Nanoscale control of phonon excitations in graphene
Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo
2015-01-01
Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454
Stationary Phonon Squeezing by Optical Polaron Excitation
NASA Astrophysics Data System (ADS)
Papenkort, T.; Axt, V. M.; Kuhn, T.
2017-03-01
We demonstrate that a stationary squeezed phonon state can be prepared by a pulsed optical excitation of a semiconductor quantum well. Unlike previously discussed scenarios for generating squeezed phonons, the corresponding uncertainties become stationary after the excitation and do not oscillate in time. The effect is caused by two-phonon correlations within the excited polaron. We demonstrate by quantum kinetic simulations and by a perturbation analysis that the energetically lowest polaron state comprises two-phonon correlations which, after the pulse, result in an uncertainty of the lattice momentum that is continuously lower than in the ground state of the semiconductor. The simulations show the dynamics of the polaron formation process and the resulting time-dependent lattice uncertainties.
An Artificial Ising System with Phononic Excitations
NASA Astrophysics Data System (ADS)
Ghaffari, Hamed; Griffith, W. Ashley; Benson, Philip; Nasseri, M. H. B.; Young, R. Paul
Many intractable systems and problems can be reduced to a system of interacting spins. Here, we report mapping collective phononic excitations from different sources of crystal vibrations to spin systems. The phononic excitations in our experiments are due to micro and nano cracking (yielding crackling noises due to lattice distortion). We develop real time mapping of the multi-array senores to a network-space and then mapping the excitation- networks to spin-like systems. We show that new mapped system satisfies the quench (impulsive) characteristics of the Ising model in 2D classical spin systems. In particular, we show that our artificial Ising system transits between two ground states and approaching the critical point accompanies with a very short time frozen regime, inducing formation of domains separated by kinks. For a cubic-test under a true triaxial test (3D case), we map the system to a 6-spin ring under a transversal-driving field where using functional multiplex networks, the vector components of the spin are inferred (i.e., XY model). By visualization of spin patterns of the ring per each event, we demonstrate that ``kinks'' (as defects) proliferate when system approach from above to its critical point. We support our observations with employing recorded acoustic excitations during distortion of crystal lattices in nano-indentation tests on different crystals (silicon and graphite), triaxial loading test on rock (poly-crystal) samples and a true 3D triaxial test.
Excitation of phonons in medium-energy electron diffraction
NASA Astrophysics Data System (ADS)
Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.
1996-03-01
The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.
Phonon excitation and its significance for electrochemically grown copper layers
NASA Astrophysics Data System (ADS)
Küssner, T.; Wünsche, M.; Schumacher, R.
2001-04-01
Electrochemically grown fine and coarsely grained copper films have been exposed to low and strongly damped 5 MHz shear oscillations that travel through them with normal incidence. The real parts of the electrical components such as inductivity L, capacitance C and Ohmic resistance R were evaluated from impedance spectroscopy performed on copper films affixed to 5 MHz quartz oscillators. L, C, R-data were used to calculate the inverse quality factor 1/ Q which is related to the energy dissipated during a single oscillation cycle. Recently, phonon activation has been identified as a major route to explain energy dissipation that occur between sliding surfaces. With the reasonable assumption that shear movement across a grained metal film causes sliding across the grain boundary the sliding distance as and sliding velocity vs can be evaluated. Their presentation as 1/ Q vs. as and vs plots prove that energy dissipation is limited to very small ranges for as and vs. On the basis of this observation atomic scale sliding is subdivided into non-sliding, effective sliding and non-effective sliding. The observed energy dissipation for effective sliding is attributed to the formation of localized phonons which cause the resistivity to increase. As a consequence two conducting states are formed defined as conductivity ground and excited state. One is characterized by a small 1/ Q-value and is attributed to a conducting state which is purely determined by the Ohmic film resistance as prepared. For this situation the current flow through the sample occurs normal to the surface. On the other hand, the conducting state associated with a large 1/ Q-value results from phonon excitation that arise due to the motion across the grain boundary. The resulting increase of the Ohmic resistance causes a change of the current direction from normal to parallel to the surface. These two conducting states coexist during shear oscillation. Their individual contributions to the overall
NASA Astrophysics Data System (ADS)
Tea, Eric; Hamzeh, Hani; Aniel, Frédéric
2011-12-01
We present a study of the photo-excited charge carriers relaxation dynamics in polar semiconductors comparing calculations to pump probe experiments. Hot carrier densities in the 1018cm-3 range can easily be photo-generated using moderately intense optical excitations. This can lead to known phenomena, namely, hot phonon populations and the coupling of polar optical phonons with plasmon modes. However, these two phenomena can affect the hot carriers relaxation and have never been examined together. This is a problem for the theoretical study of future Hot Carrier Solar Cells, where the conditions allow both of these phenomena to occur. The charge carriers dynamics and the coupling of polar optical phonons with plasmon modes are treated by a Full Band Ensemble Monte Carlo simulation code featuring a self-consistent dielectric function. To take into consideration hot phonon populations and the subsequent phonon bottleneck for the carriers relaxation, the charge carriers simulation code is coupled to a phonon dedicated Ensemble Monte Carlo code. This enables for the first time an accurate study of both the charge carriers and phonon systems dynamics, the latter being most of the time overly simplified in previous studies. The present work explores to which extent the two aforementioned phenomena affect the photo-generated charge carriers relaxation in GaAs and can be easily adapted to other polar semiconductors.
Origin of coherent phonons in Bi2Te3 excited by ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Wang, Yaguo; Guo, Liang; Xu, Xianfan; Pierce, Jonathan; Venkatasubramanian, Rama
2013-08-01
Femtosecond laser pulses are used to excite coherent optical phonons in single crystal Bi2Te3 thin films. Oscillations from low- and high-frequency A1g phonon modes are observed. A perturbation model based on molecular dynamics reveals various possibilities of phonon generation due to complex interactions among different phonon modes. In order to elucidate the process of phonon generation, measurements on thin films with thicknesses below the optical absorption depth are carried out, showing that a gradient force is necessary to excite the observed A1g phonon modes, which provides a refined picture of displacive excitation of coherent phonon.
Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation
NASA Astrophysics Data System (ADS)
Pochon, S.; MacDonald, K. F.; Knize, R. J.; Zheludev, N. I.
2004-04-01
In gallium nanoparticles 100nm in diameter grown on the tip of an optical fiber from an atomic beam we observed equilibrium coexistence of γ, β, and liquid structural phases that can be controlled by e-beam excitation in a highly reversible and reproducible fashion. With 2keV electrons only 1pJ of excitation energy per nanoparticle is needed to exercise control, with the equilibrium phase achieved in less than a few tenths of a microsecond. The transformations between coexisting phases are accompanied by a continuous change in the nanoparticle film's reflectivity.
Two-phonon excitations in ^{170}Er
Archer, D E; Becker, J A; Bernstein, L A; Garrett, P E; Johns, G D; Kadi, M; Martin, A; Nelson, R O; Warr, N; Wilburn, W S; Yates, S W; Younes, W
1998-09-29
Recent experiments at the GEANIE/WNR facility and the University of Kentucky accelerator have yielded strong evidence for a two-gamma excitation in ^{170}Er. This new case can be added to a handful of previously identified examples of two-gamma vibrations, all of them discovered in this decade. In this paper the experimental evidence for a two-phonon excitation ^{170}Er is presented and the current state of understanding of these structures is reviewed in the context of this and other recent findings.
Ultrafast modulation of electronic structure by coherent phonon excitations
NASA Astrophysics Data System (ADS)
Weisshaupt, J.; Rouzée, A.; Woerner, M.; Vrakking, M. J. J.; Elsaesser, T.; Shirley, E. L.; Borgschulte, A.
2017-02-01
Femtosecond x-ray absorption spectroscopy with a laser-driven high-harmonic source is used to map ultrafast changes of x-ray absorption by femtometer-scale coherent phonon displacements. In LiBH4, displacements along an Ag phonon mode at 10 THz are induced by impulsive Raman excitation and give rise to oscillatory changes of x-ray absorption at the Li K edge. Electron density maps from femtosecond x-ray diffraction data show that the electric field of the pump pulse induces a charge transfer from the BH4- to neighboring Li+ ions, resulting in a differential Coulomb force that drives lattice vibrations in this virtual transition state.
Generating Coherent Phonons and Spin Excitations with Ultrafast Light Pulses
NASA Astrophysics Data System (ADS)
Merlin, Roberto
2006-03-01
Recent work on the generation of coherent low-lying excitations by ultrafast laser pulses will be reviewed, emphasizing the microscopic mechanisms of light-matter interaction. The topics covered include long-lived phonons in ZnO [C. Aku-Leh, J. Zhao, R. Merlin, J. Men'endez and M. Cardona, Phys. Rev.B 71, 205211 (2005)], squeezed magnons [J. Zhao, A. V. Bragas, D. J. Lockwood and R. Merlin, Phys. Rev. Lett. 93, 107203 (2004)], spin- and charge-density fluctuations [J. M. Bao et al., Phys. Rev. Lett. 92, 236601 (2004)] and cyclotron resonance [J. K. Wahlstrand, D. M. Wang, P. Jacobs, J. M. Bao, R. Merlin, K. W. West and L. N. Pfeiffer, AIP Conference Proceedings 772 (2005), p. 1313] in GaAs quantum wells. In addition, unpublished results on surface -avoiding phonons in GaAs-AlAs superlattices [M. Trigo et al., unpublished] and magnons in ferromagnetic Ga1-xMnxAs [D. M. Wang et al., unpublished] will be discussed. It will also be shown that frequencies can be measured using pump-probe techniques with a precision comparable to that of Brillouin scattering. It is now widely accepted that stimulated Raman scattering (SRS) is (often but not always) the mechanism responsible for the coherent coupling. Results will be presented showing that SRS is described by two separate tensors, one of which accounts for the excitation-induced modulation of the susceptibility, and the other one for the dependence of the amplitude of the oscillation on the light intensity [T. E. Stevens, J. Kuhl and R. Merlin, Phys. Rev. B 65, 144304 (2002)]. These tensors have the same real component, associated with impulsive coherent generation, but different imaginary parts. If the imaginary term dominates, that is, for strongly absorbing substances, the mechanism for two-band processes becomes displacive in nature, as in the DECP (displacive excitation of coherent phonons) model. It will be argued that DECP is not a separate mechanism, but a particular case of SRS. In the final part of the talk, an
Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses
Fu, Zhengping; Yamaguchi, Masashi
2016-01-01
Coherent excitation and control of lattice motion by electromagnetic radiation in optical frequency range has been reported through variety of indirect interaction mechanisms with phonon modes. However, coherent phonon excitation by direct interaction of electromagnetic radiation and nuclei has not been demonstrated experimentally in terahertz (THz) frequency range mainly due to the lack of THz emitters with broad bandwidth suitable for the purpose. We report the experimental observation of coherent phonon excitation and detection in GaAs using ultrafast THz-pump/optical-probe scheme. From the results of THz pump field dependence, pump/probe polarization dependence, and crystal orientation dependence, we attributed THz wave absorption and linear electro-optic effect to the excitation and detection mechanisms of coherent polar TO phonons. Furthermore, the carrier density dependence of the interaction of coherent phonons and free carriers is reported. PMID:27905563
Observation of low- and high-energy Gamow-Teller phonon excitations in nuclei.
Fujita, Y; Fujita, H; Adachi, T; Bai, C L; Algora, A; Berg, G P A; von Brentano, P; Colò, G; Csatlós, M; Deaven, J M; Estevez-Aguado, E; Fransen, C; De Frenne, D; Fujita, K; Ganioğlu, E; Guess, C J; Gulyás, J; Hatanaka, K; Hirota, K; Honma, M; Ishikawa, D; Jacobs, E; Krasznahorkay, A; Matsubara, H; Matsuyanagi, K; Meharchand, R; Molina, F; Muto, K; Nakanishi, K; Negret, A; Okamura, H; Ong, H J; Otsuka, T; Pietralla, N; Perdikakis, G; Popescu, L; Rubio, B; Sagawa, H; Sarriguren, P; Scholl, C; Shimbara, Y; Shimizu, Y; Susoy, G; Suzuki, T; Tameshige, Y; Tamii, A; Thies, J H; Uchida, M; Wakasa, T; Yosoi, M; Zegers, R G T; Zell, K O; Zenihiro, J
2014-03-21
Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 "f-shell" nuclei in ((3)He, t) charge-exchange reactions. In the (42)Ca → (42)Sc reaction, most of the GT strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6-11 MeV region. In the (54)Fe → (54)Co reaction, the high-energy GT phonon excitation mainly carries the GT strength. The existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.
Generation and detection of squeezed phonons in lattice dynamics by ultrafast optical excitations
NASA Astrophysics Data System (ADS)
Benatti, Fabio; Esposito, Martina; Fausti, Daniele; Floreanini, Roberto; Titimbo, Kelvin; Zimmermann, Klaus
2017-02-01
We propose a fully quantum treatment for pump and probe experiments applied to the study of phonon excitations in solids. To describe the interaction between photons and phonons, a single effective hamiltonian is used that is able to model both the excitation induced by pump laser pulses and the subsequent measuring process through probe pulses. As the photoexcited phonons interact with their surroundings, mainly electrons and impurities in the target material, they cannot be considered isolated: their dynamics needs to be described by a master equation that takes into account the dissipative and noisy effects due to the presence of the environment. In this formalism, the quantum dynamics of pump excited phonons can be analyzed through suitable probe photon observables; in particular, a clear signature of squeezed phonons can be obtained by looking simultaneously at the behavior of the scattered probe mean photon number and its variance.
Phonon-assisted excitation energy transfer in photosynthetic systems
NASA Astrophysics Data System (ADS)
Chen, Hao; Wang, Xin; Fang, Ai-Ping; Li, Hong-Rong
2016-09-01
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest. This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems. Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems, in which one of them is coupled to a high-energy vibrational mode, we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame. The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor, the original detuned energy transfer becomes resonant energy transfer. In addition, the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically. It is found that, the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode, as well as the vibrational frequency. The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system. Results obtained in this article are not only helpful to understand the natural photosynthesis, but also offer an optimal design principle for artificial photosynthesis. Project supported by the National Natural Science Foundation of China (Grant No. 11174233).
Research on local resonance and Bragg scattering coexistence in phononic crystal
NASA Astrophysics Data System (ADS)
Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong
2017-04-01
Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.
NASA Astrophysics Data System (ADS)
Inakura, Tsunenori; Matsuo, Masayuki
2017-08-01
Background: The Anderson-Bogoliubov (AB) phonon, called also the superfluid phonon, has attracted attentions since it may influence the thermal conductivity and other properties of the inner crust of neutron stars. However, there are a limited number of microscopic studies of the AB phonon where the presence of clusters is explicitly taken into account. Purpose: We intend to clarify how the presence of clusters affects the AB phonon in order to obtain microscopic information relevant to the coupling between the AB phonon and the lattice phonon. Methods: The Hartree-Fock-Bogoliubov model and the quasiparticle random-phase approximation formulated in a spherical Wigner-Seitz cell are adopted to describe neutron superfluidity and associated collective excitations. We perform systematic numerical calculations for dipole excitation by varying the neutron chemical potential and the number of protons in a cell. Results: The model predicts systematic emergence of the dipole AB phonon mode, which, however, exhibits strong suppression of phonon amplitude inside the cluster. We find also that the phonon amplitude around the cluster surface varies with the neutron density. At higher neutron densities (≳0.006 fm-3) the AB phonon mode exhibits behavior similar to the pygmy dipole resonance in neutron-rich nuclei. Conclusions: The dipole AB phonon mode does not penetrate into the clusters. This suggests that the coupling between the AB phonon and the lattice phonon may be weak.
Atomic resolution mapping of phonon excitations in STEM-EELS experiments.
Egoavil, R; Gauquelin, N; Martinez, G T; Van Aert, S; Van Tendeloo, G; Verbeeck, J
2014-12-01
Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberration-corrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalized due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localization of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space.
Femtosecond laser excitation of coherent optical phonons in ferroelectric LuMnO3
NASA Astrophysics Data System (ADS)
Lou, Shi-Tao; Zimmermann, Frank M.; Bartynski, Robert A.; Hur, Namjung; Cheong, Sang-Wook
2009-06-01
We have used femtosecond pump-probe spectroscopy to excite and probe coherent optical phonon vibrations in single crystals of hexagonal ferroelectric LuMnO3 . An optical phonon mode of A1 symmetry was coherently excited with 25 fs pump-laser pulses (λ≈800nm) . The phonon mode, involving Lu ion motion along the c axis, was identified as the soft mode driving the ferroelectric transition. The excitation mechanism was determined to be purely displacive in nature due to resonant excitation of a narrow intra-atomic dxy,x2-y2→d3z2-r2 transition in Mn. The lifetime of the Mndxy,x2-y2→d3z2-r2 excitation was measured to be 0.8 ps. A remarkable reversal of the sign of the oscillation amplitude ( π phase shift) of the reflectivity curve was observed upon comparing longitudinal-optical (LO) with transverse-optical (TO) mode geometries. The phase reversal is attributed to the macroscopic electric depolarization field accompanying infrared-active longitudinal phonon modes but absent in TO modes. In addition to the direct effect of the ion motion on the optical properties, which is the same in LO and TO modes, the longitudinal depolarization field of the LO mode gives rise to an additional modulation of the refractive index via the linear electro-optic effect which dominates the optical response.
Terahertz Sum-Frequency Excitation of a Raman-Active Phonon
NASA Astrophysics Data System (ADS)
Maehrlein, Sebastian; Paarmann, Alexander; Wolf, Martin; Kampfrath, Tobias
2017-09-01
In stimulated Raman scattering, two incident optical waves induce a force oscillating at the difference of the two light frequencies. This process has enabled important applications such as the excitation and coherent control of phonons and magnons by femtosecond laser pulses. Here, we experimentally and theoretically demonstrate the so far neglected up-conversion counterpart of this process: THz sum-frequency excitation of a Raman-active phonon mode, which is tantamount to two-photon absorption by an optical transition between two adjacent vibrational levels. Coherent control of an optical lattice vibration of diamond is achieved by an intense terahertz pulse whose spectrum is centered at half the phonon frequency of 40 THz. Remarkably, the carrier-envelope phase of the THz pulse is directly transferred into the phase of the lattice vibration. New prospects in general infrared spectroscopy, action spectroscopy, and lattice trajectory control in the electronic ground state emerge.
Ab initio study of phonon-induced dephasing of plasmon excitations in silver quantum dots
NASA Astrophysics Data System (ADS)
Guo, Zhenyu; Habenicht, Bradley F.; Liang, Wan-Zhen; Prezhdo, Oleg V.
2010-03-01
Phonon-induced pure dephasing of electronic excitations in silver quantum dots (QDs) is investigated with ab initio molecular dynamics at ambient and low temperatures. Three types of electronic states are studied corresponding to bulk, surface, and plasmon excitations. The electron-phonon coupling is strongest for bulk states and decreases for surface and plasmon states. The plasmon states dephase within 30-40 fs, which is consistent with the recent experiments [M. Z. Liu, M. Pelton, and P. Guyot-Sionnest, Phys. Rev. B 79, 035418 (2009)]. The dephasing time shows weak dependence on the QD size but changes significantly with temperature. The bulk, surface, and plasmon states couple primarily to low-frequency acoustic phonons.
Investigation of phonon excitations in {sup 114}Cd with the (n,n{sup '}{gamma}) reaction
Bandyopadhyay, D.; Lesher, S. R.; Fransen, C.; Boukharouba, N.; McEllistrem, M. T.; Garrett, P. E.; Green, K. L.; Yates, S. W.
2007-11-15
Properties of low-spin states in {sup 114}Cd have been studied with the (n,n{sup '}{gamma}) reaction. Gamma-ray angular distributions and excitation functions have been used to characterize the decays of the excited levels. Level lifetimes have been obtained with the Doppler-shift attenuation method. Sixteen new levels and many new transitions have been suggested below 3.5 MeV in excitation energy. Levels belonging to the phonon multiplets have been proposed based on their decay patterns and collectivity, and the existing intruder structure has been extended. A two-phonon 1{sub ms}{sup +} state has been suggested. Excitation of the hexadecapole moment has been considered. Data have been compared with the theoretical calculations of the interacting boson model.
Mode-selective phonon excitation in gallium nitride using mid-infrared free-electron laser
NASA Astrophysics Data System (ADS)
Kagaya, Muneyuki; Yoshida, Kyohei; Zen, Heishun; Hachiya, Kan; Sagawa, Takashi; Ohgaki, Hideaki
2017-02-01
The single-phonon mode was selectively excited in a solid-state sample. A mid-infrared free-electron laser, which was tuned to the target phonon mode, was irradiated onto a crystal cooled to a cryogenic temperature, where modes other than the intended excitation were suppressed. An A 1(LO) vibrational mode excitation on GaN(0001) face was demonstrated. Anti-Stokes Raman scattering was used to observe the excited vibrational mode, and the appearance and disappearance of the scattering band at the target wavenumber were confirmed to correspond to on and off switching of the pump free-electron laser and were fixed to the sample vibrational mode. The sum-frequency generation signals of the pump and probe lasers overlapped the Raman signals and followed the wavenumber shift of the pump laser.
Studies of Phonons and Electronic Excitations in Semiconductor Heterostructures
1992-03-31
studies are primarily experimental fo- cusing on the technique of Raman scattering. 92-11243 9 2 4 2 7 /1 3 9 f 1118I II 14. SUBJECT TERMS 15.N4BROPAE...drop across the quantum well in units of e/2;k and Q is the external f charge in units of XA/4neL; L and A V a- are the width and the area of the MAX...the domains with F = E,2/ed and F = E13 /ed coexist leading to voltage oscillations associated with the motion of the domain boundary. There is also a
Probing electron-phonon excitations in molecular junctions by quantum interference
Bessis, C.; Della Rocca, M. L.; Barraud, C.; Martin, P.; Lacroix, J. C.; Markussen, T.; Lafarge, P.
2016-01-01
Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction’s conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green’s functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices. PMID:26864735
Probing electron-phonon excitations in molecular junctions by quantum interference
NASA Astrophysics Data System (ADS)
Bessis, C.; Della Rocca, M. L.; Barraud, C.; Martin, P.; Lacroix, J. C.; Markussen, T.; Lafarge, P.
2016-02-01
Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction’s conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green’s functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices.
Laser-excitation of electrons and nonequilibrium energy transfer to phonons in copper
NASA Astrophysics Data System (ADS)
Weber, S. T.; Rethfeld, B.
2017-09-01
After the irradiation of a copper sample with an ultrashort laser pulse, electrons do not follow a Fermi distribution anymore but instead are in a nonequilibrium state. In contrast, the lattice cannot be excited directly by the laser pulse, due to the frequency mismatch. The energy increase in the phononic system only happens due to electron-phonon scattering. We investigate the initial electron dynamics using full Boltzmann-type collision integrals, including material-dependent characteristics by implementing a realistic density of states. We show results on the absorbed energy, details of the electronic nonequilibrium and the resulting electron-phonon coupling parameter in dependence on the photon energy. Our results show a counteracting dependence on the photon energy, which, on the one hand, enables the d-band electrons to absorb high-energy photons and on the other hand, increases the probability of multi-photon absorption.
Chung, Pei-Kang; Yen, Shun-Tung
2014-11-14
We demonstrate the hot phonon effect on thermal radiation in the terahertz and far-infrared regime. A pseudomorphic high electron mobility transistor is used for efficiently exciting hot phonons. Boosting the hot phonon population can enhance the efficiency of thermal radiation. The transistor can yield at least a radiation power of 13 μW and a power conversion efficiency higher than a resistor by more than 20%.
Vanacore, Giovanni M; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H
2017-07-01
Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots-grown by Droplet Epitaxy on AlGaAs-with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.
Gutmann, Matthias J.; Graziano, Gabriella; Mukhopadhyay, Sanghamitra; Refson, Keith; von Zimmerman, Martin
2015-01-01
Direct phonon excitation in a neutron time-of-flight single-crystal Laue diffraction experiment has been observed in a single crystal of NaCl. At room temperature both phonon emission and excitation leave characteristic features in the diffuse scattering and these are well reproduced using ab initio phonons from density functional theory (DFT). A measurement at 20 K illustrates the effect of thermal population of the phonons, leaving the features corresponding to phonon excitation and strongly suppressing the phonon annihilation. A recipe is given to compute these effects combining DFT results with the geometry of the neutron experiment. PMID:26306090
Infra red active modes due to coupling of cyclotron excitation and LO phonons in polar semiconductor
NASA Astrophysics Data System (ADS)
Agrawal, Ratna; Dubey, Swati; Ghosh, S.
2013-06-01
Effects of free carrier concentration, external magnetic field and Callen effective charge on infra red active modes in a polar semiconductor have been analytically investigated using simple harmonic oscillator model. Callen effective charge considerably enhances reflectivity and shifts minima towards lower values of energy. Presence of magnetic field leads towards the coupling of collective cyclotron excitations with LO phonon giving rise to maximum reflectivity whereas cyclotron resonance absorption results into minimum reflectivity.
NASA Astrophysics Data System (ADS)
Fahy, Stephen; Murphy-Armando, Felipe; Trigo, Mariano; Savic, Ivana; Murray, Eamonn; Reis, David
We have calculated the time-evolution of carriers and generated phonons in Ge after ultrafast photo-excitation above the direct band-gap. The relevant electron-phonon and anharmonic phonon scattering rates are obtained from first-principles electronic structure calculations. Measurements of the x-ray diffuse scattering after excitation near the L point in the Brillouin zone find a relatively slow (5 ps, compared to the typical electron-phonon energy relaxation of the Gamma-L phonon) increase of the phonon population. We find this is due to emission caused by the scattering of electrons between the Delta and L valleys, after the initial depopulation of the Gamma valley. The relative slowness of this process is due to a combination of causes: (i) the finite time for the initial depopulation of the conduction Gamma valley; (ii) the associated electron-phonon coupling is relatively weaker (compared to Gamma-L, Gamma-Delta and Delta-Delta couplings) ; (iii) the TA associated phonon has a long lifetime and (iv) the depopulation of the Delta valley suppresses the phonon emission. Supported by Science Foundation Ireland, Grant 12/1A/1601.
Electron-phonon relaxation and excited electron distribution in gallium nitride
Zhukov, V. P.; Tyuterev, V. G.; Chulkov, E. V.
2016-08-28
We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.
NASA Astrophysics Data System (ADS)
Zhang, Qicheng; Lan, Yu; Lu, Wei; Wang, Shuai
2017-05-01
Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz) are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz) are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.
Coexisting single-particle and collective excitations in 70As
NASA Astrophysics Data System (ADS)
Haring-Kaye, R. A.; Elder, R. M.; Döring, J.; Tabor, S. L.; Volya, A.; Allegro, P. R. P.; Bender, P. C.; Medina, N. H.; Morrow, S. I.; Oliviera, J. R. B.; Tripathi, V.
2015-10-01
High-spin states in 70As were studied using the 55Mn(18O,3 n ) fusion-evaporation reaction at a beam energy of 50 MeV. Prompt γ -γ coincidences were measured using the Florida State University Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. A reinvestigation of the known level scheme resulted in the addition of 32 new transitions and the rearrangement of 10 others. The high-spin decay pattern of yrast negative-parity states was modified and enhanced extensively. Spins were assigned based on directional correlation of oriented nuclei ratios. Lifetimes of seven excited states were measured using the Doppler-shift attenuation method. The B (E 2 ) rates inferred from the lifetimes of states in the yrast positive-parity band imply substantial collectivity, in agreement with the results of previous studies. Substantial signature splitting and large alternations in the B (M 1 ) strengths were observed in this band as well, supporting the interpretation of an aligned π g9 /2⊗ν g9 /2 intrinsic configuration for this structure beginning at the lowest 9+ state. Large-scale shell-model calculations performed for 70As reproduce the relative energy differences between adjacent levels and the B (M 1 ) rates in the yrast positive-parity band rather well, but underestimate the B (E 2 ) strengths. The g9 /2 orbital occupancies for the lowest 9+ state predicted by the shell-model calculations provide additional evidence of a stretched π g9 /2⊗ν g9 /2 configuration for this state.
Phonons and magnetic excitation correlations in weak ferromagnetic YCrO{sub 3}
Sharma, Yogesh; Sahoo, Satyaprakash E-mail: guptaraj@iitk.ac.in Perez, William; Katiyar, Ram S. E-mail: guptaraj@iitk.ac.in; Mukherjee, Somdutta; Gupta, Rajeev E-mail: guptaraj@iitk.ac.in; Garg, Ashish; Chatterjee, Ratnamala
2014-05-14
Here, we report the temperature dependent Raman spectroscopic studies on orthorhombically distorted perovskite YCrO{sub 3} over a temperature range of 20–300 K. Temperature dependence of DC-magnetization measurements under field cooled and zero field cooled protocols confirmed a Néel transition at T{sub N} ∼ 142 K. Magnetization isotherms recorded at 125 K show a clear loop opening without any magnetization saturation up to 20 kOe, indicating a coexistence of antiferromagnetic (AFM) and weak ferromagnetic (WFM) phases. Estimation of exchange constants using mean-field approximation further confirm the presence of a complex magnetic phase below T{sub N}. Temperature evolution of Raman line-shape parameters of the selected modes (associated with the octahedral rotation and A(Y)-shift in the unit-cell) reveal an anomalous phonon shift near T{sub N}. An additional phonon anomaly was identified at T{sup *} ∼ 60 K, which could possibly be attributed to the change in the spin dynamics. Moreover, the positive and negative shifts in Raman frequencies between T{sub N} and T{sup *} suggest competing WFM and AFM interactions. A close match between the phonon frequency of B{sub 3g} (3)-octahedral rotation mode with the square of sublattice magnetization between T{sub N} and T{sup *} is indicative of the presence of spin-phonon coupling in multiferroic YCrO{sub 3}.
Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco
2011-10-12
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths.
2011-01-01
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426
Investigation of phonon-like excitation in hydrated protein powders by neutron scattering
NASA Astrophysics Data System (ADS)
Chu, Xiang-Qiang (Rosie); Mamontov, Eugene; O'Neill, Hugh; Zhang, Qiu; Kolesnikov, Alexander
2013-03-01
Detecting the phonon dispersion relations in proteins is essential for understanding the intra-protein dynamical behavior. Such study has been attempted by X-ray in recent years. However, for such detections, neutrons have significant advantages in resolution and time-efficiency compare to X-rays. Traditionally the collective motions of atoms in protein molecules are hard to detect using neutrons, because of high incoherent scattering background from intrinsic hydrogen atoms in the protein molecules. The recent availability of a fully deuterated green fluorescent protein (GFP) synthesized by the Bio-deuteration Lab at ORNL opens new possibilities to probe collective excitations in proteins using inelastic neutron scattering. Using a direct time-of-flight Fermi chopper neutron spectrometer, we obtained a full map of the meV phonon-like excitations in the fully deuterated protein. The Q range of the observed excitations corresponds to the length scale close to the size of the secondary structures of proteins and reflects the collective intra-protein motions. Our results show that hydration of GFP seems to harden, not soften, the collective motions. This result is counterintuitive but in agreement with the observations by previous neutron scattering experiments. Sample preparation was supported by facilities operated by the Center for Structural Molecular Biology at ORNL which is supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research Project ERKP291.
E2 transitions between excited single-phonon states: Role of ground-state correlations
NASA Astrophysics Data System (ADS)
Kamerdzhiev, S. P.; Voitenkov, D. A.
2016-11-01
The probabilities for E2 transitions between low-lying excited 3- and 5- single-phonon states in the 208Pb and 132Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green's functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.
Coherent phonon spectroscopy of non-fully symmetric modes using resonant terahertz excitation
Huber, T. Huber, L.; Johnson, S. L.; Ranke, M.; Ferrer, A.
2015-08-31
We use intense terahertz (THz) frequency electromagnetic pulses generated via optical rectification in an organic crystal to drive vibrational lattice modes in single crystal Tellurium. The coherent modes are detected by measuring the polarization changes of femtosecond laser pulses reflecting from the sample surface, resulting in a phase-resolved detection of the coherent lattice motion. We compare the data to a model of Lorentz oscillators driven by the near-single-cycle broadband THz pulse. The demonstrated technique of optically probed coherent phonon spectroscopy with THz frequency excitation could prove to be a viable alternative to other time-resolved spectroscopic methods like standard THz time domain spectroscopy.
E2 transitions between excited single-phonon states: Role of ground-state correlations
Kamerdzhiev, S. P.; Voitenkov, D. A.
2016-11-15
The probabilities for E2 transitions between low-lying excited 3{sup −} and 5{sup −} single-phonon states in the {sup 208}Pb and {sup 132}Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green’s functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.
NASA Astrophysics Data System (ADS)
Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.
2016-03-01
Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.
NASA Astrophysics Data System (ADS)
MacDonald, K. F.; Fedotov, V. A.; Pochon, S.; Stevens, G.; Kusmartsev, F. V.; Emel'yanov, V. I.; Zheludev, N. I.
2004-08-01
We have observed reversible structural transformations, induced by optical excitation at 1.55 μm, between the β, γ and liquid phases of gallium in self-assembled gallium nanoparticles, with a narrow size distribution around 50 nm, on the tip of an optical fiber. Only a few tens of nanowatts of optical excitation per particle are required to control the transformations, which take the form of a dynamic phase coexistence and are accompanied by substantial changes in the optical properties of the nanoparticle film. The time needed to achieve phase equilibrium is in the microsecond range, and increases sharply near the transition temperatures.
NASA Astrophysics Data System (ADS)
Lee, Myeong H.; Troisi, Alessandro
2017-02-01
It has been reported in recent years that vibronic resonance between vibrational energy of the intramolecular nuclear mode and excitation-energy difference is crucial to enhance excitation energy transport in light harvesting proteins. Here we investigate how vibronic enhancement induced by vibronic resonance is influenced by the details of local and non-local exciton-phonon interactions. We study a heterodimer model with parameters relevant to the light-harvesting proteins with the surrogate Hamiltonian quantum dynamics method in a vibronic basis. In addition, the impact of field-driven excitation on the efficiency of population transfer is compared with the instantaneous excitation, and the effect of multi-mode vibronic coupling is presented in comparison with the coupling to a single effective vibrational mode. We find that vibronic enhancement of site population transfer is strongly suppressed with the increase of non-local exciton-phonon interaction and increasing the number of strongly coupled high-frequency vibrational modes leads to a further decrease in vibronic enhancement. Our results indicate that vibronic enhancement is present but may be much smaller than previously thought and therefore care needs to be taken when interpreting its role in excitation energy transport. Our results also suggest that non-local exciton-phonon coupling, which is related to the fluctuation of the excitonic coupling, may be as important as local exciton-phonon coupling and should be included in any quantum dynamics model.
Percolation in the effective-medium approximation: Crossover between phonon and fracton excitations
NASA Astrophysics Data System (ADS)
Derrida, B.; Orbach, R.; Yu, Kin-Wah
1984-06-01
The d-dimensional bond-percolating network has been examined with the use of the effective-medium approximation (EMA) of Odagaki and Lax and of Webman. We have found that the fracton dimensionality d――=1 for 2
Ultrafast Optical Excitation of Coherent and Squeezed Phonons in SrTiO_3
NASA Astrophysics Data System (ADS)
Garrett, G. A.; Whitaker, J. F.; Merlin, R.
1998-03-01
We report on the impulsive excitation of coherent and squeezed phonon fields in SrTiO3 using, respectively, first-order and second-order stimulated Raman scattering.(Garrett et al)., Optics Express, to be published. Strontium titanate undergoes an antiferro-distortive phase transition at T_c≈ 110 K to a low temperature tetragonal structure. First-order Raman scattering is allowed only below T_c. Pump-probe spectra were obtained as a function of temperature and pump intensity. The frequency of the coherent (first-order) state is that of the A_1g-component of the soft mode associated with the phase transition. As in KTaO_3,(Garrett et al)., Science 275, 1638 (1997). the squeezed (second-order) field oscillates at a frequency corresponding to a strong, narrow peak in the density of states of the acoustic phonons.
NASA Astrophysics Data System (ADS)
Kaldewey, Timo; Lüker, Sebastian; Kuhlmann, Andreas V.; Valentin, Sascha R.; Chauveau, Jean-Michel; Ludwig, Arne; Wieck, Andreas D.; Reiter, Doris E.; Kuhn, Tilmann; Warburton, Richard J.
2017-06-01
Excitation of a semiconductor quantum dot with a chirped laser pulse allows excitons to be created by rapid adiabatic passage. In quantum dots this process can be greatly hindered by the coupling to phonons. Here we add a high chirp rate to ultrashort laser pulses and use these pulses to excite a single quantum dot. We demonstrate that we enter a regime where the exciton-phonon coupling is effective for small pulse areas, while for higher pulse areas a decoupling of the exciton from the phonons occurs. We thus discover a reappearance of rapid adiabatic passage, in analogy to the predicted reappearance of Rabi rotations at high pulse areas. The measured results are in good agreement with theoretical calculations.
Including the Effects of Electronic Excitations and Electron-Phonon Coupling in Cascade Simulations
Duffy, Dorothy |
2008-07-01
Radiation damage has traditionally been modeled using cascade simulations however such simulations generally neglect the effects of electron-ion interactions, which may be significant in high energy cascades. A model has been developed which includes the effects of electronic stopping and electron-phonon coupling in Molecular Dynamics simulations by means of an inhomogeneous Langevin thermostat. The energy lost by the atoms to electronic excitations is gained by the electronic system and the energy evolution of the electronic system is modeled by the heat diffusion equation. Energy is exchanged between the electronic system and the atoms in the Molecular Dynamics simulation by means of a Langevin thermostat, the temperature of which is the local electronic temperature. The model is applied to a 10 keV cascade simulation for Fe. (authors)
Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation.
Quilter, J H; Brash, A J; Liu, F; Glässl, M; Barth, A M; Axt, V M; Ramsay, A J; Skolnick, M S; Fox, A M
2015-04-03
We demonstrate a new method to realize the population inversion of a single InGaAs/GaAs quantum dot excited by a laser pulse tuned within the neutral exciton phonon sideband. In contrast to the conventional method of inverting a two-level system by performing coherent Rabi oscillation, the inversion is achieved by rapid thermalization of the optically dressed states via incoherent phonon-assisted relaxation. A maximum exciton population of 0.67±0.06 is measured for a laser tuned 0.83 meV to higher energy. Furthermore, the phonon sideband is mapped using a two-color pump-probe technique, with its spectral form and magnitude in very good agreement with the result of path-integral calculations.
NASA Astrophysics Data System (ADS)
Kong, D. F.; Liu, A. D.; Lan, T.; Yu, C. X.; Cheng, J.; Qiu, Z. Y.; Zhao, H. L.; Shen, H. G.; Yan, L. W.; Dong, J. Q.; Xu, M.; Zhao, K. J.; Duan, X. R.; Liu, Y.; Chen, R.; Zhang, S. B.; Sun, X.; Xie, J. L.; Li, H.; Liu, W. D.
2017-04-01
Coexisting dual kinetic geodesic acoustic modes (KGAMs) with similar characteristics have been observed with Langmuir probe arrays in the edge plasma of HL-2A tokamak with low density Ohmic discharge. The dual KGAMs are named a low-frequency GAM (LFGAM) and a high-frequency GAM (HFGAM), respectively. By changing the line averaged density from 1.0× {{10}19}~{{\\text{m}}-3} to 0.7× {{10}19}~{{\\text{m}}-3} , the study of n e and T e profiles indicate that collision damping rate plays a crucial role on exciting of dual KGAMs, especially for the higher frequency branch (HFGAM). With the application of modulating techniques, we provide direct proof that nonlinear interactions between GAMs and ambient turbulence (AT) show great difference at different radial positions. At the exciting position of GAM, the amplitude modulation of AT is dominant, indicating that GAM is generated in the energy-conserving triad interaction. After the exciting of GAMs, they will propagate both inward and outward. During the propagation, the phase modulation of AT is dominant, GAMs can rarely gain energy from AT, yet they can give back-reactions on AT through shearing effect.
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature.
Liao, Bolin; Maznev, A A; Nelson, Keith A; Chen, Gang
2016-10-12
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon-phonon interactions, it has been a challenge to directly measure electron-phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump-probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron-phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron-phonon interaction on phonon transport in doped semiconductors.
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
NASA Astrophysics Data System (ADS)
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang
2016-10-01
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon-phonon interactions, it has been a challenge to directly measure electron-phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump-probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron-phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron-phonon interaction on phonon transport in doped semiconductors.
NASA Astrophysics Data System (ADS)
Robin, Caroline; Litvinova, Elena
2016-07-01
A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; ...
2016-10-12
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon–phonon interactions, it has been a challenge to directly measure electron–phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here in this paper, we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump–probe photoacoustic spectroscopy, we introduce an additional laser pulse to opticallymore » generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron–phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron–phonon interaction on phonon transport in doped semiconductors.« less
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang
2016-10-12
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon–phonon interactions, it has been a challenge to directly measure electron–phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here in this paper, we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump–probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron–phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron–phonon interaction on phonon transport in doped semiconductors.
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang
2016-01-01
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon–phonon interactions, it has been a challenge to directly measure electron–phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump–probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron–phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron–phonon interaction on phonon transport in doped semiconductors. PMID:27731406
Misochko, O. V. Lebedev, M. V.
