks around the landing site.

    This view is looking east southeast with the lander's eastern solar panel visible in the bottom lefthand corner of the image. The rock in the foreground is informally named 'Quadlings' and the rock near center is informally called 'Winkies.'

    This false color image has been enhanced to show color variations.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Safety and effectiveness of the Phoenix Atherectomy System in lower extremity arteries: Early and midterm outcomes from the prospective multicenter EASE study.

    PubMed

    Davis, Thomas; Ramaiah, Venkatesh; Niazi, Khusrow; Martin Gissler, Hans; Crabtree, Tami

    2017-12-01

    Objectives To evaluate the novel Phoenix Atherectomy System as percutaneous treatment of de novo and restenotic infrainguinal arterial lesions. Methods This prospective, multicenter, nonrandomized investigational device exemption trial was conducted across 16 US and German centers between August 2010 and April 2013. Intention-to-treat enrollment was 128 patients (mean age: 71.8 years, 59% male) with 149 lesions (mean length: 34 mm, mean diameter stenosis: 89.5%), and the primary analysis per-protocol population consisted of 105 patients with 123 lesions. The primary efficacy endpoint, technical success, was the achievement of acute debulking with a post-atherectomy residual diameter stenosis ≤50% (before adjunctive therapy). The primary safety endpoint was the major adverse event (MAE) rate through 30 days. Results For the primary analysis per-protocol population, the rate of lesion technical success was 95.1% (117/123), with the lower limit of the 95% CI 90.6%, meeting the prospectively established target performance goal of ≥86%. After post-atherectomy adjunctive therapy, residual stenosis was ≤30% for 99.2% (122/123) of lesions (mean final diameter stenosis 10.5%). Improvement of ≥1 Rutherford class occurred for 74.5% of patients through 30 days and for 80% through six months. MAEs were experienced by 5.7% (6/105) of patients through 30 days (with the upper limit of the 95% CI 11.0%, meeting the target performance goal of <20%), and 16.8% through six months. Six-month freedom from TLR and TVR was 88.0% and 86.1%, respectively. Conclusions Based on the high rate of technical success and the low rates of MAEs through six months, the Phoenix Atherectomy System is safe and effective for the debulking of lower-extremity arterial lesions. ClinicalTrials.gov identifier NCT01541774.

  15. Late-summer Martian Dust Storm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an image of Mars taken from orbit by the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI). The Red Planet's polar ice-cap is in the middle of the image. Captured in this image is a 37,000 square-kilometer (almost 23,000 miles) dust storm that moved counter-clockwise through the Phoenix landing site on Oct 11, 2008, or Sol 135 of the mission.

    Viewing this image as if it were the face of a clock, Phoenix is shown as a small white dot, located at about 10 AM. The storm, which had already passed over the landing site earlier in the day, is located at about 9:30 AM.

  16. The Phoenix stream: A cold stream in the southern hemisphere

    DOE PAGES

    Balbinot, E.

    2016-03-17

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  17. Source apportionment of particulate organic matter using infrared spectra at multiple IMPROVE sites

    NASA Astrophysics Data System (ADS)

    Kuzmiakova, A.; Dillner, A. M.; Takahama, S.

    2016-12-01

    As organic aerosol is a dominant contributor to air pollution and radiative forcing in many regions in the United States, characterizing its composition and apportioning the organic mass to its major sources provides insight into atmospheric processes and guidance for decreasing its abundance. National networks, such as Interagency Monitoring of Protected Visual Environment (IMPROVE), provide multi-site and multi-year particulate matter samples useful for evaluating sources over all four seasons. To this end, our study focuses on apportioning the particulate organic matter (OM) to specific anthropogenic and biological processes from year-long infrared aerosol measurements collected at six IMPROVE sites (five national park sites and one urban site) during 2011. Pooling these organic aerosol samples into one dataset, we apply factor and cluster analyses to extract four chemical factors (two dominated by processed emissions, one dominated by hydroxyl groups, and one by hydrocarbons) and ascribe each factor to a specific source depending on the site and season. We also present a method to characterize measurement uncertainty in infrared instrumental analysis and investigate sensitivity analysis in generated factors. In Phoenix (the urban site) we find the majority (80-95%) of the OM consisted of anthropogenic activities, such as traffic emissions, fossil fuel combustion (both all year long), and residential wood burning (fall to winter). Mineral dust emissions accounted for the rest of OM (5-20%). At the National Park sites the OM concentration was lower on average and consisted of marine and dust aerosols, summertime biomass burning and biogenic aerosols, processed fossil fuel combustion, and emissions from ships and oil refineries. Our study highlights the potential for further site-specific or multi-year aerosol characterization in the context of a long-term atmospheric sampling program to quantify sources of organic particles impacting air quality, aid in policy

  18. Sensitivity of summer climate to anthropogenic land-cover change over the Greater Phoenix, AZ, region

    USGS Publications Warehouse

    Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P.

    2008-01-01

    This work evaluates the first-order effect of land-use/land-cover change (LULCC) on the summer climate of one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, AZ, region. High-resolution-2-km grid spacing-Regional Atmospheric Modeling System (RAMS) simulations of three "wet" and three "dry" summers were carried out for two different land-cover reconstructions for the region: a circa 1992 representation based on satellite observations, and a hypothetical land-cover scenario where the anthropogenic landscape of irrigated agriculture and urban pixels was replaced with current semi-natural vegetation. Model output is evaluated with respect to observed air temperature, dew point, and precipitation. Our results suggest that development of extensive irrigated agriculture adjacent to the urban area has dampened any regional-mean warming due to urbanization. Consistent with previous observationally based work, LULCC produces a systematic increase in precipitation to the north and east of the city, though only under dry conditions. This is due to a change in background atmospheric stability resulting from the advection of both warmth from the urban core and moisture from the irrigated area. ?? 2008 Elsevier Ltd. All rights reserved.

  19. [Secondary Raman spectrum of beta-carotene molecule in living leaf of French phoenix tree].

    PubMed

    Zhao, Jin-tao; Zhang, Peng-xiang; Xu, Cun-ying

    2002-10-01

    Under visible incidence light 514.5 nm, the Raman scattering spectrum from the beta-carotene molecule in the leaf was directly obtained after it was immediately collected from French phoenix tree without any preparing the sample but cleaning. It is very easy to collect the secondary Raman lines addition to the first Raman spectrum in situ by micro Raman. By careful comparing and analyzing the Raman lines between 2,000-3,100 cm-1 and below 2,000 cm-1 regions, we obtained the correlated relation of the first and secondary Raman lines. The study results indicated that there is no damage to the structure and configuration of beta-carotene molecule in the live leaf by controlling laser power on the sample surface and integrating time for Raman signal, but large power laser or long time irradiation on the live sample would cause very strong fluorescence background in Raman spectrum which indicated that there is a photo damage in the center of photo reaction. The Micro Raman would become one of possible in situ methods for investigating live plant molecules growing up in different environment. At last we proposed and discussed the advantages and limits in micro Raman when it is applied to investigating live molecules in botany field.

