Sample records for phonemic decoding efficiency

  1. Responsiveness to Intervention in Children with Dyslexia.

    PubMed

    Tilanus, Elisabeth A T; Segers, Eliane; Verhoeven, Ludo

    2016-08-01

    We examined the responsiveness to a 12-week phonics intervention in 54 s-grade Dutch children with dyslexia, and compared their reading and spelling gains to a control group of 61 typical readers. The intervention aimed to train grapheme-phoneme correspondences (GPCs), and word reading and spelling by using phonics instruction. We examined the accuracy and efficiency of grapheme-phoneme correspondences, decoding words and pseudowords, as well as the accuracy of spelling words before and after the intervention. Moreover, responsiveness to intervention was examined by studying to what extent scores at posttest could directly or indirectly be predicted from precursor measures. Results showed that the children with dyslexia were significantly behind in all reading and spelling measures at pretest. During the intervention, the children with dyslexia made more progress on GPC, (pseudo)word decoding accuracy and efficiency, and spelling accuracy than the typical reading group. Furthermore, we found a direct effect of the precursor measures rapid automatized naming, verbal working memory and phoneme deletion on the dyslexic children's progress in GPC speed, and indirect effects of rapid automatized naming and phoneme deletion on word and pseudoword efficiency and word decoding accuracy via the scores at pretest. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Assessing Specific Grapho-Phonemic Skills in Elementary Students

    ERIC Educational Resources Information Center

    Robbins, Kelly P.; Hosp, John L.; Hosp, Michelle K.; Flynn, Lindsay J.

    2010-01-01

    This study examines the relation between decoding and spelling performance on tasks that represent identical specific grapho-phonemic patterns. Elementary students (N = 206) were administered a 597 pseudoword decoding inventory representing 12 specific grapho-phonemic patterns and a 104 real-word spelling inventory representing identical…

  3. Explicit Instruction in Phonemic Awareness and Phonemically Based Decoding Skills as an Intervention Strategy for Struggling Readers in Whole Language Classrooms

    ERIC Educational Resources Information Center

    Ryder, Janice F.; Tunmer, William E.; Greaney, Keith T.

    2008-01-01

    The aim of this study was to determine whether explicit instruction in phonemic awareness and phonemically based decoding skills would be an effective intervention strategy for children with early reading difficulties in a whole language instructional environment. Twenty-four 6- and 7-year-old struggling readers were randomly assigned to an…

  4. Elegant Grapheme-Phoneme Correspondence: A Periodic Chart and Singularity Generalization Unify Decoding

    ERIC Educational Resources Information Center

    Gates, Louis

    2018-01-01

    The accompanying article introduces highly transparent grapheme-phoneme relationships embodied within a Periodic table of decoding cells, which arguably presents the quintessential transparent decoding elements. The study then folds these cells into one highly transparent but simply stated singularity generalization--this generalization unifies…

  5. Differences in the Predictors of Reading Comprehension in First Graders from Low Socio-Economic Status Families with Either Good or Poor Decoding Skills

    PubMed Central

    Gentaz, Edouard; Sprenger-Charolles, Liliane; Theurel, Anne

    2015-01-01

    Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness) in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness). Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively). The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55%) than in the two other groups (average decoders: 7%; good decoders: 0%) and only 6 children (1.5%) had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on “poor comprehenders” by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills. PMID:25793519

  6. Differences in the predictors of reading comprehension in first graders from low socio-economic status families with either good or poor decoding skills.

    PubMed

    Gentaz, Edouard; Sprenger-Charolles, Liliane; Theurel, Anne

    2015-01-01

    Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness) in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness). Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively). The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55%) than in the two other groups (average decoders: 7%; good decoders: 0%) and only 6 children (1.5%) had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on "poor comprehenders" by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills.

  7. Elegant grapheme-phoneme correspondence: a periodic chart and singularity generalization unify decoding.

    PubMed

    Gates, Louis

    2018-04-01

    The accompanying article introduces highly transparent grapheme-phoneme relationships embodied within a Periodic table of decoding cells, which arguably presents the quintessential transparent decoding elements. The study then folds these cells into one highly transparent but simply stated singularity generalization-this generalization unifies the decoding cells (97% transparency). Deeper, the periodic table and singularity generalization together highlight the connectivity of the periodic cells. Moreover, these interrelated cells, coupled with the singularity generalization, clarify teaching targets and enable efficient learning of the letter-sound code. This singularity generalization, in turn, serves as a model for creating unified but easily stated subordinate generalizations for any one of the transparent cells or groups of cells shown within the tables. The article then expands the periodic cells into two tables of teacher-ready sample word lists-one table includes sample words for the basic and phonogram vowel cells, and the other table embraces word samples for the transparent consonant cells. The paper concludes with suggestions for teaching the cellular transparency embedded within reoccurring isolated words and running text to promote decoding automaticity of the periodic cells.

  8. Word Decoding Development during Phonics Instruction in Children at Risk for Dyslexia.

    PubMed

    Schaars, Moniek M H; Segers, Eliane; Verhoeven, Ludo

    2017-05-01

    In the present study, we examined the early word decoding development of 73 children at genetic risk of dyslexia and 73 matched controls. We conducted monthly curriculum-embedded word decoding measures during the first 5 months of phonics-based reading instruction followed by standardized word decoding measures halfway and by the end of first grade. In kindergarten, vocabulary, phonological awareness, lexical retrieval, and verbal and visual short-term memory were assessed. The results showed that the children at risk were less skilled in phonemic awareness in kindergarten. During the first 5 months of reading instruction, children at risk were less efficient in word decoding and the discrepancy increased over the months. In subsequent months, the discrepancy prevailed for simple words but increased for more complex words. Phonemic awareness and lexical retrieval predicted the reading development in children at risk and controls to the same extent. It is concluded that children at risk are behind their typical peers in word decoding development starting from the very beginning. Furthermore, it is concluded that the disadvantage increased during phonics instruction and that the same predictors underlie the development of word decoding in the two groups of children. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. DECODAGE DE LA CHAINE PARLEE ET APPRENTISSAGE DES LANGUES (SPEECH DECODING AND LANGUAGE LEARNING).

    ERIC Educational Resources Information Center

    COMPANYS, EMMANUEL

    THIS PAPER WRITTEN IN FRENCH, PRESENTS A HYPOTHESIS CONCERNING THE DECODING OF SPEECH IN SECOND LANGUAGE LEARNING. THE THEORETICAL BACKGROUND OF THE DISCUSSION CONSISTS OF WIDELY ACCEPTED LINGUISTIC CONCEPTS SUCH AS THE PHONEME, DISTINCTIVE FEATURES, NEUTRALIZATION, LINGUISTIC LEVELS, FORM AND SUBSTANCE, EXPRESSION AND CONTENT, SOUNDS, PHONEMES,…

  10. Word and Person Effects on Decoding Accuracy: A New Look at an Old Question

    PubMed Central

    Gilbert, Jennifer K.; Compton, Donald L.; Kearns, Devin M.

    2011-01-01

    The purpose of this study was to extend the literature on decoding by bringing together two lines of research, namely person and word factors that affect decoding, using a crossed random-effects model. The sample was comprised of 196 English-speaking grade 1 students. A researcher-developed pseudoword list was used as the primary outcome measure. Because grapheme-phoneme correspondence (GPC) knowledge was treated as person and word specific, we are able to conclude that it is neither necessary nor sufficient for a student to know all GPCs in a word before accurately decoding the word. And controlling for word-specific GPC knowledge, students with lower phonemic awareness and slower rapid naming skill have lower predicted probabilities of correct decoding than counterparts with superior skills. By assessing a person-by-word interaction, we found that students with lower phonemic awareness have more difficulty applying knowledge of complex vowel graphemes compared to complex consonant graphemes when decoding unfamiliar words. Implications of the methodology and results are discussed in light of future research. PMID:21743750

  11. Teacher Candidates' Mastery of Phoneme-Grapheme Correspondence: Massed versus Distributed Practice in Teacher Education

    ERIC Educational Resources Information Center

    Sayeski, Kristin L.; Earle, Gentry A.; Eslinger, R. Paige; Whitenton, Jessy N.

    2017-01-01

    Matching phonemes (speech sounds) to graphemes (letters and letter combinations) is an important aspect of decoding (translating print to speech) and encoding (translating speech to print). Yet, many teacher candidates do not receive explicit training in phoneme-grapheme correspondence. Difficulty with accurate phoneme production and/or lack of…

  12. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    NASA Astrophysics Data System (ADS)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  13. Nurturing Phonemic Awareness and Alphabetic Knowledge in Pre-Kindergartners.

    ERIC Educational Resources Information Center

    Steinhaus, Patricia L.

    Reading research continues to identify phonemic awareness and knowledge of the alphabetic principle as key factors in the literacy acquisition process and to indicate that they greatly facilitate decoding efforts. While research indicates that phonemic awareness and alphabetic knowledge are necessary to literacy acquisition, many early childhood…

  14. Do students with and without lexical retrieval weaknesses respond differently to instruction?

    PubMed

    Allor, J H; Fuchs, D; Mathes, P G

    2001-01-01

    Deficits in phonological processing are theorized to be responsible for at least some reading disabilities. A considerable amount of research demonstrates that many students can be taught one of these phonological processes-phonemic awareness. However, not all students have responded favorably to this instruction. Research has suggested that these nonresponders may be unable to retrieve phonological codes quickly from long-term memory. The purpose of this study was to examine whether such a deficiency, which we refer to as lexical retrieval weakness, blunts the effectiveness of combined phonemic awareness and decoding training. To this end, we compared the effectiveness of phonemic awareness and decoding training for students with and without severe lexical retrieval weaknesses. All students in both groups demonstrated poor phonemic awareness. The results suggested that students with relatively strong lexical retrieval skill responded more favorably to beginning reading instruction than did students with weak lexical retrieval skill. In other words, lexical retrieval weakness may influence reading development independently of the effects of phonemic awareness. Implications for instruction are discussed.

  15. The effects and interactions of student, teacher, and setting variables on reading outcomes for kindergartners receiving supplemental reading intervention.

    PubMed

    Hagan-Burke, Shanna; Coyne, Michael D; Kwok, Oi-Man; Simmons, Deborah C; Kim, Minjung; Simmons, Leslie E; Skidmore, Susan T; Hernandez, Caitlin L; McSparran Ruby, Maureen

    2013-01-01

    This exploratory study examined the influences of student, teacher, and setting characteristics on kindergarteners' early reading outcomes and investigated whether those relations were moderated by type of intervention. Participants included 206 kindergarteners identified as at risk for reading difficulties and randomly assigned to one of two supplemental interventions: (a) an experimental explicit, systematic, code-based program or (b) their schools' typical kindergarten reading intervention. Results from separate multilevel structural equation models indicated that among student variables, entry-level alphabet knowledge was positively associated with phonemic and decoding outcomes in both conditions. Entry-level rapid automatized naming also positively influenced decoding outcomes in both conditions. However, its effect on phonemic outcomes was statistically significant only among children in the typical practice comparison condition. Regarding teacher variables, the quality of instruction was associated with significantly higher decoding outcomes in the typical reading intervention condition but had no statistically significant influence on phonemic outcomes in either condition. Among setting variables, instruction in smaller group sizes was associated with better phonemic outcomes in the comparison condition but had no statistically significant influence on outcomes of children in the intervention group. Mode of delivery (i.e., pullout vs. in class) had no statistically significant influence on either outcome variable.

  16. Techniques for decoding speech phonemes and sounds: A concept

    NASA Technical Reports Server (NTRS)

    Lokerson, D. C.; Holby, H. G.

    1975-01-01

    Techniques studied involve conversion of speech sounds into machine-compatible pulse trains. (1) Voltage-level quantizer produces number of output pulses proportional to amplitude characteristics of vowel-type phoneme waveforms. (2) Pulses produced by quantizer of first speech formants are compared with pulses produced by second formants.

  17. Phoneme Awareness, Vocabulary and Word Decoding in Monolingual and Bilingual Dutch Children

    ERIC Educational Resources Information Center

    Janssen, Marije; Bosman, Anna M. T.; Leseman, Paul P. M.

    2013-01-01

    The aim of this study was to investigate whether bilingually raised children in the Netherlands, who receive literacy instruction in their second language only, show an advantage on Dutch phoneme-awareness tasks compared with monolingual Dutch-speaking children. Language performance of a group of 47 immigrant first-grade children with various…

  18. Computer-assisted instruction to prevent early reading difficulties in students at risk for dyslexia: Outcomes from two instructional approaches.

    PubMed

    Torgesen, Joseph K; Wagner, Richard K; Rashotte, Carol A; Herron, Jeannine; Lindamood, Patricia

    2010-06-01

    The relative effectiveness of two computer-assisted instructional programs designed to provide instruction and practice in foundational reading skills was examined. First-grade students at risk for reading disabilities received approximately 80 h of small-group instruction in four 50-min sessions per week from October through May. Approximately half of the instruction was delivered by specially trained teachers to prepare students for their work on the computer, and half was delivered by the computer programs. At the end of first grade, there were no differences in student reading performance between students assigned to the different intervention conditions, but the combined-intervention students performed significantly better than control students who had been exposed to their school's normal reading program. Significant differences were obtained for phonemic awareness, phonemic decoding, reading accuracy, rapid automatic naming, and reading comprehension. A follow-up test at the end of second grade showed a similar pattern of differences, although only differences in phonemic awareness, phonemic decoding, and rapid naming remained statistically reliable.

  19. Hemispheric specialization for visual words is shaped by attention to sublexical units during initial learning.

    PubMed

    Yoncheva, Yuliya N; Wise, Jessica; McCandliss, Bruce

    2015-01-01

    Selective attention to grapheme-phoneme mappings during learning can impact the circuitry subsequently recruited during reading. Here we trained literate adults to read two novel scripts of glyph words containing embedded letters under different instructions. For one script, learners linked each embedded letter to its corresponding sound within the word (grapheme-phoneme focus); for the other, decoding was prevented so entire words had to be memorized. Post-training, ERPs were recorded during a reading task on the trained words within each condition and on untrained but decodable (transfer) words. Within this condition, reaction-time patterns suggested both trained and transfer words were accessed via sublexical units, yet a left-lateralized, late ERP response showed an enhanced left lateralization for transfer words relative to trained words, potentially reflecting effortful decoding. Collectively, these findings show that selective attention to grapheme-phoneme mappings during learning drives the lateralization of circuitry that supports later word recognition. This study thus provides a model example of how different instructional approaches to the same material may impact changes in brain circuitry. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Decoding Acquisition: A Study of First Grade Readers.

    ERIC Educational Resources Information Center

    Hollingsworth, Sandra

    To determine the factors accounting for children's growth in decoding skill, a study examined school entering characteristics--age, sex, ethnicity, and developmental abilities--and school-influenced skills and characteristics--phonemic awareness, letter-name knowledge, basal text, and place in series--of approximately 100 grade one students.…

  1. Tile Test: A Hands-On Approach for Assessing Phonics in the Early Grades

    ERIC Educational Resources Information Center

    Norman, Kimberly A.; Calfee, Robert C.

    2004-01-01

    An instrument for assessing young students' understanding of the English orthographic system is presented. The Tile Test measures understanding of phoneme awareness, letter-sound correspondences, decoding and spelling of words, sight-word reading, and the application of decoding and spelling in sentences. Metalinguistic questions embedded within…

  2. Lindamood Phonemic Sequencing (LiPS) [R]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2008

    2008-01-01

    The Lindamood Phonemic Sequencing (LiPS)[R] program (formerly called the Auditory Discrimination in Depth[R] [ADD] program) is designed to teach students skills to decode words and to identify individual sounds and blends in words. The program is individualized to meet student needs and is often used with students who have learning disabilities or…

  3. Music and Phonemic Awareness: The Kindergarten Connection

    ERIC Educational Resources Information Center

    Newland, Cheyrl M.

    2013-01-01

    With the passage of No Child Left Behind (NCLB, 2001), schools have become aware of the consequences of successfully teaching children to read. A major building block in early childhood education includes the decoding of phonemes, rhymes, and the rhythm of spoken and written word. As reading is crucial to success in any subject area or career…

  4. Word Decoding Development in Incremental Phonics Instruction in a Transparent Orthography

    ERIC Educational Resources Information Center

    Schaars, Moniek M.; Segers, Eliane; Verhoeven, Ludo

    2017-01-01

    The present longitudinal study aimed to investigate the development of word decoding skills during incremental phonics instruction in Dutch as a transparent orthography. A representative sample of 973 Dutch children in the first grade (M[subscript age] = 6;1, SD = 0;5) was exposed to incremental subsets of Dutch grapheme-phoneme correspondences…

  5. Acquisition of Malay word recognition skills: lessons from low-progress early readers.

    PubMed

    Lee, Lay Wah; Wheldall, Kevin

    2011-02-01

    Malay is a consistent alphabetic orthography with complex syllable structures. The focus of this research was to investigate word recognition performance in order to inform reading interventions for low-progress early readers. Forty-six Grade 1 students were sampled and 11 were identified as low-progress readers. The results indicated that both syllable awareness and phoneme blending were significant predictors of word recognition, suggesting that both syllable and phonemic grain-sizes are important in Malay word recognition. Item analysis revealed a hierarchical pattern of difficulty based on the syllable and the phonic structure of the words. Error analysis identified the sources of errors to be errors due to inefficient syllable segmentation, oversimplification of syllables, insufficient grapheme-phoneme knowledge and inefficient phonemic code assembly. Evidence also suggests that direct instruction in syllable segmentation, phonemic awareness and grapheme-phoneme correspondence is necessary for low-progress readers to acquire word recognition skills. Finally, a logical sequence to teach grapheme-phoneme decoding in Malay is suggested. Copyright © 2010 John Wiley & Sons, Ltd.

  6. Effects of Tier 3 Intervention for Students With Persistent Reading Difficulties and Characteristics of Inadequate Responders.

    PubMed

    Denton, Carolyn A; Tolar, Tammy D; Fletcher, Jack M; Barth, Amy E; Vaughn, Sharon; Francis, David J

    2013-08-01

    This article describes a randomized controlled trial conducted to evaluate the effects of an intensive, individualized, Tier 3 reading intervention for second grade students who had previously experienced inadequate response to quality first grade classroom reading instruction (Tier 1) and supplemental small-group intervention (Tier 2). Also evaluated were cognitive characteristics of students with inadequate response to intensive Tier 3 intervention. Students were randomized to receive the research intervention ( N = 47) or the instruction and intervention typically provided in their schools ( N = 25). Results indicated that students who received the research intervention made significantly better growth than those who received typical school instruction on measures of word identification, phonemic decoding, and word reading fluency and on a measure of sentence- and paragraph-level reading comprehension. Treatment effects were smaller and not statistically significant on phonemic decoding efficiency, text reading fluency, and reading comprehension in extended text. Effect sizes for all outcomes except oral reading fluency met criteria for substantive importance; however, many of the students in the intervention continued to struggle. An evaluation of cognitive profiles of adequate and inadequate responders was consistent with a continuum of severity (as opposed to qualitative differences), showing greater language and reading impairment prior to the intervention in students who were inadequate responders.

  7. Effects of Tier 3 Intervention for Students With Persistent Reading Difficulties and Characteristics of Inadequate Responders

    PubMed Central

    Denton, Carolyn A.; Tolar, Tammy D.; Fletcher, Jack M.; Barth, Amy E.; Vaughn, Sharon; Francis, David J.

    2013-01-01

    This article describes a randomized controlled trial conducted to evaluate the effects of an intensive, individualized, Tier 3 reading intervention for second grade students who had previously experienced inadequate response to quality first grade classroom reading instruction (Tier 1) and supplemental small-group intervention (Tier 2). Also evaluated were cognitive characteristics of students with inadequate response to intensive Tier 3 intervention. Students were randomized to receive the research intervention (N = 47) or the instruction and intervention typically provided in their schools (N = 25). Results indicated that students who received the research intervention made significantly better growth than those who received typical school instruction on measures of word identification, phonemic decoding, and word reading fluency and on a measure of sentence- and paragraph-level reading comprehension. Treatment effects were smaller and not statistically significant on phonemic decoding efficiency, text reading fluency, and reading comprehension in extended text. Effect sizes for all outcomes except oral reading fluency met criteria for substantive importance; however, many of the students in the intervention continued to struggle. An evaluation of cognitive profiles of adequate and inadequate responders was consistent with a continuum of severity (as opposed to qualitative differences), showing greater language and reading impairment prior to the intervention in students who were inadequate responders. PMID:25308995

  8. Bilingualism affects audiovisual phoneme identification

    PubMed Central

    Burfin, Sabine; Pascalis, Olivier; Ruiz Tada, Elisa; Costa, Albert; Savariaux, Christophe; Kandel, Sonia

    2014-01-01

    We all go through a process of perceptual narrowing for phoneme identification. As we become experts in the languages we hear in our environment we lose the ability to identify phonemes that do not exist in our native phonological inventory. This research examined how linguistic experience—i.e., the exposure to a double phonological code during childhood—affects the visual processes involved in non-native phoneme identification in audiovisual speech perception. We conducted a phoneme identification experiment with bilingual and monolingual adult participants. It was an ABX task involving a Bengali dental-retroflex contrast that does not exist in any of the participants' languages. The phonemes were presented in audiovisual (AV) and audio-only (A) conditions. The results revealed that in the audio-only condition monolinguals and bilinguals had difficulties in discriminating the retroflex non-native phoneme. They were phonologically “deaf” and assimilated it to the dental phoneme that exists in their native languages. In the audiovisual presentation instead, both groups could overcome the phonological deafness for the retroflex non-native phoneme and identify both Bengali phonemes. However, monolinguals were more accurate and responded quicker than bilinguals. This suggests that bilinguals do not use the same processes as monolinguals to decode visual speech. PMID:25374551

  9. Systematic Instruction in Phoneme-Grapheme Correspondence for Students with Reading Disabilities

    ERIC Educational Resources Information Center

    Earle, Gentry A.; Sayeski, Kristin L.

    2017-01-01

    Letter-sound knowledge is a strong predictor of a student's ability to decode words. Approximately 50% of English words can be decoded by following a sound-symbol correspondence rule alone and an additional 36% are spelled with only one error. Many students with reading disabilities or who struggle to learn to read have difficulty with phonology,…

  10. Thinking Aloud about L2 Decoding: An Exploration of the Strategies Used by Beginner Learners when Pronouncing Unfamiliar French Words

    ERIC Educational Resources Information Center

    Woore, Robert

    2010-01-01

    "Decoding"--converting the written symbols (or graphemes) of an alphabetical writing system into the sounds (or phonemes) they represent, using knowledge of the language's symbol/sound correspondences--has been argued to be an important but neglected skill in the teaching of second language (L2) French in English secondary schools.…

  11. What Could Replace the Phonics Screening Check during the Early Years of Reading Development?

    ERIC Educational Resources Information Center

    Glazzard, Jonathan

    2017-01-01

    This article argues that the phonics screening check, introduced in England in 2012, is not fit for purpose. It is a test of children's ability to decode words rather than an assessment of their reading skills. Whilst this assessment may, to some extent, support the needs of children who rely on phonemic decoding as a route to word recognition, it…

  12. Teacher candidates' mastery of phoneme-grapheme correspondence: massed versus distributed practice in teacher education.

    PubMed

    Sayeski, Kristin L; Earle, Gentry A; Eslinger, R Paige; Whitenton, Jessy N

    2017-04-01

    Matching phonemes (speech sounds) to graphemes (letters and letter combinations) is an important aspect of decoding (translating print to speech) and encoding (translating speech to print). Yet, many teacher candidates do not receive explicit training in phoneme-grapheme correspondence. Difficulty with accurate phoneme production and/or lack of understanding of sound-symbol correspondence can make it challenging for teachers to (a) identify student errors on common assessments and (b) serve as a model for students when teaching beginning reading or providing remedial reading instruction. For students with dyslexia, lack of teacher proficiency in this area is particularly problematic. This study examined differences between two learning conditions (massed and distributed practice) on teacher candidates' development of phoneme-grapheme correspondence knowledge and skills. An experimental, pretest-posttest-delayed test design was employed with teacher candidates (n = 52) to compare a massed practice condition (one, 60-min session) to a distributed practice condition (four, 15-min sessions distributed over 4 weeks) for learning phonemes associated with letters and letter combinations. Participants in the distributed practice condition significantly outperformed participants in the massed practice condition on their ability to correctly produce phonemes associated with different letters and letter combinations. Implications for teacher preparation are discussed.

  13. The attentional blink is related to phonemic decoding, but not sight-word recognition, in typically reading adults.

    PubMed

    Tyson-Parry, Maree M; Sailah, Jessica; Boyes, Mark E; Badcock, Nicholas A

    2015-10-01

    This research investigated the relationship between the attentional blink (AB) and reading in typical adults. The AB is a deficit in the processing of the second of two rapidly presented targets when it occurs in close temporal proximity to the first target. Specifically, this experiment examined whether the AB was related to both phonological and sight-word reading abilities, and whether the relationship was mediated by accuracy on a single-target rapid serial visual processing task (single-target accuracy). Undergraduate university students completed a battery of tests measuring reading ability, non-verbal intelligence, and rapid automatised naming, in addition to rapid serial visual presentation tasks in which they were required to identify either two (AB task) or one (single target task) target/s (outlined shapes: circle, square, diamond, cross, and triangle) in a stream of random-dot distractors. The duration of the AB was related to phonological reading (n=41, β=-0.43): participants who exhibited longer ABs had poorer phonemic decoding skills. The AB was not related to sight-word reading. Single-target accuracy did not mediate the relationship between the AB and reading, but was significantly related to AB depth (non-linear fit, R(2)=.50): depth reflects the maximal cost in T2 reporting accuracy in the AB. The differential relationship between the AB and phonological versus sight-word reading implicates common resources used for phonemic decoding and target consolidation, which may be involved in cognitive control. The relationship between single-target accuracy and the AB is discussed in terms of cognitive preparation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Wilson Reading System[R]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    Wilson Reading System[R] is a supplemental reading and writing curriculum designed to promote reading accuracy (decoding) and spelling (encoding) skills for students with word-level deficits. The program is designed to teach phonemic awareness, alphabetic principles (sound-symbol relationship), word study, spelling, sight word instruction,…

  15. Nursery Rhyme Knowledge and Phonological Awareness in Preschool Children

    ERIC Educational Resources Information Center

    Harper, Laurie J.

    2011-01-01

    Phonological awareness is an important precursor in learning to read. This awareness of phonemes fosters a child's ability to hear and blend sounds, encode and decode words, and to spell phonetically. This quantitative study assessed pre-K children's existing Euro-American nursery rhyme knowledge and phonological awareness literacy, provided…

  16. The Impact of Early Bilingualism on Face Recognition Processes.

    PubMed

    Kandel, Sonia; Burfin, Sabine; Méary, David; Ruiz-Tada, Elisa; Costa, Albert; Pascalis, Olivier

    2016-01-01

    Early linguistic experience has an impact on the way we decode audiovisual speech in face-to-face communication. The present study examined whether differences in visual speech decoding could be linked to a broader difference in face processing. To identify a phoneme we have to do an analysis of the speaker's face to focus on the relevant cues for speech decoding (e.g., locating the mouth with respect to the eyes). Face recognition processes were investigated through two classic effects in face recognition studies: the Other-Race Effect (ORE) and the Inversion Effect. Bilingual and monolingual participants did a face recognition task with Caucasian faces (own race), Chinese faces (other race), and cars that were presented in an Upright or Inverted position. The results revealed that monolinguals exhibited the classic ORE. Bilinguals did not. Overall, bilinguals were slower than monolinguals. These results suggest that bilinguals' face processing abilities differ from monolinguals'. Early exposure to more than one language may lead to a perceptual organization that goes beyond language processing and could extend to face analysis. We hypothesize that these differences could be due to the fact that bilinguals focus on different parts of the face than monolinguals, making them more efficient in other race face processing but slower. However, more studies using eye-tracking techniques are necessary to confirm this explanation.

  17. The cognitive foundations of reading and arithmetic skills in 7- to 10-year-olds.

    PubMed

    Durand, Marianne; Hulme, Charles; Larkin, Rebecca; Snowling, Margaret

    2005-06-01

    A range of possible predictors of arithmetic and reading were assessed in a large sample (N=162) of children between ages 7 years 5 months and 10 years 4 months. A confirmatory factor analysis of the predictors revealed a good fit to a model consisting of four latent variables (verbal ability, nonverbal ability, search speed, and phonological memory) and two manifest variables (digit comparison and phoneme deletion). A path analysis showed that digit comparison and verbal ability were unique predictors of variations in arithmetic skills, whereas phoneme deletion and verbal ability were unique predictors of variations in reading skills. These results confirm earlier findings that phoneme deletion ability appears to be a critical foundation for learning to read (decode). In addition, variations in the speed of accessing numerical quantity information appear to be a critical foundation for the development of arithmetic skills.

  18. A Comparative Case Study of Learning Strategies and Recommendations of Five Professional Musicians with Dyslexia

    ERIC Educational Resources Information Center

    Nelson, Kent Peter; Hourigan, Ryan M.

    2016-01-01

    Many of the characteristics of dyslexia--such as difficulties with decoding written symbols, phonemic awareness, physical coordination, and readable handwriting--may adversely affect music learning. Despite challenges, individuals with dyslexia can succeed in music. The purpose of this study was to examine the perceptions of five professional…

  19. Successful Strategies of Individuals with Dyslexia in the Field of Music: A Comparative Case Study

    ERIC Educational Resources Information Center

    Nelson, Kent Peter

    2014-01-01

    Many of the symptoms of dyslexia--such as difficulties with decoding written symbols, phonemic awareness, physical coordination, and readable handwriting--may adversely affect music learning. Despite challenges, some individuals with dyslexia succeed in music. The purpose of this study was to examine the perceptions of five professional musicians…

  20. Semantic Mapping: A Text Perspective.

    ERIC Educational Resources Information Center

    Harste, Jerome C.

    Children's early writing is analyzed in this paper according to different perspectives such as function, grapho-phonemics, syntax, and semantics. Emphasis is given to the semantic perspective of decoding the text and to the study of coherence in text as it is viewed by the reader. Proposition analysis is used to map the coherence of samples of…

  1. What Is the Influence of Morphological Knowledge in the Early Stages of Reading Acquisition Among Low SES Children? A Graphical Modeling Approach

    PubMed Central

    Colé, Pascale; Cavalli, Eddy; Duncan, Lynne G.; Theurel, Anne; Gentaz, Edouard; Sprenger-Charolles, Liliane; El-Ahmadi, Abdessadek

    2018-01-01

    Children from low-SES families are known to show delays in aspects of language development which underpin reading acquisition such as vocabulary and listening comprehension. Research on the development of morphological skills in this group is scarce, and no studies exist in French. The present study investigated the involvement of morphological knowledge in the very early stages of reading acquisition (decoding), before reading comprehension can be reliably assessed. We assessed listening comprehension, receptive vocabulary, phoneme awareness, morphological awareness as well as decoding, word reading and non-verbal IQ in 703 French first-graders from low-SES families after 3 months of formal schooling (November). Awareness of derivational morphology was assessed using three oral tasks: Relationship Judgment (e.g., do these words belong to the same family or not? heat-heater … ham-hammer); Lexical Sentence Completion [e.g., Someone who runs is a …? (runner)]; and Non-lexical Sentence Completion [e.g., Someone who lums is a…? (lummer)]. The tasks differ on implicit/explicit demands and also tap different kinds of morphological knowledge. The Judgement task measures the phonological and semantic properties of the morphological relationship and the Sentence Completion tasks measure knowledge of morphological production rules. Data were processed using a graphical modeling approach which offers key information about how skills known to be involved in learning to read are organized in memory. This modeling approach was therefore useful in revealing a potential network which expresses the conditional dependence structure between skills, after which recursive structural equation modeling was applied to test specific hypotheses. Six main conclusions can be drawn from these analyses about low SES reading acquisition: (1) listening comprehension is at the heart of the reading acquisition process; (2) word reading depends directly on phonemic awareness and indirectly on listening comprehension; (3) decoding depends on word reading; (4) Morphological awareness and vocabulary have an indirect influence on word reading via both listening comprehension and phoneme awareness; (5) the components of morphological awareness assessed by our tasks have independent relationships with listening comprehension; and (6) neither phonemic nor morphological awareness influence vocabulary directly. The implications of these results with regard to early reading acquisition among low SES groups are discussed. PMID:29725313

  2. What Is the Influence of Morphological Knowledge in the Early Stages of Reading Acquisition Among Low SES Children? A Graphical Modeling Approach.

    PubMed

    Colé, Pascale; Cavalli, Eddy; Duncan, Lynne G; Theurel, Anne; Gentaz, Edouard; Sprenger-Charolles, Liliane; El-Ahmadi, Abdessadek

    2018-01-01

    Children from low-SES families are known to show delays in aspects of language development which underpin reading acquisition such as vocabulary and listening comprehension. Research on the development of morphological skills in this group is scarce, and no studies exist in French. The present study investigated the involvement of morphological knowledge in the very early stages of reading acquisition (decoding), before reading comprehension can be reliably assessed. We assessed listening comprehension, receptive vocabulary, phoneme awareness, morphological awareness as well as decoding, word reading and non-verbal IQ in 703 French first-graders from low-SES families after 3 months of formal schooling (November). Awareness of derivational morphology was assessed using three oral tasks: Relationship Judgment (e.g., do these words belong to the same family or not? heat-heater … ham-hammer); Lexical Sentence Completion [e.g., Someone who runs is a …? (runner)]; and Non-lexical Sentence Completion [e.g., Someone who lums is a…? (lummer)]. The tasks differ on implicit/explicit demands and also tap different kinds of morphological knowledge. The Judgement task measures the phonological and semantic properties of the morphological relationship and the Sentence Completion tasks measure knowledge of morphological production rules. Data were processed using a graphical modeling approach which offers key information about how skills known to be involved in learning to read are organized in memory. This modeling approach was therefore useful in revealing a potential network which expresses the conditional dependence structure between skills, after which recursive structural equation modeling was applied to test specific hypotheses. Six main conclusions can be drawn from these analyses about low SES reading acquisition: (1) listening comprehension is at the heart of the reading acquisition process; (2) word reading depends directly on phonemic awareness and indirectly on listening comprehension; (3) decoding depends on word reading; (4) Morphological awareness and vocabulary have an indirect influence on word reading via both listening comprehension and phoneme awareness; (5) the components of morphological awareness assessed by our tasks have independent relationships with listening comprehension; and (6) neither phonemic nor morphological awareness influence vocabulary directly. The implications of these results with regard to early reading acquisition among low SES groups are discussed.

  3. The Relative Contributions of Vocabulary, Decoding, and Phonemic Awareness to Word Reading in English versus German

    ERIC Educational Resources Information Center

    Suggate, Sebastian; Reese, Elaine; Lenhard, Wolfgang; Schneider, Wolfgang

    2014-01-01

    Beginning readers in shallow orthographies acquire word reading skills more quickly than in deep orthographies like English. In addition to extending this evidence base by comparing reading acquisition in English with the more transparent German, we conducted a longitudinal study and investigated whether different early reading skills made…

  4. Open Court Reading©. What Works Clearinghouse Intervention Report. Updated October 2014

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    "Open Court Reading©" is a reading program for grades K-6 published by McGraw-Hill Education that is designed to teach decoding, comprehension, inquiry, and writing in a three-part logical progression. Part One of each unit, Preparing to Read, focuses on phonemic awareness, sounds and letters, phonics, fluency, and word knowledge. Part…

  5. Open Court Reading[c]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "Open Court Reading"[c] is a core reading program for grades K-6 developed by SRA/McGraw-Hill that is designed to teach decoding, comprehension, inquiry, and writing in a logical progression. Part 1 of each unit, Preparing to Read, focuses on phonemic awareness, sounds and letters, phonics, fluency, and word knowledge. Part 2, Reading…

  6. Open Court Reading[c]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2008

    2008-01-01

    "Open Court Reading"[c] is an elementary basal reading program for grades K-6 developed by SRA/McGraw-Hill. The program is designed to systematically teach decoding, comprehension, inquiry and investigation, and writing in a logical progression. Part 1 of each unit, Preparing to Read, focuses on phonemic awareness, sounds and letters, phonics,…

  7. Effects of a Randomized Reading Intervention Study Aimed at 9-Year-Olds: A 5-Year Follow-up.

    PubMed

    Wolff, Ulrika

    2016-05-01

    The present paper reports on a 5-year follow-up of a randomized reading intervention in grade 3 in Sweden. An intervention group (n = 57) received daily training for 12 weeks in phoneme/grapheme mapping, reading comprehension and reading speed, whereas a control group (n = 55) participated in ordinary classroom activities. The main aim was to investigate if there were remaining effects of the intervention on reading-related skills. Previous analyses showed that the intervention group performed significantly better than the control group on spelling, reading speed, reading comprehension and phoneme awareness at the immediate post-test with sustained effects 1 year later. Results from the 5-year follow-up show that the only significant difference between the intervention (n = 47) and the control group (n = 37) was on word decoding. There was also a significant interaction effect of group assignment and initial word decoding, in the way that the lowest-performing students benefitted the most from the intervention. Another aim was to examine if the children identified in a screening (n = 2212) as poor readers in grade 2 still performed worse than typical readers. The analyses showed that the typically developing students (n = 66) outperformed the students identified as poor readers in grade 2 on working memory, spelling, reading comprehension and word decoding. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The effect of fine and grapho-motor skill demands on preschoolers' decoding skill.

    PubMed

    Suggate, Sebastian; Pufke, Eva; Stoeger, Heidrun

    2016-01-01

    Previous correlational research has found indications that fine motor skills (FMS) link to early reading development, but the work has not demonstrated causality. We manipulated 51 preschoolers' FMS while children learned to decode letters and nonsense words in a within-participants, randomized, and counterbalanced single-factor design with pre- and posttesting. In two conditions, children wrote with a pencil that had a conical shape fitted to the end filled with either steel (impaired writing condition) or polystyrene (normal writing condition). In a third control condition, children simply pointed at the letters with the light pencil as they learned to read the words (pointing condition). Results indicate that children learned the most decoding skills in the normal writing condition, followed by the pointing and impaired writing conditions. In addition, working memory, phonemic awareness, and grapho-motor skills were generally predictors of decoding skill development. The findings provide experimental evidence that having lower FMS is disadvantageous for reading development. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Exploring Differential Effects Across Two Decoding Treatments on Item-Level Transfer in Children with Significant Word Reading Difficulties: A New Approach for Testing Intervention Elements.

    PubMed

    Steacy, Laura M; Elleman, Amy M; Lovett, Maureen W; Compton, Donald L

    2016-01-01

    In English, gains in decoding skill do not map directly onto increases in word reading. However, beyond the Self-Teaching Hypothesis (Share, 1995), little is known about the transfer of decoding skills to word reading. In this study, we offer a new approach to testing specific decoding elements on transfer to word reading. To illustrate, we modeled word-reading gains among children with reading disability (RD) enrolled in Phonological and Strategy Training (PHAST) or Phonics for Reading (PFR). Conditions differed in sublexical training with PHAST stressing multi-level connections and PFR emphasizing simple grapheme-phoneme correspondences. Thirty-seven children with RD, 3 rd - 6 th grade, were randomly assigned 60 lessons of PHAST or PFR. Crossed random-effects models allowed us to identify specific intervention elements that differentially impacted word-reading performance at posttest, with children in PHAST better able to read words with variant vowel pronunciations. Results suggest that sublexical emphasis influences transfer gains to word reading.

  10. The Efficacy of Phonics-Based Instruction of English as a Second Language in an Italian High School: A Randomised Controlled Trial

    ERIC Educational Resources Information Center

    Coates, Robert Alexander Graham; Gorham, Judith; Nicholas, Richard

    2017-01-01

    Recent neurological breakthroughs in our understanding of the Critical Period Hypothesis and prosody may suggest strategies on how phonics instruction could improve L2 language learning and in particular phoneme/grapheme decoding. We therefore conducted a randomised controlled-trial on the application of prosody and phonics techniques, to improve…

  11. Relationships among L1 Print Exposure and Early L1 Literacy Skills, L2 Aptitude, and L2 Proficiency

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    Authors examined the relationship between individual differences in L1 print exposure and differences in early L1 skills and later L2 aptitude, L2 proficiency, and L2 classroom achievement. Participants were administered measures of L1 word decoding, spelling, phonemic awareness, reading comprehension, receptive vocabulary, and listening…

  12. Reading Fluency and Speech Perception Speed of Beginning Readers with Persistent Reading Problems: The Perception of Initial Stop Consonants and Consonant Clusters

    ERIC Educational Resources Information Center

    Snellings, Patrick; van der Leij, Aryan; Blok, Henk; de Jong, Peter F.

    2010-01-01

    This study investigated the role of speech perception accuracy and speed in fluent word decoding of reading disabled (RD) children. A same-different phoneme discrimination task with natural speech tested the perception of single consonants and consonant clusters by young but persistent RD children. RD children were slower than chronological age…

  13. Separating the influences of prereading skills on early word and nonword reading.

    PubMed

    Shapiro, Laura R; Carroll, Julia M; Solity, Jonathan E

    2013-10-01

    The essential first step for a beginning reader is to learn to match printed forms to phonological representations. For a new word, this is an effortful process where each grapheme must be translated individually (serial decoding). The role of phonological awareness in developing a decoding strategy is well known. We examined whether beginning readers recruit different skills depending on the nature of the words being read (familiar words vs. nonwords). Print knowledge, phoneme and rhyme awareness, rapid automatized naming (RAN), phonological short-term memory (STM), nonverbal reasoning, vocabulary, auditory skills, and visual attention were measured in 392 prereaders 4 and 5 years of age. Word and nonword reading were measured 9 months later. We used structural equation modeling to examine the skills-reading relationship and modeled correlations between our two reading outcomes and among all prereading skills. We found that a broad range of skills were associated with reading outcomes: early print knowledge, phonological STM, phoneme awareness and RAN. Whereas all of these skills were directly predictive of nonword reading, early print knowledge was the only direct predictor of word reading. Our findings suggest that beginning readers draw most heavily on their existing print knowledge to read familiar words. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The interface between spoken and written language: developmental disorders.

    PubMed

    Hulme, Charles; Snowling, Margaret J

    2014-01-01

    We review current knowledge about reading development and the origins of difficulties in learning to read. We distinguish between the processes involved in learning to decode print, and the processes involved in reading for meaning (reading comprehension). At a cognitive level, difficulties in learning to read appear to be predominantly caused by deficits in underlying oral language skills. The development of decoding skills appears to depend critically upon phonological language skills, and variations in phoneme awareness, letter-sound knowledge and rapid automatized naming each appear to be causally related to problems in learning to read. Reading comprehension difficulties in contrast appear to be critically dependent on a range of oral language comprehension skills (including vocabulary knowledge and grammatical, morphological and pragmatic skills).

  15. Synthetic phonics and decodable instructional reading texts: How far do these support poor readers?

    PubMed

    Price-Mohr, Ruth Maria; Price, Colin Bernard

    2018-05-01

    This paper presents data from a quasi-experimental trial with paired randomisation that emerged during the development of a reading scheme for children in England. This trial was conducted with a group of 12 children, aged 5-6, and considered to be falling behind their peers in reading ability and a matched control group. There were two intervention conditions (A: using mixed teaching methods and a high percentage of non-phonically decodable vocabulary; P: using mixed teaching methods and low percentage of non-decodable vocabulary); allocation to these was randomised. Children were assessed at pre- and post-test on standardised measures of receptive vocabulary, phoneme awareness, word reading, and comprehension. Two class teachers in the same school each selected 6 children, who they considered to be poor readers, to participate (n = 12). A control group (using synthetic phonics only and phonically decodable vocabulary) was selected from the same 2 classes based on pre-test scores for word reading (n = 16). Results from the study show positive benefits for poor readers from using both additional teaching methods (such as analytic phonics, sight word vocabulary, and oral vocabulary extension) in addition to synthetic phonics, and also non-decodable vocabulary in instructional reading text. Copyright © 2018 John Wiley & Sons, Ltd.