2015-04-15
The theoretical assertion that the Fano asymmetry parameter and the asymptotic initial phase of a harmonic oscillator interacting with a continuum are interrelated is experimentally verified. By an example of coherent fully symmetric A{sub 1g} phonons in bismuth that are excited by ultrashort laser pulses at liquid helium temperature, it is demonstrated that, for negative values of the asymmetry parameter, the asymptotic phase increases as the modulus of the parameter decreases.
Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed; Sonobe, Taro; Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki
2013-10-28
Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.
Photocarrier-phonon relaxation in highly excited monolayer transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Morozov, V. G.; Dekeyser, C.; Ilyin, N.; Mishina, E.
2017-02-01
We formulate a microscopic model describing interaction between photoinjected carriers and optical phonons in monolayer transition-metal dichalcogenides which are an important example of 2D direct-bandgap semiconductors. The model takes account of the spin-valley structure of the conduction and valence bands. The evolution equations for the carrier and phonon quasi-temperatures are derived and the carrier-phonon relaxation time is estimated. We present the experimental pump-probe results for monolayer WSe2 conforming the theoretical prediction.
Single-particle excitations and phonon softening in the one-dimensional spinless Holstein model
NASA Astrophysics Data System (ADS)
Sykora, S.; Hübsch, A.; Becker, K. W.; Wellein, G.; Fehske, H.
2005-01-01
We investigate the influence of the electron-phonon coupling in the one-dimensional spinless Holstein model at half-filling using both a recently developed projector-based renormalization method (PRM) and an refined exact diagonalization technique in combination with the kernel polynomial method. At finite phonon frequencies the system shows a metal-insulator transition accompanied by the appearance of a Peierls distorted state at a finite critical electron-phonon coupling. We analyze the opening of a gap in terms of the (inverse) photoemission spectral functions which are evaluated in both approaches. Moreover, the PRM approach reveals the softening of a phonon at the Brillouin-zone boundary which can be understood as precursor effect of the gap formation.
NASA Astrophysics Data System (ADS)
Novko, D.; Blanco-Rey, M.; Juaristi, J. I.; Alducin, M.
2016-09-01
We study the effect of electron and phonon degrees of freedom on the relaxation dynamics of adsorption processes in gas-surface systems by using ab initio molecular dynamics that incorporates an electronic friction force (AIMDEF). As representative cases we have chosen three systems with different adsorption energies and adsorbate-to-surface atom mass ratios: H on Pd(1 0 0), N on Ag(1 1 1), and N2 on Fe(1 1 0). We show, through inspection of the total energies and trajectories of the hot adsorbates on the surface, that electron-hole (e-h) pair excitations dominate relaxation of the light gas species, while the phonon channel is dominant for the heavy species. In the latter case e-h pairs become more important at the final thermalization stages.
Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M
2014-04-25
Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.
Multi-quasiparticle excitation: Extending shape coexistence in A~190 neutron-deficient nuclei
NASA Astrophysics Data System (ADS)
Shi, Yue; Xu, F. R.; Liu, H. L.; Walker, P. M.
2010-10-01
Multi-quasiparticle high-K states in neutron-deficient mercury, lead, and polonium isotopes have been investigated systematically by means of configuration-constrained potential-energy-surface calculations. An abundance of high-K states is predicted with both prolate and oblate shapes, which extends the shape coexistence of the mass region. Well-deformed shapes provide good conditions for the formation of isomers, as exemplified in Pb188. Of particular interest is the prediction of low-lying 10- states in polonium isotopes, which indicate long-lived isomers.
Multi-quasiparticle excitation: Extending shape coexistence in A{approx}190 neutron-deficient nuclei
Shi Yue; Liu, H. L.; Xu, F. R.; Walker, P. M.
2010-10-15
Multi-quasiparticle high-K states in neutron-deficient mercury, lead, and polonium isotopes have been investigated systematically by means of configuration-constrained potential-energy-surface calculations. An abundance of high-K states is predicted with both prolate and oblate shapes, which extends the shape coexistence of the mass region. Well-deformed shapes provide good conditions for the formation of isomers, as exemplified in {sup 188}Pb. Of particular interest is the prediction of low-lying 10{sup -} states in polonium isotopes, which indicate long-lived isomers.
Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites
NASA Astrophysics Data System (ADS)
Bokdam, Menno; Sander, Tobias; Stroppa, Alessandro; Picozzi, Silvia; Sarma, D. D.; Franchini, Cesare; Kresse, Georg
2016-06-01
The development of high efficiency perovskite solar cells has sparked a multitude of measurements on the optical properties of these materials. For the most studied methylammonium(MA)PbI3 perovskite, a large range (6–55 meV) of exciton binding energies has been reported by various experiments. The existence of excitons at room temperature is unclear. For the MAPbX3 perovskites we report on relativistic Bethe-Salpeter Equation calculations (GW-BSE). This method is capable to directly calculate excitonic properties from first-principles. At low temperatures it predicts exciton binding energies in agreement with the reported ‘large’ values. For MAPbI3, phonon modes present in this frequency range have a negligible contribution to the ionic screening. By calculating the polarization in time from finite temperature molecular dynamics, we show that at room temperature this does not change. We therefore exclude ionic screening as an explanation for the experimentally observed reduction of the exciton binding energy at room temperature and argue in favor of the formation of polarons.
Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites
Bokdam, Menno; Sander, Tobias; Stroppa, Alessandro; Picozzi, Silvia; Sarma, D. D.; Franchini, Cesare; Kresse, Georg
2016-01-01
The development of high efficiency perovskite solar cells has sparked a multitude of measurements on the optical properties of these materials. For the most studied methylammonium(MA)PbI3 perovskite, a large range (6–55 meV) of exciton binding energies has been reported by various experiments. The existence of excitons at room temperature is unclear. For the MAPbX3 perovskites we report on relativistic Bethe-Salpeter Equation calculations (GW-BSE). This method is capable to directly calculate excitonic properties from first-principles. At low temperatures it predicts exciton binding energies in agreement with the reported ‘large’ values. For MAPbI3, phonon modes present in this frequency range have a negligible contribution to the ionic screening. By calculating the polarization in time from finite temperature molecular dynamics, we show that at room temperature this does not change. We therefore exclude ionic screening as an explanation for the experimentally observed reduction of the exciton binding energy at room temperature and argue in favor of the formation of polarons. PMID:27350083
Lee, Sooheyong; Williams, G. Jackson; Campana, Maria I.; ...
2016-01-11
Using a strain-rosette, we demonstrate the existence of transverse strain using time-resolved x-ray diffraction from multiple Bragg reflections in laser-excited bulk gallium arsenide. We find that anisotropic strain is responsible for a considerable fraction of the total lattice motion at early times before thermal equilibrium is achieved. Our measurements are described by a new model where the Poisson ratio drives transverse motion, resulting in the creation of shear waves without the need for an indirect process such as mode conversion at an interface. Finally, using the same excitation geometry with the narrow-gap semiconductor indium antimonide, we detected coherent transverse acousticmore » oscillations at frequencies of several GHz.« less
Lee, Sooheyong; Williams, G. Jackson; Campana, Maria I.; Walko, Donald A.; Landahl, Eric C.
2016-01-11
Using a strain-rosette, we demonstrate the existence of transverse strain using time-resolved x-ray diffraction from multiple Bragg reflections in laser-excited bulk gallium arsenide. We find that anisotropic strain is responsible for a considerable fraction of the total lattice motion at early times before thermal equilibrium is achieved. Our measurements are described by a new model where the Poisson ratio drives transverse motion, resulting in the creation of shear waves without the need for an indirect process such as mode conversion at an interface. Finally, using the same excitation geometry with the narrow-gap semiconductor indium antimonide, we detected coherent transverse acoustic oscillations at frequencies of several GHz.
Lee, Sooheyong; Williams, G Jackson; Campana, Maria I; Walko, Donald A; Landahl, Eric C
2016-01-11
Using a strain-rosette, we demonstrate the existence of transverse strain using time-resolved x-ray diffraction from multiple Bragg reflections in laser-excited bulk gallium arsenide. We find that anisotropic strain is responsible for a considerable fraction of the total lattice motion at early times before thermal equilibrium is achieved. Our measurements are described by a new model where the Poisson ratio drives transverse motion, resulting in the creation of shear waves without the need for an indirect process such as mode conversion at an interface. Using the same excitation geometry with the narrow-gap semiconductor indium antimonide, we detected coherent transverse acoustic oscillations at frequencies of several GHz.
Lee, Sooheyong; Williams, G. Jackson; Campana, Maria I.; Walko, Donald A.; Landahl, Eric C.
2016-01-01
Using a strain-rosette, we demonstrate the existence of transverse strain using time-resolved x-ray diffraction from multiple Bragg reflections in laser-excited bulk gallium arsenide. We find that anisotropic strain is responsible for a considerable fraction of the total lattice motion at early times before thermal equilibrium is achieved. Our measurements are described by a new model where the Poisson ratio drives transverse motion, resulting in the creation of shear waves without the need for an indirect process such as mode conversion at an interface. Using the same excitation geometry with the narrow-gap semiconductor indium antimonide, we detected coherent transverse acoustic oscillations at frequencies of several GHz. PMID:26751616
NASA Astrophysics Data System (ADS)
Zheng, Gaige; Xu, Linhua; Zou, Xiujuan; Liu, Yuzhu
2017-02-01
We demonstrate the excitation of surface phonon polaritons (SPhPs) in the mid-infrared (mid-IR) Reststrahlen band (10.288 μm-12.563 μm) on patterned surfaces with silicon carbide (SiC) substrate and gold (Au) gratings. The very large negative permittivity of Au limits its applications in the mid-IR range, and to couple incident light to SPhPs modes, their momentum mismatch can be compensated by patterning Au grating onto the surface of SiC substrate. Samples were fabricated and characterized experimentally by Fourier transform infrared reflection (FTIR) spectroscopy. The optical properties were also simulated by the rigorous coupled wave analysis (RCWA) method. Reflection dips are observed for light polarized vertical to the grating lines (TM-polarized), which are attributed to the coupling of electromagnetic (EM) waves into the SPhP modes. In addition, we present small-volume index sensing with analyte specificity based on mid-IR SPhPs in the fabricated configuration.
NASA Astrophysics Data System (ADS)
Martinez, V. A.; Stanislavchuk, T. N.; Sirenko, A. A.; Litvinchuk, A. P.; Wang, Yazhong; Cheong, S. W.
Optical properties of multiferroic orthoferrites RFeO3 (R=Tb,Dy) bulk crystals have been studied in the far-infrared range from 50 to 1000 cm-1 and temperatures from 7 K to 300 K. Mueller matrix and rotating analyzer ellipsometry measurements were carried out at the U4IR beamline of the National Synchrotron Light Source at Brookhaven National Lab. Optical phonon spectra and crystal field excitations were measured for all three orthorhombic axes of RFeO3. In the experimental temperature dependencies of the phonon frequencies we found non-Grüneisen behavior caused by the electron-phonon and spin-phonon interactions. We determined the symmetries and selection rules for the crystal field transitions in Tb3+ and Dy3+ ions. Magnetic field dependencies of the optical spectra allowed us to determine anisotropy of the crystal field g-factors for Tb3+ and Dy3+ ions. This Project is supported by collaborative DOE Grant DE-FG02-07ER46382 between Rutgers U. and NJIT. Use of NSLS-BNL was supported by DOE DE-AC02-98CH10886. V.A. Martinez was supported by NEU NSF-1343716.
Hannah, Daniel C; Brown, Kristen E; Young, Ryan M; Wasielewski, Michael R; Schatz, George C; Co, Dick T; Schaller, Richard D
2013-09-06
We report femtosecond stimulated Raman spectroscopy measurements of lattice dynamics in semiconductor nanocrystals and characterize longitudinal optical (LO) phonon production during confinement-enhanced, ultrafast intraband relaxation. Stimulated Raman signals from unexcited CdSe nanocrystals produce a spectral shape similar to spontaneous Raman signals. Upon photoexcitation, stimulated Raman amplitude decreases owing to experimentally resolved ultrafast phonon generation rates within the lattice. We find a ∼600 fs, particle-size-independent depletion time attributed to hole cooling, evidence of LO-to-acoustic down-conversion, and LO phonon mode softening.
Lucas, A A; Sunjic, M; Benedek, G
2013-09-04
An analytic model is developed to describe the inelastic processes occurring when keV Ne(+) ions are scattered at grazing incidence by the (100) surface of LiF. The large energy losses (up to 30 eV) of the reflected Ne(+) particles reported by Borisov et al (1999 Phys. Rev. Lett. 83 5378) are shown to arise specifically from the long-range coupling between the projectiles and the so-called Fuchs-Kliewer (FK) optical phonons of LiF whose fields extend far outside the surface. The strength of the coupling is estimated, allowing one to compute the average number of excited FK phonon quanta (ħωS = 0.071 eV) and hence the mean energy losses. For emerging, neutralized Ne(0), a distinct energy loss mechanism is shown to occur, namely the excitation of FK phonons and other types of surface collective modes associated with the screening of the F(0) 'hole' left behind by the neutralization process. This mechanism contributes a large fraction of the loss, additional to that suffered by the incident Ne(+) ion. The model explains the experimental observations quantitatively (1999 Phys. Rev. Lett. 83 5378). The paper ends with a discussion of the large energy broadening of the observed loss peaks.
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping
Bebek, M. B.; Stanley, C. M.; Gibbons, T. M.; Estreicher, S. K.
2016-01-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463
Relaxation of a hot-electron-two-mode-phonon system in highly excited CdS1-xSex crystals
NASA Astrophysics Data System (ADS)
Žukauskas, A.; Juršėnas, S.
1995-02-01
An investigation of the electron-hole-plasma effective-temperature relaxation in highly excited CdS1-xSex mixed crystals is presented. The slow (~100-ps) relaxation stage, attributed to the depopulation of the fragments (decay products) of the initially produced nonequilibrium LO phonons, is examined with variation of the alloy composition. The relevant relaxation time dependence on x exhibiting a remarkable drop at small CdSe mole fractions is analyzed in terms of a two-route energy relaxation model considering hot-carrier plasma and two generations of nonequilibrium phonons each originating from both pure constituents of the alloy. The disorder-enhanced cross relaxation between two sublattices of the alloy is inferred to account for the experimental results.
PHONONS IN INTRINSIC JOSEPHSON SYSTEMS
C. PREIS; K. SCHMALZL; ET AL
2000-10-01
Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.
Quasi-two-dimensional spin and phonon excitations in La1.965Ba0.035CuO4
Wagman, J. J.; Parshall, D.; Stone, Matthew B.; ...
2015-06-03
Here, we present time-of-fight inelastic neutron scattering measurements of La1.965Ba0.035CuO4 (LBCO), a lightly doped member of the high temperature superconducting La-based cuprate family. By using time-of-flight neutron instrumentation coupled with single crystal sample rotation we obtain a four-dimensional data set (three Q and one energy) that is both comprehensive and spans a large region of reciprocal space. Our measurements identify rich structure in the energy dependence of the highly dispersive spin excitations, which are centered at equivalent (1/2, 1/2, L) wave-vectors. These structures correlate strongly with several crossings of the spin excitations with the lightly dispersive phonons found in thismore » system. These eects are signicant and account for on the order of 25% of the total inelastic scattering for energies between ≈5 and 40meV at low |Q|. Interestingly, this scattering also presents little or no L-dependence. As the phonons and dispersive spin excitations centred at equivalent (1/2, 1/2, L) wave-vectors are common to all members of La-based 214 copper oxides, we conclude such strong quasi-two dimensional scattering enhancements are likely to occur in all such 214 families of materials, including those concentrations corresponding to superconducting ground states. Such a phenomenon appears to be a fundamental characteristic of these materials and is potentially related to superconducting pairing.« less
Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions
Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis; ...
2017-05-26
The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less
Giri, Ashutosh; Gaskins, John T.; Foley, Brian M.; Cheaito, Ramez; Hopkins, Patrick E.
2015-01-28
The electronic transport properties of metals with weak electron-phonon coupling can be influenced by non-thermal electrons. Relaxation processes involving non-thermal electrons competing with the thermalized electron system have led to inconsistencies in the understanding of how electrons scatter and relax with the less energetic lattice. Recent theoretical and computational works have shown that the rate of energy relaxation with the metallic lattice will change depending on the thermalization state of the electrons. Even though 20 years of experimental works have focused on understanding and isolating these electronic relaxation mechanisms with short pulsed irradiation, discrepancies between these existing works have not clearly answered the fundamental question of the competing effects between non-thermal and thermal electrons losing energy to the lattice. In this work, we demonstrate the ability to measure the electron relaxation for varying degrees of both electron-electron and electron-phonon thermalization. This series of measurements of electronic relaxation over a predicted effective electron temperature range up to ∼3500 K and minimum lattice temperatures of 77 K validate recent computational and theoretical works that theorize how a nonequilibrium distribution of electrons transfers energy to the lattice. Utilizing this wide temperature range during pump-probe measurements of electron-phonon relaxation, we explain discrepancies in the past two decades of literature of electronic relaxation rates. We experimentally demonstrate that the electron-phonon coupling factor in gold increases with increasing lattice temperature and laser fluences. Specifically, we show that at low laser fluences corresponding to small electron perturbations, energy relaxation between electrons and phonons is mainly governed by non-thermal electrons, while at higher laser fluences, non-thermal electron scattering with the lattice is less influential on the energy relaxation
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Gaskins, John T.; Foley, Brian M.; Cheaito, Ramez; Hopkins, Patrick E.
2015-01-01
The electronic transport properties of metals with weak electron-phonon coupling can be influenced by non-thermal electrons. Relaxation processes involving non-thermal electrons competing with the thermalized electron system have led to inconsistencies in the understanding of how electrons scatter and relax with the less energetic lattice. Recent theoretical and computational works have shown that the rate of energy relaxation with the metallic lattice will change depending on the thermalization state of the electrons. Even though 20 years of experimental works have focused on understanding and isolating these electronic relaxation mechanisms with short pulsed irradiation, discrepancies between these existing works have not clearly answered the fundamental question of the competing effects between non-thermal and thermal electrons losing energy to the lattice. In this work, we demonstrate the ability to measure the electron relaxation for varying degrees of both electron-electron and electron-phonon thermalization. This series of measurements of electronic relaxation over a predicted effective electron temperature range up to ˜3500 K and minimum lattice temperatures of 77 K validate recent computational and theoretical works that theorize how a nonequilibrium distribution of electrons transfers energy to the lattice. Utilizing this wide temperature range during pump-probe measurements of electron-phonon relaxation, we explain discrepancies in the past two decades of literature of electronic relaxation rates. We experimentally demonstrate that the electron-phonon coupling factor in gold increases with increasing lattice temperature and laser fluences. Specifically, we show that at low laser fluences corresponding to small electron perturbations, energy relaxation between electrons and phonons is mainly governed by non-thermal electrons, while at higher laser fluences, non-thermal electron scattering with the lattice is less influential on the energy relaxation
Dynamic Jahn-Teller viewpoint for generation mechanism of asymmetric modes of coherent phonons
NASA Astrophysics Data System (ADS)
Kayanuma, Yosuke; Nakamura, Kazutaka G.
2017-03-01
We propose a dynamic Jahn-Teller approach to elucidate the generation mechanism of asymmetric modes of coherent phonons induced in crystals by irradiation with a short optical pulse in the opaque energy region. This is a natural extension of the impulsive excitation model of symmetric modes to multi dimensions in the configuration coordinate space. We show that the two generation mechanisms of coherent phonons coexist in this case, namely the impulsive absorption (IA) mechanism and impulsive stimulated Raman scattering (ISRS) mechanism. The dependence of the phonon amplitude on the polarization of the pump pulse is exactly the same in IA and ISRS processes and is in agreement with the prediction of the argument based on Raman tensors. The dependence of the excitation efficiency of the coherent phonons on the frequency of the pump pulse is calculated using a simplified model of the optical response function of the crystal. Generally, the IA mechanism predominates in the opaque region, although ISRS makes a comparable contribution to phonon generation in the near-edge opaque region. The initial phase of the coherent phonon is always cosine-like in IA but depends on the excitation frequency in ISRS.
Moiseyenko, Rayisa P.; Liu, Jingfei; Declercq, Nico F.; Benchabane, Sarah; Laude, Vincent
2014-12-15
The possibility of surface wave generation by diffraction of pressure waves on deeply corrugated one-dimensional phononic crystal gratings is studied both theoretically and experimentally. Generation of leaky surface waves, indeed, is generally invoked in the explanation of the beam displacement effect that can be observed upon reflection on a shallow grating of an acoustic beam of finite width. True surface waves of the grating, however, have a dispersion that lies below the sound cone in water. They thus cannot satisfy the phase-matching condition for diffraction from plane waves of infinite extent incident from water. Diffraction measurements indicate that deeply corrugated one-dimensional phononic crystal gratings defined in a silicon wafer are very efficient diffraction gratings. They also confirm that all propagating waves detected in water follow the grating law. Numerical simulations however reveal that in the sub-diffraction regime, acoustic energy of a beam of finite extent can be transferred to elastic waves guided at the surface of the grating. Their leakage to the specular direction along the grating surface explains the apparent beam displacement effect.
Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M
2013-08-31
The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)
Multiple magneto-phonon resonances in graphene
NASA Astrophysics Data System (ADS)
Basko, D. M.; Leszczynski, P.; Faugeras, C.; Binder, J.; Nicolet, A. A. L.; Kossacki, P.; Orlita, M.; Potemski, M.
2016-03-01
Our low-temperature magneto-Raman scattering measurements performed on graphene-like locations on the surface of bulk graphite, carries the energyite reveal a new series of magneto-phonon resonances involving both K point and Γ point phonons. These are resonances between a purely electronic excitation, an electronic excitation accompanied by one phonon, and a two-phonon excitation. In particular, we observe the resonant splitting of three crossing excitation branches. We give a detailed theoretical analysis of these multi-excitation resonances. Our results highlight the role of combined excitations and the importance of multi-phonon processes (from both K and Γ points) for the relaxation of hot carriers in graphene.
NASA Astrophysics Data System (ADS)
Szybisz, Leszek
1990-06-01
The self-consistency of solutions obtained from a recently proposed numerical relaxation method of solving the Euler-Lagrange equations for the ground state of inhomogeneous Bose systems at zero temperature is investigated. For this kind of system at least three different dispersion relations can be formulated, all of them providing information about the same eigenstates. The quality of our optimization scheme is studied by analyzing the convergence of the low-lying eigenvalues and eigenfunctions of these dispersion relations. Numerical results for the spectrum and spatial shape of elementary excitations of a thin film of liquid 4He supported by an external potential are reported. The optimal lowest-lying eigenvalues are compared with estimations based on simple theoretical approaches and with calculations performed by other authors.
Castellanos, Agustin; Castillo, Cesar A.
1972-01-01
Iatrogenic right ventricular pre-excitation failed to abolish right bundle-branch block in two patients. When `exclusive' His bundle pacing was performed, the QRS complexes, St-V, and St-LVE intervals were similar to the ventricular deflections, H-V, and V-LVE (intervals) recorded during sinus rhythm. `Exclusive' pacing of the ordinary muscle at the right ventricular inflow tract produced a complete left bundle-branch block pattern without abnormal left axis deviation. Pacing of both His bundle and ordinary muscle yielded combination complexes in which the right bundle-branch block pattern persisted. The ventricular activation process was studied in these beats, as well as during the right and left bundle-branch block induced by coupled atrial stimulation. It appeared as if certain areas of the right septal surface behaved, electrophysiologically, as if they belonged to the left ventricle. Impulses emerging from these sites were not propagated to the right ventricular free wall. The latter was activated by the excitation front emerging through the left bundle system. During right bundle-branch block the endocardium of the right ventricular inflow was activated before the peak of the R in V1. Bipolar leads, 1 mm apart (with the possible exception of the ones over the tricuspid valve), were helpful in mapping the spread of activation in the human heart. Images PMID:18610233
Estreicher, S. K. Gibbons, T. M.; Kang, By.; Bebek, M. B.
2014-01-07
Defects in semiconductors introduce vibrational modes that are distinct from bulk modes because they are spatially localized in the vicinity of the defect. Light impurities produce high-frequency modes often visible by Fourier-transform infrared absorption or Raman spectroscopy. Their vibrational lifetimes vary by orders of magnitude and sometimes exhibit unexpectedly large isotope effects. Heavy impurities introduce low-frequency modes sometimes visible as phonon replicas in photoluminescence bands. But other defects such as surfaces or interfaces exhibit spatially localized modes (SLMs) as well. All of them can trap phonons, which ultimately decay into lower-frequency bulk phonons. When heat flows through a material containing defects, phonon trapping at localized modes followed by their decay into bulk phonons is usually described in terms of phonon scattering: defects are assumed to be static scattering centers and the properties of the defect-related SLMs modes are ignored. These dynamic properties of defects are important. In this paper, we quantify the concepts of vibrational localization and phonon trapping, distinguish between normal and anomalous decay of localized excitations, discuss the meaning of phonon scattering in real space at the atomic level, and illustrate the importance of phonon trapping in the case of heat flow at Si/Ge and Si/C interfaces.
Khazanov, E. N. Taranov, A. V.; Shevchenko, E. V.; Charnaya, E. V.
2015-07-15
The transport characteristics of thermal-frequency phonons and the specific heat of a series of single crystals of yttrium–rare-earth metal–aluminum garnet solid solutions are studied at the helium temperatures. It is found that the existence of low-energy levels of various origins, which are responsible for an increase in the specific heat, retards phonon transport by one–three orders of magnitude. The temperature dependences of specific heat and the kinetic characteristics of phonons have a similar character.
NASA Astrophysics Data System (ADS)
Khazanov, E. N.; Taranov, A. V.; Shevchenko, E. V.; Charnaya, E. V.
2015-07-01
The transport characteristics of thermal-frequency phonons and the specific heat of a series of single crystals of yttrium-rare-earth metal-aluminum garnet solid solutions are studied at the helium temperatures. It is found that the existence of low-energy levels of various origins, which are responsible for an increase in the specific heat, retards phonon transport by one-three orders of magnitude. The temperature dependences of specific heat and the kinetic characteristics of phonons have a similar character.
Raman scattering study of vibrational and magnetic excitations in Sr2 -xLaxIrO4
NASA Astrophysics Data System (ADS)
Gretarsson, H.; Sauceda, J.; Sung, N. H.; Höppner, M.; Minola, M.; Kim, B. J.; Keimer, B.; Le Tacon, M.
2017-09-01
We have measured the doping and temperature dependence of lattice vibrations and magnetic excitations in the prototypical doped spin-orbit Mott insulator Sr2 -xLaxIrO4 (x =0 , 0.015, and 0.10). Our findings show that the pseudospin-lattice coupling—responsible for the renormalization of several low energy phonon modes—is preserved even when long-range magnetic order is suppressed by doping. In our most highly doped sample, the single magnon (Γ point) excitation disappears while the two-magnon mode softens and becomes heavily damped. Doping-induced electron-phonon coupling is also observed in a higher energy phonon mode. We observe two different electron-phonon interaction channels, which provide evidence of the coexistence of fluctuating magnetic moments and mobile carriers in doped iridates.
Engineering dissipation with phononic spectral hole burning.
Behunin, R O; Kharel, P; Renninger, W H; Rakich, P T
2017-03-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Engineering dissipation with phononic spectral hole burning
NASA Astrophysics Data System (ADS)
Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.
2017-03-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Engineering dissipation with phononic spectral hole burning
NASA Astrophysics Data System (ADS)
Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.
2016-12-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Phonons with orbital angular momentum
Ayub, M. K.; Ali, S.; Mendonca, J. T.
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Rätsep, Margus; Pieper, Jörg; Irrgang, Klaus-Dieter; Freiberg, Arvi
2008-01-10
Electron-phonon and electron-vibrational coupling strengths of a weakly (excitonically) coupled chlorophyll a S1-->S0 transition of the CP29 antenna complex of plant photosystem II were studied by difference fluorescence-line-narrowing spectroscopy at 4.5 K. A strong, almost linear increase of the electron-phonon coupling strength toward longer wavelengths was observed, with Huang-Rhys factors Sph increasing from 0.41+/-0.05 at 680 nm to about 0.66+/-0.07 at 688 nm. The former and latter wavelengths are located close to the peak and on the red edge of the inhomogeneous site distribution function, respectively. The experimentally obtained wavelength dependence of Sph may originate either from an alteration of the electron-phonon coupling strength by the local environment of the fluorescing chromophore and/or from the presence of two isoforms of CP29, which are characterized by different coupling strengths to the protein environment. The one-phonon profile peaks at omegam=22 cm(-1) and is described by an asymmetric function composed of a Gaussian low-energy wing and a Lorentzian high-energy tail with half-widths at half-maximum of 10+/-1 and 60+/-10 cm(-1), respectively. Thirty-nine individual vibrational modes between 90 and 1665 cm(-1) were resolved, and their Huang-Rhys factors were determined, which fall in the range between 0.0004 and 0.032. The broad feature present in the overlap region of phonon and vibrational modes at about 90 cm(-1) is characterized by S=0.048. An integral value of vibrational coupling strengths Svib=0.36+/-0.05 was determined, which is similar to that observed earlier for the trimeric LHC II complex.
Roy, C; Hughes, S
2011-06-17
We study the resonance fluorescence spectra of a driven quantum dot placed inside a high-Q semiconductor cavity and interacting with an acoustic phonon bath. The dynamics is calculated using a time-convolutionless master equation in the polaron frame. We predict pronounced spectral broadening of the Mollow sidebands through off-resonant cavity emission which, for small cavity-coupling rates, increases quadratically with the Rabi frequency in direct agreement with recent experiments using semiconductor micropillars [S. M. Ulrich et al., preceding Letter, Phys. Rev. Lett. 106, 247402 (2011)]. We also demonstrate that, surprisingly, phonon coupling actually helps resolve signatures of the elusive second rungs of the Jaynes-Cummings ladder states via off-resonant cavity feeding. Both multiphonon and multiphoton effects are shown to play a qualitatively important role on the fluorescence spectra.
Ultrafast Structure Switching through Nonlinear Phononics
NASA Astrophysics Data System (ADS)
Juraschek, D. M.; Fechner, M.; Spaldin, N. A.
2017-02-01
We describe a mechanism by which nonlinear phononics allows ultrafast coherent and directional control of transient structural distortions. With ErFeO3 as a model system, we use density functional theory to calculate the structural properties as input into an anharmonic phonon model that describes the response of the system to a pulsed optical excitation. We find that the trilinear coupling of two orthogonal infrared-active phonons to a Raman-active phonon causes a transient distortion of the lattice. In contrast to the quadratic-linear coupling that has been previously explored, the direction of the distortion is determined by the polarization of the exciting light, introducing a novel mechanism for nonlinear phononic switching. Since the occurrence of the coupling is determined by the symmetry of the system we propose that it is a universal feature of orthorhombic and tetragonal perovskites.
NASA Astrophysics Data System (ADS)
Politano, Antonio; Chiarello, Gennaro
2017-09-01
Despite intensive investigations, the comprehension of the mechanisms ruling the interplay of charge doping, electron-phonon coupling and dynamic screening in supported graphene remains elusive yet. Using a combination of surface-science spectroscopies, we have studied these phenomena for graphene on both Pt-skin-terminated and nickel-oxide-skin-terminated Pt3Ni(1 1 1). Graphene epitaxially grown on the (1 1 1)-oriented Pt skin behaves as a charge-neutral graphene/metal contact, exhibiting a reduced coupling of the out-of-plane optical phonon with Dirac-cone electrons. Conversely, p-doped graphene/Pt(1 1 1) exhibits giant Kohn anomalies arising from the electron-phonon coupling. Upon oxidation, the Pt skin of Pt3Ni(1 1 1) evolves into a nickel-oxide skin, which results into a p-type doped graphene sheet. The plasmonic spectrum shows dramatic changes when going from a graphene/Pt-skin/Pt3Ni to a graphene/nickel-oxide/Pt3Ni configuration. Finally, we show that the presence of Ni atoms in the metal alloy does not affect the temperature at which the graphene phase is formed, contrarily to the interpretation of previous experiments.
Phonon manipulation with phononic crystals.
Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F.; El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III
2012-01-01
In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power
Quasi-two-dimensional spin and phonon excitations in La_{1.965}Ba_{0.035}CuO_{4}
Wagman, J. J.; Parshall, D.; Stone, Matthew B.; Savici, Andrei T.; Zhao, Yang; Dabkowska, H. A.; Gaulin, B. D.
2015-06-03
Here, we present time-of-fight inelastic neutron scattering measurements of La_{1.965}Ba_{0.035}CuO_{4} (LBCO), a lightly doped member of the high temperature superconducting La-based cuprate family. By using time-of-flight neutron instrumentation coupled with single crystal sample rotation we obtain a four-dimensional data set (three Q and one energy) that is both comprehensive and spans a large region of reciprocal space. Our measurements identify rich structure in the energy dependence of the highly dispersive spin excitations, which are centered at equivalent (1/2, 1/2, L) wave-vectors. These structures correlate strongly with several crossings of the spin excitations with the lightly dispersive phonons found in this system. These eects are signicant and account for on the order of 25% of the total inelastic scattering for energies between ≈5 and 40meV at low |Q|. Interestingly, this scattering also presents little or no L-dependence. As the phonons and dispersive spin excitations centred at equivalent (1/2, 1/2, L) wave-vectors are common to all members of La-based 214 copper oxides, we conclude such strong quasi-two dimensional scattering enhancements are likely to occur in all such 214 families of materials, including those concentrations corresponding to superconducting ground states. Such a phenomenon appears to be a fundamental characteristic of these materials and is potentially related to superconducting pairing.
Lüer, Larry; Gadermaier, Christoph; Crochet, Jared; Hertel, Tobias; Brida, Daniele; Lanzani, Guglielmo
2009-03-27
We excite and detect coherent phonons in semiconducting (6,5) carbon nanotubes via a sub-10-fs pump-probe technique. Simulation of the amplitude and phase profile via time-dependent wave packet theory yields excellent agreement with experimental results under the assumption of molecular excitonic states and allows determining the electron-phonon coupling strength for the two dominant vibrational modes.
Quantifying electron-phonon coupling in CdTe1-xSex nanocrystals via coherent phonon manipulation
NASA Astrophysics Data System (ADS)
Spann, B. T.; Xu, X.
2014-08-01
We employ ultrafast transient absorption spectroscopy with temporal pulse shaping to manipulate coherent phonon excitation and quantify the strength of electron-phonon coupling in CdTe1-xSex nanocrystals (NCs). Raman active CdSe and CdTe longitudinal optical phonon (LO) modes are excited and probed in the time domain. By temporally controlling pump pulse pairs to coherently excite and cancel coherent phonons in the CdTe1-xSex NCs, we estimate the relative amount of optical energy that is coupled to the coherent CdSe LO mode.
El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
Model for topological phononics and phonon diode
NASA Astrophysics Data System (ADS)
Liu, Yizhou; Xu, Yong; Zhang, Shou-Cheng; Duan, Wenhui
2017-08-01
The quantum anomalous Hall effect, an exotic topological state first theoretically predicted by Haldane and recently experimentally observed, has attracted enormous interest for low-power-consumption electronics. In this work, we derived a Schrödinger-like equation of phonons, where topology-related quantities, time-reversal symmetry, and its breaking can be naturally introduced similar to the process for electrons. Furthermore, we proposed a phononic analog of the Haldane model, which makes the novel quantum (anomalous) Hall-like phonon states characterized by one-way gapless edge modes immune to scattering. The topologically nontrivial phonon states are useful not only for conducting phonons without dissipation but also for designing highly efficient phononic devices, like an ideal phonon diode, which could find important applications in future phononics.
Toward stimulated interaction of surface phonon polaritons
Kong, B. D.; Trew, R. J.; Kim, K. W.
2013-12-21
Thermal emission spectra mediated by surface phonon polariton are examined by using a theoretical model that accounts for generation processes. Specifically, the acoustic phonon fusion mechanism is introduced to remedy theoretical deficiencies of the near thermal equilibrium treatments. The model clarifies the thermal excitation mechanism of surface phonon polaritons and the energy transfer path under non-zero energy flow. When applied to GaAs and SiC semi-infinite surfaces, the nonequilibrium model predicts that the temperature dependence of the quasi-monochromatic peak can exhibit distinctly different characteristics of either sharp increase or slow saturation depending on the materials, which is in direct contrast with the estimate made by the near-equilibrium model. The proposed theoretical tool can accurately analyze the nonequilibrium steady states, potentially paving a pathway to demonstrate stimulated interaction/emission of thermally excited surface phonon polaritons.
Toward stimulated interaction of surface phonon polaritons
NASA Astrophysics Data System (ADS)
Kong, B. D.; Trew, R. J.; Kim, K. W.
2013-12-01
Thermal emission spectra mediated by surface phonon polariton are examined by using a theoretical model that accounts for generation processes. Specifically, the acoustic phonon fusion mechanism is introduced to remedy theoretical deficiencies of the near thermal equilibrium treatments. The model clarifies the thermal excitation mechanism of surface phonon polaritons and the energy transfer path under non-zero energy flow. When applied to GaAs and SiC semi-infinite surfaces, the nonequilibrium model predicts that the temperature dependence of the quasi-monochromatic peak can exhibit distinctly different characteristics of either sharp increase or slow saturation depending on the materials, which is in direct contrast with the estimate made by the near-equilibrium model. The proposed theoretical tool can accurately analyze the nonequilibrium steady states, potentially paving a pathway to demonstrate stimulated interaction/emission of thermally excited surface phonon polaritons.
Engineering interactions between superconducting qubits and phononic nanostructures
NASA Astrophysics Data System (ADS)
Arrangoiz-Arriola, Patricio; Safavi-Naeini, Amir H.
2016-12-01
Nanomechanical systems can support highly coherent microwave-frequency excitations at cryogenic temperatures. However, generating sufficient coupling between these devices and superconducting quantum circuits is challenging due to the vastly different length scales of acoustic and electromagnetic excitations. Here we demonstrate a general method for calculating piezoelectric interactions between quantum circuits and arbitrary phononic nanostructures. We illustrate our technique by studying the coupling between a transmon qubit and bulk acoustic-wave, Lamb-wave, and phononic crystal resonators, and show that very large coupling rates are possible in all three cases. Our results suggest a route to phononic circuits and systems that are nonlinear at the single-phonon level.
Acoustic superfocusing by solid phononic crystals
Zhou, Xiaoming; Assouar, M. Badreddine Oudich, Mourad
2014-12-08
We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.
Acoustic superfocusing by solid phononic crystals
NASA Astrophysics Data System (ADS)
Zhou, Xiaoming; Assouar, M. Badreddine; Oudich, Mourad
2014-12-01
We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.
Molecular dynamics study of phonon screening in graphene
NASA Astrophysics Data System (ADS)
Javvaji, Brahmanandam; Roy Mahapatra, D.; Raha, S.
2014-04-01
Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phononmode is excited fromone end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.
NASA Astrophysics Data System (ADS)
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
Reprogrammable Phononic Metasurfaces.
Bilal, Osama R; Foehr, André; Daraio, Chiara
2017-08-25
Phononic metamaterials rely on the presence of resonances in a structured medium to control the propagation of elastic waves. Their response depends on the geometry of their fundamental building blocks. A major challenge in metamaterials design is the realization of basic building blocks that can be tuned dynamically. Here, a metamaterial plate is realized that can be dynamically tuned by harnessing geometric and magnetic nonlinearities in the individual unit cells. The proposed tuning mechanism allows a stiffness variability of the individual unit cells and can control the amplitude of transmitted excitation through the plate over three orders of magnitude. The concepts can be extended to metamaterials at different scales, and they can be applied in a broad range of engineering applications, from seismic shielding at low frequency to ultrasonic cloaking at higher frequency ranges. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schwerdtfeger, W.; Thirolf, P. G.; Wimmer, K.; Habs, D.; Hertenberger, R.; Lutter, R.; Morgan, T.; Mach, H.; Rodriguez, T. R.; Egido, J. L.; Bildstein, V.; Gernhaeuser, R.; Kroell, T.; Kruecken, R.; Ring, P.; Fraile, L. M.; Heyde, K.; Hoff, P.; Huebel, H.; Koester, U.
2009-07-03
The 1789 keV state in {sup 30}Mg was identified as the first excited 0{sup +} state via its electric monopole (E0) transition to the ground state. The measured small value of rho{sup 2}(E0,0{sub 2}{sup +}->0{sub 1}{sup +})=(26.2+-7.5)x10{sup -3} implies within a two-level model a small mixing of competing configurations with largely different intrinsic quadrupole deformation near the neutron shell closure at N=20. Axially symmetric configuration mixing calculations identify the ground state of {sup 30}Mg to be based on neutron configurations below the N=20 shell closure, while the excited 0{sup +} state mainly consists of two neutrons excited into the nu 1f{sub 7/2} orbital. The experimental result represents the first case where an E0 back decay from a strongly deformed second to the normal deformed first nuclear potential minimum well has been unambiguously identified, thus directly proving shape coexistence at the borderline of the much-debated 'island of inversion.'
Phonon response of some heavy Fermion systems in dynamic limit
NASA Astrophysics Data System (ADS)
Sahoo, Jitendra; Shadangi, Namita; Nayak, Pratibindhya
2017-05-01
The phonon excitation spectrum of some Heavy Fermion (HF) systems in the presence of electron-phonon interaction is studied in the dynamic limit (ω≠0). The renormalized excitation phonon frequencies (ω˜ = ω/ω0) are evaluated through Periodic Anderson Model (PAM) in the presence of electron-phonon interaction using Zubarev-type double time temperature-dependent Green function. The calculated renormalized phonon energy is analyzed through the plots of (ω˜ = ω/ω0) against temperature for different system parameters like effective coupling strength ‘g’ and the position of f-level ‘d’. The observed behavior is analyzed and found to agree with the general features of HF systems found in experiments. Further, it is observed that in finite but small q-values the propagating phonons harden and change to localized peaks.