  20. Water Hammer Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for the animation

    This video shows the propulsion system on an engineering model of NASA's Phoenix Mars Lander being successfully tested. Instead of fuel, water is run through the propulsion system to make sure that the spacecraft holds up to vibrations caused by pressure oscillations.

    The test was performed very early in the development of the mission, in 2005, at Lockheed Martin Space Systems, Denver. Early testing was possible because Phoenix's main structure was already in place from the 2001 Mars Surveyor program.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. 2. William Beardsley standing along the Agua Fria River near ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. William Beardsley standing along the Agua Fria River near construction site of the Agua Fria project. Photographer James Dix Schuyler, 1903. Source: Schuyler, James D. 'Report on the Water Supply of the Agua Fria River, and the Storage Reservoir Project of the Agua Fria Water and Land Company For Irrigation in the Gila River Valley, Arizona,' (September 29, 1903). Arizona Historical Collection, Hayden Library, Arizona State University, Tempe, Arizona. (Typewritten.) - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  2. Arctic Landscape Within Reach

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, one of the first captured by NASA's Phoenix Mars Lander, shows flat ground strewn with tiny pebbles and marked by small-scale polygonal cracking, a pattern seen widely in Martian high latitudes and also observed in permafrost terrains on Earth. The polygonal cracking is believed to have resulted from seasonal contraction and expansion of surface ice.

    Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis, at 68 degrees north latitude, 234 degrees east longitude.

    This image was acquired at the Phoenix landing site by the Surface Stereo Imager on day 1 of the mission on the surface of Mars, or Sol 0, after the May 25, 2008, landing.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Spatiotemporal Patterns, Monitoring Network Design, and Environmental Justice of Air Pollution in the Phoenix Metropolitan Region: A Landscape Approach

    NASA Astrophysics Data System (ADS)

    Pope, Ronald L.

    Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity

  4. Modeling the Atmosphere of Solar and Other Stars: Radiative Transfer with PHOENIX/3D

    NASA Astrophysics Data System (ADS)

    Baron, Edward

    The chemical composition of stars is an important ingredient in our understanding of the formation, structure, and evolution of both the Galaxy and the Solar System. The composition of the sun itself is an essential reference standard against which the elemental contents of other astronomical objects are compared. Recently, redetermination of the elemental abundances using three-dimensional, time-dependent hydrodynamical models of the solar atmosphere has led to a reduction in the inferred metal abundances, particularly C, N, O, and Ne. However, this reduction in metals reduces the opacity such that models of the Sun no longer agree with the observed results obtained using helioseismology. Three dimensional (3-D) radiative transfer is an important problem in physics, astrophysics, and meteorology. Radiative transfer is extremely computationally complex and it is a natural problem that requires computation on the exascale. We intend to calculate the detailed compositional structure of the Sun and other stars at high resolution with full NLTE, treating the turbulent velocity flows in full detail in order to compare results from hydrodynamics and helioseismology, and understand the nature of the discrepancies found between the two approaches. We propose to perform 3-D high-resolution radiative transfer calculations with the PHOENIX/3D suite of solar and other stars using 3-D hydrodynamic models from different groups. While NLTE radiative transfer has been treated by the groups doing hydrodynamics, they are necessarily limited in their resolution to the consideration of only a few (4-20) frequency bins, whereas we can calculate full NLTE including thousands of wavelength points, resolving the line profiles, and solving the scattering problem with extremely high angular resolution. The code has been used for the analysis of supernova spectra, stellar and planetary spectra, and for time-dependent modeling of transient objects. PHOENIX/3D runs and scales very well on Cray

  5. Conductivity Probe Inserted in Martian Soil, Sol 46

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Thermal and Electrical Conductivity Probe (TECP), at the end of the Robotic Arm, on the 46th Martian day, or sol, of the mission (July 11, 2008).

    The TECP is inserted at a site called Vestri, which was monitored several times over the course of the mission. The probe's measurements at this site yielded evidence that water was exchanged, daily and seasonally, between the soil and atmosphere.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Do the mitochondria of malaria parasites behave like the phoenix after return in the mosquito? Regeneration of degenerated mitochondria is required for successful Plasmodium infection.

    PubMed

    Bongaerts, Ger

    2005-01-01

    Mitochondria are energy generators in eukaryotic organisms like man and the pathogenic malaria parasites, the Plasmodium spp. From the moment a mosquito-mediated malaria infection occurs in man the parasite multiplies profusely, but eventually the oxygen supply becomes the limiting factor in this process. Consequently, the parasite will increasingly generate energy (and lactic acid) from sugar fermentation. Simultaneously, the cristate structure of Plasmodium mitochondria degenerates and becomes acristate. The degenerated acristate mitochondria of mammalian Plasmodium parasites seem to be able to revitalise by transforming to cristate mitochondria inside the oxygen-rich mosquito, like the rebirth of the old phoenix. In this way the infectivity of the parasite is revitalised.

  7. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.).

    PubMed

    Yang, Meng; Zhang, Xiaowei; Liu, Guiming; Yin, Yuxin; Chen, Kaifu; Yun, Quanzheng; Zhao, Duojun; Al-Mssallem, Ibrahim S; Yu, Jun

    2010-09-15

    Date palm (Phoenix dactylifera L.), a member of Arecaceae family, is one of the three major economically important woody palms--the two other palms being oil palm and coconut tree--and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp) genome based on pyrosequencing. After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp) and small single-copy (SSC, 17,712 bp) regions separated by a pair of inverted repeats (IRs, 27,276 bp). Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes--atpF, trnA-UGC, and rrn23. Unlike most monocots, date palm has a typical cp genome similar to that of tobacco--with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts.

  8. The Complete Chloroplast Genome Sequence of Date Palm (Phoenix dactylifera L.)

    PubMed Central

    Yang, Meng; Zhang, Xiaowei; Liu, Guiming; Yin, Yuxin; Chen, Kaifu; Yun, Quanzheng; Zhao, Duojun; Al-Mssallem, Ibrahim S.; Yu, Jun

    2010-01-01

    Background Date palm (Phoenix dactylifera L.), a member of Arecaceae family, is one of the three major economically important woody palms—the two other palms being oil palm and coconut tree—and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp) genome based on pyrosequencing. Methodology/Principal Findings After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp) and small single-copy (SSC, 17,712 bp) regions separated by a pair of inverted repeats (IRs, 27,276 bp). Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes—atpF, trnA-UGC, and rrn23. Conclusions Unlike most monocots, date palm has a typical cp genome similar to that of tobacco—with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts. PMID:20856810

  9. Carbon lost and carbon gained: a study of vegetation and carbon trade-offs among diverse land uses in Phoenix, Arizona.