  16. The Effects of Visual Attention Span and Phonological Decoding in Reading Comprehension in Dyslexia: A Path Analysis.

    PubMed

    Chen, Chen; Schneps, Matthew H; Masyn, Katherine E; Thomson, Jennifer M

    2016-11-01

    Increasing evidence has shown visual attention span to be a factor, distinct from phonological skills, that explains single-word identification (pseudo-word/word reading) performance in dyslexia. Yet, little is known about how well visual attention span explains text comprehension. Observing reading comprehension in a sample of 105 high school students with dyslexia, we used a pathway analysis to examine the direct and indirect path between visual attention span and reading comprehension while controlling for other factors such as phonological awareness, letter identification, short-term memory, IQ and age. Integrating phonemic decoding efficiency skills in the analytic model, this study aimed to disentangle how visual attention span and phonological skills work together in reading comprehension for readers with dyslexia. We found visual attention span to have a significant direct effect on more difficult reading comprehension but not on an easier level. It also had a significant direct effect on pseudo-word identification but not on word identification. In addition, we found that visual attention span indirectly explains reading comprehension through pseudo-word reading and word reading skills. This study supports the hypothesis that at least part of the dyslexic profile can be explained by visual attention abilities. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Multi-stream LSTM-HMM decoding and histogram equalization for noise robust keyword spotting.

    PubMed

    Wöllmer, Martin; Marchi, Erik; Squartini, Stefano; Schuller, Björn

    2011-09-01

    Highly spontaneous, conversational, and potentially emotional and noisy speech is known to be a challenge for today's automatic speech recognition (ASR) systems, which highlights the need for advanced algorithms that improve speech features and models. Histogram Equalization is an efficient method to reduce the mismatch between clean and noisy conditions by normalizing all moments of the probability distribution of the feature vector components. In this article, we propose to combine histogram equalization and multi-condition training for robust keyword detection in noisy speech. To better cope with conversational speaking styles, we show how contextual information can be effectively exploited in a multi-stream ASR framework that dynamically models context-sensitive phoneme estimates generated by a long short-term memory neural network. The proposed techniques are evaluated on the SEMAINE database-a corpus containing emotionally colored conversations with a cognitive system for "Sensitive Artificial Listening".

  18. Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex.

    PubMed

    Ibayashi, Kenji; Kunii, Naoto; Matsuo, Takeshi; Ishishita, Yohei; Shimada, Seijiro; Kawai, Kensuke; Saito, Nobuhito

    2018-01-01

    Restoration of speech communication for locked-in patients by means of brain computer interfaces (BCIs) is currently an important area of active research. Among the neural signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA), local field potential (LFP), and electrocorticography (ECoG) are good candidates for an input signal for BCIs. However, the question of which signal or which combination of the three signal modalities is best suited for decoding speech production remains unverified. In order to record SUA, LFP, and ECoG simultaneously from a highly localized area of human ventral sensorimotor cortex (vSMC), we fabricated an electrode the size of which was 7 by 13 mm containing sparsely arranged microneedle and conventional macro contacts. We determined which signal modality is the most capable of decoding speech production, and tested if the combination of these signals could improve the decoding accuracy of spoken phonemes. Feature vectors were constructed from spike frequency obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP signals, then input to the decoder. The results showed that the decoding accuracy for five spoken vowels was highest when features from multiple signals were combined and optimized for each subject, and reached 59% when averaged across all six subjects. This result suggests that multi-scale signals convey complementary information for speech articulation. The current study demonstrated that simultaneous recording of multi-scale neuronal activities could raise decoding accuracy even though the recording area is limited to a small portion of cortex, which is advantageous for future implementation of speech-assisting BCIs.

  19. Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex

    PubMed Central

    Ibayashi, Kenji; Kunii, Naoto; Matsuo, Takeshi; Ishishita, Yohei; Shimada, Seijiro; Kawai, Kensuke; Saito, Nobuhito

    2018-01-01

    Restoration of speech communication for locked-in patients by means of brain computer interfaces (BCIs) is currently an important area of active research. Among the neural signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA), local field potential (LFP), and electrocorticography (ECoG) are good candidates for an input signal for BCIs. However, the question of which signal or which combination of the three signal modalities is best suited for decoding speech production remains unverified. In order to record SUA, LFP, and ECoG simultaneously from a highly localized area of human ventral sensorimotor cortex (vSMC), we fabricated an electrode the size of which was 7 by 13 mm containing sparsely arranged microneedle and conventional macro contacts. We determined which signal modality is the most capable of decoding speech production, and tested if the combination of these signals could improve the decoding accuracy of spoken phonemes. Feature vectors were constructed from spike frequency obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP signals, then input to the decoder. The results showed that the decoding accuracy for five spoken vowels was highest when features from multiple signals were combined and optimized for each subject, and reached 59% when averaged across all six subjects. This result suggests that multi-scale signals convey complementary information for speech articulation. The current study demonstrated that simultaneous recording of multi-scale neuronal activities could raise decoding accuracy even though the recording area is limited to a small portion of cortex, which is advantageous for future implementation of speech-assisting BCIs. PMID:29674950

  20. Reading disorders and dyslexia.

    PubMed

    Hulme, Charles; Snowling, Margaret J

    2016-12-01

    We review current knowledge about the nature of reading development and disorders, distinguishing between the processes involved in learning to decode print, and the processes involved in reading comprehension. Children with decoding difficulties/dyslexia experience deficits in phoneme awareness, letter-sound knowledge and rapid automatized naming in the preschool years and beyond. These phonological/language difficulties appear to be proximal causes of the problems in learning to decode print in dyslexia. We review data from a prospective study of children at high risk of dyslexia to show that being at family risk of dyslexia is a primary risk factor for poor reading and children with persistent language difficulties at school entry are more likely to develop reading problems. Early oral language difficulties are strong predictors of later difficulties in reading comprehension. There are two distinct forms of reading disorder in children: dyslexia (a difficulty in learning to translate print into speech) and reading comprehension impairment. Both forms of reading problem appear to be predominantly caused by deficits in underlying oral language skills. Implications for screening and for the delivery of robust interventions for language and reading are discussed.

  1. A novel parallel pipeline structure of VP9 decoder

    NASA Astrophysics Data System (ADS)

    Qin, Huabiao; Chen, Wu; Yi, Sijun; Tan, Yunfei; Yi, Huan

    2018-04-01

    To improve the efficiency of VP9 decoder, a novel parallel pipeline structure of VP9 decoder is presented in this paper. According to the decoding workflow, VP9 decoder can be divided into sub-modules which include entropy decoding, inverse quantization, inverse transform, intra prediction, inter prediction, deblocking and pixel adaptive compensation. By analyzing the computing time of each module, hotspot modules are located and the causes of low efficiency of VP9 decoder can be found. Then, a novel pipeline decoder structure is designed by using mixed parallel decoding methods of data division and function division. The experimental results show that this structure can greatly improve the decoding efficiency of VP9.

  2. Examining the Predictive Validity of a Dynamic Assessment of Decoding to Forecast Response Tier 2 to Intervention

    PubMed Central

    Cho, Eunsoo; Compton, Donald L.; Fuchs, Doug; Fuchs, Lynn S.; Bouton, Bobette

    2013-01-01

    The purpose of this study was to examine the role of a dynamic assessment (DA) of decoding in predicting responsiveness to Tier 2 small group tutoring in a response-to-intervention model. First-grade students (n=134) who did not show adequate progress in Tier 1 based on 6 weeks of progress monitoring received Tier 2 small-group tutoring in reading for 14 weeks. Student responsiveness to Tier 2 was assessed weekly with word identification fluency (WIF). A series of conditional individual growth curve analyses were completed that modeled the correlates of WIF growth (final level of performance and growth). Its purpose was to examine the predictive validity of DA in the presence of 3 sets of variables: static decoding measures, Tier 1 responsiveness indicators, and pre-reading variables (phonemic awareness, rapid letter naming, oral vocabulary, and IQ). DA was a significant predictor of final level and growth, uniquely explaining 3% – 13% of the variance in Tier 2 responsiveness depending on the competing predictors in the model and WIF outcome (final level of performance or growth). Although the additional variances explained uniquely by DA were relatively small, results indicate the potential of DA in identifying Tier 2 nonresponders. PMID:23213050

  3. Examining the predictive validity of a dynamic assessment of decoding to forecast response to tier 2 intervention.

    PubMed

    Cho, Eunsoo; Compton, Donald L; Fuchs, Douglas; Fuchs, Lynn S; Bouton, Bobette

    2014-01-01

    The purpose of this study was to examine the role of a dynamic assessment (DA) of decoding in predicting responsiveness to Tier 2 small-group tutoring in a response-to-intervention model. First grade students (n = 134) who did not show adequate progress in Tier 1 based on 6 weeks of progress monitoring received Tier 2 small-group tutoring in reading for 14 weeks. Student responsiveness to Tier 2 was assessed weekly with word identification fluency (WIF). A series of conditional individual growth curve analyses were completed that modeled the correlates of WIF growth (final level of performance and growth). Its purpose was to examine the predictive validity of DA in the presence of three sets of variables: static decoding measures, Tier 1 responsiveness indicators, and prereading variables (phonemic awareness, rapid letter naming, oral vocabulary, and IQ). DA was a significant predictor of final level and growth, uniquely explaining 3% to 13% of the variance in Tier 2 responsiveness depending on the competing predictors in the model and WIF outcome (final level of performance or growth). Although the additional variances explained uniquely by DA were relatively small, results indicate the potential of DA in identifying Tier 2 nonresponders. © Hammill Institute on Disabilities 2012.

  4. Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems

    NASA Technical Reports Server (NTRS)

    Huang, Yiteng; Chen, Jingdong; Chen, Shaoyan

    2010-01-01

    A voice-command human-machine interface system has been developed for spacesuit extravehicular activity (EVA) missions. A multichannel acoustic signal processing method has been created for distant speech acquisition in noisy and reverberant environments. This technology reduces noise by exploiting differences in the statistical nature of signal (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, the automatic speech recognition (ASR) accuracy can be improved to the level at which crewmembers would find the speech interface useful. The developed speech human/machine interface will enable both crewmember usability and operational efficiency. It can enjoy a fast rate of data/text entry, small overall size, and can be lightweight. In addition, this design will free the hands and eyes of a suited crewmember. The system components and steps include beam forming/multi-channel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, model adaption, ASR HMM (Hidden Markov Model) training, and ASR decoding. A state-of-the-art phoneme recognizer can obtain an accuracy rate of 65 percent when the training and testing data are free of noise. When it is used in spacesuits, the rate drops to about 33 percent. With the developed microphone array speech-processing technologies, the performance is improved and the phoneme recognition accuracy rate rises to 44 percent. The recognizer can be further improved by combining the microphone array and HMM model adaptation techniques and using speech samples collected from inside spacesuits. In addition, arithmetic complexity models for the major HMMbased ASR components were developed. They can help real-time ASR system designers select proper tasks when in the face of constraints in computational resources.

  5. Statistical properties of Chinese phonemic networks

    NASA Astrophysics Data System (ADS)

    Yu, Shuiyuan; Liu, Haitao; Xu, Chunshan

    2011-04-01

    The study of properties of speech sound systems is of great significance in understanding the human cognitive mechanism and the working principles of speech sound systems. Some properties of speech sound systems, such as the listener-oriented feature and the talker-oriented feature, have been unveiled with the statistical study of phonemes in human languages and the research of the interrelations between human articulatory gestures and the corresponding acoustic parameters. With all the phonemes of speech sound systems treated as a coherent whole, our research, which focuses on the dynamic properties of speech sound systems in operation, investigates some statistical parameters of Chinese phoneme networks based on real text and dictionaries. The findings are as follows: phonemic networks have high connectivity degrees and short average distances; the degrees obey normal distribution and the weighted degrees obey power law distribution; vowels enjoy higher priority than consonants in the actual operation of speech sound systems; the phonemic networks have high robustness against targeted attacks and random errors. In addition, for investigating the structural properties of a speech sound system, a statistical study of dictionaries is conducted, which shows the higher frequency of shorter words and syllables and the tendency that the longer a word is, the shorter the syllables composing it are. From these structural properties and dynamic properties one can derive the following conclusion: the static structure of a speech sound system tends to promote communication efficiency and save articulation effort while the dynamic operation of this system gives preference to reliable transmission and easy recognition. In short, a speech sound system is an effective, efficient and reliable communication system optimized in many aspects.

  6. Developmental dyslexia in adults: behavioural manifestations and cognitive correlates.

    PubMed

    Nergård-Nilssen, Trude; Hulme, Charles

    2014-08-01

    This paper explores the nature of residual literacy and cognitive deficits in self-reported dyslexic Norwegian adults. The performance of 26 self-reported dyslexic adults was compared with that of a comparison group of 47 adults with no history of reading or spelling difficulties. Participants completed standardized and experimental measures tapping literacy skills, working memory, phonological awareness and rapid naming. Spelling problems were the most prominent marker of dyslexia in adults, followed by text reading fluency and nonword decoding. Working memory and phoneme awareness explained unique variance in spelling, whereas rapid automatized naming explained unique variance in reading fluency and nonword reading. The moderate to strong correlations between self-reported history, self-rating of current literacy skills and outcomes on literacy tests indicate that adults estimated their literacy skills fairly well. Results suggest that spelling impairments, more strongly than reading impairments, make adults perceive themselves as being dyslexic. A combination of three literacy and three cognitive tests predicted group membership with 90.4% accuracy. It appears that weaknesses in phoneme awareness, rapid automatized naming and working memory are strong and persistent correlates of literacy problems even in adults learning a relatively transparent orthography. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Teaching children with dyslexia to spell in a reading-writers' workshop.

    PubMed

    Berninger, Virginia W; Lee, Yen-Ling; Abbott, Robert D; Breznitz, Zvia

    2013-04-01

    To identify effective treatment for both the spelling and word decoding problems in dyslexia, 24 students with dyslexia in grades 4 to 9 were randomly assigned to treatments A (n=12) or B (n=12) in an after-school reading-writers' workshop at the university (thirty 1-h sessions twice a week over 5 months). First, both groups received step 1 treatment of grapheme-phoneme correspondences (gpc) for oral reading. At step 2, treatment A received gpc training for both oral reading and spelling, and treatment B received gpc training for oral reading and phonological awareness. At step 3, treatment A received orthographic spelling strategy and rapid accelerated reading program (RAP) training, and treatment B continued step 2 training. At step 4, treatment A received morphological strategies and RAP training, and treatment B received orthographic spelling strategy training. Each treatment also had the same integrated reading-writing activities, which many school assignments require. Both groups improved significantly in automatic letter writing, spelling real words, compositional fluency, and oral reading (decoding) rate. Treatment A significantly outperformed treatment B in decoding rate after step 3 orthographic training, which in turn uniquely predicted spelling real words. Letter processing rate increased during step 3 RAP training and correlated significantly with two silent reading fluency measures. Adding orthographic strategies with "working memory in mind" to phonics helps students with dyslexia spell and read English words.

  8. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  9. Efficient Decoding of Compressed Data.

    ERIC Educational Resources Information Center

    Bassiouni, Mostafa A.; Mukherjee, Amar

    1995-01-01

    Discusses the problem of enhancing the speed of Huffman decoding of compressed data. Topics addressed include the Huffman decoding tree; multibit decoding; binary string mapping problems; and algorithms for solving mapping problems. (22 references) (LRW)

  10. Distinct patterns of brain function in children with isolated spelling impairment: new insights.

    PubMed

    Gebauer, Daniela; Enzinger, Christian; Kronbichler, Martin; Schurz, Matthias; Reishofer, Gernot; Koschutnig, Karl; Kargl, Reinhard; Purgstaller, Christian; Fazekas, Franz; Fink, Andreas

    2012-06-01

    Studies investigating reading and spelling difficulties heavily focused on the neural correlates of reading impairments, whereas spelling impairments have been largely neglected so far. Hence, the aim of the present study was to investigate brain structure and function of children with isolated spelling difficulties. Therefore, 31 children, aged ten to 15 years, were investigated by means of functional MRI and DTI. This study revealed that children with isolated spelling impairment exhibit a stronger right hemispheric activation compared to children with reading and spelling difficulties and controls, when engaged in an orthographic decision task, presumably reflecting a highly efficient serial grapheme-phoneme decoding compensation strategy. In addition, children with spelling impairment activated bilateral inferior and middle frontal gyri during processing correctly spelled words and misspelled words, whereas the other two groups showed bilateral activation only in the misspelled condition, suggesting that additional right frontal engagement could be related to generally higher task demand and effort. DTI analyses revealed stronger frontal white matter integrity (fractional anisotropy) in controls (compared to spelling and reading impaired children), whereas no structural differences between controls and spelling impaired children were observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  12. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; A Recursive Maximum Likelihood Decoding

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.

  13. High rate concatenated coding systems using bandwidth efficient trellis inner codes

    NASA Technical Reports Server (NTRS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1989-01-01

    High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.

  14. State-space decoding of primary afferent neuron firing rates

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. B.; Ventura, V.; Weber, D. J.

    2011-02-01

    Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent (PA) neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, reverse regression does not make efficient use of the information embedded in the firing rates of the neural population. In this paper, we present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of PA neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. We show that, on average, state-space decoding is twice as efficient as reverse regression for decoding joint and endpoint kinematics.

  15. The Role of Phonological Decoding in Second Language Word-Meaning Inference

    ERIC Educational Resources Information Center

    Hamada, Megumi; Koda, Keiko

    2010-01-01

    Two hypotheses were tested: Similarity between first language (L1) and second language (L2) orthographic processing facilitates L2-decoding efficiency; and L2-decoding efficiency contributes to word-meaning inference to different degrees among L2 learners with diverse L1 orthographic backgrounds. The participants were college-level English as a…

  16. Bandwidth efficient coding for satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.

    1992-01-01

    An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.

  17. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    Decoding algorithms based on the trellis representation of a code (block or convolutional) drastically reduce decoding complexity. The best known and most commonly used trellis-based decoding algorithm is the Viterbi algorithm. It is a maximum likelihood decoding algorithm. Convolutional codes with the Viterbi decoding have been widely used for error control in digital communications over the last two decades. This chapter is concerned with the application of the Viterbi decoding algorithm to linear block codes. First, the Viterbi algorithm is presented. Then, optimum sectionalization of a trellis to minimize the computational complexity of a Viterbi decoder is discussed and an algorithm is presented. Some design issues for IC (integrated circuit) implementation of a Viterbi decoder are considered and discussed. Finally, a new decoding algorithm based on the principle of compare-select-add is presented. This new algorithm can be applied to both block and convolutional codes and is more efficient than the conventional Viterbi algorithm based on the add-compare-select principle. This algorithm is particularly efficient for rate 1/n antipodal convolutional codes and their high-rate punctured codes. It reduces computational complexity by one-third compared with the Viterbi algorithm.

  18. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  19. Approximate maximum likelihood decoding of block codes

    NASA Technical Reports Server (NTRS)

    Greenberger, H. J.

    1979-01-01

    Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.

  20. [Intervention in dyslexic disorders: phonological awareness training].

    PubMed

    Etchepareborda, M C

    2003-02-01

    Taking into account the systems for the treatment of brain information when drawing up a work plan allows us to recreate processing routines that go from multisensory perception to motor, oral and cognitive production, which is the step prior to executive levels of thought, bottom-up and top-down processing systems. In recent years, the use of phonological methods to prevent or resolve reading disorders has become the fundamental mainstay in the treatment of dyslexia. The work is mainly based on phonological proficiency, which enables the patient to detect phonemes (input), to think about them (performance) and to use them to build words (output). Daily work with rhymes, the capacity to listen, the identification of phrases and words, and handling syllables and phonemes allows us to perform a preventive intervention that enhances the capacity to identify letters, phonological analysis and the reading of single words. We present the different therapeutic models that are most frequently employed. Fast For Word (FFW) training helps make progress in phonematic awareness and other linguistic skills, such as phonological awareness, semantics, syntax, grammar, working memory and event sequencing. With Deco-Fon, a programme for training phonological decoding, work is carried out on the auditory discrimination of pure tones, letters and consonant clusters, auditory processing speed, auditory and phonematic memory, and graphophonological processing, which is fundamental for speech, language and reading writing disorders. Hamlet is a programme based on categorisation activities for working on phonological conceptualisation. It attempts to encourage the analysis of the segments of words, syllables or phonemes, and the classification of a certain segment as belonging or not to a particular phonological or orthographical category. Therapeutic approaches in the early phases of reading are oriented towards two poles based on the basic mechanisms underlying the process of learning to read, the grapheme phoneme transformation process and global word recognition. The interventionalist strategies used at school are focused on the use of cognitive strategy techniques. The purpose of these techniques is to teach pupils practical strategies or resources aimed at overcoming specific deficiencies.

  1. Real-time classification of auditory sentences using evoked cortical activity in humans

    NASA Astrophysics Data System (ADS)

    Moses, David A.; Leonard, Matthew K.; Chang, Edward F.

    2018-06-01

    Objective. Recent research has characterized the anatomical and functional basis of speech perception in the human auditory cortex. These advances have made it possible to decode speech information from activity in brain regions like the superior temporal gyrus, but no published work has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain-computer interfaces. Approach. Here, we introduce a real-time neural speech recognition (rtNSR) software package, which was used to classify spoken input from high-resolution electrocorticography signals in real-time. We tested the system with two human subjects implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural activity patterns using direct sentence-level and HMM-based phoneme-level classification schemes. Main results. We observed single-trial sentence classification accuracies of 90% or higher for each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting. Significance. Further development and testing of the package with different speech paradigms could influence the design of future speech neuroprosthetic applications.

  2. Viterbi decoding for satellite and space communication.

    NASA Technical Reports Server (NTRS)

    Heller, J. A.; Jacobs, I. M.

    1971-01-01

    Convolutional coding and Viterbi decoding, along with binary phase-shift keyed modulation, is presented as an efficient system for reliable communication on power limited satellite and space channels. Performance results, obtained theoretically and through computer simulation, are given for optimum short constraint length codes for a range of code constraint lengths and code rates. System efficiency is compared for hard receiver quantization and 4 and 8 level soft quantization. The effects on performance of varying of certain parameters relevant to decoder complexity and cost are examined. Quantitative performance degradation due to imperfect carrier phase coherence is evaluated and compared to that of an uncoded system. As an example of decoder performance versus complexity, a recently implemented 2-Mbit/sec constraint length 7 Viterbi decoder is discussed. Finally a comparison is made between Viterbi and sequential decoding in terms of suitability to various system requirements.

  3. 16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance.

    PubMed

    Zhang, H; Cai, J-X; Batshon, H G; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2012-05-21

    We transmit 160 x 100 G PDM RZ 16 QAM channels with 5.2 bits/s/Hz spectral efficiency over 6,860 km. There are more than 3 billion 16 QAM symbols, i.e., 12 billion bits, processed in total. Using coded modulation and iterative decoding between a MAP decoder and an LDPC based FEC all channels are decoded with no remaining errors.

  4. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1985-01-01

    A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.

  5. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  6. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Fujiwara, T.; Lin, S.

    1986-01-01

    In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.

  7. E-Readers Are More Effective than Paper for Some with Dyslexia

    PubMed Central

    Schneps, Matthew H.; Thomson, Jenny M.; Chen, Chen; Sonnert, Gerhard; Pomplun, Marc

    2013-01-01

    E-readers are fast rivaling print as a dominant method for reading. Because they offer accessibility options that are impossible in print, they are potentially beneficial for those with impairments, such as dyslexia. Yet, little is known about how the use of these devices influences reading in those who struggle. Here, we observe reading comprehension and speed in 103 high school students with dyslexia. Reading on paper was compared with reading on a small handheld e-reader device, formatted to display few words per line. We found that use of the device significantly improved speed and comprehension, when compared with traditional presentations on paper for specific subsets of these individuals: Those who struggled most with phoneme decoding or efficient sight word reading read more rapidly using the device, and those with limited VA Spans gained in comprehension. Prior eye tracking studies demonstrated that short lines facilitate reading in dyslexia, suggesting that it is the use of short lines (and not the device per se) that leads to the observed benefits. We propose that these findings may be understood as a consequence of visual attention deficits, in some with dyslexia, that make it difficult to allocate attention to uncrowded text near fixation, as the gaze advances during reading. Short lines ameliorate this by guiding attention to the uncrowded span. PMID:24058697

  8. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  9. A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    2001-01-01

    Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.

  10. Complementary Reliability-Based Decodings of Binary Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Fossorier, Marc P. C.; Lin, Shu

    1997-01-01

    This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.

  11. Error-trellis Syndrome Decoding Techniques for Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decoding is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.

  12. Modelling acquired dyslexia: a software tool for developing grapheme-phoneme correspondences.

    PubMed Central

    D'Autrechy, C. L.; Reggia, J. A.; Berndt, R. S.

    1991-01-01

    In extending a computer model of acquired dyslexia, it has become necessary to develop a way to group printed characters in a word so that the character groups essentially have a one-to-one correspondence with the word's phonemes (speech sounds). This requires deriving a set of correspondences (legal character groupings, legal associations of character groups with phonemes, etc.) that yield a single grouping or "segmentation" of characters when applied to any English word. To facilitate and partially automate this task, a segmentation program has been developed that uses an interchangeable set of correspondences. The program segments words according to these correspondences and tabulates their success over large sets of words. The program has been used successfully to segment a 20,000 word corpus, demonstrating that this approach can be used effectively and efficiently. PMID:1807611

  13. Large-Constraint-Length, Fast Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Hsu, In-Shek; Pollara, F.; Olson, E.; Statman, J.; Zimmerman, G.

    1990-01-01

    Scheme for efficient interconnection makes VLSI design feasible. Concept for fast Viterbi decoder provides for processing of convolutional codes of constraint length K up to 15 and rates of 1/2 to 1/6. Fully parallel (but bit-serial) architecture developed for decoder of K = 7 implemented in single dedicated VLSI circuit chip. Contains six major functional blocks. VLSI circuits perform branch metric computations, add-compare-select operations, and then store decisions in traceback memory. Traceback processor reads appropriate memory locations and puts out decoded bits. Used as building block for decoders of larger K.

  14. Multi-stage decoding of multi-level modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  15. Buffer management for sequential decoding. [block erasure probability reduction

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1974-01-01

    Sequential decoding has been found to be an efficient means of communicating at low undetected error rates from deep space probes, but erasure or computational overflow remains a significant problem. Erasure of a block occurs when the decoder has not finished decoding that block at the time that it must be output. By drawing upon analogies in computer time sharing, this paper develops a buffer-management strategy which reduces the decoder idle time to a negligible level, and therefore improves the erasure probability of a sequential decoder. For a decoder with a speed advantage of ten and a buffer size of ten blocks, operating at an erasure rate of .01, use of this buffer-management strategy reduces the erasure rate to less than .0001.

  16. Effects of Head Start REDI on Children’s Outcomes One Year Later in Different Kindergarten Contexts

    PubMed Central

    Bierman, Karen L.; Nix, Robert L.; Heinrichs, Brenda S.; Domitrovich, Celene E.; Gest, Scott D.; Welsh, Janet A.; Gill, Sukhdeep

    2013-01-01

    One year after participating in the REDI (Research-based, Developmentally-Informed) intervention or “usual practice” Head Start, the learning and behavioral outcomes of 356 children (17% Hispanic, 25% African American, 54% girls; mean age 4.59 years at initial assessment) were assessed. In addition, their 202 kindergarten classrooms were evaluated on quality of teacher-student interactions, emphasis on reading instruction, and school-level student achievement. Hierarchical linear analyses revealed that the REDI intervention promoted kindergarten phonemic decoding skills, learning engagement, and competent social problem-solving skills, and reduced aggressive-disruptive behavior. Intervention effects on social competence and inattention were moderated by kindergarten context, with effects strongest when children entered schools with low student achievement. Implications are discussed for developmental models of school readiness and early educational programs. PMID:23647355

  17. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.; He, Jiali; White, Gregory S.

    1997-01-01

    Turbo coding using iterative SOVA decoding and M-ary differentially coherent or non-coherent modulation can provide an effective coding modulation solution: (1) Energy efficient with relatively simple SOVA decoding and small packet lengths, depending on BEP required; (2) Low number of decoding iterations required; and (3) Robustness in fading with channel interleaving.

  18. Enhancing Decoding Efficiency in Poor Readers via a Word Identification Game

    ERIC Educational Resources Information Center

    Gorp, Karly; Segers, Eliane; Verhoeven, Ludo

    2017-01-01

    The effects of a word identification game aimed at enhancing decoding efficiency in poor readers were tested. Following a pretest-posttest-retention design with a waiting control group, 62 poor-reading Dutch second graders received a five-hour tablet intervention across a period of five weeks. During the intervention, participants practiced…

  19. Bayesian decoding using unsorted spikes in the rat hippocampus

    PubMed Central

    Layton, Stuart P.; Chen, Zhe; Wilson, Matthew A.

    2013-01-01

    A fundamental task in neuroscience is to understand how neural ensembles represent information. Population decoding is a useful tool to extract information from neuronal populations based on the ensemble spiking activity. We propose a novel Bayesian decoding paradigm to decode unsorted spikes in the rat hippocampus. Our approach uses a direct mapping between spike waveform features and covariates of interest and avoids accumulation of spike sorting errors. Our decoding paradigm is nonparametric, encoding model-free for representing stimuli, and extracts information from all available spikes and their waveform features. We apply the proposed Bayesian decoding algorithm to a position reconstruction task for freely behaving rats based on tetrode recordings of rat hippocampal neuronal activity. Our detailed decoding analyses demonstrate that our approach is efficient and better utilizes the available information in the nonsortable hash than the standard sorting-based decoding algorithm. Our approach can be adapted to an online encoding/decoding framework for applications that require real-time decoding, such as brain-machine interfaces. PMID:24089403

  20. Phonological Iconicity Electrifies: An ERP Study on Affective Sound-to-Meaning Correspondences in German

    PubMed Central

    Ullrich, Susann; Kotz, Sonja A.; Schmidtke, David S.; Aryani, Arash; Conrad, Markus

    2016-01-01

    While linguistic theory posits an arbitrary relation between signifiers and the signified (de Saussure, 1916), our analysis of a large-scale German database containing affective ratings of words revealed that certain phoneme clusters occur more often in words denoting concepts with negative and arousing meaning. Here, we investigate how such phoneme clusters that potentially serve as sublexical markers of affect can influence language processing. We registered the EEG signal during a lexical decision task with a novel manipulation of the words' putative sublexical affective potential: the means of valence and arousal values for single phoneme clusters, each computed as a function of respective values of words from the database these phoneme clusters occur in. Our experimental manipulations also investigate potential contributions of formal salience to the sublexical affective potential: Typically, negative high-arousing phonological segments—based on our calculations—tend to be less frequent and more structurally complex than neutral ones. We thus constructed two experimental sets, one involving this natural confound, while controlling for it in the other. A negative high-arousing sublexical affective potential in the strictly controlled stimulus set yielded an early posterior negativity (EPN), in similar ways as an independent manipulation of lexical affective content did. When other potentially salient formal features at the sublexical level were not controlled for, the effect of the sublexical affective potential was strengthened and prolonged (250–650 ms), presumably because formal salience helps making specific phoneme clusters efficient sublexical markers of negative high-arousing affective meaning. These neurophysiological data support the assumption that the organization of a language's vocabulary involves systematic sound-to-meaning correspondences at the phonemic level that influence the way we process language. PMID:27588008

  1. Error-trellis syndrome decoding techniques for convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1985-01-01

    An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decordig is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.

  2. Influence of First Language Orthographic Experience on Second Language Decoding and Word Learning

    ERIC Educational Resources Information Center

    Hamada, Megumi; Koda, Keiko

    2008-01-01

    This study examined the influence of first language (L1) orthographic experiences on decoding and semantic information retention of new words in a second language (L2). Hypotheses were that congruity in L1 and L2 orthographic experiences determines L2 decoding efficiency, which, in turn, affects semantic information encoding and retention.…

  3. Word-Decoding Skill Interacts with Working Memory Capacity to Influence Inference Generation during Reading

    ERIC Educational Resources Information Center

    Hamilton, Stephen; Freed, Erin; Long, Debra L.

    2016-01-01

    The aim of this study was to examine predictions derived from a proposal about the relation between word-decoding skill and working memory capacity, called verbal efficiency theory. The theory states that poor word representations and slow decoding processes consume resources in working memory that would otherwise be used to execute high-level…

  4. LDPC Codes--Structural Analysis and Decoding Techniques

    ERIC Educational Resources Information Center

    Zhang, Xiaojie

    2012-01-01

    Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…

  5. An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).

    PubMed

    Li, Ran; Duan, Xiaomeng; Li, Xu; He, Wei; Li, Yanling

    2018-04-17

    Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.

  6. Belief propagation decoding of quantum channels by passing quantum messages

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.

    2017-07-01

    The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.

  7. Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  8. 25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency.

    PubMed

    Cai, J-X; Batshon, H G; Zhang, H; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Sinkin, O; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2013-01-28

    We transmit 250x100G PDM RZ-16QAM channels with 5.2 b/s/Hz spectral efficiency over 5,530 km using single-stage C-band EDFAs equalized to 40 nm. We use single parity check coded modulation and all channels are decoded with no errors after iterative decoding between a MAP decoder and an LDPC based FEC algorithm. We also observe that the optimum power spectral density is nearly independent of SE, signal baud rate or modulation format in a dispersion uncompensated system.

  9. Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia.

    PubMed

    Franceschini, Sandro; Trevisan, Piergiorgio; Ronconi, Luca; Bertoni, Sara; Colmar, Susan; Double, Kit; Facoetti, Andrea; Gori, Simone

    2017-07-19

    Dyslexia is characterized by difficulties in learning to read and there is some evidence that action video games (AVG), without any direct phonological or orthographic stimulation, improve reading efficiency in Italian children with dyslexia. However, the cognitive mechanism underlying this improvement and the extent to which the benefits of AVG training would generalize to deep English orthography, remain two critical questions. During reading acquisition, children have to integrate written letters with speech sounds, rapidly shifting their attention from visual to auditory modality. In our study, we tested reading skills and phonological working memory, visuo-spatial attention, auditory, visual and audio-visual stimuli localization, and cross-sensory attentional shifting in two matched groups of English-speaking children with dyslexia before and after they played AVG or non-action video games. The speed of words recognition and phonological decoding increased after playing AVG, but not non-action video games. Furthermore, focused visuo-spatial attention and visual-to-auditory attentional shifting also improved only after AVG training. This unconventional reading remediation program also increased phonological short-term memory and phoneme blending skills. Our report shows that an enhancement of visuo-spatial attention and phonological working memory, and an acceleration of visual-to-auditory attentional shifting can directly translate into better reading in English-speaking children with dyslexia.

  10. A four-dimensional virtual hand brain-machine interface using active dimension selection.

    PubMed

    Rouse, Adam G

    2016-06-01

    Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  11. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  12. Advancing Stage 2 Research on Measures for Monitoring Kindergarten Reading Progress.

    PubMed

    Clemens, Nathan H; Soohoo, Michelle M; Wiley, Colby P; Hsiao, Yu-Yu; Estrella, Ivonne; Allee-Smith, Paula J; Yoon, Myeongsun

    Although several measures exist for frequently monitoring early reading progress, little research has specifically investigated their technical properties when administered on a frequent basis with kindergarten students. In this study, kindergarten students ( N = 137) of whom the majority was receiving supplemental intervention for reading skills were monitored using Letter Sound Fluency, Phoneme Segmentation Fluency, Word Reading Fluency, Nonsense Word Fluency, Highly Decodable Passages, and Spelling on a biweekly basis between February and May. Acceptable reliability was observed for all measures. Analyses of slope validity using latent growth models, latent change score models, and slope differences according to level of year-end achievement indicated that the relation of slope to overall reading skills varied across the measures. A suggested approach to kindergarten students' reading progress is offered that includes Letter Sound Fluency and a measure of word-reading skills to provide a comprehensive picture of student growth toward important year-end reading outcomes.

  13. Phonemes: Lexical access and beyond.

    PubMed

    Kazanina, Nina; Bowers, Jeffrey S; Idsardi, William

    2018-04-01

    Phonemes play a central role in traditional theories as units of speech perception and access codes to lexical representations. Phonemes have two essential properties: they are 'segment-sized' (the size of a consonant or vowel) and abstract (a single phoneme may be have different acoustic realisations). Nevertheless, there is a long history of challenging the phoneme hypothesis, with some theorists arguing for differently sized phonological units (e.g. features or syllables) and others rejecting abstract codes in favour of representations that encode detailed acoustic properties of the stimulus. The phoneme hypothesis is the minority view today. We defend the phoneme hypothesis in two complementary ways. First, we show that rejection of phonemes is based on a flawed interpretation of empirical findings. For example, it is commonly argued that the failure to find acoustic invariances for phonemes rules out phonemes. However, the lack of invariance is only a problem on the assumption that speech perception is a bottom-up process. If learned sublexical codes are modified by top-down constraints (which they are), then this argument loses all force. Second, we provide strong positive evidence for phonemes on the basis of linguistic data. Almost all findings that are taken (incorrectly) as evidence against phonemes are based on psycholinguistic studies of single words. However, phonemes were first introduced in linguistics, and the best evidence for phonemes comes from linguistic analyses of complex word forms and sentences. In short, the rejection of phonemes is based on a false analysis and a too-narrow consideration of the relevant data.

  14. High data rate Reed-Solomon encoding and decoding using VLSI technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner; Morakis, James

    1987-01-01

    Presented as an implementation of a Reed-Solomon encode and decoder, which is 16-symbol error correcting, each symbol is 8 bits. This Reed-Solomon (RS) code is an efficient error correcting code that the National Aeronautics and Space Administration (NASA) will use in future space communications missions. A Very Large Scale Integration (VLSI) implementation of the encoder and decoder accepts data rates up 80 Mbps. A total of seven chips are needed for the decoder (four of the seven decoding chips are customized using 3-micron Complementary Metal Oxide Semiconduction (CMOS) technology) and one chip is required for the encoder. The decoder operates with the symbol clock being the system clock for the chip set. Approximately 1.65 billion Galois Field (GF) operations per second are achieved with the decoder chip set and 640 MOPS are achieved with the encoder chip.

  15. Bandwidth efficient CCSDS coding standard proposals

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Perez, Lance C.; Wang, Fu-Quan

    1992-01-01

    The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations.

  16. Application of source biasing technique for energy efficient DECODER circuit design: memory array application

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav

    2018-04-01

    Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.

  17. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  18. Simulating a transmon implementation of the surface code, Part II

    NASA Astrophysics Data System (ADS)

    O'Brien, Thomas; Tarasinski, Brian; Rol, Adriaan; Bultink, Niels; Fu, Xiang; Criger, Ben; Dicarlo, Leonardo

    The majority of quantum error correcting circuit simulations use Pauli error channels, as they can be efficiently calculated. This raises two questions: what is the effect of more complicated physical errors on the logical qubit error rate, and how much more efficient can decoders become when accounting for realistic noise? To answer these questions, we design a minimal weight perfect matching decoder parametrized by a physically motivated noise model and test it on the full density matrix simulation of Surface-17, a distance-3 surface code. We compare performance against other decoders, for a range of physical parameters. Particular attention is paid to realistic sources of error for transmon qubits in a circuit QED architecture, and the requirements for real-time decoding via an FPGA Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.

  19. Method and system for efficient video compression with low-complexity encoder

    NASA Technical Reports Server (NTRS)

    Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)

    2012-01-01

    Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.

  20. Compression of Encrypted Images Using Set Partitioning In Hierarchical Trees Algorithm

    NASA Astrophysics Data System (ADS)

    Sarika, G.; Unnithan, Harikuttan; Peter, Smitha

    2011-10-01

    When it is desired to transmit redundant data over an insecure channel, it is customary to encrypt the data. For encrypted real world sources such as images, the use of Markova properties in the slepian-wolf decoder does not work well for gray scale images. Here in this paper we propose a method of compression of an encrypted image. In the encoder section, the image is first encrypted and then it undergoes compression in resolution. The cipher function scrambles only the pixel values, but does not shuffle the pixel locations. After down sampling, each sub-image is encoded independently and the resulting syndrome bits are transmitted. The received image undergoes a joint decryption and decompression in the decoder section. By using the local statistics based on the image, it is recovered back. Here the decoder gets only lower resolution version of the image. In addition, this method provides only partial access to the current source at the decoder side, which improves the decoder's learning of the source statistics. The source dependency is exploited to improve the compression efficiency. This scheme provides better coding efficiency and less computational complexity.

  1. Emergence of representations through repeated training on pronouncing novel letter combinations leads to efficient reading.

    PubMed

    Takashima, Atsuko; Hulzink, Iris; Wagensveld, Barbara; Verhoeven, Ludo

    2016-08-01

    Printed text can be decoded by utilizing different processing routes depending on the familiarity of the script. A predominant use of word-level decoding strategies can be expected in the case of a familiar script, and an almost exclusive use of letter-level decoding strategies for unfamiliar scripts. Behavioural studies have revealed that frequently occurring words are read more efficiently, suggesting that these words are read in a more holistic way at the word-level, than infrequent and unfamiliar words. To test whether repeated exposure to specific letter combinations leads to holistic reading, we monitored both behavioural and neural responses during novel script decoding and examined changes related to repeated exposure. We trained a group of Dutch university students to decode pseudowords written in an unfamiliar script, i.e., Korean Hangul characters. We compared behavioural and neural responses to pronouncing trained versus untrained two-character pseudowords (equivalent to two-syllable pseudowords). We tested once shortly after the initial training and again after a four days' delay that included another training session. We found that trained pseudowords were pronounced faster and more accurately than novel combinations of radicals (equivalent to letters). Imaging data revealed that pronunciation of trained pseudowords engaged the posterior temporo-parietal region, and engagement of this network was predictive of reading efficiency a month later. The results imply that repeated exposure to specific combinations of graphemes can lead to emergence of holistic representations that result in efficient reading. Furthermore, inter-individual differences revealed that good learners retained efficiency more than bad learners one month later. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A four-dimensional virtual hand brain-machine interface using active dimension selection

    NASA Astrophysics Data System (ADS)

    Rouse, Adam G.

    2016-06-01

    Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  3. A four-dimensional virtual hand brain-machine interface using active dimension selection

    PubMed Central

    Rouse, Adam G.

    2018-01-01

    Objective Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach ADS utilizes a two stage decoder by using neural signals to both i) select an active dimension being controlled and ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main Results Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits/s for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand. PMID:27171896

  4. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  5. Neural network decoder for quantum error correcting codes

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.

  6. Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey

    NASA Astrophysics Data System (ADS)

    Guillemot, Christine; Siohan, Pierre

    2005-12-01

    Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.

  7. Strategic Deployment of Orthographic Knowledge in Phoneme Detection

    ERIC Educational Resources Information Center

    Cutler, Anne; Treiman, Rebecca; van Ooijen, Brit

    2010-01-01

    The phoneme detection task is widely used in spoken-word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realized. Listeners detected…

  8. Alternating verbal fluency performance following bilateral subthalamic nucleus deep brain stimulation for Parkinson's disease.