Towards a microscopic understanding of the phonon bottleneck
Garanin, D. A.
2007-03-01
The problem of the phonon bottleneck in the relaxation of two-level systems (spins) to a narrow group of resonant phonons via emission-absorption processes is investigated from first principles. It is shown that the kinetic approach based on the Pauli master equation is invalid because of the narrow distribution of the phonons exchanging their energy with the spins. This results in a long-memory effect that can be best taken into account by introducing an additional dynamical variable corresponding to the nondiagonal matrix elements responsible for spin-phonon correlation. The resulting system of dynamical equations describes the phonon-bottleneck plateau in the spin excitation, as well as a gap in the spin-phonon spectrum, for any finite concentration of spins. On the other hand, it does not accurately render the line shape of emitted phonons and still needs improving.
Manipulation of Phonons with Phononic Crystals
Leseman, Zayd Chad
2015-07-09
There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.
Pogrebna, A.; Mertelj, T.; Vujičić, N.; Cao, G.; Xu, Z. A.; Mihailovic, D.
2015-01-01
Ferromagnetism and superconductivity are antagonistic phenomena. Their coexistence implies either a modulated ferromagnetic order parameter on a lengthscale shorter than the superconducting coherence length or a weak exchange coupling between the itinerant superconducting electrons and the localized ordered spins. In some iron based pnictide superconductors the coexistence of ferromagnetism and superconductivity has been clearly demonstrated. The nature of the coexistence, however, remains elusive since no clear understanding of the spin structure in the superconducting state has been reached and the reports on the coupling strength are controversial. We show, by a direct optical pump-probe experiment, that the coupling is weak, since the transfer of the excess energy from the itinerant electrons to ordered localized spins is much slower than the electron-phonon relaxation, implying the coexistence without the short-lengthscale ferromagnetic order parameter modulation. Remarkably, the polarization analysis of the coherently excited spin wave response points towards a simple ferromagnetic ordering of spins with two distinct types of ferromagnetic domains. PMID:25583548
Pogrebna, A; Mertelj, T; Vujičić, N; Cao, G; Xu, Z A; Mihailovic, D
2015-01-13
Ferromagnetism and superconductivity are antagonistic phenomena. Their coexistence implies either a modulated ferromagnetic order parameter on a lengthscale shorter than the superconducting coherence length or a weak exchange coupling between the itinerant superconducting electrons and the localized ordered spins. In some iron based pnictide superconductors the coexistence of ferromagnetism and superconductivity has been clearly demonstrated. The nature of the coexistence, however, remains elusive since no clear understanding of the spin structure in the superconducting state has been reached and the reports on the coupling strength are controversial. We show, by a direct optical pump-probe experiment, that the coupling is weak, since the transfer of the excess energy from the itinerant electrons to ordered localized spins is much slower than the electron-phonon relaxation, implying the coexistence without the short-lengthscale ferromagnetic order parameter modulation. Remarkably, the polarization analysis of the coherently excited spin wave response points towards a simple ferromagnetic ordering of spins with two distinct types of ferromagnetic domains.
Phonon-Josephson resonances in atomtronic circuits
NASA Astrophysics Data System (ADS)
Bidasyuk, Y. M.; Prikhodko, O. O.; Weyrauch, M.
2016-09-01
We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates. From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.
NASA Astrophysics Data System (ADS)
Suchyta, S.; Liddick, S.; Bennet, M.; Larson, N.; Prokop, C.; Quinn, S.; Spyrou, A.; Chemey, A.; Simon, A.; Otsuka, T.; Tsunoda, Y.; Shimizu, N.; Honma, M.; Utsuno, Y.; Tripath, V.; Vonmoss, J.
2013-10-01
68 Ni has been a focus of recent work aiming to understand the apparent rapid development of collectivity along neutron-rich N = 40 nuclei, but despite many studies, is not entirely understood. The decay of the first excited 0+ state in 68Ni was investigated at the NSCL. Ions of 68Co were implanted into a planar germanium double-sided strip detector (GeDSSD). The beta decay of 68Co populated the first excited 0+ state in 68Ni and within hundreds of nanoseconds the decay of the first excited 0+ state was measured in the GeDSSD. Both the energy of the first excited 0+ state and the electric monopole transition strength from the first excited 0+ state were precisely determined. Comparisons to Monte Carlo Shell Model calculations suggest shape coexistence between spherical ground and oblate first excited 0+ states in 68Ni. The experimental results and theoretical interpretation will be presented.
Topological Phonons and Weyl Lines in Three Dimensions
NASA Astrophysics Data System (ADS)
Stenull, Olaf; Kane, C. L.; Lubensky, T. C.
2016-08-01
Topological mechanics and phononics have recently emerged as an exciting field of study. Here we introduce and study generalizations of the three-dimensional pyrochlore lattice that have topologically protected edge states and Weyl lines in their bulk phonon spectra, which lead to zero surface modes that flip from one edge to the opposite as a function of surface wave number.
Watching surface waves in phononic crystals.
Wright, Oliver B; Matsuda, Osamu
2015-08-28
In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Non-equilibrium Phonons in CaWO4: Issues for Phonon Mediated Particle Detectors
NASA Astrophysics Data System (ADS)
Msall, Madeleine; Head, Timothy; Jumper, Daniel
2009-03-01
The CRESST experiment looks for evidence of dark matter particles colliding with nuclei in CaWO4, using cryogenic bolometers sensitive to energy deposition ˜ 10 keV with a few percent accuracy. Calibration of the energy deposited in the phonon system depends upon the details of the evolution of the non-equilibrium energy in the CaWO4 absorber. Our phonon images sensitively measure variations in angular phonon flux, providing key information about the elastic constants and scattering rates that determine the energy evolution. Phonon pulses, created by focused photoexcitation of a 150 nm Cu film, are detected after propagation through 3 mm of CaWO4. The 20 ns Ar-ion laser pulse creates a localized (10-3 mm^2) source of 10-20 K blackbody phonons. The sample is at 2 K. Our images show that the elastic constants derived from ultrasonic velocities along high symmetry axes do not accurately predict the total phonon flux along non-symmetry directions. We present new data on the dependence of phonon flux on excitation level and discuss the influence of isotope and anharmonic decay on the shape of phonon pulses in these ultrapure samples. Thanks to J.P. Wolfe and the Frederick Seitz Materials Research Laboratory, Urbana, IL, for partial support of this work.
Nonperturbative theory of exciton-phonon resonances in semiconductor absorption
NASA Astrophysics Data System (ADS)
Hannewald, K.; Bobbert, P. A.
2005-09-01
We develop a theory of exciton-phonon sidebands in the absorption spectra of semiconductors. The theory does not rely on an ad hoc exciton-phonon picture, but is based on a more fundamental electron-phonon Hamiltonian, thus avoiding a priori assumptions about excited-state properties. We derive a nonperturbative compact solution that can be looked upon as the semiconductor version of the textbook absorption formula for a two-level system coupled to phonons. Accompanied by an illustrative numerical example, the importance and usefulness of our approach with respect to practical applications for semiconductors is demonstrated.
Bloch oscillations in the presence of plasmons and phonons
Ghosh; Jonsson; Wilkins
2000-07-31
The coupling between Bloch oscillating electrons and longitudinal optical phonons in a superlattice leads to resonant phonon excitation but no gap in the Bloch-phonon spectrum. In addition, we predict a sharp transition from plasma to Bloch oscillations at nu(B) = 2nu(P). From a microscopic description with phenomenological dampings, we numerically map out the behavior of coupled Bloch-plasmon-phonon modes for a wide range of parameters, and mimic experimental conditions. Our results are in good agreement with recent experiments by Dekorsy et al. [Phys. Rev. Lett. 85, 1080 (2000)].
Interaction Induced Electron Self-Interference in a Semiconductor: The Phonon Staircase Effect
NASA Astrophysics Data System (ADS)
Kenrow, J. A.; El Sayed, K.; Stanton, C. J.
1997-06-01
The exact quantum mechanics of a model semiconductor system of an electron with a discrete and equidistant energy spectrum interacting with a single phonon mode is presented. An electron initially excited into a coherent superposition of states interacts with phonons thereby creating a self-interference in time which reduces the emission of phonons to isolated bursts. This self-interference effect gives rise to steplike behavior in the relaxation kinetics of the electron and phonons. We show that this ``phonon staircase'' effect is a consequence of a correlated initial electron distribution and the violation of energy conservation in the electron-phonon interaction on short time scales.
Theory of coherent phonon spectroscopy in carbon nanotubes
NASA Astrophysics Data System (ADS)
Sanders, G. D.; Stanton, C. J.; Lim, Y. S.; Yee, K. J.; Kim, J. H.; Haroz, E. H.; Booshehri, L. G.; Kono, J.
2008-03-01
We develop a theory for the generation and detection of coherent phonons in single wall carbon nanotubes. Coherent phonons are generated in the nanotube by ultrafast laser pulses via the deformation potential electron-phonon interaction with the photogenerated carriers. The electronic states are treated in a tight binding formalism which gives a description of the states over the nanotube Brillouin zone while the nanotube phonon modes are treated in a valence force field model that includes bond-stretching, in-plane and out-of-plane bond-bending, and bond-twisting interactions. Equations of motion for the coherent phonon amplitudes are obtained in a density matrix formalism and we find that the coherent phonon amplitudes satisfy driven oscillator equations. In coherent phonon spectroscopy the coherent phonons are detected by ultrafast pump probe differential transmission measurements. We find that for uniform illumination with a 5 fs pump pulse only the q = 0 radial breathing mode and a high frequency G mode are strongly excited. We will discuss excitation strengths for different coherent phonon modes and compare to recent experiments.
Heterodyne x-ray diffuse scattering from coherent phonons
Kozina, M.; Trigo, M.; Chollet, M.; ...
2017-08-10
Here in this paper, we report Fourier-transform inelastic x-ray scattering measurements of photoexcited GaAs with embedded ErAs nanoparticles. We observe temporal oscillations in the x-ray scattering intensity, which we attribute to inelastic scattering from coherent acoustic phonons. Unlike in thermal equilibrium, where inelastic x-ray scattering is proportional to the phonon occupation, we show that the scattering is proportional to the phonon amplitude for coherent states. The wavevectors of the observed phonons extend beyond the excitation wavevector. The nanoparticles break the discrete translational symmetry of the lattice, enabling the generation of large wavevector coherent phonons. Elastic scattering of x-ray photons frommore » the nanoparticles provides a reference for heterodyne mixing, yielding signals proportional to the phonon amplitude.« less
Phonon-assisted dark exciton preparation in a quantum dot
NASA Astrophysics Data System (ADS)
Lüker, S.; Kuhn, T.; Reiter, D. E.
2017-05-01
In semiconductor quantum dots, coupling to the environment, i.e., to phonons, plays a crucial role for optical state preparation. We analyze the phonon impact on two methods for direct optical preparation of the dark exciton, which is enabled by a tilted magnetic field: excitation with a chirped laser pulse and excitation with a detuned pulse. Our study reveals that for both methods, phonons either do not impede the proposed mechanism or they are made useful by widening the parameter range where dark state preparation is possible due to phonon-assisted dark exciton preparation. In view of the positive impact of phonons on optical preparation, the use of dark excitons in quantum dots becomes even more attractive.
NASA Astrophysics Data System (ADS)
Peelaers, H.; Partoens, B.; Peeters, F. M.
2009-09-01
The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.
Plasmon–phonon coupling in monolayer WS{sub 2}
Zhao, Weiwei; Li, Mei; Zhang, Yan; Bi, Kedong; Chen, Yunfei E-mail: zhni@seu.edu.cn; Wu, Qisheng; Hao, Qi; Wang, Jinlan; Ni, Zhenhua E-mail: zhni@seu.edu.cn
2016-03-28
The excitation of plasmon in metallic nanostructures produces intense and strongly localized near fields that enhance light-matter interaction. Here, we report plasmon–phonon coupling in monolayer WS{sub 2} deposited with gold and silver nanoparticles. The Raman spectra reveal phonon modes arising from the coupling between plasmon and WS{sub 2}. The localized surface plasmon resonance mediated excitation activates the Raman process without requiring defect for momentum conservation. Our results also reveal that the momentum induced by localized surface plasmon resonances losses to WS{sub 2} and the metal atoms adsorption modulated spin–orbit split are the two essential elements for the observed plasmon–phonon coupling. This work will open up exciting prospects for plasmon–phonon coupling in two dimensional systems.
Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L
2005-03-25
In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.
NASA Astrophysics Data System (ADS)
Suchyta, S.; Liddick, S. N.; Tsunoda, Y.; Otsuka, T.; Bennett, M. B.; Chemey, A.; Honma, M.; Larson, N.; Prokop, C. J.; Quinn, S. J.; Shimizu, N.; Simon, A.; Spyrou, A.; Tripathi, V.; Utsuno, Y.; VonMoss, J. M.
2014-02-01
The internal-conversion and internal-pair-production decays of the first excited 0+ state in Ni68 are studied following the β decay of Co68. A novel experimental technique, in which the ions of Co68 were implanted into a planar germanium double-sided strip detector and which required digital pulse processing, is developed. The values for the energy of the first excited 0+ state and the electric monopole transition strength from the first excited 0+ state to the ground state in Ni68 are determined to be 1605(3) keV and 7.6(4)×10-3, respectively. Comparisons of the experimental results to Monte Carlo shell-model calculations suggest the coexistence between a spherical ground state and an oblate first excited 0+ state in Ni68.
On the Coexistence of Superconductivity and Magnetic Ordering in Unconventional Superconductors
NASA Astrophysics Data System (ADS)
Rodrigues de Campos, Fillipi Klos; Zanella, Fernando; Dartora, C. A.
2017-02-01
It is demonstrated that the coexistence of superconductivity and magnetic ordering, occurring, for instance, in iron-based pnictides and uranium compounds, is not forbidden by classical Maxwell's equations and London-type equations. It predicts simply that internal magnetization is allowed but localized magnetic moments are screened at distances of the order of the London penetration depth. A microscopic theory is considered for the case of ferromagnetic ordering, described in simple terms by electron-magnon coupling. For the sake of simplicity, we assume that itinerant electrons are not responsible for the magnetic ordering, but interact with phonon and magnon excitations, leading to an alternative Cooper pair channel. The temperature dependence and the isotope effect of the superconducting gap is also analysed.
On the Coexistence of Superconductivity and Magnetic Ordering in Unconventional Superconductors
NASA Astrophysics Data System (ADS)
Rodrigues de Campos, Fillipi Klos; Zanella, Fernando; Dartora, C. A.
2017-04-01
It is demonstrated that the coexistence of superconductivity and magnetic ordering, occurring, for instance, in iron-based pnictides and uranium compounds, is not forbidden by classical Maxwell's equations and London-type equations. It predicts simply that internal magnetization is allowed but localized magnetic moments are screened at distances of the order of the London penetration depth. A microscopic theory is considered for the case of ferromagnetic ordering, described in simple terms by electron-magnon coupling. For the sake of simplicity, we assume that itinerant electrons are not responsible for the magnetic ordering, but interact with phonon and magnon excitations, leading to an alternative Cooper pair channel. The temperature dependence and the isotope effect of the superconducting gap is also analysed.
Spin waves and magnetic excitations
Borovik-Romanov, A.S.; Sinha, S.K.
1988-01-01
This book describes both simple spin waves (magnons) and complicated excitations in magnetic systems. The following subjects are covered: - various methods of magnetic excitation investigations such as neutron scattering on magnetic excitations, spin-wave excitation by radio-frequency, power light scattering on magnons and magnetic excitation observation within the light-absorption spectrum; - oscillations of magnetic electron systems coupled with phonons, nuclear spin systems and localized impurity modes: - low-dimensional magnetics, amorphous magnetics and spin glasses.
Phonon lifetimes and phonon decay in InN
NASA Astrophysics Data System (ADS)
Pomeroy, J. W.; Kuball, M.; Lu, H.; Schaff, W. J.; Wang, X.; Yoshikawa, A.
2005-05-01
We report on the Raman analysis of A1(LO) (longitudinal optical) and E2 phonon lifetimes in InN and their temperature dependence from 80 to 700 K. Our experimental results show that among the various possible decay channels, the A1(LO) phonon decays asymmetrically into a high energy and a low energy phonon, whereas the E2 phonon predominantly decays into three phonons. Possible decay channels of the A1(LO) phonon may involve combinations of transverse optical and acoustic phonons. Phonon lifetimes of 1.3 and 4 ps were measured at 80 K for the A1(LO) and the E2 phonons, respectively. This rather long A1(LO) phonon lifetime suggests that hot phonon effects will play a role in InN for carrier relaxation.
Phonon engineering for nanostructures.
Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen
2010-01-01
Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.
Iglesias, J. M.; Martín, M. J.; Pascual, E.; Rengel, R.
2016-01-25
We study, by means of a Monte Carlo simulator, the hot phonon effect on the relaxation dynamics in photoexcited graphene and its quantitative impact as compared with considering an equilibrium phonon distribution. Our multi-particle approach indicates that neglecting the hot phonon effect significantly underestimates the relaxation times in photoexcited graphene. The hot phonon effect is more important for a higher energy of the excitation pulse and photocarrier densities between 1 and 3 × 10{sup 12 }cm{sup −2}. Acoustic intervalley phonons play a non-negligible role, and emitted phonons with wavelengths limited up by a maximum (determined by the carrier concentration) induce a slower carrier cooling rate. Intrinsic phonon heating is damped in graphene on a substrate due to the additional cooling pathways, with the hot phonon effect showing a strong inverse dependence with the carrier density.
Phononic Frequency Comb via Intrinsic Three-Wave Mixing
NASA Astrophysics Data System (ADS)
Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin
2017-01-01
Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.
Phononic Frequency Comb via Intrinsic Three-Wave Mixing.
Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin
2017-01-20
Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.
Unified theory of electron-phonon renormalization and phonon-assisted optical absorption.
Patrick, Christopher E; Giustino, Feliciano
2014-09-10
We present a theory of electronic excitation energies and optical absorption spectra which incorporates energy-level renormalization and phonon-assisted optical absorption within a unified framework. Using time-independent perturbation theory we show how the standard approaches for studying vibronic effects in molecules and those for addressing electron-phonon interactions in solids correspond to slightly different choices for the non-interacting Hamiltonian. Our present approach naturally leads to the Allen-Heine theory of temperature-dependent energy levels, the Franck-Condon principle, the Herzberg-Teller effect and to phonon-assisted optical absorption in indirect band gap materials. In addition, our theory predicts sub-gap phonon-assisted optical absorption in direct gap materials, as well as an exponential edge which we tentatively assign to the Urbach tail. We also consider a semiclassical approach to the calculation of optical absorption spectra which simultaneously captures energy-level renormalization and phonon-assisted transitions and is especially suited to first-principles electronic structure calculations. We demonstrate this approach by calculating the phonon-assisted optical absorption spectrum of bulk silicon.
Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.
NASA Astrophysics Data System (ADS)
Mehta, Sushrut Madhukar
Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.
Triple configuration coexistence in {sup 44}S
Santiago-Gonzalez, D.; Wiedenhoever, I.; Abramkina, V.; Avila, M. L.; Cottle, P. D.; Kemper, K. W.; Rojas, A.; Volya, A.; Baugher, T.; Brown, B. A.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Meharchand, R.; Bazin, D.; Weisshaar, D.; Simpson, E. C.; Tostevin, J. A.
2011-06-15
The neutron-rich N=28 nucleus {sup 44}S was studied using the two-proton knockout reaction from {sup 46}Ar at intermediate beam energy. We report the observation of four new excited states, one of which is a strongly prolate deformed 4{sup +} state, as indicated by a shell-model calculation. Its deformation originates in a neutron configuration which is fundamentally different from the ''intruder'' configuration responsible for the ground-state deformation. Consequently, we do not have three coexisting shapes in {sup 44}S, but three coexisting configurations, corresponding to zero-, one-, and two-neutron particle-hole excitations.
Correlations of collective observables and the phonon structure of nuclei
Casten, R.F.; Zamfir, N.V. ||
1994-07-01
A ``horizontal`` view of nuclear structures is described in which various observables are correlated over broad mass ranges. This approach leads to a number of remarkable correlations, to new understanding of the evolution of structure, to a challenge to microscopic theories, and to new signatures of structure that will be especially useful with radioactive beam experiments. In particular, this and other evidence suggests a nearly universal and pervasive role of phonon and multi-phonon excitations in nuclei.
Electron-Phonon Coupling and its implication for the superconducting topological insulators
Zhang, Xiao-Long; Liu, Wu-Ming
2015-01-01
The recent observation of superconductivity in doped topological insulators has sparked a flurry of interest due to the prospect of realizing the long-sought topological superconductors. Yet the understanding of underlying pairing mechanism in these systems is far from complete. Here we investigate this problem by providing robust first-principles calculations of the role of electron-phonon coupling for the superconducting pairing in the prime candidate CuxBi2Se3. Our results show that electron-phonon scattering process in this system is dominated by zone center and boundary optical modes, with coexistence of phonon stiffening and softening. While the calculated electron-phonon coupling constant λ suggests that Tc from electron-phonon coupling is 2 orders smaller than the ones reported on bulk inhomogeneous samples, suggesting that superconductivity may not come from pure electron-phonon coupling. We discuss the possible enhancement of superconducting transition temperature by local inhomogeneity introduced by doping. PMID:25753813
1985-10-01
ishorens on tne electronic mobiity introduces a nonlinear .slnetro~nic response, because tine phonon-distributions and tnnr, fre thne rates for carrier...transport noneuilibrium phonons to be used in heated displaced and hinh optical excitation of semiconductors. maxwellian (HDM) models of nonlinear transport...N2 E -- "-hr, ’ltrIut t.i iih VII T.. - -" - 3.5r-o 30 N 5310 % .0TL30K n. - , - - 10 tm/ FLOW- CHART MAIN PROGAM 1 A- I A STA ~ B Q L , (D ?PE AUtM
Birefringent phononic structures
Psarobas, I. E. Exarchos, D. A.; Matikas, T. E.
2014-12-15
Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.
Phonon Analysis in Multiphonon Transitions
NASA Astrophysics Data System (ADS)
Huang, Kun; Gu, Zongquan
In the investigation of multiphonon transitions, single-mode or single-frequency models are widely used. In view of the fact that such oversimplified models can be seriously inadequate, the present work bridges the gap between the complexity of the general formal theory and the simplicity required for concrete applications by introducing the concept of multi-frequency models. That is, the theory is so formulated that a general system can be approximated by multi-frequency models of any degree of elaboration. A statistical thermodynamic formalism is developed for treating such multi-frequency models, which, on the one hand, greatly reduces the labour of calculation with such models and, on the other hand, leads directly to a simple statistical distribution law for numbers of phonons of each frequency participating in a multiphonon transition. Applications of the theory to concrete models lead to certain general conclusions on frequency dispersion effects in multiphonon transitions. The use of the theory is further demonstrated by fully accounting for the paradoxical experimental results reported by Jia and Yen that the isotopic substitution of H by D in CsMn Cl3· 2H2O reduces the multiphonon nonradiative transition probability of excited Mn2+ ion by more than ten-fold, and yet leaves the corresponding luminescence phonon sideband little changed. In the last section of the paper, the relation between the statistical thermodynamic formalism and existing multiphonon transition theory is elucidated, thereby the theoretical basis of the statistical formalism becomes clearly defined.
Electrical switch to the resonant magneto-phonon effect in graphene.
Leszczynski, Przemyslaw; Han, Zheng; Nicolet, Aurelien A L; Piot, Benjamin A; Kossacki, Piotr; Orlita, Milan; Bouchiat, Vincent; Basko, Denis M; Potemski, Marek; Faugeras, Clement
2014-03-12
We report a comprehensive study of the tuning with electric fields of the resonant magneto-exciton optical phonon coupling in gated graphene. For magnetic fields around B ∼ 25 T that correspond to the range of the fundamental magneto-phonon resonance, the electron-phonon coupling can be switched on and off by tuning the position of the Fermi level in order to Pauli block the two fundamental inter-Landau level excitations. The effects of such a profound change in the electronic excitation spectrum are traced through investigations of the optical phonon response in polarization resolved magneto-Raman scattering experiments. We report on the observation of a splitting of the phonon feature with satellite peaks developing at particular values of the Landau level filling factor on the low or on the high energy side of the phonon, depending on the relative energy of the discrete electronic excitation and of the optical phonon. Shifts of the phonon energy as large as ±60 cm(-1) are observed close to the resonance. The intraband electronic excitation, the cyclotron resonance, is shown to play a relevant role in the observed spectral evolution of the phonon response.
Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D.; Roberts, C.; Podolskiy, V. A.; Hoffman, A. J.
2014-03-31
We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.
Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals
He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-hu; Xiao, Min
2016-01-01
A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction. PMID:27457385
Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals
NASA Astrophysics Data System (ADS)
He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min
2016-07-01
A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction.
Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals.
He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min
2016-07-26
A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction.
Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots
NASA Astrophysics Data System (ADS)
Bragas, A. V.; Aku-Leh, C.; Costantino, S.; Ingale, Alka; Zhao, J.; Merlin, R.
2004-05-01
We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump-probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons.
Shape coexistence in neutron deficient Po nuclei
Helariutta, K.; Cocks, J. F. C.; Enqvist, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Jaemsen, P.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Piiparinen, M.; Rahkila, P.; Savelius, A.; Trzaska, W. H.; Toermaenen, S.; Uusitalo, J.; Allatt, R. G.
1999-11-16
The excited levels in {sup 192-195}Po have been studied using the recoil-decay tagging method. New levels have been identified. The data are in accordance with the scheme of the coexisting spherical and deformed intruder structures crossing each other with N<112.
Shape Coexistence in Neutron Deficient Po Nuclei
Helariutta, K.; Cocks, J.F.C.; Enqvist, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Jamsen, P.; Kankaanpaa, H.; Kettunen, H.; Kuiusiniemi, P.; Leino, M.; Muikkui, M.; Piiparinen, M.; Rahkila, P.; Savelius, A.; Trzaska, W.H.; Tormanen, S.; Uusitalo, J.; Allatt, R.G.; Butler, P.A.; Page, R.D.; Kapusta, M.
1999-12-31
The excited levels in {sup 192-195}Po have been studied using the recoil-decay tagging method. New levels have been identified. The data are in accordance with the scheme of the coexisting spherical and deformed intruder structures crossing each other with N<112.
Phononic crystal diffraction gratings
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent
2012-02-01
When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.
Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; ...
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
NASA Astrophysics Data System (ADS)
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
NASA Astrophysics Data System (ADS)
Perrin, Bernard
2007-06-01
The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how
Slow light and slow acoustic phonons in optophononic resonators
NASA Astrophysics Data System (ADS)
Villafañe, V.; Soubelet, P.; Bruchhausen, A. E.; Lanzillotti-Kimura, N. D.; Jusserand, B.; Lemaître, A.; Fainstein, A.
2016-11-01
Slow and confined light have been exploited in optoelectronics to enhance light-matter interactions. Here we describe the GaAs/AlAs semiconductor microcavity as a device that, depending on the excitation conditions, either confines or slows down both light and optically generated acoustic phonons. The localization of photons and phonons in the same place of space amplifies optomechanical processes. Picosecond laser pulses are used to study through time-resolved reflectivity experiments the coupling between photons and both confined and slow acoustic phonons when the laser is tuned either with the cavity (confined) optical mode or with the stop-band edge (slow) optical modes. A model that fully takes into account the modified propagation of the acoustic phonons and light in these resonant structures is used to describe the laser detuning dependence of the coherently generated phonon spectra and amplitude under these different modes of laser excitation. We observe that confined light couples only to confined mechanical vibrations, while slow light can generate both confined and slow coherent vibrations. A strong enhancement of the optomechanical coupling using confined photons and vibrations, and also with properly designed slow photon and phonon modes, is demonstrated. The prospects for the use of these optoelectronic devices in confined and slow optomechanics are addressed.
Magnetic moments induce strong phonon renormalization in FeSi
Krannich, S.; Sidis, Y.; Lamago, D.; Heid, R.; Mignot, J.-M.; Löhneysen, H. v.; Ivanov, A.; Steffens, P.; Keller, T.; Wang, L.; Goering, E.; Weber, F.
2015-01-01
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron–phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron–phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe–Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin–phonon coupling and multiple interaction paths. PMID:26611619
Magnetic moments induce strong phonon renormalization in FeSi.
Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F
2015-11-27
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths.
Phonon waveguides for electromechanical circuits.
Hatanaka, D; Mahboob, I; Onomitsu, K; Yamaguchi, H
2014-07-01
Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.
Electron-phonon coupling in perovskites studied by Raman Scattering
NASA Astrophysics Data System (ADS)
Sathe, V. G.; Tyagi, S.; Sharma, G.
2016-10-01
Raman scattering is an unique technique for characterization and quantification of electron-phonon, spin-phonon and spin-lattice coupling in many of the currently prominent compounds like multiferroics and manganites. In manganites, it is understood now that a phase separated landscape with coexisting metallic and insulating regions exist in most of the compounds and application of small external perturbation causes an alteration in this landscape. In such scenario, local metallic regions grow suddenly at the expense of insulating regions below the magnetic ordering temperature. Such regions can be characterized effectively using Raman scattering measurements where delocalized electrons couple with the adjacent phonon peaks giving a Fano resonance in the form of asymmetric line shape.
Surface Phonons and Polaritons.
1976-01-01
for an impurity in the surface of a crystal could be observed in the one phonon cross section for the resonant absorption or e.ission of ,—rays by...localized at the surface. The w5 — dependence has a simple physical origin. It is well known that the cross section for scattering of bulk phonons by a...propagate. In Section II of the present Chapter we present the theory underlying the surface induced vibrational properties of crystals which we have
Phonon induced magnetism in ionic materials
NASA Astrophysics Data System (ADS)
Restrepo, Oscar D.; Antolin, Nikolas; Jin, Hyungyu; Heremans, Joseph P.; Windl, Wolfgang
2014-03-01
Thermoelectric phenomena in magnetic materials create exciting possibilities in future spin caloritronic devices by manipulating spin information using heat. An accurate understanding of the spin-lattice interactions, i.e. the coupling between magnetic excitations (magnons) and lattice vibrations (phonons), holds the key to unraveling their underlying physics. We report ab initio frozen-phonon calculations of CsI that result in non-zero magnetization when the degeneracy between spin-up and spin-down electronic density of states is lifted for certain phonon displacement patterns. For those, the magnetization as a function of atomic displacement shows a sharp resonance due to the electronic states on the displaced Cs atoms, while the electrons on indium form a continuous background magnetization. We relate this resonance to the generation of a two-level system in the spin-polarized Cs partial density of states as a function of displacement, which we propose to be described by a simple resonant-susceptibility model. Current work extends these investigations to semiconductors such as InSb. ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at OSU (Grant DMR-0820414).HJ and JPH are supported by AFOSR MURI Cryogenic Peltier Cooling, Contract #FA9550-10-1-0533.
Discrete coupled plasmon-phonon modes in finite semiconductor multi-layers
NASA Astrophysics Data System (ADS)
Liu, Y.; Sooryakumar, R.
1987-11-01
The coupled intra subband-phonon dispersion in N equally spaced quasi two-dimensional electron gas layers embedded in a polar semiconductor is analysed. The interactions of the Giuliani-Quinn surface plamon excitations with surface and bulk phonons are also investigated.
NASA Technical Reports Server (NTRS)
Jacobi, N.; Zmuidzinas, J. S.
1974-01-01
A formalism was developed for temperature-dependent, self-consistent phonons in quantum solids with defects. Lattice vacancies and interstitials in solid helium and metallic hydrogen, as well as electronic excitations in solid helium, were treated as defects that modify properties of these systems. The information to be gained from the modified phonon spectrum is discussed.
Mapping gigahertz vibrations in a plasmonic-phononic crystal
NASA Astrophysics Data System (ADS)
Kelf, Timothy A.; Hoshii, Wataru; Otsuka, Paul H.; Sakuma, Hirotaka; Veres, Istvan A.; Cole, Robin M.; Mahajan, Sumeet; Baumberg, Jeremy J.; Tomoda, Motonobu; Matsuda, Osamu; Wright, Oliver B.
2013-02-01
We image the gigahertz vibrational modes of a plasmonic-phononic crystal at sub-micron resolution by means of an ultrafast optical technique, using a triangular array of spherical gold nanovoids as a sample. Light is strongly coupled to the plasmonic modes, which interact with the gigahertz phonons by a process akin to surface-enhanced stimulated Brillouin scattering. A marked enhancement in the observed optical reflectivity change at the centre of a void on phononic resonance is likely to be caused by this mechanism. By comparison with numerical simulations of the vibrational field, we identify resonant breathing deformations of the voids and elucidate the corresponding mode shapes. We thus establish scanned optomechanical probing of periodic plasmonic-phononic structures as a new means of investigating their coupled excitations on the nanoscale.
Planck distribution of phonons in a Bose-Einstein condensate.
Schley, R; Berkovitz, A; Rinott, S; Shammass, I; Blumkin, A; Steinhauer, J
2013-08-02
The Planck distribution of photons emitted by a blackbody led to the development of quantum theory. An analogous distribution of phonons should exist in a Bose-Einstein condensate. We observe this Planck distribution of thermal phonons in a 3D condensate. This observation provides an important confirmation of the basic nature of the condensate's quantized excitations. In contrast to the bunching effect, the density fluctuations are seen to increase with increasing temperature. This is due to the nonconservation of the number of phonons. In the case of rapid cooling, the phonon temperature is out of equilibrium with the surrounding thermal cloud. In this case, a Bose-Einstein condensate is not as cold as previously thought. These measurements are enabled by our in situ k-space technique.
Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p -n junction
NASA Astrophysics Data System (ADS)
Melnick, Corey; Kaviany, Massoud
2016-03-01
The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons (Ep ,O) more energetic than the band gap (Δ Ee ,g) to generate power in a p-n junction. We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate that a pV material with Ep ,O≃Δ Ee ,g≫kBT , where kBT is the thermal energy, and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016), 10.1103/PhysRevB.93.125203], we tune the band gap of graphite within density functional theory through hydrogenation and the application of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a continued material search.
Phonon dispersion in hypersonic two-dimensional phononic crystal membranes
NASA Astrophysics Data System (ADS)
Graczykowski, B.; Sledzinska, M.; Alzina, F.; Gomis-Bresco, J.; Reparaz, J. S.; Wagner, M. R.; Sotomayor Torres, C. M.
2015-02-01
We investigate experimentally and theoretically the acoustic phonon propagation in two-dimensional phononic crystal membranes. Solid-air and solid-solid phononic crystals were made of square lattices of holes and Au pillars in and on 250 nm thick single crystalline Si membrane, respectively. The hypersonic phonon dispersion was investigated using Brillouin light scattering. Volume reduction (holes) or mass loading (pillars) accompanied with second-order periodicity and local resonances are shown to significantly modify the propagation of thermally activated GHz phonons. We use numerical modeling based on the finite element method to analyze the experimental results and determine polarization, symmetry, or three-dimensional localization of observed modes.
Dispersion of Acoustic Phonons in Quasiperiodic Superlattices
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Misra, K. D.; Tiwari, R. P.
The aim of this work is to present an up-to-date study of acoustic phonon excitations that can propagate in multilayered structure with constituents arranged in quasiperiodic fashion. In this paper, the dispersion relation of acoustic phonons for the quasiperiodic superlattice using different semiconducting materials, with the help of transfer matrix method, is derived at normal angle of incidence. Calculation is presented for (a) Ge/Si and (b) Nb/Cu semiconductor superlattices from 5th to 9th generations and dispersion diagrams are plotted using the famous Kronning-Penny model obtained from the transfer matrix of the structure. The concept of allowed and forbidden bands with the help of these dispersion curves in various generations of Fibonacci superlattices and the relation between imaginary value of propagation vector and the existence of forbidden bands is demonstrated.
ERIC Educational Resources Information Center
Reid, John S.
1977-01-01
Discussed are how the thermal vibrations of a solid are described in terms of lattice waves, how these waves interact with other waves, or with themselves, and how one is led from such a description in terms of waves to the concept of a phonon. (Author/MA)
Zarkevich, Nikolai
2014-11-24
ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces for a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.
NASA Astrophysics Data System (ADS)
Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry
2017-01-01
Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.
Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry
2017-01-01
Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered. PMID:28102368
Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry
2017-01-19
Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.
Phonon properties of americium phosphide
Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.
2016-05-23
Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.
Phonon properties of americium phosphide
NASA Astrophysics Data System (ADS)
Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.
2016-05-01
Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.
Light-induced nonthermal population of optical phonons in nanocrystals
NASA Astrophysics Data System (ADS)
Falcão, Bruno P.; Leitão, Joaquim P.; Correia, Maria R.; Soares, Maria R.; Wiggers, Hartmut; Cantarero, Andrés; Pereira, Rui N.
2017-03-01
Raman spectroscopy is widely used to study bulk and nanomaterials, where information is frequently obtained from spectral line positions and intensities. In this study, we monitored the Raman spectrum of ensembles of semiconductor nanocrystals (NCs) as a function of optical excitation intensity (optical excitation experiments). We observe that in NCs the red-shift of the Raman peak position with increasing light power density is much steeper than that recorded for the corresponding bulk material. The increase in optical excitation intensity results also in an increasingly higher temperature of the NCs as obtained with Raman thermometry through the commonly used Stokes/anti-Stokes intensity ratio. More significantly, the obtained dependence of the Raman peak position on temperature in optical excitation experiments is markedly different from that observed when the same NCs are excited only thermally (thermal excitation experiments). This difference is not observed for the control bulk material. The inefficient diffusion of photogenerated charges in nanoparticulate systems, due to their inherently low electrical conductivity, results in a higher steady-state density of photoexcited charges and, consequently, also in a stronger excitation of optical phonons that cannot decay quickly enough into acoustic phonons. This results in a nonthermal population of optical phonons and thus the Raman spectrum deviates from that expected for the temperature of the system. Our study has major consequences to the general application of Raman spectroscopy to nanomaterials.
Reduction in coherent phonon lifetime in Bi2Te3/Sb2Te3 superlattices
NASA Astrophysics Data System (ADS)
Wang, Yaguo; Xu, Xianfan; Venkatasubramanian, Rama
2008-09-01
Femtosecond pulses are used to excite A1g optical phonons in Bi2Te3, Sb2Te3, and Bi2Te3/Sb2Te3 superlattice. Time-resolved reflectivity measurements show both the low-frequency and high-frequency components of A1g phonon modes. By comparing the phonon lifetime, it is found that the scattering rate (inverse of lifetime) in superlattice is significantly higher than those in Bi2Te3 and Sb2Te3. This represents the direct measurement of coherent phonon lifetime reduction in superlattice structures, consistent with the observed reduction in thermal conductivity in superlattices.
Phonon-enhanced crystal growth and lattice healing
Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna
2013-05-28
A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.
Interaction Induced Electron Self-Interference in a Semiconductor: The Phonon Staircase Effect
Kenrow, J.A.; El Sayed, K.; Stanton, C.J.
1997-06-01
The exact quantum mechanics of a model semiconductor system of an electron with a discrete and equidistant energy spectrum interacting with a single phonon mode is presented. An electron initially excited into a coherent superposition of states interacts with phonons thereby creating a self-interference {ital in time} which reduces the emission of phonons to isolated bursts. This self-interference effect gives rise to steplike behavior in the relaxation kinetics of the electron and phonons. We show that this {open_quotes}phonon staircase{close_quotes} effect is a consequence of a correlated initial electron distribution and the violation of energy conservation in the electron-phonon interaction on short time scales. {copyright} {ital 1997} {ital The American Physical Society}
Ultrafast dynamics of photoexcited coherent phonon in Bi2Te3 thin films
NASA Astrophysics Data System (ADS)
Wu, Alexander Q.; Xu, Xianfan; Venkatasubramanian, Rama
2008-01-01
Nonequilibrium A1g longitudinal optical phonon with a frequency of 1.84THz in bismuth telluride (Bi2Te3) is coherently excited by ultrafast pulses. Time-resolved reflectivity measurements show a distinct second harmonic vibration around 3.68THz at room temperature caused by the nonlinearity of coherent phonon potentially related to the favorable crystal structure of Bi2Te3. The scattering rate between A1g coherent phonon and room temperature incoherent phonon is derived from the pump-fluence-dependent scattering rate of A1g coherent phonon. It is also observed that energy coupling from photoexcited carriers to lattice through coherent phonon vibration is more efficient and faster at higher pump fluence.
NASA Astrophysics Data System (ADS)
Liu, Sha; Liu, Junjie; Hänggi, Peter; Wu, Changqin; Li, Baowen
2014-11-01
Guided by a stylized experiment we develop a self-consistent anharmonic phonon concept for nonlinear lattices which allows for explicit "visualization." The idea uses a small external driving force which excites the front particles in a nonlinear lattice slab and subsequently one monitors the excited wave evolution using molecular dynamics simulations. This allows for a simultaneous, direct determination of the existence of the phonon mean-free path with its corresponding anharmonic phonon wave number as a function of temperature. The concept for the mean-free path is very distinct from known prior approaches: the latter evaluate the mean-free path only indirectly, via using both a scale for for the phonon relaxation time and yet another one for the phonon velocity. Notably, the concept here is neither limited to small lattice nonlinearities nor to small frequencies. The scheme is tested for three strongly nonlinear lattices of timely current interest which either exhibit normal or anomalous heat transport.