    PubMed

    McHale, Melissa R; Hall, Sharon J; Majumdar, Anandamayee; Grimm, Nancy B

    2017-03-01

    Human modification and management of urban landscapes drastically alters vegetation and soils, thereby altering carbon (C) storage and rates of net primary productivity (NPP). Complex social and ecological processes drive vegetation cover in cities, leading to heterogeneity in C dynamics depending on regional climate, land use, and land cover. Recent work has demonstrated homogenization in ecological processes within human-dominated landscapes (the urban convergence hypothesis) in soils and biotic communities. However, a lack of information on vegetation in arid land cities has hindered an understanding of potential C storage and NPP convergence across a diversity of ecosystem types. We estimated C storage and NPP of trees and shrubs for six different land-use types in the arid metropolis of Phoenix, Arizona, USA, and compared those results to native desert ecosystems, as well as other urban and natural systems around the world. Results from Phoenix do not support the convergence hypothesis. In particular, C storage in urban trees and shrubs was 42% of that found in desert vegetation, while NPP was only 20% of the total NPP estimated for comparable natural ecosystems. Furthermore, the overall estimates of C storage and NPP associated with urban trees in the CAP ecosystem were much lower (8-63%) than the other cities included in this analysis. We also found that C storage (175.25-388.94 g/m 2 ) and NPP (8.07-15.99 g·m -2 ·yr -1 ) were dominated by trees in the urban residential land uses, while in the desert, shrubs were the primary source for pools (183.65 g/m 2 ) and fluxes (6.51 g·m -2 ·yr -1 ). These results indicate a trade-off between shrubs and trees in arid ecosystems, with shrubs playing a major role in overall C storage and NPP in deserts and trees serving as the dominant C pool in cities. Our research supports current literature that calls for the development of spatially explicit and standardized methods for analyzing C dynamics associated with

  10. KSC-07pd1084

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  11. KSC-07pd1085

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  12. Diurnal patterns of wheat spectral reflectances and their importance in the assessment of canopy parameters from remotely sensed observations. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Pinter, P. J.; Jackson, R. D.; Idso, S. B.; Reginato, R. J. (Principal Investigator)

    1982-01-01

    Spectral reflectances of Produra wheat were measured at 13 different times of the day at Phoenix, Arizona, during April 1979 using a nadir-oriented hand-held 4-band radiometer which had bandpass characteristics similar to those on LANDSAT satellites. Different Sun altitude and azimuth angles caused significant diurnal changes in radiant return in both visible and near-IR regions of the spectrum and in several vegetation indices derived from them. The magnitude of these changes were related to different canopy architecture, percent cover and green leaf area conditions. Spectral measurements taken at each time period were well correlated with green leaf area index but the nature of the relationship changed significantly with time of day. Thus, a significant bias in the estimation of the green leaf area index from remotely sensed spectral data could occur if sun angles are not properly accounted for.

  13. Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats.

    PubMed

    Abdelaziz, Dalia H A; Ali, Sahar A; Mostafa, Mahmoud M A

    2015-06-01

    In Arabic folk medicine, the seeds of Phoenix dactylifera L. (Arecaceae) have been used to manage diabetes for many years. Few studies have reported the antidiabetic effect of P. dactylifera seeds; however, their effect on diabetic complications is still unexplored. The present study investigates the protective effect of P. dactylifera seeds against diabetic complications in rats. The aqueous suspension of P. dactylifera seeds (aqPDS) (1 g/kg/d) was orally administered to streptozotocin-induced diabetic rats for 4 weeks. The serum biochemical parameters were assessed spectrophotometrically. Furthermore, oxidative stress was examined in both liver and kidney tissues by assessment of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), reduced glutathione, superoxide dismutase (SOD), glutathione S-transferase, and catalase. Oral administration of aqPDS significantly ameliorated the elevated levels of glucose (248 ± 42 versus 508 ± 60 mg/dl), urea (32 ± 3.3 versus 48.3 ± 5.6 mg/dl), creatinine (2.2 ± 0.35 versus 3.8 ± 0.37 mg/dl), ALT (29.6 ± 3.9 versus 46.4 ± 5.9 IU/l), and AST (73.3 ± 13 versus 127.8 ± 18.7 IU/l) compared with the untreated diabetic rats. In addition to significant augmentation in the activities of antioxidant enzymes, there was reduction in TBARS and NO levels and improvement of histopathological architecture of the liver and kidney of diabetic rats. The aqPDS showed potential protective effects against early diabetic complications of both liver and kidney. This effect may be explained by the antioxidant and free radical scavenging capabilities of P. dactylifera seeds.

  14. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes

    USGS Publications Warehouse

    Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P.

    2009-01-01

    This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12??C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1??C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1??C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily

  15. Martian Dust Storm on May 18, 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This false-color polar map was generated from images obtained by the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) on May 18, 2008. It shows a large local dust storm that researchers were monitoring to see if it would affect weather conditions at NASA's Phoenix spacecraft's landing site on landing day, May 25, 2008. The landing site is labeled and marked with the yellow dot.

    The dust storm, indicated with yellow arrows in the close-up view, is the sinuous, light-colored feature to the left of the white northern polar cap at the center of the map.

    This dust storm was too early and too far away to affect the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Urban adaptation to mega-drought: Anticipatory water modeling, policy, and planning in Phoenix

    NASA Astrophysics Data System (ADS)

    Gober, P.; Sampson, D. A.; Quay, R.; White, D. D.; Chow, W.

    2016-12-01

    There is increasing interest in using the results of water models for long-term planning and policy analysis. Achieving this goal requires more effective integration of human dimensions into water modeling and a paradigm shift in the way models are developed and used. A user-defined focus argues in favor of models that are designed to foster public debate and engagement about the difficult trade-offs that are inevitable in managing complex water systems. These models also emphasize decision making under uncertainty and anticipatory planning, and are developed through a collaborative and iterative process. This paper demonstrates the use of anticipatory modeling for long-term drought planning in Phoenix, one of the largest and fastest growing urban areas in the southwestern USA. WaterSim 5, an anticipatory water policy and planning model, was used to explore groundwater sustainability outcomes for mega-drought conditions across a range of policies, including population growth management, water conservation, water banking, direct reuse of RO reclaimed water, and water augmentation. Results revealed that business-as-usual population growth, per capita use trends, and management strategies may not be sustainable over the long term, even without mega-drought conditions as years of available groundwater supply decline over the simulation period from 2000 to 2060. Adding mega-drought increases the decline in aquifer levels and increases the variability in flows and uncertainty about future groundwater supplies. Simulations that combine drought management policies can return the region to sustainable. Results demonstrate the value of long-term planning and policy analysis for anticipating and adapting to environmental change.

  17. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis.

    PubMed

    Correia, Ricardo; Gonçalves, Margarida; Nobre, Catarina; Mendes, Benilde

    2017-01-01

    The impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis was studied. Thermal treatments were performed at temperatures from 200°C to 350°C during 15 to 90min and temperature was the parameter that more influenced mass and energy yields as well as biochar composition. Torrefaction reduced moisture, volatile matter, O/C and H/C ratios of the biomass, while increasing heating value, ash content and fixed carbon. For torrefaction at 250°C or higher temperatures grindability of the biochars was significantly improved. The low volatile matter contents and high ash contents of these biochars restricts their use as solid fuels but they can be valorized otherwise. Raw biomasses and the biochars torrefied at 200°C could remove methylene blue from an aqueous solution, in fast adsorption test with a contact time of only 3s, with efficiencies higher than 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster

    DOE PAGES

    Russell, H. R.; McDonald, M.; McNamara, B. R.; ...