    PubMed

    Marshall, D F; Strutt, A M; Williams, A E; Simpson, R K; Jankovic, J; York, M K

    2012-12-01

    Despite common occurrences of verbal fluency declines following bilateral subthalamic nucleus deep brain stimulation (STN-DBS) for the treatment of Parkinson's disease (PD), alternating fluency measures using cued and uncued paradigms have not been evaluated. Twenty-three STN-DBS patients were compared with 20 non-surgical PD patients on a comprehensive neuropsychological assessment, including cued and uncued intradimensional (phonemic/phonemic and semantic/semantic) and extradimensional (phonemic/semantic) alternating fluency measures at baseline and 6-month follow-up. STN-DBS patients demonstrated a greater decline on the cued phonemic/phonemic fluency and the uncued phonemic/semantic fluency tasks compared to the PD patients. For STN-DBS patients, verbal learning and information processing speed accounted for a significant proportion of the variance in declines in alternating phonemic/phonemic and phonemic/semantic fluency scores, respectively, whilst only naming was related to uncued phonemic/semantic performance for the PD patients. Both groups were aided by cueing for the extradimensional task at baseline and follow-up, and the PD patients were also aided by cueing for the phonemic/phonemic task on follow-up. These findings suggest that changes in alternating fluency are not related to disease progression alone as STN-DBS patients demonstrated greater declines over time than the PD patients, and this change was related to declines in information processing speed. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  9. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications

    NASA Astrophysics Data System (ADS)

    Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten

    2015-08-01

    Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.

  10. Achievable Information Rates for Coded Modulation With Hard Decision Decoding for Coherent Fiber-Optic Systems

    NASA Astrophysics Data System (ADS)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi

    2017-12-01

    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.

  11. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things

    PubMed Central

    Akan, Ozgur B.

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST). PMID:29538405

  12. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.

    PubMed

    Aktas, Metin; Kuscu, Murat; Dinc, Ergin; Akan, Ozgur B

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).

  13. A VLSI decomposition of the deBruijn graph

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Mceliece, R.; Pollara, F.

    1990-01-01

    A new Viterbi decoder for convolutional codes with constraint lengths up to 15, called the Big Viterbi Decoder, is under development for the Deep Space Network. It will be demonstrated by decoding data from the Galileo spacecraft, which has a rate 1/4, constraint-length 15 convolutional encoder on board. Here, the mathematical theory underlying the design of the very-large-scale-integrated (VLSI) chips that are being used to build this decoder is explained. The deBruijn graph B sub n describes the topology of a fully parallel, rate 1/v, constraint length n+2 Viterbi decoder, and it is shown that B sub n can be built by appropriately wiring together (i.e., connecting together with extra edges) many isomorphic copies of a fixed graph called a B sub n building block. The efficiency of such a building block is defined as the fraction of the edges in B sub n that are present in the copies of the building block. It is shown, among other things, that for any alpha less than 1, there exists a graph G which is a B sub n building block of efficiency greater than alpha for all sufficiently large n. These results are illustrated by describing a special hierarchical family of deBruijn building blocks, which has led to the design of the gate-array chips being used in the Big Viterbi Decoder.

  14. The Contribution of Segmental and Suprasegmental Phonology to Reading Comprehension

    PubMed Central

    Veenendaal, Nathalie J.; Groen, Margriet A.; Verhoeven, Ludo

    2016-01-01

    The aim of the present study was to examine the relation between decoding and segmental and suprasegmental phonology, and their contribution to reading comprehension, in the upper primary grades. Following a longitudinal design, the performance of 99 Dutch primary school children on phonological awareness (segmental phonology) and text reading prosody (suprasegmental phonology) in fourth-grade and fifth-grade, and reading comprehension in sixth-grade were examined. In addition, decoding efficiency as a general assessment of reading was examined. Structural path modeling firstly showed that the relation between decoding efficiency and both measures of phonology from fourth- to fifth grade was unidirectional. Secondly, the relation between decoding in fourth- and fifth-grade and reading comprehension in sixth-grade became indirect when segmental and suprasegmental phonology were added to the model. Both factors independently exerted influence on later reading comprehension. This leads to the conclusion that not only segmental, but also suprasegmental phonology, contributes substantially to children's reading development. PMID:27551159

  15. A single chip VLSI Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Hsu, I. S.; Deutsch, L. J.; Reed, I. S.

    1986-01-01

    A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip.

  16. Dynamic configuration management of a multi-standard and multi-mode reconfigurable multi-ASIP architecture for turbo decoding

    NASA Astrophysics Data System (ADS)

    Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe

    2017-12-01

    The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.

  17. Brain Decoding-Classification of Hand Written Digits from fMRI Data Employing Bayesian Networks

    PubMed Central

    Yargholi, Elahe'; Hossein-Zadeh, Gholam-Ali

    2016-01-01

    We are frequently exposed to hand written digits 0–9 in today's modern life. Success in decoding-classification of hand written digits helps us understand the corresponding brain mechanisms and processes and assists seriously in designing more efficient brain–computer interfaces. However, all digits belong to the same semantic category and similarity in appearance of hand written digits makes this decoding-classification a challenging problem. In present study, for the first time, augmented naïve Bayes classifier is used for classification of functional Magnetic Resonance Imaging (fMRI) measurements to decode the hand written digits which took advantage of brain connectivity information in decoding-classification. fMRI was recorded from three healthy participants, with an age range of 25–30. Results in different brain lobes (frontal, occipital, parietal, and temporal) show that utilizing connectivity information significantly improves decoding-classification and capability of different brain lobes in decoding-classification of hand written digits were compared to each other. In addition, in each lobe the most contributing areas and brain connectivities were determined and connectivities with short distances between their endpoints were recognized to be more efficient. Moreover, data driven method was applied to investigate the similarity of brain areas in responding to stimuli and this revealed both similarly active areas and active mechanisms during this experiment. Interesting finding was that during the experiment of watching hand written digits, there were some active networks (visual, working memory, motor, and language processing), but the most relevant one to the task was language processing network according to the voxel selection. PMID:27468261

  18. Comparison of meaning and graphophonemic feedback strategies for guided reading instruction of children with language delays.

    PubMed

    Kouri, Theresa A; Selle, Carrie A; Riley, Sarah A

    2006-08-01

    Guided reading is a common practice recommended for children in the early stages of literacy development. While experts agree that oral reading facilitates literacy skills, controversy exists concerning which corrective feedback strategies are most effective. The purpose of this study was to compare feedback procedures stemming from 2 different theoretical perspectives on literacy development. Fourteen children with specific language impairment (SLI) and 21 with typically developing language read aloud 2 stories to an adult examiner who presented corrective feedback prompts when reading miscues (errors) occurred. One type of feedback based on whole language principles emphasized meaning aspects of a text. The other type consisted of graphophonemic (GP) word-decoding strategies. Before reading, participants were provided instruction on 5 key words taken from each story text. This instruction emphasized either meaning or GP aspects of specific key words. Story comprehension questions followed readings. Findings indicated that more miscued words were corrected overall through the use of GP feedback cues; however, some meaning-based instructional advantages were indicated for key word identifications for children with SLI. Higher story comprehension scores were yielded in the GP condition for both groups. Both meaning-based and phonemic key word reviews, prior to oral reading, appear to be effective strategies for children with SLI. The use of GP word-decoding cues may be more effective than meaning-based cues for facilitating correction of reading miscues during children's oral readings. Further research findings are discussed along with clinical implications for using corrective feedback procedures.

  19. Alternate reading strategies and variable asymmetry of the planum temporale in adult resilient readers.

    PubMed

    Welcome, Suzanne E; Leonard, Christiana M; Chiarello, Christine

    2010-05-01

    Resilient readers are characterized by impaired phonological processing despite skilled text comprehension. We investigated orthographic and semantic processing in resilient readers to examine mechanisms of compensation for poor phonological decoding. Performance on phonological (phoneme deletion, pseudoword reading), orthographic (orthographic choice, orthographic analogy), and semantic (semantic priming, homograph resolution) tasks was compared between resilient, poor and proficient readers. Asymmetry of the planum temporale was investigated in order to determine whether atypical readers showed unusual morphology in this language-relevant region. Resilient readers showed deficits on phonological tasks similar to those shown by poor readers. We obtained no evidence that resilient readers compensate via superior orthographic processing, as they showed neither exceptional orthographic skill nor increased reliance on orthography to guide pronunciation. Resilient readers benefited more than poor or proficient readers from semantic relationships between words and experienced greater difficulty when such relationships were not present. We suggest, therefore, that resilient readers compensate for poor phonological decoding via greater reliance on word meaning relationships. The reading groups did not differ in mean asymmetry of the planum temporale. However, resilient readers showed greater variability in planar asymmetry than proficient readers. Poor readers also showed a trend towards greater variability in planar asymmetry, with more poor readers than proficient readers showing extreme asymmetry. Such increased variability suggests that university students with less reading skill display less well regulated brain anatomy than proficient readers. Copyright 2010 Elsevier Inc. All rights reserved.

  20. A comparison of worldwide phonemic and genetic variation in human populations

    PubMed Central

    Creanza, Nicole; Ruhlen, Merritt; Pemberton, Trevor J.; Rosenberg, Noah A.; Feldman, Marcus W.; Ramachandran, Sohini

    2015-01-01

    Worldwide patterns of genetic variation are driven by human demographic history. Here, we test whether this demographic history has left similar signatures on phonemes—sound units that distinguish meaning between words in languages—to those it has left on genes. We analyze, jointly and in parallel, phoneme inventories from 2,082 worldwide languages and microsatellite polymorphisms from 246 worldwide populations. On a global scale, both genetic distance and phonemic distance between populations are significantly correlated with geographic distance. Geographically close language pairs share significantly more phonemes than distant language pairs, whether or not the languages are closely related. The regional geographic axes of greatest phonemic differentiation correspond to axes of genetic differentiation, suggesting that there is a relationship between human dispersal and linguistic variation. However, the geographic distribution of phoneme inventory sizes does not follow the predictions of a serial founder effect during human expansion out of Africa. Furthermore, although geographically isolated populations lose genetic diversity via genetic drift, phonemes are not subject to drift in the same way: within a given geographic radius, languages that are relatively isolated exhibit more variance in number of phonemes than languages with many neighbors. This finding suggests that relatively isolated languages are more susceptible to phonemic change than languages with many neighbors. Within a language family, phoneme evolution along genetic, geographic, or cognate-based linguistic trees predicts similar ancestral phoneme states to those predicted from ancient sources. More genetic sampling could further elucidate the relative roles of vertical and horizontal transmission in phoneme evolution. PMID:25605893

  1. Linear-time general decoding algorithm for the surface code

    NASA Astrophysics Data System (ADS)

    Darmawan, Andrew S.; Poulin, David

    2018-05-01

    A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

  2. Architecture and implementation considerations of a high-speed Viterbi decoder for a Reed-Muller subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu (Principal Investigator); Uehara, Gregory T.; Nakamura, Eric; Chu, Cecilia W. P.

    1996-01-01

    The (64, 40, 8) subcode of the third-order Reed-Muller (RM) code for high-speed satellite communications is proposed. The RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. The progress made toward achieving the goal of implementing a decoder system based upon this code is summarized. The development of the integrated circuit prototype sub-trellis IC, particularly focusing on the design methodology, is addressed.

  3. On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, H.M.; Reed, I.S.

    A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous paper is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area, therefore making it possible to build a pipelinemore » Reed-Solomon decoder on a single VLSI chip.« less

  4. High-speed architecture for the decoding of trellis-coded modulation

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  5. Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond

    PubMed Central

    Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong

    2016-01-01

    In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment. PMID:27898712

  6. Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond.

    PubMed

    Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong

    2016-01-01

    In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment.

  7. Investigating lexical competition and the cost of phonemic restoration.

    PubMed

    Balling, Laura Winther; Morris, David Jackson; Tøndering, John

    2017-12-01

    Due to phonemic restoration, listeners can reliably perceive words when a phoneme is replaced with noise. The cost associated with this process was investigated along with the effect of lexical uniqueness on phonemic restoration, using data from a lexical decision experiment where noise replaced phonemes that were either uniqueness points (the phoneme at which a word deviates from all nonrelated words that share the same onset) or phonemes immediately prior to these. A baseline condition was also included with no noise-interrupted stimuli. Results showed a significant cost of phonemic restoration, with 100 ms longer word identification times and a 14% decrease in word identification accuracy for interrupted stimuli compared to the baseline. Regression analysis of response times from the interrupted conditions showed no effect of whether the interrupted phoneme was a uniqueness point, but significant effects for several temporal attributes of the stimuli, including the duration and position of the interrupted segment. These results indicate that uniqueness points are not distinct breakpoints in the cohort reduction that occurs during lexical processing, but that temporal properties of the interrupted stimuli are central to auditory word recognition. These results are interpreted in the context of models of speech perception.

  8. Does learning to read shape verbal working memory?

    PubMed

    Demoulin, Catherine; Kolinsky, Régine

    2016-06-01

    Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.

  9. Effect of age at cochlear implantation and at exposure to Cued Speech on literacy skills in deaf children.

    PubMed

    Colin, S; Ecalle, J; Truy, E; Lina-Granade, G; Magnan, A

    2017-12-01

    The aim of this study was to investigate how age at cochlear implantation (CI) and age at exposure to Cued Speech (CS, Manual system that resolves the ambiguity inherent lipreading) could impact literacy skills in deaf children. Ninety deaf children fitted with CI (early vs late) and exposed to CS (early vs late) from primary schools (from Grade 2 to Grade 5) took part in this study. Five literacy skills were assessed: phonological skills through phoneme deletion, reading (decoding and sentence comprehension), word spelling and vocabulary. The results showed that both age at CI and age at first exposure to CS had some influence on literacy skills but there was no interaction between these factors. This implies that the positive effects of age at CI, especially on all literacy skills in the younger children, were not strengthened by age at exposure to CS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The "wh" questions of visual phonics: what, who, where, when, and why.

    PubMed

    Narr, Rachel F; Cawthon, Stephanie W

    2011-01-01

    Visual Phonics is a reading instructional tool that has been implemented in isolated classrooms for over 20 years. In the past 5 years, several experimental studies demonstrated its efficacy with students who are deaf or hard of hearing. Through a national survey with 200 participants, this study specifically addresses who, where, how, and why a sample of teachers use Visual Phonics in their everyday reading instruction. Through checklists of teaching practice, rating scales, and open-ended questions, teachers self-reported their use of Visual Phonics, reflected upon its efficacy, and what they think about using it with students with a diverse set of instructional needs. The majority reported that Visual Phonics was easy to use, engaging to students, and easy to integrate into a structured reading curriculum. The majority of respondents agreed that it helps increase phonemic awareness and decoding skills, build vocabulary, as well as increase reading comprehension. The implications of these findings in bridging the research-to-practice gap are discussed.

  11. A long-term predictive validity study: can the CDI Short Form be used to predict language and early literacy skills four years later?

    PubMed

    Can, Dilara Deniz; Ginsburg-Block, Marika; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2013-09-01

    This longitudinal study examined the predictive validity of the MacArthur Communicative Developmental Inventories-Short Form (CDI-SF), a parent report questionnaire about children's language development (Fenson, Pethick, Renda, Cox, Dale & Reznick, 2000). Data were first gathered from parents on the CDI-SF vocabulary scores for seventy-six children (mean age=1 ; 10). Four years later (mean age=6 ; 1), children were assessed on language outcomes (expressive vocabulary, syntax, semantics and pragmatics) and code-related skills, including phonemic awareness, word recognition and decoding skills. Hierarchical regression analyses revealed that early expressive vocabulary accounted for 17% of the variance in picture vocabulary, 11% of the variance in syntax, and 7% of the variance in semantics, while not accounting for any variance in pragmatics in kindergarten. CDI-SF scores did not predict code-related skills in kindergarten. The importance of early vocabulary skills for later language development and CDI-SF as a valuable research tool are discussed.

  12. Recognition of speaker-dependent continuous speech with KEAL

    NASA Astrophysics Data System (ADS)

    Mercier, G.; Bigorgne, D.; Miclet, L.; Le Guennec, L.; Querre, M.

    1989-04-01

    A description of the speaker-dependent continuous speech recognition system KEAL is given. An unknown utterance, is recognized by means of the followng procedures: acoustic analysis, phonetic segmentation and identification, word and sentence analysis. The combination of feature-based, speaker-independent coarse phonetic segmentation with speaker-dependent statistical classification techniques is one of the main design features of the acoustic-phonetic decoder. The lexical access component is essentially based on a statistical dynamic programming technique which aims at matching a phonemic lexical entry containing various phonological forms, against a phonetic lattice. Sentence recognition is achieved by use of a context-free grammar and a parsing algorithm derived from Earley's parser. A speaker adaptation module allows some of the system parameters to be adjusted by matching known utterances with their acoustical representation. The task to be performed, described by its vocabulary and its grammar, is given as a parameter of the system. Continuously spoken sentences extracted from a 'pseudo-Logo' language are analyzed and results are presented.

  13. Auditory Phoneme Discrimination in Illiterates: Mismatch Negativity--A Question of Literacy?

    ERIC Educational Resources Information Center

    Schaadt, Gesa; Pannekamp, Ann; van der Meer, Elke

    2013-01-01

    These days, illiteracy is still a major problem. There is empirical evidence that auditory phoneme discrimination is one of the factors contributing to written language acquisition. The current study investigated auditory phoneme discrimination in participants who did not acquire written language sufficiently. Auditory phoneme discrimination was…

  14. Homophone Dominance Modulates the Phonemic-Masking Effect.

    ERIC Educational Resources Information Center

    Berent, Iris; Van Orden, Guy C.

    2000-01-01

    Finds (1) positive phonemic-masking effects occurred for dominant homophones; (2) null phonemic-masking effects occurred for subordinate homophones; and (3) subordinate homophones were much more likely to be falsely identified as their dominant mate. Suggests the source of these null phonemic-masking is itself a phonology effect. Concludes…

  15. Receptive Vocabulary and Cross-Language Transfer of Phonemic Awareness in Kindergarten Children

    ERIC Educational Resources Information Center

    Atwill, Kim; Blanchard, Jay; Gorin, Joanna S.; Burstein, Karen

    2007-01-01

    The authors investigated the influence of language proficiency on the cross-language transfer (CLT) of phonemic awareness in Spanish-speaking kindergarten students and assessed Spanish and English receptive vocabulary and phonemic awareness abilities. Correlation results indicated positive correlations between phonemic awareness across languages;…

  16. Reading in French-Speaking Adults with Dyslexia

    ERIC Educational Resources Information Center

    Martin, Jennifer; Cole, Pascale; Leuwers, Christel; Casalis, Severine; Zorman, Michel; Sprenger-Charolles, Liliane

    2010-01-01

    This study investigated the reading and reading-related skills of 15 French-speaking adults with dyslexia, whose performance was compared with that of chronological-age controls (CA) and reading-level controls (RL). Experiment 1 assessed the efficiency of their phonological reading-related skills (phonemic awareness, phonological short-term…

  17. Two Autistic Savant Readers.

    ERIC Educational Resources Information Center

    O'Connor, N.; Hermelin, B.

    1994-01-01

    Two young autistic children exhibited normal reading comprehension but reading speeds considerably faster than controls. The effect of randomizing word order was minimal for the older of the two autistic boys. Results indicate that efficient grapheme-phoneme conversion is primarily responsible for the fast reading of the autistic children.…

  18. Maximum-likelihood soft-decision decoding of block codes using the A* algorithm

    NASA Technical Reports Server (NTRS)

    Ekroot, L.; Dolinar, S.

    1994-01-01

    The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.

  19. Highly efficient simulation environment for HDTV video decoder in VLSI design

    NASA Astrophysics Data System (ADS)

    Mao, Xun; Wang, Wei; Gong, Huimin; He, Yan L.; Lou, Jian; Yu, Lu; Yao, Qingdong; Pirsch, Peter

    2002-01-01

    With the increase of the complex of VLSI such as the SoC (System on Chip) of MPEG-2 Video decoder with HDTV scalability especially, simulation and verification of the full design, even as high as the behavior level in HDL, often proves to be very slow, costly and it is difficult to perform full verification until late in the design process. Therefore, they become bottleneck of the procedure of HDTV video decoder design, and influence it's time-to-market mostly. In this paper, the architecture of Hardware/Software Interface of HDTV video decoder is studied, and a Hardware-Software Mixed Simulation (HSMS) platform is proposed to check and correct error in the early design stage, based on the algorithm of MPEG-2 video decoding. The application of HSMS to target system could be achieved by employing several introduced approaches. Those approaches speed up the simulation and verification task without decreasing performance.

  20. The Linguistic Affiliation Constraint and Phoneme Recognition in Diglossic Arabic

    ERIC Educational Resources Information Center

    Saiegh-Haddad, Elinor; Levin, Iris; Hende, Nareman; Ziv, Margalit

    2011-01-01

    This study tested the effect of the phoneme's linguistic affiliation (Standard Arabic versus Spoken Arabic) on phoneme recognition among five-year-old Arabic native speaking kindergarteners (N=60). Using a picture selection task of words beginning with the same phoneme, and through careful manipulation of the phonological properties of target…

  1. Information hiding techniques for infrared images: exploring the state-of-the art and challenges

    NASA Astrophysics Data System (ADS)

    Pomponiu, Victor; Cavagnino, Davide; Botta, Marco; Nejati, Hossein

    2015-10-01

    The proliferation of Infrared technology and imaging systems enables a different perspective to tackle many computer vision problems in defense and security applications. Infrared images are widely used by the law enforcement, Homeland Security and military organizations to achieve a significant advantage or situational awareness, and thus is vital to protect these data against malicious attacks. Concurrently, sophisticated malware are developed which are able to disrupt the security and integrity of these digital media. For instance, illegal distribution and manipulation are possible malicious attacks to the digital objects. In this paper we explore the use of a new layer of defense for the integrity of the infrared images through the aid of information hiding techniques such as watermarking. In this context, we analyze the efficiency of several optimal decoding schemes for the watermark inserted into the Singular Value Decomposition (SVD) domain of the IR images using an additive spread spectrum (SS) embedding framework. In order to use the singular values (SVs) of the IR images with the SS embedding we adopt several restrictions that ensure that the values of the SVs will maintain their statistics. For both the optimal maximum likelihood decoder and sub-optimal decoders we assume that the PDF of SVs can be modeled by the Weibull distribution. Furthermore, we investigate the challenges involved in protecting and assuring the integrity of IR images such as data complexity and the error probability behavior, i.e., the probability of detection and the probability of false detection, for the applied optimal decoders. By taking into account the efficiency and the necessary auxiliary information for decoding the watermark, we discuss the suitable decoder for various operating situations. Experimental results are carried out on a large dataset of IR images to show the imperceptibility and efficiency of the proposed scheme against various attack scenarios.

  2. Relationships between Categorical Perception of Phonemes, Phoneme Awareness, and Visual Attention Span in Developmental Dyslexia.

    PubMed

    Zoubrinetzky, Rachel; Collet, Gregory; Serniclaes, Willy; Nguyen-Morel, Marie-Ange; Valdois, Sylviane

    2016-01-01

    We tested the hypothesis that the categorical perception deficit of speech sounds in developmental dyslexia is related to phoneme awareness skills, whereas a visual attention (VA) span deficit constitutes an independent deficit. Phoneme awareness tasks, VA span tasks and categorical perception tasks of phoneme identification and discrimination using a d/t voicing continuum were administered to 63 dyslexic children and 63 control children matched on chronological age. Results showed significant differences in categorical perception between the dyslexic and control children. Significant correlations were found between categorical perception skills, phoneme awareness and reading. Although VA span correlated with reading, no significant correlations were found between either categorical perception or phoneme awareness and VA span. Mediation analyses performed on the whole dyslexic sample suggested that the effect of categorical perception on reading might be mediated by phoneme awareness. This relationship was independent of the participants' VA span abilities. Two groups of dyslexic children with a single phoneme awareness or a single VA span deficit were then identified. The phonologically impaired group showed lower categorical perception skills than the control group but categorical perception was similar in the VA span impaired dyslexic and control children. The overall findings suggest that the link between categorical perception, phoneme awareness and reading is independent from VA span skills. These findings provide new insights on the heterogeneity of developmental dyslexia. They suggest that phonological processes and VA span independently affect reading acquisition.

  3. Relationships between Categorical Perception of Phonemes, Phoneme Awareness, and Visual Attention Span in Developmental Dyslexia

    PubMed Central

    Zoubrinetzky, Rachel; Collet, Gregory; Serniclaes, Willy; Nguyen-Morel, Marie-Ange; Valdois, Sylviane

    2016-01-01

    We tested the hypothesis that the categorical perception deficit of speech sounds in developmental dyslexia is related to phoneme awareness skills, whereas a visual attention (VA) span deficit constitutes an independent deficit. Phoneme awareness tasks, VA span tasks and categorical perception tasks of phoneme identification and discrimination using a d/t voicing continuum were administered to 63 dyslexic children and 63 control children matched on chronological age. Results showed significant differences in categorical perception between the dyslexic and control children. Significant correlations were found between categorical perception skills, phoneme awareness and reading. Although VA span correlated with reading, no significant correlations were found between either categorical perception or phoneme awareness and VA span. Mediation analyses performed on the whole dyslexic sample suggested that the effect of categorical perception on reading might be mediated by phoneme awareness. This relationship was independent of the participants’ VA span abilities. Two groups of dyslexic children with a single phoneme awareness or a single VA span deficit were then identified. The phonologically impaired group showed lower categorical perception skills than the control group but categorical perception was similar in the VA span impaired dyslexic and control children. The overall findings suggest that the link between categorical perception, phoneme awareness and reading is independent from VA span skills. These findings provide new insights on the heterogeneity of developmental dyslexia. They suggest that phonological processes and VA span independently affect reading acquisition. PMID:26950210

  4. [Phoneme analysis and phoneme discrimination of juvenile speech therapy school students].

    PubMed

    Franz, S; Rosanowski, F; Eysholdt, U; Hoppe, U

    2011-05-01

    Phoneme analysis and phoneme discrimination, important factors in acquiring spoken and written language, have been evaluated in juvenile speech therapy school students. The results have been correlated with the results of a school achievement test. The following questions were of interest: Do students in the lower verbal skill segment show pathological phoneme analysis and phoneme discrimination skills? Do the results of the school achievement test differ from the results by students visiting German "Hauptschule"? How does phoneme analysis and phoneme discrimination performance correlate to other tested parameters? 74 students of a speech therapy school ranging from 7 (th) to 9 (th) grade were examined (ages 12;10-17;04) with the Heidelberg Phoneme Discrimination Test H-LAD and the school achievement test "Prüfsystem für Schul- und Bildungsberatung PSB-R 6-13". Compared to 4 (th) graders the juvenile speech therapy school students showed worse results in the H-LAD test with good differentiation in the lower measuring range. In the PSB-R 6-13 test the examined students did worse compared to students visiting German "Hauptschule" for all grades except 9 (th) grade. Comparing H-LAD and PSB-R 6-13 shows a significant correlation for the sub-tests covering language competence and intelligence but not for the concentration tests. Pathological phoneme analysis and phoneme discrimination skills suggest elevated need for counseling, but this needs to corroborated through additional linguistic parameters and measuring non-verbal intelligence. Further trails are needed in order to clarify whether the results can lead to sophisticated therapy algorithms for educational purposes. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Deng, H.; Lin, S.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.

  6. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    PubMed

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders. SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for dynamic processing of speech sounds in the auditory pathway. Copyright © 2017 Khalighinejad et al.

  7. An efficient decoding for low density parity check codes

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Zhang, Xiaolin; Zhu, Manjie

    2009-12-01

    Low density parity check (LDPC) codes are a class of forward-error-correction codes. They are among the best-known codes capable of achieving low bit error rates (BER) approaching Shannon's capacity limit. Recently, LDPC codes have been adopted by the European Digital Video Broadcasting (DVB-S2) standard, and have also been proposed for the emerging IEEE 802.16 fixed and mobile broadband wireless-access standard. The consultative committee for space data system (CCSDS) has also recommended using LDPC codes in the deep space communications and near-earth communications. It is obvious that LDPC codes will be widely used in wired and wireless communication, magnetic recording, optical networking, DVB, and other fields in the near future. Efficient hardware implementation of LDPC codes is of great interest since LDPC codes are being considered for a wide range of applications. This paper presents an efficient partially parallel decoder architecture suited for quasi-cyclic (QC) LDPC codes using Belief propagation algorithm for decoding. Algorithmic transformation and architectural level optimization are incorporated to reduce the critical path. First, analyze the check matrix of LDPC code, to find out the relationship between the row weight and the column weight. And then, the sharing level of the check node updating units (CNU) and the variable node updating units (VNU) are determined according to the relationship. After that, rearrange the CNU and the VNU, and divide them into several smaller parts, with the help of some assistant logic circuit, these smaller parts can be grouped into CNU during the check node update processing and grouped into VNU during the variable node update processing. These smaller parts are called node update kernel units (NKU) and the assistant logic circuit are called node update auxiliary unit (NAU). With NAUs' help, the two steps of iteration operation are completed by NKUs, which brings in great hardware resource reduction. Meanwhile, efficient techniques have been developed to reduce the computation delay of the node processing units and to minimize hardware overhead for parallel processing. This method may be applied not only to regular LDPC codes, but also to the irregular ones. Based on the proposed architectures, a (7493, 6096) irregular QC-LDPC code decoder is described using verilog hardware design language and implemented on Altera field programmable gate array (FPGA) StratixII EP2S130. The implementation results show that over 20% of logic core size can be saved than conventional partially parallel decoder architectures without any performance degradation. If the decoding clock is 100MHz, the proposed decoder can achieve a maximum (source data) decoding throughput of 133 Mb/s at 18 iterations.

  8. Can Explicit Training in Cued Speech Improve Phoneme Identification?

    ERIC Educational Resources Information Center

    Rees, R.; Fitzpatrick, C.; Foulkes, J.; Peterson, H.; Newton, C.

    2017-01-01

    When identifying phonemes in new spoken words, lipreading is an important source of information for many deaf people. Because many groups of phonemes are virtually indistinguishable by sight, deaf people are able to identify about 30% of phonemes when lipreading non-words. Cued speech (CS) is a system of hand shapes and hand positions used…

  9. Initial Insights into Phoneme Awareness Intervention for Children with Complex Communication Needs

    ERIC Educational Resources Information Center

    Clendon, Sally; Gillon, Gail; Yoder, David

    2005-01-01

    This study provides insights into the benefits of phoneme awareness intervention for children with complex communication needs (CCN). The specific aims of the study were: (1) to determine whether phoneme awareness skills can be successfully trained in children with CCN; and (2) to observe any transfer effects to phoneme awareness tasks not…

  10. Spatial domain entertainment audio decompression/compression

    NASA Astrophysics Data System (ADS)

    Chan, Y. K.; Tam, Ka Him K.

    2014-02-01

    The ARM7 NEON processor with 128bit SIMD hardware accelerator requires a peak performance of 13.99 Mega Cycles per Second for MP3 stereo entertainment quality decoding. For similar compression bit rate, OGG and AAC is preferred over MP3. The Patent Cooperation Treaty Application dated 28/August/2012 describes an audio decompression scheme producing a sequence of interleaving "min to Max" and "Max to min" rising and falling segments. The number of interior audio samples bound by "min to Max" or "Max to min" can be {0|1|…|N} audio samples. The magnitudes of samples, including the bounding min and Max, are distributed as normalized constants within the 0 and 1 of the bounding magnitudes. The decompressed audio is then a "sequence of static segments" on a frame by frame basis. Some of these frames needed to be post processed to elevate high frequency. The post processing is compression efficiency neutral and the additional decoding complexity is only a small fraction of the overall decoding complexity without the need of extra hardware. Compression efficiency can be speculated as very high as source audio had been decimated and converted to a set of data with only "segment length and corresponding segment magnitude" attributes. The PCT describes how these two attributes are efficiently coded by the PCT innovative coding scheme. The PCT decoding efficiency is obviously very high and decoding latency is basically zero. Both hardware requirement and run time is at least an order of magnitude better than MP3 variants. The side benefit is ultra low power consumption on mobile device. The acid test on how such a simplistic waveform representation can indeed reproduce authentic decompressed quality is benchmarked versus OGG(aoTuv Beta 6.03) by three pair of stereo audio frames and one broadcast like voice audio frame with each frame consisting 2,028 samples at 44,100KHz sampling frequency.

  11. Hemispheric specialization for language according to grapho-phonemic transformation and gender. A divided visual field experiment.

    PubMed

    Cousin, Emilie; Perrone, Marcela; Baciu, Monica

    2009-04-01

    This behavioral study aimed at assessing the effect of two variables on the degree of hemispheric specialization for language. One of them was the grapho-phonemic translation (transformation) (letter-sound mapping) and the other was the participants'gender. The experiment was conducted with healthy volunteers. A divided visual field procedure has been used to perform a phoneme detection task implying either regular (transparent) grapho-phonemic translation (letter-sound mapping consistency) or irregular (non-transparent) grapho-phonemic translation (letter-sound mapping inconsistency). Our results reveal a significant effect of grapho-phonemic translation on the degree of hemispheric dominance for language. The phoneme detection on items with transparent translation (TT) was performed faster than phoneme detection on items with non-transparent translation (NTT). This effect seems to be due to faster identification of TT than NTT when the items were presented in the left visual field (LVF)-right hemisphere (RH). There was no difference between TT and NTT for stimuli presented in the right visual field (RVF)-left hemisphere (LH). This result suggests that grapho-phonemic translation or the degree of transparency can affect the degree of hemispheric specialization, by modulating the right hemisphere activity. With respect to gender, male participants were significantly more lateralized than female participants but no interaction was observed between gender and degree of transparency.

  12. Implementation and Evaluation of Computer-Aided Mandarin Phonemes Training System for Hearing-Impaired Students

    ERIC Educational Resources Information Center

    Yang, Hui-Jen; Lay, Yun-Long

    2005-01-01

    A computer-aided Mandarin phonemes training (CAMPT) system was developed and evaluated for training hearing-impaired students in their pronunciation of Mandarin phonemes. Deaf or hearing-impaired people have difficulty hearing their own voice, hence most of them cannot learn how to speak. Phonemes are the basis for learning to read and speak in…

  13. When Variability Matters More than Meaning: The Effect of Lexical Forms on Use of Phonemic Contrasts

    ERIC Educational Resources Information Center

    Thiessen, Erik D.

    2011-01-01

    During the first half of the 2nd year of life, infants struggle to use phonemic distinctions in label-object association tasks. Prior experiments have demonstrated that exposure to the phonemes in distinct lexical forms (e.g., /"d"/ and /"t"/ in "daddy" and "tiger", respectively) facilitates infants' use of phonemic contrasts but also that they…

  14. Universal and Language-Specific Constraints on Phonemic Awareness: Evidence from Russian-Hebrew Bilingual Children

    ERIC Educational Resources Information Center

    Saiegh-Haddad, Elinor; Kogan, Nadya; Walters, Joel

    2010-01-01

    The study tested phonemic awareness in the two languages of Russian (L1)-Hebrew (L2) sequential bilingual children (N = 20) using phoneme deletion tasks where the phoneme to be deleted occurred word initial, word final, as a singleton, or part of a cluster, in long and short words and stressed and unstressed syllables. The experiments were…

  15. Speaker-independent phoneme recognition with a binaural auditory image model

    NASA Astrophysics Data System (ADS)

    Francis, Keith Ivan

    1997-09-01

    This dissertation presents phoneme recognition techniques based on a binaural fusion of outputs of the auditory image model and subsequent azimuth-selective phoneme recognition in a noisy environment. Background information concerning speech variations, phoneme recognition, current binaural fusion techniques and auditory modeling issues is explained. The research is constrained to sources in the frontal azimuthal plane of a simulated listener. A new method based on coincidence detection of neural activity patterns from the auditory image model of Patterson is used for azimuth-selective phoneme recognition. The method is tested in various levels of noise and the results are reported in contrast to binaural fusion methods based on various forms of correlation to demonstrate the potential of coincidence- based binaural phoneme recognition. This method overcomes smearing of fine speech detail typical of correlation based methods. Nevertheless, coincidence is able to measure similarity of left and right inputs and fuse them into useful feature vectors for phoneme recognition in noise.

  16. Influences of spoken word planning on speech recognition.

    PubMed

    Roelofs, Ardi; Ozdemir, Rebecca; Levelt, Willem J M

    2007-09-01

    In 4 chronometric experiments, influences of spoken word planning on speech recognition were examined. Participants were shown pictures while hearing a tone or a spoken word presented shortly after picture onset. When a spoken word was presented, participants indicated whether it contained a prespecified phoneme. When the tone was presented, they indicated whether the picture name contained the phoneme (Experiment 1) or they named the picture (Experiment 2). Phoneme monitoring latencies for the spoken words were shorter when the picture name contained the prespecified phoneme compared with when it did not. Priming of phoneme monitoring was also obtained when the phoneme was part of spoken nonwords (Experiment 3). However, no priming of phoneme monitoring was obtained when the pictures required no response in the experiment, regardless of monitoring latency (Experiment 4). These results provide evidence that an internal phonological pathway runs from spoken word planning to speech recognition and that active phonological encoding is a precondition for engaging the pathway. 2007 APA

  17. Relating Pitch Awareness to Phonemic Awareness in Children: Implications for Tone-Deafness and Dyslexia

    PubMed Central

    Loui, Psyche; Kroog, Kenneth; Zuk, Jennifer; Winner, Ellen; Schlaug, Gottfried

    2011-01-01

    Language and music are complex cognitive and neural functions that rely on awareness of one's own sound productions. Information on the awareness of vocal pitch, and its relation to phonemic awareness which is crucial for learning to read, will be important for understanding the relationship between tone-deafness and developmental language disorders such as dyslexia. Here we show that phonemic awareness skills are positively correlated with pitch perception–production skills in children. Children between the ages of seven and nine were tested on pitch perception and production, phonemic awareness, and IQ. Results showed a significant positive correlation between pitch perception–production and phonemic awareness, suggesting that the relationship between musical and linguistic sound processing is intimately linked to awareness at the level of pitch and phonemes. Since tone-deafness is a pitch-related impairment and dyslexia is a deficit of phonemic awareness, we suggest that dyslexia and tone-deafness may have a shared and/or common neural basis. PMID:21687467

  18. Reconsidering the role of temporal order in spoken word recognition.

    PubMed

    Toscano, Joseph C; Anderson, Nathaniel D; McMurray, Bob

    2013-10-01

    Models of spoken word recognition assume that words are represented as sequences of phonemes. We evaluated this assumption by examining phonemic anadromes, words that share the same phonemes but differ in their order (e.g., sub and bus). Using the visual-world paradigm, we found that listeners show more fixations to anadromes (e.g., sub when bus is the target) than to unrelated words (well) and to words that share the same vowel but not the same set of phonemes (sun). This contrasts with the predictions of existing models and suggests that words are not defined as strict sequences of phonemes.

  19. On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Deutsch, L. J.; Reed, I. S.

    1987-01-01

    A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area.

  20. Development of an LSI maximum-likelihood convolutional decoder for advanced forward error correction capability on the NASA 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    Clark, R. T.; Mccallister, R. D.

    1982-01-01

    The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.

  1. On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays

    NASA Technical Reports Server (NTRS)

    Shao, Howard M.; Reed, Irving S.

    1988-01-01

    A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area.

  2. Systolic array processing of the sequential decoding algorithm

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Yao, K.

    1989-01-01

    A systolic array processing technique is applied to implementing the stack algorithm form of the sequential decoding algorithm. It is shown that sorting, a key function in the stack algorithm, can be efficiently realized by a special type of systolic arrays known as systolic priority queues. Compared to the stack-bucket algorithm, this approach is shown to have the advantages that the decoding always moves along the optimal path, that it has a fast and constant decoding speed and that its simple and regular hardware architecture is suitable for VLSI implementation. Three types of systolic priority queues are discussed: random access scheme, shift register scheme and ripple register scheme. The property of the entries stored in the systolic priority queue is also investigated. The results are applicable to many other basic sorting type problems.

  3. Hybrid WDM/OCDMA for next generation access network

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Wada, Naoya; Miyazaki, T.; Cincotti, G.; Kitayama, Ken-ichi

    2007-11-01

    Hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) passive optical network (PON), where asynchronous OCDMA traffic transmits over WDM network, can be one potential candidate for gigabit-symmetric fiber-to-the-home (FTTH) services. In a cost-effective WDM/OCDMA network, a large scale multi-port encoder/decoder can be employed in the central office, and a low cost encoder/decoder will be used in optical network unit (ONU). The WDM/OCDMA system could be one promising solution to the symmetric high capacity access network with high spectral efficiency, cost effective, good flexibility and enhanced security. Asynchronous WDM/OCDMA systems have been experimentally demonstrated using superstructured fiber Bragg gratings (SSFBG) and muti-port OCDMA en/decoders. The total throughput has reached above Tera-bit/s with spectral efficiency of about 0.41. The key enabling techniques include ultra-long SSFBG, multi-port E/D with high power contrast ratio, optical thresholding, differential phase shift keying modulation with balanced detection, forward error correction, and etc. Using multi-level modulation formats to carry multi-bit information with single pulse, the total capacity and spectral efficiency could be further enhanced.

  4. Tongue corticospinal modulation during attended verbal stimuli: priming and coarticulation effects.

    PubMed

    D'Ausilio, Alessandro; Jarmolowska, Joanna; Busan, Pierpaolo; Bufalari, Ilaria; Craighero, Laila

    2011-11-01

    Humans perceive continuous speech through interruptions or brief noise bursts cancelling entire phonemes. This robust phenomenon has been classically associated with mechanisms of perceptual restoration. In parallel, recent experimental evidence suggests that the motor system may actively participate in speech perception, even contributing to phoneme discrimination. In the present study we intended to verify if the motor system has a specific role in speech perceptual restoration as well. To this aim we recorded tongue corticospinal excitability during phoneme expectation induced by contextual information. Results showed that phoneme expectation determines an involvement of the individual's motor system specifically implicated in the production of the attended phoneme, exactly as it happens during actual listening of that phoneme, suggesting the presence of a speech imagery-like process. Very interestingly, this motoric phoneme expectation is also modulated by subtle coarticulation cues of which the listener is not consciously aware. Present data indicate that the rehearsal of a specific phoneme requires the contribution of the motor system exactly as it happens during the rehearsal of actions executed by the limbs, and that this process is abolished when an incongruent phonemic cue is presented, as similarly occurs during observation of anomalous hand actions. We propose that altogether these effects indicate that during speech listening an attentional-like mechanism driven by the motor system, based on a feed-forward anticipatory mechanism constantly verifying incoming information, is working allowing perceptual restoration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Optimizations of a Hardware Decoder for Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Nakashima, Michael A.; Moision, Bruce E.; Hamkins, Jon

    2007-01-01

    The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.

  6. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.

    1986-01-01

    High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.

  7. Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; Zhu, Liang; Ma, Hui

    2015-05-19

    We presented a decoding method of quantum dots encoded microbeads with its fluorescence spectra using line scan hyperspectral fluorescence imaging (HFI) method. A HFI method was developed to attain both the spectra of fluorescence signal and the spatial information of the encoded microbeads. A decoding scheme was adopted to decode the spectra of multicolor microbeads acquired by the HFI system. Comparison experiments between the HFI system and the flow cytometer were conducted. The results showed that the HFI system has higher spectrum resolution; thus, more channels in spectral dimension can be used. The HFI system detection and decoding experiment with the single-stranded DNA (ssDNA) immobilized multicolor beads was done, and the result showed the efficiency of the HFI system. Surface modification of the microbeads by use of the polydopamine was characterized by the scanning electron microscopy and ssDNA immobilization was characterized by the laser confocal microscope. These results indicate that the designed HFI system can be applied to practical biological and medical applications.

  8. Subliminal repetition primes help detection of phonemes in a picture: Evidence for a phonological level of the priming effects.