Phonon-fracton anharmonic interactions: The thermal conductivity of amorphous materials
NASA Astrophysics Data System (ADS)
Alexander, S.; Entin-Wohlman, Ora; Orbach, R.
1986-08-01
The anharmonic interaction (third-order elastic Hamiltonian) between fractons (short-length-scale vibrational excitations) and phonons (long-length-scale vibrational excitations) is introduced. The relationship between phonon-fracton scattering rates and the thermal conductivity κ is developed. Two relevant anharmonic lifetimes are calculated: two phonons combining into a single fracton, and one phonon combining with a fracton to produce a fracton. The former is important to the behavior of κ in the ``plateau'' regime; the latter to κ at temperatures above the plateau regime. The latter is interpreted in terms of phonon-assisted fracton hopping, and gives rise to an extra heat conductance which increases linearly in the temperature T. This behavior appears to be in agreement with recent high-temperature measurements of κ in epoxy resin by de Oliveira and Rosenberg.
Superconductivity without phonons.
Monthoux, P; Pines, D; Lonzarich, G G
2007-12-20
The idea of superconductivity without the mediating role of lattice vibrations (phonons) has a long history. It was realized soon after the publication of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity 50 years ago that a full treatment of both the charge and spin degrees of freedom of the electron predicts the existence of attractive components of the effective interaction between electrons even in the absence of lattice vibrations--a particular example is the effective interaction that depends on the relative spins of the electrons. Such attraction without phonons can lead to electronic pairing and to unconventional forms of superconductivity that can be much more sensitive than traditional (BCS) superconductivity to the precise details of the crystal structure and to the electronic and magnetic properties of a material.
Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng
2016-12-01
Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.
NASA Astrophysics Data System (ADS)
Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng
2016-12-01
Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.
Orbitally-driven giant phonon anharmonicity in SnSe
Li, Chen W.; Hong, Jiawang; May, Andrew F.; Bansal, Dipanshu; Chi, Songxue; Hong, Tao; Ehlers, Georg; Delaire, Olivier A.
2015-10-19
We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. We show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.
Orbitally-driven giant phonon anharmonicity in SnSe
Li, Chen W.; Hong, Jiawang; May, Andrew F.; ...
2015-10-19
We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. Wemore » show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.« less
NASA Astrophysics Data System (ADS)
Puentes, Daniel; Crider, Benjamin; Prokop, Chris; Liddick, Sean
2016-09-01
The rapid change in nuclear properties with the addition or removal of a few nucleons can provide a wealth of information on nuclear structure. One such example of rapid changes is shape coexistence which has been observed in numerous regions of the nuclear chart. Evidence for coexistence between normal and deformed configurations in the vicinity of the Ni isotopes near N = 40 has been identified in various isotopes of Co, Ni, and Cu. Levels attributed to the cross-shell proton excitations have been observed as a function of neutron number in all three isotopic chain and are observed to systematically decrease in energy with increasing neutron number. Recently, two β-decaying states in 2769Cohave been identified. However, their relative energy separation is unknown and there are some suggestions that the deformed configuration is the ground state. Observance of a weak γ-ray would, at a minimum, fix the energy difference between the two states of 2769Co.However, the search for the γ-ray transition is difficult due to the long half-life of 750-ms, a strong competition from β decay, and possibly high conversion coefficient. Observance would allow for a better understanding of the systematics of deformation in the Ni region as a function of neutron number.
Electrothermal Control of Graphene Plasmon-Phonon Polaritons.
Guo, Qiushi; Guinea, Francisco; Deng, Bingchen; Sarpkaya, Ibrahim; Li, Cheng; Chen, Chen; Ling, Xi; Kong, Jing; Xia, Fengnian
2017-08-01
Graphene plasmons are known to offer an unprecedented level of confinement and enhancement of electromagnetic field. They are hence amenable to interacting strongly with various other excitations (for example, phonons) in their surroundings and are an ideal platform to study the properties of hybrid optical modes. Conversely, the thermally induced motion of particles and quasiparticles can in turn interact with electronic degrees of freedom in graphene, including the collective plasmon modes via the Coulomb interaction, which opens up new pathways to manipulate and control the behavior of these modes. This study demonstrates tunable electrothermal control of coupling between graphene mid-infrared (mid-IR) plasmons and IR active optical phonons in silicon nitride. This study utilizes graphene nanoribbons functioning as both localized plasmonic resonators and local Joule heaters upon application of an external bias. In the latter role, they achieve up to ≈100 K of temperature variation within the device area. This study observes increased modal splitting of two plasmon-phonon polariton hybrid modes with temperature, which is a manifestation of increased plasmon-phonon coupling strength. Additionally, this study also reports on the existence of a thermally excited hybrid plasmon-phonon mode. This work can open the door for future optoelectronic devices such as electrically switchable graphene mid-infrared plasmon sources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoctocalorimetry: phonon counting in nanostructures
NASA Astrophysics Data System (ADS)
Roukes, M. L.
1999-03-01
It appears feasible with nanostructures to perform calorimetry at the level of individual thermal phonons. Here I outline an approach employing monocrystalline mesoscopic insulators, which can now be patterned from semiconductor heterostructures into complex geometries with full, three-dimensional relief. Successive application of these techniques also enables definition of integrated nanoscale thermal transducers; coupling these to a dc SQUID readout yields the requisite energy sensitivity and temporal resolution with minimal back action. The prospect of phonon counting opens intriguing experimental possibilities with analogies in quantum optics. These include fluctuation-based phonon spectroscopy, phonon shot noise in the energy relaxation of nanoscale systems, and quantum statistical phenomena such as phonon bunching and anticorrelated electron-phonon exchange.
Size effects in thermal conduction by phonons
NASA Astrophysics Data System (ADS)
Allen, Philip B.
2014-08-01
Heat transport in nanoscale systems is both hard to measure microscopically, and hard to interpret. Ballistic and diffusive heat flow coexist, adding confusion. This paper looks at a very simple case: a nanoscale crystal repeated periodically. This is a popular model for simulation of bulk heat transport using classical molecular dynamics (MD), and is related to transient thermal grating experiments. Nanoscale effects are seen in perhaps their simplest form. The model is solved by an extension of standard quasiparticle gas theory of bulk solids. Both structure and heat flow are constrained by periodic boundary conditions. Diffusive transport is fully included, while ballistic transport by phonons of a long mean free path is diminished in a specific way. Heat current J (x) and temperature gradient ∇T (x') have a nonlocal relationship, via κ (x-x'), over a distance |x-x'| determined by phonon mean free paths. In MD modeling of bulk conductivity, finite computer resources limit system size. Long mean free paths, comparable to the scale of heating and cooling, cause undesired finite-size effects that have to be removed by extrapolation. The present model allows this extrapolation to be quantified. Calculations based on the Peierls-Boltzmann equation, using a generalized Debye model, show that extrapolation involves fractional powers of 1/L. It is also argued that heating and cooling should be distributed sinusoidally [ė∝cos(2πx/L)] to improve convergence of numerics.
Raman spectroscopy of acoustic phonons in fibonacci superlattices
NASA Astrophysics Data System (ADS)
Bajema, K.; Merlin, R.
We report on resonant and non-resonant Raman scattering by acoustic phonons in Fibonacci GaAsAlAs superlattices. Spectra off-resonance show doublets centered at frequencies that follow a power-law behavior, in good agreement with predictions of a continuum model. Resonant data show a weighted density of states revealing the expected rich structure of gaps in the phonon spectrum. It is proposed that the electronic excitation involved in the resonant process is a surface state of the superlattice.
Enhanced electron?phonon coupling at metal surfaces
NASA Astrophysics Data System (ADS)
Plummer, E. W.; Shi, Junren; Tang, S.-J.; Rotenberg, Eli; Kevan, S. D.
2003-12-01
Recent advances in experimental techniques and theoretical capabilities associated with the study of surfaces show promise for producing in unprecedented detail a picture of electron-phonon coupling. These investigations on surfaces of relatively simple metals can be the platform for understanding functionality in complex materials associated with the coupling between charge and the lattice. In this article, we present an introduction to electron-phonon coupling, especially in systems with reduced dimensionality, and the recent experimental and theoretical achievements. Then, we try to anticipate the exciting future created by advances in surface physics.
Local probe of single phonon dynamics in warm ion crystals
NASA Astrophysics Data System (ADS)
Abdelrahman, A.; Khosravani, O.; Gessner, M.; Buchleitner, A.; Breuer, H.-P.; Gorman, D.; Masuda, R.; Pruttivarasin, T.; Ramm, M.; Schindler, P.; Häffner, H.
2017-06-01
The detailed characterization of non-trivial coherence properties of composite quantum systems of increasing size is an indispensable prerequisite for scalable quantum computation, as well as for understanding non-equilibrium many-body physics. Here, we show how autocorrelation functions in an interacting system of phonons as well as the quantum discord between distinct degrees of freedoms can be extracted from a small controllable part of the system. As a benchmark, we show this in chains of up to 42 trapped ions, by tracing a single phonon excitation through interferometric measurements of only a single ion in the chain. We observe the spreading and partial refocusing of the excitation in the chain, even on a background of thermal excitations. We further show how this local observable reflects the dynamical evolution of quantum discord between the electronic state and the vibrational degrees of freedom of the probe ion.
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; ...
2016-05-12
We report the high resolution inelastic x-ray study of the in-plane phonon excitations in dipalmitoyl phosphatidylcholine (DPPC) above and below main transition temperature. In the Lβ' gel phase, we observe high frequency longitudinal phonon mode previously predicted by the molecular dynamics simulations and for the first time, we reveal low frequency weakly dispersive transverse acoustic mode which softens and exhibits a low-frequency phonon gap when the DPPC lipid transitions into the Lα fluid phase. The phonon softening of the high frequency longitudinal excitations and the transformation of the transverse excitations upon the phase transition from the Lβ' to Lα phasemore » is explained within the framework of the phonon theory of liquids. These findings illustrate the importance of the collective dynamics of biomembranes and reveal that hydrocarbon tails can act as an efficient mediator in controlling the passive transport across the bilayer plane.« less
Switchable topological phonon channels
NASA Astrophysics Data System (ADS)
Süsstrunk, Roman; Zimmermann, Philipp; Huber, Sebastian D.
2017-01-01
Guiding energy deliberately is one of the central elements in engineering and information processing. It is often achieved by designing specific transport channels in a suitable material. Topological metamaterials offer a way to construct stable and efficient channels of unprecedented versatility. However, due to their stability it can be tricky to terminate them or to temporarily shut them off without changing the material properties massively. While a lot of effort was put into realizing mechanical topological metamaterials, almost no works deal with manipulating their edge channels in sight of applications. Here, we take a step in this direction, by taking advantage of local symmetry breaking potentials to build a switchable topological phonon channel.
Search for intrinsic collective excitations in Sm152
NASA Astrophysics Data System (ADS)
Kulp, W. D.; Wood, J. L.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Allmond, J. M.; Bandyopadhyay, D.; Dashdorj, D.; Choudry, S. N.; Hayes, A. B.; Hua, H.; Mynk, M. G.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Teng, R.; Yates, S. W.
2008-06-01
The 685 keV excitation energy of the first excited 0+ state in Sm152 makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of Sm152 are used to probe the E2 collectivity of excited 0+ states in this “soft” nucleus and the results are compared with model predictions. No candidates for two-phonon Kπ=0+quadrupole vibrational states are found. A 2+,K=2 state with strong E2 decay to the first excited Kπ=0+ band and a probable 3+ band member are established.
Phonon analog of topological nodal semimetals
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Bahri, Yasaman; Vishwanath, Ashvin
2016-05-01
Topological band structures in electronic systems like topological insulators and semimetals give rise to highly unusual physical properties. Analogous topological effects have also been discussed in bosonic systems, but the novel phenomena typically occur only when the system is excited by finite-frequency probes. A mapping recently proposed by C. L. Kane and T. C. Lubensky [Nat. Phys. 10, 39 (2014), 10.1038/nphys2835], however, establishes a closer correspondence. It relates the zero-frequency excitations of mechanical systems to topological zero modes of fermions that appear at the edges of an otherwise gapped system. Here we generalize the mapping to systems with an intrinsically gapless bulk. In particular, we construct mechanical counterparts of topological semimetals. The resulting gapless bulk modes are physically distinct from the usual acoustic Goldstone phonons and appear even in the absence of continuous translation invariance. Moreover, the zero-frequency phonon modes feature adjustable momenta and are topologically protected as long as the lattice coordination is unchanged. Such protected soft modes with tunable wave vector may be useful in designing mechanical structures with fault-tolerant properties.
Nonlinear electron-phonon coupling in doped manganites
Esposito, Vincent; Fechner, M.; Mankowsky, R.; ...
2017-06-15
Here, we employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr0.5Ca0.5MnO3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.
Phonons in twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Cocemasov, Alexandr I.; Nika, Denis L.; Balandin, Alexander A.
2013-07-01
We theoretically investigate phonon dispersion in AA-stacked, AB-stacked, and twisted bilayer graphene with various rotation angles. The calculations are performed using the Born-von Karman model for the intralayer atomic interactions and the Lennard-Jones potential for the interlayer interactions. It is found that the stacking order affects the out-of-plane acoustic phonon modes the most. The difference in the phonon densities of states in the twisted bilayer graphene and in AA- or AB-stacked bilayer graphene appears in the phonon frequency range 90-110 cm-1. Twisting bilayer graphene leads to the emergence of different phonon branches—termed hybrid folded phonons—which originate from the mixing of phonon modes from different high-symmetry directions in the Brillouin zone. The frequencies of the hybrid folded phonons depend strongly on the rotation angle and can be used for noncontact identification of the twist angles in graphene samples. The obtained results and the tabulated frequencies of phonons in twisted bilayer graphene are important for the interpretation of experimental Raman data and in determining the thermal conductivity of these material systems.
A Confrontation for Coexistence.
ERIC Educational Resources Information Center
Miller, Jen
2003-01-01
A month-long summer camp in Maine combines recreation, sports, and arts activities with daily conflict resolution sessions to help adolescents from regions of conflict (primarily the Middle East) learn the art of coexistence and peace. From its center in East Jerusalem, Seeds of Peace provides regular activities to reinforce the lessons that…
A Confrontation for Coexistence.
ERIC Educational Resources Information Center
Miller, Jen
2003-01-01
A month-long summer camp in Maine combines recreation, sports, and arts activities with daily conflict resolution sessions to help adolescents from regions of conflict (primarily the Middle East) learn the art of coexistence and peace. From its center in East Jerusalem, Seeds of Peace provides regular activities to reinforce the lessons that…
Raman spectrum of Si nanowires: temperature and phonon confinement effects
NASA Astrophysics Data System (ADS)
Anaya, J.; Torres, A.; Hortelano, V.; Jiménez, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Rogel, R.; Pichon, L.
2014-03-01
The Raman spectrum of Si nanowires (NWs) is a matter of controversy. Usually, the one-phonon band appears broadened and shifted. This behaviour is interpreted in terms of phonon confinement; however, similar effects are observed for NWs with dimensions for which phonon confinement does not play any relevant role. In this context, the temperature increase induced by the laser beam is recognized to play a capital role in the shape of the spectrum. The analysis of the Raman spectrum, under the influence of the heating induced by the laser beam, is strongly dependent on the excitation conditions and the properties of the NWs. We present herein an analysis of the Raman spectrum of Si NWs based on a study of the interaction between the laser beam and the NWs, for both ensembles of NWs and individual NWs, taking account of the temperature increase in the NWs under the focused laser beam and the dimensions of the NWs.
Dynamics of Phononic Dissipation at the Atomic Scale
NASA Astrophysics Data System (ADS)
Sevincli, Haldun; Mukhopadhay, Soma; Tugrul Senger, R.; Ciraci, Salim
2007-03-01
Dynamics of dissipation of a local phonon distribution to the bulk is a key issue in boundary lubrication and friction between sliding surfaces. We consider a highly excited molecule which interacts weakly with the substrate surface. We study different types of coupling and substrates having different types of dimensionality and phonon densities of states. We propose three different methods to solve the dynamics of the combined system, namely the equation of mation technique, Fano-Anderson method and the Green's function method. Using this theoretical framework we present an analysis of transient properties of energy dissipation via phonon discharge at the microscopic level. The methods allow the theoretical calculations to be extended to include any density of states for the substrate including experimental ones and any type of molecule that represent the lubricant or the asperity.
Anharmonic phonons and magnons in BiFeO3
Delaire, Olivier A; Ma, Jie; Stone, Matthew B; Huq, Ashfia; Gout, Delphine J; Brown, Craig; Wang, Kefeng; Ren, Zhifeng
2012-01-01
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.
Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; ...
2015-08-24
In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also comparemore » the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.« less
Electron-phonon coupling and thermal transport in thermoelectric compound Mo3Sb7-xTex
NASA Astrophysics Data System (ADS)
Bansal, Dipanshu; Li, Chen; Said, Ayman; Abernathy, Douglas; Yan, Jiaqiang; Delaire, Olivier
Complex interactions between solid-state excitations, such as phonon-phonon, phonon-electron, and phonon-magnon couplings are often responsible for unusual material properties. In this presentation, we report on our investigations of phonon propagation and thermal transport in thermoelectric Mo3Sb7-xTex. We have performed extensive inelastic neutron and x-ray scattering measurements of phonons in Mo3Sb7-xTex, mapping the phonon dispersions and density of states, as function of temperature and composition. Our first-principles density functional theory simulations, coupled with experimental measurements, reveal the importance of electron-phonon coupling, which dominates the scattering rates over alloy disorder scattering. Doping with Te shifts the Fermi surface near the top of the valence band, suppressing screening and causing phonons to stiffen markedly. Our measurements of acoustic dispersions and linewidths, coupled with DFT simulations and models of phonon scattering enable us to quantify the impact of the electron-phonon coupling on the thermal conductivity.
NASA Astrophysics Data System (ADS)
Wang, Zi-Wu; Li, Shu-Shen
2012-07-01
We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.
Coherent and incoherent structural dynamics in laser-excited antimony
NASA Astrophysics Data System (ADS)
Waldecker, Lutz; Vasileiadis, Thomas; Bertoni, Roman; Ernstorfer, Ralph; Zier, Tobias; Valencia, Felipe H.; Garcia, Martin E.; Zijlstra, Eeuwe S.
2017-02-01
We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric A1 g optical phonon mode via the shift of the minimum of the atomic potential energy surface. Ab initio molecular dynamics simulations on laser excited potential energy surfaces are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. Good agreement is obtained between the parameter-free calculations and the experiment. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. The electron-phonon coupling is determined as a function of electronic temperature from our DFT calculations and the data by applying different models for the energy transfer.
Phonon-phonon interactions: First principles theory
Gibbons, T. M.; Bebek, M. B.; Kang, By.; Stanley, C. M.; Estreicher, S. K.
2015-08-28
We present the details of a method to perform molecular-dynamics (MD) simulations without thermostat and with very small temperature fluctuations ±ΔT starting with MD step 1. It involves preparing the supercell at the time t = 0 in physically correct microstates using the eigenvectors of the dynamical matrix. Each initial microstate corresponds to a different distribution of kinetic and potential energies for each vibrational mode (the total energy of each microstate is the same). Averaging the MD runs over many initial microstates further reduces ΔT. The electronic states are obtained using first-principles theory (density-functional theory in periodic supercells). Three applications are discussed: the lifetime and decay of vibrational excitations, the isotope dependence of thermal conductivities, and the flow of heat at an interface.
Functional crossover in the dispersion relations of magnons and phonons
NASA Astrophysics Data System (ADS)
Hoser, A.; Köbler, U.
2016-09-01
Experimental data are presented showing that the dispersion relations of magnons and acoustic phonons can consist of two sections with different functions of wave vector. In the low wave vector range a power function of wave vector often holds over a finite q-range while dispersions for larger wave vector values better approach the atomistic model predictions. In the magnon spectra ∼⃒qx power functions with exponents x=1.25, 1.5 and 2 are identified. The dispersion of the acoustic phonons can be a linear function of wave vector over a surprisingly large range of energy. Since the slope of the linear section agrees with the known sound velocities it can be concluded that the dispersion of the acoustic phonons has got attracted by the linear dispersion of the mass less Debye bosons (sound waves). Due to the different (translational) symmetries of bosons and atomistic excitations (magnons, phonons) the associated dispersions can attract each other. In the same way the different ∼⃒qx power functions in the magnon dispersions indicate that magnon dispersions are attracted by the dispersion of the bosons of the magnetic continuum (Goldstone bosons). This allows evaluation of the otherwise difficult to obtain dispersions of the Goldstone bosons from the known magnon dispersions. Interestingly, the dispersions of Goldstone bosons (Debye bosons) attract magnon dispersions (phonon dispersions) and not vice versa.
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-01
In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials. PMID:26763899
Scattering of longitudinal acoustic phonons in thin silicon membranes
NASA Astrophysics Data System (ADS)
Gelda, Dhruv; Ghossoub, Marc G.; Valavala, Krishna V.; Rajagopal, Manjunath C.; Sinha, Sanjiv
2017-04-01
The lifetimes of sub THz acoustic phonon modes determine the intrinsic quality factor of nanomechanical resonators, and control the ultimate limits to sensing mass change, liquid density, charge and temperature with such devices. Recent experiments have provided direct measurements of longitudinal acoustic phonon lifetimes in the higher GHz to THz regime for silicon. However, the results do not definitively resolve the relative contributions of intrinsic mechanisms (such as Akhiezer) versus extrinsic mechanisms (such as boundary scattering), particularly at the higher frequencies. This work focuses on understanding how these mechanisms influence phonon transport through acoustic measurements in nanostructures with well-characterized surface morphologies. We employ a femtosecond laser pump-probe setup to excite and measure the lifetimes of longitudinal acoustic phonons in ultrathin silicon membranes with thicknesses down to 36 nm. We show that the phonon lifetime for membranes thicker than 200 nm is limited intrinsically by Akhiezer mechanism. In thinner membranes, boundary scattering is the most dominant dissipation mechanism. We use a surface specularity parameter based on Kirchhoff's approximation to correctly predict the observed trend. Our results provide insights to understanding thermal and acoustic transport in nanostructures.
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-14
In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; ...
2016-01-14
In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to themore » transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.« less
Inelastic x-ray scattering measurements of phonon dynamics in URu2Si2
Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; ...
2016-02-11
In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu2Si2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations in the lowmore » temperature phase.« less
NASA Astrophysics Data System (ADS)
Wong, Joe
2004-03-01
The phonon spectra of plutonium and its alloys have been sought after in the past few decades following the discovery of this actinide element in 1941, but with no success. This was due to a combination of the high neutron absorption cross section of 239Pu, the common isotope, and non-availability of large single crystals of any Pu-bearing materials. We have recent designed a high resolution inelastic x-ray scattering experiment using a bright synchrotron x-ray beam at the European Sychrotron Radiation Facility (ESRF), Grenoble and mapped the full phonon dispersion curves of an fcc delta-phase polycrystalline Pu-Ga alloy (1). Several unusual features including, a large elastic anisotropy, a small shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for d-plutonium.(2) This work was performed in collaboration with Dr. M. Krisch (ESRF)) and Prof. T.-C. Chiang (UIU), and under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. Joe Wong et al. Science, vol.301, 1078 (2003) 2. X. Dai et al. Science, vol.300, 953 (2003)
Phonon spectra of alkali metals
NASA Astrophysics Data System (ADS)
Zeković, S.; Vukajlović, F.; Veljković, V.
1982-10-01
In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.
Xiao, Jing-Lin
2009-03-01
In an asymmetry quantum dot, the properties of the electron, which is strongly coupled with phonon, were investigated. The variational relations of the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot with the transverse and longituainal effective confinement length of quantum dot and the electron-phonon coupling strength were studied by using a linear combination operator and the unitary transformation methods. Numerical calculations for the variational relations of the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot with the transverse and longituainal effective confinement length of quantum dot and the electron-phonon coupling strength were performed and the results show that the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot will strongly increase with decreasing the transverse and longitudinal effective confinement length. The first internal excited state energy of the electron which is strongly coupled with phonon in an asymmetry quantum dot will decrease with increasing the electron-phonon coupling strength. The excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot will increase with increasing the electron-phonon coupling strength.
Giri, Ashutosh; Hopkins, Patrick E.
2015-12-07
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.
NASA Astrophysics Data System (ADS)
Spann, Bryan T.; Xu, Xianfan
2015-10-01
One potential way to increase photovoltaic efficiency is to take advantage of hot-carriers. Nanocrystal based solar cells aim to take advantage of hot-carrier capture to boost device performance. The crucial parameter for gauging a given nanocrystal material for this application is the electron-phonon coupling. The electron-phonon coupling will dictate the thermalization time of hot-carriers. In this study we demonstrate a method of quantifying the electron-phonon coupling in semiconductor nanocrystals. By employing ultrafast transient absorption spectroscopy with temporal pulse shaping, we manipulate coherent phonons in CdTe_{1-x}Se_{x} nanocrystals to quantify the efficiency of the electron-phonon coupling. The Raman active longitudinal optical phonon (LO) modes were excited and probed as a function of time. Using a temporal pulse shaper, we were able to control pump pulse pairs to coherently excite and cancel coherent phonons in the CdTe_{1-x}Se_{x} nanocrystals, and estimate the relative amount of optical energy that is coupled to the coherent CdSe LO mode which is the dominant thermalization pathway for the hot-electrons in this system.
NASA Astrophysics Data System (ADS)
Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia
2017-06-01
We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.
NASA Astrophysics Data System (ADS)
Gulminelli, F.
2004-11-01
In this work the general theory of first order phase transitions in finite systems is discussed, with a special emphasis to the conceptual problems linked to a thermodynamic description for small, short-lived systems de-exciting in the vacuum as nuclear samples coming from heavy ion collisions. After a short review of the general theory of phase transitions in the framework of information theory, we will present the different possible extensions to the field of finite systems. The concept of negative heat capacity, developed in the early seventies in the context of self-gravitating systems, will be reinterpreted in the general framework of convexity anomalies of thermostatistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. A careful study of the thermodynamic limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. In the second part of the paper we will apply the theoretical ideas developed in the first part to the possible observation of a liquid-to-gas-like phase transition in heavy ion collisions. The applicability of equilibrium concepts in a dynamical collisional process without boundary conditions will first be critically discussed. The observation of abnormally large partial energy fluctuations in carefully selected samples of collisions detected with the MULTICS-Miniball and INDRA array will then be reported as a strong evidence of a first order phase transition with negative heat capacity in the nuclear equation of state. Coexistence de phase dans les noyaux Ce papier présente une revue de la théorie générale des transitions de phase du premier ordre dans les petits systèmes, avec une attention particulière aux probl
Phonon-magnon interactions in BCC iron: A combined molecular and spin dynamics study
Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Greg
2014-01-01
Combining an atomistic many-body potential with a classical spin Hamiltonian pa- rameterized by first principles calculations, molecular-spin dynamics computer sim- ulations were performed to investigate phonon-magnon interactions in BCC iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, addi- tional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study
Perera, Dilina Landau, David P.; Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi; Brown, Gregory
2014-05-07
Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing
2010-11-16
Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the
Hong-Ou-Mandel interference of two phonons in trapped ions
NASA Astrophysics Data System (ADS)
Toyoda, Kenji; Hiji, Ryoto; Noguchi, Atsushi; Urabe, Shinji
2015-11-01
The quantum statistics of bosons and fermions manifest themselves in the manner in which two indistinguishable particles interfere quantum mechanically. When two photons, which are bosonic particles, enter a beam-splitter with one photon in each input port, they bunch together at either of the two output ports. The corresponding disappearance of the coincidence count is the Hong-Ou-Mandel effect. Here we show the phonon counterpart of this effect in a system of trapped-ion phonons, which are collective excitations derived by quantizing vibrational motions that obey Bose-Einstein statistics. We realize a beam-splitter transformation of the phonons by employing the mutual Coulomb repulsion between ions, and perform a two-phonon quantum interference experiment using that transformation. We observe an almost perfect disappearance of the phonon coincidence between two ion sites, confirming that phonons can be considered indistinguishable bosonic particles. The two-particle interference demonstrated here is purely a quantum effect, without a classical counterpart, hence it should be possible to demonstrate the existence of entanglement on this basis. We attempt to generate an entangled state of phonons at the centre of the Hong-Ou-Mandel dip in the coincidence temporal profile, under the assumption that the entangled phonon state is successfully generated if the fidelity of the analysis pulses is taken into account adequately. Two-phonon interference, as demonstrated here, proves the bosonic nature of phonons in a trapped-ion system. It opens the way to establishing phonon modes as carriers of quantum information in their own right, and could have implications for the quantum simulation of bosonic particles and analogue quantum computation via boson sampling.
Hong-Ou-Mandel interference of two phonons in trapped ions.
Toyoda, Kenji; Hiji, Ryoto; Noguchi, Atsushi; Urabe, Shinji
2015-11-05
The quantum statistics of bosons and fermions manifest themselves in the manner in which two indistinguishable particles interfere quantum mechanically. When two photons, which are bosonic particles, enter a beam-splitter with one photon in each input port, they bunch together at either of the two output ports. The corresponding disappearance of the coincidence count is the Hong-Ou-Mandel effect. Here we show the phonon counterpart of this effect in a system of trapped-ion phonons, which are collective excitations derived by quantizing vibrational motions that obey Bose-Einstein statistics. We realize a beam-splitter transformation of the phonons by employing the mutual Coulomb repulsion between ions, and perform a two-phonon quantum interference experiment using that transformation. We observe an almost perfect disappearance of the phonon coincidence between two ion sites, confirming that phonons can be considered indistinguishable bosonic particles. The two-particle interference demonstrated here is purely a quantum effect, without a classical counterpart, hence it should be possible to demonstrate the existence of entanglement on this basis. We attempt to generate an entangled state of phonons at the centre of the Hong-Ou-Mandel dip in the coincidence temporal profile, under the assumption that the entangled phonon state is successfully generated if the fidelity of the analysis pulses is taken into account adequately. Two-phonon interference, as demonstrated here, proves the bosonic nature of phonons in a trapped-ion system. It opens the way to establishing phonon modes as carriers of quantum information in their own right, and could have implications for the quantum simulation of bosonic particles and analogue quantum computation via boson sampling.
Xu, Bing; Dai, Yaomin M.; Zhao, Lingxiao X.; ...
2017-03-30
Strong coupling between discrete phonon and continuous electron–hole pair excitations can induce a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in various systems. We reveal explicit evidence for strong coupling between an infrared-active phonon and electronic transitions near the Weyl points through the observation of a Fano resonance in the Weyl semimetal TaAs. The resulting asymmetry in the phonon line shape, conspicuous at low temperatures, diminishes continuously with increasing temperature. Furthermore, this behaviour originates from the suppression of electronic transitions near the Weyl points due to the decreasing occupation ofmore » electronic states below the Fermi level (EF) with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above EF. These findings not only elucidate the mechanism governing the tunable Fano resonance but also open a route for exploring exotic physical phenomena through phonon properties in Weyl semimetals.« less
Xu, B.; Dai, Y. M.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Trugman, S. A.; Zhu, J-X; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Qiu, X. G.
2017-01-01
Strong coupling between discrete phonon and continuous electron–hole pair excitations can induce a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in various systems. Here we reveal explicit evidence for strong coupling between an infrared-active phonon and electronic transitions near the Weyl points through the observation of a Fano resonance in the Weyl semimetal TaAs. The resulting asymmetry in the phonon line shape, conspicuous at low temperatures, diminishes continuously with increasing temperature. This behaviour originates from the suppression of electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level (EF) with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above EF. Our findings not only elucidate the mechanism governing the tunable Fano resonance but also open a route for exploring exotic physical phenomena through phonon properties in Weyl semimetals. PMID:28358027
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.
2016-05-12
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Finally, our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes.
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.
2016-01-01
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes. PMID:27175859
NASA Astrophysics Data System (ADS)
Xu, B.; Dai, Y. M.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Trugman, S. A.; Zhu, J.-X.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Qiu, X. G.
2017-03-01
Strong coupling between discrete phonon and continuous electron-hole pair excitations can induce a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in various systems. Here we reveal explicit evidence for strong coupling between an infrared-active phonon and electronic transitions near the Weyl points through the observation of a Fano resonance in the Weyl semimetal TaAs. The resulting asymmetry in the phonon line shape, conspicuous at low temperatures, diminishes continuously with increasing temperature. This behaviour originates from the suppression of electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level (EF) with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above EF. Our findings not only elucidate the mechanism governing the tunable Fano resonance but also open a route for exploring exotic physical phenomena through phonon properties in Weyl semimetals.
NASA Astrophysics Data System (ADS)
Fechner, M.; Spaldin, N. A.
2016-10-01
We investigate the structural modulations induced by optical excitation of a polar phonon mode in YBa2Cu3O7 using first-principles calculations based on density functional theory. We focus on the intense-excitation regime in which we expect that fourth-order phonon-phonon coupling terms dominate and model the structural modulations induced by pulses of such intensity. Our calculations of the phonon-phonon anharmonicities confirm that the cubic coupling between modes, shown in earlier work to cause a quasistatic change in the apical O-Cu distance and a buckling of the CuO2 planes, is the leading contribution at moderate pump strengths. At higher pump strengths (˜10 MV /cm ) the previously neglected quartic couplings become relevant and produce an additional shearing of the CuO2 planes. Finally, we analyze the changes in the electronic and magnetic properties associated with the induced structural changes.
Unified phonon-based approach to the thermodynamics of solid, liquid and gas states
NASA Astrophysics Data System (ADS)
Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.
2015-12-01
We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.
Diffraction of electrons at intermediate energies: The role of phonons
NASA Astrophysics Data System (ADS)
Ascolani, H.; Zampieri, G.
1996-07-01
The intensity of electrons reflected ``elastically'' from crystalline surfaces presents two regimes: the low-energy or LEED regime (<500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime (>500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering.
Phonon dynamics of neptunium chalcogenides
NASA Astrophysics Data System (ADS)
Aynyas, Mahendra; Rukmangad, Aditi; Arya, Balwant S.; Sanyal, Sankar P.
2012-06-01
We have performed phonon calculations of Neptunium Chalcogenides (NpX) (X= S, Se, Te) based on breathing shell model (BSM) which includes breathing motion of electron of the Np-atoms due to f-d hybridization. The model predicts that the short range breathing phenomenon play a dominant role in the phonon properties. We also report, for the first time specific heat for these compounds.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, István
2016-01-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves. PMID:26975881
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, Istvan
2016-03-15
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ^{(2)} nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P^{NL} of the impulsively excited phonons and those of parametrically amplified waves.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, Istvan
2016-03-15
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.« less
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
NASA Astrophysics Data System (ADS)
Isaienko, Oleksandr; Robel, István
2016-03-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.
Collective hypersonic excitations in strongly multiple scattering colloids.
Still, T; Gantzounis, G; Kiefer, D; Hellmann, G; Sainidou, R; Fytas, G; Stefanou, N
2011-04-29
Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.
Phonon anomalies in some iron telluride materials
C. C. Homes; Dai, Y. M.; Schneeloch, J.; ...
2016-03-21
In this paper, the detailed temperature dependence of the infrared-active mode in Fe1.03Te (TN ≃ 68 K) and Fe1.13Te (TN ≃ 56 K) has been examined, and the position, width, strength, and asymmetry parameter have been determined using an asymmetric Fano profile superimposed on an electronic background. In both materials the frequency of the mode increases as the temperature is reduced; however, there is also a slight asymmetry in the line shape, indicating that the mode is coupled to either spin or charge excitations. Below TN there is an anomalous decrease in frequency, and the mode shows little temperature dependence,more » at the same time becoming more symmetric, suggesting a reduction in spin- or electron-phonon coupling. The frequency of the infrared-active mode and the magnitude of the shift below TN are predicted reasonably well by first-principles calculations; however, the predicted splitting of the mode is not observed. In superconducting FeTe0.55Se0.45 (Tc ≃ 14 K) the infrared-active Eu mode displays asymmetric line shape at all temperatures, which is most pronounced between 100 – 200 K, indicating the presence of either spin- or electron-phonon coupling, which may be a necessary prerequisite for superconductivity in this class of materials.« less
Spectroscopy of phonons and spin torques in magnetic point contacts.
Yanson, I K; Naidyuk, Yu G; Bashlakov, D L; Fisun, V V; Balkashin, O P; Korenivski, V; Konovalenko, A; Shekhter, R I
2005-10-28
Phonon spectroscopy is used to investigate the mechanism of current-induced spin torques in nonmagnetic/ferromagnetic (N/F) point contacts. Magnetization excitations observed in the magneto-conductance of the point contacts are pronounced for diffusive and thermal contacts, where the electrons experience significant scattering in the contact region. We find no magnetic excitations in highly ballistic contacts. Our results show that impurity scattering at the N/F interface is the origin of the new single-interface spin torque effect.
Hot carrier relaxation in CdTe via phonon-plasmon modes
NASA Astrophysics Data System (ADS)
Zhong, Y.; Ostach, D.; Scholz, M.; Epp, S. W.; Techert, S.; Schlichting, I.; Ullrich, J.; Krasniqi, F. S.
2017-03-01
Carrier and lattice dynamics of laser excited CdTe was studied by time-resolved reflectivity for excitation fluences spanning about three orders of magnitude, from 0.064 to 6.14 mJ cm-2. At fluences below 1 mJ cm-2 the transient reflectivity is dominated by the dynamics of hybrid phonon-plasmon modes. At fluences above 1 mJ cm-2 the time-dependent reflectivity curves show a complex interplay between band-gap renormalization, band filling, carrier dynamics and recombination. A framework that accounts for such complex dynamics is presented and used to model the time-dependent reflectivity data. This model suggests that the excess energy of the laser-excited hot carriers is reduced much more efficiently by emitting hybrid phonon-plasmon modes rather than bare longitudinal optical phonons.
Hot carrier relaxation in CdTe via phonon-plasmon modes.
Zhong, Y; Ostach, D; Scholz, M; Epp, S W; Techert, S; Schlichting, I; Ullrich, J; Krasniqi, F S
2017-03-08
Carrier and lattice dynamics of laser excited CdTe was studied by time-resolved reflectivity for excitation fluences spanning about three orders of magnitude, from 0.064 to 6.14 mJ cm(-2). At fluences below 1 mJ cm(-2) the transient reflectivity is dominated by the dynamics of hybrid phonon-plasmon modes. At fluences above 1 mJ cm(-2) the time-dependent reflectivity curves show a complex interplay between band-gap renormalization, band filling, carrier dynamics and recombination. A framework that accounts for such complex dynamics is presented and used to model the time-dependent reflectivity data. This model suggests that the excess energy of the laser-excited hot carriers is reduced much more efficiently by emitting hybrid phonon-plasmon modes rather than bare longitudinal optical phonons.
Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation
NASA Astrophysics Data System (ADS)
Waldecker, Lutz; Bertoni, Roman; Ernstorfer, Ralph; Vorberger, Jan
2016-04-01
The electron-phonon coupling and the corresponding energy exchange are investigated experimentally and by ab initio theory in nonequilibrium states of the free-electron metal aluminium. The temporal evolution of the atomic mean-squared displacement in laser-excited thin freestanding films is monitored by femtosecond electron diffraction. The electron-phonon coupling strength is obtained for a range of electronic and lattice temperatures from density functional theory molecular dynamics simulations. The electron-phonon coupling parameter extracted from the experimental data in the framework of a two-temperature model (TTM) deviates significantly from the ab initio values. We introduce a nonthermal lattice model (NLM) for describing nonthermal phonon distributions as a sum of thermal distributions of the three phonon branches. The contributions of individual phonon branches to the electron-phonon coupling are considered independently and found to be dominated by longitudinal acoustic phonons. Using all material parameters from first-principles calculations except the phonon-phonon coupling strength, the prediction of the energy transfer from electrons to phonons by the NLM is in excellent agreement with time-resolved diffraction data. Our results suggest that the TTM is insufficient for describing the microscopic energy flow even for simple metals like aluminium and that the determination of the electron-phonon coupling constant from time-resolved experiments by means of the TTM leads to incorrect values. In contrast, the NLM describing transient phonon populations by three parameters appears to be a sufficient model for quantitatively describing electron-lattice equilibration in aluminium. We discuss the general applicability of the NLM and provide a criterion for the suitability of the two-temperature approximation for other metals.
Laser cooling and control of excitations in superfluid helium
NASA Astrophysics Data System (ADS)
Harris, G. I.; McAuslan, D. L.; Sheridan, E.; Sachkou, Y.; Baker, C.; Bowen, W. P.
2016-08-01
Superfluidity is a quantum state of matter that exists macroscopically in helium at low temperatures. The elementary excitations in superfluid helium have been probed with great success using techniques such as neutron and light scattering. However, measurements of phonon excitations have so far been limited to average thermodynamic properties or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of phonon excitations in real time. Furthermore, strong light-matter interactions allow both laser cooling and amplification. This represents a new tool to observe and control superfluid excitations that may provide insight into phonon-phonon interactions, quantized vortices and two-dimensional phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including the prospect of femtogram masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.