    2017-02-14

    We report new ALMA observations of the CO(3-2) line emission from themore » $$2.1\\pm0.3\\times10^{10}\\rm\\thinspace M_{\\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\\rm\\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.« less

  19. US Geological Survey National Computer Technology Meeting; Proceedings, Phoenix, Arizona, November 14-18, 1988

    USGS Publications Warehouse

    Balthrop, Barbara H.; Terry, J.E.

    1991-01-01

    The U.S. Geological Survey National Computer Technology Meetings (NCTM) are sponsored by the Water Resources Division and provide a forum for the presentation of technical papers and the sharing of ideas or experiences related to computer technology. This report serves as a proceedings of the meeting held in November, 1988 at the Crescent Hotel in Phoenix, Arizona. The meeting was attended by more than 200 technical and managerial people representing all Divisions of the U.S. Geological Survey.Scientists in every Division of the U.S. Geological Survey rely heavily upon state-of-the-art computer technology (both hardware and sofnuare). Today the goals of each Division are pursued in an environment where high speed computers, distributed communications, distributed data bases, high technology input/output devices, and very sophisticated simulation tools are used regularly. Therefore, information transfer and the sharing of advances in technology are very important issues that must be addressed regularly.This report contains complete papers and abstracts of papers that were presented at the 1988 NCTM. The report is divided into topical sections that reflect common areas of interest and application. In each section, papers are presented first followed by abstracts. For these proceedings, the publication of a complete paper or only an abstract was at the discretion of the author, although complete papers were encouraged.Some papers presented at the 1988 NCTM are not published in these proceedings.

  20. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology - Review.

    PubMed

    Chandrasekaran, M; Bahkali, Ali H

    2013-04-01

    The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes' employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed.

  1. EnviroAtlas - Phoenix, AZ - Domestic Water Demand per Day by U.S. Census Block Group

    EPA Pesticide Factsheets

    As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Within the EnviroAtlas Phoenix boundary, there are 53 service providers with 2000-2009 water use estimates ranging from 108 to 366 GPD.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. Dietary Supplementation of Phoenix dactylifera Seeds Enhances Performance, Immune Response, and Antioxidant Status in Broilers.

    PubMed

    El-Far, Ali H; Ahmed, Hamada A; Shaheen, Hazem M

    2016-01-01

    The date palm ( Phoenix dactylifera ) seeds were utilized in some traditional medical remedies and have been investigated for their possible health benefits. This proposed study wanted to assess the effect of date palm seeds (DPS) dietary supplementation in comparison to mannan-oligosaccharides (Bio-Mos®) and β -glucan over antioxidant and immunity events that have effect on growth and carcass performances of broilers. An aggregate of 180, one-day-old, chicks were raised in the wire-floored cages and allotted into control, Bio-Mos (0.1%  Bio-Mos), β -glucan (0.1%   β -glucan), DPS2 (2% date crushed seeds), DPS4 (4% date crushed seeds), and DPS6 (6% date crushed seeds) groups. Broilers in DPS2 and DPS4 groups showed significant variations ( P < 0.05) in relative growth rate (RGR), feed conversion ratio (FCR), and efficiency of energy utilization in comparison to control group. Moreover, all DPS fed groups showed significant increases ( P < 0.05) in serum reduced glutathione (GSH) values. Meanwhile, both serum interferon-gamma (IFN- γ ) and interleukin-2 (IL-2) levels were significantly increased ( P < 0.05) in DPS2. Consequently, obtained data revealed a substantial enhancement of performance, immunity, and antioxidant status by DPS supplementation in broiler that might be related to the antioxidant and immune-stimulant constituents of P. dactylifera seeds.

  3. KSC-07pd1090

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  4. KSC-07pd1091

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  5. Metabolism of spacecraft cleaning reagents by Mars Odyssey and Phoenix-associated Acinetobacter

    NASA Astrophysics Data System (ADS)

    Mogul, Rakesh; Barding, Gregory; Baki, Ryan; Perkins, Nicole; Lee, Sooji; Lalla, Sid; Campos, Alexa; Sripong, Kimberly; Madrid, Steve

    2016-07-01

    The metabolomic and proteomic properties that promote microbial survival in spacecraft assembly facilities are important aspects to planetary protection and astrobiology. In this presentation, we will provide molecular and biological evidence that the spacecraft-associated Acinetobacter metabolize/degrade spacecraft cleaning reagents such as ethanol, 2-propanol, and Kleenol-30. Gas chromatography-mass spectrometry (GC-MS) studies on A. radioresistens 50v1 (Mars Odyssey) show that the metabolome is dependent upon growth conditions and that ^{13}C-labeled ethanol is incorporated into metabolites such as TCA/glyoxylate cycle intermediates, amino acids, monosaccharides, and disaccharides (e.g., trehalose). In fact, plate count assays show that ethanol is a sole carbon source under minimal conditions for several Mars Phoenix and Odyssey-associated Acinetobacter strains, which may explain why the Acinetobacter are among the most abundant genera found in spacecraft assembly facilities. Biochemical analyses support the enzymatic oxidation of ethanol and 2-propanol by a membrane-bound and NAD+/PQQ-dependent alcohol dehydrogenase, with current kinetic data providing similar apparent K _{M} and maximum growth rate values of ˜5 and 8 mM ethanol, respectively. Preliminary GC-MS analysis also suggests that Kleenol-30 is degraded by A. radioresistens 50v1 when grown in ethanol mixtures. Under minimal conditions, A. radioresistens 50v1 (˜10 ^{8} cfu/mL) also displays a remarkable oxidative extremotolerance (˜2-log reduction in 10 mM hydrogen peroxide), which suggests crucial roles for metabolites associated with oxidative stress (e.g., trehalose) and the observed appreciable catalase specific activities. In conclusion, these results provide key insights into the survival strategies of spacecraft-associated Acinetobacter and emphasize the importance of characterizing the carbon metabolism of forward contaminants.

  6. Measurement of Martian boundary layer winds by the displacement of jettisoned lander hardware

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.