    PubMed

    Manoiloff, Laura; Segui, Juan; Hallé, Pierre

    2016-01-01

    In this research, we combine a cross-form word-picture visual masked priming procedure with an internal phoneme monitoring task to examine repetition priming effects. In this paradigm, participants have to respond to pictures whose names begin with a prespecified target phoneme. This task unambiguously requires retrieving the word-form of the target picture's name and implicitly orients participants' attention towards a phonological level of representation. The experiments were conducted within Spanish, whose highly transparent orthography presumably promotes fast and automatic phonological recoding of subliminal, masked visual word primes. Experiments 1 and 2 show that repetition primes speed up internal phoneme monitoring in the target, compared to primes beginning with a different phoneme from the target, or sharing only their first phoneme with the target. This suggests that repetition primes preactivate the phonological code of the entire target picture's name, hereby speeding up internal monitoring, which is necessarily based on such a code. To further qualify the nature of the phonological code underlying internal phoneme monitoring, a concurrent articulation task was used in Experiment 3. This task did not affect the repetition priming effect. We propose that internal phoneme monitoring is based on an abstract phonological code, prior to its translation into articulation.

  9. Population coding and decoding in a neural field: a computational study.

    PubMed

    Wu, Si; Amari, Shun-Ichi; Nakahara, Hiroyuki

    2002-05-01

    This study uses a neural field model to investigate computational aspects of population coding and decoding when the stimulus is a single variable. A general prototype model for the encoding process is proposed, in which neural responses are correlated, with strength specified by a gaussian function of their difference in preferred stimuli. Based on the model, we study the effect of correlation on the Fisher information, compare the performances of three decoding methods that differ in the amount of encoding information being used, and investigate the implementation of the three methods by using a recurrent network. This study not only rediscovers main results in existing literatures in a unified way, but also reveals important new features, especially when the neural correlation is strong. As the neural correlation of firing becomes larger, the Fisher information decreases drastically. We confirm that as the width of correlation increases, the Fisher information saturates and no longer increases in proportion to the number of neurons. However, we prove that as the width increases further--wider than (sqrt)2 times the effective width of the turning function--the Fisher information increases again, and it increases without limit in proportion to the number of neurons. Furthermore, we clarify the asymptotic efficiency of the maximum likelihood inference (MLI) type of decoding methods for correlated neural signals. It shows that when the correlation covers a nonlocal range of population (excepting the uniform correlation and when the noise is extremely small), the MLI type of method, whose decoding error satisfies the Cauchy-type distribution, is not asymptotically efficient. This implies that the variance is no longer adequate to measure decoding accuracy.

  10. Fully optimized discrimination of physiological responses to auditory stimuli

    PubMed Central

    Kruglikov, Stepan Y; Chari, Sharmila; Rapp, Paul E; Weinstein, Steven L; Given, Barbara K; Schiff, Steven J

    2008-01-01

    The use of multivariate measurements to characterize brain activity (electrical, magnetic, optical) is widespread. The most common approaches to reduce the complexity of such observations include principal and independent component analyses (PCA and ICA), which are not well suited for discrimination tasks. We addressed two questions: first, how do the neurophysiological responses to elongated phonemes relate to tone and phoneme responses in normal children, and, second, how discriminable are these responses. We employed fully optimized linear discrimination analysis to maximally separate the multi-electrode responses to tones and phonemes, and classified the response to elongated phonemes. We find that discrimination between tones and phonemes is dependent upon responses from associative regions of the brain apparently distinct from the primary sensory cortices typically emphasized by PCA or ICA, and that the neuronal correlates corresponding to elongated phonemes are highly variable in normal children (about half respond with neural correlates of tones and half as phonemes). Our approach is made feasible by the increase in computational power of ordinary personal computers and has significant advantages for a wide range of neuronal imaging modalities. PMID:18430975

  11. Cerebral responses to across- and within-category change of vowel durations measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Minagawa-Kawai, Yasuyo; Mori, Koichi; Furuya, Izumi; Hayashi, Ryoko; Sato, Yutaka

    2002-05-01

    The present study examined cerebral responses to phoneme categories, using near-infrared spectroscopy (NIRS) by measuring the concentration and oxygenation of hemoglobin accompanying local brain activities. Targeted phonemes used here are Japanese long and short vowel categories realized only by durational differences. Results of NIRS and behavioral test revealed NIRS could capture phoneme-specific information. The left side of the auditory area showed large hemodynamic changes only for contrasting stimuli between which phonemic boundary was estimated (across-category condition), but not for stimuli differing by an equal duration but belonging to the same phoneme category (within-category condition). Left dominance in phoneme processing was also confirmed for the across-category stimuli. These findings indicate that the Japanese vowel contrast based only on duration is dealt with in the same language-dominant hemisphere as the other phonemic categories as studied with MEG and PET, and that the cortical activities related to its processing can be detected with NIRS. [Work supported by Japan Society for Promotion of Science (No. 8484) and a grant from Ministry of Health and Welfare of Japan.

  12. Bayesian multi-task learning for decoding multi-subject neuroimaging data.

    PubMed

    Marquand, Andre F; Brammer, Michael; Williams, Steven C R; Doyle, Orla M

    2014-05-15

    Decoding models based on pattern recognition (PR) are becoming increasingly important tools for neuroimaging data analysis. In contrast to alternative (mass-univariate) encoding approaches that use hierarchical models to capture inter-subject variability, inter-subject differences are not typically handled efficiently in PR. In this work, we propose to overcome this problem by recasting the decoding problem in a multi-task learning (MTL) framework. In MTL, a single PR model is used to learn different but related "tasks" simultaneously. The primary advantage of MTL is that it makes more efficient use of the data available and leads to more accurate models by making use of the relationships between tasks. In this work, we construct MTL models where each subject is modelled by a separate task. We use a flexible covariance structure to model the relationships between tasks and induce coupling between them using Gaussian process priors. We present an MTL method for classification problems and demonstrate a novel mapping method suitable for PR models. We apply these MTL approaches to classifying many different contrasts in a publicly available fMRI dataset and show that the proposed MTL methods produce higher decoding accuracy and more consistent discriminative activity patterns than currently used techniques. Our results demonstrate that MTL provides a promising method for multi-subject decoding studies by focusing on the commonalities between a group of subjects rather than the idiosyncratic properties of different subjects. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.

    PubMed

    Pillow, Jonathan W; Ahmadian, Yashar; Paninski, Liam

    2011-01-01

    One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.

  14. The fast decoding of Reed-Solomon codes using number theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Welch, L. R.; Truong, T. K.

    1976-01-01

    It is shown that Reed-Solomon (RS) codes can be encoded and decoded by using a fast Fourier transform (FFT) algorithm over finite fields. The arithmetic utilized to perform these transforms requires only integer additions, circular shifts and a minimum number of integer multiplications. The computing time of this transform encoder-decoder for RS codes is less than the time of the standard method for RS codes. More generally, the field GF(q) is also considered, where q is a prime of the form K x 2 to the nth power + 1 and K and n are integers. GF(q) can be used to decode very long RS codes by an efficient FFT algorithm with an improvement in the number of symbols. It is shown that a radix-8 FFT algorithm over GF(q squared) can be utilized to encode and decode very long RS codes with a large number of symbols. For eight symbols in GF(q squared), this transform over GF(q squared) can be made simpler than any other known number theoretic transform with a similar capability. Of special interest is the decoding of a 16-tuple RS code with four errors.

  15. Efficient Polar Coding of Quantum Information

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.; Dupuis, Frédéric; Renner, Renato

    2012-08-01

    Polar coding, introduced 2008 by Arıkan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here, we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channels and qubit erasure channels, we use classical polar codes to construct a coding scheme that asymptotically achieves a net transmission rate equal to the coherent information using efficient encoding and decoding operations and code construction. Our codes generally require preshared entanglement between sender and receiver, but for channels with a sufficiently low noise level we demonstrate that the rate of preshared entanglement required is zero.

  16. Low-power hardware implementation of movement decoding for brain computer interface with reduced-resolution discrete cosine transform.

    PubMed

    Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E

    2014-01-01

    This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.

  17. Cross-linguistic interactions influence reading development in bilinguals: a comparison between early balanced French-Basque and Spanish-Basque bilingual children.

    PubMed

    Lallier, Marie; Acha, Joana; Carreiras, Manuel

    2016-01-01

    This study investigates whether orthographic consistency and transparency of languages have an impact on the development of reading strategies and reading sub-skills (i.e. phonemic awareness and visual attention span) in bilingual children. We evaluated 21 French (opaque)-Basque (transparent) bilingual children and 21 Spanish (transparent)-Basque (transparent) bilingual children at Grade 2, and 16 additional children of each group at Grade 5. All of them were assessed in their common language (i.e. Basque) on tasks measuring word and pseudoword reading, phonemic awareness and visual attention span skills. The Spanish speaking groups showed better Basque pseudoword reading and better phonemic awareness abilities than their French speaking peers, but only in the most difficult conditions of the tasks. However, on the visual attention span task, the French-Basque bilinguals showed the most efficient visual processing strategies to perform the task. Therefore, learning to read in an additional language affected differently Basque literacy skills, depending on whether this additional orthography was opaque (e.g. French) or transparent (e.g. Spanish). Moreover, we showed that the most noteworthy effects of Spanish and French orthographic transparency on Basque performance were related to the size of the phonological and visual grain used to perform the tasks. © 2015 John Wiley & Sons Ltd.

  18. To sort or not to sort: the impact of spike-sorting on neural decoding performance.

    PubMed

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.

  19. To sort or not to sort: the impact of spike-sorting on neural decoding performance

    NASA Astrophysics Data System (ADS)

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Objective. Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. Approach. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Main results. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Significance. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.

  20. Speech recognition systems on the Cell Broadband Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Jones, H; Vaidya, S

    In this paper we describe our design, implementation, and first results of a prototype connected-phoneme-based speech recognition system on the Cell Broadband Engine{trademark} (Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other representations are possible) and must process samples at real-time rates. Fortunately, the computational tasks involved in this pipeline are highly data-parallel and can receive significant hardware acceleration from vector-streaming architectures such as the Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but also critical to improving system performance. We observed, from our initial performance timings, that a single Cell/B.E. processor can recognize speech from thousandsmore » of simultaneous voice channels in real time--a channel density that is orders-of-magnitude greater than the capacity of existing software speech recognizers based on CPUs (central processing units). This result emphasizes the potential for Cell/B.E.-based speech recognition and will likely lead to the future development of production speech systems using Cell/B.E. clusters.« less

  1. Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding.

    PubMed

    Couvillon, Margaret J; Riddell Pearce, Fiona C; Harris-Jones, Elisabeth L; Kuepfer, Amanda M; Mackenzie-Smith, Samantha J; Rozario, Laura A; Schürch, Roger; Ratnieks, Francis L W

    2012-05-15

    Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.

  2. Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding

    PubMed Central

    Couvillon, Margaret J.; Riddell Pearce, Fiona C.; Harris-Jones, Elisabeth L.; Kuepfer, Amanda M.; Mackenzie-Smith, Samantha J.; Rozario, Laura A.; Schürch, Roger; Ratnieks, Francis L. W.

    2012-01-01

    Summary Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances. PMID:23213438

  3. (abstract) Synthesis of Speaker Facial Movements to Match Selected Speech Sequences

    NASA Technical Reports Server (NTRS)

    Scott, Kenneth C.

    1994-01-01

    We are developing a system for synthesizing image sequences the simulate the facial motion of a speaker. To perform this synthesis, we are pursuing two major areas of effort. We are developing the necessary computer graphics technology to synthesize a realistic image sequence of a person speaking selected speech sequences. Next, we are developing a model that expresses the relation between spoken phonemes and face/mouth shape. A subject is video taped speaking an arbitrary text that contains expression of the full list of desired database phonemes. The subject is video taped from the front speaking normally, recording both audio and video detail simultaneously. Using the audio track, we identify the specific video frames on the tape relating to each spoken phoneme. From this range we digitize the video frame which represents the extreme of mouth motion/shape. Thus, we construct a database of images of face/mouth shape related to spoken phonemes. A selected audio speech sequence is recorded which is the basis for synthesizing a matching video sequence; the speaker need not be the same as used for constructing the database. The audio sequence is analyzed to determine the spoken phoneme sequence and the relative timing of the enunciation of those phonemes. Synthesizing an image sequence corresponding to the spoken phoneme sequence is accomplished using a graphics technique known as morphing. Image sequence keyframes necessary for this processing are based on the spoken phoneme sequence and timing. We have been successful in synthesizing the facial motion of a native English speaker for a small set of arbitrary speech segments. Our future work will focus on advancement of the face shape/phoneme model and independent control of facial features.

  4. Functions of graphemic and phonemic codes in visual word-recognition.

    PubMed

    Meyer, D E; Schvaneveldt, R W; Ruddy, M G

    1974-03-01

    Previous investigators have argued that printed words are recognized directly from visual representations and/or phonological representations obtained through phonemic recoding. The present research tested these hypotheses by manipulating graphemic and phonemic relations within various pairs of letter strings. Ss in two experiments classified the pairs as words or nonwords. Reaction times and error rates were relatively small for word pairs (e.g., BRIBE-TRIBE) that were both graphemically, and phonemically similar. Graphemic similarity alone inhibited performance on other word pairs (e.g., COUCH-TOUCH). These and other results suggest that phonological representations play a significant role in visual word recognition and that there is a dependence between successive phonemic-encoding operations. An encoding-bias model is proposed to explain the data.

  5. Maximum likelihood decoding of Reed Solomon Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudan, M.

    We present a randomized algorithm which takes as input n distinct points ((x{sub i}, y{sub i})){sup n}{sub i=1} from F x F (where F is a field) and integer parameters t and d and returns a list of all univariate polynomials f over F in the variable x of degree at most d which agree with the given set of points in at least t places (i.e., y{sub i} = f (x{sub i}) for at least t values of i), provided t = {Omega}({radical}nd). The running time is bounded by a polynomial in n. This immediately provides a maximum likelihoodmore » decoding algorithm for Reed Solomon Codes, which works in a setting with a larger number of errors than any previously known algorithm. To the best of our knowledge, this is the first efficient (i.e., polynomial time bounded) algorithm which provides some maximum likelihood decoding for any efficient (i.e., constant or even polynomial rate) code.« less

  6. Can communication power of separable correlations exceed that of entanglement resource?

    PubMed

    Horodecki, Paweł; Tuziemski, Jan; Mazurek, Paweł; Horodecki, Ryszard

    2014-04-11

    The scenario of remote state preparation with a shared correlated quantum state and one bit of forward communication [B. Dakić et al., Nat. Phys. 8, 666 (2012)] is considered. Optimization of the transmission efficiency is extended to include general encoding and decoding strategies. The importance of the use of linear fidelity is recognized. It is shown that separable states cannot exceed the efficiency of entangled states by means of “local operations plus classical communication” actions limited to 1 bit of forward communication. It is proven however that such a surprising phenomena may naturally occur when the decoding agent has limited resources in the sense that either (i) has to use decoding which is insensitive to the change of the coordinate system in the plane in question (which is the natural choice if the receiver does not know the latter) or (ii) is forced to use bistochastic operations which may be imposed by physically inconvenient local thermodynamical conditions.

  7. Focal versus distributed temporal cortex activity for speech sound category assignment

    PubMed Central

    Bouton, Sophie; Chambon, Valérian; Tyrand, Rémi; Seeck, Margitta; Karkar, Sami; van de Ville, Dimitri; Giraud, Anne-Lise

    2018-01-01

    Percepts and words can be decoded from distributed neural activity measures. However, the existence of widespread representations might conflict with the more classical notions of hierarchical processing and efficient coding, which are especially relevant in speech processing. Using fMRI and magnetoencephalography during syllable identification, we show that sensory and decisional activity colocalize to a restricted part of the posterior superior temporal gyrus (pSTG). Next, using intracortical recordings, we demonstrate that early and focal neural activity in this region distinguishes correct from incorrect decisions and can be machine-decoded to classify syllables. Crucially, significant machine decoding was possible from neuronal activity sampled across different regions of the temporal and frontal lobes, despite weak or absent sensory or decision-related responses. These findings show that speech-sound categorization relies on an efficient readout of focal pSTG neural activity, while more distributed activity patterns, although classifiable by machine learning, instead reflect collateral processes of sensory perception and decision. PMID:29363598

  8. Analyzing Distributional Learning of Phonemic Categories in Unsupervised Deep Neural Networks

    PubMed Central

    Räsänen, Okko; Nagamine, Tasha; Mesgarani, Nima

    2017-01-01

    Infants’ speech perception adapts to the phonemic categories of their native language, a process assumed to be driven by the distributional properties of speech. This study investigates whether deep neural networks (DNNs), the current state-of-the-art in distributional feature learning, are capable of learning phoneme-like representations of speech in an unsupervised manner. We trained DNNs with unlabeled and labeled speech and analyzed the activations of each layer with respect to the phones in the input segments. The analyses reveal that the emergence of phonemic invariance in DNNs is dependent on the availability of phonemic labeling of the input during the training. No increased phonemic selectivity of the hidden layers was observed in the purely unsupervised networks despite successful learning of low-dimensional representations for speech. This suggests that additional learning constraints or more sophisticated models are needed to account for the emergence of phone-like categories in distributional learning operating on natural speech. PMID:29359204

  9. Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting

    NASA Technical Reports Server (NTRS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1987-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  10. Varying acoustic-phonemic ambiguity reveals that talker normalization is obligatory in speech processing.

    PubMed

    Choi, Ja Young; Hu, Elly R; Perrachione, Tyler K

    2018-04-01

    The nondeterministic relationship between speech acoustics and abstract phonemic representations imposes a challenge for listeners to maintain perceptual constancy despite the highly variable acoustic realization of speech. Talker normalization facilitates speech processing by reducing the degrees of freedom for mapping between encountered speech and phonemic representations. While this process has been proposed to facilitate the perception of ambiguous speech sounds, it is currently unknown whether talker normalization is affected by the degree of potential ambiguity in acoustic-phonemic mapping. We explored the effects of talker normalization on speech processing in a series of speeded classification paradigms, parametrically manipulating the potential for inconsistent acoustic-phonemic relationships across talkers for both consonants and vowels. Listeners identified words with varying potential acoustic-phonemic ambiguity across talkers (e.g., beet/boat vs. boot/boat) spoken by single or mixed talkers. Auditory categorization of words was always slower when listening to mixed talkers compared to a single talker, even when there was no potential acoustic ambiguity between target sounds. Moreover, the processing cost imposed by mixed talkers was greatest when words had the most potential acoustic-phonemic overlap across talkers. Models of acoustic dissimilarity between target speech sounds did not account for the pattern of results. These results suggest (a) that talker normalization incurs the greatest processing cost when disambiguating highly confusable sounds and (b) that talker normalization appears to be an obligatory component of speech perception, taking place even when the acoustic-phonemic relationships across sounds are unambiguous.

  11. Dynamics of intracellular information decoding.

    PubMed

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  12. Efficiency turns the table on neural encoding, decoding and noise.

    PubMed

    Deneve, Sophie; Chalk, Matthew

    2016-04-01

    Sensory neurons are usually described with an encoding model, for example, a function that predicts their response from the sensory stimulus using a receptive field (RF) or a tuning curve. However, central to theories of sensory processing is the notion of 'efficient coding'. We argue here that efficient coding implies a completely different neural coding strategy. Instead of a fixed encoding model, neural populations would be described by a fixed decoding model (i.e. a model reconstructing the stimulus from the neural responses). Because the population solves a global optimization problem, individual neurons are variable, but not noisy, and have no truly invariant tuning curve or receptive field. We review recent experimental evidence and implications for neural noise correlations, robustness and adaptation. Copyright © 2016. Published by Elsevier Ltd.

  13. A High-Performance Neural Prosthesis Incorporating Discrete State Selection With Hidden Markov Models.

    PubMed

    Kao, Jonathan C; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V

    2017-04-01

    Communication neural prostheses aim to restore efficient communication to people with motor neurological injury or disease by decoding neural activity into control signals. These control signals are both analog (e.g., the velocity of a computer mouse) and discrete (e.g., clicking an icon with a computer mouse) in nature. Effective, high-performing, and intuitive-to-use communication prostheses should be capable of decoding both analog and discrete state variables seamlessly. However, to date, the highest-performing autonomous communication prostheses rely on precise analog decoding and typically do not incorporate high-performance discrete decoding. In this report, we incorporated a hidden Markov model (HMM) into an intracortical communication prosthesis to enable accurate and fast discrete state decoding in parallel with analog decoding. In closed-loop experiments with nonhuman primates implanted with multielectrode arrays, we demonstrate that incorporating an HMM into a neural prosthesis can increase state-of-the-art achieved bitrate by 13.9% and 4.2% in two monkeys ( ). We found that the transition model of the HMM is critical to achieving this performance increase. Further, we found that using an HMM resulted in the highest achieved peak performance we have ever observed for these monkeys, achieving peak bitrates of 6.5, 5.7, and 4.7 bps in Monkeys J, R, and L, respectively. Finally, we found that this neural prosthesis was robustly controllable for the duration of entire experimental sessions. These results demonstrate that high-performance discrete decoding can be beneficially combined with analog decoding to achieve new state-of-the-art levels of performance.

  14. An efficient HW and SW design of H.264 video compression, storage and playback on FPGA devices for handheld thermal imaging systems

    NASA Astrophysics Data System (ADS)

    Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih

    2017-05-01

    Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.

  15. Separable concatenated codes with iterative map decoding for Rician fading channels

    NASA Technical Reports Server (NTRS)

    Lodge, J. H.; Young, R. J.

    1993-01-01

    Very efficient signalling in radio channels requires the design of very powerful codes having special structure suitable for practical decoding schemes. In this paper, powerful codes are obtained by combining comparatively simple convolutional codes to form multi-tiered 'separable' convolutional codes. The decoding of these codes, using separable symbol-by-symbol maximum a posteriori (MAP) 'filters', is described. It is known that this approach yields impressive results in non-fading additive white Gaussian noise channels. Interleaving is an inherent part of the code construction, and consequently, these codes are well suited for fading channel communications. Here, simulation results for communications over Rician fading channels are presented to support this claim.

  16. What Does the Right Hemisphere Know about Phoneme Categories?

    ERIC Educational Resources Information Center

    Wolmetz, Michael; Poeppel, David; Rapp, Brenda

    2011-01-01

    Innate auditory sensitivities and familiarity with the sounds of language give rise to clear influences of phonemic categories on adult perception of speech. With few exceptions, current models endorse highly left-hemisphere-lateralized mechanisms responsible for the influence of phonemic category on speech perception, based primarily on results…

  17. Fee, Fie, Phonemic Awareness: 130 Prereading Activities for Preschoolers.

    ERIC Educational Resources Information Center

    Hohmann, Mary

    Noting that phonemic awareness has been identified as an essential skill that prepares children for reading, this book contains 130 phonemic awareness activities suitable for small-group learning in preschools, prekindergarten programs, Head Start programs, child care centers, and home-based programs. Reflecting the teaching strategies of the…

  18. The Nature of Phoneme Representation in Spoken Word Recognition

    ERIC Educational Resources Information Center

    Gaskell, M. Gareth; Quinlan, Philip T.; Tamminen, Jakke; Cleland, Alexandra A.

    2008-01-01

    Four experiments used the psychological refractory period logic to examine whether integration of multiple sources of phonemic information has a decisional locus. All experiments made use of a dual-task paradigm in which participants made forced-choice color categorization (Task 1) and phoneme categorization (Task 2) decisions at varying stimulus…

  19. A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects

    PubMed Central

    2014-01-01

    Background The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. Results For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. Conclusions Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing. PMID:24456150

  20. Phonetic basis of phonemic paraphasias in aphasia: Evidence for cascading activation.

    PubMed

    Kurowski, Kathleen; Blumstein, Sheila E

    2016-02-01

    Phonemic paraphasias are a common presenting symptom in aphasia and are thought to reflect a deficit in which selecting an incorrect phonemic segment results in the clear-cut substitution of one phonemic segment for another. The current study re-examines the basis of these paraphasias. Seven left hemisphere-damaged aphasics with a range of left hemisphere lesions and clinical diagnoses including Broca's, Conduction, and Wernicke's aphasia, were asked to produce syllable-initial voiced and voiceless fricative consonants, [z] and [s], in CV syllables followed by one of five vowels [i e a o u] in isolation and in a carrier phrase. Acoustic analyses were conducted focusing on two acoustic parameters signaling voicing in fricative consonants: duration and amplitude properties of the fricative noise. Results show that for all participants, regardless of clinical diagnosis or lesion site, phonemic paraphasias leave an acoustic trace of the original target in the error production. These findings challenge the view that phonemic paraphasias arise from a mis-selection of phonemic units followed by its correct implementation, as traditionally proposed. Rather, they appear to derive from a common mechanism with speech errors reflecting the co-activation of a target and competitor resulting in speech output that has some phonetic properties of both segments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Strategic deployment of orthographic knowledge in phoneme detection.

    PubMed

    Cutler, Anne; Treiman, Rebecca; van Ooijen, Brit

    2010-01-01

    The phoneme detection task is widely used in spoken-word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realized. Listeners detected the target sounds [b, m, t, f, s, k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b, m, t], which have consistent word-initial spelling, than to the targets [f, s, k], which are inconsistently spelled, but only when spelling was rendered salient by the presence in the experiment of many irregularly spelled filler words. Within the inconsistent targets [f, s, k], there was no significant difference between responses to targets in words with more usual (foam, seed, cattle) versus less usual (phone, cede, kettle) spellings. Phoneme detection is thus not necessarily sensitive to orthographic effects; knowledge of spelling stored in the lexical representations of words does not automatically become available as word candidates are activated. However, salient orthographic manipulations in experimental input can induce such sensitivity. We attribute this to listeners' experience of the value of spelling in everyday situations that encourage phonemic decisions (such as learning new names).

  2. Enabling MPEG-2 video playback in embedded systems through improved data cache efficiency

    NASA Astrophysics Data System (ADS)

    Soderquist, Peter; Leeser, Miriam E.

    1999-01-01

    Digital video decoding, enabled by the MPEG-2 Video standard, is an important future application for embedded systems, particularly PDAs and other information appliances. Many such system require portability and wireless communication capabilities, and thus face severe limitations in size and power consumption. This places a premium on integration and efficiency, and favors software solutions for video functionality over specialized hardware. The processors in most embedded system currently lack the computational power needed to perform video decoding, but a related and equally important problem is the required data bandwidth, and the need to cost-effectively insure adequate data supply. MPEG data sets are very large, and generate significant amounts of excess memory traffic for standard data caches, up to 100 times the amount required for decoding. Meanwhile, cost and power limitations restrict cache sizes in embedded systems. Some systems, including many media processors, eliminate caches in favor of memories under direct, painstaking software control in the manner of digital signal processors. Yet MPEG data has locality which caches can exploit if properly optimized, providing fast, flexible, and automatic data supply. We propose a set of enhancements which target the specific needs of the heterogeneous types within the MPEG decoder working set. These optimizations significantly improve the efficiency of small caches, reducing cache-memory traffic by almost 70 percent, and can make an enhanced 4 KB cache perform better than a standard 1 MB cache. This performance improvement can enable high-resolution, full frame rate video playback in cheaper, smaller system than woudl otherwise be possible.

  3. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  4. Coherent direct sequence optical code multiple access encoding-decoding efficiency versus wavelength detuning.

    PubMed

    Pastor, D; Amaya, W; García-Olcina, R; Sales, S

    2007-07-01

    We present a simple theoretical model of and the experimental verification for vanishing of the autocorrelation peak due to wavelength detuning on the coding-decoding process of coherent direct sequence optical code multiple access systems based on a superstructured fiber Bragg grating. Moreover, the detuning vanishing effect has been explored to take advantage of this effect and to provide an additional degree of multiplexing and/or optical code tuning.

  5. Discrimination Training of Phonemic Contrasts Enhances Phonological Processing in Mainstream School Children

    ERIC Educational Resources Information Center

    Moore, D.R.; Rosenberg, J.F.; Coleman, J.S.

    2005-01-01

    Auditory perceptual learning has been proposed as effective for remediating impaired language and for enhancing normal language development. We examined the effect of phonemic contrast discrimination training on the discrimination of whole words and on phonological awareness in 8- to 10-year-old mainstream school children. Eleven phonemic contrast…

  6. Phonemic Code Dependence Varies with Previous Exposure to Words.

    ERIC Educational Resources Information Center

    Rabin, Jeffrey L.; Zecker, Steven G.

    Reading researchers and theorists are sharply divided as to how meaning is obtained from the printed word. Three current explanations are that (1) meaning is accessed directly, without any intermediate processes; (2) meaning is accessed only through an intermediate phonemic stage; and (3) both direct access and phonemic mediation can occur. To…

  7. A REFERENCE GRAMMAR OF ADAMAWA FULANI. AFRICAN LANGUAGE MONOGRAPH NUMBER 8.

    ERIC Educational Resources Information Center

    STENNES, LESLIE H.

    THIS REFERENCE WORK IS A STRUCTURAL GRAMMAR OF THE ADAMAWA DIALECT OF FULANI AS SPOKEN IN NIGERIA AND CAMEROUN. IT IS PRIMARILY WRITTEN FOR LINGUISTS AND THOSE WHO ALREADY KNOW FULANI. THE GRAMMAR IS DIVIDED INTO THREE PARTS--(1) PHONEMICS AND MORPHOPHONEMICS, DISCUSSING SEGMENTAL AND SUPRASEGMENTAL PHONEMES, PERMITTED SEQUENCES OF PHONEMES,…

  8. Learning Phonemes with a Proto-Lexicon

    ERIC Educational Resources Information Center

    Martin, Andrew; Peperkamp, Sharon; Dupoux, Emmanuel

    2013-01-01

    Before the end of the first year of life, infants begin to lose the ability to perceive distinctions between sounds that are not phonemic in their native language. It is typically assumed that this developmental change reflects the construction of language-specific phoneme categories, but how these categories are learned largely remains a mystery.…

  9. The Influence of Specific Phonemic Awareness Processes on the Reading Comprehension of African American Students

    ERIC Educational Resources Information Center

    Edwards, Oliver W.; Taub, Gordon E.

    2016-01-01

    Research indicates the primary difference between strong and weak readers is their phonemic awareness skills. However, there is no consensus regarding which specific components of phonemic awareness contribute most robustly to reading comprehension. In this study, the relationship among sound blending, sound segmentation, and reading comprehension…

  10. Phonetic, Phonemic, and Phonological Factors in Cross-Language Discrimination of Phonotactic Contrasts

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2011-01-01

    Previous research indicates that multiple levels of linguistic information play a role in the perception and discrimination of non-native phonemes. This study examines the interaction of phonetic, phonemic and phonological factors in the discrimination of non-native phonotactic contrasts. Listeners of Catalan, English, and Russian are presented…

  11. Can a linguistic serial founder effect originating in Africa explain the worldwide phonemic cline?

    PubMed Central

    2016-01-01

    It has been proposed that a serial founder effect could have caused the present observed pattern of global phonemic diversity. Here we present a model that simulates the human range expansion out of Africa and the subsequent spatial linguistic dynamics until today. It does not assume copying errors, Darwinian competition, reduced contrastive possibilities or any other specific linguistic mechanism. We show that the decrease of linguistic diversity with distance (from the presumed origin of the expansion) arises under three assumptions, previously introduced by other authors: (i) an accumulation rate for phonemes; (ii) small phonemic inventories for the languages spoken before the out-of-Africa dispersal; (iii) an increase in the phonemic accumulation rate with the number of speakers per unit area. Numerical simulations show that the predictions of the model agree with the observed decrease of linguistic diversity with increasing distance from the most likely origin of the out-of-Africa dispersal. Thus, the proposal that a serial founder effect could have caused the present observed pattern of global phonemic diversity is viable, if three strong assumptions are satisfied. PMID:27122180

  12. Mean of the typical decoding rates: a new translation efficiency index based on the analysis of ribosome profiling data.

    PubMed

    Dana, Alexandra; Tuller, Tamir

    2014-12-01

    Gene translation modeling and prediction is a fundamental problem that has numerous biomedical implementations. In this work we present a novel, user-friendly tool/index for calculating the mean of the typical decoding rates that enables predicting translation elongation efficiency of protein coding genes for different tissue types, developmental stages, and experimental conditions. The suggested translation efficiency index is based on the analysis of the organism's ribosome profiling data. This index could be used for example to predict changes in translation elongation efficiency of lowly expressed genes that usually have relatively low and/or biased ribosomal densities and protein levels measurements, or can be used for example for predicting translation efficiency of new genetically engineered genes. We demonstrate the usability of this index via the analysis of six organisms in different tissues and developmental stages. Distributable cross platform application and guideline are available for download at: http://www.cs.tau.ac.il/~tamirtul/MTDR/MTDR_Install.html. Copyright © 2015 Dana and Tuller.

  13. Phonemic accuracy development in children with cochlear implants up to five years of age by using Levenshtein distance.

    PubMed

    Faes, Jolien; Gillis, Joris; Gillis, Steven

    2016-01-01

    Phonemic accuracy of children with cochlear implants (CI) is often reported to be lower in comparison with normally hearing (NH) age-matched children. In this study, we compare phonemic accuracy development in the spontaneous speech of Dutch-speaking children with CI and NH age-matched peers. A dynamic cost model of Levenshtein distance is used to compute the accuracy of each word token. We set up a longitudinal design with monthly data for comparisons up to age two and a cross-sectional design with yearly data between three and five years of age. The main finding is that phonemic accuracy steadily increases throughout the period studied. Children with CI's accuracy is lower than that of their NH age mates, but this difference is not statistically significant in the earliest stages of lexical development. But accuracy of children with CI initially improves significantly less steeply than that of NH peers. Furthermore, the number of syllables in the target word and target word's complexity influence children's accuracy, as longer and more complex target words are less accurately produced. Up to age four, children with CI are significantly less accurate than NH children with increasing word length and word complexity. This difference has disappeared at age five. Finally, hearing age is shown to influence accuracy development of children with CI, while age of implant activation is not. This article informs the reader about phonemic accuracy development in children. The reader will be able to (a) discuss different metrics to measure phonemic accuracy development, (b) discuss phonemic accuracy of children with CI up to five years of age and compare them with NH children, (c) discuss the influence of target word's complexity and target word's syllable length on phonemic accuracy, (d) discuss the influence of hearing experience and age of implantation on phonemic accuracy of children with CI. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.

  15. A proposed technique for the Venus balloon telemetry and Doppler frequency recovery

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Divsalar, D.

    1985-01-01

    A technique is proposed to accurately estimate the Doppler frequency and demodulate the digitally encoded telemetry signal that contains the measurements from balloon instruments. Since the data are prerecorded, one can take advantage of noncausal estimators that are both simpler and more computationally efficient than the usual closed-loop or real-time estimators for signal detection and carrier tracking. Algorithms for carrier frequency estimation subcarrier demodulation, bit and frame synchronization are described. A Viterbi decoder algorithm using a branch indexing technique has been devised to decode constraint length 6, rate 1/2 convolutional code that is being used by the balloon transmitter. These algorithms are memory efficient and can be implemented on microcomputer systems.

  16. Phoneme restoration and empirical coverage of interactive activation and adaptive resonance models of human speech processing

    PubMed Central

    Magnuson, James S.

    2015-01-01

    Grossberg and Kazerounian [(2011). J. Acoust. Soc. Am. 130, 440–460] present a model of sequence representation for spoken word recognition, the cARTWORD model, which simulates essential aspects of phoneme restoration. Grossberg and Kazerounian also include simulations with the TRACE model presented by McClelland and Elman [(1986). Cognit. Psychol. 18, 1–86] that seem to indicate that TRACE cannot simulate phoneme restoration. Grossberg and Kazerounian also claim cARTWORD should be preferred to TRACE because of TRACE's implausible approach to sequence representation (reduplication of time-specific units) and use of non-modulatory feedback (i.e., without position-specific bottom-up support). This paper responds to Grossberg and Kazerounian first with TRACE simulations that account for phoneme restoration when appropriately constructed noise is used (and with minor changes to TRACE phoneme definitions), then reviews the case for reduplicated units and feedback as implemented in TRACE, as well as TRACE's broad and deep coverage of empirical data. Finally, it is argued that cARTWORD is not comparable to TRACE because cARTWORD cannot represent sequences with repeated elements, has only been implemented with small phoneme and lexical inventories, and has been applied to only one phenomenon (phoneme restoration). Without evidence that cARTWORD captures a similar range and detail of human spoken language processing as alternative models, it is premature to prefer cARTWORD to TRACE. PMID:25786959

  17. Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes

    NASA Astrophysics Data System (ADS)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian

    2018-05-01

    We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.

  18. Efficient quantum transmission in multiple-source networks.

    PubMed

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-02

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  19. Memory-efficient decoding of LDPC codes

    NASA Technical Reports Server (NTRS)

    Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon

    2005-01-01

    We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.

  20. Influence of Eye Movements, Auditory Perception, and Phonemic Awareness in the Reading Process

    ERIC Educational Resources Information Center

    Megino-Elvira, Laura; Martín-Lobo, Pilar; Vergara-Moragues, Esperanza

    2016-01-01

    The authors' aim was to analyze the relationship of eye movements, auditory perception, and phonemic awareness with the reading process. The instruments used were the King-Devick Test (saccade eye movements), the PAF test (auditory perception), the PFC (phonemic awareness), the PROLEC-R (lexical process), the Canals reading speed test, and the…

  1. The Use of Handheld Devices for Improved Phonemic Awareness in a Traditional Kindergarten Classroom

    ERIC Educational Resources Information Center

    Magagna-McBee, Cristy Ann

    2010-01-01

    Effective teaching strategies that improve the development of phonemic awareness are important to ensure students are fluent readers by third grade. The use of handheld devices to improve phonemic awareness with kindergarten students may be such a strategy, but no research exists that evaluates the use of these devices. This study explored the…

  2. Neural Network Classifier Architectures for Phoneme Recognition. CRC Technical Note No. CRC-TN-92-001.

    ERIC Educational Resources Information Center

    Treurniet, William

    A study applied artificial neural networks, trained with the back-propagation learning algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker, continuous speech data base. A number of proposed network architectures were applied to the phoneme classification task, ranging from the simple feedforward multilayer network to more…

  3. Phonemic Awareness: A Step by Step Approach for Success in Early Reading

    ERIC Educational Resources Information Center

    Perez, Idalia Rodriguez

    2008-01-01

    This guide will help teach phonemic awareness to Pre K-3 students. It presents phonemic awareness as a sophisticated branch of phonological awareness through interactive activities that allows the student to succeed in learning the sounds represented by the letters of the alphabet. The book is designed to provide easy-to-follow suggestions for:…

  4. The Influence of Spanish Vocabulary and Phonemic Awareness on Beginning English Reading Development: A Three-Year (K-2nd) Longitudinal Study

    ERIC Educational Resources Information Center

    Kelley, Michael F.; Roe, Mary; Blanchard, Jay; Atwill, Kim

    2015-01-01

    This investigation examined the influence of varying levels of Spanish receptive vocabulary and phonemic awareness ability on beginning English vocabulary, phonemic awareness, word reading fluency, and reading comprehension development across kindergarten through second grade. The 80 respondents were Spanish speaking children with no English…

  5. Phonetic Transcription Training Improves Adults' Explicit Phonemic Awareness: Evidence from Undergraduate Students

    ERIC Educational Resources Information Center

    Werfel, Krystal L.

    2017-01-01

    The purpose of this study was to evaluate the effects of phonetic transcription training on the explicit phonemic awareness of adults. Fifty undergraduate students enrolled in a phonetic transcription course and 107 control undergraduate students completed a paper-and-pencil measure of explicit phonemic awareness on the first and last days of…

  6. Is Sensitivity to Rhyme a Developmental Precursor to Sensitivity to Phoneme?: Evidence from Individuals with Down Syndrome.

    ERIC Educational Resources Information Center

    Cardoso-Martins, Claudia; Michalick, Mirelle Franca; Pollo, Tatiana Cury

    2002-01-01

    Investigates sensitivity to rhyme and phoneme among readers and nonreaders with Down Syndrome (DS) and normally developing children. Evaluates a rhyme detection task and initial and middle phoneme detection tasks. Concludes the rhyme detection task was the easiest for nonreaders without DS and most difficult for readers with DS. (PM)

  7. Tucker Signing as a Phonics Instruction Tool to Develop Phonemic Awareness in Children

    ERIC Educational Resources Information Center

    Valbuena, Amanda Carolina

    2014-01-01

    To develop reading acquisition in an effective way, it is necessary to take into account three goals during the process: automatic word recognition, or development of phonemic awareness, reading comprehension, and a desire for reading. This article focuses on promoting phonemic awareness in English as a second language through a program called…

  8. Encoding and Decoding of Multi-Channel ICMS in Macaque Somatosensory Cortex.

    PubMed

    Dadarlat, Maria C; Sabes, Philip N

    2016-01-01

    Naturalistic control of brain-machine interfaces will require artificial proprioception, potentially delivered via intracortical microstimulation (ICMS). We have previously shown that multi-channel ICMS can guide a monkey reaching to unseen targets in a planar workspace. Here, we expand on that work, asking how ICMS is decoded into target angle and distance by analyzing the performance of a monkey when ICMS feedback was degraded. From the resulting pattern of errors, we found that the animal's estimate of target direction was consistent with a weighted circular-mean strategy-close to the optimal decoding strategy given the ICMS encoding. These results support our previous finding that animals can learn to use this artificial sensory feedback in an efficient and naturalistic manner.

  9. Neurophysiological evidence of efference copies to inner speech

    PubMed Central

    Jack, Bradley N; Pearson, Daniel; Griffiths, Oren; Luque, David; Harris, Anthony WF; Spencer, Kevin M; Le Pelley, Mike E

    2017-01-01

    Efference copies refer to internal duplicates of movement-producing neural signals. Their primary function is to predict, and often suppress, the sensory consequences of willed movements. Efference copies have been almost exclusively investigated in the context of overt movements. The current electrophysiological study employed a novel design to show that inner speech – the silent production of words in one’s mind – is also associated with an efference copy. Participants produced an inner phoneme at a precisely specified time, at which an audible phoneme was concurrently presented. The production of the inner phoneme resulted in electrophysiological suppression, but only if the content of the inner phoneme matched the content of the audible phoneme. These results demonstrate that inner speech – a purely mental action – is associated with an efference copy with detailed auditory properties. These findings suggest that inner speech may ultimately reflect a special type of overt speech. PMID:29199947

  10. Quantitative evaluation of muscle synergy models: a single-trial task decoding approach

    PubMed Central

    Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano

    2013-01-01

    Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements. Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies encodes task-discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop a novel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics), our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task-discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time-varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task space. PMID:23471195

  11. Energy-efficient constellations design and fast decoding for space-collaborative MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Jun; Liang, Wang-Feng; Wang, Chao; Wang, Wen-Ya

    2017-01-01

    In this paper, space-collaborative constellations (SCCs) for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems are considered. Compared with traditional VLC MIMO techniques, such as repetition coding (RC), spatial modulation (SM) and spatial multiplexing (SMP), SCC achieves the minimum average optical power for a fixed minimum Euclidean distance. We have presented a unified SCC structure for 2×2 MIMO VLC systems and extended it to larger MIMO VLC systems with more transceivers. Specifically for 2×2 MIMO VLC, a fast decoding algorithm is developed with decoding complexity almost linear in terms of the square root of the cardinality of SCC, and the expressions of symbol error rate of SCC are presented. In addition, bit mappings similar to Gray mapping are proposed for SCC. Computer simulations are performed to verify the fast decoding algorithm and the performance of SCC, and the results demonstrate that the performance of SCC is better than those of RC, SM and SMP for indoor channels in general.