Phonons in active microfluidic crystals
NASA Astrophysics Data System (ADS)
Tsang, Alan Cheng Hou; Kanso, Eva
2016-11-01
One-dimensional crystals of driven particles confined in quasi two-dimensional microfluidic channels have been shown to exhibit propagating sound waves in the form of 'phonons', including both transverse and longitudinal normal modes. Here, we focus on one-dimensional crystals of motile particles in uniform external flows. We study the propagation of phonons in the context of an idealized model that accounts for hydrodynamic interactions among the motile particles. We obtain a closed-form analytical expression for the dispersion relation of the phonons. In the moving frame of reference of the crystals, the traveling directions of the phonons depend on the intensity of the external flow, and are exactly opposite for the transverse and longitudinal modes. We further investigate the stability of the phonons and show that the longitudinal mode is linearly stable, whereas the transverse mode is subject to an instability arising from the activity and orientation dynamics of the motile particles. These findings are important for understanding the propagation of disturbances and instabilities in confined motile particles, and could generate practical insights into the transport of motile cells in microfluidic devices.
Optical phonons in PbTe/CdTe multilayer heterostructures
Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.; Karczewski, G.; Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N.
2015-05-15
The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.
Detecting phonon blockade with photons
Didier, Nicolas; Pugnetti, Stefano; Fazio, Rosario; Blanter, Yaroslav M.
2011-08-01
Measuring the quantum dynamics of a mechanical system, when few phonons are involved, remains a challenge. We show that a superconducting microwave resonator linearly coupled to the mechanical mode constitutes a very powerful probe for this scope. This new coupling can be much stronger than the usual radiation pressure interaction by adjusting a gate voltage. We focus on the detection of phonon blockade, showing that it can be observed by measuring the statistics of the light in the cavity. The underlying reason is the formation of an entangled state between the two resonators. Our scheme realizes a phonotonic Josephson junction, giving rise to coherent oscillations between phonons and photons as well as a self-trapping regime for a coupling smaller than a critical value. The transition from the self-trapping to the oscillating regime is also induced dynamically by dissipation.
Shape Coexistence In Light Krypton Isotopes
Clement, E.; Goergen, A.; Bouchez, E.; Chatillon, A.; Korten, W.; Le Coz, Y.; Theisen, Ch.; Huerstel, A.; Lucas, R.; Wilson, J.N.; Becker, F.; Gerl, J.; Blank, B.; Hannachi, F.
2005-04-05
Shape coexistence in the light krypton isotopes was studied in a series of experiments at GANIL using various experimental techniques. A new low-lying 0+ state, a so-called shape isomer, was found in delayed conversion-electron spectroscopy after fragmentation reactions. The systematics of such low-lying 0+ states suggests that the ground states of the isotopes 78Kr and 76Kr have prolate deformation, while states with prolate and oblate shape are practically degenerate and strongly mixed in 74Kr, and that the oblate configuration becomes the ground state in 72Kr. This scenario was tested in experiments performing low-energy Coulomb excitation of radioactive 76Kr and 74Kr beams from the SPIRAL facility. Both transitional and diagonal electromagnetic matrix elements were extracted from the observed {gamma}-ray yields. The results find the prolate shape for the ground-state bands in 76Kr and 74Kr and an oblate deformation for the excited 2{sub 2}{sup +} state in 74Kr, confirming the proposed scenario of shape coexistence.
NASA Astrophysics Data System (ADS)
Sajna, M. S.; Gopi, Subash; Prakashan, V. P.; Sanu, M. S.; Joseph, Cyriac; Biju, P. R.; Unnikrishnan, N. V.
2017-08-01
Novel and optically efficient multicomponent tellurite glasses doped with Eu3+ ions were prepared by melt quenching procedure. Absorption, photoluminescence excitation, emission and Raman spectra analyses of the Eu3+-doped glasses have been carried out. Spectroscopic studies were performed with the Judd-Ofelt and phonon side band analyses. The local vibrational mode around Eu3+ ions and the phonon energy of the prepared tellurite glasses was estimated by the phonon side band (PSB) associated with 7F0→5D2 transition of Eu3+ ion. Both the phonon energy (ћω) and the electron-phonon coupling constant (g) were derived from the phonon side band spectrum. Radiative properties such as spontaneous transition probabilities (AT), radiative lifetime (τR) and luminescence branching ratio (βR) ratio were calculated for different excited states. Five pronounced peaks have appeared in the photoluminescence spectra (PL) as a result of the transitions from the metastable 5D0 to the ground states 7FJ (J = 0 to 4) of Eu3+ ions. The red Eu3+ emission at 612 nm corresponding to the 5D0→7F2 transition is of particular importance and its emission intensity is observed to increase significantly with growing Eu3+ ion concentration, suggesting that these multicomponent tellurite glasses are suitable candidates for red laser source applications.
Wave phenomena in phononic crystals
NASA Astrophysics Data System (ADS)
Sukhovich, Alexey
Novel wave phenomena in two- and three-dimensional (2D and 3D) phononic crystals were investigated experimentally using ultrasonic techniques. These ultrasonic techniques allow the full wave field to be imaged directly, which is a considerable advantage in fundamental studies of wave propagation in periodic media. Resonant tunnelling of ultrasonic waves was successfully observed for the first time by measuring the transmission of ultrasound pulses through a double barrier consisting of two 3D phononic crystals separated by a cavity. This effect is the classical analogue of resonant tunnelling of a quantum mechanical particle through a double potential barrier, in which transmission reaches unity at resonant frequencies. For phononic crystals, the tunnelling peak was found to be less than unity, an effect that was explained by absorption. Absorption introduces a small propagating component inside the crystals in addition to the dominant evanescent mode at band gap frequencies, and causes leakage of the pulse from the cavity. The dynamics of resonant tunnelling was explored by measuring the group velocities of the ultrasonic pulses. Very slow and very fast velocities were found at frequencies close to and at the resonance, respectively. These extreme values are less than the speed of sound in air and greater than the speed of sound in any of the crystal's constituent materials. Negative refraction and focusing effects in 2D phononic crystals were also observed. Negative refraction of ultrasound was demonstrated unambiguously in a prism-shaped 2D crystal at frequencies in the 2nd pass band, where the equifrequency contours are circular so that the wave vector and group velocity are antiparallel. The Multiple Scattering Theory and Snell's law allowed theoretical predictions of the refraction angles. Excellent agreement was found between theory and experiment. The negative refraction experiments revealed a mechanism that can be used to focus ultrasound using a flat
Phonon dynamics of americium telluride
NASA Astrophysics Data System (ADS)
Arya, B. S.; Aynyas, Mahendra; Ahirwar, Ashok K.; Sanyal, S. P.
2013-06-01
We report for the first time the complete phonon dispersion curves for Americium telluride (AmTe) using a breathing shell models (BSM) to establish their predominant ionic nature. The results obtained in the present study show the general features of the phonon spectrum. We could not compare our results with the experimental measurements as they are not available so far. We emphasize the need of neutron scattering measurements to compare our results. We also report, for the first time specific heat for this compound.
Phonon creation by gravitational waves
NASA Astrophysics Data System (ADS)
Sabín, Carlos; Bruschi, David Edward; Ahmadi, Mehdi; Fuentes, Ivette
2014-08-01
We show that gravitational waves create phonons in a Bose-Einstein condensate (BEC). A traveling spacetime distortion produces particle creation resonances that correspond to the dynamical Casimir effect in a BEC phononic field contained in a cavity-type trap. We propose to use this effect to detect gravitational waves. The amplitude of the wave can be estimated applying recently developed relativistic quantum metrology techniques. We provide the optimal precision bound on the estimation of the wave's amplitude. Finally, we show that the parameter regime required to detect gravitational waves with this technique could be, in principle, within experimental reach in a medium-term timescale.
Scattering of phonons by vacancies
Ratsifaritana, C.A.; Klemens, P.G.
1987-11-01
The scattering of phonons by vacancies is estimated by a perturbation technique in terms of the missing mass and the missing linkages. An argument is given why distortion effects can be disregarded. The resonance frequency of the defect is sufficiently high so that resonance effects can be disregarded for phonons in the important frequency range for thermal conduction. The theory is applied to the thermal resistance by vacancies in cases where the vacancy concentration is known: potassium chloride with divalent cations, nonstoichiometric zirconium carbide, and tin telluride.
Kirschner, Matthew S.; Lethiec, Clotilde M.; Lin, Xiao-Min; Schatz, George C.; Chen, Lin X.; Schaller, Richard D.
2016-04-04
Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensembles with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation.
Kirschner, Matthew S.; Lethiec, Clotilde M.; Lin, Xiao-Min; ...
2016-04-04
Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensemblesmore » with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation.« less
Surface-phonon dispersion of a NiO(100) thin film
NASA Astrophysics Data System (ADS)
Kostov, K. L.; Polzin, S.; Saha, S. K.; Brovko, O.; Stepanyuk, V.; Widdra, W.
2013-06-01
A well-ordered 25 ML epitaxial NiO(100) film on Ag(100) as prepared by layer-by-layer growth has been characterized by high-resolution electron energy loss spectroscopy. Six different phonon branches have been identified in the Γ¯X¯ direction of the surface Brillouin zone and are compared with first-principles phonon calculations. Whereas the surface Rayleigh mode shows a strong upward dispersion of 173 cm-1 in agreement with observations for the NiO(100) single crystal, the other surface phonons and surface resonances show only smaller dispersion widths in Γ¯X¯ direction. The Wallis and the Lucas phonons are localized at 425 and 367 cm-1 at the Γ¯ point, respectively. Additionally, two phonons are identified that have stronger weight at the zone boundary at 194 and 285 cm-1 and that become surface resonances at the zone center. The dominant spectral feature is the Fuchs-Kliewer (FK) phonon polariton at 559 cm-1, which is excited by dipole scattering and exhibits a rather broad non-Lorentzian lineshape. The lineshape is explained by a FK splitting resulting from the splitting of bulk optical phonons due to antiferromagnetic order. This view is supported by calculations of the surface-loss function from bulk reflectivity data.
Kirschner, Matthew S.; Lethiec, Clotilde M.; Lin, Xiao-Min; Schatz, George C.; Chen, Lin X.; Schaller, Richard D.
2016-05-18
Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensembles with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation.
Frequency transitions in phononic four-wave mixing
NASA Astrophysics Data System (ADS)
Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin
2017-08-01
This work builds upon the recent demonstration of a phononic four-wave mixing pathway mediated by parametric resonance. In such a process, drive tones fd 1 and fd 2 associated with a specific phonon mode interact such that one of the drive tones also parametrically excites a second mode at a sub-harmonic frequency and such interactions result in a frequency comb f/d1 2 ±n (" separators="|fd 1-fd 2 ). However, the specific behaviour associated with the case where both drive tones can independently excite the sub-harmonic phonon mode has not been studied or previously described. While it may be plausible to expect the merger of two frequency combs f/d1 2 ±n (" separators="|fd 1-fd 2 ) and f/d2 2 ±n (" separators="|fd 1-fd 2 ), this paper indicates that only one of these mechanisms is selected and also shows an interesting transition linked to this process. The frequency transitions from f/d1 2 ±n (" separators="|fd 1-fd 2 ) to f/d2 2 ±n (" separators="|fd 1-fd 2 ) holds promise for computing applications.
Nebulisation on a disposable array structured with phononic lattices.
Reboud, Julien; Wilson, Rab; Zhang, Yi; Ismail, Mohd H; Bourquin, Yannyk; Cooper, Jonathan M
2012-04-07
We demonstrate the use of a phononic crystal to enable the nebulisation of liquid droplets from low-cost disposable arrays, using surface acoustic waves (SAW). The SAWs were generated using interdigitated transducers (IDT) on a piezoelectric surface (LiNbO(3)) and the acoustic waves were coupled into a disposable phononic crystal structure, referred to as a superstrate. Using its excellent reflecting properties, the phononic structures confined the acoustic field within the superstrate, resulting in the concentration of the acoustic energy, in a manner controllable by the excitation frequency. We show that this capability mitigates against coupling losses incurred by the use of a disposable superstrate, greatly reducing the time needed to nebulise a drop of water with respect to an unstructured superstrate for a given power. We also demonstrate that by changing the excitation frequency, it is possible to change the spatial position at which the acoustic energy is concentrated, providing a means to specifically nebulise drops across an array. These results open up a promising future for the use of phonofluidics in high-throughput sample handling applications, such as drug delivery or the "soft" transfer of samples to a mass spectrometer in the field of proteomics. This journal is © The Royal Society of Chemistry 2012
ERIC Educational Resources Information Center
Mahajna, Salah; Harel, Yael
1992-01-01
Activities that promote Arab-Jew coexistence at the English Department and Arab College at Beth Berl College are recounted. The authors' projects, each regarded as a petal in a "Coexistence Daisy," include those related to art encounters, interprofessional relationships, and inservice training. (LB)
Optimizing phonon space in the phonon-coupling model
NASA Astrophysics Data System (ADS)
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.
2017-08-01
We present a new scheme to select the most relevant phonons in the phonon-coupling model, named here the time-blocking approximation (TBA). The new criterion, based on the phonon-nucleon coupling strengths rather than on B (E L ) values, is more selective and thus produces much smaller phonon spaces in the TBA. This is beneficial in two respects: first, it curbs the computational cost, and second, it reduces the danger of double counting in the expansion basis of the TBA. We use here the TBA in a form where the coupling strength is regularized to keep the given Hartree-Fock ground state stable. The scheme is implemented in a random-phase approximation and TBA code based on the Skyrme energy functional. We first explore carefully the cutoff dependence with the new criterion and can work out a natural (optimal) cutoff parameter. Then we use the freshly developed and tested scheme for a survey of giant resonances and low-lying collective states in six doubly magic nuclei looking also at the dependence of the results when varying the Skyrme parametrization.
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices.
Ravichandran, Jayakanth; Yadav, Ajay K; Cheaito, Ramez; Rossen, Pim B; Soukiassian, Arsen; Suresha, S J; Duda, John C; Foley, Brian M; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W; Moore, Joel E; Muller, David A; Schlom, Darrell G; Hopkins, Patrick E; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A
2014-02-01
Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.
Direct measurement of non-equilibrium phonon occupations in femtosecond laser heated Au films
NASA Astrophysics Data System (ADS)
Chase, Tyler; Trigo, Mariano; Reid, Alexander; Li, Renkai; Vecchione, Theodore; Shen, Xiaozhe; Weathersby, Stephen; Coffee, Ryan; Hartmann, Nick; Reis, David; Wang, Xijie; Durr, Hermann
We use ultrafast electron diffraction to detect the temporal evolution of phonon populations in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. We show from the increase of the diffuse scattering intensity that the population of phonon modes near the X and K points in the Au fcc Brillouin zone grows with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average. We find that thermalization continues within the initially non-equilibrium phonon distribution after 10 ps. The observed momentum dependent timescale of phonon populations is in contrast to what is usually predicted in a two-temperature model.
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
NASA Astrophysics Data System (ADS)
Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez; Rossen, Pim B.; Soukiassian, Arsen; Suresha, S. J.; Duda, John C.; Foley, Brian M.; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W.; Moore, Joel E.; Muller, David A.; Schlom, Darrell G.; Hopkins, Patrick E.; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A.
2014-02-01
Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.
Bloch wave deafness and modal conversion at a phononic crystal boundary
NASA Astrophysics Data System (ADS)
Laude, Vincent; Moiseyenko, Rayisa P.; Benchabane, Sarah; Declercq, Nico F.
2011-12-01
We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.
Spectroscopic investigation of native defect induced electron-phonon coupling in GaN nanowires
NASA Astrophysics Data System (ADS)
Parida, Santanu; Patsha, Avinash; Bera, Santanu; Dhara, Sandip
2017-07-01
The integration of advanced optoelectronic properties in nanoscale devices of group III nitride can be realized by understanding the coupling of charge carriers with optical excitations in these nanostructures. The native defect induced electron-phonon coupling in GaN nanowires are reported using various spectroscopic studies. The GaN nanowires having different native defects are grown in an atmospheric pressure chemical vapor deposition technique. X-ray photoelectron spectroscopic analysis revealed the variation of Ga/N ratios in nanowires having possible native defects, with respect to their growth parameters. The analysis of the characteristic features of electron-phonon coupling in the Raman spectra show the variations in carrier density and mobility, with respect to the native defects in unintentionally doped GaN nanowires. The radiative recombination of donor acceptor pair transitions and the corresponding LO phonon replicas observed in photoluminescence studies further emphasize the role of native defects in electron-phonon coupling.
Dynamic Onset of Feynman Relation in the Phonon Regime.
Li, Y; Zhu, C J; Hagley, E W; Deng, L
2016-05-09
The Feynman relation, a much celebrated condensed matter physics gemstone for more than 70 years, predicts that the density excitation spectrum and structure factor of a condensed Bosonic system in the phonon regime drops linear and continuously to zero. Until now, this widely accepted monotonic excitation energy drop as the function of reduced quasi-momentum has never been challenged in a spin-preserving process. We show rigorously that in a light-matter wave-mixing process in a Bosonic quantum gas, an optical-dipole potential arising from the internally-generated field can profoundly alter the Feynman relation and result in a new dynamic relation that exhibits an astonishing non-Feynman-like onset and cut-off in the excitation spectrum of the ground state energy of spin-preserving processes. This is the first time that a nonlinear optical process is shown to actively and significantly alter the density excitation response of a quantum gas. Indeed, this dynamic relation with a non-Feynman onset and cut-off has no correspondence in either nonlinear optics of a normal gas or a phonon-based condensed matter Bogoliubov theory.
Dynamic Onset of Feynman Relation in the Phonon Regime
Li, Y.; Zhu, C. J.; Hagley, E. W.; Deng, L.
2016-01-01
The Feynman relation, a much celebrated condensed matter physics gemstone for more than 70 years, predicts that the density excitation spectrum and structure factor of a condensed Bosonic system in the phonon regime drops linear and continuously to zero. Until now, this widely accepted monotonic excitation energy drop as the function of reduced quasi-momentum has never been challenged in a spin-preserving process. We show rigorously that in a light-matter wave-mixing process in a Bosonic quantum gas, an optical-dipole potential arising from the internally-generated field can profoundly alter the Feynman relation and result in a new dynamic relation that exhibits an astonishing non-Feynman-like onset and cut-off in the excitation spectrum of the ground state energy of spin-preserving processes. This is the first time that a nonlinear optical process is shown to actively and significantly alter the density excitation response of a quantum gas. Indeed, this dynamic relation with a non-Feynman onset and cut-off has no correspondence in either nonlinear optics of a normal gas or a phonon-based condensed matter Bogoliubov theory. PMID:27157438
NASA Astrophysics Data System (ADS)
Baker, Joshua A.; Kelley, David F.; Kelley, Anne Myers
2013-07-01
Resonance Raman excitation profiles for the longitudinal optical (LO) phonon fundamental and its first overtone have been measured for organic ligand capped, wurtzite form CdSe nanocrystals of ˜3.2 nm diameter dissolved in chloroform. The absolute differential Raman cross-section for the fundamental is much larger when excited at 532 or 543 nm, on the high-frequency side of the lowest-wavelength absorption maximum, than for excitation in the 458-476 nm range although the absorbance is higher at the shorter wavelengths. That is, the quantum yield for resonance Raman scattering is reduced for higher-energy excitation. In contrast, the photoluminescence quantum yield is relatively constant with wavelength. The optical absorption spectrum and the resonance Raman excitation profiles and depolarization dispersion curves are reproduced with a model for the energies, oscillator strengths, electron-phonon couplings, and dephasing rates of the multiple low-lying electronic excitations. The Huang-Rhys factor for LO phonon in the lowest excitonic transition is found to lie in the range S = 0.04-0.14. The strong, broad absorption feature about 0.5 eV above the lowest excitonic peak, typically labeled as the 1P3/21Pe transition, is shown to consist of at least two significant components that vary greatly in the magnitude of their electron-phonon coupling.
Otelaja, O. O.; Robinson, R. D.
2015-10-26
In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) around the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.
Gigantic enhancement of spin Seebeck effect by phonon drag
NASA Astrophysics Data System (ADS)
Adachi, Hiroto; Uchida, Ken-Ichi; Saitoh, Eiji; Ohe, Jun-Ichiro; Takahashi, Saburo; Maekawa, Sadamichi
2011-03-01
We investigate both theoretically and experimentally a gigantic enhancement of the spin Seebeck effect [K. Uchida et al., Nature 455, 778 (2008); C. M. Jaworski et al., Nature Mater. 9, 898 (2010); K. Uchida et al., Nature Mater. 9, 894 (2010)] in a prototypical magnet La Y2 Fe 5 O12 at low temperatures. Our theoretical analysis sheds light on the important role of phonons; the spin Seebeck effect is enormously enhanced by nonequilibrium phonons that drag the low-lying spin excitations. We further argue that this scenario gives a clue to understand the observation of the spin Seebeck effect that is unaccompanied by a global spin current, and predict that the substrate condition affects the observed signal.
Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures
NASA Astrophysics Data System (ADS)
Yin, Ge; Yuan, Jun; Jiang, Wei; Zhu, Jianfei; Ma, Yungui
2016-11-01
Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons. In practice, it is highly desired to actively modify these hyperbolic phonon polaritons (HPPs) to optimize or tune the response of the device. In this work, we investigate the plasmonic material, a monolayer graphene, and study its hybrid structure with three kinds of hyperbolic thin films grown on SiO2 substrate. The inter-mode hybridization and their tunability have been thoroughly clarified from both the band dispersions and the mode patterns numerically calculated through a transfer matrix method. Our results show that these hybrid multilayer structures are of strong potentials for applications in plasmonic waveguides, modulators and detectors in infrared. Project supported by the National Natural Science Foundation of China (Grant No. 61271085) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR15F050001).
Shape coexistence at low spin in the Z = 50 region and its spectroscopic signatures
NASA Astrophysics Data System (ADS)
Garrett, P. E.
2016-08-01
Nuclei in the Z = 50 region provide excellent examples of shape coexistence, the establishment of which occurred through the use of detailed spectroscopy, based not only on γ-ray spectroscopy but also conversion electron, particle transfer, Coulomb excitation, and lifetime measurements. The evidence to date strongly suggests that the presence of coexisting shapes arises from the promotion of protons across the Z = 50 closed shell and the strong correlations arising from interplay of the pairing and quadrupole interactions. The evidence for the presence of shape coexistence in the Z = 50 region, at low spin and low excitation energies, will be presented and clues for the microscopic origin explored.
Inelastic x-ray scattering measurements of phonon dynamics in URu_{2}Si_{2}
Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; Said, A. H.; Leu, B. M.; Williams, Travis J.; Luke, G. M.; Lee, Y. S.
2016-02-11
In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu_{2}Si_{2}. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations in the low temperature phase.
Phonon anomalies in some iron telluride materials
C. C. Homes; Dai, Y. M.; Schneeloch, J.; Zhong, R. D.; Gu, G. D.
2016-03-21
In this paper, the detailed temperature dependence of the infrared-active mode in Fe_{1.03}Te (T_{N} ≃ 68 K) and Fe_{1.13}Te (T_{N} ≃ 56 K) has been examined, and the position, width, strength, and asymmetry parameter have been determined using an asymmetric Fano profile superimposed on an electronic background. In both materials the frequency of the mode increases as the temperature is reduced; however, there is also a slight asymmetry in the line shape, indicating that the mode is coupled to either spin or charge excitations. Below T_{N} there is an anomalous decrease in frequency, and the mode shows little temperature dependence, at the same time becoming more symmetric, suggesting a reduction in spin- or electron-phonon coupling. The frequency of the infrared-active mode and the magnitude of the shift below T_{N} are predicted reasonably well by first-principles calculations; however, the predicted splitting of the mode is not observed. In superconducting FeTe_{0.55}Se_{0.45} (T_{c} ≃ 14 K) the infrared-active E_{u} mode displays asymmetric line shape at all temperatures, which is most pronounced between 100 – 200 K, indicating the presence of either spin- or electron-phonon coupling, which may be a necessary prerequisite for superconductivity in this class of materials.
Sound and heat revolutions in phononics.
Maldovan, Martin
2013-11-14
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.
Nonlinear phononics using atomically thin membranes
NASA Astrophysics Data System (ADS)
Midtvedt, Daniel; Isacsson, Andreas; Croy, Alexander
2014-09-01
Phononic crystals and acoustic metamaterials are used to tailor phonon and sound propagation properties by utilizing artificial, periodic structures. Analogous to photonic crystals, phononic band gaps can be created, which influence wave propagation and, more generally, allow engineering of the acoustic properties of a system. Beyond that, nonlinear phenomena in periodic structures have been extensively studied in photonic crystals and atomic Bose-Einstein condensates in optical lattices. However, creating nonlinear phononic crystals or nonlinear acoustic metamaterials remains challenging and only few examples have been demonstrated. Here, we show that atomically thin and periodically pinned membranes support coupled localized modes with nonlinear dynamics. The proposed system provides a platform for investigating nonlinear phononics.
NASA Astrophysics Data System (ADS)
Hielscher, J.; Martinsons, M.; Schmiedeberg, M.; Kapfer, S. C.
2017-03-01
Phasons are additional degrees of freedom which occur in quasicrystals alongside the phonons known from conventional periodic crystals. The rearrangements of particles that are associated with a phason mode are hard to interpret in physical space. We reconstruct the quasicrystal structure by an embedding into extended higher-dimensional space, where phasons correspond to displacements perpendicular to the physical space. In dislocation-free decagonal colloidal quasicrystals annealed with Brownian dynamics simulations, we identify thermal phonon and phason modes. Finite phononic strain is pinned by phasonic excitations even after cooling down to zero temperature. For the phasonic displacements underlying the flip pattern, the reconstruction method gives an approximation within the limits of a multi-mode harmonic ansatz, and points to fundamental limitations of a harmonic picture for phasonic excitations in intrinsic colloidal quasicrystals.
Hielscher, J; Martinsons, M; Schmiedeberg, M; Kapfer, S C
2017-03-08
Phasons are additional degrees of freedom which occur in quasicrystals alongside the phonons known from conventional periodic crystals. The rearrangements of particles that are associated with a phason mode are hard to interpret in physical space. We reconstruct the quasicrystal structure by an embedding into extended higher-dimensional space, where phasons correspond to displacements perpendicular to the physical space. In dislocation-free decagonal colloidal quasicrystals annealed with Brownian dynamics simulations, we identify thermal phonon and phason modes. Finite phononic strain is pinned by phasonic excitations even after cooling down to zero temperature. For the phasonic displacements underlying the flip pattern, the reconstruction method gives an approximation within the limits of a multi-mode harmonic ansatz, and points to fundamental limitations of a harmonic picture for phasonic excitations in intrinsic colloidal quasicrystals.
Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei
Wu, C.Y.; Cline, D.
1996-12-31
Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.
Search for two-phonon octupole excitations in 146Gd
NASA Astrophysics Data System (ADS)
Orce, J. N.; Kumar Raju, M.; Khumalo, N. A.; Dinoko, T. S.; Jones, P.; Bark, R. A.; Lawrie, E. A.; Majola, S. N. T.; Robledo, L. M.; Rubio, B.; Wiedeking, M.; Easton, J.; Khaleel, E. A.; Kheswa, B. V.; Kheswa, N.; Herbert, M. S.; Lawrie, J. J.; Masiteng, P. L.; Nchodu, M. R.; Ndayishimye, J.; Negi, D.; Noncolela, S. P.; Ntshangase, S. S.; Papka, P.; Roux, D. G.; Shirinda, O.; Sithole, P. S.; Yates, S. W.
2016-06-01
The low-spin structure of the nearly spherical nucleus 146Gd was studied using the 144Sm(4He, 2n) fusion-evaporation reaction. High-statistics γ - γ coincidence measurements were performed at iThemba LABS with 7× 109 γ- γ coincidence events recorded. Gated γ-ray energy spectra show evidence for the 6+2 → 3-1 → 0+1 cascade of E3 transitions in agreement with recent findings by Caballero and co-workers, but with a smaller branching ratio of I_{γ} = 4.7(10) for the 6+2 → 3-1 1905.1 keV γ ray. Although these findings may support octupole vibrations in spherical nuclei, sophisticated beyond mean-field calculations including angular-momentum projection are required to interpret in an appropriate way the available data due to the failure of the rotational model assumptions in this nucleus.
Front interaction induces excitable behavior
NASA Astrophysics Data System (ADS)
Parra-Rivas, P.; Matías, M. A.; Colet, P.; Gelens, L.; Walgraef, D.; Gomila, D.
2017-02-01
Spatially extended systems can support local transient excitations in which just a part of the system is excited. The mechanisms reported so far are local excitability and excitation of a localized structure. Here we introduce an alternative mechanism based on the coexistence of two homogeneous stable states and spatial coupling. We show the existence of a threshold for perturbations of the homogeneous state. Subthreshold perturbations decay exponentially. Superthreshold perturbations induce the emergence of a long-lived structure formed by two back to back fronts that join the two homogeneous states. While in typical excitability the trajectory follows the remnants of a limit cycle, here reinjection is provided by front interaction, such that fronts slowly approach each other until eventually annihilating. This front-mediated mechanism shows that extended systems with no oscillatory regimes can display excitability.
Universality of the Phonon-Roton Spectrum in Liquids and Superfluidity of 4He
NASA Astrophysics Data System (ADS)
Bobrov, Viktor; Trigger, Sergey; Litinski, Daniel
2016-06-01
Based on numerous experimental data on inelastic neutron and X-ray scattering in liquids, we assert that the phonon-roton spectrum of collective excitations, predicted by Landau for superfluid helium, is a universal property of the liquid state. We show that the existence of the roton minimum in the spectrum of collective excitations is caused by the short-range order in liquids. Using the virial theorem, we assume that one more branch of excitations should exist in He II, whose energy spectrum differs from the phonon-roton spectrum. Such excitations are associated with the pole of single-particle Green function, which can have a gap at small values of momenta.
A holographic perspective on phonons and pseudo-phonons
NASA Astrophysics Data System (ADS)
Amoretti, Andrea; Areán, Daniel; Argurio, Riccardo; Musso, Daniele; Zayas, Leopoldo A. Pando
2017-05-01
We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.
Dressed-photon–phonon (DPP)-assisted visible- and infrared-light water splitting
Yatsui, Takashi; Imoto, Tsubasa; Mochizuki, Takahiro; Kitamura, Kokoro; Kawazoe, Tadashi
2014-01-01
A dressed-phonon–phonon (DPP) assisted photocatalyst reaction was carried out to increase the visible light responsibility, where the photon energy of the radiation, which ranged from visible to infrared light is less than band gap energy of the photocatalyst (ZnO, 3.3 eV). The dependence of the photocurrent on excitation power indicated that two-step excitation occurred in DPP-assisted process. A cathodoluminescence measurement also supported the conclusion that the visible- and infrared-light excitation originated from DPP excitation, not from defect states in the ZnO nanorod photocatalyst. PMID:24691359
Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn
2014-08-18
The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.
Khordad, R. Bahramiyan, H.
2014-03-28
In this paper, optical phonon modes are studied within the framework of dielectric continuum approach for parallelogram and triangular quantum wires, including the derivation of the electron-phonon interaction Hamiltonian and a discussion on the effects of this interaction on the electronic energy levels. The polaronic energy shift is calculated for both ground-state and excited-state electron energy levels by applying the perturbative approach. The effects of the electron-phonon interaction on the expectation value of r{sup 2} and diamagnetic susceptibility for both quantum wires are discussed.
Phonon assisted resonant tunneling and its phonons control
NASA Astrophysics Data System (ADS)
Kusmartsev, F. V.; Krevchik, V. D.; Semenov, M. B.; Filatov, D. O.; Shorokhov, A. V.; Bukharaev, A. A.; Dakhnovsky, Y.; Nikolaev, A. V.; Pyataev, N. A.; Zaytsev, R. V.; Krevchik, P. V.; Egorov, I. A.; Yamamoto, K.; Aringazin, A. K.
2016-09-01
We observe a series of sharp resonant features in the tunneling differential conductance of InAs quantum dots. We found that dissipative quantum tunneling has a strong influence on the operation of nanodevices. Because of such tunneling the current-voltage characteristics of tunnel contact created between atomic force microscope tip and a surface of InAs/GaAs quantum dots display many interesting peaks. We found that the number, position, and heights of these peaks are associated with the phonon modes involved. To describe the found effect we use a quasi-classical approximation. There the tunneling current is related to a creation of a dilute instanton-anti-instanton gas. Our experimental data are well described with exactly solvable model where one charged particle is weakly interacting with two promoting phonon modes associated with external medium. We conclude that the characteristics of the tunnel nanoelectronic devices can thus be controlled by a proper choice of phonons existing in materials, which are involved.
Coexistence under positive frequency dependence.
Molofsky, J.; Bever, J. D.; Antonovics, J.
2001-01-01
Negative frequency dependence resulting from interspecific interactions is considered a driving force in allowing the coexistence of competitors. While interactions between species and genotypes can also result in positive frequency dependence, positive frequency dependence has usually been credited with hastening the extinction of rare types and is not thought to contribute to coexistence. In the present paper, we develop a stochastic cellular automata model that allows us to vary the scale of frequency dependence and the scale of dispersal. The results of this model indicate that positive frequency dependence will allow the coexistence of two species at a greater rate than would be expected from chance. This coexistence arises from the generation of banding patterns that will be stable over long time-periods. As a result, we found that positive frequency-dependent interactions over local spatial scales promote coexistence over neutral interactions. This result was robust to variation in boundary conditions within the simulation and to variation in levels of disturbance. Under all conditions, coexistence is enhanced as the strength of positive frequency-dependent interactions is increased. PMID:11217898
Raman active high energy excitations in URu2Si2
NASA Astrophysics Data System (ADS)
Buhot, Jonathan; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Piekarz, Przemysław; Lapertot, Gérard; Aoki, Dai; Méasson, Marie-Aude
2017-02-01
We have performed Raman scattering measurements on URu2Si2 single crystals on a large energy range up to ∼1300 cm-1 and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the Eg symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A1g symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
Edge phonons in black phosphorus
NASA Astrophysics Data System (ADS)
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Phononic crystals of poroelastic spheres
NASA Astrophysics Data System (ADS)
Alevizaki, A.; Sainidou, R.; Rembert, P.; Morvan, B.; Stefanou, N.
2016-11-01
An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation of the underlying physics is provided.
Phonons in iron: from the bulk to an epitaxial monolayer.
Stankov, S; Röhlsberger, R; Slezak, T; Sladecek, M; Sepiol, B; Vogl, G; Chumakov, A I; Rüffer, R; Spiridis, N; Łazewski, J; Parliński, K; Korecki, J
2007-11-02
The confinement of materials in low-dimensional structures has significant impact on propagating excitations like phonons. Using the isotope-specific 57Fe nuclear resonant vibrational spectroscopy we were able to determine elastic and thermodynamic properties of ultrathin Fe films on W(110). With decreasing thickness one observes a significant increase of the mean atomic displacement that goes along with an enhancement of vibrational modes at low energies as compared to the bulk. The analysis reveals that these deviations result from atomic vibrations of the single atomic layers at the two boundaries of the film, while the atoms inside the films vibrate almost bulklike.
Diffraction of electrons at intermediate energies: The role of phonons
Ascolani, H.; Zampieri, G.
1996-07-01
The intensity of electrons reflected {open_quote}{open_quote}elastically{close_quote}{close_quote} from crystalline surfaces presents two regimes: the low-energy or LEED regime ({lt}500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime ({gt}500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering. {copyright} {ital 1996 American Institute of Physics.}
Band structures in the nematic elastomers phononic crystals
NASA Astrophysics Data System (ADS)
Yang, Shuai; Liu, Ying; Liang, Tianshu
2017-02-01
As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.
The effect of n- and p-type doping on coherent phonons in GaN.
Ishioka, Kunie; Kato, Keiko; Ohashi, Naoki; Haneda, Hajime; Kitajima, Masahiro; Petek, Hrvoje
2013-05-22
The effect of doping on the carrier-phonon interaction in wurtzite GaN is investigated by pump-probe reflectivity measurements using 3.1 eV light in near resonance with the fundamental band gap of 3.39 eV. Coherent modulations of the reflectivity due to the E2 and A1(LO) modes, as well as the 2A1(LO) overtone are observed. Doping of acceptor and donor atoms enhances the dephasing of the polar A1(LO) phonon via coupling with plasmons, with the effect of donors being stronger. Doping also enhances the relative amplitude of the coherent A1(LO) phonon with respect to that of the high-frequency E2 phonon, though it does not affect the relative intensity in Raman spectroscopic measurements. We attribute this enhanced coherent amplitude to the transient depletion field screening (TDFS) excitation mechanism, which, in addition to impulsive stimulated Raman scattering (ISRS), contributes to the generation of coherent polar phonons even for sub-band gap excitation. Because the TDFS mechanism requires photoexcitation of carriers, we argue that the interband transition is made possible at a surface with photon energies below the bulk band gap through the Franz-Keldysh effect.
Sensitivity Modulation of Upconverting Thermometry through Engineering Phonon Energy of a Matrix.
Suo, Hao; Guo, Chongfeng; Zheng, Jiming; Zhou, Bo; Ma, Chonggeng; Zhao, Xiaoqi; Li, Ting; Guo, Ping; Goldys, Ewa M
2016-11-09
Investigation of the unclear influential factors to thermal sensing capability is the only way to achieve highly sensitive thermometry, which is greatly needed to meet the growing demand for potential sensing applications. Here, the effect from the phonon energy of a matrix on the sensitivity of upconversion (UC) microthermometers is elaborately discussed using a controllable method. Uniform truncated octahedral YF3:Er(3+)/Yb(3+) microcrystals were prepared by a hydrothermal approach, and phase transformation from YF3 to YOF and Y2O3 with nearly unchanged morphology and size was successfully realized by controlling the annealing temperature. The phonon energies of blank matrixes were determined by FT-IR spectra and Raman scattering. Upon 980 nm excitation, phonon energy-dependent UC emitting color was finely tuned from green to yellow for three samples, and the mechanisms were proposed. Thermal sensing behaviors based on the TCLs ((2)H11/2/(4)S3/2) were evaluated, and the sensitivities gradually grew with the increase in the matrix's phonon energy. According to chemical bond theory and first-principle calculations, the most intrinsic factors associated with thermometric ability were qualitatively demonstrated through analyzing the inner relation between the phonon energy and bond covalency. The exciting results provide guiding insights into employing appropriate host materials with desired thermometric ability while offering the possibility of highly accurate measurement of temperature.
Applications of time-domain spectroscopy to electron-phonon coupling dynamics at surfaces.
Matsumoto, Yoshiyasu
2014-10-01
Photochemistry is one of the most important branches in chemistry to promote and control chemical reactions. In particular, there has been growing interest in photoinduced processes at solid surfaces and interfaces with liquids such as water for developing efficient solar energy conversion. For example, photoinduced charge transfer between adsorbates and semiconductor substrates at the surfaces of metal oxides induced by photogenerated holes and electrons is a core process in photovoltaics and photocatalysis. In these photoinduced processes, electron-phonon coupling plays a central role. This paper describes how time-domain spectroscopy is applied to elucidate electron-phonon coupling dynamics at metal and semiconductor surfaces. Because nuclear dynamics induced by electronic excitation through electron-phonon coupling take place in the femtosecond time domain, the pump-and-probe method with ultrashort pulses used in time-domain spectroscopy is a natural choice for elucidating the electron-phonon coupling at metal and semiconductor surfaces. Starting with a phenomenological theory of coherent phonons generated by impulsive electronic excitation, this paper describes a couple of illustrative examples of the applications of linear and nonlinear time-domain spectroscopy to a simple adsorption system, alkali metal on Cu(111), and more complex photocatalyst systems.
Search for one- and two-phonon octupole vibrational states in the spherical nuclei near 132Sn
NASA Astrophysics Data System (ADS)
Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.; Luo, Y. X.
2013-10-01
Excited high spin states in 135I, 136Xe, 137Cs, 138Ba, 139La, 140Ce and 142Nd with N = 82 are reorganized and interpreted in a different way to find one- phonon octupole vibrational (POV) bands. Two nearly identical (similar) bands with ΔI = 3 are found in these nuclei. From the presence of two nearly identical excited bands with ΔI = 3 in these nuclei, one-POV bands are proposed. Also, high spin states of 134Sb, 134,135Te, 135,136I, 137Xe and 139Ba near 132Sn are reanalyzed in order to search for one- and two-POV states. New spins and parities are tentatively assigned to the 2203.9 keV state in 137Xe and the 1976.6 and 2091.7 keV states in 139Ba from the state energy plots of the N = 82 and 83 nuclei. High spin states of 134Sb, 134,135Te, 135,136I, 137Xe and 139Ba connected by E1, E3 /M2 and E3 transitions are proposed, for the first time, as zero-, one- and two-POV states. One- and two-POV states in 134Sb and 135Te are built on a 7- (πg7/2 ν f7/2) state and a 19 /2- (νf7/2 ⊗ 61+)state, respectively. One-POV states built on the 19 /2- (ν f7/2 ⊗ 61+)and the 21 /2- (νh9/2 ⊗ 62+)states coexist in 137Xe. Then, one- and two-POV states in 139Ba are built only on the 21 /2- (νh9/2 ⊗ 62+)state. One- and two-POV states in 134Te are built on the 62+state with some mixing with the 61+state.
Coulomb excitation of states in 232Th
NASA Astrophysics Data System (ADS)
McGowan, F. K.; Milner, W. T.
1993-09-01
Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.
Grain-boundary layering transitions and phonon engineering
NASA Astrophysics Data System (ADS)
Rickman, J. M.; Harmer, M. P.; Chan, H. M.
2016-09-01
We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.
Generation and detection of incoherent phonons in picosecond ultrasonics.