    2018-07-01

    Martian boundary layer wind speed and direction measurements, from a variety of locations, seasons and times, are provided. For each lander sent to Mars over the last four decades a unique record of the winds blowing during their descent is preserved at each landing site. By comparing images acquired from orbiting spacecraft of the impact points of jettisoned hardware, such as heat shields and parachutes, to a trajectory model the winds can be measured. We start our investigations with the Viking lander 1 mission and end with Schiaparelli. In-between we extract wind measurements based on observations of the Beagle 2, Spirit, Opportunity, Phoenix and Curiosity landing sites. With one exception the wind at each site during the lander's descent were found to be < 8 m s-1. High speed winds were required to explain the displacement of jettisoned hardware at the Phoenix landing site. We found a tail wind ( > 20 m s-1), blowing from the north-west was required at a high altitude ( > 2 km) together with a gust close to the surface ( < 500 m altitude) originating from the north. All in all our investigations yielded a total of ten unique wind measurements in the PBL. One each from the Viking landers and one each from Beagle 2, Spirit, Opportunity and Schiaparelli. Two wind measurements, one above about 1 km altitude and one below, were possible from observations of the Curiosity and Phoenix landing site. Our findings are consistent with a turbulent PBL in the afternoon and calm PBL in the morning. When comparing our results to a GCM we found a good match in wind direction but not for wind speed. The information provided here makes available wind measurements previously unavailable to Mars atmosphere modellers and investigators.

  7. KSC-07pd1100

    NASA Image and Video Library

    2007-05-10

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  8. KSC-07pd1067

    NASA Image and Video Library

    2007-05-08

    KENNEDY SPACE CENTER, FLA. -- The unwrapped Phoenix spacecraft is on display in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  9. KSC-07pd1108

    NASA Image and Video Library

    2007-05-11

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  10. KSC-07pd1107

    NASA Image and Video Library

    2007-05-11

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  11. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology – Review

    PubMed Central

    Chandrasekaran, M.; Bahkali, Ali H.

    2013-01-01

    The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes’ employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed. PMID:23961227

  12. A simplified Protocol to Induce Callogenesis in Protoplasts of Date Palm (Phoenix dactylifera L.) Cultivars.

    PubMed

    Titouh, Khayreddine; Khelifi, Lakhdar; Slaoui, Majda; Boufis, Nazim; Morsli, Abdelkader; Hadj Moussa, Khadidja Titouh; Makhzoum, Abdullah

    2015-03-01

    In Algeria, date palm is currently confronted to the Bayoud disease. Biotechnological tools such as protoplastsfusion can appear as an alternative to ensure rapid multiplication and improvement of this species. Callogenesis induction in protoplasts isolated from embryogenic callus of three date palm cultivars. Some factors influencing the isolation and culture of protoplasts segregated from the calli of three date palm ( Phoenix dactylifera L.) cultivars (Deglet Nour, Akerbouch and Degla Beida) were studied. Protoplasts of each cultivar were cultured on a semi-solid medium supplemented with various hormonal balances. Maceration with an enzymatic solution containing 1.5% cellulase and 1% macerozyme R10 in the presence of 0.5 M mannitol for more than 16 h with gentle agitation allows isolation of a great number of viable protoplasts. In addition, purification of protoplasts on a cushion of 21 or 25% sucrose was effective in cell debris removal and maximum recovery. The culture of isolated protoplasts on a semi-solidified Murashige and Skoog medium, with 0.3% agarose, 2 mg. L -1 2,4-D and 0.5 mg.L -1 BAP allowed good viable protoplast maintenance as well as cell wall regeneration. After more than two months of culture, cell divisions were still occurring and microcalli became visible to the naked eye, containing a large number of cells. The developed protocol can be useful for application of somatic hybridization to improve date palm cultivars.

  13. The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Stoker, Carol R.; Glass, Brian J.; Dave, Arwen I.; Davila, Alfonso F.; Heldmann, Jennifer L.; Marinova, Margarita M.; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A.; hide

    2012-01-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, 5 Myr ago. Carbon dioxide and nitrogen is present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground-ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: 1. Search for specific biomolecules that would be conclusive evidence of life. 2. A general search for organic molecules in the ground ice. 3. Determine the processes of ground ice formation and the role of liquid water. 4. Understand the mechanical properties of the Mars polar ice-cemented soil. 5. Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. And 6. Compare the elemental composition of the northern plains with mid-latitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at mid-latitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample

  14. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life.

    PubMed

    McKay, Christopher P; Stoker, Carol R; Glass, Brian J; Davé, Arwen I; Davila, Alfonso F; Heldmann, Jennifer L; Marinova, Margarita M; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A; Paulsen, Gale; Smith, Peter H; Parro, Victor; Andersen, Dale T; Hecht, Michael H; Lacelle, Denis; Pollard, Wayne H

    2013-04-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by

  15. Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada

    NASA Astrophysics Data System (ADS)

    Wang, Chuyuan; Middel, Ariane; Myint, Soe W.; Kaplan, Shai; Brazel, Anthony J.; Lukasczyk, Jonas

    2018-07-01

    The local climate zone (LCZ) classification scheme is a standardization framework to describe the form and function of cities for urban heat island (UHI) studies. This study classifies and evaluates LCZs for two arid desert cities in the Southwestern United States - Phoenix and Las Vegas - following the World Urban Database and Access Portal Tools (WUDAPT) method. Both cities are classified into seven built type LCZs and seven land-cover type LCZs at 100-m resolution using Google Earth, Saga GIS, and Landsat 8 scenes. Average surface cover properties (building fraction, impervious fraction, pervious fraction) and sky view factors of classified LCZs are then evaluated and compared to pre-defined LCZ representative ranges from the literature, and their implications on the surface UHI (SUHI) effect are explained. Results suggest that observed LCZ properties in arid desert environments do not always match the proposed value ranges from the literature, especially with regard to sky view factor (SVF) upper boundaries. Although the LCZ classification scheme was originally designed to describe local climates with respect to air temperature, our analysis shows that much can be learned from investigating land surface temperature (LST) in these zones. This study serves as a substantial new resource laying a foundation for assessing the SUHI in cities using the LCZ scheme, which could inform climate simulations at local and regional scales.

  16. Advance Inspection of NASA Next Mars Landing Site

    NASA Image and Video Library

    2017-03-29

    This map shows footprints of images taken from Mars orbit by the High Resolution Imaging Science Experiment (HiRISE) camera as part of advance analysis of the area where NASA's InSight mission will land in 2018. The final planned image of the set is targeted to fill in the yellow-outlined rectangle on March 30, 2017. HiRISE is one of six science instruments on NASA's Mars Reconnaissance Orbiter, which reached Mars in 2006 and surpassed 50,000 orbits on March 27, 2017. The map covers an area about 100 miles (160 kilometers) across. HiRISE has been used since 2006 to inspect dozens of candidate landing sites on Mars, including the sites where the Phoenix and Curiosity missions landed in 2008 and 2012. The site selected for InSight's Nov. 26, 2018, landing is on a flat plain in the Elysium Planitia region of Mars, between 4 and 5 degrees north of the equator. HiRISE images are detailed enough to reveal individual boulders big enough to be a landing hazard. The March 30 observation that completes the planned advance imaging of this landing area brings the number of HiRISE images of the area to 73. Some are pairs covering the same ground. Overlapping observations provide stereoscopic, 3-D information for evaluating characteristics such as slopes. On this map, coverage by stereo pairs is coded in pale blue, compared to the gray-green of single HiRISE image footprints. The ellipses on the map are about 81 miles (130 kilometers) west-to-east by about 17 miles (27 kilometers) north-to-south. InSight has about 99 percent odds of landing within the ellipse for which it is targeted. The three ellipses indicate landing expectations for three of the possible InSight launch dates: white outline for launch at the start of the launch period, on May 5, 2018; blue for launch on May 26, 2018; orange for launch on June 8, 2018. InSight -- an acronym for "Interior Exploration using Seismic Investigations, Geodesy and Heat Transport" -- will study the deep interior of Mars to improve