  12. Decoder calibration with ultra small current sample set for intracortical brain-machine interface

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ma, Xuan; Chen, Luyao; Zhou, Jin; Wang, Changyong; Li, Wei; He, Jiping

    2018-04-01

    Objective. Intracortical brain-machine interfaces (iBMIs) aim to restore efficient communication and movement ability for paralyzed patients. However, frequent recalibration is required for consistency and reliability, and every recalibration will require relatively large most current sample set. The aim in this study is to develop an effective decoder calibration method that can achieve good performance while minimizing recalibration time. Approach. Two rhesus macaques implanted with intracortical microelectrode arrays were trained separately on movement and sensory paradigm. Neural signals were recorded to decode reaching positions or grasping postures. A novel principal component analysis-based domain adaptation (PDA) method was proposed to recalibrate the decoder with only ultra small current sample set by taking advantage of large historical data, and the decoding performance was compared with other three calibration methods for evaluation. Main results. The PDA method closed the gap between historical and current data effectively, and made it possible to take advantage of large historical data for decoder recalibration in current data decoding. Using only ultra small current sample set (five trials of each category), the decoder calibrated using the PDA method could achieve much better and more robust performance in all sessions than using other three calibration methods in both monkeys. Significance. (1) By this study, transfer learning theory was brought into iBMIs decoder calibration for the first time. (2) Different from most transfer learning studies, the target data in this study were ultra small sample set and were transferred to the source data. (3) By taking advantage of historical data, the PDA method was demonstrated to be effective in reducing recalibration time for both movement paradigm and sensory paradigm, indicating a viable generalization. By reducing the demand for large current training data, this new method may facilitate the application of intracortical brain-machine interfaces in clinical practice.

  13. The Emergence of the Allophonic Perception of Unfamiliar Speech Sounds: The Effects of Contextual Distribution and Phonetic Naturalness

    ERIC Educational Resources Information Center

    Noguchi, Masaki; Hudson Kam, Carla L.

    2018-01-01

    In human languages, different speech sounds can be contextual variants of a single phoneme, called allophones. Learning which sounds are allophones is an integral part of the acquisition of phonemes. Whether given sounds are separate phonemes or allophones in a listener's language affects speech perception. Listeners tend to be less sensitive to…

  14. Tell Me about Fred's Fat Foot Again: Four Tips for Successful PA Lessons

    ERIC Educational Resources Information Center

    Murray, Bruce A.

    2012-01-01

    This teaching tip applies research on phoneme awareness (PA) to propose an instructional model for teaching PA. Research suggests children need to learn the identifying features of phonemes to recognize them in spoken words. In the model, teachers focus on one phoneme at a time; make it memorable to children through sound analogies supported by…

  15. Phoneme Restoration Methods Reveal Prosodic Influences on Syntactic Parsing: Data from Bulgarian

    ERIC Educational Resources Information Center

    Stoyneshka-Raleva, Iglika

    2013-01-01

    This dissertation introduces and evaluates a new methodology for studying aspects of human language processing and the factors to which it is sensitive. It makes use of the phoneme restoration illusion (Warren, 1970). A small portion of a spoken sentence is replaced by a burst of noise. Listeners typically mentally restore the missing phoneme(s),…

  16. The Effect of Phoneme Awareness Instruction on Students in Small Group and Whole Class Settings

    ERIC Educational Resources Information Center

    VanBoden, Angelique Fleurette

    2011-01-01

    Phoneme awareness instruction plays a crucial role in reading acquisition for young children. While this early literacy topic has been studied for over 30 years, and cited by the National Reading Panel Report (2000) as an important area for further research, no reports to date explore the influence of instructional group size on phoneme awareness…

  17. Paced Reading in Semantic Dementia: Word Knowledge Contributes to Phoneme Binding in Rapid Speech Production

    ERIC Educational Resources Information Center

    Jefferies, Elizabeth; Grogan, John; Mapelli, Cristina; Isella, Valeria

    2012-01-01

    Patients with semantic dementia (SD) show deficits in phoneme binding in immediate serial recall: when attempting to reproduce a sequence of words that they no longer fully understand, they show frequent migrations of phonemes between items (e.g., cap, frog recalled as "frap, cog"). This suggests that verbal short-term memory emerges directly from…

  18. Phoneme Awareness, Visual-Verbal Paired-Associate Learning, and Rapid Automatized Naming as Predictors of Individual Differences in Reading Ability

    ERIC Educational Resources Information Center

    Warmington, Meesha; Hulme, Charles

    2012-01-01

    This study examines the concurrent relationships between phoneme awareness, visual-verbal paired-associate learning, rapid automatized naming (RAN), and reading skills in 7- to 11-year-old children. Path analyses showed that visual-verbal paired-associate learning and RAN, but not phoneme awareness, were unique predictors of word recognition,…

  19. The Role of Phoneme and Onset-Rime Awareness in Second Language Reading Acquisition

    ERIC Educational Resources Information Center

    Haigh, Corinne A.; Savage, Robert; Erdos, Caroline; Genesee, Fred

    2011-01-01

    This study investigated the link between phoneme and onset-rime awareness and reading outcomes in children learning to read in a second language (L2). Closely matched phoneme and onset-rime awareness tasks were administered in English and French in the spring of kindergarten to English-dominant children in French immersion programmes (n=98).…

  20. A Short Report: Word-Level Phonological and Lexical Characteristics Interact to Influence Phoneme Awareness

    PubMed Central

    Hogan, Tiffany P.

    2010-01-01

    In this study, we examined the influence of word-level phonological and lexical characteristics on early phoneme awareness. Typically-developing children, ages 61–78 months, completed a phoneme-based, odd-one-out task that included consonant-vowel-consonant word sets (e.g., “chair-chain-ship”) that varied orthogonally by a phonological characteristic, sound-contrast similarity (similar vs. dissimilar), and a lexical characteristic, neighborhood density (dense vs. sparse). In a subsample of the participants – those with the highest vocabularies – results were in line with a predicted interactive effect of phonological and lexical characteristics on phoneme awareness performance: word sets contrasting similar sounds were less likely to yield correct responses in words from sparse neighborhoods than words from dense neighborhoods. Word sets contrasting dissimilar sounds were most likely to yield correct responses regardless of the words’ neighborhood density. Based on these findings, theories of early phoneme awareness development should consider both word-level (e.g., phonological and lexical characteristics) and child-level (e.g., vocabulary knowledge) influences on phoneme awareness performance. Attention to these word-level item influences is predicted to result in more sensitive and specific measures of reading risk. PMID:20574064

  1. Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model.

    PubMed

    Jürgens, Tim; Brand, Thomas

    2009-11-01

    This study compares the phoneme recognition performance in speech-shaped noise of a microscopic model for speech recognition with the performance of normal-hearing listeners. "Microscopic" is defined in terms of this model twofold. First, the speech recognition rate is predicted on a phoneme-by-phoneme basis. Second, microscopic modeling means that the signal waveforms to be recognized are processed by mimicking elementary parts of human's auditory processing. The model is based on an approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703-1716 (1996)] and consists of a psychoacoustically and physiologically motivated preprocessing and a simple dynamic-time-warp speech recognizer. The model is evaluated while presenting nonsense speech in a closed-set paradigm. Averaged phoneme recognition rates, specific phoneme recognition rates, and phoneme confusions are analyzed. The influence of different perceptual distance measures and of the model's a-priori knowledge is investigated. The results show that human performance can be predicted by this model using an optimal detector, i.e., identical speech waveforms for both training of the recognizer and testing. The best model performance is yielded by distance measures which focus mainly on small perceptual distances and neglect outliers.

  2. Discrimination of phoneme length differences in word and sentence contexts

    NASA Astrophysics Data System (ADS)

    Kawai, Norimune; Carrell, Thomas

    2005-09-01

    The ability of listeners to discriminate phoneme duration differences within word and sentence contexts was measured. This investigation was part of a series of studies examining the audibility and perceptual importance of speech modifications produced by stuttering intervention techniques. Just noticeable differences (jnd's) of phoneme lengths were measured via the parameter estimation by sequential testing (PEST) task, an adaptive tracking procedure. The target phonemes were digitally manipulated to vary from normal (130 m) to prolonged (210 m) duration in 2-m increments. In the first condition the phonemes were embedded in words. In the second condition the phonemes were embedded within words, which were further embedded in sentences. A four-interval forced-choice (4IAX) task was employed on each trial, and the PEST procedure determined the duration at which each listener correctly detected a difference between the normal duration and the test duration 71% of the time. The results revealed that listeners were able to reliably discriminate approximately 15-m differences in word context and 10-m differences in sentence context. An independent t-test showed a difference in discriminability between word and sentence contexts to be significant. These results indicate that duration differences were better perceived within a sentence context.

  3. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RNI subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a hi ch data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these sub-trellises.

  4. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    In this research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing, a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study, which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating, and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these sub-trellises.

  5. Phonemic Awareness and the Teaching of Reading. A Position Statement from the Board of Directors of the International Reading Association.

    ERIC Educational Resources Information Center

    International Reading Association, Newark, DE.

    This position paper considers the complex relation between phonemic awareness and reading. The paper seeks to define phonemic awareness (although there is no single definition), stating that it is typically described as an insight about oral language and in particular about the segmentation of sounds that are used in speech communication. It also…

  6. Assessing the Effectiveness of Two Theoretically Motivated Computer-Assisted Reading Interventions in the United Kingdom: GG Rime and GG Phoneme

    ERIC Educational Resources Information Center

    Kyle, Fiona; Kujala, Janne; Richardson, Ulla; Lyytinen, Heikki; Goswami, Usha

    2013-01-01

    We report an empirical comparison of the effectiveness of two theoretically motivated computer-assisted reading interventions (CARI) based on the Finnish GraphoGame CARI: English GraphoGame Rime (GG Rime) and English GraphoGame Phoneme (GG Phoneme). Participants were 6-7-year-old students who had been identified by their teachers as being…

  7. Analysis of Phonemes, Graphemes, Onset-Rimes, and Words with Braille-Learning Children

    ERIC Educational Resources Information Center

    Crawford, Shauna; Elliott, Robert T.

    2007-01-01

    Six primary school-aged braille students were taught to name 4 to 10 braille letters as phonemes and another 4 to 10 braille letters as graphemes (Study 1). They were then taught to name 10 braille words as onset-rimes and another 10 braille words as whole words (Study 2). Instruction in phonemes and onset rimes resulted in fewer trials and a…

  8. Assessing the Effects of the "McGraw Hill Phonemic Awareness" Program with Preschool Children with Developmental Delays: A Case Study

    ERIC Educational Resources Information Center

    Isakson, Lisa; Marchand-Martella, Nancy; Martella, Ronald C.

    2011-01-01

    This study assessed the effects of "McGraw Hill Phonemic Awareness" on the phonemic awareness skills of 5 preschool children with developmental delays. The children received 60 of the 110 lessons included in this program over 5 months. They were pre- and posttested using the kindergarten level Initial Sound Fluency and Phoneme…

  9. An Investigation of Treatment Scheduling for Phonemic Awareness with Kindergartners Who Are at Risk for Reading Difficulties

    ERIC Educational Resources Information Center

    Ukrainetz, Teresa A.; Ross, Catherine L.; Harm, Heide M.

    2009-01-01

    Purpose: This study examined 2 schedules of treatment for phonemic awareness. Method: Forty-one 5- to 6-year-old kindergartners, including 22 English learners, with low letter-name and first-sound knowledge received 11 hr of phonemic awareness treatment: concentrated (CP, 3x/wk to December), dispersed (DP, 1x/wk to March), and dispersed vocabulary…

  10. Efficient Quantum Transmission in Multiple-Source Networks

    PubMed Central

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590

  11. The relationship between articulatory control and improved phonemic accuracy in childhood apraxia of speech: A longitudinal case study

    PubMed Central

    Grigos, Maria I.; Kolenda, Nicole

    2010-01-01

    Jaw movement patterns were examined longitudinally in a 3-year-old male with childhood apraxia of speech (CAS) and compared with a typically developing control group. The child with CAS was followed for 8 months, until he began accurately and consistently producing the bilabial phonemes /p/, /b/, and /m/. A movement tracking system was used to study jaw duration, displacement, velocity, and stability. A transcription analysis determined the percentage of phoneme errors and consistency. Results showed phoneme-specific changes which included increases in jaw velocity and stability over time, as well as decreases in duration. Kinematic parameters became more similar to patterns seen in the controls during final sessions where tokens were produced most accurately and consistently. Closing velocity and stability, however, were the only measures to fall within a 95% confidence interval established for the controls across all three target phonemes. These findings suggest that motor processes may differ between children with CAS and their typically developing peers. PMID:20030551

  12. How do associative and phonemic overlap interact to boost illusory recollection?

    PubMed

    Hutchison, Keith A; Meade, Michelle L; Williams, Nikolas S; Manley, Krista D; McNabb, Jaimie C

    2018-05-01

    This project investigated the underlying mechanisms that boost false remember responses when participants receive study words that are both semantically and phonologically similar to a critical lure. Participants completed a memory task in which they were presented with a list of words all associated with a critical lure. Included within the list of semantic associates was a target that was either semantically associated (e.g., yawn) to the critical lure (e.g., sleep) or shared the initial (e.g., slam) or final (e.g., beep) phoneme(s) with the critical lure. After hearing the list, participants recalled each list item and indicated whether they just knew it was on the list or if they instead recollected specific contextual details of that item's presentation. We found that inserting an initial phonemic overlap target boosted experiences of recollection, but only when semantically related associates were presented beforehand. The results are consistent with models of spoken word recognition and show that established semantic context plus initial phonemic overlap play important roles in boosting false recollection.

  13. Word-Level Reading Achievement and Behavioral Inattention: Exploring Their Overlap and Relations with Naming Speed and Phonemic Awareness in a Community Sample of Children

    PubMed Central

    Martinussen, Rhonda; Grimbos, Teresa; Ferrari, Julia L. S.

    2014-01-01

    This study investigated the contribution of naming speed and phonemic awareness to teacher inattention ratings and word-level reading proficiency in 79 first grade children (43 boys, 36 girls). Participants completed the cognitive and reading measures midway through the school year. Teacher ratings of inattention were obtained for each child at the same time point. A path analysis revealed that behavioral inattention had a significant direct effect on word reading proficiency as well as significant indirect effects through phonemic awareness and naming speed. For pseudoword reading proficiency, the effects of inattention were indirect only through phonemic awareness and naming speed. A regression analysis indicated that naming speed, but not phonemic awareness, was significantly associated with teacher inattention ratings controlling for word reading proficiency. The findings highlight the need to better understand the role of behavioral inattention in the development of emergent literacy skills and reading proficiency. PMID:25178628

  14. Conditioned allophony in speech perception: an ERP study.

    PubMed

    Miglietta, Sandra; Grimaldi, Mirko; Calabrese, Andrea

    2013-09-01

    A Mismatch Negativity (MMN) study was performed to investigate whether pre-attentive vowel perception is influenced by phonological status. We compared the MMN response to the acoustic distinction between the allophonic variation [ε-e] and phonemic contrast [e-i] present in a Southern-Italian variety (Tricase dialect). Clear MMNs were elicited for both the phonemic and allophonic conditions. Interestingly, a shorter latency was observed for the phonemic pair, but no significant amplitude difference was observed between the two conditions. Together, these results suggest that for isolated vowels, the phonological status of a vowel category is reflected in the latency of the MMN peak. The earlier latency of the phonemic condition argues for an easier parsing and encoding of phonemic contrasts in memory representations. Thus, neural computations mapping auditory inputs into higher perceptual representations seem 'sensitive' to the contrastive/non-contrastive status of the sounds as determined by the listeners' knowledge of the own phonological system. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Natural Communication with Computers. Volume 1. Speech Understanding Research at BBN

    DTIC Science & Technology

    1974-12-01

    Signal Processing Concurrently with the incremental simulation experiments used to develop insights into the organization of the control component and...us to seek an alternative organization for our phonemic dictionary. There is also the potential problem of new words being used to name new places... organize the lexicon for maximization of efficient retrieval by taking advantage of phonetic, syntactic and semantic relationsnips. Work has already

  16. Stroop interference associated with efficient reading fluency and prelexical orthographic processing.

    PubMed

    Mano, Quintino R; Williamson, Brady J; Pae, Hye K; Osmon, David C

    2016-01-01

    The Stroop Color-Word Test involves a dynamic interplay between reading and executive functioning that elicits intuitions of word reading automaticity. One such intuition is that strong reading skills (i.e., more automatized word reading) play a disruptive role within the test, contributing to Stroop interference. However, evidence has accumulated that challenges this intuition. The present study examined associations among Stroop interference, reading skills (i.e., isolated word identification, grapheme-to-phoneme mapping, phonemic awareness, reading fluency) measured on standardized tests, and orthographic skills measured on experimental computerized tasks. Among university students (N = 152), correlational analyses showed greater Stroop interference to be associated with (a) relatively low scores on all standardized reading tests, and (b) longer response latencies on orthographic tasks. Hierarchical regression demonstrated that reading fluency and prelexical orthographic processing predicted unique and significant variance in Stroop interference beyond baseline rapid naming. Results suggest that strong reading skills, including orthographic processing, play a supportive role in resolving Stroop interference.

  17. Adapted cuing technique: facilitating sequential phoneme production.

    PubMed

    Klick, S L

    1994-09-01

    ACT is a visual cuing technique designed to facilitate dyspraxic speech by highlighting the sequential production of phonemes. In using ACT, cues are presented in such a way as to suggest sequential, coarticulatory movement in an overall pattern of motion. While using ACT, the facilitator's hand moves forward and back along the side of her (or his) own face. Finger movements signal specific speech sounds in formations loosely based on the manual alphabet for the hearing impaired. The best movements suggest the flowing, interactive nature of coarticulated phonemes. The synergistic nature of speech is suggested by coordinated hand motions which tighten and relax, move quickly or slowly, reflecting the motions of the vocal tract at various points during production of phonemic sequences. General principles involved in using ACT include a primary focus on speech-in-motion, the monitoring and fading of cues, and the presentation of stimuli based on motor-task analysis of phonemic sequences. Phonemic sequences are cued along three dimensions: place, manner, and vowel-related mandibular motion. Cuing vowels is a central feature of ACT. Two parameters of vowel production, focal point of resonance and mandibular closure, are cued. The facilitator's hand motions reflect the changing shape of the vocal tract and the trajectory of the tongue that result from the coarticulation of vowels and consonants. Rigid presentation of the phonemes is secondary to the facilitator's primary focus on presenting the overall sequential movement. The facilitator's goal is to self-tailor ACT in response to the changing needs and abilities of the client.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER.

    PubMed

    Ferreira, Miguel; Roma, Nuno; Russo, Luis M S

    2014-05-30

    HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm, which was already highly parallelized and optimized using Farrar's striped processing pattern with Intel SSE2 instruction set extension. A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the innermost-cache size and of the dimension of the considered model. The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput and offers a processing speedup as high as two times faster, depending on the model's size.

  19. Voice intelligibility in satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Wishna, S.

    1973-01-01

    An amplitude control technique is reported that equalizes low level phonemes in a satellite narrow band FM voice communication system over channels having low carrier to noise ratios. This method presents at the transmitter equal amplitude phonemes so that the low level phonemes, when they are transmitted over the noisey channel, are above the noise and contribute to output intelligibility. The amplitude control technique provides also for squelching of noise when speech is not being transmitted.

  20. Automatic Recognition of Phonemes Using a Syntactic Processor for Error Correction.

    DTIC Science & Technology

    1980-12-01

    OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS AFIT/GE/EE/8D-45 Robert B. ’Taylor 2Lt USAF Approved for public release...distribution unlimilted. AbP AFIT/GE/EE/ 80D-45 AUTOMATIC RECOGNITION OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS Presented to the...Testing ..................... 37 Bayes Decision Rule for Minimum Error ........... 37 Bayes Decision Rule for Minimum Risk ............ 39 Mini Max Test

  1. Stochastic Model for Phonemes Uncovers an Author-Dependency of Their Usage.

    PubMed

    Deng, Weibing; Allahverdyan, Armen E

    2016-01-01

    We study rank-frequency relations for phonemes, the minimal units that still relate to linguistic meaning. We show that these relations can be described by the Dirichlet distribution, a direct analogue of the ideal-gas model in statistical mechanics. This description allows us to demonstrate that the rank-frequency relations for phonemes of a text do depend on its author. The author-dependency effect is not caused by the author's vocabulary (common words used in different texts), and is confirmed by several alternative means. This suggests that it can be directly related to phonemes. These features contrast to rank-frequency relations for words, which are both author and text independent and are governed by the Zipf's law.

  2. A computationally efficient method for incorporating spike waveform information into decoding algorithms.

    PubMed

    Ventura, Valérie; Todorova, Sonia

    2015-05-01

    Spike-based brain-computer interfaces (BCIs) have the potential to restore motor ability to people with paralysis and amputation, and have shown impressive performance in the lab. To transition BCI devices from the lab to the clinic, decoding must proceed automatically and in real time, which prohibits the use of algorithms that are computationally intensive or require manual tweaking. A common choice is to avoid spike sorting and treat the signal on each electrode as if it came from a single neuron, which is fast, easy, and therefore desirable for clinical use. But this approach ignores the kinematic information provided by individual neurons recorded on the same electrode. The contribution of this letter is a linear decoding model that extracts kinematic information from individual neurons without spike-sorting the electrode signals. The method relies on modeling sample averages of waveform features as functions of kinematics, which is automatic and requires minimal data storage and computation. In offline reconstruction of arm trajectories of a nonhuman primate performing reaching tasks, the proposed method performs as well as decoders based on expertly manually and automatically sorted spikes.

  3. Product code optimization for determinate state LDPC decoding in robust image transmission.

    PubMed

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-08-01

    We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.

  4. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.

    PubMed

    Revathy, M; Saravanan, R

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.

  5. Entanglement-assisted quantum quasicyclic low-density parity-check codes

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Brun, Todd A.; Devetak, Igor

    2009-03-01

    We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.

  6. Efficient random access high resolution region-of-interest (ROI) image retrieval using backward coding of wavelet trees (BCWT)

    NASA Astrophysics Data System (ADS)

    Corona, Enrique; Nutter, Brian; Mitra, Sunanda; Guo, Jiangling; Karp, Tanja

    2008-03-01

    Efficient retrieval of high quality Regions-Of-Interest (ROI) from high resolution medical images is essential for reliable interpretation and accurate diagnosis. Random access to high quality ROI from codestreams is becoming an essential feature in many still image compression applications, particularly in viewing diseased areas from large medical images. This feature is easier to implement in block based codecs because of the inherent spatial independency of the code blocks. This independency implies that the decoding order of the blocks is unimportant as long as the position for each is properly identified. In contrast, wavelet-tree based codecs naturally use some interdependency that exploits the decaying spectrum model of the wavelet coefficients. Thus one must keep track of the decoding order from level to level with such codecs. We have developed an innovative multi-rate image subband coding scheme using "Backward Coding of Wavelet Trees (BCWT)" which is fast, memory efficient, and resolution scalable. It offers far less complexity than many other existing codecs including both, wavelet-tree, and block based algorithms. The ROI feature in BCWT is implemented through a transcoder stage that generates a new BCWT codestream containing only the information associated with the user-defined ROI. This paper presents an efficient technique that locates a particular ROI within the BCWT coded domain, and decodes it back to the spatial domain. This technique allows better access and proper identification of pathologies in high resolution images since only a small fraction of the codestream is required to be transmitted and analyzed.

  7. The absoluteness of semantic processing: lessons from the analysis of temporal clusters in phonemic verbal fluency.

    PubMed

    Vonberg, Isabelle; Ehlen, Felicitas; Fromm, Ortwin; Klostermann, Fabian

    2014-01-01

    For word production, we may consciously pursue semantic or phonological search strategies, but it is uncertain whether we can retrieve the different aspects of lexical information independently from each other. We therefore studied the spread of semantic information into words produced under exclusively phonemic task demands. 42 subjects participated in a letter verbal fluency task, demanding the production of as many s-words as possible in two minutes. Based on curve fittings for the time courses of word production, output spurts (temporal clusters) considered to reflect rapid lexical retrieval based on automatic activation spread, were identified. Semantic and phonemic word relatedness within versus between these clusters was assessed by respective scores (0 meaning no relation, 4 maximum relation). Subjects produced 27.5 (±9.4) words belonging to 6.7 (±2.4) clusters. Both phonemically and semantically words were more related within clusters than between clusters (phon: 0.33±0.22 vs. 0.19±0.17, p<.01; sem: 0.65±0.29 vs. 0.37±0.29, p<.01). Whereas the extent of phonemic relatedness correlated with high task performance, the contrary was the case for the extent of semantic relatedness. The results indicate that semantic information spread occurs, even if the consciously pursued word search strategy is purely phonological. This, together with the negative correlation between semantic relatedness and verbal output suits the idea of a semantic default mode of lexical search, acting against rapid task performance in the given scenario of phonemic verbal fluency. The simultaneity of enhanced semantic and phonemic word relatedness within the same temporal cluster boundaries suggests an interaction between content and sound-related information whenever a new semantic field has been opened.

  8. Enhanced neural and behavioural processing of a nonnative phonemic contrast in professional musicians.

    PubMed

    Dittinger, Eva; D'Imperio, Mariapaola; Besson, Mireille

    2018-05-12

    Based on growing evidence suggesting that professional music training facilitates foreign language perception and learning, we examined the impact of musical expertise on the categorisation of syllables including phonemes that did (/p/, /b/) or did not (/p h /) belong to the French repertoire by analysing both behaviour (error rates and reaction times) and Event-Related brain Potentials (N200 and P300 components). Professional musicians and nonmusicians categorised syllables either as /ba/ or /pa/ (voicing task), or as /pa/ or /p h a/ with /p h / being a nonnative phoneme for French speakers (aspiration task). In line with our hypotheses, results showed that musicians outperformed nonmusicians in the aspiration task but not in the voicing task. Moreover, the difference between the native (/p/) and the nonnative phoneme (/p h /), as reflected in N200 and P300 amplitudes, was larger in musicians than in nonmusicians in the aspiration task but not in the voicing task. These results show that behaviour and brain activity associated to nonnative phoneme perception are influenced by musical expertise and that these effects are task-dependent. The implications of these findings for current models of phoneme perception and for understanding the qualitative and quantitative differences found on the N200 and P300 components are discussed. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Emotion to emotion speech conversion in phoneme level

    NASA Astrophysics Data System (ADS)

    Bulut, Murtaza; Yildirim, Serdar; Busso, Carlos; Lee, Chul Min; Kazemzadeh, Ebrahim; Lee, Sungbok; Narayanan, Shrikanth

    2004-10-01

    Having an ability to synthesize emotional speech can make human-machine interaction more natural in spoken dialogue management. This study investigates the effectiveness of prosodic and spectral modification in phoneme level on emotion-to-emotion speech conversion. The prosody modification is performed with the TD-PSOLA algorithm (Moulines and Charpentier, 1990). We also transform the spectral envelopes of source phonemes to match those of target phonemes using LPC-based spectral transformation approach (Kain, 2001). Prosodic speech parameters (F0, duration, and energy) for target phonemes are estimated from the statistics obtained from the analysis of an emotional speech database of happy, angry, sad, and neutral utterances collected from actors. Listening experiments conducted with native American English speakers indicate that the modification of prosody only or spectrum only is not sufficient to elicit targeted emotions. The simultaneous modification of both prosody and spectrum results in higher acceptance rates of target emotions, suggesting that not only modeling speech prosody but also modeling spectral patterns that reflect underlying speech articulations are equally important to synthesize emotional speech with good quality. We are investigating suprasegmental level modifications for further improvement in speech quality and expressiveness.

  10. Word-level reading achievement and behavioral inattention: exploring their overlap and relations with naming speed and phonemic awareness in a community sample of children.

    PubMed

    Martinussen, Rhonda; Grimbos, Teresa; Ferrari, Julia L S

    2014-11-01

    This study investigated the contribution of naming speed and phonemic awareness to teacher inattention ratings and word-level reading proficiency in 79 first grade children (43 boys, 36 girls). Participants completed the cognitive and reading measures midway through the school year. Teacher ratings of inattention were obtained for each child at the same time point. A path analysis revealed that behavioral inattention had a significant direct effect on word reading proficiency as well as significant indirect effects through phonemic awareness and naming speed. For pseudoword reading proficiency, the effects of inattention were indirect only through phonemic awareness and naming speed. A regression analysis indicated that naming speed, but not phonemic awareness, was significantly associated with teacher inattention ratings controlling for word reading proficiency. The findings highlight the need to better understand the role of behavioral inattention in the development of emergent literacy skills and reading proficiency. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Zipf’s Law and the Frequency of Kazak Phonemes in Word Formation

    NASA Astrophysics Data System (ADS)

    Xin, Ruiqing; Li, Yonghong; Yu, Hongzhi

    2018-03-01

    Zipf’s Law is the basis of the principle of Least Effort, and is widely applicable in all natural fields. The occurring frequency of each phoneme in all Kazak words has been counted to testify the application of Zipf’s law in Kazak. Due to the limitation of the sample size, deviation is unavoidable, but overall results indicate that the occurring frequency and the reciprocal rank of each phoneme in Kazak words formation are in line with Zipf’s distribution.

  12. Efficient Bit-to-Symbol Likelihood Mappings

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.; Nakashima, Michael A.

    2010-01-01

    This innovation is an efficient algorithm designed to perform bit-to-symbol and symbol-to-bit likelihood mappings that represent a significant portion of the complexity of an error-correction code decoder for high-order constellations. Recent implementation of the algorithm in hardware has yielded an 8- percent reduction in overall area relative to the prior design.

  13. Performance enhancement of wireless mobile adhoc networks through improved error correction and ICI cancellation

    NASA Astrophysics Data System (ADS)

    Sabir, Zeeshan; Babar, M. Inayatullah; Shah, Syed Waqar

    2012-12-01

    Mobile adhoc network (MANET) refers to an arrangement of wireless mobile nodes that have the tendency of dynamically and freely self-organizing into temporary and arbitrary network topologies. Orthogonal frequency division multiplexing (OFDM) is the foremost choice for MANET system designers at the Physical Layer due to its inherent property of high data rate transmission that corresponds to its lofty spectrum efficiency. The downside of OFDM includes its sensitivity to synchronization errors (frequency offsets and symbol time). Most of the present day techniques employing OFDM for data transmission support mobility as one of the primary features. This mobility causes small frequency offsets due to the production of Doppler frequencies. It results in intercarrier interference (ICI) which degrades the signal quality due to a crosstalk between the subcarriers of OFDM symbol. An efficient frequency-domain block-type pilot-assisted ICI mitigation scheme is proposed in this article which nullifies the effect of channel frequency offsets from the received OFDM symbols. Second problem addressed in this article is the noise effect induced by different sources into the received symbol increasing its bit error rate and making it unsuitable for many applications. Forward-error-correcting turbo codes have been employed into the proposed model which adds redundant bits into the system which are later used for error detection and correction purpose. At the receiver end, maximum a posteriori (MAP) decoding algorithm is implemented using two component MAP decoders. These decoders tend to exchange interleaved extrinsic soft information among each other in the form of log likelihood ratio improving the previous estimate regarding the decoded bit in each iteration.

  14. Circuit Design Approaches for Implementation of a Subtrellis IC for a Reed-Muller Subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.; Nakamura, Eric B.; Chu, Cecilia W. P.

    1996-01-01

    In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second(Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high- speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these subtrellises.

  15. Circuit Design Approaches for Implementation of a Subtrellis IC for a Reed-Muller Subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.; Nakamura, Eric B.; Chu, Cecilia W. P.

    1996-01-01

    In this research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these subtrellises.

  16. Population decoding of motor cortical activity using a generalized linear model with hidden states.

    PubMed

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam

    2010-06-15

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Crossmodal processing of emotions in alcohol-dependence and Korsakoff syndrome.

    PubMed

    Brion, Mélanie; D'Hondt, Fabien; Lannoy, Séverine; Pitel, Anne-Lise; Davidoff, Donald A; Maurage, Pierre

    2017-09-01

    Decoding emotional information from faces and voices is crucial for efficient interpersonal communication. Emotional decoding deficits have been found in alcohol-dependence (ALC), particularly in crossmodal situations (with simultaneous stimulations from different modalities), but are still underexplored in Korsakoff syndrome (KS). The aim of this study is to determine whether the continuity hypothesis, postulating a gradual worsening of cognitive and brain impairments from ALC to KS, is valid for emotional crossmodal processing. Sixteen KS, 17 ALC and 19 matched healthy controls (CP) had to detect the emotion (anger or happiness) displayed by auditory, visual or crossmodal auditory-visual stimuli. Crossmodal stimuli were either emotionally congruent (leading to a facilitation effect, i.e. enhanced performance for crossmodal condition compared to unimodal ones) or incongruent (leading to an interference effect, i.e. decreased performance for crossmodal condition due to discordant information across modalities). Reaction times and accuracy were recorded. Crossmodal integration for congruent information was dampened only in ALC, while both ALC and KS demonstrated, compared to CP, decreased performance for decoding emotional facial expressions in the incongruent condition. The crossmodal integration appears impaired in ALC but preserved in KS. Both alcohol-related disorders present an increased interference effect. These results show the interest of more ecological designs, using crossmodal stimuli, to explore emotional decoding in alcohol-related disorders. They also suggest that the continuum hypothesis cannot be generalised to emotional decoding abilities.

  18. Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER

    PubMed Central

    2014-01-01

    Background HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm, which was already highly parallelized and optimized using Farrar’s striped processing pattern with Intel SSE2 instruction set extension. Results A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the innermost-cache size and of the dimension of the considered model. Conclusions The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput and offers a processing speedup as high as two times faster, depending on the model’s size. PMID:24884826

  19. Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States

    PubMed Central

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam

    2010-01-01

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500

  20. The effect of tRNA levels on decoding times of mRNA codons.

    PubMed

    Dana, Alexandra; Tuller, Tamir

    2014-08-01

    The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (-0.38 to -0.66, all P values <0.006); in addition, we show that when considering tRNA concentrations, codons decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Reed Solomon codes for error control in byte organized computer memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation are presented. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  2. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications

    PubMed Central

    Revathy, M.; Saravanan, R.

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017

  3. Cognitive Predictors of Word and Pseudoword Reading in Spanish First-Grade Children

    PubMed Central

    González-Valenzuela, María J.; Díaz-Giráldez, Félix; López-Montiel, María D.

    2016-01-01

    The study examines the individual and combined contribution of several cognitive variables (phonemic awareness, phonological memory, and alphanumeric and non-alphanumeric rapid naming) to word and pseudoword reading ability among first-grade Spanish children. Participants were 116 Spanish-speaking children aged 6 years and without special educational needs, all of whom were attending schools in a medium socioeconomic area. Descriptive/exploratory and bivariate analyses were performed with the data derived from three measures of reading ability (accuracy, speed, and efficiency), and hierarchical multivariate regression models were constructed. In general, the results confirm that, with the exception of non-alphanumeric rapid naming, the cognitive variables studied are predictors of reading performance for words and pseudowords, although their influence differs depending on the reading measures and type of linguistic unit considered. Phonemic awareness, phonological memory, and alphanumeric rapid naming were the best predictors of reading accuracy for words and pseudowords. Variability in the other two measures of reading ability (speed and efficiency) was best explained by alphanumeric rapid naming. These results suggest that reading is a complex skill that depends on different types of cognitive variables according to the age and/or level of the reader, the type of orthography and the type of measure used. Furthermore, they highlight the need to provide instruction in these processes from an early age so as to address or prevent the problems that children may present. PMID:27303336

  4. Dating the Origin of Language Using Phonemic Diversity

    PubMed Central

    2012-01-01

    Language is a key adaptation of our species, yet we do not know when it evolved. Here, we use data on language phonemic diversity to estimate a minimum date for the origin of language. We take advantage of the fact that phonemic diversity evolves slowly and use it as a clock to calculate how long the oldest African languages would have to have been around in order to accumulate the number of phonemes they possess today. We use a natural experiment, the colonization of Southeast Asia and Andaman Islands, to estimate the rate at which phonemic diversity increases through time. Using this rate, we estimate that present-day languages date back to the Middle Stone Age in Africa. Our analysis is consistent with the archaeological evidence suggesting that complex human behavior evolved during the Middle Stone Age in Africa, and does not support the view that language is a recent adaptation that has sparked the dispersal of humans out of Africa. While some of our assumptions require testing and our results rely at present on a single case-study, our analysis constitutes the first estimate of when language evolved that is directly based on linguistic data. PMID:22558135

  5. The Downside of Greater Lexical Influences: Selectively Poorer Speech Perception in Noise

    PubMed Central

    Xie, Zilong; Tessmer, Rachel; Chandrasekaran, Bharath

    2017-01-01

    Purpose Although lexical information influences phoneme perception, the extent to which reliance on lexical information enhances speech processing in challenging listening environments is unclear. We examined the extent to which individual differences in lexical influences on phonemic processing impact speech processing in maskers containing varying degrees of linguistic information (2-talker babble or pink noise). Method Twenty-nine monolingual English speakers were instructed to ignore the lexical status of spoken syllables (e.g., gift vs. kift) and to only categorize the initial phonemes (/g/ vs. /k/). The same participants then performed speech recognition tasks in the presence of 2-talker babble or pink noise in audio-only and audiovisual conditions. Results Individuals who demonstrated greater lexical influences on phonemic processing experienced greater speech processing difficulties in 2-talker babble than in pink noise. These selective difficulties were present across audio-only and audiovisual conditions. Conclusion Individuals with greater reliance on lexical processes during speech perception exhibit impaired speech recognition in listening conditions in which competing talkers introduce audible linguistic interferences. Future studies should examine the locus of lexical influences/interferences on phonemic processing and speech-in-speech processing. PMID:28586824

  6. The Secret Is in the Sound

    PubMed Central

    Christiansen, Morten H.; Onnis, Luca; Hockema, Stephen A.

    2009-01-01

    When learning language young children are faced with many seemingly formidable challenges, including discovering words embedded in a continuous stream of sounds and determining what role these words play in syntactic constructions. We suggest that knowledge of phoneme distributions may play a crucial part in helping children segment words and determine their lexical category, and propose an integrated model of how children might go from unsegmented speech to lexical categories. We corroborated this theoretical model using a two-stage computational analysis of a large corpus of English child-directed speech. First, we used transition probabilities between phonemes to find words in unsegmented speech. Second, we used distributional information about word edges—the beginning and ending phonemes of words—to predict whether the segmented words from the first stage were nouns, verbs, or something else. The results indicate that discovering lexical units and their associated syntactic category in child-directed speech is possible by attending to the statistics of single phoneme transitions and word-initial and final phonemes. Thus, we suggest that a core computational principle in language acquisition is that the same source of information is used to learn about different aspects of linguistic structure. PMID:19371361

  7. Optimized iterative decoding method for TPC coded CPM

    NASA Astrophysics Data System (ADS)

    Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

    2018-05-01

    Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

  8. A new precoding scheme for spectral efficient optical OFDM systems

    NASA Astrophysics Data System (ADS)

    Hardan, Saad Mshhain; Bayat, Oguz; Abdulkafi, Ayad Atiyah

    2018-07-01

    Achieving high spectral efficiency is the key requirement of 5G and optical wireless communication systems and has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in communications systems. In this paper, we propose a new precoding/decoding algorithm for spectral efficient optical orthogonal frequency division multiplexing (OFDM) scheme based visible light communication (VLC) systems. The proposed coded modulated optical (CMO) based OFDM system can be applied for both single input single output (SISO) and multiple input multiple-output (MIMO) architectures. Firstly, the real OFDM time domain signal is obtained through invoking the precoding/decoding algorithm without the Hermitian symmetry. After that, the positive signal is achieved either by adding a DC-bias or by using the spatial multiplexing technique. The proposed CMO-OFDM scheme efficiently improves the spectral efficiency of the VLC system as it does not require the Hermitian symmetry constraint to yield real signals. A comparison of the performance improvement of the proposed scheme with other OFDM approaches is also presented in this work. Simulation results show that the proposed CMO-OFDM scheme can not only enhance the spectral efficiency of OFDM-based VLC systems but also improve bit error rate (BER) performance compared with other optical OFDM schemes.

  9. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  10. Apathy, not depressive symptoms, as a predictor of semantic and phonemic fluency task performance in stroke and transient ischemic attack.

    PubMed

    Fishman, Keera N; Ashbaugh, Andrea R; Lanctôt, Krista L; Cayley, Megan L; Herrmann, Nathan; Murray, Brian J; Sicard, Michelle; Lien, Karen; Sahlas, Demetrios J; Swartz, Richard H

    2018-06-01

    This study examined the relationship between apathy and cognition in patients with cerebrovascular disease. Apathy may result from damage to frontal subcortical circuits causing dysexecutive syndromes, but apathy is also related to depression. We assessed the ability of apathy to predict phonemic fluency and semantic fluency performance after controlling for depressive symptoms in 282 individuals with stroke and/or transient ischemic attack. Participants (N = 282) completed the Phonemic Fluency Test, Semantic Fluency Test, Center for Epidemiologic Studies Depression Scale, and Apathy Evaluation Scale. A cross-sectional correlational design was utilized. Using hierarchical linear regressions, apathy scores significantly predicted semantic fluency performance (β = -.159, p = .020), but not phonemic fluency performance (β = -.112, p = .129) after scaling scores by age and years of education and controlling for depressive symptoms. Depressive symptoms entered into the first step of both hierarchical linear regressions did not predict semantic fluency (β = -.035, p = .554) or phonemic fluency (β = -.081, p = .173). Apathy and depressive symptoms were moderately correlated, r(280) = .58, p < .001. The results of this study are consistent with research supporting a differentiation between phonemic and semantic fluency tasks, whereby phonemic fluency tasks primarily involve frontal regions, and semantic fluency tasks involve recruitment of more extended networks. The results also highlight a distinction between apathy and depressive symptoms and suggest that apathy may be a more reliable predictor of cognitive deficits than measures of mood in individuals with cerebrovascular disease. Apathy may also be more related to cognition due to overlapping motivational and cognitive frontal subcortical circuitry. Future research should explore whether treatments for apathy could be a novel target for improving cognitive outcomes after stroke.

  11. Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex.

    PubMed

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Bracco, Martina; Oliveri, Massimiliano; Cipolotti, Lisa

    2017-07-28

    A growing body of evidence have suggested that non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can improve the performance of aphasic patients in language tasks. For example, application of inhibitory rTMS or tDCs over the right frontal lobe of dysphasic patients resulted in improved naming abilities. Several studies have also reported that in healthy controls (HC) tDCS application over the left prefrontal cortex (PFC) improve performance in naming and semantic fluency tasks. The aim of this study was to investigate in HC, for the first time, the effects of inhibitory repetitive TMS (rTMS) over left and right lateral frontal cortex (BA 47) on two phonemic fluency tasks (FAS or FPL). 44 right-handed HCs were administered rTMS or sham over the left or right lateral frontal cortex in two separate testing sessions, with a 24h interval, followed by the two phonemic fluency tasks. To account for possible practice effects, an additional 22 HCs were tested on only the phonemic fluency task across two sessions with no stimulation. We found that rTMS-inhibition over the left lateral frontal cortex significantly worsened phonemic fluency performance when compared to sham. In contrast, rTMS-inhibition over the right lateral frontal cortex significantly improved phonemic fluency performance when compared to sham. These results were not accounted for practice effects. We speculated that rTMS over the right lateral frontal cortex may induce plastic neural changes to the left lateral frontal cortex by suppressing interhemispheric inhibitory interactions. This resulted in an increased excitability (disinhibition) of the contralateral unstimulated left lateral frontal cortex, consequently enhancing phonemic fluency performance. Conversely, application of rTMS over the left lateral frontal cortex may induce a temporary, virtual lesion, with effects similar to those reported in left frontal patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.