Perrin, B; Péronne, E; Belliard, L
2006-12-22
In picosecond ultrasonics experiments the absorption of a femtosecond laser pulse in a thin metallic transducer is used to generate very short acoustic pulses. These pulses are made of coherent longitudinal waves with a frequency spectrum that can reach 100-200 GHz. The laser pulse absorption gives rise to a heating of the film of a few Kelvin within a typical time of 1 ps. Later on, the heat goes in the substrate through an interface thermal resistance and is diffused by thermal conduction. At very low temperature and in pure crystals the thermal phonons emitted by the heated metallic film can propagate ballistically over large distances and produce a so-called heat pulse. We report on the experimental evidence of the coexistence of the coherent acoustic pulse and the incoherent heat pulse generated and detected by laser ultrasonics.
Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals
NASA Astrophysics Data System (ADS)
Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu
2016-08-01
We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal.
Nonharmonic phonons in α-iron at high temperatures
NASA Astrophysics Data System (ADS)
Mauger, L.; Lucas, M. S.; Muñoz, J. A.; Tracy, S. J.; Kresch, M.; Xiao, Yuming; Chow, Paul; Fultz, B.
2014-08-01
Phonon densities of states (DOS) of bcc α-Fe57 were measured from room temperature through the 1044 K Curie transition and the 1185 K fcc γ-Fe phase transition using nuclear resonant inelastic x-ray scattering. At higher temperatures all phonons shift to lower energies (soften) with thermal expansion, but the low transverse modes soften especially rapidly above 700 K, showing strongly nonharmonic behavior that persists through the magnetic transition. Interatomic force constants for the bcc phase were obtained by iteratively fitting a Born-von Kármán model to the experimental phonon spectra using a genetic algorithm optimization. The second-nearest-neighbor fitted axial force constants weakened significantly at elevated temperatures. An unusually large nonharmonic behavior is reported, which increases the vibrational entropy and accounts for a contribution of 35 meV/atom in the free energy at high temperatures. The nonharmonic contribution to the vibrational entropy follows the thermal trend of the magnetic entropy, and may be coupled to magnetic excitations. A small change in vibrational entropy across the α-γ structural phase transformation is also reported.
Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals
Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu
2016-01-01
We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal. PMID:27477236
Tunable phonon-cavity coupling in graphene membranes
NASA Astrophysics Data System (ADS)
de Alba, R.; Massel, F.; Storch, I. R.; Abhilash, T. S.; Hui, A.; McEuen, P. L.; Craighead, H. G.; Parpia, J. M.
2016-09-01
A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators. In these systems, phonons are coherently annihilated or created in exchange for photons. Similar phenomena have recently been observed through phonon-cavity coupling—energy exchange between the modes of a single system mediated by intrinsic material nonlinearity. This has so far been demonstrated primarily for bulk crystalline, high-quality-factor (Q > 105) mechanical systems operated at cryogenic temperatures. Here, we propose graphene as an ideal candidate for the study of such nonlinear mechanics. The large elastic modulus of this material and capability for spatial symmetry breaking via electrostatic forces is expected to generate a wealth of nonlinear phenomena, including tunable intermodal coupling. We have fabricated circular graphene membranes and report strong phonon-cavity effects at room temperature, despite the modest Q factor (∼100) of this system. We observe both amplification into parametric instability (mechanical lasing) and the cooling of Brownian motion in the fundamental mode through excitation of cavity sidebands. Furthermore, we characterize the quenching of these parametric effects at large vibrational amplitudes, offering a window on the all-mechanical analogue of cavity optomechanics, where the observation of such effects has proven elusive.
Tunable phonon-induced transparency in bilayer graphene nanoribbons.
Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon
2014-08-13
In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...
2017-02-22
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Wide-Stopband Aperiodic Phononic Filters
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Chuss, David; Denis, K. L.; Wollack, E. J.
2016-01-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6-10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
Topologically protected elastic waves in phononic metamaterials
Mousavi, S. Hossein; Khanikaev, Alexander B.; Wang, Zheng
2015-01-01
Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin–orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes. PMID:26530426
Circular Phonon Dichroism in Weyl Semimetals
NASA Astrophysics Data System (ADS)
Liu, Donghao; Shi, Junren
2017-08-01
We derive the phonon dynamics of magnetic metals in the presence of strong spin-orbit coupling. We show that both a dissipationless viscosity and a dissipative viscosity arise in the dynamics. While the dissipationless viscosity splits the dispersion of left-handed and right-handed circularly polarized phonons, the dissipative viscosity damps them differently, inducing circular phonon dichroism. The effect offers a new degree of manipulation of phonons, i.e., the control of the phonon polarization. We investigate the effect in Weyl semimetals. We find that there exists strong circular phonon dichroism in Weyl semimetals breaking both the time-reversal and the inversion symmetry, making them potential materials for realizing the acoustic circular polarizer.
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.
2017-01-01
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066
Scanning Tunneling Microscopy Observation of Phonon Condensate.
Altfeder, Igor; Voevodin, Andrey A; Check, Michael H; Eichfeld, Sarah M; Robinson, Joshua A; Balatsky, Alexander V
2017-02-22
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.
Topologically protected elastic waves in phononic metamaterials.
Mousavi, S Hossein; Khanikaev, Alexander B; Wang, Zheng
2015-11-04
Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin-orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes.
Scanning Tunneling Microscopy Observation of Phonon Condensate
NASA Astrophysics Data System (ADS)
Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.
2017-02-01
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.
Wide-Stopband Aperiodic Phononic Filters
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Chuss, David; Denis, K. L.; Wollack, E. J.
2016-01-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6-10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.
Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping
2017-02-08
Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQm ∼ 2 × 10(12) Hz achieved here is larger than kBTbase/h, which may enable the future realization of Rabi oscillations in the quantum regime.
Heat guiding and focusing using ballistic phonon transport in phononic nanostructures
Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro
2017-01-01
Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale. PMID:28516909
Heat guiding and focusing using ballistic phonon transport in phononic nanostructures
NASA Astrophysics Data System (ADS)
Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro
2017-05-01
Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.
Heat guiding and focusing using ballistic phonon transport in phononic nanostructures.
Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro
2017-05-18
Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.
Temperature Dependence of Phonons in Pyrolitic Graphite
DOE R&D Accomplishments Database
Brockhouse, B. N.; Shirane, G.
1977-01-01
Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4°K and 1500°C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.
The nature of phonons and solitary waves in alpha-helical proteins.
Lawrence, A. F.; McDaniel, J. C.; Chang, D. B.; Birge, R. R.
1987-01-01
A parametric study of the Davydov model of energy transduction in alpha-helical proteins is described. Previous investigations have shown that the Davydov model predicts that nonlinear interactions between phonons and amide-I excitations can stabilize the latter and produce a long-lived combined excitation (the so-called Davydov soliton), which propagates along the helix. The dynamics of this solitary wave are approximately those of solitons described using the nonlinear Schrödinger equation. The present study extends these previous investigations by analyzing the effect of helix length and nonlinear coupling efficiency on the phonon spectrum in short and medium length alpha-helical segments. The phonon energy accompanying amide-I excitation shows periodic variation in time with fluctuations that follow three different time scales. The phonon spectrum is highly dependent upon chain length but a majority of the energy remains localized in normal mode vibrations even in the long chain alpha-helices. Variation of the phonon-exciton coupling coefficient changes the amplitudes but not the frequencies of the phonon spectrum. The computed spectra contain frequencies ranging from 200 GHz to 6 THz, and as the chain length is increased, the long period oscillations increase in amplitude. The most important prediction of this study, however, is that the dynamics predicted by the numerical calculations have more in common with dynamics described by using the Frohlich polaron model than by using the Davydov soliton. Accordingly, the relevance of the Davydov soliton model was applied to energy transduction in alpha-helical proteins is questionable. We conclude that the Raman lines that have been assigned to solitons in E. coli are either associated with low frequency normal modes or are instrumental- or fluorescence-induced artifacts. PMID:3593874
Wetting Layers Close to Coexistence
NASA Astrophysics Data System (ADS)
Ripple, Dean Charles
A substrate immersed in a two component liquid mixture will preferentially adsorb one of the components. I describe in this thesis theoretical and experimental results on the smooth divergence of the thickness of this adsorbed layer as the system is brought close to two phase coexistence. I present a free energy functional which combines a phenomenological equation of state suitable for near critical binary liquids with a mean field treatment of bulk and surface ions. For the system carbon disulfide plus nitromethane on glass, the theory agrees well with experiment for suitable choices of theoretical parameters. Electrical conductivity measurements of the coexisting liquid phases confirm the choice of ion concentration values. By driving a stirred binary liquid mixture off coexistence with a linear temperature ramp, very small perturbations off coexistence are possible. I apply this method to the system perfluoromethylcyclohexane plus methylcyclohexane on Si wafers, measuring the adsorption with DC null ellipsometry. As the distance from coexistence decreases, the layer thickness smoothly increases and shows a crossover from adsorption dominated by the nonzero correlation length to adsorption dominated by dispersion forces, in agreement with theoretical predictions.
New Features of Shape Coexistence in Sm152
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Kulp, W. D.; Wood, J. L.; Bandyopadhyay, D.; Choudry, S.; Dashdorj, D.; Lesher, S. R.; McEllistrem, M. T.; Mynk, M.; Orce, J. N.; Yates, S. W.
2009-08-01
Excited states in Sm152 have been investigated with the Sm152(n,n'γ) reaction. The lowest four negative-parity band structures have been characterized in detail with respect to their absolute decay properties. Specifically, a new Kπ=0- band has been assigned with its 1- band head at 1681 keV. This newly observed band has a remarkable similarity in its E1 transition rates for decay to the first excited Kπ=0+ band at 684 keV to the lowest Kπ=0- band and its decay to the ground-state band. Based on these decay properties, as well as energy considerations, this new band is assigned as a Kπ=0- octupole excitation based on the Kπ=02+ state. An emerging pattern of repeating excitations built on the 02+ level similar to those built on the ground state may indicate that Sm152 is a complex example of shape coexistence rather than a critical point nucleus.
Phononic Crystal Tunable via Ferroelectric Phase Transition
NASA Astrophysics Data System (ADS)
Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu
2015-09-01
Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.
Electrons, Phonons and Excitons at Semiconductor Surfaces
NASA Astrophysics Data System (ADS)
Pollmann, Johannes; Krueger, Peter; Mazur, Albert; Rohlfing, Michael
We briefly address 'state-of-the-art' ab-initio calculations of basic properties of semiconductor surfaces such as their atomic configuration, electronic structure and surface vibrations, as well as, their optical properties and compare exemplary results with experimental data. The surface structure and the electronic ground state are described within the local density approximation (LDA) of density functional theory (DFT). The description of excited electronic states requires to take dynamical correlations in the many electron system into account, which is achieved to a considerable extent within the GW approximation (GWA) leading to the concept of the quasiparticle bandstructure. Surface phonons are treated from first principles within density functional perturbation theory (DFPT). The theory of optical surface properties and surface excitons, in particular, requires to account for the electron-hole Coulomb correlation which is done in the framework of the Bethe-Salpeter equation (BSE). These methods yield results which are in good agreement with experiment and can significantly contribute to an interpretation of experimental data from high-resolution surface microscopy and spectroscopy thus enhancing our current understanding of semiconductor surfaces.
Spin and phonon response in uranium compounds
NASA Astrophysics Data System (ADS)
Buyers, W. J. L.; Murray, A. F.; Jackman, J. A.; Holden, T. M.; DuPlessis, P. de V.; Vogt, O.
1981-03-01
Recent progress in understanding the spin localization and moment formation in metallic uranium compounds is summarized. Measurements have been made of the neutron scattering from UN, US, UTe and UPd3. The phonon spectra are unusual e.g. the (111) TA branch of UTe lies below the (111) TA branch from ζ = 0.2 to the zone boundary. Force-constant analysis of the UX series shows that when the U-U forces are large the moment is small. In non-ordering UPd3 the high-frequency band of crystal-field-like excitations is well described by a localized spin model. The low-frequency band (ν˜0.4 THz) is broadened, however, suggesting a delicate balance in the spin localization. In antiferromagnetic UN, where the U-U overlap is greater, the spin response is entirely broad with a large anisotropy gap. Ferromagnetic UTe has a quadratically rising spin-wave branch as well as a higher flat branch. Thus UPd3 and UTe provide clear evidence for the existence of crystalline electric fields in metallic actinide compounds.
Strelchuk, V V; Nikolenko, A S; Gubanov, V O; Biliy, M M; Bulavin, L A
2012-11-01
In the present work, we used Raman spectroscopy as sensitive tool for characterization of dispersion of electron-phonon resonances in one-layer graphene. We analyzed Stokes and anti-Stokes components of the Raman spectra to investigate the temperature dependence of the graphene G-band on the power of exciting radiation. Appearance and drastic intensity increase of zone-edge D-like modes caused by introduction of structural defects and/or deformations in the graphene layer were observed in the Raman spectra at high powers of excitation. We investigated phonon dispersion of one-layer graphene for iTO phonon branch at K point along K-M direction, which is involved in double-resonance Raman scattering. Raman dispersion slope of D-band is in good agreement with results of theoretical calculations based on the Green's functions approach based on the screened electron-electron interaction. Deviation of the experimental iTO phonon frequency from the linear dependence on excitation energy was observed at excitation E(exc) = 3.81 eV. Self-consistent classification of phonon states according to the symmetry for all dispersion branches of one-layer graphene was carried out.
Acoustic-phonon transmission in quasiperiodic superlattices
NASA Astrophysics Data System (ADS)
Tamura, S.; Wolfe, J. P.
1987-08-01
Acoustic-phonon transmission through a realistic Fibonacci superlattice is studied theoretically. We find a number of transmission dips corresponding to Bragg-like reflections of phonons. The transmission spectrum is much more complex than in the periodic case; however, the strongest dips in transmission are remarkably correlated with those of the periodic superlattice. We also present the first realistic calculations of the phonon dispersion relations in an actual quasiperiodic superlattice. For oblique angles of incidence, intermode Bragg-like reflections of the phonons are predicted.
Effect of Rattling Phonons on Sommerfeld Constant
NASA Astrophysics Data System (ADS)
Hotta, Takashi
2008-10-01
By employing a numerical renormalization group technique, we evaluate electronic specific heat coefficient γ of the Anderson model coupled with local anharmonic phonons for the oscillation of a caged atom. For the rattling-type cage potential with a flat and wide region in the bottom, we find that phonon-mediated attraction is largely enhanced. When the potential shape is deformed from the rattling type, there occurs a cancellation between Coulomb repulsion and the phonon-mediated attraction. In such a situation, spin and charge fluctuations are comparable to each other, leading to the realization of exotic electron-phonon complex state with large and magnetically robust γ.
Ballistic phonon transport in holey silicon.
Lee, Jaeho; Lim, Jongwoo; Yang, Peidong
2015-05-13
When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.
Phonon-assisted transient electroluminescence in Si
Cheng, Tzu-Huan; Chu-Su, Yu; Liu, Chien-Sheng; Lin, Chii-Wann
2014-06-30
The phonon-replica infrared emission is observed at room temperature from indirect band gap Si light-emitting diode under forward bias. With increasing injection current density, the broadened electroluminescence spectrum and band gap reduction are observed due to joule heating. The spectral-resolved temporal response of electroluminescence reveals the competitiveness between single (TO) and dual (TO + TA) phonon-assisted indirect band gap transitions. As compared to infrared emission with TO phonon-replica, the retarder of radiative recombination at long wavelength region (∼1.2 μm) indicates lower transition probability of dual phonon-replica before thermal equivalent.
Electron-phonon interactions from first principles
NASA Astrophysics Data System (ADS)
Giustino, Feliciano
2017-01-01
This article reviews the theory of electron-phonon interactions in solids from the point of view of ab initio calculations. While the electron-phonon interaction has been studied for almost a century, predictive nonempirical calculations have become feasible only during the past two decades. Today it is possible to calculate from first principles many materials properties related to the electron-phonon interaction, including the critical temperature of conventional superconductors, the carrier mobility in semiconductors, the temperature dependence of optical spectra in direct and indirect-gap semiconductors, the relaxation rates of photoexcited carriers, the electron mass renormalization in angle-resolved photoelectron spectra, and the nonadiabatic corrections to phonon dispersion relations. In this article a review of the theoretical and computational framework underlying modern electron-phonon calculations from first principles as well as landmark investigations of the electron-phonon interaction in real materials is given. The first part of the article summarizes the elementary theory of electron-phonon interactions and their calculations based on density-functional theory. The second part discusses a general field-theoretic formulation of the electron-phonon problem and establishes the connection with practical first-principles calculations. The third part reviews a number of recent investigations of electron-phonon interactions in the areas of vibrational spectroscopy, photoelectron spectroscopy, optical spectroscopy, transport, and superconductivity.
Hypersonic phonon propagation in one-dimensional surface phononic crystal
NASA Astrophysics Data System (ADS)
Graczykowski, B.; Sledzinska, M.; Kehagias, N.; Alzina, F.; Reparaz, J. S.; Sotomayor Torres, C. M.
2014-03-01
Hypersonic, thermally activated surface acoustic waves propagating in the surface of crystalline silicon patterned with periodic stripes were studied by Brillouin light scattering. Two characteristic directions (normal and parallel to the stripes) of surface acoustic waves propagation were examined exhibiting a distinctive propagation behavior. The measured phononic band structure exhibits diverse features, such as zone folding, band gap opening, and hybridization to local resonance for waves propagating normal to the stripes, and a variety of dispersive modes propagating along the stripes. Experimental results were supported by theoretical calculations performed using finite element method.
Vibrational and electronic excitations in gold nanocrystals
NASA Astrophysics Data System (ADS)
Bayle, Maxime; Combe, Nicolas; Sangeetha, Neralagatta M.; Viau, Guillaume; Carles, Robert
2014-07-01
An experimental analysis of all elementary excitations - phonons and electron-holes - in gold nanocrystals has been performed using plasmon resonance Raman scattering. Assemblies of monodisperse, single-crystalline gold nanoparticles, specific substrates and specific experimental configurations have been used. Three types of excitations are successively analyzed: collective quasi-acoustical vibrations of the particles (Lamb's modes), electron-hole excitations (creating the so-called ``background'' in surface-enhanced Raman scattering) and ensembles of atomic vibrations (``bulk'' phonons). The experimental vibrational density of states extracted from the latter contribution is successfully compared with theoretical estimations performed using atomic simulations. The dominant role of surface atoms over the core ones on lattice dynamics is clearly demonstrated. Consequences on the thermodynamic properties of nanocrystals such as the decrease of the characteristic Debye temperature are also considered.
Raman scattering by acoustic phonons in Fibonacci GaAs-AlAs superlattices
NASA Astrophysics Data System (ADS)
Bajema, K.; Merlin, R.
1987-09-01
We report on resonant and nonresonant Raman scattering by acoustic phonons in Fibonacci GaAs-AlAs superlattices. Spectra off resonance are dominated by doublets centered at frequencies that follow a power-law behavior, in good agreement with numerical calculations based on a continuum model. Resonant data show a weighted density of states revealing the expected rich structure of gaps in the phonon spectrum. It is proposed that the electronic excitation involved in the resonant process is an intrinsic surface state of the superlattice.
Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films
NASA Astrophysics Data System (ADS)
Chase, T.; Trigo, M.; Reid, A. H.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Reis, D. A.; Wang, X. J.; Dürr, H. A.
2016-01-01
We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.
Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films
Chase, T.; Trigo, M.; Reid, A. H.; Dürr, H. A.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Wang, X. J.; Reis, D. A.
2016-01-25
We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.
Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films
Chase, T.; Trigo, M.; Reid, A. H.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Reis, D. A.; Wang, X. J.; Dürr, H. A.
2016-01-25
We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.
Nonlocal electron-phonon coupling: Consequences for the nature of polaron states
NASA Astrophysics Data System (ADS)
Stojanović, Vladimir M.; Bobbert, P. A.; Michels, M. A.
2004-04-01
We develop a variational approach to an extended Holstein model, comprising both local and nonlocal electron-phonon coupling. The approach is based on the minimization of a Bogoliubov bound to the Helmholtz free energy. The ambivalent character of nonlocal coupling, which both promotes and hinders transport, is clearly observed. Furthermore, a salient feature of our results is that the local and nonlocal couplings can compensate each other, leading to a reduction of polaronic effects and a quasi-free character of the excitation. Our findings have implications for organic crystals of π-conjugated molecules, where this electron-phonon coupling mechanism plays an important role.
Observing backfolded and unfolded acoustic phonons by broadband optical light scattering.
Maerten, L; Bojahr, A; Bargheer, M
2015-02-01
We use broadband time domain Brillouin scattering to observe coherently generated phonon modes in bulk and nanolayered samples. We transform the measured transients into a frequency-wavevector diagram and compare the resulting dispersion relations to calculations. The detected oscillation amplitude depends on the occupation of phonon modes induced by the pump pulse. For nanolayered samples with an appropriately large period, the whole wavevector range of the Brillouin zone becomes observable by broadband optical light scattering. The backfolded modes vanish, when the excitation has passed the nanolayers and propagates through the substrate underneath.
Time-dependent pseudo Jahn-Teller effect: Phonon-mediated long-time nonadiabatic relaxation
Vaikjärv, Taavi Hizhnyakov, Vladimir
2014-02-14
Our system under theoretical consideration is an impurity center in a solid. We are considering the time evolution of the center in a quasi-degenerate electronic state. Strict quantum mechanical treatment of non-adiabadicity of the state is used. The phonon continuum is taken into account in addition to the vibration responsible for the main vibronic interaction. To describe the dynamics of the excited state a master equation has been used. The theoretical considerations are illustrated by the calculations of the long-time evolution of vibrations of the center, influenced by the emission of phonons to the bulk.
Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons
Menikoff, Ralph
2014-09-02
A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.
Duan, Jiahua; Chen, Runkun; Li, Jingcheng; Jin, Kuijuan; Sun, Zhigang; Chen, Jianing
2017-10-01
Interference-free hyperbolic phonon polaritons (HPPs) excited by natural wrinkles in a hexagonal boron nitride (hBN) microcrystal are reported both experimentally and theoretically. Although their geometries are off-resonant with the excitation wavelength, the wrinkles compensate for the large momentum mismatch between photon and phonon polariton, and launch the HPPs without interference. The spatial feature of wrinkles is about 200 nm, which is an order of magnitude smaller than resonant metal antennas at the same excitation wavelength. Compared with phonon polaritons launched by an atomic force microscopy tip, the phonon polaritons launched by wrinkles are interference-free, independent of the launcher geometry, and exhibit a smaller damping rate (γ ≈ 0.028). On the same hBN microcrystal, in situ nanoinfrared imaging of HPPs launched by different mechanisms is performed. In addition, the dispersion of HPPs is modified by changing the dielectric environments of hBN crystals. The wavelength of HPPs is compressed twofold when the substrate is changed from SiO2 to gold. The findings provide insights into the intrinsic properties of hBN-HPPs and demonstrate a new way to launch and control polaritons in van der Waals materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Search for intrinsic collective excitations in {sup 152}Sm
Kulp, W. D.; Wood, J. L.; Allmond, J. M.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Hayes, A. B.; Hua, H.; Teng, R.; Bandyopadhyay, D.; Choudry, S. N.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Dashdorj, D.; Mynk, M. G.; Yates, S. W.
2008-06-15
The 685 keV excitation energy of the first excited 0{sup +} state in {sup 152}Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of {sup 152}Sm are used to probe the E2 collectivity of excited 0{sup +} states in this 'soft' nucleus and the results are compared with model predictions. No candidates for two-phonon K{sup {pi}}=0{sup +}quadrupole vibrational states are found. A 2{sup +},K=2 state with strong E2 decay to the first excited K{sup {pi}}=0{sup +} band and a probable 3{sup +} band member are established.
Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor
NASA Astrophysics Data System (ADS)
Ishioka, Kunie; Brixius, Kristina; Höfer, Ulrich; Rustagi, Avinash; Thatcher, Evan M.; Stanton, Christopher J.; Petek, Hrvoje
2015-11-01
The ultrafast coupling dynamics of coherent optical phonons and the photoexcited electron-hole plasma in the indirect gap semiconductor GaP are investigated by experiment and theory. For below-gap excitation and probing by 800-nm light, only the bare longitudinal optical (LO) phonons are observed. For above-gap excitation with 400-nm light, the photoexcitation creates a high density, nonequilibrium e -h plasma, which introduces an additional, faster decaying oscillation due to an LO phonon-plasmon coupled (LOPC) mode. The LOPC mode frequency exhibits very similar behavior for both n - and p -doped GaP, downshifting from the LO to the transverse optical (TO) phonon frequency limits with increasing photoexcited carrier density. We assign the LOPC mode to the LO phonons coupled with the photoexcited multicomponent plasma. For the 400-nm excitation, the majority of the photoexcited electrons are scattered from the Γ valley into the satellite X valley, while the light and spin-split holes are scattered into the heavy hole band, within 30 fs. The resulting mixed plasma is strongly damped, leading to the LOPC frequency appearing in the reststrahlen gap. Due to the large effective masses of the X electrons and heavy holes, the coupled mode appears most distinctly at carrier densities ≳5 ×1018cm-3 . We perform theoretical calculations of the nuclear motions and the electronic polarizations following an excitation with an ultrashort optical pulse to obtain the transient reflectivity responses of the coupled modes. We find that, while the longitudinal diffusion of photoexcited carriers is insignificant, the lateral inhomogeneity of the photoexcited carriers due to the laser intensity profile should be taken into account to reproduce the major features of the observed coupled mode dynamics.
Electronic versus phononic contributions to sliding friction: Xe on Ag
NASA Astrophysics Data System (ADS)
Liebsch, Ansgar; Gonçalves, Sebastian; Kiwi, Miguel
1998-03-01
The microscopic origin of the sliding friction of one or more monolayers of adsorbed films on metal surfaces has recently attracted considerable interest. Dynamical response time--dependent density functional calculations suggest that, for Xe on Ag, the excitation of electron--hole pairs contributes significantly to η_allel, the damping of the parallel motion of the Xe overlayer. To compare η_allel with η_phon, the contribution due to phonons excited in the Xe layer, we have performed molecular dynamics calculations for various coverages. The effective friction coefficient turns out to be sensitive to the surface corrugation potential. In particular, for an incommensurate Xe monolayer on Ag, we find η_allel and η_phon to be of the same order of magnitude in a large region of parameter space.
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Splash, pop, sizzle: Information processing with phononic computing
Sklan, Sophia R.
2015-05-15
Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics) have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic. .
Learning to coexist with wildfire
M.A. Moritz; E. Batlloria; R.A. Bradstock; Jeff Stringer; Robbie Sitzlar; P.F. Hessburg; J. Leonard; S. McCaffrey; D.C. Odion; T. Schoennagel; A.D. Syphard
2014-01-01
The impacts of escalating wildfire in many regions â the lives and homes lost, the expense of suppression and the damage to ecosystem services â necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks...
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity
Chen, J. C. H.; Sato, Y.; Kosaka, R.; Hashisaka, M.; Muraki, K.; Fujisawa, T.
2015-01-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629
Microfabricated phononic crystal devices and applications
NASA Astrophysics Data System (ADS)
Olsson, R. H., III; El-Kady, I.
2009-01-01
Phononic crystals are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic bandgaps. The majority of previously reported phononic crystal devices have been constructed by hand, assembling scattering inclusions in a viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Recently, phononic crystals and devices have been scaled to VHF (30-300 MHz) frequencies and beyond by utilizing microfabrication and micromachining technologies. This paper reviews recent developments in the area of micro-phononic crystals including design techniques, material considerations, microfabrication processes, characterization methods and reported device structures. Micro-phononic crystal devices realized in low-loss solid materials are emphasized along with their potential application in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The reported advances in batch micro-phononic crystal fabrication and simplified testing promise not only the deployment of phononic crystals in a number of commercial applications but also greater experimentation on a wide variety of phononic crystal structures.
Adequacy of damped dynamics to represent the electron-phonon interaction in solids
Caro, A.; Correa, A. A.; Tamm, A.; Samolyuk, G. D.; Stocks, G. M.
2015-10-16
Time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction strength determined in this way is very similar to the linear response calculation and experimental measurements. This approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified framework to perform classical molecular dynamics of ion-solid interaction with ab initio type nonadiabatic terms in a wide range of energies.
Calculation of energy relaxation rates of fast particles by phonons in crystals
Prange, Micah P.; Campbell, Luke W.; Wu, Dangxin; Gao, Fei; Kerisit, Sebastien N.
2015-03-01
We present ab initio calculations of the temperature-dependent exchange of energy between a classical charged point-particle and the phonons of a crystalline material. The phonons, which are computed using density functional perturbation theory (DFPT) methods, interact with the mov- ing particle via the Coulomb interaction between the density induced in the material by phonon excitation and the charge of the classical particle. Energy relaxation rates are computed using time- dependent perturbation theory. The method, which is applicable wherever DFPT is, is illustrated with results for CsI, an important scintillator whose performance is affected by electron thermal- ization. We discuss the influence of the form assumed for quasiparticle dispersion on theoretical estimates of electron cooling rates.
Adequacy of damped dynamics to represent the electron-phonon interaction in solids
Caro, A.; Correa, A. A.; Tamm, A.; Samolyuk, G. D.; Stocks, G. M.
2015-10-16
In time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction strength determined in this way is very similar to the linear response calculation and experimental measurements. Our approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified framework to perform classical molecular dynamics of ion-solid interaction with ab initio type nonadiabatic terms in a wide range of energies.
Adequacy of damped dynamics to represent the electron-phonon interaction in solids
Caro, A.; Correa, A. A.; Tamm, A.; ...
2015-10-16
Time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction strength determined in this way is very similar to the linear response calculation and experimental measurements. This approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified framework to perform classicalmore » molecular dynamics of ion-solid interaction with ab initio type nonadiabatic terms in a wide range of energies.« less
Adequacy of damped dynamics to represent the electron-phonon interaction in solids
Caro, A.; Correa, A. A.; Tamm, A.; ...
2015-10-16
In time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction strength determined in this way is very similar to the linear response calculation and experimental measurements. Our approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified framework to performmore » classical molecular dynamics of ion-solid interaction with ab initio type nonadiabatic terms in a wide range of energies.« less
Long-Lived, Coherent Acoustic Phonon Oscillations in GaN Single Crystals
Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Park, J.-R.; Sobolewski, R.
2006-01-31
We report on coherent acoustic phonon (CAP) oscillations studied in high-quality bulk GaN single crystals with a two-color femtosecond optical pump-probe technique. Using a far-above-the-band gap ultraviolet excitation (~270 nm wavelength) and a near-infrared probe beam (~810 nm wavelength), the long-lived, CAP transients were observed within a 10 ns time-delay window between the pump and probe pulses, with a dispersionless (proportional to the probe-beam wave vector) frequency of ~45 GHz. The measured CAP attenuation corresponded directly to the absorption of the probe light in bulk GaN, indicating that the actual (intrinsic) phonon-wave attenuation in our crystals was significantly smaller than the measured 65.8 cm^-1 value. The velocity of the phonon propagation was equal to the velocity of sound in GaN.
Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing.
Li, Peining; Lewin, Martin; Kretinin, Andrey V; Caldwell, Joshua D; Novoselov, Kostya S; Taniguchi, Takashi; Watanabe, Kenji; Gaussmann, Fabian; Taubner, Thomas
2015-06-26
Hyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons. With advanced infrared nanoimaging techniques and state-of-art mid-infrared laser sources, we have succeeded in demonstrating and visualizing these unexpected phenomena in both Type I and Type II hyperbolic conditions, with both occurring naturally within hexagonal boron nitride. These efforts have provided a full and intuitive physical picture for the understanding of the role of hyperbolic phonon polaritons in near-field optical imaging, guiding, and focusing applications.
Calculation of energy relaxation rates of fast particles by phonons in crystals
NASA Astrophysics Data System (ADS)
Prange, Micah; Campbell, Luke; Wu, Dangxin; Kerisit, Sebastien
2015-03-01
We present ab initio calculations of the temperature-dependent exchange of energy between a classical charged point-particle and the phonons of a crystalline material. The phonons, which are computed using density functional perturbation theory (DFPT) methods, interact with the moving particle via the Coulomb interaction between the density induced in the material by phonon excitation and the charge of the classical particle. Energy relaxation rates are computed using time-dependent perturbation theory. The method, which is applicable wherever DFPT is, is illustrated with results for several important scintillators whose performance is affected by electron thermalization. We discuss the influence of the form assumed for quasiparticle dispersion on theoretical estimates of electron cooling rates. This research was supported by the National Nuclear Security Administration, Office of DNN R&D, of the DOE. PNNL is operated by Battelle Memorial Institute under Contract DE-AC0576RL01830.
Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing
Li, Peining; Lewin, Martin; Kretinin, Andrey V.; Caldwell, Joshua D.; Novoselov, Kostya S.; Taniguchi, Takashi; Watanabe, Kenji; Gaussmann, Fabian; Taubner, Thomas
2015-01-01
Hyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons. With advanced infrared nanoimaging techniques and state-of-art mid-infrared laser sources, we have succeeded in demonstrating and visualizing these unexpected phenomena in both Type I and Type II hyperbolic conditions, with both occurring naturally within hexagonal boron nitride. These efforts have provided a full and intuitive physical picture for the understanding of the role of hyperbolic phonon polaritons in near-field optical imaging, guiding, and focusing applications. PMID:26112474
THz elastic dynamics in finite-size CoFeB-MgO phononic superlattices
Ulrichs, Henning Meyer, Dennis; Müller, Markus; Wittrock, Steffen; Mansurova, Maria; Walowski, Jakob; Münzenberg, Markus
2016-10-14
In this article, we present the observation of coherent elastic dynamics in a nano-scale phononic superlattice, which consists of only 4 bilayers. We demonstrate how ultra-short light pulses with a length of 40 fs can be utilized to excite a coherent elastic wave at 0.535 THz, which persist over about 20 ps. In later steps of the elastic dynamics, modes with frequency of 1.7 THz and above appear. All these modes are related to acoustic band gaps. Thus, the periodicity strongly manifests in the wave physics, although the system under investigation has only a small number of spatial periods. To further illustrate this, we show how by breaking the translational invariance of the superlattice, these features can be suppressed. Discussed in terms of phonon blocking and radiation, we elucidate in how far our structures can be considered as useful building blocks for phononic devices.
Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite
NASA Astrophysics Data System (ADS)
Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Taniuchi, T.; Kiss, T.; Nakajima, M.; Suemoto, T.; Shin, S.
2011-08-01
Investigation of the non-equilibrium dynamics after an impulsive impact provides insights into couplings among various excitations. A two-temperature model (TTM) is often a starting point to understand the coupled dynamics of electrons and lattice vibrations: the optical pulse primarily raises the electronic temperature Tel while leaving the lattice temperature Tl low; subsequently the hot electrons heat up the lattice until Tel = Tl is reached. This temporal hierarchy owes to the assumption that the electron-electron scattering rate is much larger than the electron-phonon scattering rate. We report herein that the TTM scheme is seriously invalidated in semimetal graphite. Time-resolved photoemission spectroscopy (TrPES) of graphite reveals that fingerprints of coupled optical phonons (COPs) occur from the initial moments where Tel is still not definable. Our study shows that ultrafast-and-efficient phonon generations occur beyond the TTM scheme, presumably associated to the long duration of the non-thermal electrons in graphite.
Thermal conductivity in large-J two-dimensional antiferromagnets: Role of phonon scattering
Chernyshev, A. L.; Brenig, Wolfram
2015-08-05
Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates. It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ΘD≲T<< J.
Topological phase transitions in group IV-VI semiconductors by phonons
NASA Astrophysics Data System (ADS)
Kim, Jinwoong; Jhi, Seung-Hoon
2015-09-01
The topological insulator has an intriguing electronic structure in that it has nontrivial topology enforcing the helical Dirac fermionic states at interfaces to the band insulators. Protected by the time-reversal symmetry and finite band gaps in the bulk, the topology is immune to external nonmagnetic perturbations. One essential question is whether elementary excitations in solids like phonons can trigger a transition in the topological property of the electronic structures. Here we investigate the development of topological insulating phases in IV-VI compounds under dynamic lattice deformations using first-principles calculations. Unlike the static state of topological phases at equilibrium conditions, we show that nontrivial topological phases are induced in the compounds by the dynamic lattice deformations from selective phonon modes. Calculations of the time-reversal polarization show that the Z2 invariant of the compounds is flipped by the selective phonon modes and that the compounds exhibit oscillating topological phases upon dynamic lattice deformations.
NASA Astrophysics Data System (ADS)
Srikanthreddy, D.; Glavin, B. A.; Poyser, C. L.; Henini, M.; Lehmann, D.; Jasiukiewicz, Cz.; Akimov, A. V.; Kent, A. J.
2017-02-01
We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by the femtosecond optical excitation of an Al film transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, the amplitude, and the polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This analysis includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 and 70 GHz, respectively.
Electron-phonon scattering effects on electronic and optical properties of orthorhombic GeS
NASA Astrophysics Data System (ADS)
Villegas, Cesar E. P.; Rocha, A. R.; Marini, Andrea
2016-10-01
Group-VI monochalcogenides are attracting a great deal of attention due to their peculiar anisotropic properties. Very recently, it has been suggested that GeS could act as a promissory absorbing material with high input-output ratios, which are relevant features for designing prospective optoelectronic devices. In this work, we use the ab initio many-body perturbation theory to study the role of electron-phonon coupling on orthorhombic GeS. We identify the vibrational modes that efficiently couple with the electronic states responsible for giving rise to the first and second excitonic state. We also study finite-temperature optical absorption, and we show that even at T →0 K , the role of the electron-phonon interaction is crucial to properly describe the position and width of the main experimental excitation peaks. Our results suggest that the electron-phonon coupling is essential to properly describe the optical properties of the monochalcogenides family.
Spin angular momentum induced by optical quasi-phonons activated in birefringent uniaxial crystals
NASA Astrophysics Data System (ADS)
Mohamadou, B.; Maïmounatou, B.; Erasmus, R. M.
2017-09-01
The present report formally establishes the expression of the angular momentum of the quasi-phonons induced by linearly polarized light. The transferred mechanical torque due to phonons is then determined from the spin angular momentum and is shown to be measurable from Raman scattering experiments. To investigate this, the electric field due the excited dipoles and the associated macroscopic dielectric polarization vectors were first calculated using a lattice dynamical model in order to derive in a second step the analytical expression of the angular momentum density arising from the inelastic light scattering by quasi-phonons. The numerical results of the calculated angle dependent mode electric fields and the induced spin angular moments as well as the transferred torques were analyzed with regard to some typical behaviors of the interacting modes and it is shown that the fluctuations of the effective charges is their main origin.
Superconducting energy gap of 2H-NbSe2 in phonon spectroscopy
Weber, F.; Rosenkranz, S.; Heid, R.; ...
2016-10-25
We present a high-energy-resolution inelastic x-ray scattering data investigation of the charge-density-wave (CDW) soft phonon mode upon entering the superconducting state in 2H–NbSe2. Measurements were done close to the CDW ordering wave vector qCDW at q=qCDW + (0,0,l), 0.15 ≤ l ≤ 0.5, for T = 10K (CDW order) and 3.8K (CDW order+superconductivity). We observe changes of the phonon line shape that are characteristic for systems with strong electron-phonon coupling in the presence of a superconducting energy gap 2Δc and from which we can demonstrate an l dependence of the superconducting gap. Reversely, our data imply that the CDW energymore » gap is strongly localized along the c* direction. The confinement of the CDW gap to a very small momentum region explains the rather low competition and easy coexistence of CDW order and superconductivity in 2H–NbSe2. Furthermore, the energy gained by opening ΔCDW seems to be too small to be the driving force of the phase transition at TCDW = 33K, which is better described as an electron-phonon coupling driven structural phase transition.« less
Phononic crystals and elastodynamics: Some relevant points
NASA Astrophysics Data System (ADS)
Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.
2014-12-01
In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Lattice Boltzmann modeling of phonon transport
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Wang, Moran
2016-06-01
A novel lattice Boltzmann scheme is proposed for phonon transport based on the phonon Boltzmann equation. Through the Chapman-Enskog expansion, the phonon lattice Boltzmann equation under the gray relaxation time approximation recovers the classical Fourier's law in the diffusive limit. The numerical parameters in the lattice Boltzmann model are therefore rigorously correlated to the bulk material properties. The new scheme does not only eliminate the fictitious phonon speed in the diagonal direction of a square lattice system in the previous lattice Boltzmann models, but also displays very robust performances in predicting both temperature and heat flux distributions consistent with analytical solutions for diverse numerical cases, including steady-state and transient, macroscale and microscale, one-dimensional and multi-dimensional phonon heat transport. This method may provide a powerful numerical tool for deep studies of nonlinear and nonlocal heat transports in nanosystems.
Phononic crystals and elastodynamics: Some relevant points
Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.
2014-12-15
In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Phonon Drag Dislocations at High Pressures
Wolfer, W.G.
1999-10-19
Phonon drag on dislocations is the dominant process which determines the flow stress of metals at elevated temperatures and at very high plastic deformation rates. The dependence of the phonon drag on pressure or density is derived using a Mie-Grueneisen equation of state. The phonon drag is shown to increase nearly linearly with temperature but to decrease with density or pressure. Numerical results are presented for its variation for shock-loaded copper and aluminum. In these cases, density and temperature increase simultaneously, resulting in a more modest net increase in the dislocation drag coefficient. Nevertheless, phonon drag increases by more than an order of magnitude during shock deformations which approach melting. Since the dependencies of elastic moduli and of the phonon drag coefficient on pressure and temperature are fundamentally different, the effect of pressure on the constitutive law for plastic deformation can not simply be accounted for by its effect on the elastic shear modulus.
NASA Astrophysics Data System (ADS)
Sykora, S.; Hübsch, A.; Becker, K. W.