  17. TRACT 2 Frame Drop Test AT NASA Langley Research Center's Landin

    NASA Image and Video Library

    2014-05-09

    (Tract)2 Transport Rotorcraft Airframe Crash Testbed; Full Frame Drop Test: rotary wing crash worthiness, impact research at NASA Langley Research Center's Landing and Impact Research (LandIR) Facility Building 1297

  18. PRODUCTION AND TRANSPORT OF CARBON DIOXIDE IN A CONTAMINATED VADOSE ZONE: A STABLE AND RADIOACTIVE CARBON ISOTOPE STUDY

    EPA Science Inventory

    Analyses of soil gas compositions and stable and radioactive carbon isotopes in the vadose zone above an alluvial aquifer were conducted at an organic solvent disposal site in southeast Phoenix, AZ. The study investigated the source and movement of carbon dioxide above a plume of...

  19. ARC-2009-ACD09-0055-002

    NASA Image and Video Library

    2009-04-08

    Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.

  20. ARC-2009-ACD09-0055-005

    NASA Image and Video Library

    2009-04-08

    Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.

  1. ARC-2009-ACD09-0055-004

    NASA Image and Video Library

    2009-04-08

    Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.

  2. ARC-2009-ACD09-0055-003

    NASA Image and Video Library

    2009-04-08

    Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.

  3. ARC-2009-ACD09-0055-001

    NASA Image and Video Library

    2009-04-08

    Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.

  4. Martian Dust Aerosol Size and Shape as Constrained by Phoenix Lander Polarimetry

    NASA Astrophysics Data System (ADS)

    Lemmon, Mark T.; Mason, Emily L.

    2014-11-01

    Dust aerosol morphology is important to dust transport and the radiative heating of the Martian atmosphere. Previous analyses of Mars dust have shown that spherical particles are a bad analog for the dust, in terms of reproducing the distribution of scattered light. Parameterized scattering, based on laboratory observations of scattering by irregular dust particles, has been used for Viking, Pathfinder and Mars Exploration Rover data [Pollack et al., J. Geophys. Res. 100, 1995; Tomasko et al., J. Geophys. Res. 104, 1999; Lemmon et al., Science 306, 2004]. Analytical calculations have shown that cylinders are a better scattering analog than spheres [Wolff et al., J. Geophys. Res. 114, 2009]. Terrestrial studies have shown that a diverse assortment of triaxial ellipsoids is a good analog for dust aerosol [Bi et al., Applied Optics 48, 2009].The Phoenix Lander operated in the Martian arctic for 5 months of 2008, around the northern summer solstice. During the mission atmospheric optical depth was tracked through direct solar imaging by the Surface Stereo Imager (SSI). For solar longitude (Ls) 78-95 and 140-149, small dust storms dominated the weather. Low-dust conditions (optical depths <0.4) dominated during Ls 95-140, with sporadic ice clouds becoming more common after Ls 108. The SSI also obtained occasional cross-sky photometric data through several filters from 440 to 1000 nm and cross-sky polarimetry at 750 nm wavelength. Radiative transfer models of the sky radiance distribution are consistent with dust aerosols in the same 1.3-1.6 micron range reported for models of observations from previous missions. Cylinders, triaxial ellipsoids, and the parametric model can fit sky radiances; spheres cannot. The observed linear polarization, which reached 4-5% and had a similar angular distribution to Rayleigh polarization, is similar to the triaxial ellipsoid model, but not spheres or cylinders. An extension to the parametric model using 7-10% Rayleigh scattering mixed

  5. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.).

    PubMed

    Zhao, Yongli; Williams, Roxanne; Prakash, C S; He, Guohao

    2012-12-15

    Date palm (Phoenix dactylifera L.) is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding. In this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs) and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs). We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7%) were the most common, followed by tetranucleotide (10.4%) and dinucleotide motifs (9.6%). The motif AG (85.7%) was most abundant in dinucleotides, while motifs AGG (26.8%), AAG (19.3%), and AGC (16.1%) were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4%) of such ESTs had homology with known proteins. Date palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding.

  6. Nitrate Attenuation Pathways and Capacity in Urban Wetlands of Phoenix, Arizona.

    NASA Astrophysics Data System (ADS)

    Handler, A. M.; Suchy, A. K.; Grimm, N. B.; Palta, M.; Childers, D. L.; Stromberg, J. C.

    2016-12-01

    In the urban Salt River channel of Phoenix, Arizona, stormwater pipes collect urban runoff that drains directly into the dry river bed, providing a new water source that sustains perennial wetlands. Water delivered by storm drains is enriched in nitrogen, particularly nitrate (NO3-), a common surface-water pollutant. However, these systems are not planned nor are they actively managed to reduce nitrogen loads. We investigated the microbial capacity of these wetlands to reduce nitrate concentrations by examining surface-water (SW) and subsurface porewater (PW) chemistry and conducting soil incubations from dominant wetland vegetation patches. Nitrate was higher in SW than PW (mean ± S.E.: 0.23 ± 0.05 vs. 0.03 ± 0.01 ppm N-NO3-) while ammonium (NH4+) was the opposite (0.11 ± 0.02 vs. 0.47 ± 0.10 ppm N-NH4+). Dissolved organic carbon (DOC) was abundant throughout the wetland (6.0 ± 0.9 ppm), but was significantly higher in vegetated patches compared to non-vegetated patches (t-test: p=0.04). These data indicate conditions that support microbial NO3- reduction persists, especially in vegetated patches. Laboratory incubations of wetland soil treated with a high (7 ppm) and low (1 ppm) dose of NO3- consumed 0.191 ± 0.022 and 0.019 ± 0.005 mg N-NO3- hr-1 kg wet soil-1, respectively. A best-fit model showed incubations with a higher starting NO3- concentration had a higher NO3- loss rate (standardized β=0.10 ± 0.01, p<0.001) and incubations from vegetated patches had a higher NO3- loss rate than those from open patches (β=0.02 ± 0.01, p=0.003). Across patches, NH4+ increased in the high treatment incubations (t-test: p<0.001), potentially indicating the presence of dissimilatory nitrate reduction to ammonium (DNRA). These results suggest the wetlands have the capacity to both remove nitrogen via denitrification and retain it via DNRA. This study indicates unplanned, unmanaged urban wetland systems have a high capacity to attenuate NO3- delivered from the urban

  7. PSA Doubling Time Predicts for the Development of Distant Metastases for Patients Who Fail 3DCRT Or IMRT Using the Phoenix Definition.