    PubMed

    Samuel, Oluwarotimi Williams; Geng, Yanjuan; Li, Xiangxin; Li, Guanglin

    2017-10-28

    To control multiple degrees of freedom (MDoF) upper limb prostheses, pattern recognition (PR) of electromyogram (EMG) signals has been successfully applied. This technique requires amputees to provide sufficient EMG signals to decode their limb movement intentions (LMIs). However, amputees with neuromuscular disorder/high level amputation often cannot provide sufficient EMG control signals, and thus the applicability of the EMG-PR technique is limited especially to this category of amputees. As an alternative approach, electroencephalograph (EEG) signals recorded non-invasively from the brain have been utilized to decode the LMIs of humans. However, most of the existing EEG based limb movement decoding methods primarily focus on identifying limited classes of upper limb movements. In addition, investigation on EEG feature extraction methods for the decoding of multiple classes of LMIs has rarely been considered. Therefore, 32 EEG feature extraction methods (including 12 spectral domain descriptors (SDDs) and 20 time domain descriptors (TDDs)) were used to decode multiple classes of motor imagery patterns associated with different upper limb movements based on 64-channel EEG recordings. From the obtained experimental results, the best individual TDD achieved an accuracy of 67.05 ± 3.12% as against 87.03 ± 2.26% for the best SDD. By applying a linear feature combination technique, an optimal set of combined TDDs recorded an average accuracy of 90.68% while that of the SDDs achieved an accuracy of 99.55% which were significantly higher than those of the individual TDD and SDD at p < 0.05. Our findings suggest that optimal feature set combination would yield a relatively high decoding accuracy that may improve the clinical robustness of MDoF neuroprosthesis. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.

  13. Real-time speech-driven animation of expressive talking faces

    NASA Astrophysics Data System (ADS)

    Liu, Jia; You, Mingyu; Chen, Chun; Song, Mingli

    2011-05-01

    In this paper, we present a real-time facial animation system in which speech drives mouth movements and facial expressions synchronously. Considering five basic emotions, a hierarchical structure with an upper layer of emotion classification is established. Based on the recognized emotion label, the under-layer classification at sub-phonemic level has been modelled on the relationship between acoustic features of frames and audio labels in phonemes. Using certain constraint, the predicted emotion labels of speech are adjusted to gain the facial expression labels which are combined with sub-phonemic labels. The combinations are mapped into facial action units (FAUs), and audio-visual synchronized animation with mouth movements and facial expressions is generated by morphing between FAUs. The experimental results demonstrate that the two-layer structure succeeds in both emotion and sub-phonemic classifications, and the synthesized facial sequences reach a comparative convincing quality.

  14. Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images.

    PubMed

    Liu, Xianming; Cheung, Gene; Wu, Xiaolin; Zhao, Debin

    2017-02-01

    Given the prevalence of joint photographic experts group (JPEG) compressed images, optimizing image reconstruction from the compressed format remains an important problem. Instead of simply reconstructing a pixel block from the centers of indexed discrete cosine transform (DCT) coefficient quantization bins (hard decoding), soft decoding reconstructs a block by selecting appropriate coefficient values within the indexed bins with the help of signal priors. The challenge thus lies in how to define suitable priors and apply them effectively. In this paper, we combine three image priors-Laplacian prior for DCT coefficients, sparsity prior, and graph-signal smoothness prior for image patches-to construct an efficient JPEG soft decoding algorithm. Specifically, we first use the Laplacian prior to compute a minimum mean square error initial solution for each code block. Next, we show that while the sparsity prior can reduce block artifacts, limiting the size of the overcomplete dictionary (to lower computation) would lead to poor recovery of high DCT frequencies. To alleviate this problem, we design a new graph-signal smoothness prior (desired signal has mainly low graph frequencies) based on the left eigenvectors of the random walk graph Laplacian matrix (LERaG). Compared with the previous graph-signal smoothness priors, LERaG has desirable image filtering properties with low computation overhead. We demonstrate how LERaG can facilitate recovery of high DCT frequencies of a piecewise smooth signal via an interpretation of low graph frequency components as relaxed solutions to normalized cut in spectral clustering. Finally, we construct a soft decoding algorithm using the three signal priors with appropriate prior weights. Experimental results show that our proposal outperforms the state-of-the-art soft decoding algorithms in both objective and subjective evaluations noticeably.

  15. Oriented modulation for watermarking in direct binary search halftone images.

    PubMed

    Guo, Jing-Ming; Su, Chang-Cheng; Liu, Yun-Fu; Lee, Hua; Lee, Jiann-Der

    2012-09-01

    In this paper, a halftoning-based watermarking method is presented. This method enables high pixel-depth watermark embedding, while maintaining high image quality. This technique is capable of embedding watermarks with pixel depths up to 3 bits without causing prominent degradation to the image quality. To achieve high image quality, the parallel oriented high-efficient direct binary search (DBS) halftoning is selected to be integrated with the proposed orientation modulation (OM) method. The OM method utilizes different halftone texture orientations to carry different watermark data. In the decoder, the least-mean-square-trained filters are applied for feature extraction from watermarked images in the frequency domain, and the naïve Bayes classifier is used to analyze the extracted features and ultimately to decode the watermark data. Experimental results show that the DBS-based OM encoding method maintains a high degree of image quality and realizes the processing efficiency and robustness to be adapted in printing applications.

  16. Sex differences in the use of delayed semantic context when listening to disrupted speech.

    PubMed

    Liederman, Jacqueline; Fisher, Janet McGraw; Coty, Alexis; Matthews, Geetha; Frye, Richard E; Lincoln, Alexis; Alexander, Rebecca

    2013-02-01

    Female as opposed to male listeners were better able to use a delayed informative cue at the end of a long sentence to report an earlier word which was disrupted by noise. Informative (semantically related) or uninformative (semantically unrelated) word cues were presented 2, 6, or 10 words after a target word whose initial phoneme had been replaced with noise. A total of 84 young adults (45 males) listened to each sentence and then repeated it after its offset. The semantic benefit effect (SBE) was the difference in the accuracy of report of the disrupted target word during informative vs. uninformative sentences. Women had significantly higher SBEs than men even though there were no significant sex differences in terms of number of non-target words reported, the effect of distance between the disrupted target word and the informative cue, or kinds of errors generated. We suggest that the superior ability of women to use delayed semantic information to decode an earlier ambiguous speech signal may be linked to women's tendency to engage the hemispheres more bilaterally than men during word processing. Since the maintenance of semantic context under ambiguous conditions demands more right than left hemispheric resources, this may give women an advantage.

  17. Phoneme Similarity and Confusability

    ERIC Educational Resources Information Center

    Bailey, T.M.; Hahn, U.

    2005-01-01

    Similarity between component speech sounds influences language processing in numerous ways. Explanation and detailed prediction of linguistic performance consequently requires an understanding of these basic similarities. The research reported in this paper contrasts two broad classes of approach to the issue of phoneme similarity-theoretically…

  18. Ultrasound visual feedback in articulation therapy following partial glossectomy.

    PubMed

    Blyth, Katrina M; Mccabe, Patricia; Madill, Catherine; Ballard, Kirrie J

    2016-01-01

    Disordered speech is common following treatment for tongue cancer, however there is insufficient high quality evidence to guide clinical decision making about treatment. This study investigated use of ultrasound tongue imaging as a visual feedback tool to guide tongue placement during articulation therapy with two participants following partial glossectomy. A Phase I multiple baseline design across behaviors was used to investigate therapeutic effect of ultrasound visual feedback during speech rehabilitation. Percent consonants correct and speech intelligibility at sentence level were used to measure acquisition, generalization and maintenance of speech skills for treated and untreated related phonemes, while unrelated phonemes were tested to demonstrate experimental control. Swallowing and oromotor measures were also taken to monitor change. Sentence intelligibility was not a sensitive measure of speech change, but both participants demonstrated significant change in percent consonants correct for treated phonemes. One participant also demonstrated generalization to non-treated phonemes. Control phonemes along with swallow and oromotor measures remained stable throughout the study. This study establishes therapeutic benefit of ultrasound visual feedback in speech rehabilitation following partial glossectomy. Readers will be able to explain why and how tongue cancer surgery impacts on articulation precision. Readers will also be able to explain the acquisition, generalization and maintenance effects in the study. Copyright © 2016. Published by Elsevier Inc.

  19. Computer-based auditory phoneme discrimination training improves speech recognition in noise in experienced adult cochlear implant listeners.

    PubMed

    Schumann, Annette; Serman, Maja; Gefeller, Olaf; Hoppe, Ulrich

    2015-03-01

    Specific computer-based auditory training may be a useful completion in the rehabilitation process for cochlear implant (CI) listeners to achieve sufficient speech intelligibility. This study evaluated the effectiveness of a computerized, phoneme-discrimination training programme. The study employed a pretest-post-test design; participants were randomly assigned to the training or control group. Over a period of three weeks, the training group was instructed to train in phoneme discrimination via computer, twice a week. Sentence recognition in different noise conditions (moderate to difficult) was tested pre- and post-training, and six months after the training was completed. The control group was tested and retested within one month. Twenty-seven adult CI listeners who had been using cochlear implants for more than two years participated in the programme; 15 adults in the training group, 12 adults in the control group. Besides significant improvements for the trained phoneme-identification task, a generalized training effect was noted via significantly improved sentence recognition in moderate noise. No significant changes were noted in the difficult noise conditions. Improved performance was maintained over an extended period. Phoneme-discrimination training improves experienced CI listeners' speech perception in noise. Additional research is needed to optimize auditory training for individual benefit.

  20. Understanding native Russian listeners' errors on an English word recognition test: model-based analysis of phoneme confusion.

    PubMed

    Shi, Lu-Feng; Morozova, Natalia

    2012-08-01

    Word recognition is a basic component in a comprehensive hearing evaluation, but data are lacking for listeners speaking two languages. This study obtained such data for Russian natives in the US and analysed the data using the perceptual assimilation model (PAM) and speech learning model (SLM). Listeners were randomly presented 200 NU-6 words in quiet. Listeners responded verbally and in writing. Performance was scored on words and phonemes (word-initial consonants, vowels, and word-final consonants). Seven normal-hearing, adult monolingual English natives (NM), 16 English-dominant (ED), and 15 Russian-dominant (RD) Russian natives participated. ED and RD listeners differed significantly in their language background. Consistent with the SLM, NM outperformed ED listeners and ED outperformed RD listeners, whether responses were scored on words or phonemes. NM and ED listeners shared similar phoneme error patterns, whereas RD listeners' errors had unique patterns that could be largely understood via the PAM. RD listeners had particular difficulty differentiating vowel contrasts /i-I/, /æ-ε/, and /ɑ-Λ/, word-initial consonant contrasts /p-h/ and /b-f/, and word-final contrasts /f-v/. Both first-language phonology and second-language learning history affect word and phoneme recognition. Current findings may help clinicians differentiate word recognition errors due to language background from hearing pathologies.

  1. The influence of visual speech information on the intelligibility of English consonants produced by non-native speakers.

    PubMed

    Kawase, Saya; Hannah, Beverly; Wang, Yue

    2014-09-01

    This study examines how visual speech information affects native judgments of the intelligibility of speech sounds produced by non-native (L2) speakers. Native Canadian English perceivers as judges perceived three English phonemic contrasts (/b-v, θ-s, l-ɹ/) produced by native Japanese speakers as well as native Canadian English speakers as controls. These stimuli were presented under audio-visual (AV, with speaker voice and face), audio-only (AO), and visual-only (VO) conditions. The results showed that, across conditions, the overall intelligibility of Japanese productions of the native (Japanese)-like phonemes (/b, s, l/) was significantly higher than the non-Japanese phonemes (/v, θ, ɹ/). In terms of visual effects, the more visually salient non-Japanese phonemes /v, θ/ were perceived as significantly more intelligible when presented in the AV compared to the AO condition, indicating enhanced intelligibility when visual speech information is available. However, the non-Japanese phoneme /ɹ/ was perceived as less intelligible in the AV compared to the AO condition. Further analysis revealed that, unlike the native English productions, the Japanese speakers produced /ɹ/ without visible lip-rounding, indicating that non-native speakers' incorrect articulatory configurations may decrease the degree of intelligibility. These results suggest that visual speech information may either positively or negatively affect L2 speech intelligibility.

  2. The serial nature of the masked onset priming effect revisited.

    PubMed

    Mousikou, Petroula; Coltheart, Max

    2014-01-01

    Reading aloud is faster when target words/nonwords are preceded by masked prime words/nonwords that share their first sound with the target (e.g., save-SINK) compared to when primes and targets are unrelated to each other (e.g., farm-SINK). This empirical phenomenon is the masked onset priming effect (MOPE) and is known to be due to serial left-to-right processing of the prime by a sublexical reading mechanism. However, the literature in this domain lacks a critical experiment. It is possible that when primes are real words their orthographic/phonological representations are activated in parallel and holistically during prime presentation, so any phoneme overlap between primes and targets (and not just initial-phoneme overlap) could facilitate target reading aloud. This is the prediction made by the only computational models of reading aloud that are able to simulate the MOPE, namely the DRC1.2.1, CDP+, and CDP++ models. We tested this prediction in the present study and found that initial-phoneme overlap (blip-BEST), but not end-phoneme overlap (flat-BEST), facilitated target reading aloud compared to no phoneme overlap (junk-BEST). These results provide support for a reading mechanism that operates serially and from left to right, yet are inconsistent with all existing computational models of single-word reading aloud.

  3. Lossless compression techniques for maskless lithography data

    NASA Astrophysics Data System (ADS)

    Dai, Vito; Zakhor, Avideh

    2002-07-01

    Future lithography systems must produce more dense chips with smaller feature sizes, while maintaining the throughput of one wafer per sixty seconds per layer achieved by today's optical lithography systems. To achieve this throughput with a direct-write maskless lithography system, using 25 nm pixels for 50 nm feature sizes, requires data rates of about 10 Tb/s. In a previous paper, we presented an architecture which achieves this data rate contingent on consistent 25 to 1 compression of lithography data, and on implementation of a decoder-writer chip with a real-time decompressor fabricated on the same chip as the massively parallel array of lithography writers. In this paper, we examine the compression efficiency of a spectrum of techniques suitable for lithography data, including two industry standards JBIG and JPEG-LS, a wavelet based technique SPIHT, general file compression techniques ZIP and BZIP2, our own 2D-LZ technique, and a simple list-of-rectangles representation RECT. Layouts rasterized both to black-and-white pixels, and to 32 level gray pixels are considered. Based on compression efficiency, JBIG, ZIP, 2D-LZ, and BZIP2 are found to be strong candidates for application to maskless lithography data, in many cases far exceeding the required compression ratio of 25. To demonstrate the feasibility of implementing the decoder-writer chip, we consider the design of a hardware decoder based on ZIP, the simplest of the four candidate techniques. The basic algorithm behind ZIP compression is Lempel-Ziv 1977 (LZ77), and the design parameters of LZ77 decompression are optimized to minimize circuit usage while maintaining compression efficiency.

  4. New Bandwidth Efficient Parallel Concatenated Coding Schemes

    NASA Technical Reports Server (NTRS)

    Denedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.

    1996-01-01

    We propose a new solution to parallel concatenation of trellis codes with multilevel amplitude/phase modulations and a suitable iterative decoding structure. Examples are given for throughputs 2 bits/sec/Hz with 8PSK and 16QAM signal constellations.

  5. Complementary-encoding holographic associative memory using a photorefractive crystal

    NASA Astrophysics Data System (ADS)

    Yuan, ShiFu; Wu, Minxian; Yan, Yingbai; Jin, Guofan

    1996-06-01

    We present a holographic implementation of accurate associative memory with only one holographic memory system. In the implementation, the stored and test images are coded by using complementary-encoding method. The recalled complete image is also a coded image that can be decoded with a decoding mask to get an original image or its complement image. The experiment shows that the complementary encoding can efficiently increase the addressing accuracy in a simple way. Instead of the above complementary-encoding method, a scheme that uses complementary area-encoding method is also proposed for the holographic implementation of gray-level image associative memory with accurate addressing.

  6. THE PHONEMES OF OKINAWAN.

    ERIC Educational Resources Information Center

    LUELSDORFF, PHILIP A.

    THE LANGUAGES OF OKINAWAN MAY BE DIVIDED INTO THREE MUTUALLY UNINTELLIGIBLE REGIONAL DIALECTS, CORRESPONDING GEOGRAPHICALLY TO THE THREE GROUPS OF ISLANDS OF THE RYUUKYUU ARCHIPELAGO. AS REPRESENTATIVE MODEL OF THE REGIONAL DIALECTS, AGENA-GUCHI IS ANALYZED WITH RESPECT TO PHONEMIC SYSTEMS, OKINAWAN MORPHOPHONEMICS, AND OKINAWAN SYLLABLE STRUCTURE…

  7. The Neural Dynamics of Attentional Selection in Natural Scenes.

    PubMed

    Kaiser, Daniel; Oosterhof, Nikolaas N; Peelen, Marius V

    2016-10-12

    The human visual system can only represent a small subset of the many objects present in cluttered scenes at any given time, such that objects compete for representation. Despite these processing limitations, the detection of object categories in cluttered natural scenes is remarkably rapid. How does the brain efficiently select goal-relevant objects from cluttered scenes? In the present study, we used multivariate decoding of magneto-encephalography (MEG) data to track the neural representation of within-scene objects as a function of top-down attentional set. Participants detected categorical targets (cars or people) in natural scenes. The presence of these categories within a scene was decoded from MEG sensor patterns by training linear classifiers on differentiating cars and people in isolation and testing these classifiers on scenes containing one of the two categories. The presence of a specific category in a scene could be reliably decoded from MEG response patterns as early as 160 ms, despite substantial scene clutter and variation in the visual appearance of each category. Strikingly, we find that these early categorical representations fully depend on the match between visual input and top-down attentional set: only objects that matched the current attentional set were processed to the category level within the first 200 ms after scene onset. A sensor-space searchlight analysis revealed that this early attention bias was localized to lateral occipitotemporal cortex, reflecting top-down modulation of visual processing. These results show that attention quickly resolves competition between objects in cluttered natural scenes, allowing for the rapid neural representation of goal-relevant objects. Efficient attentional selection is crucial in many everyday situations. For example, when driving a car, we need to quickly detect obstacles, such as pedestrians crossing the street, while ignoring irrelevant objects. How can humans efficiently perform such tasks, given the multitude of objects contained in real-world scenes? Here we used multivariate decoding of magnetoencephalogaphy data to characterize the neural underpinnings of attentional selection in natural scenes with high temporal precision. We show that brain activity quickly tracks the presence of objects in scenes, but crucially only for those objects that were immediately relevant for the participant. These results provide evidence for fast and efficient attentional selection that mediates the rapid detection of goal-relevant objects in real-world environments. Copyright © 2016 the authors 0270-6474/16/3610522-07$15.00/0.

  8. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    2000-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  9. An Interactive Concatenated Turbo Coding System

    NASA Technical Reports Server (NTRS)

    Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  10. Parietotemporal Stimulation Affects Acquisition of Novel Grapheme-Phoneme Mappings in Adult Readers

    PubMed Central

    Younger, Jessica W.; Booth, James R.

    2018-01-01

    Neuroimaging work from developmental and reading intervention research has suggested a cause of reading failure may be lack of engagement of parietotemporal cortex during initial acquisition of grapheme-phoneme (letter-sound) mappings. Parietotemporal activation increases following grapheme-phoneme learning and successful reading intervention. Further, stimulation of parietotemporal cortex improves reading skill in lower ability adults. However, it is unclear whether these improvements following stimulation are due to enhanced grapheme-phoneme mapping abilities. To test this hypothesis, we used transcranial direct current stimulation (tDCS) to manipulate parietotemporal function in adult readers as they learned a novel artificial orthography with new grapheme-phoneme mappings. Participants received real or sham stimulation to the left inferior parietal lobe (L IPL) for 20 min before training. They received explicit training over the course of 3 days on 10 novel words each day. Learning of the artificial orthography was assessed at a pre-training baseline session, the end of each of the three training sessions, an immediate post-training session and a delayed post-training session about 4 weeks after training. Stimulation interacted with baseline reading skill to affect learning of trained words and transfer to untrained words. Lower skill readers showed better acquisition, whereas higher skill readers showed worse acquisition, when training was paired with real stimulation, as compared to readers who received sham stimulation. However, readers of all skill levels showed better maintenance of trained material following parietotemporal stimulation, indicating a differential effect of stimulation on initial learning and consolidation. Overall, these results indicate that parietotemporal stimulation can enhance learning of new grapheme-phoneme relationships in readers with lower reading skill. Yet, while parietotemporal function is critical to new learning, its role in continued reading improvement likely changes as readers progress in skill. PMID:29628882

  11. A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia.

    PubMed

    De Vos, Astrid; Vanvooren, Sophie; Vanderauwera, Jolijn; Ghesquière, Pol; Wouters, Jan

    2017-08-01

    Recent evidence suggests that a fundamental deficit in the synchronization of neural oscillations to temporal information in speech may underlie phonological processing problems in dyslexia. Since previous studies were performed cross-sectionally in school-aged children or adults, developmental aspects of neural auditory processing in relation to reading acquisition and dyslexia remain to be investigated. The present longitudinal study followed 68 children during development from pre-reader (5 years old) to beginning reader (7 years old) and more advanced reader (9 years old). Thirty-six children had a family risk for dyslexia and 14 children eventually developed dyslexia. EEG recordings of auditory steady-state responses to 4 and 20 Hz modulations, corresponding to syllable and phoneme rates, were collected at each point in time. Our results demonstrate an increase in neural synchronization to phoneme-rate modulations around the onset of reading acquisition. This effect was negatively correlated with later reading and phonological skills, indicating that children who exhibit the largest increase in neural synchronization to phoneme rates, develop the poorest reading and phonological skills. Accordingly, neural synchronization to phoneme-rate modulations was found to be significantly higher in beginning and more advanced readers with dyslexia. We found no developmental effects regarding neural synchronization to syllable rates, nor any effects of a family risk for dyslexia. Altogether, our findings suggest that the onset of reading instruction coincides with an increase in neural responsiveness to phoneme-rate modulations, and that the extent of this increase is related to (the outcome of) reading development. Hereby, dyslexic children persistently demonstrate atypically high neural synchronization to phoneme rates from the beginning of reading acquisition onwards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Improving Preservice Teachers' Phonemic Awareness, Morphological Awareness and Orthographic Knowledge

    ERIC Educational Resources Information Center

    McNeill, Brigid C.

    2018-01-01

    Few studies have examined the effectiveness of methods to develop preservice teachers' phonemic, morphological and orthographic awareness for spelling instruction. Preservice teachers (n = 86) participated in 10 hours of metalinguistic coursework. The coursework focused on: phonological awareness, orthographic awareness, morphological awareness…

  13. Verbal task demands are key in explaining the relationship between paired-associate learning and reading ability.

    PubMed

    Clayton, Francina J; Sears, Claire; Davis, Alice; Hulme, Charles

    2018-07-01

    Paired-associate learning (PAL) tasks measure the ability to form a novel association between a stimulus and a response. Performance on such tasks is strongly associated with reading ability, and there is increasing evidence that verbal task demands may be critical in explaining this relationship. The current study investigated the relationships between different forms of PAL and reading ability. A total of 97 children aged 8-10 years completed a battery of reading assessments and six different PAL tasks (phoneme-phoneme, visual-phoneme, nonverbal-nonverbal, visual-nonverbal, nonword-nonword, and visual-nonword) involving both familiar phonemes and unfamiliar nonwords. A latent variable path model showed that PAL ability is captured by two correlated latent variables: auditory-articulatory and visual-articulatory. The auditory-articulatory latent variable was the stronger predictor of reading ability, providing support for a verbal account of the PAL-reading relationship. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Extrinsic cognitive load impairs low-level speech perception.

    PubMed

    Mattys, Sven L; Barden, Katharine; Samuel, Arthur G

    2014-06-01

    Recent research has suggested that the extrinsic cognitive load generated by performing a nonlinguistic visual task while perceiving speech increases listeners' reliance on lexical knowledge and decreases their capacity to perceive phonetic detail. In the present study, we asked whether this effect is accounted for better at a lexical or a sublexical level. The former would imply that cognitive load directly affects lexical activation but not perceptual sensitivity; the latter would imply that increased lexical reliance under cognitive load is only a secondary consequence of imprecise or incomplete phonetic encoding. Using the phoneme restoration paradigm, we showed that perceptual sensitivity decreases (i.e., phoneme restoration increases) almost linearly with the effort involved in the concurrent visual task. However, cognitive load had only a minimal effect on the contribution of lexical information to phoneme restoration. We concluded that the locus of extrinsic cognitive load on the speech system is perceptual rather than lexical. Mechanisms by which cognitive load increases tolerance to acoustic imprecision and broadens phonemic categories were discussed.

  15. The relationship between maternal education and the neural substrates of phoneme perception in children: Interactions between socioeconomic status and proficiency level.

    PubMed

    Conant, Lisa L; Liebenthal, Einat; Desai, Anjali; Binder, Jeffrey R

    2017-08-01

    Relationships between maternal education (ME) and both behavioral performances and brain activation during the discrimination of phonemic and nonphonemic sounds were examined using fMRI in children with different levels of phoneme categorization proficiency (CP). Significant relationships were found between ME and intellectual functioning and vocabulary, with a trend for phonological awareness. A significant interaction between CP and ME was seen for nonverbal reasoning abilities. In addition, fMRI analyses revealed a significant interaction between CP and ME for phonemic discrimination in left prefrontal cortex. Thus, ME was associated with differential patterns of both neuropsychological performance and brain activation contingent on the level of CP. These results highlight the importance of examining SES effects at different proficiency levels. The pattern of results may suggest the presence of neurobiological differences in the children with low CP that affect the nature of relationships with ME. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Test Review: Torgesen, J. K., Wagner, R. K., and Rashotte, C. A. (2012), "Test of Word Reading Efficiency-Second Edition" (TOWRE-2). Austin, TX: Pro-Ed

    ERIC Educational Resources Information Center

    Tarar, Jessica M.; Meisinger, Elizabeth B.; Dickens, Rachel H.

    2015-01-01

    The TOWRE-2 was developed to provide an efficient measure of two essential wordlevel reading skills, sight word reading and phonetic decoding skills. The Sight Word Efficiency (SWE) subtest assesses the number of real words that an individual can read from a vertical list within 45 s. This subtest is designed to measure the size of an individual's…

  17. Evaluation of architectures for an ASP MPEG-4 decoder using a system-level design methodology

    NASA Astrophysics Data System (ADS)

    Garcia, Luz; Reyes, Victor; Barreto, Dacil; Marrero, Gustavo; Bautista, Tomas; Nunez, Antonio

    2005-06-01

    Trends in multimedia consumer electronics, digital video and audio, aim to reach users through low-cost mobile devices connected to data broadcasting networks with limited bandwidth. An emergent broadcasting network is the digital audio broadcasting network (DAB) which provides CD quality audio transmission together with robustness and efficiency techniques to allow good quality reception in motion conditions. This paper focuses on the system-level evaluation of different architectural options to allow low bandwidth digital video reception over DAB, based on video compression techniques. Profiling and design space exploration techniques are applied over the ASP MPEG-4 decoder in order to find out the best HW/SW partition given the application and platform constraints. An innovative SystemC-based system-level design tool, called CASSE, is being used for modelling, exploration and evaluation of different ASP MPEG-4 decoder HW/SW partitions. System-level trade offs and quantitative data derived from this analysis are also presented in this work.

  18. Hardware Implementation of a MIMO Decoder Using Matrix Factorization Based Channel Estimation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Numan, Mostafa Wasiuddin; Misran, Norbahiah; Ali, Mohd Alauddin Mohd; Singh, Mandeep

    2011-05-01

    This paper presents an efficient hardware realization of multiple-input multiple-output (MIMO) wireless communication decoder that utilizes the available resources by adopting the technique of parallelism. The hardware is designed and implemented on Xilinx Virtex™-4 XC4VLX60 field programmable gate arrays (FPGA) device in a modular approach which simplifies and eases hardware update, and facilitates testing of the various modules independently. The decoder involves a proficient channel estimation module that employs matrix factorization on least squares (LS) estimation to reduce a full rank matrix into a simpler form in order to eliminate matrix inversion. This results in performance improvement and complexity reduction of the MIMO system. Performance evaluation of the proposed method is validated through MATLAB simulations which indicate 2 dB improvement in terms of SNR compared to LS estimation. Moreover complexity comparison is performed in terms of mathematical operations, which shows that the proposed approach appreciably outperforms LS estimation at a lower complexity and represents a good solution for channel estimation technique.

  19. Efficient Embedded Decoding of Neural Network Language Models in a Machine Translation System.

    PubMed

    Zamora-Martinez, Francisco; Castro-Bleda, Maria Jose

    2018-02-22

    Neural Network Language Models (NNLMs) are a successful approach to Natural Language Processing tasks, such as Machine Translation. We introduce in this work a Statistical Machine Translation (SMT) system which fully integrates NNLMs in the decoding stage, breaking the traditional approach based on [Formula: see text]-best list rescoring. The neural net models (both language models (LMs) and translation models) are fully coupled in the decoding stage, allowing to more strongly influence the translation quality. Computational issues were solved by using a novel idea based on memorization and smoothing of the softmax constants to avoid their computation, which introduces a trade-off between LM quality and computational cost. These ideas were studied in a machine translation task with different combinations of neural networks used both as translation models and as target LMs, comparing phrase-based and [Formula: see text]-gram-based systems, showing that the integrated approach seems more promising for [Formula: see text]-gram-based systems, even with nonfull-quality NNLMs.

  20. Rate-compatible protograph LDPC code families with linear minimum distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds, and families of such codes of different rates can be decoded efficiently using a common decoding architecture.

  1. Synchronization Control for a Class of Discrete-Time Dynamical Networks With Packet Dropouts: A Coding-Decoding-Based Approach.

    PubMed

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2017-09-06

    The synchronization control problem is investigated for a class of discrete-time dynamical networks with packet dropouts via a coding-decoding-based approach. The data is transmitted through digital communication channels and only the sequence of finite coded signals is sent to the controller. A series of mutually independent Bernoulli distributed random variables is utilized to model the packet dropout phenomenon occurring in the transmissions of coded signals. The purpose of the addressed synchronization control problem is to design a suitable coding-decoding procedure for each node, based on which an efficient decoder-based control protocol is developed to guarantee that the closed-loop network achieves the desired synchronization performance. By applying a modified uniform quantization approach and the Kronecker product technique, criteria for ensuring the detectability of the dynamical network are established by means of the size of the coding alphabet, the coding period and the probability information of packet dropouts. Subsequently, by resorting to the input-to-state stability theory, the desired controller parameter is obtained in terms of the solutions to a certain set of inequality constraints which can be solved effectively via available software packages. Finally, two simulation examples are provided to demonstrate the effectiveness of the obtained results.

  2. Hidden Markov Model and Support Vector Machine based decoding of finger movements using Electrocorticography

    PubMed Central

    Wissel, Tobias; Pfeiffer, Tim; Frysch, Robert; Knight, Robert T.; Chang, Edward F.; Hinrichs, Hermann; Rieger, Jochem W.; Rose, Georg

    2013-01-01

    Objective Support Vector Machines (SVM) have developed into a gold standard for accurate classification in Brain-Computer-Interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of Hidden Markov Models (HMM)for online BCIs and discuss strategies to improve their performance. Approach We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from the Electrocorticograms of four subjects doing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online brain-computer interfaces. PMID:24045504

  3. Research on lossless compression of true color RGB image with low time and space complexity

    NASA Astrophysics Data System (ADS)

    Pan, ShuLin; Xie, ChengJun; Xu, Lin

    2008-12-01

    Eliminating correlated redundancy of space and energy by using a DWT lifting scheme and reducing the complexity of the image by using an algebraic transform among the RGB components. An improved Rice Coding algorithm, in which presents an enumerating DWT lifting scheme that fits any size images by image renormalization has been proposed in this paper. This algorithm has a coding and decoding process without backtracking for dealing with the pixels of an image. It support LOCO-I and it can also be applied to Coder / Decoder. Simulation analysis indicates that the proposed method can achieve a high image compression. Compare with Lossless-JPG, PNG(Microsoft), PNG(Rene), PNG(Photoshop), PNG(Anix PicViewer), PNG(ACDSee), PNG(Ulead photo Explorer), JPEG2000, PNG(KoDa Inc), SPIHT and JPEG-LS, the lossless image compression ratio improved 45%, 29%, 25%, 21%, 19%, 17%, 16%, 15%, 11%, 10.5%, 10% separately with 24 pieces of RGB image provided by KoDa Inc. Accessing the main memory in Pentium IV,CPU2.20GHZ and 256MRAM, the coding speed of the proposed coder can be increased about 21 times than the SPIHT and the efficiency of the performance can be increased 166% or so, the decoder's coding speed can be increased about 17 times than the SPIHT and the efficiency of the performance can be increased 128% or so.

  4. Verbal and Nonverbal Predictors of Spelling Performance

    ERIC Educational Resources Information Center

    Sadoski, Mark; Willson, Victor L.; Holcomb, Angelia; Boulware-Gooden, Regina

    2005-01-01

    Verbal and nonverbal predictors of spelling performance in Grades 1-12 were investigated using the national norming data from a standardized spelling test. Verbal variables included number of letters, phonemes, syllables, digraphs, blends, silent markers, r-controlled vowels, and the proportion of grapheme-phoneme correspondence. The nonverbal…

  5. The Categorical Perception Deficit in Dyslexia: A Meta-Analysis

    ERIC Educational Resources Information Center

    Noordenbos, Mark W.; Serniclaes, Willy

    2015-01-01

    Speech perception in dyslexia is characterized by a categorical perception (CP) deficit, demonstrated by weaker discrimination of acoustic differences between phonemic categories in conjunction with better discrimination of acoustic differences within phonemic categories. We performed a meta-analysis of studies that examined the reliability of the…

  6. An Introduction to Descriptive Linguistics. Revised Edition.

    ERIC Educational Resources Information Center

    Gleason, H.A., Jr.

    Beginning chapters of this volume define language and describe the sound, stress, and intonation systems of English. The body of the text explores extensively morphology, phonetics, phonemics, and the process of communication. Individual chapters detail such topics as morphemes, syntactic devices, grammatical systems, phonemic problems in language…

  7. Verbal and Non-verbal Fluency in Adults with Developmental Dyslexia: Phonological Processing or Executive Control Problems?

    PubMed

    Smith-Spark, James H; Henry, Lucy A; Messer, David J; Zięcik, Adam P

    2017-08-01

    The executive function of fluency describes the ability to generate items according to specific rules. Production of words beginning with a certain letter (phonemic fluency) is impaired in dyslexia, while generation of words belonging to a certain semantic category (semantic fluency) is typically unimpaired. However, in dyslexia, verbal fluency has generally been studied only in terms of overall words produced. Furthermore, performance of adults with dyslexia on non-verbal design fluency tasks has not been explored but would indicate whether deficits could be explained by executive control, rather than phonological processing, difficulties. Phonemic, semantic and design fluency tasks were presented to adults with dyslexia and without dyslexia, using fine-grained performance measures and controlling for IQ. Hierarchical regressions indicated that dyslexia predicted lower phonemic fluency, but not semantic or design fluency. At the fine-grained level, dyslexia predicted a smaller number of switches between subcategories on phonemic fluency, while dyslexia did not predict the size of phonemically related clusters of items. Overall, the results suggested that phonological processing problems were at the root of dyslexia-related fluency deficits; however, executive control difficulties could not be completely ruled out as an alternative explanation. Developments in research methodology, equating executive demands across fluency tasks, may resolve this issue. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. What a Nonnative Speaker of English Needs to Learn through Listening.

    ERIC Educational Resources Information Center

    Bohlken, Robert; Macias, Lori

    Teaching nonnative speakers of English to listen for the discriminating nuances of the language is an important but neglected aspect of American English language training. A discriminating listening process follows a sequence of distinguishing phonemes, supra segmental phonemes, morphemes, and syntax. Certain phonetic differences can be noted…

  9. The Downside of Greater Lexical Influences: Selectively Poorer Speech Perception in Noise

    ERIC Educational Resources Information Center

    Lam, Boji P. W.; Xie, Zilong; Tessmer, Rachel; Chandrasekaran, Bharath

    2017-01-01

    Purpose: Although lexical information influences phoneme perception, the extent to which reliance on lexical information enhances speech processing in challenging listening environments is unclear. We examined the extent to which individual differences in lexical influences on phonemic processing impact speech processing in maskers containing…

  10. Changes in Articulator Movement Variability during Phonemic Development: A Longitudinal Study

    ERIC Educational Resources Information Center

    Grigos, Maria I.

    2009-01-01

    Purpose: The present study explored articulator movement variability during voicing contrast acquisition. The purpose was to examine whether oral articulator movement trajectories associated with the production of voiced/voiceless bilabial phonemes in children became less variable over time. Method: Jaw, lower lip, and upper lip movements were…

  11. First-Year Teacher Knowledge of Phonemic Awareness and Its Instruction

    ERIC Educational Resources Information Center

    Cheesman, Elaine A.; McGuire, Joan M.; Shankweiler, Donald; Coyne, Michael

    2009-01-01

    Converging evidence has identified phonemic awareness (PA) as one of five essential components of beginning reading instruction. Evidence suggests that many teachers do not have the recommended knowledge or skills sufficient to provide effective PA instruction within the context of scientifically validated reading education. This study examines…

  12. Evolution of a Rapidly Learned Representation for Speech.

    ERIC Educational Resources Information Center

    Nakisa, Ramin Charles; Plunkett, Kim

    1998-01-01

    Describes a connectionist model accounting for newborn infants' ability to finely discriminate almost all human speech contrasts and the fact that their phonemic category boundaries are identical, even for phonemes outside their target language. The model posits an innately guided learning in which an artificial neural network is stored in a…

  13. Contemporary Issues in Phoneme Production by Hearing-Impaired Persons: Physiological and Acoustic Aspects.

    ERIC Educational Resources Information Center

    McGarr, Nancy S.; Whitehead, Robert

    1992-01-01

    This paper on physiologic correlates of speech production in children and youth with hearing impairments focuses specifically on the production of phonemes and includes data on respiration for speech production, phonation, speech aerodynamics, articulation, and acoustic analyses of speech by hearing-impaired persons. (Author/DB)

  14. Preschool Teacher Knowledge and Skills: Phonemic Awareness and Instruction

    ERIC Educational Resources Information Center

    Billow, Cecilia

    2017-01-01

    The extent of phonemic awareness knowledge and skills early childhood teachers bring to beginning literacy instruction lays the foundation upon which reading success is built for preschool children in their care. A significant number of preschool children receive their first literacy instruction in community-based or Head Start preschools.…

  15. Does Vowel Inventory Density Affect Vowel-to-Vowel Coarticulation?

    ERIC Educational Resources Information Center

    Mok, Peggy P. K.

    2013-01-01

    This study tests the output constraints hypothesis that languages with a crowded phonemic vowel space would allow less vowel-to-vowel coarticulation than languages with a sparser vowel space to avoid perceptual confusion. Mandarin has fewer vowel phonemes than Cantonese, but their allophonic vowel spaces are similarly crowded. The hypothesis…

  16. A Phonological Exploration of Oral Reading Errors.

    ERIC Educational Resources Information Center

    Moscicki, Eve K.; Tallal, Paula

    1981-01-01

    Presents study exploring oral reading errors of normally developing readers to determine any developmental differences in learning phoneme-grapheme units; to discover if the grapheme representations of some phonemes are more difficult to read than others; and to replicate results reported by Fowler, et. al. Findings show most oral reading errors…

  17. Phonological Treatment Efficacy and Developmental Norms.

    ERIC Educational Resources Information Center

    Gierut, Judith A.; And Others

    1996-01-01

    Two studies, one within subjects and the other across subjects, evaluated the efficacy of teaching sounds in developmental sequence to nine young children (ages three to five). Treatment of later-acquired phonemes led to systemwide changes in untreated sound classes, whereas treatment of early-acquired phonemes did not. Findings suggest…

  18. A high throughput architecture for a low complexity soft-output demapping algorithm

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  19. Memory for pictures and words as a function of level of processing: Depth or dual coding?

    PubMed

    D'Agostino, P R; O'Neill, B J; Paivio, A

    1977-03-01

    The experiment was designed to test differential predictions derived from dual-coding and depth-of-processing hypotheses. Subjects under incidental memory instructions free recalled a list of 36 test events, each presented twice. Within the list, an equal number of events were assigned to structural, phonemic, and semantic processing conditions. Separate groups of subjects were tested with a list of pictures, concrete words, or abstract words. Results indicated that retention of concrete words increased as a direct function of the processing-task variable (structural < phonemic

  20. Computer game as a tool for training the identification of phonemic length.

    PubMed

    Pennala, Riitta; Richardson, Ulla; Ylinen, Sari; Lyytinen, Heikki; Martin, Maisa

    2014-12-01

    Computer-assisted training of Finnish phonemic length was conducted with 7-year-old Russian-speaking second-language learners of Finnish. Phonemic length plays a different role in these two languages. The training included game activities with two- and three-syllable word and pseudo-word minimal pairs with prototypical vowel durations. The lowest accuracy scores were recorded for two-syllable words. Accuracy scores were higher for the minimal pairs with larger rather than smaller differences in duration. Accuracy scores were lower for long duration than for short duration. The ability to identify quantity degree was generalized to stimuli used in the identification test in two of the children. Ideas for improving the game are introduced.

  1. Cortical oscillations related to processing congruent and incongruent grapheme-phoneme pairs.

    PubMed

    Herdman, Anthony T; Fujioka, Takako; Chau, Wilkin; Ross, Bernhard; Pantev, Christo; Picton, Terence W

    2006-05-15

    In this study, we investigated changes in cortical oscillations following congruent and incongruent grapheme-phoneme stimuli. Hiragana graphemes and phonemes were simultaneously presented as congruent or incongruent audiovisual stimuli to native Japanese-speaking participants. The discriminative reaction time was 57 ms shorter for congruent than incongruent stimuli. Analysis of MEG responses using synthetic aperture magnetometry (SAM) revealed that congruent stimuli evoked larger 2-10 Hz activity in the left auditory cortex within the first 250 ms after stimulus onset, and smaller 2-16 Hz activity in bilateral visual cortices between 250 and 500 ms. These results indicate that congruent visual input can modify cortical activity in the left auditory cortex.

  2. Performance sustaining intracortical neural prostheses

    NASA Astrophysics Data System (ADS)

    Nuyujukian, Paul; Kao, Jonathan C.; Fan, Joline M.; Stavisky, Sergey D.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-12-01

    Objective. Neural prostheses, or brain-machine interfaces, aim to restore efficient communication and movement ability to those suffering from paralysis. A major challenge these systems face is robust performance, particularly with aging signal sources. The aim in this study was to develop a neural prosthesis that could sustain high performance in spite of signal instability while still minimizing retraining time. Approach. We trained two rhesus macaques implanted with intracortical microelectrode arrays 1-4 years prior to this study to acquire targets with a neurally-controlled cursor. We measured their performance via achieved bitrate (bits per second, bps). This task was repeated over contiguous days to evaluate the sustained performance across time. Main results. We found that in the monkey with a younger (i.e., two year old) implant and better signal quality, a fixed decoder could sustain performance for a month at a rate of 4 bps, the highest achieved communication rate reported to date. This fixed decoder was evaluated across 22 months and experienced a performance decline at a rate of 0.24 bps yr-1. In the monkey with the older (i.e., 3.5 year old) implant and poorer signal quality, a fixed decoder could not sustain performance for more than a few days. Nevertheless, performance in this monkey was maintained for two weeks without requiring additional online retraining time by utilizing prior days’ experimental data. Upon analysis of the changes in channel tuning, we found that this stability appeared partially attributable to the cancelling-out of neural tuning fluctuations when projected to two-dimensional cursor movements. Significance. The findings in this study (1) document the highest-performing communication neural prosthesis in monkeys, (2) confirm and extend prior reports of the stability of fixed decoders, and (3) demonstrate a protocol for system stability under conditions where fixed decoders would otherwise fail. These improvements to decoder stability are important for minimizing training time and should make neural prostheses more practical to use.