2009-03-01
On the one hand, in one dimension the coupling of electrons to phonons leads to a transition from a metallic to a Peierls distorted insulated state if the coupling exceeds a critical value. On the other hand, in two dimensions the electron-phonon interaction may also lead to the formation of Cooper pairs. In this letter, we study for two dimensions the competing influence of superconductivity and charge order (in conjunction with a lattice distortion) by means of the projector-based renormalization method (PRM). In this way, we can not only approach correlation functions of superconductivity and charge density wave but also have direct access to the order parameters. Increasing the electron-phonon interaction, we find a crossover behavior between a purely superconducting state and a charge-density wave where a well-defined parameter range of coexistence of superconductivity and lattice distortion exists.
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong
2016-05-12
We report the high resolution inelastic x-ray study of the in-plane phonon excitations in dipalmitoyl phosphatidylcholine (DPPC) above and below main transition temperature. In the L_{β'} gel phase, we observe high frequency longitudinal phonon mode previously predicted by the molecular dynamics simulations and for the first time, we reveal low frequency weakly dispersive transverse acoustic mode which softens and exhibits a low-frequency phonon gap when the DPPC lipid transitions into the L_{α} fluid phase. The phonon softening of the high frequency longitudinal excitations and the transformation of the transverse excitations upon the phase transition from the L_{β'} to L_{α} phase is explained within the framework of the phonon theory of liquids. These findings illustrate the importance of the collective dynamics of biomembranes and reveal that hydrocarbon tails can act as an efficient mediator in controlling the passive transport across the bilayer plane.
NASA Astrophysics Data System (ADS)
Wagman, J. J.; Carlo, J. P.; Gaudet, J.; Van Gastel, G.; Abernathy, D. L.; Stone, M. B.; Granroth, G. E.; Kolesnikov, A. I.; Savici, A. T.; Kim, Y. J.; Zhang, H.; Ellis, D.; Zhao, Y.; Clark, L.; Kallin, A. B.; Mazurek, E.; Dabkowska, H. A.; Gaulin, B. D.
2016-03-01
We present time-of-flight neutron scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤x ≤0.095 and La2-xSrxCuO4 (LSCO) with x =0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high-temperature cuprate superconductivity, ranging from insulating, three-dimensional commensurate long-range antiferromagnetic order, for x ≤0.02 , to two-dimensional (2D) incommensurate antiferromagnetism coexisting with superconductivity for x ≥0.05 . Previous work on lightly doped LBCO with x =0.035 showed a clear enhancement of the inelastic scattering coincident with the low-energy crossings of the highly dispersive spin excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore, we show that the low-temperature, low-energy magnetic spectral weight is substantially larger for samples with nonsuperconducting ground states relative to any of the samples with superconducting ground states. Spin gaps, suppression of low-energy magnetic spectral weight as a function of decreasing temperature, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO.
Jungwirth, Nicholas R; Calderon, Brian; Ji, Yanxin; Spencer, Michael G; Flatté, Michael E; Fuchs, Gregory D
2016-10-12
We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.
NASA Astrophysics Data System (ADS)
Prezhdo, Oleg V.
2008-07-01
The article presents the current perspective on the nature of photoexcited states in semiconductor quantum dots (QDs). The focus is on multiple excitons and photo-induced electron-phonon dynamics in PbSe and CdSe QDs, and the advocated view is rooted in the results of ab initio studies in both energy and time domains. As a new type of material, semiconductor QDs represent the borderline between chemistry and physics, exhibiting both molecular and bulk-like properties. Similar to atoms and molecules, the electronic spectra of QD show discrete bands. Just as bulk semiconductors, QDs comprise multiple copies of the elementary unit cell, and are characterized by valence and conduction bands. The electron-phonon coupling in QDs is weaker than in molecules, but stronger than in bulk semiconductors. Unlike either material, the QD properties can be tuned continuously by changing QD size and shape. The molecular and bulk points of view often lead to contradicting conclusions. For example, the molecular view suggests that the excitations in QDs should exhibit strong electron-correlation (excitonic) effects, and that the electron-phonon relaxation should be slow due to the discrete nature of the optical bands and the mismatch of the electronic energy gaps with vibrational frequencies. In contrast, a finite-size limit of bulk properties indicates that the kinetic energy of quantum confinement should be significantly greater than excitonic effects and that the electron-phonon relaxation inside the quasi-continuous bands should be efficient. Such qualitative differences have generated heated discussions in the literature. The great potential of QDs for a variety of applications, including photovoltaics, spintronics, lasers, light-emitting diodes, and field-effect transistors makes it crutual to settle the debates. By synthesizing different viewpoints and presenting a unified atomistic picture of the excited state processes, our ab initio analysis clarifies the controversies
Coherent gigahertz phonons in Ge2Sb2Te5 phase-change materials
NASA Astrophysics Data System (ADS)
Hase, Muneaki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji
2015-12-01
Using ≈ 40 fs ultrashort laser pulses, we investigate the picosecond acoustic response from a prototypical phase change material, thin Ge2Sb2Te5 (GST) films with various thicknesses. After excitation with a 1.53 eV-energy pulse with a fluence of ≈ 5 mJ cm-2, the time-resolved reflectivity change exhibits transient electronic response, followed by a combination of exponential-like strain and coherent acoustic phonons in the gigahertz (GHz) frequency range. The time-domain shape of the coherent acoustic pulse is well reproduced by the use of the strain model by Thomsen et al 1986 (Phys. Rev. B 34 4129). We found that the decay rate (the inverse of the relaxation time) of the acoustic phonon both in the amorphous and in the crystalline phases decreases as the film thickness increases. The thickness dependence of the acoustic phonon decay is well modeled based on both phonon-defect scattering and acoustic phonon attenuation at the GST/Si interface, and it is revealed that those scattering and attenuation are larger in crystalline GST films than those in amorphous GST films.
Interlayer electron-phonon coupling in WSe2/hBN heterostructures
NASA Astrophysics Data System (ADS)
Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng
2017-02-01
Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.
Influence of phonon reservoir on photon blockade in a driven quantum dot-cavity system
Gao, Bo; Li, Gao-xiang; Zhu, Jia-pei
2016-03-14
We theoretically investigate the influence of the phonon bath on photon blockade in a simultaneously driven dot-cavity system. An optimal condition for avoiding two-photon excitation of a cavity field is put forward which can be achieved by modulating the phase difference and the strengths of the driving fields. The second-order correlation function and the mean photon number of the cavity field are discussed. In the absence of phonon effect, the strong photon blockade in a moderate quantum dot (QD)-cavity coupling regime occurs, which can be attributed to the destructive quantum interference arisen from different transition paths induced by simultaneously driving the dressed QD-cavity system. The participation of acoustic-phonon reservoir produces new transition channels for the QD-cavity system, which leads to the damage of destructive interference. As a result, the photon blockade effect is hindered when taking the electron-phonon interaction into account. It is also found that the temperature of the phonon reservoir is disadvantageous for the generation of photon blockade.
Influence of phonon reservoir on photon blockade in a driven quantum dot-cavity system
NASA Astrophysics Data System (ADS)
Gao, Bo; Zhu, Jia-pei; Li, Gao-xiang
2016-03-01
We theoretically investigate the influence of the phonon bath on photon blockade in a simultaneously driven dot-cavity system. An optimal condition for avoiding two-photon excitation of a cavity field is put forward which can be achieved by modulating the phase difference and the strengths of the driving fields. The second-order correlation function and the mean photon number of the cavity field are discussed. In the absence of phonon effect, the strong photon blockade in a moderate quantum dot (QD)-cavity coupling regime occurs, which can be attributed to the destructive quantum interference arisen from different transition paths induced by simultaneously driving the dressed QD-cavity system. The participation of acoustic-phonon reservoir produces new transition channels for the QD-cavity system, which leads to the damage of destructive interference. As a result, the photon blockade effect is hindered when taking the electron-phonon interaction into account. It is also found that the temperature of the phonon reservoir is disadvantageous for the generation of photon blockade.
Exploring the effect of hole localization on the charge-phonon dynamics of hole doped delafossite.
Mazumder, Nilesh; Mandal, Prasanta; Roy, Rajarshi; Ghorai, Uttam Kumar; Saha, Subhajit; Chattopadhyay, Kalyan Kumar
2017-09-20
For weak or moderate doping, electrical measurement is not suitable for detecting changes in the charge localization inside a semiconductor. Here, to investigate the nature of charge-phonon coupling in the presence of gradually delocalized holes within a weak doping regime (~10(16) cm(-3)), we examine the temperature dependent Raman spectra (303-817 K) of prototype hole doped delafossite [Formula: see text] (x = 0/0.03, y = 0/0.01). For both [Formula: see text] and [Formula: see text] phonons, negative lineshape asymmetry and relative thermal hardening are distinctly observed upon [Formula: see text] and [Formula: see text] doping. Using Allen formalism, charge density of states at the Fermi level per spin and molecule, and charge delocalization associated to [Formula: see text] plane, are estimated to increase appreciably upon codoping compared to the [Formula: see text]-axis. We delineate the interdependence between charge-phonon coupling constant ([Formula: see text]) and anharmonic phonon lifetime ([Formula: see text]), and deduce that excitation of delocalized holes weakly coupled with phonons of larger [Formula: see text] is the governing feature of observed Fano asymmetry ([Formula: see text]) reversal.
Exploring the effect of hole localization on the charge-phonon dynamics of hole doped delafossite
NASA Astrophysics Data System (ADS)
Mazumder, Nilesh; Mandal, Prasanta; Roy, Rajarshi; Ghorai, Uttam Kumar; Saha, Subhajit; Chattopadhyay, Kalyan Kumar
2017-09-01
For weak or moderate doping, electrical measurement is not suitable for detecting changes in the charge localization inside a semiconductor. Here, to investigate the nature of charge-phonon coupling in the presence of gradually delocalized holes within a weak doping regime (~1016 cm-3), we examine the temperature dependent Raman spectra (303-817 K) of prototype hole doped delafossite CuC{{r}1-x}M{{g}x}{{O}2-y}{{S}y} (x = 0/0.03, y = 0/0.01). For both {{E}g} and {{A}1g} phonons, negative lineshape asymmetry and relative thermal hardening are distinctly observed upon SO× and (MgCr\\bullet+SO×) doping. Using Allen formalism, charge density of states at the Fermi level per spin and molecule, and charge delocalization associated to a - b plane, are estimated to increase appreciably upon codoping compared to the c -axis. We delineate the interdependence between charge-phonon coupling constant (λ ) and anharmonic phonon lifetime ({τanh} ), and deduce that excitation of delocalized holes weakly coupled with phonons of larger {τanh} is the governing feature of observed Fano asymmetry (q ) reversal.
Interlayer electron-phonon coupling in WSe2/hBN heterostructures
NASA Astrophysics Data System (ADS)
Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng
2016-10-01
Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.
Light-enhanced electron-phonon coupling from nonlinear electron-phonon coupling
NASA Astrophysics Data System (ADS)
Sentef, M. A.
2017-05-01
We investigate an exact nonequilibrium solution of a two-site electron-phonon model, where an infrared-active phonon that is nonlinearly coupled to the electrons is driven by a laser field. The time-resolved electronic spectrum shows coherence-incoherence spectral weight transfer, a clear signature of light-enhanced electron-phonon coupling. The present study is motivated by recent evidence for enhanced electron-phonon coupling in pump-probe terahertz and angle-resolved photoemission spectroscopy in bilayer graphene when driven near resonance with an infrared-active phonon mode [E. Pomarico et al., Phys. Rev. B 95, 024304 (2017), 10.1103/PhysRevB.95.024304], and by a theoretical study suggesting that transient electronic attraction arises from nonlinear electron-phonon coupling [D. M. Kennes et al., Nat. Phys. 13, 479 (2017), 10.1038/nphys4024]. We show that a linear scaling of light-enhanced electron-phonon coupling with the pump field intensity emerges, in accordance with a time-nonlocal self-energy based on a mean-field decoupling using quasiclassical phonon coherent states. Finally, we demonstrate that this leads to enhanced double occupancies in accordance with an effective electron-electron attraction. Our results suggest that materials with strong phonon nonlinearities provide an ideal playground to achieve light-enhanced electron-phonon coupling and possibly light-induced superconductivity.
NASA Astrophysics Data System (ADS)
Agyare, Benjamin; Riseborough, Peter
2017-01-01
Intrinsically Localized Modes (ILMs) have purportedly been observed in NaI but only for wave-vectors, q at the corner of the 3-D Brillouin Zone. It has been suggested that, for high-symmetry q vectors, several van Hove singularities may converge at one frequency producing a large peak in the two-phonon density of state and giving rise to ILMs with these q values. We fit the experimentally determined acoustic and the optic phonon modes using a nearest neighbor and a next-nearest neighbor force constant. We find that the two-phonon density of states, for fixed q exhibits non-divergent van Hove singularities. The frequencies of these features are found to vary as q is varied. We intend to search for q values at which the two-phonon density of states is enhanced and then examine whether the anharmonic interactions can bind the two-phonon excitations to produce a quantized ILM.
NASA Astrophysics Data System (ADS)
Pramanik, Dibyadyuti; Sarkar, S.; Saha Sarkar, M.; Bisoi, Abhijit; Ray, Sudatta; Dasgupta, Shinjinee; Chakraborty, A.; Krishichayan, Kshetri, Ritesh; Ray, Indrani; Ganguly, S.; Pradhan, M. K.; Ray Basu, M.; Raut, R.; Ganguly, G.; Ghugre, S. S.; Sinha, A. K.; Basu, S. K.; Bhattacharya, S.; Mukherjee, A.; Banerjee, P.; Goswami, A.
2016-08-01
The high-spin states in 153Ho have been studied by the La57(20Ne139,6 n ) reaction at a projectile energy of 139 MeV at the Variable Energy Cyclotron Centre (VECC), Kolkata, India, utilizing an earlier campaign of the Indian National Gamma Array (INGA) setup. Data from γ -γ coincidence, directional correlation, and polarization measurements have been analyzed to assign and confirm the spins and parities of the levels. We have suggested a few additions and revisions of the reported level scheme of 153Ho. The RF-γ time difference spectra have been useful to confirm the half-life of an isomer in this nucleus. From the comparison of experimental and theoretical results, it is found that there are definite indications of shape coexistence in this nucleus. The experimental and calculated lifetimes of several isomers have been compared to follow the coexistence and evolution of shape with increasing spin.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Flow stabilization by subsurface phonons
Hussein, M. I.; Biringen, S.; Bilal, O. R.; Kucala, A.
2015-01-01
The interaction between a fluid and a solid surface in relative motion represents a dynamical process that is central to the problem of laminar-to-turbulent transition (and consequent drag increase) for air, sea and land vehicles, as well as long-range pipelines. This problem may in principle be alleviated via a control stimulus designed to impede the generation and growth of instabilities inherent in the flow. Here, we show that phonon motion underneath a surface may be tuned to passively generate a spatio-temporal elastic deformation profile at the surface that counters these instabilities. We theoretically demonstrate this phenomenon and the underlying mechanism of frequency-dependent destructive interference of the unstable flow waves. The converse process of flow destabilization is illustrated as well. This approach provides a condensed-matter physics treatment to fluid–structure interaction and a new paradigm for flow control. PMID:27547095
Decoherence in models for hard-core bosons coupled to optical phonons
NASA Astrophysics Data System (ADS)
Dey, A.; Lone, M. Q.; Yarlagadda, S.
2015-09-01
Understanding coherent dynamics of excitons, spins, or hard-core bosons (HCBs) has tremendous scientific and technological implications for quantum computation. Here, we study decay of excited-state population and decoherence in two models for HCBs, namely, a two-site HCB model with site-dependent strong potentials and subject to non-Markovian dynamics and an infinite-range HCB model governed by Markovian dynamics. Both models are investigated in the regimes of antiadiabaticity and strong HCB-phonon coupling with each site providing a different local optical phonon environment; furthermore, the HCB systems in both models are taken to be initially uncorrelated with the environment in the polaronic frame of reference. In the case of the two-site HCB model, we show clearly that the degree of decoherence and decay of excited state are enhanced by the proximity of the site-energy difference to the eigenenergy of phonons and are most pronounced when the site-energy difference is at resonance with twice the polaronic energy; additionally, the decoherence and the decay effects are reduced when the strength of HCB-phonon coupling is increased. For the infinite-range model, when the site energies are the same, we derive an effective many-body Hamiltonian that commutes with the long-range system Hamiltonian and thus has the same set of eigenstates; consequently, a quantum-master-equation approach shows that the quantum states of the system do not decohere.
Electrons and Phonons in Semiconductor Multilayers
NASA Astrophysics Data System (ADS)
Ridley, B. K.
2014-08-01
Introduction; 1. Simple models of the electron-phonon interaction; 2. Quantum confinement of carriers; 3. Quasicontinuum theory of lattice vibrations; 4. Bulk vibratory modes in an isotropic continuum; 5. Optical modes in a quantum well; 6. Superlattice modes; 7. Optical modes in various structures; 8. Electron-phonon interaction in a quantum well; 9. Other scattering mechanisms; 10. Quantum screening; 11. The electron distribution function; 12. Spin relaxation; 13. Electrons and phonons in the Wurtzite lattice; 14. Nitride heterostructures; 15. Terahertz sources; References; Index.
Ballistic phonon transmission in quasiperiodic acoustic nanocavities
NASA Astrophysics Data System (ADS)
Mo, Yuan; Huang, Wei-Qing; Huang, Gui-Fang; Chen, Yuan; Hu, Wangyu; Wang, Ling-Ling; Pan, Anlian
2011-04-01
Ballistic phonon transport is investigated in acoustic nanocavities modulated in a quasiperiodic manner at low temperatures. Two different types of quasiperiodic acoustic nanocavities are considered: the lengths of nanocavities (QPL) and the lengths of the bridges (QPD) connecting two successive nanocavities are modulated according to the Fibonacci rule. We demonstrate that the transmission spectra and thermal conductance in both systems are similar, which is more prominent in QPD than in QPL. The transmission and thermal conductance of QPD are larger than those of QPL due to the fact that constant nanocavity length in QPD would strengthen ballistic phonon resonant transport, while varying nanocavity length in QPL lead to strong phonon scattering.
Electron-phonon superconductivity in YIn3
NASA Astrophysics Data System (ADS)
Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.
2013-08-01
First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.
SASER action in optically excited ruby: Angular and spectral distribution
NASA Astrophysics Data System (ADS)
Tilstra, L. G.; Arts, A. F. M.; de Wijn, H. W.
2007-12-01
Selective pulsed optical excitation is used in 500-at.ppm ruby (Al2O3:Cr3+) at 1.4 K to prepare complete population inversion of the Zeeman-split bar E(2E) doublet in a zone of limited size. The inversion results in prolific stimulated emission of phonons resonant with the one-phonon transition connecting the doublet states. The phonons are detected via the R1 luminescence. The angular and spectral distributions of the associated acoustic wave are measured using a geometry with inverted zones at either end of the crystal, one serving as generator and the other as detector. The divergence appears to be governed by the geometry of the zone, while the spectral distribution is, within errors, in keeping with the inhomogeneously broadened phonon transition.
Controlling coexisting attractors of an impacting system via linear augmentation
NASA Astrophysics Data System (ADS)
Liu, Yang; Páez Chávez, Joseph
2017-06-01
This paper studies the control of coexisting attractors in an impacting system via a recently developed control law based on linear augmentation. Special attention is given to two control issues in the framework of multistable engineering systems, namely, the switching between coexisting attractors without altering the system's main parameters and the avoidance of grazing-induced chaotic responses. The effectiveness of the proposed control scheme is confirmed numerically for the case of a periodically excited, soft impact oscillator. Our analysis shows how path-following techniques for non-smooth systems can be used in order to determine the optimal control parameters in terms of energy expenditure due to the control signal and transient behavior of the control error, which can be applied to a broad range of engineering problems.
NASA Astrophysics Data System (ADS)
Khaneja, Navin
2017-09-01
The paper describes the design of broadband chirp excitation pulses. We first develop a three stage model for understanding chirp excitation in NMR. We then show how a chirp π pulse can be used to refocus the phase of the chirp excitation pulse. The resulting magnetization still has some phase dispersion in it. We show how a combination of two chirp π pulses instead of one can be used to eliminate this dispersion, leaving behind a small residual phase dispersion. The excitation pulse sequence presented here allows exciting arbitrary large bandwidths without increasing the peak rf-amplitude. Experimental excitation profiles for the residual HDO signal in a sample of 99.5 % D2O are displayed as a function of resonance offset. Although methods presented in this paper have appeared elsewhere, we present complete analytical treatment that elucidates the working of these methods.
NASA Technical Reports Server (NTRS)
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
NASA Astrophysics Data System (ADS)
Koc, A.; Reinhardt, M.; von Reppert, A.; Rössle, M.; Leitenberger, W.; Gleich, M.; Weinelt, M.; Zamponi, F.; Bargheer, M.
2017-07-01
We study gadolinium thin films as a model system for ferromagnets with negative thermal expansion. Ultrashort laser pulses heat up the electronic subsystem and we follow the transient strain via ultrafast x-ray diffraction. In terms of a simple Grueneisen approach, the strain is decomposed into two contributions proportional to the thermal energy of spin and phonon subsystems. Our analysis reveals that upon femtosecond laser excitation, phonons and spins can be driven out of thermal equilibrium for several nanoseconds.
Neumann-Cosel, P. von; Burda, O.; Kuhar, M.; Lenhardt, A.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Botha, N. T.; Fearick, R. W.; Carter, J.; Sideras-Haddad, E.; Foertsch, S. V.; Neveling, R.; Smit, F. D.; Fransen, C.; Fujita, H.; Pietralla, N.
2006-03-13
High-resolution inelastic electron (performed at the S-DALINAC) and proton (performed at iThemba LABS) scattering experiments on 92Zr and 94Mo with emphasis on E2 transitions are presented The measured form factors and angular distributions provide a measure for the F-spin purity, respectively the isovector nature, of the proposed one-phonon mixed symmetry states and furthermore provide a sensitive test of a possible two-phonon character of excited 2+ states.
Disentangling the Electronic and Phononic Glue in a High-Tc Superconductor
NASA Astrophysics Data System (ADS)
Dal Conte, S.; Giannetti, C.; Coslovich, G.; Cilento, F.; Bossini, D.; Abebaw, T.; Banfi, F.; Ferrini, G.; Eisaki, H.; Greven, M.; Damascelli, A.; van der Marel, D.; Parmigiani, F.
2012-03-01
Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)-dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi2Sr2Ca0.92Y0.08Cu2O8+δ crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.
Disentangling the electronic and phononic glue in a high-Tc superconductor.
Dal Conte, S; Giannetti, C; Coslovich, G; Cilento, F; Bossini, D; Abebaw, T; Banfi, F; Ferrini, G; Eisaki, H; Greven, M; Damascelli, A; van der Marel, D; Parmigiani, F
2012-03-30
Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)-dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi(2)Sr(2)Ca(0.92)Y(0.08)Cu(2)O(8+δ) crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.
Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R
2014-11-21
We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.
Electron-phonon superconductivity in BaSn5
NASA Astrophysics Data System (ADS)
Billington, David; Ernsting, David; Millichamp, Thomas E.; Dugdale, Stephen B.
2015-05-01
First-principles calculations of the electronic structure and phonon dispersion relation of the superconducting compound ? were performed. This has allowed the calculation of the electron-phonon matrix elements from which the electron-phonon coupling constant was found to be ?. Application of the Allen-Dynes formula with ? yielded a superconducting transition temperature of ? K. The calculated ? agrees well with the available experimental data and indicates that ? is an electron-phonon superconductor with intermediate strength electron-phonon coupling.
Phonon assignments in GaN bulk
NASA Astrophysics Data System (ADS)
Kunert, H. W.
2004-07-01
The measured phonon-density of states of bulk GaN by time-of-flight neutron spectroscopy has been recently reported by Nipko et al. [CITE]. The authors have also calculated the true partial and total DOS as well as the phonon dispersion curves along major symmetry directions in the Brillouin zone. However, the group-theoretical phonon assignments have not been provided. Based on calculated symmetry allowed modes spanned by displacement representation and on the derived connectivity relations along the major directions in the Brillouin zone we have assigned Nipko's phonon dispersion curves to irreducible representations (species) of the C^46v (P63mc) space group of GaN.
Nanoscale pillar hypersonic surface phononic crystals
NASA Astrophysics Data System (ADS)
Yudistira, D.; Boes, A.; Graczykowski, B.; Alzina, F.; Yeo, L. Y.; Sotomayor Torres, C. M.; Mitchell, A.
2016-09-01
We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.
Phonon limited electronic transport in Pb
NASA Astrophysics Data System (ADS)
Rittweger, F.; Hinsche, N. F.; Mertig, I.
2017-09-01
We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the \
Characterizing phonon dynamics using stochastic sampling
Kunal, K.; Aluru, N. R.
2016-03-21
Predicting phonon relaxation time from molecular dynamics (MD) requires a long simulation time to compute the mode energy auto-correlation function. Here, we present an alternative approach to infer the phonon life-time from an approximate form of the energy auto-correlation function. The method requires as an input a set of sampled equilibrium configurations. A stochastic sampling method is used to generate the equilibrium configurations. We consider a truncated Taylor series expansion of the phonon energy auto-correlation function. The different terms in the truncated correlation function are obtained using the stochastic sampling approach. The expansion terms, thus, obtained are in good agreement with the corresponding values obtained using MD. We then use the approximate function to compute the phonon relaxation time. The relaxation time computed using this method is compared with that obtained from the exact correlation function. The two values are in agreement with each other.
Phonon stop bands in amorphous superlattices
NASA Astrophysics Data System (ADS)
Koblinger, O.; Mebert, J.; Dittrich, E.; Döttinger, S.; Eisenmenger, W.; Santos, P. V.; Ley, L.
1987-06-01
In periodically layered media the phonon-dispersion relation shows energy ranges in which phonon propagation is not possible. The existence of such phonon stop bands in crystalline superlattices has been observed in work by V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegman [Phys. Rev. Lett. 43, 2012 (1979)]. In this Communication we report the observation of phonon stop bands in amorphous superlattices. The filter characteristic of these amorphous superlattices is much sharper than in the case of the crystalline superlattices studied earlier. The investigated superlattices have been prepared by alternating evaporation of Si and SiO2 layers as well as by plasma-enhanced chemical vapor deposition of a-Si:H/a-SiNx:H films in a glow-discharge reactor.
Power dependent phonon frequency within CdSe and CdMnSe nanosheets
NASA Astrophysics Data System (ADS)
Halder, Oindrila; Rath, S.
2017-05-01
The trend of tuning transitional materials in semiconductors is advancing everyday research. The composite behavior exhibited by doped nanoparticles is governed by many factors. These can either improve or adversely affect the desired electronic properties. In this work we have compared the Raman Scattering study of different power dependent excitations on CdSe nanosheets and manganese doped CdSe nanosheets and delved into the possibilities of their different electronic structures due to the phonon contribution.
Coulomb excitation of states in 238U
NASA Astrophysics Data System (ADS)
McGowan, F. K.; Milner, W. T.
1994-05-01
Twenty-two states in 238U have been observed with 18 MeV 4He ions on a thick target. Eight 2 + states between 966 and 1782 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and /or populated by the γ-ray decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.10 to 3.0 W.u. (281 W.u. for the first 2 + state). For the 3 states, the B(E3, 0 → 3 -) values are 7.1, 7.8, and 24.2 W.u. Several of the 2 + states have decay branches to the one-phonon states with B(E2) values between 27 and 56 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if these 2 + states are considered to be collective two-phonon excitations. However, the excitation energies of these 2 + states with respect to the one-phonon states are only 1.3 to 1.6. The B(E1) values for 17 transitions between the positive- and negative-parity states range between 10 -3 and 10 -7 W.u. The B(E1) branching ratios for many of these transitions have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the one-phonon octupole quadruplet in deformed nuclei. The general features of the experimental results for the B(E3) values are reproduced by the microscopic calculations of Neergård and Vogel when the Coriolis coupling between the states of the octupole quadruplet is included.
Phonon broadening in high entropy alloys
NASA Astrophysics Data System (ADS)
Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.
2017-09-01
Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.
Phonon Cooling by an Optomechanical Heat Pump.
Dong, Ying; Bariani, F; Meystre, P
2015-11-27
We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.
Slow light and broadband coherent phonon generation
NASA Astrophysics Data System (ADS)
Wang, Zheng; Rakich, Peter; Reinke, Charles; Camacho, Ryan; Davids, Paul
2012-03-01
Recent advance in controlling optical forces using nanostructures suggests that nanoscale optical waveguides are capable of generating coherent acoustic phonons efficiently through a combination of radiation pressure and electrostriction. We discuss the critical roles of group velocity in such processes. This photon-phonon coupling would allow an acoustic intermediary to perform on-chip optical delay with a capacity 105 greater than photonic delay lines of the same size.
Toward quantitative modeling of silicon phononic thermocrystals
Lacatena, V.; Haras, M.; Robillard, J.-F. Dubois, E.; Monfray, S.; Skotnicki, T.
2015-03-16
The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of 'thermocrystals' or 'nanophononic crystals' that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.
Toward quantitative modeling of silicon phononic thermocrystals
NASA Astrophysics Data System (ADS)
Lacatena, V.; Haras, M.; Robillard, J.-F.; Monfray, S.; Skotnicki, T.; Dubois, E.
2015-03-01
The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of "thermocrystals" or "nanophononic crystals" that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known "electron crystal-phonon glass" dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Li; Shi, J. J.
2014-03-01
Analytical polar optical phonon states in a wurtzite ZnO-based cylindrical coupling quantum dots (CQDs) with arbitrary number of quantum dots (QDs) are deduced and analyzed. It is found that there are four types of polar mixing optical phonon modes, i.e., the z-IO/ρ-QC modes, the z-PR/ρ-IO modes, the z-QC/ρ-QC modes and the z-HS/ρ-IO modes coexisting in the ZnO-based CQDs. Within the framework of the macroscopic dielectric continuum model, the dispersive equations are derived by using the transferring matrix method. And the Fröhlich electron-phonon interaction Hamiltonians are obtained via a standard procedure of field quantization. The relationships between the present ZnO-based CQDs and the ZnO-based quantum wells (QWs) or the nanowires (NWs) are analyzed, and the general features of phonon modes in ZnO-based low-dimensional quantum structures are concluded and discussed. Under certain conditions, the present theoretical results in wurtzite ZnO-based CQDs can be naturally degenerate into those in wurtzite ZnO-based single or double QDs, wurtzite NWs and QWs and even into cubic quantum confined structures. This just embodies the intrinsic consistency of phonon mode theories in low-dimensional confined systems with different confined dimensions. Due to the ternary mixing effect of MgxZn1-xO crystal, the dielectric functions of MgxZn1-xO crystals are quite complicated, and the phonon modes in ZnO-based quantum structures have both the features of phonon modes in anisotropic wurtzite confined systems and isotropic rock-salt crystal quantum systems. The characteristics of electron-phonon coupling strength in ZnO-based quantum systems are summarized. Very strong polaronic effect could be prognosticated and anticipated in ZnO-based low-dimensional quantum structures because of their quite large electron-phonon coupling constants. The theoretical results and conclusions described in this paper also can be looked on as a summary of phonon states and their general
Learning to coexist with wildfire.
Moritz, Max A; Batllori, Enric; Bradstock, Ross A; Gill, A Malcolm; Handmer, John; Hessburg, Paul F; Leonard, Justin; McCaffrey, Sarah; Odion, Dennis C; Schoennagel, Tania; Syphard, Alexandra D
2014-11-06
The impacts of escalating wildfire in many regions - the lives and homes lost, the expense of suppression and the damage to ecosystem services - necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.
Giant suppression of phononic heat transport in a quantum magnet BiCu2PO6
Jeon, Byung-Gu; Koteswararao, B.; Park, C. B.; ...
2016-11-15
Thermal transport of quantum magnets has elucidated the nature of low energy elementary excitations and complex interplay between those excited states via strong scattering of thermal carriers. BiCu2PO6 is a unique frustrated spin-ladder compound exhibiting highly anisotropic spin excitations that contain both itinerant and localized dispersion characters along the b- and a-axes respectively. Here, we investigate thermal conductivity κ of BiCu2PO6 under high magnetic fields (H) of up to 30 tesla. A dip-feature in κ, located at ~15K at zero-H along all crystallographic directions, moves gradually toward lower temperature (T) with increasing H, thus resulting in giant suppression by amore » factor of ~30 near the critical magnetic field of Hc≅23.5 tesla. The giant H- and T-dependent suppression of κ can be explained by the combined result of resonant scattering of phononic heat carriers with magnetic energy levels and increased phonon scattering due to enhanced spin fluctuation at Hc, unequivocally revealing the existence of strong spin-phonon coupling. Moreover, we find an experimental indication that the remaining magnetic heat transport along the b-axis becomes almost gapless at the magnetic quantum critical point realized at Hc.« less
Identification of the one-quadrupole phonon 21,ms+ state of 204Hg
NASA Astrophysics Data System (ADS)
Stegmann, R.; Stahl, C.; Rainovski, G.; Pietralla, N.; Stoyanov, C.; Carpenter, M. P.; Janssens, R. V. F.; Lettmann, M.; Möller, T.; Möller, O.; Werner, V.; Zhu, S.
2017-07-01
One-phonon states of vibrational nuclei with mixed proton-neutron symmetry have been observed throughout the nuclear chart besides the mass A ≈ 200 region. Very recently, it has been proposed that the 22+ state of 212Po is of isovector nature. This nucleus has two valence protons and two valence neutrons outside the doubly-magic 208Pb nucleus. The stable isotope 204Hg, featuring two valence-proton and valence-neutron holes, with respect to 208Pb, is the particle-hole mirror of 212Po. In order to compare the properties of low-lying isovector excitations in these particle-hole mirror nuclei, we have studied 204Hg by using the projectile Coulomb-excitation technique. The measured absolute B (M 1 ;22+ → 21+) strength of 0.20 (2) μN2 indicates that the 22+ level of 204Hg is at least the main fragment of the 21,ms+ state. For the first time in this mass region, both lowest-lying, one-quadrupole phonon excitations are established together with the complete set of their decay strengths. This allows for a microscopic description of their structures, achieved in the framework of the Quasi-particle Phonon Model.
Giant suppression of phononic heat transport in a quantum magnet BiCu2PO6
NASA Astrophysics Data System (ADS)
Jeon, Byung-Gu; Koteswararao, B.; Park, C. B.; Shu, G. J.; Riggs, S. C.; Moon, E. G.; Chung, S. B.; Chou, F. C.; Kim, Kee Hoon
2016-11-01
Thermal transport of quantum magnets has elucidated the nature of low energy elementary excitations and complex interplay between those excited states via strong scattering of thermal carriers. BiCu2PO6 is a unique frustrated spin-ladder compound exhibiting highly anisotropic spin excitations that contain both itinerant and localized dispersion characters along the b- and a-axes respectively. Here, we investigate thermal conductivity κ of BiCu2PO6 under high magnetic fields (H) of up to 30 tesla. A dip-feature in κ, located at ~15 K at zero-H along all crystallographic directions, moves gradually toward lower temperature (T) with increasing H, thus resulting in giant suppression by a factor of ~30 near the critical magnetic field of Hc ≅ 23.5 tesla. The giant H- and T-dependent suppression of κ can be explained by the combined result of resonant scattering of phononic heat carriers with magnetic energy levels and increased phonon scattering due to enhanced spin fluctuation at Hc, unequivocally revealing the existence of strong spin-phonon coupling. Moreover, we find an experimental indication that the remaining magnetic heat transport along the b-axis becomes almost gapless at the magnetic quantum critical point realized at Hc.
Giant suppression of phononic heat transport in a quantum magnet BiCu2PO6
Jeon, Byung-Gu; Koteswararao, B.; Park, C. B.; Shu, G. J.; Riggs, S. C.; Moon, E. G.; Chung, S. B.; Chou, F. C.; Kim, Kee Hoon
2016-01-01
Thermal transport of quantum magnets has elucidated the nature of low energy elementary excitations and complex interplay between those excited states via strong scattering of thermal carriers. BiCu2PO6 is a unique frustrated spin-ladder compound exhibiting highly anisotropic spin excitations that contain both itinerant and localized dispersion characters along the b- and a-axes respectively. Here, we investigate thermal conductivity κ of BiCu2PO6 under high magnetic fields (H) of up to 30 tesla. A dip-feature in κ, located at ~15 K at zero-H along all crystallographic directions, moves gradually toward lower temperature (T) with increasing H, thus resulting in giant suppression by a factor of ~30 near the critical magnetic field of Hc ≅ 23.5 tesla. The giant H- and T-dependent suppression of κ can be explained by the combined result of resonant scattering of phononic heat carriers with magnetic energy levels and increased phonon scattering due to enhanced spin fluctuation at Hc, unequivocally revealing the existence of strong spin-phonon coupling. Moreover, we find an experimental indication that the remaining magnetic heat transport along the b-axis becomes almost gapless at the magnetic quantum critical point realized at Hc. PMID:27845377
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; ...
2016-05-12
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipidmore » clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Finally, our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes.« less
NASA Astrophysics Data System (ADS)
Tan, Qing-Hai; Sun, Yu-Jia; Liu, Xue-Lu; Zhao, Yanyuan; Xiong, Qihua; Tan, Ping-Heng; Zhang, Jun
2017-09-01
The optical properties of the two-dimensional (2D) crystals are dominated by tightly bound electron-hole pairs (excitons) and lattice vibration modes (phonons). The exciton-phonon interaction is fundamentally important to understand the optical properties of 2D materials and thus helps to develop emerging 2D crystal based optoelectronic devices. Here, we presented the excitonic resonant Raman scattering (RRS) spectra of few-layer WS2 excited by 11 lasers lines covered all of A, B and C exciton transition energies at different sample temperatures from 4 to 300 K. As a result, we are not only able to probe the forbidden phonon modes unobserved in ordinary Raman scattering, but also can determine the bright and dark state fine structures of 1s A exciton. In particular, we also observed the quantum interference between low-energy discrete phonon and exciton continuum under resonant excitation. Our works pave a way to understand the exciton-phonon coupling and many-body effects in 2D materials.
Subpicosecond spin dynamics of excited states in the topological insulator Bi2Te3
NASA Astrophysics Data System (ADS)
Sánchez-Barriga, J.; Battiato, M.; Krivenkov, M.; Golias, E.; Varykhalov, A.; Romualdi, A.; Yashina, L. V.; Minár, J.; Kornilov, O.; Ebert, H.; Held, K.; Braun, J.
2017-03-01
Using time-, spin-, and angle-resolved photoemission, we investigate the ultrafast spin dynamics of hot electrons on the surface of the topological insulator Bi2Te3 following optical excitation by femtosecond-infrared pulses. We observe two surface-resonance states above the Fermi level coexisting with a transient population of Dirac fermions that relax in ˜2 ps. One state disperses up to ˜0.4 eV just above the bulk continuum, and the other one at ˜0.8 eV inside a projected bulk band gap. At the onset of the excitation, both states exhibit a reversed spin texture with respect to that of the transient Dirac bands, in agreement with our one-step photoemission calculations. Our data reveal that the high-energy state undergoes spin relaxation within ˜0.5 ps, a process that triggers the subsequent spin dynamics of both the Dirac cone and the low-energy state, which behave as two dynamically locked electron populations. We discuss the origin of this behavior by comparing the relaxation times observed for electrons with opposite spins to the ones obtained from a microscopic Boltzmann model of ultrafast band cooling introduced into the photoemission calculations. Our results demonstrate that the nonequilibrium surface dynamics is governed by electron-electron rather than electron-phonon scattering, with a characteristic time scale unambiguously determined by the complex spin texture of excited states above the Fermi level. Our findings reveal the critical importance of detecting momentum and energy-resolved spin textures with femtosecond resolution to fully understand the subpicosecond dynamics of transient electrons on the surface of topological insulators.
Ab initio phonon limited transport
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu
We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)
Intraspecific variation and species coexistence.
Lichstein, Jeremy W; Dushoff, Jonathan; Levin, Simon A; Pacala, Stephen W
2007-12-01
We use a two-species model of plant competition to explore the effect of intraspecific variation on community dynamics. The competitive ability ("performance") of each individual is assigned by an independent random draw from a species-specific probability distribution. If the density of individuals competing for open space is high (e.g., because fecundity is high), species with high maximum (or large variance in) performance are favored, while if density is low, species with high typical (e.g., mean) performance are favored. If there is an interspecific mean-variance performance trade-off, stable coexistence can occur across a limited range of intermediate densities, but the stabilizing effect of this trade-off appears to be weak. In the absence of this trade-off, one species is superior. In this case, intraspecific variation can blur interspecific differences (i.e., shift the dynamics toward what would be expected in the neutral case), but the strength of this effect diminishes as competitor density increases. If density is sufficiently high, the inferior species is driven to extinction just as rapidly as in the case where there is no overlap in performance between species. Intraspecific variation can facilitate coexistence, but this may be relatively unimportant in maintaining diversity in most real communities.
NASA Astrophysics Data System (ADS)
Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya
2017-01-01
We examine generation dynamics of coherent phonons in both polar and nonpolar semiconductors, such as GaAs and Si, based on a polaronic-quasiparticle (PQ) model. In this model, the PQ operator is composed of two kinds of operators: one is a quasiboson operator, defined as a linear combination of a set of pairs of electron operators, and the other is a longitudinal optical (LO) phonon operator. In particular, the problem of transient and nonlinear Fano resonance (FR) is tackled, where the vestige of this quantum interference effect was observed exclusively in lightly n -doped Si immediately after carriers were excited by an ultrashort pulse laser [M. Hase et al., Nature (London) 426, 51 (2003), 10.1038/nature02044], although not observed yet in GaAs. The PQ model enables us to show straightforwardly that the phonon energy state is embedded in continuum states formed by a set of adiabatic eigenstates of the quasiboson; this energy configuration is a necessary condition of the manifestation of the transient FR in the present optically nonlinear system. Numerical calculations are done for photoemission spectra relevant to the retarded longitudinal dielectric function of transient photoexcited states and for power spectra relevant to the LO-phonon displacement function of time. The photoemission spectra show that in undoped Si, an asymmetric spectral profile characteristic of FR comes into existence immediately after the instantaneous carrier excitation to fade out gradually, whereas in undoped GaAs, no asymmetry in spectra appears in the whole temporal region. The similar results are also obtained in the power spectra. These results are in harmony with the reported experimental results. It is found that the obtained difference in spectral profile between undoped Si and GaAs is attributed to a phase factor of an effective interaction between the LO phonon and the quasiboson. More detailed discussion of the FR dynamics is made in the text.
NASA Astrophysics Data System (ADS)
Karakachian, H.; Kazan, M.
2017-07-01
We report on the potential of self-nucleated AlN single crystals as tunable near-field infrared sources. A self-nucleated AlN crystal was grown with appropriate care to ensure minimal contact with crucible walls or other crystals. The grown crystal exhibits natural AlN growth characteristics with several well-developed facets of different orientations. The characteristics of surface-phonon-polariton (SPhP) modes on the developed crystal facets have been investigated. Reflectivity spectra were recorded from five facets of different orientations. The measured spectra were analyzed by a model taking into account the dependence of harmonicity and anharmonicity of the excited zone center optical phonons on the surface orientation. Consequently, the dielectric properties that determine the condition of existence, dispersion relations, and lifetimes of the SPhP modes were accurately retrieved. The dielectric functions were determined as a function of the angle of incidence and used to compute the characteristics of the SPhP modes on each of the measured facets. We found that facets of different orientations exhibit SPhP modes of different frequencies and lifetimes, which makes the investigated self-nucleated crystal potential candidates for tunable near-field infrared sources.
Surface-Wave Coupling to Single Phononic Subwavelength Resonators
NASA Astrophysics Data System (ADS)
Benchabane, Sarah; Salut, Roland; Gaiffe, Olivier; Soumann, Valérie; Addouche, Mahmoud; Laude, Vincent; Khelif, Abdelkrim
2017-09-01
We propose to achieve manipulation of mechanical vibrations at the micron scale by exploiting the interaction of individual, isolated mechanical resonators with surface acoustic waves. We experimentally investigate a sample consisting of cylindrical pillars individually grown by focused-ion-beam-induced deposition on a piezoelectric substrate, exhibiting different geometrical parameters and excited by a long-wavelength surface elastic wave. The mechanical displacement is strongly confined in the resonators, as shown by field maps obtained by laser scanning interferometry. A tenfold displacement field enhancement compared to the vibration at the surface is obtained, revealing that the energy is efficiently coupled. The spatial distribution of the elastic energy at the surface is governed by the geometrical characteristics of the resonators and can therefore be controlled by frequency tuning the elastic wave source. The results show the potential of the proposed approach to achieve dynamic control of surface phonons at the microscale or nanoscale.
Localized surface phonon polariton resonances in polar gallium nitride
Feng, Kaijun Islam, S. M.; Verma, Jai; Hoffman, Anthony J.; Streyer, William; Wasserman, Daniel; Jena, Debdeep
2015-08-24
We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4–18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.
Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni
NASA Astrophysics Data System (ADS)
Crider, B. P.; Prokop, C. J.; Liddick, S. N.; Al-Shudifat, M.; Ayangeakaa, A. D.; Carpenter, M. P.; Carroll, J. J.; Chen, J.; Chiara, C. J.; David, H. M.; Dombos, A. C.; Go, S.; Grzywacz, R.; Harker, J.; Janssens, R. V. F.; Larson, N.; Lauritsen, T.; Lewis, R.; Quinn, S. J.; Recchia, F.; Spyrou, A.; Suchyta, S.; Walters, W. B.; Zhu, S.
2016-12-01
Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z = 28, N = 40), the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0+ states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0+ states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions. The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons.
Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Nori, Franco
1997-03-01
We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.
Controlled exciton transfer between quantum dots with acoustic phonons taken into account
Golovinski, P. A.
2015-09-15
A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parameters and optical-pulse length is presented.
The polaron: Ground state, excited states, and far from equilibrium
Trugman, S.A.; Bonca, J. |
1998-12-01
The authors describe a variational approach for solving the Holstein polaron model with dynamical quantum phonons on an infinite lattice. The method is simple, fast, extremely accurate, and gives ground and excited state energies and wavefunctions at any momentum k. The method can also be used to calculate coherent quantum dynamics for inelastic tunneling and for strongly driven polarons far from equilibrium.
Alaie, Seyedhamidreza; Goettler, Drew F; Su, Mehmet; Leseman, Zayd C; Reinke, Charles M; El-Kady, Ihab
2015-06-24
Large reductions in the thermal conductivity of thin silicon membranes have been demonstrated in various porous structures. However, the role of coherent boundary scattering in such structures has become a matter of some debate. Here we report on the first experimental observation of coherent phonon boundary scattering at room temperature in 2D phononic crystals formed by the introduction of air holes in a silicon matrix with minimum feature sizes >100 nm. To delaminate incoherent from coherent boundary scattering, phononic crystals with a fixed minimum feature size, differing only in unit cell geometry, were fabricated. A suspended island technique was used to measure the thermal conductivity. We introduce a hybrid thermal conductivity model that accounts for partially coherent and partially incoherent phonon boundary scattering. We observe excellent agreement between this model and experimental data, and the results suggest that significant room temperature coherent phonon boundary scattering occurs.
Guo, Xunmin; Chen, Hailong; Wen, Xiewen; Zheng, Junrong
2015-06-07
An ultrafast two-dimensional visible/far-IR spectroscopy based on the IR/THz air biased coherent detection method and scanning the excitation frequencies is developed. The method allows the responses in the far-IR region caused by various electronic excitations in molecular or material systems to be observed in real time. Using the technique, the relaxation dynamics of the photo-excited carriers and electron/phonon coupling in bulk MoS{sub 2} are investigated. It is found that the photo-generation of excited carriers occurs within two hundred fs and the relaxation of the carriers is tens of ps. The electron-phonon coupling between the excitations of electrons and the phonon mode E{sub 1u} of MoS{sub 2} is also directly observed. The electron excitation shifts the frequency of the phonon mode 9 cm{sup −1} higher, resulting in an absorption peak at 391 cm{sup −1} and a bleaching peak at 382 cm{sup −1}. The frequency shift diminishes with the relaxation of the carriers.
ERIC Educational Resources Information Center
Wright, Bradford L.
1975-01-01
Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)
Seeing the invisible plasma with transient phonons in cuprous oxide
Frazer, Laszlo; Schaller, Richard D.; Chang, Kelvin B.; ...
2016-12-12
Here, the emission of phonons from electron–hole plasma is the primary limit on the efficiency of photovoltaic devices operating above the bandgap. In cuprous oxide (Cu2O) there is no luminescence from electron–hole plasma. Therefore, we searched for optical phonons emitted by energetic charge carriers using phonon-to-exciton upconversion transitions. We found 14 meV phonons with a lifetime of 0.916 ± 0.008 ps and 79 meV phonons that are longer lived and overrepresented. It is surprising that the higher energy phonon has a longer lifetime.
Seeing the invisible plasma with transient phonons in cuprous oxide
Frazer, Laszlo; Schaller, Richard D.; Chang, Kelvin B.; Chernatynskiy, Aleksandr; Poeppelmeier, Kenneth R.
2016-12-12
Here, the emission of phonons from electron–hole plasma is the primary limit on the efficiency of photovoltaic devices operating above the bandgap. In cuprous oxide (Cu_{2}O) there is no luminescence from electron–hole plasma. Therefore, we searched for optical phonons emitted by energetic charge carriers using phonon-to-exciton upconversion transitions. We found 14 meV phonons with a lifetime of 0.916 ± 0.008 ps and 79 meV phonons that are longer lived and overrepresented. It is surprising that the higher energy phonon has a longer lifetime.
Scanning phononic lattices with ultrasound
Vines, R.E.; Wolfe, J.P.; Every, A.V.
1999-11-01
A method for probing the elastic properties of newly developed periodic structures using acoustic waves is introduced. Highly anisotropic transmission of surface acoustic waves is observed by continuously scanning the wave vector angle. Preliminary models of wave propagation through multilayers and two-dimensional lattices explain some of the experimental features, while other features can be attributed to the resonant excitation of interface waves. {copyright} {ital 1999} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Chuang, Kuo-Chih; Zhang, Zhi-Qiang; Wang, Hua-Xin
2016-12-01
This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.
Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals.
Ponge, Marie-Fraise; Croënne, Charles; Vasseur, Jérôme O; Bou Matar, Olivier; Hladky-Hennion, Anne-Christine; Dubus, Bertrand
2016-06-01
Two ways of controlling the acoustic waves propagation by external inductance or capacitance in a one-dimensional (1-D) piezomagnetic phononic crystal are investigated. The structure is made of identical bars, constituted of a piezomagnetic material, surrounded by a coil and connected to an external impedance. A model of propagation of longitudinal elastic waves through the periodic structure is developed and the dispersion equation is obtained. Reflection and transmission coefficients are derived from a 2 × 2 transfer matrix formalism that also allows for the calculation of elastic effective parameters (density, Young modulus, speed of sound, impedance). The effect of shunting impedances is numerically investigated. The results reveal that a connected external inductance tunes the Bragg band gaps of the 1-D phononic crystal. When the elements are connected via a capacitance, a hybridization gap, due to the resonance of the LC circuit made of the piezomagnetic element and the capacitance, coexists with the Bragg band gap. The value of the external capacitance modifies the boundaries of both gaps. Calculation of the effective characteristics of the phononic crystal leads to an analysis of the physical mechanisms involved in the wave propagation. When periodically connected to external capacitances, a homogeneous piezomagnetic stack behaves as a dispersive tunable metamaterial.
Deformed Structures and Shape Coexistence in Zr-98
NASA Astrophysics Data System (ADS)
Olaizola, Bruno; 8pi Collaboration
2015-10-01
The nuclear structure of the zirconium isotopes evolves from a mid-open neutron shell deformed region (80Zr), through a closed shell (90Zr), to a closed subshell (96Zr), and then to a sudden reappearance of deformation (100Zr). This rapid onset of deformation across the Zr isotopes is unprecedented, and the issue of how collectivity appears and disappears in these isotopes is of special interest. Until recently, only 98Zr (and maybe 100Zr) had indirect and weak evidence for shape coexistence, with only speculative interpretation of the experiments. Recent results from high precision B(E2) measurements provided direct evidence of shape coexistence in 94Zr and suggested that it may happen in many other nuclei in this region. In order to provide direct evidence of shape coexistence in 98Zr a high-statistical-quality γγ experiment was carried out with the 8 π spectrometer at ISAC-TRIUMF. The array consists of 20 Compton-suppressed hyper-pure germanium detectors plus β particle and conversion electron detectors. Excited states up to ~ 5 MeV in 98Zr were populated in the β- decay of 98Y Jπ = (0-) and 98mY J = (4,5). Preliminary results on key branching ratios will be presented. This work was supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.
Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors
NASA Astrophysics Data System (ADS)
Zmuidzinas, Jonas
Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling
Symmetry-adapted phonon analysis of nanotubes
NASA Astrophysics Data System (ADS)
Aghaei, Amin; Dayal, Kaushik; Elliott, Ryan S.
2013-02-01
The characteristics of phonons, i.e. linearized normal modes of vibration, provide important insights into many aspects of crystals, e.g. stability and thermodynamics. In this paper, we use the Objective Structures framework to make concrete analogies between crystalline phonons and normal modes of vibration in non-crystalline but highly symmetric nanostructures. Our strategy is to use an intermediate linear transformation from real-space to an intermediate space in which the Hessian matrix of second derivatives is block-circulant. The block-circulant nature of the Hessian enables us to then follow the procedure to obtain phonons in crystals: namely, we use the Discrete Fourier Transform from this intermediate space to obtain a block-diagonal matrix that is readily diagonalizable. We formulate this for general Objective Structures and then apply it to study carbon nanotubes of various chiralities that are subjected to axial elongation and torsional deformation. We compare the phonon spectra computed in the Objective Framework with spectra computed for armchair and zigzag nanotubes. We also demonstrate the approach by computing the Density of States. In addition to the computational efficiency afforded by Objective Structures in providing the transformations to almost-diagonalize the Hessian, the framework provides an important conceptual simplification to interpret the phonon curves. Our findings include that, first, not all non-optic long-wavelength modes are zero energy and conversely not all zero energy modes are long-wavelength; second, the phonon curves accurately predict both the onset as well as the soft modes for instabilities such as torsional buckling; and third, unlike crystals where phonon stability does not provide information on stability with respect to non-rank-one deformation modes, phonon stability in nanotubes is sufficient to guarantee stability with respect to all perturbations that do not involve structural modes. Our finding of characteristic
Excitation of coherent oscillations in underdoped cuprate superconductors by intense THz pulses
NASA Astrophysics Data System (ADS)
Hoffmann, Matthias C.; Lee, Wei-Sheng; Dakovski, Georgi L.; Turner, Joshua J.; Gerber, Simon M.; Bonn, Doug; Hardy, Walter; Liang, Ruixing; Salluzzo, Marco
2016-05-01
We use intense broadband THz pulses to excite the cuprate superconductors YBCO and NBCO in their underdoped phase, where superconducting and charge density wave ground states compete. We observe pronounced coherent oscillations at attributed to renormalized low-energy phonon modes. These oscillation features are much more prominent than those observed in all-optical pump-probe measurements, suggesting a different excitation mechanism.
Shape coexistence along N = 40
Liddick, S. N.; Suchyta, S.; Abromeit, B.; Ayres, A; Bey, A.; Bingham, C. R.; Bolla, M; Carpenter, M. P.; Cartegni, L.; Chiara, C. J.; Crawford, H. L.; Darby, I. G.; Grzywacz, R.; Gurdal, G.; Ilyushkin, S.; Larson, N.; Madurga, M; McCutchan, E. A.; Miller, D; Padgett, Stephen; Paulauskas, S.; Pereira, J.; Rajabali, M. M.; Rykaczewski, Krzysztof Piotr; Vinnikova, S.; Walters, W. B.; Zhu, S.
2011-01-01
The low-energy level structures of 64 25Mn39 and 66 25Mn41 were investigated through both the decay of Mn metastable states and the population of levels following the decay of 64Cr and 66Cr. The deduced level schemes and tentatively assigned spins and parities suggest the coexistence of spherical and deformed configurations above and below N = 40 for the odd-odd Mn isotopes. The low-energy deformed configurations are attributed to the coupling between a proton in a K = 1/2 level with neutrons in either the K = 1/2 or K = 3/2+ levels originating from the p3/2, p1/2, and g9/2 single-particle states, respectively.
Ionizing particle detection based on phononic crystals
NASA Astrophysics Data System (ADS)
Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.
2015-08-01
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Phonon Engineering in Metals from First Principles
NASA Astrophysics Data System (ADS)
Lanzillo, Nicholas; Thomas, J.; Watson, E. B.; Washington, M.; Nayak, Saroj K.
2013-03-01
The electron-phonon interaction in metallic systems controls the electronic transport properties, including both electrical and thermal resistivity. The effect of compressive strain on the electron-phonon interaction in metals is investigated using first-principles density functional theory, and we propose various ways to ``engineer'' this interaction for various technological applications. In particular, we show that by applying compressive strain on the FCC crystals of Al, Cu, Ag and Au, the net electron-phonon scattering rate decreases and likewise the electrical resistivity decreases with increasing pressure. This trend is corroborated by experimental measurements of the resistance of a 0.5 mm diameter high-purity Al wire pressurized up to 2 GPa in a solid-media pressure apparatus at room temperature. The rate of the decrease in electrical resistivity as a function of pressure as determined by experiment is matched by the rate predicted by theory. Our simulations show that Al nanowires have the same response to strain as the bulk crystal; the net electron-phonon scattering can be reduced through compressive strain. Modifying the electron-phonon interaction in metallic structures shows great promise for future nano-electronic devices.
Ionizing particle detection based on phononic crystals
Aly, Arafa H. E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F.
2015-08-14
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Phonon dynamics of graphene on metals
NASA Astrophysics Data System (ADS)
Taleb, Amjad Al; Farías, Daniel
2016-03-01
The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.
Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene.
Bonini, Nicola; Garg, Jivtesh; Marzari, Nicola
2012-06-13
We use first-principles methods based on density functional perturbation theory to characterize the lifetimes of the acoustic phonon modes and their consequences on the thermal transport properties of graphene. We show that using a standard perturbative approach, the transverse and longitudinal acoustic phonons in free-standing graphene display finite lifetimes in the long-wavelength limit, making them ill-defined as elementary excitations in samples of dimensions larger than ∼1 μm. This behavior is entirely due to the presence of the quadratic dispersions for the out-of-plane phonon (ZA) flexural modes that appear in free-standing low-dimensional systems. Mechanical strain lifts this anomaly, and all phonons remain well-defined at any wavelength. Thermal transport is dominated by ZA modes, and the thermal conductivity is predicted to diverge with system size for any amount of strain. These findings highlight strain and sample size as key parameters in characterizing or engineering heat transport in graphene.
Thickness-Dependent Coherent Phonon Frequency in Ultrathin FeSe/SrTiO₃ Films.
Yang, Shuolong; Sobota, Jonathan A; Leuenberger, Dominik; Kemper, Alexander F; Lee, James J; Schmitt, Felix T; Li, Wei; Moore, Rob G; Kirchmann, Patrick S; Shen, Zhi-Xun
2015-06-10
Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump-probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Our results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.
NASA Astrophysics Data System (ADS)
Jiaung, Wen-Shu; Ho, Jeng-Rong
2004-02-01
Phonon heat transport based on the Boltzmann transport equation (BTE) in a free standing, bent duct with characteristic dimension down to the nanoscale is investigated through the lattice Boltzmann (LB) method. Both the thermal excited transverse and longitudinal phonons are considered. The collision term in BTE is approximated by the relaxation time approximation. Both diffusive and specular phonon scatterings at duct surfaces are considered. An analytical expression for thermal conductivity suitable for an infinitely long, straight duct with constant properties is derived. Results show that the size effect depends strongly on the Knudsen number. For large Knudsen number, heat transport is mainly dominated by the ballistics that results in strong size effect, and vice versa. For the bent duct more phonons take the passageway near the inner corner of the bending region where higher local thermal conductivity is expected. Although the specular boundary scattering introduces no change in the bulk quantities for a straight duct, it, however, brings in the geometric influence as the duct is bent. Compared to the straight duct, the bent duct has the supremacy in conducting heat as the Knudsen number is small. Conversely the straight duct presents higher conductivity when the Knudsen number is large. By the present LB method, jumps in macroscopic quantities, occurring at boundary and wall surface, can be calculated naturally and straightforwardly.
Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.
Bezares, Francisco J; Sanctis, Adolfo De; Saavedra, J R M; Woessner, Achim; Alonso-González, Pablo; Amenabar, Iban; Chen, Jianing; Bointon, Thomas H; Dai, Siyuan; Fogler, Michael M; Basov, D N; Hillenbrand, Rainer; Craciun, Monica F; García de Abajo, F Javier; Russo, Saverio; Koppens, Frank H L
2017-10-11
As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.
Selective coherent phonon-mode generation in single-wall carbon nanotubes.
Nugraha, Ahmad R T; Hasdeo, Eddwi H; Saito, Riichiro
2017-02-08
The pulse-train technique within ultrafast pump-probe spectroscopy is theoretically investigated to excite a specific coherent phonon mode while suppressing the other phonon modes generated in single-wall carbon nanotubes (SWNTs). In particular, we focus on the selectivity of the radial breathing mode (RBM) and the G-band for a given SWNT. We find that if the repetition period of the pulse train matches with the integer multiple of the RBM phonon period, the RBM amplitude can be maintained while the amplitudes of the other modes are suppressed. As for the G-band, when we apply a repetition period of a half-integer multiple of the RBM period, the RBM can be suppressed because of destructive interference, while the G-band still survives. It is also possible to keep the G-band and suppress the RBM by applying a repetition period that matches with the integer multiple of the G-band phonon period. However, in this case we have to use a large number of laser pulses having a property of "magic ratio" of the G-band and RBM periods.
Selective coherent phonon-mode generation in single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro
2017-02-01
The pulse-train technique within ultrafast pump-probe spectroscopy is theoretically investigated to excite a specific coherent phonon mode while suppressing the other phonon modes generated in single-wall carbon nanotubes (SWNTs). In particular, we focus on the selectivity of the radial breathing mode (RBM) and the G-band for a given SWNT. We find that if the repetition period of the pulse train matches with the integer multiple of the RBM phonon period, the RBM amplitude can be maintained while the amplitudes of the other modes are suppressed. As for the G-band, when we apply a repetition period of a half-integer multiple of the RBM period, the RBM can be suppressed because of destructive interference, while the G-band still survives. It is also possible to keep the G-band and suppress the RBM by applying a repetition period that matches with the integer multiple of the G-band phonon period. However, in this case we have to use a large number of laser pulses having a property of “magic ratio” of the G-band and RBM periods.
"Phonon" scattering beyond perturbation theory
NASA Astrophysics Data System (ADS)
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
Collective excitations of 96Ru by means of (p ,p'γ ) experiments
NASA Astrophysics Data System (ADS)
Hennig, A.; Ahn, T.; Anagnostatou, V.; Blazhev, A.; Cooper, N.; Derya, V.; Elvers, M.; Endres, J.; Goddard, P.; Heinz, A.; Hughes, R. O.; Ilie, G.; Mineva, M. N.; Petkov, P.; Pickstone, S. G.; Pietralla, N.; Radeck, D.; Ross, T. J.; Savran, D.; Spieker, M.; Werner, V.; Zilges, A.
2015-12-01
Background: One-phonon mixed-symmetry quadrupole excitations are a well-known feature of near-spherical, vibrational nuclei. Their interpretation as a fundamental building block of vibrational structures is supported by the identification of multiphonon states resulting from a coupling of fully-symmetric and mixed-symmetric quadrupole phonons. In addition, the observation of strong M 1 transitions between low-lying 3- and 4+ states has been interpreted as an evidence for one-phonon mixed-symmetry excitations of octupole and hexadecapole character. Purpose: The aim of the present study is to identify collective one- and two-phonon excitations in the heaviest stable N =52 isotone 96Ru based on a measurement of absolute M 1 , E 1 , and E 2 transition strengths. Methods: Inelastic proton-scattering experiments have been performed at the Wright Nuclear Structure Laboratory (WNSL), Yale University, and the Institute for Nuclear Physics (IKP), University of Cologne. From the acquired proton-γ and γ γ coincidence data we deduced spins of excited states, γ -decay branching ratios, and multipole mixing ratios, as well as lifetimes of excited states via the Doppler-shift attenuation method (DSAM). Results: Based on the new experimental data on absolute transition strengths, we identified the 2+ and 3+ members of the two-phonon mixed-symmetry quintuplet (21,ms +⊗21,s +) . Furthermore, we observed strong M 1 transitions between low-lying 3- and 4+ states suggesting one-phonon symmetric and mixed-symmetric octupole and hexadecapole components in their wave functions, respectively. The experimental results are compared to s d g -IBM-2 and shell-model calculations. Conclusions: Both the s d g -IBM-2 and the shell-model calculations are able to describe key features of mixed-symmetry excitations of 96Ru. Moreover, they support the one-phonon mixed-symmetry hexadecapole assignment of the experimental 42+ state.
Kuleyev, I. G. Kuleyev, I. I.; Bakharev, S. M.; Ustinov, V. V.
2016-09-15
We study the effect of anisotropy in elastic properties on the electron–phonon drag and thermoelectric phenomena in gapless semiconductors with degenerate charge-carrier statistics. It is shown that phonon focusing leads to a number of new effects in the drag thermopower at low temperatures, when diffusive phonon scattering from the boundaries is the predominant relaxation mechanism. We analyze the effect of phonon focusing on the dependences of the thermoelectromotive force (thermopower) in HgSe:Fe crystals on geometric parameters and the heat-flow directions relative to the crystal axes in the Knudsen regime of the phonon gas flow. The crystallographic directions that ensure the maximum and minimum values of the thermopower are determined and the role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower in HgSe:Fe crystals at low temperatures is analyzed. It is shown that the main contribution to the drag thermopower comes from slow quasi-transverse phonons in the directions of focusing in long samples.
Calculating the Phonon Dispersion From First Principles
NASA Astrophysics Data System (ADS)
Ceballos, Frank; O'Hara, Andy; Slepko, Alexander; Demkov, Alexander
2011-10-01
The goal of this project was to construct a user-friendly tool that can compute the phonon dispersion for any solid with a periodic crystal structure. The phonon dispersion describes the crystal's vibrational properties and thermodynamic properties of the solid. Using the Vienna Ab-initio Simulation Package (VASP) we compute the forces between the atoms. Assuming harmonic approximation we numerically evaluate force constant matrix. The lattice Fourier transform of the force constants yields the dynamical matrix, whose eigenvalues and eigenvectors represent the allowed phonon frequencies and displacement patterns for specific k-vectors. Our code then plots the frequencies along high symmetry lines in the Brillouin zone. We will present our results for silicon, GaAs and ZrO2.
Polaron action for multimode dispersive phonon systems
NASA Astrophysics Data System (ADS)
Kornilovitch, P. E.
2006-03-01
The path-integral approach to the tight-binding polaron is extended to multiple optical phonon modes of arbitrary dispersion and polarization. The nonlinear lattice effects are neglected. Only one electron band is considered. The electron-phonon interaction is of the density-displacement type, but can be of arbitrary spatial range and shape. Feynman’s analytical integration of ion trajectories is performed by transforming the electron-ion forces to the basis in which the phonon dynamical matrix is diagonal. The resulting polaron action is derived for the periodic and shifted boundary conditions in imaginary time. The former can be used for calculating polaron thermodynamics while the latter for the polaron mass and spectrum. The developed formalism is the analytical basis for numerical analysis of such models by path-integral Monte Carlo methods.
Phonon wave interference and thermal bandgap materials
NASA Astrophysics Data System (ADS)
Maldovan, Martin
2015-07-01
Wave interference modifies phonon velocities and density of states, and in doing so creates forbidden energy bandgaps for thermal phonons. Materials that exhibit wave interference effects allow the flow of thermal energy to be manipulated by controlling the material's thermal conductivity or using heat mirrors to reflect thermal vibrations. The technological potential of these materials, such as enhanced thermoelectric energy conversion and improved thermal insulation, has fuelled the search for highly efficient phonon wave interference and thermal bandgap materials. In this Progress Article, we discuss recent developments in the understanding and manipulation of heat transport. We show that the rational design and fabrication of nanostructures provides unprecedented opportunities for creating wave-like behaviour of heat, leading to a fundamentally new approach for manipulating the transfer of thermal energy.
Phonon Anomaly in High-Pressure Zn
NASA Astrophysics Data System (ADS)
Li, Zhiqiang; Tse, John S.
2000-12-01
The equation of states and phonon dispersions of hexagonal zinc have been calculated by the plane-wave pseudopotential method within the generalized-gradient approximation. Weak discontinuities are found in the pressure-volume relation as well as the c/a-volume curve. Phonon dispersions of Zn under pressure have been obtained with a direct method and the results are consistent with the neutron scattering data. At V/V0~0.88, the calculated frequencies of the acoustic phonons near the zone center softened substantially as a result of an electronic topological transition. The theoretical result is consistent with the observed anomaly in the Lam-Mössbauer factor at low temperature.
Refraction characteristics of phononic crystals
NASA Astrophysics Data System (ADS)
Nemat-Nasser, Sia
2015-08-01
Some of the most interesting refraction properties of phononic crystals are revealed by examining the anti-plane shear waves in doubly periodic elastic composites with unit cells containing rectangular and/or elliptical multi-inclusions. The corresponding band structure, group velocity, and energy-flux vector are calculated using a powerful mixed variational method that accurately and efficiently yields all the field quantities over multiple frequency pass-bands. The background matrix and the inclusions can be anisotropic, each having distinct elastic moduli and mass densities. Equifrequency contours and energy-flux vectors are readily calculated as functions of the wave-vector components. By superimposing the energy-flux vectors on equifrequency contours in the plane of the wave-vector components, and supplementing this with a three-dimensional graph of the corresponding frequency surface, a wealth of information is extracted essentially at a glance. This way it is shown that a composite with even a simple square unit cell containing a central circular inclusion can display negative or positive energy and phase velocity refractions, or simply performs a harmonic vibration (standing wave), depending on the frequency and the wave-vector. Moreover, that the same composite when interfaced with a suitable homogeneous solid can display: (1) negative refraction with negative phase velocity refraction; (2) negative refraction with positive phase velocity refraction; (3) positive refraction with negative phase velocity refraction; (4) positive refraction with positive phase velocity refraction; or even (5) complete reflection with no energy transmission, depending on the frequency, and direction and the wavelength of the plane-wave that is incident from the homogeneous solid to the interface. For elliptical and rectangular inclusion geometries, analytical expressions are given for the key calculation quantities. Expressions for displacement, velocity, linear momentum
Second Harmonic Generation of Nanoscale Phonon Wave Packets.
Bojahr, A; Gohlke, M; Leitenberger, W; Pudell, J; Reinhardt, M; von Reppert, A; Roessle, M; Sander, M; Gaal, P; Bargheer, M
2015-11-06
Phonons are often regarded as delocalized quasiparticles with certain energy and momentum. The anharmonic interaction of phonons determines macroscopic properties of the solid, such as thermal expansion or thermal conductivity, and a detailed understanding becomes increasingly important for functional nanostructures. Although phonon-phonon scattering processes depicted in simple wave-vector diagrams are the basis of theories describing these macroscopic phenomena, experiments directly accessing these coupling channels are scarce. We synthesize monochromatic acoustic phonon wave packets with only a few cycles to introduce nonlinear phononics as the acoustic counterpart to nonlinear optics. Control of the wave vector, bandwidth, and consequently spatial extent of the phonon wave packets allows us to observe nonlinear phonon interaction, in particular, second harmonic generation, in real time by wave-vector-sensitive Brillouin scattering with x-rays and optical photons.
Coexistent intracerebral metastatic melanoma and meningioma.
Shinde, Sweety V; Shenoy, Asha S; Savant, Hemant V; Balasubramaniam, Srikant B
2017-01-01
Coexistence of multifocal neural crest tumors, namely meningioma, melanoma, and nerve sheath tumors, is termed as neurocristopathy. Neurofibromatosis is the commonest form of neurocristopathy. We report a rare case of frontal lobe metastatic melanoma coexistent with a parietal lobe meningioma, in the absence of any stigmata of neurofibromatosis.
Phonon dispersion of indium along [111
Bakulin, A. S.; Overhauser, A. W.; Kaiser, H.; Werner, S. A.; Fernandez-Baca, J. A.; Smith, H. G.
2001-02-01
The phonon spectrum of indium along [111], measured by inelastic neutron scattering, is reported. The two shear modes at the zone-boundary point (1/2, 1/2, 1/2) are split slightly (on account of a 7.5% tetragonal distortion). They have very low frequencies, {approx}0.7 and 1.0 THz, compared to the longitudinal mode, {approx}3.4 THz. These measurements verify the theoretical dispersion predicted by the dynamic pseudopotential theory of phonons for free-electron-like metals.
Phononic Phase Conjugation in an Optomechanical System
NASA Astrophysics Data System (ADS)
Buchmann, Lukas; Wright, Ewan; Meystre, Pierre
2013-05-01
We study theoretically the phase conjugation of a phononic field in an optomechanical system with two mechanical modes coupled to a common optical field. Phase conjugation becomes the dominant process for an appropriate choice of driving field parameters, and he effective coupling coefficients between phonon modes can result in amplification and entanglement, phase-conjugation or a mixture thereof. We discuss surprising consequences of mechanical phase-conjugation that could lead to the preparation of mechanical states with negative temperature, the improvement of quantum memories and the study of the quantum-classical transition. Supported by DARPA ORCHID program.
THZ Phonon Spectroscopy of Bi-2223 and Bi-2212: Evidence for Phonon Pairing
NASA Astrophysics Data System (ADS)
Ponomarev, Ya. G.; Van, Hoang Hoai
Facts are presented evidencing the strong electron-phonon interaction and the scaling of a superconducting gap and a critical temperature in doped Bi-2212 single crystals. A sharp extra structure in the current-voltage characteristics (CVC's) of Bi-2212 contacts is attributed to the presence of the extended van Hove singularity (EVHS) close to the Fermi level in slightly overdoped and slightly underdoped samples. THZ phonon spectroscopy studies of Bi-2223 and Bi-2212 are overviewed. An observed giant instability in I(V) - characteristics of Bi-2223 nanosteps is probably caused by a resonant emission of 2Δ - optical phonons in a process of recombination of nonequilibrium quasiparticles (Krasnov model).
NASA Astrophysics Data System (ADS)
Dinh Hien, Nguyen; Dinh, Le; Thanh Lam, Vo; Cong Phong, Tran
2016-06-01
We investigate the influence of phonon confinement on the optically detected electrophonon resonance (ODEPR) effect and ODEPR line-width in quantum wells. The obtained numerical result for the GaAs/AlAs quantum well shows that the ODEPR line-widths depend on the well's width and temperature. Besides, in the two cases of confined and bulk phonons, the linewidth (LW) decreases with the increase of well's width and increases with the increase of temperature. Furthermore, in the small range of the well's width, the influence of phonon confinement plays an important role and cannot be neglected in considering the ODEPR line-width.
New Features of Shape Coexistence in {sup 152}Sm
Garrett, P. E.; Kulp, W. D.; Wood, J. L.; Bandyopadhyay, D.; Choudry, S.; Lesher, S. R.; McEllistrem, M. T.; Mynk, M.; Orce, J. N.; Yates, S. W.; Dashdorj, D.
2009-08-07
Excited states in {sup 152}Sm have been investigated with the {sup 152}Sm(n,n{sup '}gamma) reaction. The lowest four negative-parity band structures have been characterized in detail with respect to their absolute decay properties. Specifically, a new K{sup p}i=0{sup -} band has been assigned with its 1{sup -} band head at 1681 keV. This newly observed band has a remarkable similarity in its E1 transition rates for decay to the first excited K{sup p}i=0{sup +} band at 684 keV to the lowest K{sup p}i=0{sup -} band and its decay to the ground-state band. Based on these decay properties, as well as energy considerations, this new band is assigned as a K{sup p}i=0{sup -} octupole excitation based on the K{sup p}i=0{sub 2}{sup +} state. An emerging pattern of repeating excitations built on the 0{sub 2}{sup +} level similar to those built on the ground state may indicate that {sup 152}Sm is a complex example of shape coexistence rather than a critical point nucleus.
A step closer to visualizing the electron___phonon interplay
Chen, Y.L.; Lee, W.S.; Shen, Z.X.; /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept. /SLAC, PULSE
2011-01-04
-probe experiment is reminiscent of the standard method used by bell makers for hundreds of years to judge the quality of their products (hitting a bell then listening to how the sound would fade away), albeit the relevant time scale here is way beyond tens of femtoseconds. Traditionally, ultrafast spectroscopy was carried out to study gas-phase reactions, but it has also been applied to study condensed phase systems since the development of reliable solid-state ultrafast lasers approximately a decade ago. In addition, the ability to control pulse width, wavelength, and amplification of the output of Ti:Sapphire lasers has further increased the capability of this experimental method. During the past decade, many ultrafast pump-probe experiments have been carried out in various fields by using different probing methods, such as photo-resistivity, fluorescence yield, and photoemission, and they have revealed much new information complementary to the equilibrium spectroscopy methods used before. Carbone et al. used the photon-pump, electron (diffraction)-probe method. The pumping photon pulse first drives the electrons in the sample into an oscillating mode along its polarization direction. Then during the delay time, these excited electrons can transfer excess energy to the adjacent nuclei and cause crystal lattice vibration on their way back to the equilibrium state. An ultrashort electron pulse is shot at the sample at various time delays {Delta}t and the diffraction pattern is collected. Because the electron diffraction pattern is directly related to the crystal lattice structure and its motion, this technique provides a natural way to study the electron-phonon coupling problem. Furthermore, by adjusting the pump pulse's relative polarization with respect to the Cu-O bond direction, Carbone et al. were able to acquire the electron-phonon coupling strength along different directions. Focusing on the lattice dynamic along the c axis, Carbone et al. found that the c-axis phonons in
Phonon induced luminescence decay in monolayer MoS2 on SiO2/Si substrates
NASA Astrophysics Data System (ADS)
Saigal, Nihit; Ghosh, Sandip
2015-12-01
Exfoliated monolayer MoS2 films on SiO2/Si substrates have been studied using photoluminescence (PL), Raman and reflectance contrast (RC) spectroscopies. With increase in temperature, the intensity of the two dominant PL spectral features A and D, attributed to A exciton/trion and to defects, seemingly decay in an activated fashion with an energy ˜ 50 meV , which is close to the energies of E2 g 1 and A1g phonons. Comparison of absorption spectrum derived from RC with circular polarization resolved PL spectrum suggests that both D and A emissions are associated with bound excitons, the A emission involving relatively weakly localized ones. The PL decay behaviour is explained using a phenomenological model where non-radiative loss of excitons is determined by the number of excited phonon modes. This corroborates the recent finding of strong A exciton and A1g phonon coupling in monolayer MoS2.
Han, Dong; Bang, Junhyeok; Xie, Weiyu; Meunier, Vincent; Zhang, ShengBai
2016-09-15
Electron-phonon coupling can hamper carrier transport either by scattering or by the formation of mass-enhanced polarons. Here, we use time-dependent density functional theory-molecular dynamics simulations to show that phonons can also promote the transport of excited carriers. Using nonpolar InAs (110) surface as an example, we identify phonon-mediated coupling between electronic states close in energy as the origin for the enhanced transport. In particular, the coupling causes localized excitons in the resonant surface states to propagate into bulk with velocities as high as 10(6) cm/s. The theory also predicts temperature enhanced carrier transport, which may be observable in ultrathin nanostructures.
Soft surfaces of nanomaterials enable strong phonon interactions
NASA Astrophysics Data System (ADS)
Bozyigit, Deniz; Yazdani, Nuri; Yarema, Maksym; Yarema, Olesya; Lin, Weyde Matteo Mario; Volk, Sebastian; Vuttivorakulchai, Kantawong; Luisier, Mathieu; Juranyi, Fanni; Wood, Vanessa
2016-03-01
Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron-phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10, 11, 12, 13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron-phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron-phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon
A Comprehensive Approach to Phonon Control for Enhanced Device Performance
2006-07-12
program include (i) the development of novel theoretical and experimental (ultrafast laser and x-ray) methods to generate and probe coherent high...frequency sound, optical phonons and polaritons, (ii) the improvement of phonon-based imaging techniques and development of new methods of phonon detection...acoustic phonon sources using both ultrafast lasers and electrical methods , and (iii) the application and improvement of state- of-the-art materials
Angular dependence of phonon transmission through a Fibonacci superlattice
NASA Astrophysics Data System (ADS)
Hurley, D. C.; Tamura, S.; Wolfe, J. P.; Ploog, K.; Nagle, J.
1988-05-01
Phonon imaging is employed to examine the propagation of acoustic phonons through a Fibonacci superlattice. Ballistic transmission of phonons with ν>850 GHz through 750 superlattice interfaces is detected. In addition, sharp variations in the phonon intensity with propagation angle are observed. These measurements are consistent with Monte Carlo simulations presented in this paper. Distinct stop bands are expected theoretically, and the angular dependence of these structures is remarkably similar to those predicted for a periodic superlattice.
Depth-Dependent Defect Studies Using Coherent Acoustic Phonons
2014-09-29
12211 Research Triangle Park, NC 27709-2211 coherent acoustic phonons, diamond, silicon, photelastic coefficients , refractive index, graphene, Second...attributed to the cooling of the subsystem of hot optical phonons by optical- acoustic phonon scattering . We observe that at different pump energy and...SECURITY CLASSIFICATION OF: Presented is our scientific progress in two areas of research. The first is coherent acoustic phonon (CAP) spectroscopy of
Honeycomb phononic crystals with self-similar hierarchy
NASA Astrophysics Data System (ADS)
Mousanezhad, Davood; Babaee, Sahab; Ghosh, Ranajay; Mahdi, Elsadig; Bertoldi, Katia; Vaziri, Ashkan
2015-09-01
We highlight the effect of structural hierarchy and deformation on band structure and wave-propagation behavior of two-dimensional phononic crystals. Our results show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the band gaps and directionality of phononic crystals. The work provides insights into the role of structural organization and hierarchy in regulating the dynamic behavior of phononic crystals, and opportunities for developing tunable phononic devices.
Manipulating Heat Flow through 3 Dimensional Nanoscale Phononic Crystal Structure
2014-06-02
Nanoscale Phononic Crystal Structure 5a. CONTRACT NUMBER FA23861214047 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Baowen Li 5d...through computer simulation, how the three dimensional (3D) phononic crystal structures can confine phonon and thus reduce thermal conductivity...phononic crystal (PnC) with spherical pores, which can reduce thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. The