    PubMed

    Klayton, Tracy L; Ruth, Karen; Buyyounouski, Mark K; Uzzo, Robert G; Wong, Yu-Ning; Chen, David Y T; Sobczak, Mark; Peter, Ruth; Horwitz, Eric M

    2011-01-01

    PURPOSE: PSA doubling time (PSADT) is commonly used as an indication for salvage androgen deprivation therapy (ADT) for PSA failure following RT. Previously, we had shown that PSADT of <12 months is an important predictor of distant metastasis following 3DCRT using the ASTRO definition of BF. We sought to determine if this approach is still valid using the Phoenix definition. METHODS: Eligible patients included 432 men with T1-3N0M0 prostate cancer who demonstrated PSA failure after completing definitive 3DCRT or IMRT from 1989-2005. Endpoints included freedom from distant metastasis (FDM), cause-specific survival (CSS) and overall survival (OS). PSADT was stratified by 0-6, 6-12, 12-18, 18-24, and >24 months. The median follow-up was 95 months (6-207 months). RESULTS: The 7 year FDM, CSS, and OS rates for the entire group were 73%, 77% and 52%, respectively. 7 year FDM was 50% for PSADT <6 months vs. 83% for PSADT >6 months (p=0.0001). 7 year CSS was 61% for PSADT <6 and 85% for PSADT >6 (p=0.0001). 7 year OS was 47% for PSADT <6 and 53% for PSADT >6 (p=0.04). The proportion of men with BF receiving salvage ADT with a PSADT <6 months was 59%, 6-12 was 45%, 12-18 was 42%, 18-24 was 36%, >24 was 28%. ADT was associated with improved 7 year CSS (68% vs. 46%, p=0.015). Of the 314 men with PSADT >6 months, 124 received ADT and 190 were observed. With a median follow-up of 38 months from BF, there was no demonstrable benefit to ADT in the 7 year CSS (87% vs. 79%, respectively; p=0.758). Independent predictors of FDM were PSADT (p<0.0001), GS (p=0.011), and the use of initial ADT (p=0.005). CONCLUSION: PSADT remains a significant predictor of clinical failure and CSS for men treated with 3DCRT or IMRT who fail according to the Phoenix definition. Immediate use of ADT in patients with PSADT <6 months is significantly associated with improved CSS, although the benefit is less apparent in patients with longer PSADT. These results further refine the role of PSADT in

  8. Estimación de la incerteza cinemática de los espectros obtenidos con REOSC (CAsLeo), Flamingos-2 y PHOENIX (Gemini) para observaciones de gas ionizado en galaxias

    NASA Astrophysics Data System (ADS)

    Gaspar, G.; Díaz, R. J.; Güunthardt, G.; Agüuero, M. P.; Camperi, J. A.; Gimeno, G.

    The determination of the radial velocity curves of ionized gas in galaxies requires knowing the value of the internal kinematic uncertainly along the slit for the used spectrographs. We present preliminary results of the study of the variation of the measured radial velocity of both the telluric and comparison emission lines in the spatial direction. This was done for the spectrographs REOSC, Flamingos-2 (F2) and Phoenix. In particular we are interested in using this data to homogenize the rotation curves of nearby galaxies in large-scale ranges. These results will be also useful as references for those works that measure radial velocities of extended objects using only one emission line of ionized gas. FULL TEXT IN SPANISH

  9. Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation.

    PubMed

    Darweesh, Teeba M; Ahmed, Muthanna J

    2017-03-01

    Granular activated carbon (KAC) was prepared from abundant Phoenix dactylifera L. stones by microwave- assisted KOH activation. The characteristics of KAC were tested by pore analyses, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The adsorption behavior of levofloxacin (LEV) antibiotic on KAC with surface area of 817m 2 /g and pore volume of 0.638cm 3 /g were analyzed using batch and fixed bed systems. The equilibrium data collected by batch experiments were well fitted with Langmuir compared to Freundlich and Temkin isotherms. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial LEV concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. High LEV adsorption capacity of 100.3mg/g was reported on KAC, thus being an efficient adsorbent for antibiotic pollutants to protect ecological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. EAST VERSUS WEST IN THE US: CHEMICAL CHARACTERISTICS OF PM 2.5 DURING THE WINTER OF 1999

    EPA Science Inventory

    The chemical composition of PM2.5 was investigated at four sites (Rubidoux, CA, Phoenix, AZ, Philadelphia, PA, and RTP, NC) in January and February of 1999. Three samplers were used to determine both the overall mass and the chemical composition of the aerosol. Teflon filters wer...

  11. 75 FR 43537 - Mortgagee Review Board: Administrative Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ...., Fountain Valley, CA. 469. Ironwood Lending, Inc., Phoenix, AZ. 470. IVC Mortgage Group, Inc., Des Plaines..., connected, or had authorization from HUD for its Web site. 3. Americare Investment Group, Inc. d/b/a Premier... Notice of Administrative Action to Americare Investment Group, Inc. (Americare) permanently withdrawing...

  12. 75 FR 24747 - SCI, LLC/Zener-Rectifier Operations Division A Wholly Owned Subsidiary of SCI, LLC/ON...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,235] SCI, LLC/Zener-Rectifier... Adjustment Assistance on October 19, 2009, applicable to workers of SCI LLC/Zener-Rectifier, Operations... Technical Resources were employed on-site at the Phoenix Arizona location of SCI LLC/Zener-Rectifier...

  13. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    PubMed

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fumigation characteristics of ozone in postharvest treatment of Kabkab dates (Phoenix dactylifera L.) against selected insect infestation.

    PubMed

    Niakousari, Mehrdad; Erjaee, Zahra; Javadian, Shahram

    2010-04-01

    Methyl bromide fumigation, the most accepted quarantine treatment for dates and many other dried commodities, will be phased out by 2015 worldwide. As a result, there is a critical need to develop durable alternatives for methyl bromide as postharvest treatments of agricultural commodities. This article presents a new method for postharvest treatment of Kabkab dates (Phoenix dactylifera L.) by application of gaseous ozone to reduce or eliminate all life stages (adults, larvae, and eggs) of Indian meal moth (Plodia interpunctella) and sawtooth grain beetle (Oryzaephilus surinamensis). The effect of the ozonation process on the sugar content of dates was also evaluated. Infested dates were exposed to ozone concentrations of 600, 1,200, 2,000, and 4,000 ppm for 1 and 2 h. As insect eggs are known to be most tolerant to many chemical or physical treatments, they were additionally exposed to an atmosphere of pure carbon dioxide prior to ozonation. Exposing samples to ozone concentrations of >2,000 ppm for 2 h resulted in complete mortality of larvae and adults. Exposure to 4,000 ppm of ozone for 2 h resulted in 80% mortality of eggs, and exposure to CO(2) prior to ozonation did not improve the effect of ozonation on eggs. Ozone did not have any influence on the sugar content of Kabkab dates.

  15. Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera).