  3. The impact of command signal power distribution, processing delays, and speed scaling on neurally-controlled devices.

    PubMed

    Marathe, A R; Taylor, D M

    2015-08-01

    Decoding algorithms for brain-machine interfacing (BMI) are typically only optimized to reduce the magnitude of decoding errors. Our goal was to systematically quantify how four characteristics of BMI command signals impact closed-loop performance: (1) error magnitude, (2) distribution of different frequency components in the decoding errors, (3) processing delays, and (4) command gain. To systematically evaluate these different command features and their interactions, we used a closed-loop BMI simulator where human subjects used their own wrist movements to command the motion of a cursor to targets on a computer screen. Random noise with three different power distributions and four different relative magnitudes was added to the ongoing cursor motion in real time to simulate imperfect decoding. These error characteristics were tested with four different visual feedback delays and two velocity gains. Participants had significantly more trouble correcting for errors with a larger proportion of low-frequency, slow-time-varying components than they did with jittery, higher-frequency errors, even when the error magnitudes were equivalent. When errors were present, a movement delay often increased the time needed to complete the movement by an order of magnitude more than the delay itself. Scaling down the overall speed of the velocity command can actually speed up target acquisition time when low-frequency errors and delays are present. This study is the first to systematically evaluate how the combination of these four key command signal features (including the relatively-unexplored error power distribution) and their interactions impact closed-loop performance independent of any specific decoding method. The equations we derive relating closed-loop movement performance to these command characteristics can provide guidance on how best to balance these different factors when designing BMI systems. The equations reported here also provide an efficient way to compare a diverse range of decoding options offline.

  4. The impact of command signal power distribution, processing delays, and speed scaling on neurally-controlled devices

    NASA Astrophysics Data System (ADS)

    Marathe, A. R.; Taylor, D. M.

    2015-08-01

    Objective. Decoding algorithms for brain-machine interfacing (BMI) are typically only optimized to reduce the magnitude of decoding errors. Our goal was to systematically quantify how four characteristics of BMI command signals impact closed-loop performance: (1) error magnitude, (2) distribution of different frequency components in the decoding errors, (3) processing delays, and (4) command gain. Approach. To systematically evaluate these different command features and their interactions, we used a closed-loop BMI simulator where human subjects used their own wrist movements to command the motion of a cursor to targets on a computer screen. Random noise with three different power distributions and four different relative magnitudes was added to the ongoing cursor motion in real time to simulate imperfect decoding. These error characteristics were tested with four different visual feedback delays and two velocity gains. Main results. Participants had significantly more trouble correcting for errors with a larger proportion of low-frequency, slow-time-varying components than they did with jittery, higher-frequency errors, even when the error magnitudes were equivalent. When errors were present, a movement delay often increased the time needed to complete the movement by an order of magnitude more than the delay itself. Scaling down the overall speed of the velocity command can actually speed up target acquisition time when low-frequency errors and delays are present. Significance. This study is the first to systematically evaluate how the combination of these four key command signal features (including the relatively-unexplored error power distribution) and their interactions impact closed-loop performance independent of any specific decoding method. The equations we derive relating closed-loop movement performance to these command characteristics can provide guidance on how best to balance these different factors when designing BMI systems. The equations reported here also provide an efficient way to compare a diverse range of decoding options offline.

  5. Enhanced decoding for the Galileo low-gain antenna mission: Viterbi redecoding with four decoding stages

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1995-01-01

    The Galileo low-gain antenna mission will be supported by a coding system that uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes of four different redundancies. Decoding for this code is designed to proceed in four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In each successive stage, the Reed-Solomon decoder only tries to decode the highest redundancy codewords not yet decoded in previous stages, and the Viterbi decoder redecodes its data utilizing the known symbols from previously decoded Reed-Solomon codewords. A previous article analyzed a two-stage decoding option that was not selected by Galileo. The present article analyzes the four-stage decoding scheme and derives the near-optimum set of redundancies selected for use by Galileo. The performance improvements relative to one- and two-stage decoding systems are evaluated.

  6. Energy-Efficient Next-Generation Passive Optical Networks Based on Sleep Mode and Heuristic Optimization

    NASA Astrophysics Data System (ADS)

    Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik

    2015-05-01

    In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.

  7. Discrimination of Phonemic Vowel Length by Japanese Infants

    ERIC Educational Resources Information Center

    Sato, Yutaka; Sogabe, Yuko; Mazuka, Reiko

    2010-01-01

    Japanese has a vowel duration contrast as one component of its language-specific phonemic repertory to distinguish word meanings. It is not clear, however, how a sensitivity to vowel duration can develop in a linguistic context. In the present study, using the visual habituation-dishabituation method, the authors evaluated infants' abilities to…

  8. The Tonal Function of a Task-Irrelevant Chord Modulates Speed of Visual Processing

    ERIC Educational Resources Information Center

    Escoffier, N.; Tillmann, B.

    2008-01-01

    Harmonic priming studies have provided evidence that musical expectations influence sung phoneme monitoring, with facilitated processing for phonemes sung on tonally related (expected) chords in comparison to less-related (less-expected) chords [Bigand, Tillmann, Poulin, D'Adamo, and Madurell (2001). "The effect of harmonic context on phoneme…

  9. The Status of the Concept of "Phoneme" in Psycholinguistics

    ERIC Educational Resources Information Center

    Uppstad, Per Henning; Tonnessen, Finn Egil

    2010-01-01

    The notion of the phoneme counts as a break-through of modern theoretical linguistics in the early twentieth century. It paved the way for descriptions of distinctive features at different levels in linguistics. Although it has since then had a turbulent existence across altering theoretical positions, it remains a powerful concept of a…

  10. Error Variability and the Differentiation between Apraxia of Speech and Aphasia with Phonemic Paraphasia

    ERIC Educational Resources Information Center

    Haley, Katarina L.; Jacks, Adam; Cunningham, Kevin T.

    2013-01-01

    Purpose: This study was conducted to evaluate the clinical utility of error variability for differentiating between apraxia of speech (AOS) and aphasia with phonemic paraphasia. Method: Participants were 32 individuals with aphasia after left cerebral injury. Diagnostic groups were formed on the basis of operationalized measures of recognized…

  11. Perception of Vowel Length by Japanese- and English-Learning Infants

    ERIC Educational Resources Information Center

    Mugitani, Ryoko; Pons, Ferran; Fais, Laurel; Dietrich, Christiane; Werker, Janet F.; Amano, Shigeaki

    2009-01-01

    This study investigated vowel length discrimination in infants from 2 language backgrounds, Japanese and English, in which vowel length is either phonemic or nonphonemic. Experiment 1 revealed that English 18-month-olds discriminate short and long vowels although vowel length is not phonemically contrastive in English. Experiments 2 and 3 revealed…

  12. Error Biases in Inner and Overt Speech: Evidence from Tongue Twisters

    ERIC Educational Resources Information Center

    Corley, Martin; Brocklehurst, Paul H.; Moat, H. Susannah

    2011-01-01

    To compare the properties of inner and overt speech, Oppenheim and Dell (2008) counted participants' self-reported speech errors when reciting tongue twisters either overtly or silently and found a bias toward substituting phonemes that resulted in words in both conditions, but a bias toward substituting similar phonemes only when speech was…

  13. Neural Correlates in the Processing of Phoneme-Level Complexity in Vowel Production

    ERIC Educational Resources Information Center

    Park, Haeil; Iverson, Gregory K.; Park, Hae-Jeong

    2011-01-01

    We investigated how articulatory complexity at the phoneme level is manifested neurobiologically in an overt production task. fMRI images were acquired from young Korean-speaking adults as they pronounced bisyllabic pseudowords in which we manipulated phonological complexity defined in terms of vowel duration and instability (viz., COMPLEX:…

  14. Teaching Phonemic Awareness through Children's Literature and Experiences

    ERIC Educational Resources Information Center

    Jurenka, Nancy

    2006-01-01

    Teaching phonemic awareness can be boring and repetitive in the hands of a teacher who wishes to just use a workbook approach. This delightful book packs loads of fun into 75 lesson plans, providing educators with myriad creative strategies for integrating word study with children's picture books. Each lesson includes a read-aloud book…

  15. Training Phoneme Blending Skills in Children with Down Syndrome

    ERIC Educational Resources Information Center

    Burgoyne, Kelly; Duff, Fiona; Snowling, Maggie; Buckley, Sue; Hulme, Charles

    2013-01-01

    This article reports the evaluation of a 6-week programme of teaching designed to support the development of phoneme blending skills in children with Down syndrome (DS). Teaching assistants (TAs) were trained to deliver the intervention to individual children in daily 10-15-minute sessions, within a broader context of reading and language…

  16. A Brief Critique of Chomsky's Challenge to Classical Phonemic Phonology.

    ERIC Educational Resources Information Center

    Liu, Ngar-Fun

    1994-01-01

    Phonemic phonology became important because it provided a descriptive account of dialects and languages that had never been transcribed before, and it derives its greatest strength from its practical orientation, which has proved beneficial to language teaching and learning. Noam Chomsky's criticisms of it are largely unjust because he has not…

  17. Dynamic Assessment of Phonological Awareness for Children with Speech Sound Disorders

    ERIC Educational Resources Information Center

    Gillam, Sandra Laing; Ford, Mikenzi Bentley

    2012-01-01

    The current study was designed to examine the relationships between performance on a nonverbal phoneme deletion task administered in a dynamic assessment format with performance on measures of phoneme deletion, word-level reading, and speech sound production that required verbal responses for school-age children with speech sound disorders (SSDs).…

  18. Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users

    ERIC Educational Resources Information Center

    Jaekel, Brittany N.; Newman, Rochelle S.; Goupell, Matthew J.

    2017-01-01

    Purpose: Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate…

  19. Early Speech Production of Children with Cleft Palate.

    ERIC Educational Resources Information Center

    Estrem, Theresa; Broen, Patricia A.

    1989-01-01

    The study comparing word-initial target phonemes and phoneme production of five toddlers with cleft palate and five normal toddlers found that the cleft palate children tended to target more words with word-initial nasals, approximants, and vowels and fewer words with word-initial stops, fricatives, and affricates than normal children. (Author/DB)

  20. How Important Is Teaching Phonemic Awareness to Children Learning to Read in Spanish?

    ERIC Educational Resources Information Center

    Goldenberg, Claude; Tolar, Tammy D.; Reese, Leslie; Francis, David J.; Bazán, Antonio Ray; Mejía-Arauz, Rebeca

    2014-01-01

    This comparative study examines relationships between phonemic awareness and Spanish reading skill acquisition among three groups of Spanish-speaking first and second graders: children in Mexico receiving reading instruction in Spanish and children in the United States receiving reading instruction in either Spanish or English. Children were…

  1. On Sources of the Word Length Effect in Young Readers

    ERIC Educational Resources Information Center

    Gagl, Benjamin; Hawelka, Stefan; Wimmer, Heinz

    2015-01-01

    We investigated how letter length, phoneme length, and consonant clusters contribute to the word length effect in 2nd- and 4th-grade children. They read words from three different conditions: In one condition, letter length increased but phoneme length did not due to multiletter graphemes (H"aus"-B"auch"-S"chach"). In…

  2. Early Orthographic Influences on Phonemic Awareness Tasks: Evidence from a Preschool Training Study

    ERIC Educational Resources Information Center

    Castles, Anne; Wilson, Katherine; Coltheart, Max

    2011-01-01

    Experienced readers show influences of orthographic knowledge on tasks ostensibly tapping phonemic awareness. Here we draw on data from an experimental training study to demonstrate that even preschoolers show influences of their emerging orthographic abilities in such tasks. A total of 40 children were taught some letter-sound correspondences but…

  3. Differential Prefrontal and Frontotemporal Oxygenation Patterns during Phonemic and Semantic Verbal Fluency

    ERIC Educational Resources Information Center

    Tupak, Sara V.; Badewien, Meike; Dresler, Thomas; Hahn, Tim; Ernst, Lena H.; Herrmann, Martin J.; Fallgatter, Andreas J.; Ehlis, Ann-Christine

    2012-01-01

    Movement artifacts are still considered a problematic issue for imaging research on overt language production. This motion-sensitivity can be overcome by functional near-infrared spectroscopy (fNIRS). In the present study, 50 healthy subjects performed a combined phonemic and semantic overt verbal fluency task while frontal and temporal cortex…

  4. Listeners Retune Phoneme Categories across Languages

    ERIC Educational Resources Information Center

    Reinisch, Eva; Weber, Andrea; Mitterer, Holger

    2013-01-01

    Native listeners adapt to noncanonically produced speech by retuning phoneme boundaries by means of lexical knowledge. We asked whether a second language lexicon can also guide category retuning and whether perceptual learning transfers from a second language (L2) to the native language (L1). During a Dutch lexical-decision task, German and Dutch…

  5. Structure of Preschool Phonological Sensitivity: Overlapping Sensitivity to Rhyme, Words, Syllables, and Phonemes.

    ERIC Educational Resources Information Center

    Anthony, Jason L.; Lonigan, Christopher J.; Burgess, Stephen R.; Driscoll, Kimberly; Phillips, Beth M.; Cantor, Brenlee G.

    2002-01-01

    This study examined relations among sensitivity to words, syllables, rhymes, and phonemes in older and younger preschoolers. Confirmatory factor analyses found that a one-factor model best explained the date from both groups of children. Only variance common to all phonological sensitivity skills was related to print knowledge and rudimentary…

  6. Phonemic Awareness and Middle-Ear Disease among Bedouin Arabs in Israel.

    ERIC Educational Resources Information Center

    Abu-Rabia, Salim

    2002-01-01

    Investigates the effect of middle-ear infections on phonemic awareness on first-grade Bedouin Arab elementary school children in northern Israel. Divides 49 children who were screened according to their infant medical records into two groups: one with repeated middle-ear infection and one without. Indicates a nonsignificant effect of middle-ear…

  7. A power-efficient communication system between brain-implantable devices and external computers.

    PubMed

    Yao, Ning; Lee, Heung-No; Chang, Cheng-Chun; Sclabassi, Robert J; Sun, Mingui

    2007-01-01

    In this paper, we propose a power efficient communication system for linking a brain-implantable device to an external system. For battery powered implantable devices, the processor and the transmitter power should be reduced in order to both conserve battery power and reduce the health risks associated with transmission. To accomplish this, a joint source-channel coding/decoding system is devised. Low-density generator matrix (LDGM) codes are used in our system due to their low encoding complexity. The power cost for signal processing within the implantable device is greatly reduced by avoiding explicit source encoding. Raw data which is highly correlated is transmitted. At the receiver, a Markov chain source correlation model is utilized to approximate and capture the correlation of raw data. A turbo iterative receiver algorithm is designed which connects the Markov chain source model to the LDGM decoder in a turbo-iterative way. Simulation results show that the proposed system can save up to 1 to 2.5 dB on transmission power.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey, D.; Ryan, W.; Ross, M.

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, wasmore » developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.« less

  9. A Very Efficient Transfer Function Bounding Technique on Bit Error Rate for Viterbi Decoded, Rate 1/N Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Lee, P. J.

    1984-01-01

    For rate 1/N convolutional codes, a recursive algorithm for finding the transfer function bound on bit error rate (BER) at the output of a Viterbi decoder is described. This technique is very fast and requires very little storage since all the unnecessary operations are eliminated. Using this technique, we find and plot bounds on the BER performance of known codes of rate 1/2 with K 18, rate 1/3 with K 14. When more than one reported code with the same parameter is known, we select the code that minimizes the required signal to noise ratio for a desired bit error rate of 0.000001. This criterion of determining goodness of a code had previously been found to be more useful than the maximum free distance criterion and was used in the code search procedures of very short constraint length codes. This very efficient technique can also be used for searches of longer constraint length codes.

  10. The Effect of Adaptive Nonlinear Frequency Compression on Phoneme Perception.

    PubMed

    Glista, Danielle; Hawkins, Marianne; Bohnert, Andrea; Rehmann, Julia; Wolfe, Jace; Scollie, Susan

    2017-12-12

    This study implemented a fitting method, developed for use with frequency lowering hearing aids, across multiple testing sites, participants, and hearing aid conditions to evaluate speech perception with a novel type of frequency lowering. A total of 8 participants, including children and young adults, participated in real-world hearing aid trials. A blinded crossover design, including posttrial withdrawal testing, was used to assess aided phoneme perception. The hearing aid conditions included adaptive nonlinear frequency compression (NFC), static NFC, and conventional processing. Enabling either adaptive NFC or static NFC improved group-level detection and recognition results for some high-frequency phonemes, when compared with conventional processing. Mean results for the distinction component of the Phoneme Perception Test (Schmitt, Winkler, Boretzki, & Holube, 2016) were similar to those obtained with conventional processing. Findings suggest that both types of NFC tested in this study provided a similar amount of speech perception benefit, when compared with group-level performance with conventional hearing aid technology. Individual-level results are presented with discussion around patterns of results that differ from the group average.

  11. Hemispheric asymmetry in auditory processing of speech envelope modulations in prereading children.

    PubMed

    Vanvooren, Sophie; Poelmans, Hanne; Hofmann, Michael; Ghesquière, Pol; Wouters, Jan

    2014-01-22

    The temporal envelope of speech is an important cue contributing to speech intelligibility. Theories about the neural foundations of speech perception postulate that the left and right auditory cortices are functionally specialized in analyzing speech envelope information at different time scales: the right hemisphere is thought to be specialized in processing syllable rate modulations, whereas a bilateral or left hemispheric specialization is assumed for phoneme rate modulations. Recently, it has been found that this functional hemispheric asymmetry is different in individuals with language-related disorders such as dyslexia. Most studies were, however, performed in adults and school-aged children, and only a little is known about how neural auditory processing at these specific rates manifests and develops in very young children before reading acquisition. Yet, studying hemispheric specialization for processing syllable and phoneme rate modulations in preliterate children may reveal early neural markers for dyslexia. In the present study, human cortical evoked potentials to syllable and phoneme rate modulations were measured in 5-year-old children at high and low hereditary risk for dyslexia. The results demonstrate a right hemispheric preference for processing syllable rate modulations and a symmetric pattern for phoneme rate modulations, regardless of hereditary risk for dyslexia. These results suggest that, while hemispheric specialization for processing syllable rate modulations seems to be mature in prereading children, hemispheric specialization for phoneme rate modulation processing may still be developing. These findings could have important implications for the development of phonological and reading skills.

  12. A real-time phoneme counting algorithm and application for speech rate monitoring.

    PubMed

    Aharonson, Vered; Aharonson, Eran; Raichlin-Levi, Katia; Sotzianu, Aviv; Amir, Ofer; Ovadia-Blechman, Zehava

    2017-03-01

    Adults who stutter can learn to control and improve their speech fluency by modifying their speaking rate. Existing speech therapy technologies can assist this practice by monitoring speaking rate and providing feedback to the patient, but cannot provide an accurate, quantitative measurement of speaking rate. Moreover, most technologies are too complex and costly to be used for home practice. We developed an algorithm and a smartphone application that monitor a patient's speaking rate in real time and provide user-friendly feedback to both patient and therapist. Our speaking rate computation is performed by a phoneme counting algorithm which implements spectral transition measure extraction to estimate phoneme boundaries. The algorithm is implemented in real time in a mobile application that presents its results in a user-friendly interface. The application incorporates two modes: one provides the patient with visual feedback of his/her speech rate for self-practice and another provides the speech therapist with recordings, speech rate analysis and tools to manage the patient's practice. The algorithm's phoneme counting accuracy was validated on ten healthy subjects who read a paragraph at slow, normal and fast paces, and was compared to manual counting of speech experts. Test-retest and intra-counter reliability were assessed. Preliminary results indicate differences of -4% to 11% between automatic and human phoneme counting. Differences were largest for slow speech. The application can thus provide reliable, user-friendly, real-time feedback for speaking rate control practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Scalable SCPPM Decoder

    NASA Technical Reports Server (NTRS)

    Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.

    2012-01-01

    A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.

  14. Communications and information research: Improved space link performance via concatenated forward error correction coding

    NASA Technical Reports Server (NTRS)

    Rao, T. R. N.; Seetharaman, G.; Feng, G. L.

    1996-01-01

    With the development of new advanced instruments for remote sensing applications, sensor data will be generated at a rate that not only requires increased onboard processing and storage capability, but imposes demands on the space to ground communication link and ground data management-communication system. Data compression and error control codes provide viable means to alleviate these demands. Two types of data compression have been studied by many researchers in the area of information theory: a lossless technique that guarantees full reconstruction of the data, and a lossy technique which generally gives higher data compaction ratio but incurs some distortion in the reconstructed data. To satisfy the many science disciplines which NASA supports, lossless data compression becomes a primary focus for the technology development. While transmitting the data obtained by any lossless data compression, it is very important to use some error-control code. For a long time, convolutional codes have been widely used in satellite telecommunications. To more efficiently transform the data obtained by the Rice algorithm, it is required to meet the a posteriori probability (APP) for each decoded bit. A relevant algorithm for this purpose has been proposed which minimizes the bit error probability in the decoding linear block and convolutional codes and meets the APP for each decoded bit. However, recent results on iterative decoding of 'Turbo codes', turn conventional wisdom on its head and suggest fundamentally new techniques. During the past several months of this research, the following approaches have been developed: (1) a new lossless data compression algorithm, which is much better than the extended Rice algorithm for various types of sensor data, (2) a new approach to determine the generalized Hamming weights of the algebraic-geometric codes defined by a large class of curves in high-dimensional spaces, (3) some efficient improved geometric Goppa codes for disk memory systems and high-speed mass memory systems, and (4) a tree based approach for data compression using dynamic programming.

  15. Design and implementation of a channel decoder with LDPC code

    NASA Astrophysics Data System (ADS)

    Hu, Diqing; Wang, Peng; Wang, Jianzong; Li, Tianquan

    2008-12-01

    Because Toshiba quit the competition, there is only one standard of blue-ray disc: BLU-RAY DISC, which satisfies the demands of high-density video programs. But almost all the patents are gotten by big companies such as Sony, Philips. As a result we must pay much for these patents when our productions use BD. As our own high-density optical disk storage system, Next-Generation Versatile Disc(NVD) which proposes a new data format and error correction code with independent intellectual property rights and high cost performance owns higher coding efficiency than DVD and 12GB which could meet the demands of playing the high-density video programs. In this paper, we develop Low-Density Parity-Check Codes (LDPC): a new channel encoding process and application scheme using Q-matrix based on LDPC encoding has application in NVD's channel decoder. And combined with the embedded system portable feature of SOPC system, we have completed all the decoding modules by FPGA. In the NVD experiment environment, tests are done. Though there are collisions between LDPC and Run-Length-Limited modulation codes (RLL) which are used in optical storage system frequently, the system is provided as a suitable solution. At the same time, it overcomes the defects of the instability and inextensibility, which occurred in the former decoding system of NVD--it was implemented by hardware.

  16. PHASS99: A software program for retrieving and decoding the radiometric ages of igneous rocks from the international database IGBADAT

    NASA Astrophysics Data System (ADS)

    Al-Mishwat, Ali T.

    2016-05-01

    PHASS99 is a FORTRAN program designed to retrieve and decode radiometric and other physical age information of igneous rocks contained in the international database IGBADAT (Igneous Base Data File). In the database, ages are stored in a proprietary format using mnemonic representations. The program can handle up to 99 ages in an igneous rock specimen and caters to forty radiometric age systems. The radiometric age alphanumeric strings assigned to each specimen description in the database consist of four components: the numeric age and its exponential modifier, a four-character mnemonic method identification, a two-character mnemonic name of analysed material, and the reference number in the rock group bibliography vector. For each specimen, the program searches for radiometric age strings, extracts them, parses them, decodes the different age components, and converts them to high-level English equivalents. IGBADAT and similarly-structured files are used for input. The output includes three files: a flat raw ASCII text file containing retrieved radiometric age information, a generic spreadsheet-compatible file for data import to spreadsheets, and an error file. PHASS99 builds on the old program TSTPHA (Test Physical Age) decoder program and expands greatly its capabilities. PHASS99 is simple, user friendly, fast, efficient, and does not require users to have knowledge of programing.

  17. Advanced modulation technology development for earth station demodulator applications. Coded modulation system development

    NASA Technical Reports Server (NTRS)

    Miller, Susan P.; Kappes, J. Mark; Layer, David H.; Johnson, Peter N.

    1990-01-01

    A jointly optimized coded modulation system is described which was designed, built, and tested by COMSAT Laboratories for NASA LeRC which provides a bandwidth efficiency of 2 bits/s/Hz at an information rate of 160 Mbit/s. A high speed rate 8/9 encoder with a Viterbi decoder and an Octal PSK modem are used to achieve this. The BER performance is approximately 1 dB from the theoretically calculated value for this system at a BER of 5 E-7 under nominal conditions. The system operates in burst mode for downlink applications and tests have demonstrated very little degradation in performance with frequency and level offset. Unique word miss rate measurements were conducted which demonstrate reliable acquisition at low values of Eb/No. Codec self tests have verified the performance of this subsystem in a stand alone mode. The codec is capable of operation at a 200 Mbit/s information rate as demonstrated using a codec test set which introduces noise digitally. The measured performance is within 0.2 dB of the computer simulated predictions. A gate array implementation of the most time critical element of the high speed Viterbi decoder was completed. This gate array add-compare-select chip significantly reduces the power consumption and improves the manufacturability of the decoder. This chip has general application in the implementation of high speed Viterbi decoders.

  18. Nonlinear detection for a high rate extended binary phase shift keying system.

    PubMed

    Chen, Xian-Qing; Wu, Le-Nan

    2013-03-28

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.

  19. Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System

    PubMed Central

    Chen, Xian-Qing; Wu, Le-Nan

    2013-01-01

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034

  20. Singer product apertures-A coded aperture system with a fast decoding algorithm

    NASA Astrophysics Data System (ADS)

    Byard, Kevin; Shutler, Paul M. E.

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  1. Three DIBELS Tasks vs. Three Informal Reading/Spelling Tasks: A Comparison of Predictive Validity

    ERIC Educational Resources Information Center

    Morris, Darrell; Trathen, Woodrow; Perney, Jan; Gill, Tom; Schlagal, Robert; Ward, Devery; Frye, Elizabeth M.

    2017-01-01

    Within a developmental framework, this study compared the predictive validity of three DIBELS tasks (phoneme segmentation fluency [PSF], nonsense word fluency [NWF], and oral reading fluency [ORF]) with that of three alternative tasks drawn from the field of reading (phonemic spelling [phSPEL], word recognition-timed [WR-t], and graded passage…

  2. Using a Multimodal Approach to Facilitate Articulation, Phonemic Awareness, and Literacy in Young Children

    ERIC Educational Resources Information Center

    Pieretti, Robert A.; Kaul, Sandra D.; Zarchy, Razi M.; O'Hanlon, Laureen M.

    2015-01-01

    The primary focus of this research study was to examine the benefit of a using a multimodal approach to speech sound correction with preschool children. The approach uses the auditory, tactile, and kinesthetic modalities and includes a unique, interactive visual focus that attempts to provide a visual representation of a phonemic category. The…

  3. Musical Structure Modulates Semantic Priming in Vocal Music

    ERIC Educational Resources Information Center

    Poulin-Charronnat, Benedicte; Bigand, Emmanuel; Madurell, Francois; Peereman, Ronald

    2005-01-01

    It has been shown that harmonic structure may influence the processing of phonemes whatever the extent of participants' musical expertise [Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. A., & Madurell, F. (2001). The effect of harmonic context on phoneme monitoring in vocal music. "Cognition," 81, B11-B20]. The present study goes a step further…

  4. Behavioral and Electrophysiological Evidence for the Impact of Regional Variation on Phoneme Perception

    ERIC Educational Resources Information Center

    Brunelliere, Angele; Dufour, Sophie; Nguyen, Noel; Frauenfelder, Ulrich Hans

    2009-01-01

    This event-related potential (ERP) study examined the impact of phonological variation resulting from a vowel merger on phoneme perception. The perception of the /e/-/[epsilon]/ contrast which does not exist in Southern French-speaking regions, and which is in the process of merging in Northern French-speaking regions, was compared to the…

  5. The Perception of Second Language Sounds in Early Bilinguals: New Evidence from an Implicit Measure

    ERIC Educational Resources Information Center

    Navarra, Jordi; Sebastian-Galles, Nuria; Soto-Faraco, Salvador

    2005-01-01

    Previous studies have suggested that nonnative (L2) linguistic sounds are accommodated to native language (L1) phonemic categories. However, this conclusion may be compromised by the use of explicit discrimination tests. The present study provides an implicit measure of L2 phoneme discrimination in early bilinguals (Catalan and Spanish).…

  6. The Role of Hypercorrection in the Acquisition of L2 Phonemic Contrasts

    ERIC Educational Resources Information Center

    Eckman, Fred R.; Iverson, Gregory K.; Song, Jae Yung

    2013-01-01

    This article reports empirical findings from an ongoing investigation into the acquisition of second-language (L2) phonemic contrasts. Specifically, we consider the status and role of the phenomenon of hypercorrection in the various stages through which L2 learners develop and internalize a target language (TL) contrast. We adopt the prevailing…

  7. African American English Dialect and Performance on Nonword Spelling and Phonemic Awareness Tasks

    ERIC Educational Resources Information Center

    Kohler, Candida T.; Bahr, Ruth Huntley; Silliman, Elaine R.; Bryant, Judith Becker; Apel, Kenn; Wilkinson, Louise C.

    2007-01-01

    Purpose: To evaluate the role of dialect on phonemic awareness and nonword spelling tasks. These tasks were selected for their reliance on phonological and orthographic processing, which may be influenced by dialect use. Method: Eighty typically developing African American children in Grades 1 and 3 were first screened for dialect use and then…

  8. Fluency Training in Phoneme Blending: A Preliminary Study of Generalized Effects

    ERIC Educational Resources Information Center

    Martens, Brian K.; Werder, Candace S.; Hier, Bridget O.; Koenig, Elizabeth A.

    2013-01-01

    We examined the generalized effects of training children to fluently blend phonemes of words containing target vowel teams on their reading of trained and untrained words in lists and passages. Three second-grade students participated. A subset of words containing each of 3 target vowel teams ("aw," "oi," and "au") was trained in lists, and…

  9. Phoneme Segmenting Alignment with the Common Core Foundational Skills Standard Two: Grades K-1. Technical Report #1227

    ERIC Educational Resources Information Center

    Sáez, Leilani; Irvin, P. Shawn; Alonzo, Julie; Tindal, Gerald

    2012-01-01

    In 2006, the easyCBM reading assessment system was developed to support the progress monitoring of phoneme segmenting, letter names and sounds recognition, word reading, passage reading fluency, and comprehension skill development in elementary schools. More recently, the Common Core Standards in English Language Arts have been introduced as a…

  10. First Language Grapheme-Phoneme Transparency Effects in Adult Second Language Learning

    ERIC Educational Resources Information Center

    Ijalba, Elizabeth; Obler, Loraine K.

    2015-01-01

    The Spanish writing system has consistent grapheme-to-phoneme correspondences (GPC), rendering it more transparent than English. We compared first-language (L1) orthographic transparency on how monolingual English- and Spanish-readers learned a novel writing system with a 1:1 (LT) and a 1:2 (LO) GPC. Our dependent variables were learning time,…

  11. Interaction between Phonemic Abilities and Syllable Congruency Effect in Young Readers

    ERIC Educational Resources Information Center

    Chetail, Fabienne; Mathey, Stephanie

    2013-01-01

    This study investigated whether and to what extent phonemic abilities of young readers (Grade 5) influence syllabic effects in reading. More precisely, the syllable congruency effect was tested in the lexical decision task combined with masked priming in eleven-year-old children. Target words were preceded by a pseudo-word prime sharing the first…

  12. Poor Phonemic Discrimination Does Not Underlie Poor Verbal Short-Term Memory in Down Syndrome

    ERIC Educational Resources Information Center

    Purser, Harry R. M.; Jarrold, Christopher

    2013-01-01

    Individuals with Down syndrome tend to have a marked impairment of verbal short-term memory. The chief aim of this study was to investigate whether phonemic discrimination contributes to this deficit. The secondary aim was to investigate whether phonological representations are degraded in verbal short-term memory in people with Down syndrome…

  13. Semantic and Phonemic Verbal Fluency in Blinds

    ERIC Educational Resources Information Center

    Nejati, Vahid; Asadi, Anoosh

    2010-01-01

    A person who has suffered the total loss of a sensory system has, indirectly, suffered a brain lesion. Semantic and phonologic verbal fluency are used for evaluation of executive function and language. The aim of this study is evaluation and comparison of phonemic and semantic verbal fluency in acquired blinds. We compare 137 blinds and 124…

  14. Large-Corpus Phoneme and Word Recognition and the Generality of Lexical Context in CVC Word Perception

    ERIC Educational Resources Information Center

    Gelfand, Jessica T.; Christie, Robert E.; Gelfand, Stanley A.

    2014-01-01

    Purpose: Speech recognition may be analyzed in terms of recognition probabilities for perceptual wholes (e.g., words) and parts (e.g., phonemes), where j or the j-factor reveals the number of independent perceptual units required for recognition of the whole (Boothroyd, 1968b; Boothroyd & Nittrouer, 1988; Nittrouer & Boothroyd, 1990). For…

  15. Do Phonological Constraints on the Spoken Word Affect Visual Lexical Decision?

    ERIC Educational Resources Information Center

    Lee, Yang; Moreno, Miguel A.; Carello, Claudia; Turvey, M. T.

    2013-01-01

    Reading a word may involve the spoken language in two ways: in the conversion of letters to phonemes according to the conventions of the language's writing system and the assimilation of phonemes according to the language's constraints on speaking. If so, then words that require assimilation when uttered would require a change in the phonemes…

  16. Hemispheric Specialization for Language According to Grapho-Phonemic Transformation and Gender. A Divided Visual Field Experiment

    ERIC Educational Resources Information Center

    Cousin, Emilie; Perrone, Marcela; Baciu, Monica

    2009-01-01

    This behavioral study aimed at assessing the effect of two variables on the degree of hemispheric specialization for language. One of them was the "grapho-phonemic translation (transformation)" (letter-sound mapping) and the other was the participants' "gender". The experiment was conducted with healthy volunteers. A divided visual field procedure…

  17. Phonemic Awareness Is a More Important Predictor of Orthographic Processing than Rapid Serial Naming: Evidence from Russian

    ERIC Educational Resources Information Center

    Rakhlin, Natalia; Cardoso-Martins, Cláudia; Grigorenko, Elena L.

    2014-01-01

    We studied the relationship between rapid serial naming (RSN) and orthographic processing in Russian, an asymmetrically transparent orthography. Ninety-six students (M age = 13.73) completed tests of word and pseudoword reading fluency, spelling, orthographic choice, phonological choice, phoneme awareness (PA), and RSN. PA was a better predictor…

  18. Teaching Adults to Read Braille Using Phonological Methods: Single-Case Studies

    ERIC Educational Resources Information Center

    Crawford, Shauna; Elliott, Robert T.

    2009-01-01

    Four women with visual impairments were taught 13 braille letters as phonemes and another 13 braille letters as graphemes and then were taught 10 braille words as onset-rime and another 10 braille words as whole words. Phoneme and onset-rime instruction resulted in faster and more accurate performance. (Contains 1 table and 2 figures.)

  19. Introduction and Overview of the Vicens-Reddy Speech Recognition System.

    ERIC Educational Resources Information Center

    Kameny, Iris; Ritea, H.

    The Vicens-Reddy System is unique in the sense that it approaches the problem of speech recognition as a whole, rather than treating particular aspects of the problems as in previous attempts. For example, where earlier systems treated only segmentation of speech into phoneme groups, or detected phonemes in a given context, the Vicens-Reddy System…

  20. Phonological Competition within the Word: Evidence from the Phoneme Similarity Effect in Spoken Production

    ERIC Educational Resources Information Center

    Cohen-Goldberg, Ariel M.

    2012-01-01

    Theories of spoken production have not specifically addressed whether the phonemes of a word compete with each other for selection during phonological encoding (e.g., whether /t/ competes with /k/ in cat). Spoken production theories were evaluated and found to fall into three classes, theories positing (1) no competition, (2) competition among…

  1. Learning of a Formation Principle for the Secondary Phonemic Function of a Syllabic Orthography

    ERIC Educational Resources Information Center

    Fletcher-Flinn, Claire M.; Thompson, G. Brian; Yamada, Megumi; Meissel, Kane

    2014-01-01

    It has been observed in Japanese children learning to read that there is an early and rapid shift from exclusive reading of hiragana as syllabograms to the dual-use convention in which some hiragana also represent phonemic elements. Such rapid initial learning appears contrary to the standard theories of reading acquisition that require…

  2. Prosodic and Phonemic Awareness in Children's Reading of Long and Short Words

    ERIC Educational Resources Information Center

    Wade-Woolley, Lesly

    2016-01-01

    Phonemic and prosodic awareness are both phonological processes that operate at different levels: the former at the level of the individual sound segment and the latter at the suprasegmental level across syllables. Both have been shown to be related to word reading in young readers. In this study we examine how these processes are differentially…

  3. Investigating the Phonological Similarity Effect: Syllable Structure and the Position of Common Phonemes

    ERIC Educational Resources Information Center

    Nimmo, Lisa M.; Roodenrys, Steven

    2004-01-01

    The aim of the present research was to determine whether the effect that phonological similarity has on immediate serial recall is influenced by the consistency and position of phonemes within words. In comparison to phonologically dissimilar lists, when the stimulus lists rhyme there is a facilitative effect on the recall of item information and…

  4. Do Adults with Cochlear Implants Rely on Different Acoustic Cues for Phoneme Perception than Adults with Normal Hearing?

    ERIC Educational Resources Information Center

    Moberly, Aaron C.; Lowenstein, Joanna H.; Tarr, Eric; Caldwell-Tarr, Amanda; Welling, D. Bradley; Shahin, Antoine J.; Nittrouer, Susan

    2014-01-01

    Purpose: Several acoustic cues specify any single phonemic contrast. Nonetheless, adult, native speakers of a language share weighting strategies, showing preferential attention to some properties over others. Cochlear implant (CI) signal processing disrupts the salience of some cues: In general, amplitude structure remains readily available, but…

  5. Assessing the Double Phonemic Representation in Bilingual Speakers of Spanish and English: An Electrophysiological Study

    ERIC Educational Resources Information Center

    Garcia-Sierra, Adrian; Ramirez-Esparza, Nairan; Silva-Pereyra, Juan; Siard, Jennifer; Champlin, Craig A.

    2012-01-01

    Event Related Potentials (ERPs) were recorded from Spanish-English bilinguals (N = 10) to test pre-attentive speech discrimination in two language contexts. ERPs were recorded while participants silently read magazines in English or Spanish. Two speech contrast conditions were recorded in each language context. In the "phonemic in English"…

  6. Backwards compatible high dynamic range video compression

    NASA Astrophysics Data System (ADS)

    Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.

    2014-02-01

    This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.

  7. Error control for reliable digital data transmission and storage systems

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Deng, R. H.

    1985-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.

  8. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.

    PubMed

    Mathew, Suneeth F; Crowe-McAuliffe, Caillan; Graves, Ryan; Cardno, Tony S; McKinney, Cushla; Poole, Elizabeth S; Tate, Warren P

    2015-01-01

    HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.

  9. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1989-01-01

    The performance of bandwidth efficient trellis codes on channels with phase jitter, or those disturbed by jamming and impulse noise is analyzed. An heuristic algorithm for construction of bandwidth efficient trellis codes with any constraint length up to about 30, any signal constellation, and any code rate was developed. Construction of good distance profile trellis codes for sequential decoding and comparison of random coding bounds of trellis coded modulation schemes are also discussed.

  10. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  11. Low Density Parity Check Codes: Bandwidth Efficient Channel Coding

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu

    2003-01-01

    Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.

  12. Architecture for time or transform domain decoding of reed-solomon codes

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Deutsch, Leslie J. (Inventor); Shao, Howard M. (Inventor)

    1989-01-01

    Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message.

  13. Explaining Variance in Comprehension for Students in a High-Poverty Setting

    ERIC Educational Resources Information Center

    Conradi, Kristin; Amendum, Steven J.; Liebfreund, Meghan D.

    2016-01-01

    This study examined the contributions of decoding, language, spelling, and motivation to the reading comprehension of elementary school readers in a high-poverty setting. Specifically, the research questions addressed whether and how the influences of word reading efficiency, semantic knowledge, reading self-concept, and spelling on reading…

  14. Identification and Remediation of Learning Disability Subtypes: Preliminary Findings.

    ERIC Educational Resources Information Center

    Lyon, G. Reid

    1985-01-01

    Current literature on identification and instructional remediation of subtypes of learning-disabled readers (LDR) are reviewed. Preliminary findings suggest that not all LDR children manifest the same oral language, memory, and perceptual deficits that impede decoding accuracy and efficiency and all do not respond equally well (or poorly) to the…

  15. FPGA implementation of low complexity LDPC iterative decoder

    NASA Astrophysics Data System (ADS)

    Verma, Shivani; Sharma, Sanjay

    2016-07-01

    Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.

  16. The Effect of a Suggested Multisensory Phonics Program on Developing Kindergarten Pre-Service Teachers' EFL Reading Accuracy and Phonemic Awareness

    ERIC Educational Resources Information Center

    Ghoneim, Nahed Mohammed Mahmoud; Elghotmy, Heba Elsayed Abdelsalam

    2015-01-01

    The current study investigates the effect of a suggested multisensory phonics program on developing kindergarten pre-service teachers' EFL reading accuracy and phonemic awareness. A total of 40 fourth year kindergarten pre-service teachers, Faculty of Education, participated in the study that involved one group experimental design. Pre-post tests…

  17. The Relative Predictive Contribution and Causal Role of Phoneme Awareness, Rhyme Awareness and Verbal Short-Term Memory in Reading Skills: A Review

    ERIC Educational Resources Information Center

    Melby-Lervag, Monica

    2012-01-01

    The acknowledgement that educational achievement is highly dependent on successful reading development, has led to extensive research on its underlying factors. Evidence clearly suggests that the relation between reading skills, phoneme awareness, rhyme awareness, and verbal short-term memory is more than a mere association. A strong argument has…

  18. Teaching Phoneme Awareness to Pre-Literate Children with Speech Disorder: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Hesketh, Anne; Dima, Evgenia; Nelson, Veronica

    2007-01-01

    Background: Awareness of individual phonemes in words is a late-acquired level of phonological awareness that usually develops in the early school years. It is generally agreed to have a close relationship with early literacy development, but its role in speech change is less well understood. Speech and language therapy for children with speech…

  19. The Relation between Speech Perception and Phonemic Awareness: Evidence from Low-SES Children and Children with Chronic OM.

    ERIC Educational Resources Information Center

    Nittrouer, Susan

    1996-01-01

    This study of 41 children (ages 7 and 8) studied the effects of low socioeconomic status (SES) and chronic otitis media (OM) on speech perception and phonemic awareness. Findings indicated the children with low SES did poorly on both kinds of tasks whether or not they had chronic OM. (CR)

  20. A Study of the Knowledge of Phonics, Phonemic Awareness, and Developmental Spelling Ability in Primary Non-Readers.

    ERIC Educational Resources Information Center

    Hill, Susan

    Since one way to study a non-reading primary child's phonics knowledge is to examine his/her invented spelling, a researcher's quandary led to a quasi-experimental design study, employed to answer three questions: (1) Do primary non-readers possess phonics knowledge? (2) Do primary non-readers possess phonemic awareness? and (3) Do primary…

  1. Learning to Read and Spell in Persian: A Cross-Sectional Study from Grades 1 to 4

    ERIC Educational Resources Information Center

    Rahbari, Noriyeh; Senechal, Monique

    2010-01-01

    We investigated the reading and spelling development of 140 Persian children attending Grades 1-4 in Iran. Persian has very consistent letter-sound correspondences, but it varies in transparency because 3 of its 6 vowel phonemes are not marked with letters. Persian also varies in spelling consistency because 6 phonemes have more than one…

  2. Exploratory and Confirmatory Factor Analyses in Reading-Related Cognitive Component among Grade Four Students in Thailand

    ERIC Educational Resources Information Center

    Liao, Chen-Huei; Kuo, Bor-Chen; Deenang, Exkarach; Mok, Magdalena Mo Ching

    2016-01-01

    This study aimed to investigate the structure and the validity of the cognitive components of reading in Thai, which is a language with a high degree of grapheme-phoneme correspondence. The participants were 1181 fourth-grade students in 29 schools in Thailand, divided into two subsamples for data analysis. Phoneme isolation, rapid colour naming,…

  3. Semantic Memory Is Key to Binding Phonology: Converging Evidence from Immediate Serial Recall in Semantic Dementia and Healthy Participants

    ERIC Educational Resources Information Center

    Hoffman, Paul; Jefferies, Elizabeth; Ehsan, Sheeba; Jones, Roy W.; Lambon Ralph, Matthew A.

    2009-01-01

    Patients with semantic dementia (SD) make numerous phoneme migration errors when recalling lists of words they no longer fully understand, suggesting that word meaning makes a critical contribution to phoneme binding in verbal short-term memory. Healthy individuals make errors that appear similar when recalling lists of nonwords, which also lack…

  4. Evidence for a Simplicity Principle: Teaching Common Complex Grapheme-to-Phonemes Improves Reading and Motivation in At-Risk Readers

    ERIC Educational Resources Information Center

    Chen, Victoria; Savage, Robert S.

    2014-01-01

    This study examines the effects of teaching common complex grapheme-to-phoneme correspondences (GPCs) on reading and reading motivation for at-risk readers using a randomised control trial design with taught intervention and control conditions. One reading programme taught children complex GPCs ordered by their frequency of occurrence in…

  5. The Effect of Word Frequency on Phonemic Accuracy in Children with Cochlear Implants and Peers with Typical Levels of Hearing

    ERIC Educational Resources Information Center

    Faes, Jolien; Gillis, Joris; Gillis, Steven

    2017-01-01

    The frequency of occurrence of words and sounds has a pervasive influence on typically developing children's language acquisition. For instance, highly frequent words appear earliest in a child's lexicon, and highly frequent phonemes are produced more accurately. This study evaluates (a) whether word frequency influences word accuracy and (b)…

  6. Catch Up® Literacy: Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    Rutt, Simon; Kettlewell, Kelly; Bernardinelli, Daniele

    2015-01-01

    Catch Up® Literacy is a structured one-to-one literacy intervention for pupils between the ages of 6 and 14 who are struggling to learn to read. It teaches pupils to blend phonemes (combine letter sounds into words), segment phonemes (separate words into letter sounds), and memorise particular words so they can be understood without needing to use…

  7. Age and Schooling Effects on Early Literacy and Phoneme Awareness

    ERIC Educational Resources Information Center

    Cunningham, Anna; Carroll, Julia

    2011-01-01

    Previous research on age and schooling effects is largely restricted to studies of children who begin formal schooling at 6 years of age, and the measures of phoneme awareness used have typically lacked sensitivity for beginning readers. Our study addresses these issues by testing 4 to 6 year-olds (first 2 years of formal schooling in the United…

  8. Phonological Processing of Second Language Phonemes: A Selective Deficit in a Bilingual Aphasic.

    ERIC Educational Resources Information Center

    Eviatar, Zohar; Leikin, Mark; Ibrahim, Raphiq

    1999-01-01

    A case study of a Russian-Hebrew bilingual woman with transcortical sensory aphasia showed that overall, aphasic symptoms were similar in the two languages, with Hebrew somewhat more impaired. The woman revealed a difference in her ability to perceive phonemes in the context of Hebrew words that depended on whether they were presented in a Russian…

  9. Effects of emotion on different phoneme classes

    NASA Astrophysics Data System (ADS)

    Lee, Chul Min; Yildirim, Serdar; Bulut, Murtaza; Busso, Carlos; Kazemzadeh, Abe; Lee, Sungbok; Narayanan, Shrikanth

    2004-10-01

    This study investigates the effects of emotion on different phoneme classes using short-term spectral features. In the research on emotion in speech, most studies have focused on prosodic features of speech. In this study, based on the hypothesis that different emotions have varying effects on the properties of the different speech sounds, we investigate the usefulness of phoneme-class level acoustic modeling for automatic emotion classification. Hidden Markov models (HMM) based on short-term spectral features for five broad phonetic classes are used for this purpose using data obtained from recordings of two actresses. Each speaker produces 211 sentences with four different emotions (neutral, sad, angry, happy). Using the speech material we trained and compared the performances of two sets of HMM classifiers: a generic set of ``emotional speech'' HMMs (one for each emotion) and a set of broad phonetic-class based HMMs (vowel, glide, nasal, stop, fricative) for each emotion type considered. Comparison of classification results indicates that different phoneme classes were affected differently by emotional change and that the vowel sounds are the most important indicator of emotions in speech. Detailed results and their implications on the underlying speech articulation will be discussed.

  10. Strategy Choice Mediates the Link between Auditory Processing and Spelling

    PubMed Central

    Kwong, Tru E.; Brachman, Kyle J.

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities. PMID:25198787

  11. Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users.

    PubMed

    Jaekel, Brittany N; Newman, Rochelle S; Goupell, Matthew J

    2017-05-24

    Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate information could explain some of the variability in this population's speech perception outcomes. Phonemes with manipulated voice-onset-time (VOT) durations were embedded in sentences with different speech rates. Twenty-three CI and 29 NH participants performed a phoneme identification task. NH participants heard the same unprocessed stimuli as the CI participants or stimuli degraded by a sine vocoder, simulating aspects of CI processing. CI participants showed larger rate normalization effects (6.6 ms) than the NH participants (3.7 ms) and had shallower (less reliable) category boundary slopes. NH participants showed similarly shallow slopes when presented acoustically degraded vocoded signals, but an equal or smaller rate effect in response to reductions in available spectral and temporal information. CI participants can rate normalize, despite their degraded speech input, and show a larger rate effect compared to NH participants. CI participants may particularly rely on rate normalization to better maintain perceptual constancy of the speech signal.

  12. Lexical statistics of competition in L2 versus L1 listening

    NASA Astrophysics Data System (ADS)

    Cutler, Anne

    2005-09-01

    Spoken-word recognition involves multiple activation of alternative word candidates and competition between these alternatives. Phonemic confusions in L2 listening increase the number of potentially active words, thus slowing word recognition by adding competitors. This study used a 70,000-word English lexicon backed by frequency statistics from a 17,900,000-word corpus to assess the competition increase resulting from two representative phonemic confusions, one vocalic (ae/E) and one consonantal (r/l), in L2 versus L1 listening. The first analysis involved word embedding. Embedded words (cat in cattle, rib in ribbon) cause competition, which phonemic confusion can increase (cat in kettle, rib in liberty). The average increase in number of embedded words was 59.6 and 48.3 temporary ambiguity. Even when no embeddings are present, multiple alternatives are possible: para- can become parrot, paradise, etc., but also pallet, palace given /r/-/l/ confusion. Phoneme confusions (vowel or consonant) in first or second position in the word approximately doubled the number of activated candidates; confusions later in the word increased activation by on average 53 third, 42 confusions significantly increase competition for L2 compared with L1 listeners.

  13. Depth and elaboration of processing in relation to age.

    PubMed

    Simon, E

    1979-03-01

    Processing at encoding and retrieval was jointly manipulated, and then the retrieval effectiveness of different cues was directly compared to uncover the relative pattern of deep and elaborate processing in relation to both age and different experimental manipulations. In experiment 1 phonemic and semantic cues were effective retrieval aids for to-be-remembered words in the youngest group; with increasing age, semantic cues decreased in effectiveness more than phonemic cues. These data showed phonemic features to have an importance that is not recognized in the data generated by the typical levels paradigm. When elaboration of the words was induced in Experiment 2 by presenting them in sentences, semantic and context cues were most effective in the youngest group whereas phonemic cues were most effective in the oldest group. Since the pattern of cue effectiveness in the elderly was similar to that in Experiment 1, where the same words were presented alone, it was concluded that aging results in poor elaboration, in particular, in inefficient integration of word events with the context of presentation. These age effects were mimicked in young subjects in Experiment 3 by experimentally restricting encoding time. The present approach uses somewhat modified views of depth and elaboration.

  14. Strategy choice mediates the link between auditory processing and spelling.

    PubMed

    Kwong, Tru E; Brachman, Kyle J

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  15. Effects of lips and hands on auditory learning of second-language speech sounds.

    PubMed

    Hirata, Yukari; Kelly, Spencer D

    2010-04-01

    Previous research has found that auditory training helps native English speakers to perceive phonemic vowel length contrasts in Japanese, but their performance did not reach native levels after training. Given that multimodal information, such as lip movement and hand gesture, influences many aspects of native language processing, the authors examined whether multimodal input helps to improve native English speakers' ability to perceive Japanese vowel length contrasts. Sixty native English speakers participated in 1 of 4 types of training: (a) audio-only; (b) audio-mouth; (c) audio-hands; and (d) audio-mouth-hands. Before and after training, participants were given phoneme perception tests that measured their ability to identify short and long vowels in Japanese (e.g., /kato/ vs. /kato/). Although all 4 groups improved from pre- to posttest (replicating previous research), the participants in the audio-mouth condition improved more than those in the audio-only condition, whereas the 2 conditions involving hand gestures did not. Seeing lip movements during training significantly helps learners to perceive difficult second-language phonemic contrasts, but seeing hand gestures does not. The authors discuss possible benefits and limitations of using multimodal information in second-language phoneme learning.

  16. The design plan of a VLSI single chip (255, 223) Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Shao, H. M.; Deutsch, L. J.

    1987-01-01

    The very large-scale integration (VLSI) architecture of a single chip (255, 223) Reed-Solomon decoder for decoding both errors and erasures is described. A decoding failure detection capability is also included in this system so that the decoder will recognize a failure to decode instead of introducing additional errors. This could happen whenever the received word contains too many errors and erasures for the code to correct. The number of transistors needed to implement this decoder is estimated at about 75,000 if the delay for received message is not included. This is in contrast to the older transform decoding algorithm which needs about 100,000 transistors. However, the transform decoder is simpler in architecture than the time decoder. It is therefore possible to implement a single chip (255, 223) Reed-Solomon decoder with today's VLSI technology. An implementation strategy for the decoder system is presented. This represents the first step in a plan to take advantage of advanced coding techniques to realize a 2.0 dB coding gain for future space missions.

  17. The serial message-passing schedule for LDPC decoding algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue

    2015-12-01

    The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.

  18. Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

    PubMed

    Sajda, Paul

    2010-01-01

    In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

  19. Image transmission system using adaptive joint source and channel decoding

    NASA Astrophysics Data System (ADS)

    Liu, Weiliang; Daut, David G.

    2005-03-01

    In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.

  20. Anatomical connections of the visual word form area.

    PubMed

    Bouhali, Florence; Thiebaut de Schotten, Michel; Pinel, Philippe; Poupon, Cyril; Mangin, Jean-François; Dehaene, Stanislas; Cohen, Laurent

    2014-11-12

    The visual word form area (VWFA), a region systematically involved in the identification of written words, occupies a reproducible location in the left occipitotemporal sulcus in expert readers of all cultures. Such a reproducible localization is paradoxical, given that reading is a recent invention that could not have influenced the genetic evolution of the cortex. Here, we test the hypothesis that the VWFA recycles a region of the ventral visual cortex that shows a high degree of anatomical connectivity to perisylvian language areas, thus providing an efficient circuit for both grapheme-phoneme conversion and lexical access. In two distinct experiments, using high-resolution diffusion-weighted data from 75 human subjects, we show that (1) the VWFA, compared with the fusiform face area, shows higher connectivity to left-hemispheric perisylvian superior temporal, anterior temporal and inferior frontal areas; (2) on a posterior-to-anterior axis, its localization within the left occipitotemporal sulcus maps onto a peak of connectivity with language areas, with slightly distinct subregions showing preferential projections to areas respectively involved in grapheme-phoneme conversion and lexical access. In agreement with functional data on the VWFA in blind subjects, the results suggest that connectivity to language areas, over and above visual factors, may be the primary determinant of VWFA localization. Copyright © 2014 the authors 0270-6474/14/3415402-13$15.00/0.

  1. Does testing with feedback improve adult spelling skills relative to copying and reading?

    PubMed

    Pan, Steven C; Rubin, Benjamin R; Rickard, Timothy C

    2015-12-01

    We examined testing's ability to enhance adult spelling acquisition, relative to copying and reading. Across 3 experiments in which testing with feedback was compared with copying, the spelling improvement after testing matched that following the same amount of time spent copying. A potent testing advantage, however, was observed for spelling words free-recalled. In the fourth experiment, a large testing advantage for both word free recall and spelling was observed, versus reading. Subjects also generally preferred testing and rated it as more effective than copying or reading. The equivalent performance of testing and copying for spelling contrasts with prior work involving children and suggests that retrieval practice may not be the only effective mechanism for spelling skill acquisition. Rather, we suggest that the critical learning event for spelling is focused study on phoneme-to-grapheme mappings for previously unlearned letter sequences. For adults with extensive spelling expertise, focused study is more automatic during both copying and testing with feedback than for individuals with beginning spelling skills. Reading, however, would not be expected to produce efficient focused study of phoneme-to-grapheme mappings, regardless of expertise level. Overall, adult spelling skill acquisition benefits both from testing and copying, and substantially less from reading. (c) 2015 APA, all rights reserved).

  2. Two-terminal video coding.

    PubMed

    Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei

    2009-03-01

    Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.

  3. The Effects of Phonemic Awareness Instruction on the Writing Ability of First Grade At Risk Students.

    ERIC Educational Resources Information Center

    Carro, Dorothy J.

    The purpose of this study was to evaluate the effect of increased phonemic awareness instruction on the writing ability of At Risk first graders. Twenty-three students from a suburban first grade classroom in Central New Jersey were involved in the study. Twelve at risk students were divided into two groups, each of which received one half hour of…

  4. The Relative Predictive Contribution and Causal Role of Phoneme Awareness, Rhyme Awareness, and Verbal Short-Term Memory in Reading Skills: A Review

    ERIC Educational Resources Information Center

    Melby-Lervag, Monica

    2012-01-01

    The acknowledgement that educational achievement is highly dependent on successful reading development has led to extensive research on its underlying factors. A strong argument has been made for a causal relationship between reading and phoneme awareness; similarly, causal relations have been suggested for reading with short-term memory and rhyme…

  5. Contribution of Phonemic Segmentation Instruction with Letters and Articulation Pictures to Word Reading and Spelling in Beginners

    ERIC Educational Resources Information Center

    Boyer, Nancy; Ehri, Linnea C.

    2011-01-01

    English-speaking preschoolers who knew letters but were nonreaders (M = 4 years 9 months; n = 60) were taught to segment consonant-vowel (CV), VC, and CVC words into phonemes either with letters and pictures of articulatory gestures (the LPA condition) or with letters only (the LO condition). A control group received no treatment. Both trained…

  6. The Effectiveness of Using a Content Acquisition Podcast to Teach Phonological Awareness, Phonemic Awareness, and Phonics to Preservice Special Education Teachers

    ERIC Educational Resources Information Center

    Carlisle, Abigail A.; Thomas, Cathy Newman; McCathren, Rebecca B.

    2016-01-01

    The purpose of this study was to examine the effects of using a content acquisition podcast (CAP) to teach phonological awareness, phonemic awareness, and phonics (PA) to preservice special education teachers. Fifty undergraduate preservice special education teachers over 2 years were randomly assigned to either the CAP group or a comparison group…

  7. The Effects of Intervention in Phonemic Awareness on the Reading Achievement of English Language Learners in Kindergarten

    ERIC Educational Resources Information Center

    Walter, Nancy

    2010-01-01

    Students entering school with little knowledge of English do not have the foundation in place to develop reading skills. This lack of foundation puts English Learners at a disadvantage that they struggle to overcome. The purpose of the quantitative study was twofold: (a) to determine whether measures of phonemic awareness are predictive of end of…

  8. Nonword Repetition and Phoneme Elision in Adults Who Do and Do Not Stutter

    ERIC Educational Resources Information Center

    Byrd, Courtney T.; Vallely, Megann; Anderson, Julie D.; Sussman, Harvey

    2012-01-01

    The purpose of the present study was to explore the phonological working memory of adults who stutter through the use of a non-word repetition and a phoneme elision task. Participants were 14 adults who stutter (M = 28 years) and 14 age/gender matched adults who do not stutter (M = 28 years). For the non-word repetition task, the participants had…

  9. Direct and Indirect Effects of Stimulating Phoneme Awareness vs. Other Linguistic Skills in Preschoolers with Co-Occurring Speech and Language Impairments

    ERIC Educational Resources Information Center

    Tyler, Ann A.; Gillon, Gail; Macrae, Toby; Johnson, Roberta L.

    2011-01-01

    Aim: The purpose of this study was to examine the effects of an integrated phoneme awareness/speech intervention in comparison to an alternating speech/morphosyntax intervention for specific areas targeted by the different interventions, as well as the extent of indirect gains in nontargeted areas. Method: A total of 30 children with co-occurring…

  10. The Effects of Phonemic Awareness Instruction in First Grade on the Reading Scores of Rural Primary Students.

    ERIC Educational Resources Information Center

    Thornton, Linda H.; Vinzant, Rebecca S.

    A study investigated the effect of phonemic awareness instruction on the reading ability of first and second grade students. Participants were 100 second graders who had been in 5 first grades at Westside Elementary in Searcy, Arkansas. Using a posttest only control group design and a t test for independent samples, it was found that second grade…

  11. Coping Strategies in Reading: Multi-Readers in the Norwegian General Education System

    ERIC Educational Resources Information Center

    Vik, Astrid Kristin; Fellenius, Kerstin

    2007-01-01

    Six primary school-aged braille students were taught to name 4 to 10 braille letters as phonemes and another 4 to 10 braille letters as graphemes (Study 1). They were then taught to name 10 braille words as onset-rimes and another 10 braille words as whole words (Study 2). Instruction in phonemes and onset rimes resulted in fewer trials and a…

  12. Phoneme Monitoring in Silent Naming and Perception in Adults Who Stutter

    ERIC Educational Resources Information Center

    Sasisekaran, Jayanthi; De Nil, Luc F.

    2006-01-01

    The present study investigated phonological encoding skills in persons who stutter (PWS). Participants were 10 PWS (M=31.8 years, S.D.=5.9) matched for age, gender, and handedness with 12 persons who do not stutter (PNS) (M=24.3 years, S.D.=4.3). The groups were compared in a phoneme monitoring task performed during silent picture naming. The…

  13. Teaching Reading to Youth with Fragile X Syndrome: Should Phonemic Awareness and Phonics Instruction Be Used? EBP Briefs. Volume 9, Issue 6

    ERIC Educational Resources Information Center

    Brazendale, Allison; Adlof, Suzanne; Klusek, Jessica; Roberts, Jane

    2015-01-01

    Clinical Question: Would a child with fragile X syndrome benefit more from phonemic awareness and phonics instruction or whole-word training to increase reading skills? Method: Systematic review. Study Sources: PsycINFO. Search Terms: fragile X OR Down syndrome OR cognitive impairment OR cognitive deficit OR cognitive disability OR intellectual…

  14. A Prerequisite to L1 Homophone Effects in L2 Spoken-Word Recognition

    ERIC Educational Resources Information Center

    Nakai, Satsuki; Lindsay, Shane; Ota, Mitsuhiko

    2015-01-01

    When both members of a phonemic contrast in L2 (second language) are perceptually mapped to a single phoneme in one's L1 (first language), L2 words containing a member of that contrast can spuriously activate L2 words in spoken-word recognition. For example, upon hearing cattle, Dutch speakers of English are reported to experience activation…

  15. A long constraint length VLSI Viterbi decoder for the DSN

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Zimmerman, G.; Pollara, F.; Collins, O.

    1988-01-01

    A Viterbi decoder, capable of decoding convolutional codes with constraint lengths up to 15, is under development for the Deep Space Network (DSN). The objective is to complete a prototype of this decoder by late 1990, and demonstrate its performance using the (15, 1/4) encoder in Galileo. The decoder is expected to provide 1 to 2 dB improvement in bit SNR, compared to the present (7, 1/2) code and existing Maximum Likelihood Convolutional Decoder (MCD). The decoder will be fully programmable for any code up to constraint length 15, and code rate 1/2 to 1/6. The decoder architecture and top-level design are described.

  16. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  17. Adaptive decoding of convolutional codes

    NASA Astrophysics Data System (ADS)

    Hueske, K.; Geldmacher, J.; Götze, J.

    2007-06-01

    Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.

  18. Contextuality and Cultural Texts: A Case Study of Workplace Learning in Call Centres

    ERIC Educational Resources Information Center

    Crouch, Margaret

    2006-01-01

    Purpose: The paper seeks to show the contextualisation of call centres as a work-specific ethnographically and culturally based community, which, in turn, influences pedagogical practices through the encoding and decoding of cultural texts in relation to two logics: cost-efficiency and customer-orientation. Design/methodology/approach: The paper…

  19. How Does Speed and Accuracy in Reading Relate to Reading Comprehension in Arabic?

    ERIC Educational Resources Information Center

    Abu-Leil, Aula Khateeb; Share, David L.; Ibrahim, Raphiq

    2014-01-01

    The purpose of this study was to investigate the potential contribution of decoding efficiency to the development of reading comprehension among skilled adult native Arabic speakers. In addition, we tried to investigate the influence of Arabic vowels on reading accuracy, reading speed, and therefore to reading comprehension. Seventy-five Arabic…

  20. How Logical Reasoning Mediates the Relation between Lexical Quality and Reading Comprehension

    ERIC Educational Resources Information Center

    Segers, Eliane; Verhoeven, Ludo

    2016-01-01

    The present study aimed to examine the role of logical reasoning in the relation between lexical quality and reading comprehension in 146 fourth grade Dutch children. We assessed their standardized reading comprehension measure, along with their decoding efficiency and vocabulary as measures of lexical quality, syllogistic reasoning as measure of…

  1. Development of an Experimental Literacy Assessment Battery. Final Report.

    ERIC Educational Resources Information Center

    Sticht, Thomas G.; Beck, Lawrence J.

    This report describes the development of a Literacy Assessment Battery (LAB) for determining the relative efficiency with which adults can comprehend language by reading or listening. Development of the LAB included: the tryout with adults of two listening and reading tests designed for children; experimental studies of a decoding task involving…

  2. Cognitive Difficulties in Struggling Comprehenders and their Relation to Reading Comprehension: A Comparison of Group Selection and Regression-Based Models

    PubMed Central

    Barnes, Marcia A.; Stuebing, Karla; Fletcher, Jack M.; Barth, Amy; Francis, David

    2016-01-01

    Difficulties suppressing previously encountered, but currently irrelevant information from working memory characterize less skilled comprehenders in studies in which they are matched to skilled comprehenders on word decoding and nonverbal IQ. These “extreme” group designs are associated with several methodological issues. When sample size permits, regression approaches permit a more accurate estimation of effects. Using data for students in grades 6 to 12 (n = 766), regression techniques assessed the significance and size of the relation of suppression to reading comprehension across the distribution of comprehension skill. After accounting for decoding efficiency and nonverbal IQ, suppression, measured by performance on a verbal proactive interference task, accounted for a small amount of significant unique variance in comprehension (less than 1%). A comparison of suppression in less skilled comprehenders matched to more skilled comprehenders (48 per group) on age, word reading efficiency and nonverbal IQ did not show significant group differences in suppression. The implications of the findings for theories of reading comprehension and for informing comprehension assessment and intervention are discussed. PMID:27175222

  3. Multisensory speech perception in autism spectrum disorder: From phoneme to whole-word perception.

    PubMed

    Stevenson, Ryan A; Baum, Sarah H; Segers, Magali; Ferber, Susanne; Barense, Morgan D; Wallace, Mark T

    2017-07-01

    Speech perception in noisy environments is boosted when a listener can see the speaker's mouth and integrate the auditory and visual speech information. Autistic children have a diminished capacity to integrate sensory information across modalities, which contributes to core symptoms of autism, such as impairments in social communication. We investigated the abilities of autistic and typically-developing (TD) children to integrate auditory and visual speech stimuli in various signal-to-noise ratios (SNR). Measurements of both whole-word and phoneme recognition were recorded. At the level of whole-word recognition, autistic children exhibited reduced performance in both the auditory and audiovisual modalities. Importantly, autistic children showed reduced behavioral benefit from multisensory integration with whole-word recognition, specifically at low SNRs. At the level of phoneme recognition, autistic children exhibited reduced performance relative to their TD peers in auditory, visual, and audiovisual modalities. However, and in contrast to their performance at the level of whole-word recognition, both autistic and TD children showed benefits from multisensory integration for phoneme recognition. In accordance with the principle of inverse effectiveness, both groups exhibited greater benefit at low SNRs relative to high SNRs. Thus, while autistic children showed typical multisensory benefits during phoneme recognition, these benefits did not translate to typical multisensory benefit of whole-word recognition in noisy environments. We hypothesize that sensory impairments in autistic children raise the SNR threshold needed to extract meaningful information from a given sensory input, resulting in subsequent failure to exhibit behavioral benefits from additional sensory information at the level of whole-word recognition. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1280-1290. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Neural mechanisms of phonemic restoration for speech comprehension revealed by magnetoencephalography.

    PubMed

    Sunami, Kishiko; Ishii, Akira; Takano, Sakurako; Yamamoto, Hidefumi; Sakashita, Tetsushi; Tanaka, Masaaki; Watanabe, Yasuyoshi; Yamane, Hideo

    2013-11-06

    In daily communication, we can usually still hear the spoken words as if they had not been masked and can comprehend the speech when spoken words are masked by background noise. This phenomenon is known as phonemic restoration. Since little is known about the neural mechanisms underlying phonemic restoration for speech comprehension, we aimed to identify the neural mechanisms using magnetoencephalography (MEG). Twelve healthy male volunteers with normal hearing participated in the study. Participants were requested to carefully listen to and understand recorded spoken Japanese stories, which were either played forward (forward condition) or in reverse (reverse condition), with their eyes closed. Several syllables of spoken words were replaced by 300-ms white-noise stimuli with an inter-stimulus interval of 1.6-20.3s. We compared MEG responses to white-noise stimuli during the forward condition with those during the reverse condition using time-frequency analyses. Increased 3-5 Hz band power in the forward condition compared with the reverse condition was continuously observed in the left inferior frontal gyrus [Brodmann's areas (BAs) 45, 46, and 47] and decreased 18-22 Hz band powers caused by white-noise stimuli were seen in the left transverse temporal gyrus (BA 42) and superior temporal gyrus (BA 22). These results suggest that the left inferior frontal gyrus and left transverse and superior temporal gyri are involved in phonemic restoration for speech comprehension. Our findings may help clarify the neural mechanisms of phonemic restoration as well as develop innovative treatment methods for individuals suffering from impaired speech comprehension, particularly in noisy environments. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Increased subcortical neural activity among HIV+ individuals during a lexical retrieval task.

    PubMed

    Thames, April D; Sayegh, Philip; Terashima, Kevin; Foley, Jessica M; Cho, Andrew; Arentoft, Alyssa; Hinkin, Charles H; Bookheimer, Susan Y

    2016-08-01

    Deficits in lexical retrieval, present in approximately 40% of HIV+ patients, are thought to reflect disruptions to frontal-striatal functions and may worsen with immunosuppression. Coupling frontal-striatal tasks such as lexical retrieval with functional neuroimaging may help delineate the pathophysiologic mechanisms underlying HIV-associated neurological dysfunction. We examined whether HIV infection confers brain functional changes during lexical access and retrieval. It was expected that HIV+ individuals would demonstrate greater brain activity in frontal-subcortical regions despite minimal differences between groups on neuropsychological testing. Within the HIV+ sample, we examined associations between indices of immunosuppression (recent and nadir CD4+ count) and task-related signal change in frontostriatal structures. Method16 HIV+ participants and 12 HIV- controls underwent fMRI while engaged in phonemic/letter and semantic fluency tasks. Participants also completed standardized measures of verbal fluency HIV status groups performed similarly on phonemic and semantic fluency tasks prior to being scanned. fMRI results demonstrated activation differences during the phonemic fluency task as a function of HIV status, with HIV+ individuals demonstrating significantly greater activation in BG structures than HIV- individuals. There were no significant differences in frontal brain activation between HIV status groups during the phonemic fluency task, nor were there significant brain activation differences during the semantic fluency task. Within the HIV+ group, current CD4+ count, though not nadir, was positively correlated with increased activity in the inferior frontal gyrus and basal ganglia. During phonemic fluency performance, HIV+ patients recruit subcortical structures to a greater degree than HIV- controls despite similar task performances suggesting that fMRI may be sensitive to neurocompromise before overt cognitive declines can be detected. Among HIV+ individuals, reduced activity in the frontal-subcortical structures was associated with lower CD4+ count. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Language context modulates reading route: an electrical neuroimaging study

    PubMed Central

    Buetler, Karin A.; de León Rodríguez, Diego; Laganaro, Marina; Müri, René; Spierer, Lucas; Annoni, Jean-Marie

    2014-01-01

    Introduction: The orthographic depth hypothesis (Katz and Feldman, 1983) posits that different reading routes are engaged depending on the type of grapheme/phoneme correspondence of the language being read. Shallow orthographies with consistent grapheme/phoneme correspondences favor encoding via non-lexical pathways, where each grapheme is sequentially mapped to its corresponding phoneme. In contrast, deep orthographies with inconsistent grapheme/phoneme correspondences favor lexical pathways, where phonemes are retrieved from specialized memory structures. This hypothesis, however, lacks compelling empirical support. The aim of the present study was to investigate the impact of orthographic depth on reading route selection using a within-subject design. Method: We presented the same pseudowords (PWs) to highly proficient bilinguals and manipulated the orthographic depth of PW reading by embedding them among two separated German or French language contexts, implicating respectively, shallow or deep orthography. High density electroencephalography was recorded during the task. Results: The topography of the ERPs to identical PWs differed 300–360 ms post-stimulus onset when the PWs were read in different orthographic depth context, indicating distinct brain networks engaged in reading during this time window. The brain sources underlying these topographic effects were located within left inferior frontal (German > French), parietal (French > German) and cingular areas (German > French). Conclusion: Reading in a shallow context favors non-lexical pathways, reflected in a stronger engagement of frontal phonological areas in the shallow versus the deep orthographic context. In contrast, reading PW in a deep orthographic context recruits less routine non-lexical pathways, reflected in a stronger engagement of visuo-attentional parietal areas in the deep versus shallow orthographic context. These collective results support a modulation of reading route by orthographic depth. PMID:24600377

  7. Learning to perceive and recognize a second language: the L2LP model revised.

    PubMed

    van Leussen, Jan-Willem; Escudero, Paola

    2015-01-01

    We present a test of a revised version of the Second Language Linguistic Perception (L2LP) model, a computational model of the acquisition of second language (L2) speech perception and recognition. The model draws on phonetic, phonological, and psycholinguistic constructs to explain a number of L2 learning scenarios. However, a recent computational implementation failed to validate a theoretical proposal for a learning scenario where the L2 has less phonemic categories than the native language (L1) along a given acoustic continuum. According to the L2LP, learners faced with this learning scenario must not only shift their old L1 phoneme boundaries but also reduce the number of categories employed in perception. Our proposed revision to L2LP successfully accounts for this updating in the number of perceptual categories as a process driven by the meaning of lexical items, rather than by the learners' awareness of the number and type of phonemes that are relevant in their new language, as the previous version of L2LP assumed. Results of our simulations show that meaning-driven learning correctly predicts the developmental path of L2 phoneme perception seen in empirical studies. Additionally, and to contribute to a long-standing debate in psycholinguistics, we test two versions of the model, with the stages of phonemic perception and lexical recognition being either sequential or interactive. Both versions succeed in learning to recognize minimal pairs in the new L2, but make diverging predictions on learners' resulting phonological representations. In sum, the proposed revision to the L2LP model contributes to our understanding of L2 acquisition, with implications for speech processing in general.

  8. Modeling Spoken Word Recognition Performance by Pediatric Cochlear Implant Users using Feature Identification

    PubMed Central

    Frisch, Stefan A.; Pisoni, David B.

    2012-01-01

    Objective Computational simulations were carried out to evaluate the appropriateness of several psycholinguistic theories of spoken word recognition for children who use cochlear implants. These models also investigate the interrelations of commonly used measures of closed-set and open-set tests of speech perception. Design A software simulation of phoneme recognition performance was developed that uses feature identification scores as input. Two simulations of lexical access were developed. In one, early phoneme decisions are used in a lexical search to find the best matching candidate. In the second, phoneme decisions are made only when lexical access occurs. Simulated phoneme and word identification performance was then applied to behavioral data from the Phonetically Balanced Kindergarten test and Lexical Neighborhood Test of open-set word recognition. Simulations of performance were evaluated for children with prelingual sensorineural hearing loss who use cochlear implants with the MPEAK or SPEAK coding strategies. Results Open-set word recognition performance can be successfully predicted using feature identification scores. In addition, we observed no qualitative differences in performance between children using MPEAK and SPEAK, suggesting that both groups of children process spoken words similarly despite differences in input. Word recognition ability was best predicted in the model in which phoneme decisions were delayed until lexical access. Conclusions Closed-set feature identification and open-set word recognition focus on different, but related, levels of language processing. Additional insight for clinical intervention may be achieved by collecting both types of data. The most successful model of performance is consistent with current psycholinguistic theories of spoken word recognition. Thus it appears that the cognitive process of spoken word recognition is fundamentally the same for pediatric cochlear implant users and children and adults with normal hearing. PMID:11132784

  9. Hardware Implementation of Serially Concatenated PPM Decoder

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon; Barsoum, Maged; Cheng, Michael; Nakashima, Michael

    2009-01-01

    A prototype decoder for a serially concatenated pulse position modulation (SCPPM) code has been implemented in a field-programmable gate array (FPGA). At the time of this reporting, this is the first known hardware SCPPM decoder. The SCPPM coding scheme, conceived for free-space optical communications with both deep-space and terrestrial applications in mind, is an improvement of several dB over the conventional Reed-Solomon PPM scheme. The design of the FPGA SCPPM decoder is based on a turbo decoding algorithm that requires relatively low computational complexity while delivering error-rate performance within approximately 1 dB of channel capacity. The SCPPM encoder consists of an outer convolutional encoder, an interleaver, an accumulator, and an inner modulation encoder (more precisely, a mapping of bits to PPM symbols). Each code is describable by a trellis (a finite directed graph). The SCPPM decoder consists of an inner soft-in-soft-out (SISO) module, a de-interleaver, an outer SISO module, and an interleaver connected in a loop (see figure). Each SISO module applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to compute a-posteriori bit log-likelihood ratios (LLRs) from apriori LLRs by traversing the code trellis in forward and backward directions. The SISO modules iteratively refine the LLRs by passing the estimates between one another much like the working of a turbine engine. Extrinsic information (the difference between the a-posteriori and a-priori LLRs) is exchanged rather than the a-posteriori LLRs to minimize undesired feedback. All computations are performed in the logarithmic domain, wherein multiplications are translated into additions, thereby reducing complexity and sensitivity to fixed-point implementation roundoff errors. To lower the required memory for storing channel likelihood data and the amounts of data transfer between the decoder and the receiver, one can discard the majority of channel likelihoods, using only the remainder in operation of the decoder. This is accomplished in the receiver by transmitting only a subset consisting of the likelihoods that correspond to time slots containing the largest numbers of observed photons during each PPM symbol period. The assumed number of observed photons in the remaining time slots is set to the mean of a noise slot. In low background noise, the selection of a small subset in this manner results in only negligible loss. Other features of the decoder design to reduce complexity and increase speed include (1) quantization of metrics in an efficient procedure chosen to incur no more than a small performance loss and (2) the use of the max-star function that allows sum of exponentials to be computed by simple operations that involve only an addition, a subtraction, and a table lookup. Another prominent feature of the design is a provision for access to interleaver and de-interleaver memory in a single clock cycle, eliminating the multiple clock-cycle latency characteristic of prior interleaver and de-interleaver designs.

  10. Dynamic frame resizing with convolutional neural network for efficient video compression

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Park, Youngo; Choi, Kwang Pyo; Lee, JongSeok; Jeon, Sunyoung; Park, JeongHoon

    2017-09-01

    In the past, video codecs such as vc-1 and H.263 used a technique to encode reduced-resolution video and restore original resolution from the decoder for improvement of coding efficiency. The techniques of vc-1 and H.263 Annex Q are called dynamic frame resizing and reduced-resolution update mode, respectively. However, these techniques have not been widely used due to limited performance improvements that operate well only under specific conditions. In this paper, video frame resizing (reduced/restore) technique based on machine learning is proposed for improvement of coding efficiency. The proposed method features video of low resolution made by convolutional neural network (CNN) in encoder and reconstruction of original resolution using CNN in decoder. The proposed method shows improved subjective performance over all the high resolution videos which are dominantly consumed recently. In order to assess subjective quality of the proposed method, Video Multi-method Assessment Fusion (VMAF) which showed high reliability among many subjective measurement tools was used as subjective metric. Moreover, to assess general performance, diverse bitrates are tested. Experimental results showed that BD-rate based on VMAF was improved by about 51% compare to conventional HEVC. Especially, VMAF values were significantly improved in low bitrate. Also, when the method is subjectively tested, it had better subjective visual quality in similar bit rate.

  11. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements

    PubMed Central

    Mollazadeh, Mohsen; Davidson, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2013-01-01

    The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation. PMID:23536714

  12. Indoor visible light communication with smart lighting technology

    NASA Astrophysics Data System (ADS)

    Das Barman, Abhirup; Halder, Alak

    2017-02-01

    An indoor visible-light communication performance is investigated utilizing energy efficient white light by 2D LED arrays. Enabled by recent advances in LED technology, IEEE 802.15.7 standardizes high-data-rate visible light communication and advocates for colour shift keying (CSK) modulation to overcome flicker and to support dimming. Voronoi segmentation is employed for decoding N-CSK constellation which has superior performance compared to other existing decoding methods. The two chief performance degrading effects of inter-symbol interference and LED nonlinearity is jointly mitigated using LMS post equalization at the receiver which improves the symbol error rate performance and increases field of view of the receiver. It is found that LMS post equalization symbol at 250MHz offers 7dB SNR improvement at SER10-6

  13. Optimal decoding and information transmission in Hodgkin-Huxley neurons under metabolic cost constraints.

    PubMed

    Kostal, Lubomir; Kobayashi, Ryota

    2015-10-01

    Information theory quantifies the ultimate limits on reliable information transfer by means of the channel capacity. However, the channel capacity is known to be an asymptotic quantity, assuming unlimited metabolic cost and computational power. We investigate a single-compartment Hodgkin-Huxley type neuronal model under the spike-rate coding scheme and address how the metabolic cost and the decoding complexity affects the optimal information transmission. We find that the sub-threshold stimulation regime, although attaining the smallest capacity, allows for the most efficient balance between the information transmission and the metabolic cost. Furthermore, we determine post-synaptic firing rate histograms that are optimal from the information-theoretic point of view, which enables the comparison of our results with experimental data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Real-time minimal-bit-error probability decoding of convolutional codes

    NASA Technical Reports Server (NTRS)

    Lee, L.-N.

    1974-01-01

    A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.

  15. Real-time minimal bit error probability decoding of convolutional codes

    NASA Technical Reports Server (NTRS)

    Lee, L. N.

    1973-01-01

    A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.

  16. Recognition of Emotions in Mexican Spanish Speech: An Approach Based on Acoustic Modelling of Emotion-Specific Vowels

    PubMed Central

    Caballero-Morales, Santiago-Omar

    2013-01-01

    An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR) system was built with Hidden Markov Models (HMMs), where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness). Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR's output for the sentence. With this approach, accuracy of 87–100% was achieved for the recognition of emotional state of Mexican Spanish speech. PMID:23935410

  17. Psychometric Functions for Shortened Administrations of a Speech Recognition Approach Using Tri-Word Presentations and Phonemic Scoring

    ERIC Educational Resources Information Center

    Gelfand, Stanley A.; Gelfand, Jessica T.

    2012-01-01

    Method: Complete psychometric functions for phoneme and word recognition scores at 8 signal-to-noise ratios from -15 dB to 20 dB were generated for the first 10, 20, and 25, as well as all 50, three-word presentations of the Tri-Word or Computer Assisted Speech Recognition Assessment (CASRA) Test (Gelfand, 1998) based on the results of 12…

  18. Pre-Service Teachers' Knowledge of Phonemic Awareness: Relationship to Perceived Knowledge, Self-Efficacy Beliefs, and Exposure to a Multimedia-Enhanced Lecture

    ERIC Educational Resources Information Center

    Martinussen, Rhonda; Ferrari, Julia; Aitken, Madison; Willows, Dale

    2015-01-01

    This study examined the relations among perceived and actual knowledge of phonemic awareness (PA), exposure to PA instruction during practicum, and self-efficacy for teaching PA in a sample of 54 teacher candidates (TCs) enrolled in a 1-year Bachelor of Education program in a Canadian university. It also assessed the effects of a brief…

  19. Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users

    PubMed Central

    Newman, Rochelle S.; Goupell, Matthew J.

    2017-01-01

    Purpose Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate information could explain some of the variability in this population's speech perception outcomes. Method Phonemes with manipulated voice-onset-time (VOT) durations were embedded in sentences with different speech rates. Twenty-three CI and 29 NH participants performed a phoneme identification task. NH participants heard the same unprocessed stimuli as the CI participants or stimuli degraded by a sine vocoder, simulating aspects of CI processing. Results CI participants showed larger rate normalization effects (6.6 ms) than the NH participants (3.7 ms) and had shallower (less reliable) category boundary slopes. NH participants showed similarly shallow slopes when presented acoustically degraded vocoded signals, but an equal or smaller rate effect in response to reductions in available spectral and temporal information. Conclusion CI participants can rate normalize, despite their degraded speech input, and show a larger rate effect compared to NH participants. CI participants may particularly rely on rate normalization to better maintain perceptual constancy of the speech signal. PMID:28395319

  20. Audiovisual perceptual learning with multiple speakers.

    PubMed

    Mitchel, Aaron D; Gerfen, Chip; Weiss, Daniel J

    2016-05-01

    One challenge for speech perception is between-speaker variability in the acoustic parameters of speech. For example, the same phoneme (e.g. the vowel in "cat") may have substantially different acoustic properties when produced by two different speakers and yet the listener must be able to interpret these disparate stimuli as equivalent. Perceptual tuning, the use of contextual information to adjust phonemic representations, may be one mechanism that helps listeners overcome obstacles they face due to this variability during speech perception. Here we test whether visual contextual cues to speaker identity may facilitate the formation and maintenance of distributional representations for individual speakers, allowing listeners to adjust phoneme boundaries in a speaker-specific manner. We familiarized participants to an audiovisual continuum between /aba/ and /ada/. During familiarization, the "b-face" mouthed /aba/ when an ambiguous token was played, while the "D-face" mouthed /ada/. At test, the same ambiguous token was more likely to be identified as /aba/ when paired with a stilled image of the "b-face" than with an image of the "D-face." This was not the case in the control condition when the two faces were paired equally with the ambiguous token. Together, these results suggest that listeners may form speaker-specific phonemic representations using facial identity cues.

Top