    PubMed

    Chaâbene, Zayneb; Rorat, Agnieszka; Rekik Hakim, Imen; Bernard, Fabien; Douglas, Grubb C; Elleuch, Amine; Vandenbulcke, Franck; Mejdoub, Hafedh

    2018-04-01

    Phytochelatin synthase and metallothionein gene expressions were monitored via qPCR in order to investigate the molecular mechanisms involved in Cd and Cr detoxification in date palm (Phoenix dactylifera). A specific reference gene validation procedure using BestKeeper, NormFinder and geNorm programs allowed selection of the three most stable reference genes in a context of Cd or Cr contamination among six reference gene candidates, namely elongation factor α1, actin, aldehyde dehydrogenase, SAND family, tubulin 6 and TaTa box binding protein. Phytochelatin synthase (pcs) and metallothionein (mt) encoding gene expression were induced from the first days of exposure. At low Cd stress (0.02 mM), genes were still up-regulated until 60th day of exposure. At the highest metal concentrations, however, pcs and mt gene expressions decreased. pcs encoding gene was significantly up-regulated under Cr exposure, and was more responsive to increasing Cr concentration than mt encoding gene. Moreover, exposure to Cd or Cr influenced clearly seed germination and hypocotyls elongation. Thus, the results have proved that both analyzed genes participate in metal detoxification and their expression is regulated at transcriptional level in date palm subjected to Cr and Cd stress. Consequently, variations of expression of mt and pcs genes may serve as early-warning biomarkers of metal stress in this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Chemical characterisation and the anti-inflammatory, anti-angiogenic and antibacterial properties of date fruit (Phoenix dactylifera L.).

    PubMed

    Taleb, Hajer; Maddocks, Sarah E; Morris, R Keith; Kanekanian, Ara D

    2016-12-24

    Date fruit, Phoenix dactylifera L. has traditionally been used as a medicine in many cultures for the treatment of a range of ailments such as stomach and intestinal disorders, fever, oedema, bronchitis and wound healing. The present review aims to summarise the traditional use and application of P. dactylifera date fruit in different ethnomedical systems, additionally the botany and phytochemistry are identified. Critical evaluation of in vitro and in vitro studies examining date fruit in relation to anti-inflammatory, anti-angiogenic and antimicrobial activities are outlined. The ethnomedical use of P. dactylifera in the treatment of inflammatory disease has been previously identified and reported. Furthermore, date fruit and date fruit co-products such as date syrup are rich sources of polyphenols, anthocyanins, sterols and carotenoids. In vitro studies have demonstrated that date fruit exhibits antibacterial, anti-inflammatory and anti-angiogenic activity. The recent interest in the identification of the numerous health benefits of dates using in vitro and in vivo studies have confirmed that date fruit and date syrup have beneficial health effects that can be attributed to the presence of natural bioactive compounds. Date fruit and date syrup have therapeutic properties, which have the potential to be beneficial to health. However, more investigations are needed to quantify and validate these effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries.

    PubMed

    Hinck, Jo Ellen; Blazer, Vicki S; Denslow, Nancy D; Echols, Kathy R; Gross, Timothy S; May, Tom W; Anderson, Patrick J; Coyle, James J; Tillitt, Donald E

    2007-06-01

    Common carp (Cyprinus carpio), black bass (Micropterus spp.), and channel catfish (Ictalurus punctatus) were collected from 14 sites in the Colorado River Basin (CRB) to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8-tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Selenium (Se) and mercury (Hg) concentrations in fish were elevated throughout the CRB, and pesticide concentrations were greatest in fish from agricultural areas in the Lower Colorado River and Gila River. Selenium concentrations exceeded toxicity thresholds for fish (>1.0 microg/g ww) at all CRB sites except the Gila River at Hayden, Arizona. Mercury concentrations were elevated (>0.1 microg/g ww) in fish from the Yampa River at Lay, Colorado; the Green River at Ouray National Wildlife Refuge (NWR), Utah and San Rafael, Utah; the San Juan River at Hogback Diversion, New Mexico; and the Colorado River at Gold Bar Canyon, Utah, Needles, California, and Imperial Dam, Arizona. Concentrations of p,p'-DDE were relatively high in fish from the Gila River at Arlington, Arizona (>1.0 microg/g ww) and Phoenix, Arizona (>0.5 microg/g ww). Concentrations of other formerly used pesticides including toxaphene, total chlordanes, and dieldrin were also greatest at these two sites but did not exceed toxicity thresholds. Currently used pesticides such as Dacthal, endosulfan, gamma-HCH, and methoxychlor were also greatest in fish from the Gila River downstream of Phoenix. Total polychlorinated biphenyls (PCBs; >0.11 microg/g ww) and TCDD-EQs (>5 pg/g ww) exceeded wildlife guidelines in fish from the Gila River at Phoenix. Hepatic ethoxyresorufin O-deethylase (EROD) activity was also relatively high in carp from the Gila River at Phoenix and in bass from the Green River at Ouray NWR. Fish from some sites

  18. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries

    USGS Publications Warehouse

    Hinck, J.E.; Blazer, V.S.; Denslow, N.D.; Echols, K.R.; Gross, T.S.; May, T.W.; Anderson, P.J.; Coyle, J.J.; Tillitt, D.E.

    2007-01-01

    Common carp (Cyprinus carpio), black bass (Micropterus spp.), and channel catfish (Ictalurus punctatus) were collected from 14 sites in the Colorado River Basin (CRB) to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8-tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Selenium (Se) and mercury (Hg) concentrations in fish were elevated throughout the CRB, and pesticide concentrations were greatest in fish from agricultural areas in the Lower Colorado River and Gila River. Selenium concentrations exceeded toxicity thresholds for fish (> 1.0????g/g ww) at all CRB sites except the Gila River at Hayden, Arizona. Mercury concentrations were elevated (> 0.1????g/g ww) in fish from the Yampa River at Lay, Colorado; the Green River at Ouray National Wildlife Refuge (NWR), Utah and San Rafael, Utah; the San Juan River at Hogback Diversion, New Mexico; and the Colorado River at Gold Bar Canyon, Utah, Needles, California, and Imperial Dam, Arizona. Concentrations of p,p???-DDE were relatively high in fish from the Gila River at Arlington, Arizona (> 1.0????g/g ww) and Phoenix, Arizona (> 0.5????g/g ww). Concentrations of other formerly used pesticides including toxaphene, total chlordanes, and dieldrin were also greatest at these two sites but did not exceed toxicity thresholds. Currently used pesticides such as Dacthal, endosulfan, ??-HCH, and methoxychlor were also greatest in fish from the Gila River downstream of Phoenix. Total polychlorinated biphenyls (PCBs; > 0.11????g/g ww) and TCDD-EQs (> 5??pg/g ww) exceeded wildlife guidelines in fish from the Gila River at Phoenix. Hepatic ethoxyresorufin O-deethylase (EROD) activity was also relatively high in carp from the Gila River at Phoenix and in bass from the Green River at Ouray NWR. Fish from some sites showed

  19. KSC-07pd1059

    NASA Image and Video Library

    2007-05-07

    KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft has been placed on a flat bed truck for transportation to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Charisse Nahser

  20. KSC-07pd1105

    NASA Image and Video Library

    2007-05-11

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton