Science.gov

Sample records for phorbol diester-induced apoptosis

  1. Protection against apoptosis in chicken bursa and thymus cells by phorbol ester in vitro

    SciTech Connect

    Asakawa, J.; Thorbecke, G.J. )

    1991-03-15

    Programmed suicide or apoptosis, due to activation of endogenous nucleases, occurs in immature CD4{sup {minus}}85{sup {minus}} mammalian thymus cells. Like the thymus, the bursa of Fabricius is a site of massive lymphopoiesis accompanied by cell death in vivo. In the present study the authors have, therefore, examined whether chicken bursa and thymus cells exhibit apoptosis. Bursa and thymus cells from SC chickens, 4-10 weeks of age, were incubated for 8-24 hrs with various reagents. Genomic DNA was isolated, electrophoresed in 3% Nusieve agarose gels, and examined for patterns of DNA fragmentation. A laddering of DNA in multiples of 200 base pairs, indicative of apoptosis, was observed with both bursa and thymus cells. These patterns of DNA fragmentation from bursa cells could be prevented by adding phorbol myristic acetate during culture and, more effectively, by PMA plus ionomycin, but not by ionomycin alone or by anti-{mu}. PMA did not affect the patterns of DNA fragmentation seen with spleen cells. Addition of the protein kinase C inhibitor staurosporin inhibited the preventive effect of PMA on apoptosis. PMA also greatly promoted the survival of bursa cells in culture, as assayed by percentage cell death and by {sup 3}H-thymidine incorporation. It is concluded that bursa and thymus cells from the chicken exhibit apoptosis. The data further suggest that protein kinase C activation protects apoptosis in cultured bursa cells.

  2. Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritol lipid-induced growth arrest and apoptosis.

    PubMed

    Zhao, X; Geltinger, C; Kishikawa, S; Ohshima, K; Murata, T; Nomura, N; Nakahara, T; Yokoyama, K K

    2000-07-01

    Mannosylerythritol lipid (MEL), an extracellularglycolipid from yeast, induces the differentiation ofHL-60 promyelocytic leukemia cells towardsgranulocytes. We show here that MEL is also a potentinhibitor of the proliferation of mouse melanoma B16cells. Flow-cytometric analysis of the cell cycle ofMEL-treated B16 cells revealed the accumulation ofcells in the sub-G(0)/G(1) phase, which is a hallmark ofcells undergoing apoptosis. Treatment of B16 cellsfor 24 h with phorbol 12-myristate 13-acetate (PMA),an activator of protein kinase C (PKC), did notinterfere with the growth and survival of the cells,but it effectively counteracted the MEL-induced growtharrest and apoptosis. The activity of PKC was reducedin B16 cells treated with MEL at a concentration atwhich MEL induced apoptosis. However, incubation withPMA in addition to MEL reversed this reduction in theactivity of PKC. These results suggest thatconverging signaling pathways are triggeredindependently by MEL and PMA and that the signalsmight both be mediated by PKC. PMID:19002819

  3. ROCK mediates phorbol ester-induced apoptosis in prostate cancer cells via p21Cip1 up-regulation and JNK.

    PubMed

    Xiao, Liqing; Eto, Masumi; Kazanietz, Marcelo G

    2009-10-23

    It is established that androgen-dependent prostate cancer cells undergo apoptosis upon treatment with phorbol esters and related analogs, an effect primarily mediated by PKCdelta. Treatment of LNCaP prostate cancer cells with phorbol 12-myristate 13-acetate (PMA) causes a strong and sustained activation of RhoA and its downstream effector ROCK (Rho kinase) as well as the formation of stress fibers. These effects are impaired in cells subjected to PKCdelta RNA interference depletion. Functional studies revealed that expression of a dominant negative RhoA mutant or treatment with the ROCK inhibitor Y-27632 inhibits the apoptotic effect of PMA in LNCaP cells. Remarkably, the cytoskeleton inhibitors cytochalasin B and blebbistatin blocked not only PMA-induced apoptosis but also the activation of JNK, a mediator of the cell death effect by the phorbol ester. In addition, we found that up-regulation of the cell cycle inhibitor p21(Cip1) is required for PMA-induced apoptosis and that inhibitors of ROCK or the cytoskeleton organization prevent p21(Cip1) induction. Real time PCR analysis and reporter gene assay revealed that PMA induces p21(Cip1) transcriptionally in a ROCK- and cytoskeleton-dependent manner. p21(Cip1) promoter analysis revealed that PMA induction is dependent on Sp1 elements in the p21(Cip1) promoter but independent of p53. Taken together, our studies implicate ROCK-mediated up-regulation of p21(Cip1) and the cytoskeleton in PKCdelta-dependent apoptosis in prostate cancer cells.

  4. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells

    SciTech Connect

    Kuo, Kung-Kai; Chen, Yi-Ling; Chen, Lih-Ren; Li, Chien-Feng; Lan, Yu-Hsuan; Chang, Fang-Rong; Wu, Yang-Chang; Shiue, Yow-Ling

    2011-10-01

    The objective was to investigate the upstream apoptotic mechanisms that were triggered by a styrylpyrone derivative, goniothalamin (GTN), in tumor protein p53 (TP53)-positive and -negative hepatocellular carcinoma (HCC)-derived cells. Effects of GTN were evaluated by the flow cytometry, alkaline comet assay, immunocytochemistry, small-hairpin RNA interference, mitochondria/cytosol fractionation, quantitative reverse transcription-polymerase chain reaction, immunoblotting analysis and caspase 3 activity assays in two HCC-derived cell lines. Results indicated that GTN triggered phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA)-mediated apoptosis via TP53-dependent and -independent pathways. In TP53-positive SK-Hep1 cells, GTN furthermore induced TP53 transcription-dependent and -independent apoptosis. After GTN treatment, accumulation of reactive oxygen species, formation of DNA double-strand breaks, transactivation of TP53 and/or PMAIP1 gene, translocation of TP53 and/or PMAIP1 proteins to mitochondria, release of cytochrome c from mitochondria, cleavage of caspases and induction of apoptosis in both cell lines were sustained. GTN might represent a novel class of anticancer drug that induces apoptosis in HCC-derived cells through PMAIP1 transactivation regardless of the status of TP53 gene. - Highlights: > Goniothalamin (GTN) induced apoptosis in hepatocellular carcinomas-derived cells. > The apoptosis induced by GTN is PMAIP1-dependent, regardless of TP53 status. > The apoptosis induced by GTN might be TP53 transcription-dependent or -independent. > GTN-induced apoptosis is mitochondria- and caspases-mediated.

  5. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC-δ, caspase-3 proteins and down-regulated the proto-oncogenes in MCF-7 and HeLa cancer cell lines.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Ahmad, Syahida

    2012-09-10

    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.

  6. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    SciTech Connect

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-12-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.

  7. Cytotoxic phorbol esters of Croton tiglium.

    PubMed

    Zhang, Xiao-Long; Wang, Lun; Li, Fu; Yu, Kai; Wang, Ming-Kui

    2013-05-24

    Chemical investigation of the seeds of Croton tiglium afforded eight new phorbol diesters (three phorbol diesters, 1-3, and five 4-deoxy-4α-phorbol diesters, 4-8), together with 11 known phorbol diesters (nine phorbol diesters, 9-17, and two 4-deoxy-4α-phorbol diesters, 18 and 19). The structures of compounds 1-8 were determined by spectroscopic data information and chemical degradation experiments. The cytotoxic activities of the phorbol diesters were evaluated against the SNU387 hepatic tumor cell line, and compound 3 exhibited the most potent activity (IC50 1.2 μM).

  8. Nineteen-Step Total Synthesis of (+)-Phorbol

    PubMed Central

    Kawamura, Shuhei; Chu, Hang; Felding, Jakob; Baran, Phil S.

    2016-01-01

    Phorbol, the flagship member of the tigliane diterpene family, has been known for over 80 years and has attracted attention from scores of chemists and biologists due to its intriguing chemical structure and the medicinal potential of phorbol esters.1 Access to useful quantities of phorbol and related analogs has relied upon isolation from natural sources and semisynthesis. Despite relentless efforts spanning 40 years, chemical synthesis has been unable to compete with these strategies due to its sheer complexity and unusual oxidation pattern. In fact, purely synthetic enantiopure phorbol has remained elusive and efforts on the synthetic biology side have not led to even the simplest members of this terpene family. Recently the chemical syntheses of eudesmanes,2 germacrenes,3 taxanes,4,5 and ingenanes6-8 have all benefited from a strategy inspired by the logic of two-phase terpene biosynthesis where powerful C–C bond constructions and C–H bond oxidations go hand in hand. In this manuscript, we show how a two-phase terpene synthesis strategy can be enlisted to achieve the first enantiospecific total synthesis of (+)-phorbol in only 19 steps from the abundant monoterpene (+)-3-carene. The purpose of this route is not to displace isolation/semisynthesis as a means to generate the natural product per se, but rather to enable access to analogs containing unique oxidation patterns that are otherwise inaccessible. PMID:27007853

  9. GLAST: gene expression regulation by phorbol esters.

    PubMed

    Espinoza-Rojo, M; López-Bayghen, E; Ortega, A

    2000-08-21

    The gene expression regulation of the Na+-dependent high affinity glutamate/aspartate transporter GLAST expressed in cultured Bergmann glia cells from chick cerebellum was studied. A 679 bp fragment of the chick GLAST cDNA was cloned and sequenced. Specific PCR primers were used to quantify chick GLAST mRNA levels. Treatment of the cells with the Ca2+/diacylglycerol dependent protein kinase C (PKC) activator, phorbol 12-tetradecanoyl-13-acetate (TPA) produced a decrease in transporter mRNA levels, without an effect in its mRNA half life, suggesting a transcriptional down regulation. Activation of the cAMP pathway results in a transient decrease in GLAST mRNA levels, in contrast with the TPA effect. These findings suggest that GLAST expression is under control of distinct signaling pathways.

  10. Phorbol ester phorbol-12-myristate-13-acetate promotes anchorage-independent growth and survival of melanomas through MEK-independent activation of ERK1/2

    SciTech Connect

    Jorgensen, Kjersti; Skrede, Martina; Cruciani, Veronique; Mikalsen, Svein-Ole; Slipicevic, Ana; Florenes, Vivi Ann . E-mail: v.a.florenes@labmed.uio.no

    2005-04-01

    The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-{alpha}, or the PKC inhibitor Goe6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.

  11. Plasma application for detoxification of Jatropha phorbol esters

    NASA Astrophysics Data System (ADS)

    Kongmany, S.; Matsuura, H.; Furuta, M.; Okuda, S.; Imamura, K.; Maeda, Y.

    2013-06-01

    Atmospheric pressure non-thermal dielectric barrier discharge (DBD) plasma generated by helium gas at high voltage and input power of about 50 W was first applied to detoxification of Jatropha curcas phorbol esters (J. PEs) as well as standard phorbol ester (4β-12-O-tetradecanoyl phorbol-13-acetate, TPA) in water and methanol. Plasma irradiation on the solution sample was conducted for 15 min. In aqueous solution, only 16% of TPA was degraded and complete degradation of J. PEs was observed. On the contrary, complete degradation of both TPA and J. PEs in methanol was achieved by the same plasma irradiation condition. Hydroxyl radical (•OH) generated by plasma irradiation of the solution is expected as the main radical inducing the degradation of PEs.

  12. Inhibition of insulin receptor binding by phorbol esters.

    PubMed

    Thomopoulos, P; Testa, U; Gourdin, M F; Hervy, C; Titeux, M; Vainchenker, W

    1982-12-15

    Phorbol esters inhibit the binding of insulin to its receptors on U-937 monocyte-like and HL-60 promyelocytic leukemia human cell lines. Within 20-30 min, exposure of these cells to 12-O-tetradecanoylphorbol 13-acetate (TPA) at 37 degrees C results in a 50% reduction of the specific binding of 125I-insulin. Half-maximal inhibition occurs at 1 nM TPA. Other tumor-promoting phorbol esters also inhibit 125I-insulin binding in a dose-dependent manner which parallels their known promoting activity in vivo. TPA does not alter the degradation of the hormone nor does it induce any shedding of its receptors in the medium. The effect of phorbol esters is dependent on temperature and cell type. It is less prominent at 22 degrees C than at 37 degrees C. It is reversible within 2 h at 37 degrees C. TPA reduces the binding of insulin predominantly by increasing its dissociation rate. This effect results in an accelerated turnover of the hormone on its receptors. PMID:6891320

  13. Biological responsiveness to the phorbol esters and specific binding of (/sup 3/H)phorbol 12,13-dibutyrate in the nematode Caenorhabditis elegans, a manipulable genetic system

    SciTech Connect

    Lew, K.K.; Chritton, S.; Blumberg, P.M.

    1982-01-01

    Because of its suitability for genetic studies, the nematode Caenorhabditis elegans was examined for its responsiveness to the phorbol esters. Phorbol 12-myristate 13-acetate had three effects. It inhibited the increase in animal size during growth; it decreased the yield of progeny; and it caused uncoordinated movement of the adult. The effects on nematode size, progeny yield, and movement were quantitated. Concentrations of phorbol 12-myristate 13-acetate yielding half-maximal responses were 440, 460, and 170 nM, respectively. As was expected from the biological responsiveness of the nematodes, specific, saturable binding of phorbol ester to nematode extracts was found. (/sup 3/H)phorbol 12,13-dibutyrate bound with a dissociation constant of 26.8 +/- 3.9 nM. At saturation, 5.7 +/- 1.4 pmole/mg protein was bound.

  14. Phorbol Ester Effects on Neurotransmission: Interaction with Neurotransmitters and Calcium in Smooth Muscle

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Gould, Robert J.; Peroutka, Stephen J.; Snyder, Solomon H.

    1985-01-01

    Stimulation of the phosphatidylinositol cycle by neurotransmitters generates diacylglycerol, an activator of protein kinase C, which may regulate some forms of neurotransmission. Phorbol esters, potent inflammatory and tumorpromoting compounds, also activate protein kinase C. We demonstrate potent and selective effects of phorbol esters on smooth muscle, indicating a role for protein kinase C in neurotransmission. In rat vas deferens and dog basilar artery, phorbol esters synergize with calcium to mimic the contractile effects of neurotransmitters that act through the phosphatidylinositol cycle. In guinea pig ileum and rat uterus, phorbol esters block contractions produced by these neurotransmitters.

  15. A Comparison Between Phorbol 12 Myristate 13 Acetate and Phorbol 12, 13 Dibutyrate in Human Melanocyte Culture

    PubMed Central

    Padma, Divya

    2016-01-01

    Introduction Melanocyte culture is an integral part of the studies of skin biology and cosmetic applications. After the introduction of selective medium for the culture of human melanocyte using Phorbol 12-myristate13-acetate (PMA) in 1982, a lot of methods of culturing were tried but till date PMA is a preferred mitogen because of its cost effectiveness compared to growth factors. We have tried to preliminarily evaluate the efficacy of another phorbol ester, Phorbol 12, 13-dibutyrate (PDBu) in melanocyte culture because of its less hydrophobic nature compared to PMA. This property minimizes the trace amount of mitogen in cell culture after washing off and hence does not interfere in other biological assays. Aim To evaluate the differences in the melanocyte survival rate, morphology and mitotic index when grown in media supplemented with PMA and PDBu. Materials and Methods Foreskins were collected from children undergoing circumcision. Epidermal cells were isolated from foreskin and cultured using PMA and PDBu. Melanocytes in culture were monitored for the better establishment and documented. In proliferative assay, melanocytes were treated with PMA and PDBu for 24, 48 and 72 hours and proliferation was measured using 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay method. Results When cultured, melanocytes acquired proliferative status and bipolar morphology quicker in PDBu medium than in PMA medium. Keratinocytes survived as contamination in PMA medium whereas PDBu medium had minimal keratinocytes. MTT assay showed that PDBu has higher proliferative induction capacity than PMA. In even lower concentration of PDBu in medium, melanocytes survived till 72 hours without significant cell loss in compared to PMA medium. Conclusion PDBu can be a valuable replacement for PMA in human melanocyte culture. Higher proliferation induction, unfavourable to keratinocyte survival and less hydrophobicity make PDBu a promising alternative for quicker

  16. Phorbol esters induce multidrug resistance in human breast cancer cells

    SciTech Connect

    Fine, R.L.; Patel, J.; Chabner, B.A.

    1988-01-01

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate (P(BtO)/sub 2/) led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)/sub 2/ further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)/sub 2/ induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation.

  17. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis.

    PubMed

    Korinek, Michal; Wagh, Vitthal D; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  18. Activities of Jatropha curcas phorbol esters in various bioassays.

    PubMed

    Devappa, Rakshit K; Rajesh, Sanjay K; Kumar, Vikas; Makkar, Harinder P S; Becker, Klaus

    2012-04-01

    Jatropha curcas seeds contain 30-35% oil, which can be converted to high quality biodiesel. However, Jatropha oil is toxic, ascribed to the presence of phorbol esters (PEs). In this study, isolated phorbol ester rich fraction (PEEF) was used to evaluate the activity of PEs using three aquatic species based bioassays (snail (Physa fontinalis), brine shrimp (Artemeia salina), daphnia (Daphnia magna)) and microorganisms. In all the bioassays tested, increase in concentration of PEs increased mortality with an EC(50) (48 h) of 0.33, 26.48 and 0.95 mg L(-1) PEs for snail, artemia and daphnia, respectively. The sensitivity of various microorganisms for PEs was also tested. Among the bacterial species tested, Streptococcus pyogenes and Proteus mirabilis were highly susceptible with a minimum inhibitory concentration (MIC) of 215 mg L(-1) PEs; and Pseudomonas putida were also sensitive with MIC of 251 mg L(-1) PEs. Similarly, Fusarium species of fungi exhibited EC(50) of 58 mg L(-1) PEs, while Aspergillus niger and Curvularia lunata had EC(50) of 70 mg L(-1). The snail bioassay was most sensitive with 100% snail mortality at 1 μg of PEs mL(-1). In conclusion, snail bioassay could be used to monitor PEs in Jatropha derived products such as oil, biodiesel, fatty acid distillate, kernel meal, cake, glycerol or for contamination in soil or other environmental matrices. In addition, PEs with molluscicidal/antimicrobial activities could be utilized for agricultural and pharmaceutical applications. PMID:22172520

  19. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis

    PubMed Central

    Korinek, Michal; Wagh, Vitthal D.; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  20. Effect of phorbol esters on guniea pig skin in vivo.

    PubMed

    Bourin, M C; Delescluse, C; Fürstenberger, G; Marks, F; Schweizer, J; Klein-Szanto, A J; Prunieras, M

    1982-01-01

    When topically applied to guniea pig ear skin the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced inflammation and epidermal hyperproliferation which could be inhibited by indomethacin. This inhibition could be reversed both by prostaglandins E and F. Five minutes after TPA treatment an increase in the level of prostaglandin E but not of prostaglandin F was observed in the epidermis. The non-promoting phorbol ester 4-O-methyl-TPA also stimulated epidermal cell proliferation but this stimulation was not inhibited by indomethacin. The above results are in agreement with those already reported in the mouse system with these two compounds. Ornithine decarboxylase (ODC) activity has been evaluated in the epidermis of guniea pig ear after topical application of 20 nmol of TPA. No increase was noted. This is in contrast with the well documented activation of ODC in mouse skin treated with TPA. Since TPA acts as a promoter in the mouse whereas both croton oil and TPA have no promoting action in the guinea pig, the above result supports the view that ODC activationis related to promotion, and provides a possible explanation for the resistance of this animal species to promotion. This resistance is further documented by the fact that no "dark cells" were found in guinea pig ear skin.

  1. Identification of the phorbol ester receptor in human and avian erythrocytes

    SciTech Connect

    Kramer, C.M.; Sando, J.J.; Speizer, L.A.

    1986-05-01

    The ability of phorbol esters to inhibit the uptake of a fluorescent glucose analogue in goose but not human erythrocytes is consistent with earlier reports that the human red blood cell lacks the phorbol ester receptor. However, they have located specific phorbol 12,13-dibutyrate binding sites in both human and goose erythrocytes. Human and goose red blood cells contain 2 classes of phorbol ester receptors with similar affinities, however the human erythrocyte contains 1/3 as many phorbol ester receptors as does the goose red blood cell. An additional contrast in the binding of phorbol esters to human and goose red blood cells is the temperature-induced enhancement of binding to goose, but not human erythrocytes. Equilibrium phorbol ester binding to goose red blood cells at 37/sup 0/C is enhanced 3.3 +/- 0.4 times that amount bound at 4/sup 0/C. Equilibrium binding of phorbol esters to human erythrocytes is identical at both temperatures. In vivo and in vitro phosphorylation profiles of C-kinase substrates also differ between the human and goose erythrocyte.

  2. Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C.

    PubMed Central

    Jacobs, S; Sahyoun, N E; Saltiel, A R; Cuatrecasas, P

    1983-01-01

    The effect of phorbol esters on the extent of phosphorylation of receptors for insulin and somatomedin C (insulin-like growth factor I) was studied in intact IM-9 cells that were labeled by incubation with H332PO4. The tumor-promoting phorbol esters phorbol tetradecanoate acetate (TPA) and phorbol dibutyrate, but not the inactive 4 alpha-phorbol, enhanced phosphorylation of the beta subunit of both receptors approximately 4-fold; 70 nM TPA maximally stimulated phosphorylation of both receptors, whereas concentrations less than or equal to 0.7 nM had no observable effect. Insulin also enhanced the phosphorylation of the beta subunit of the insulin receptor, and its effects appeared to be additive to those of TPA. Peptide maps indicated that at least some of the residues phosphorylated by these two agents are distinct. These results suggest a possible role of protein kinase C in regulating insulin and somatomedin C receptors. Images PMID:6312447

  3. Phorbol-ester-induced alterations of free calcium ion transients in single rat hepatocytes.

    PubMed Central

    Woods, N M; Cuthbertson, K S; Cobbold, P H

    1987-01-01

    The effect of the phorbol esters phorbol 12-myristate 13-acetate (TPA) and phorbol 12,13-dibutyrate (PDB) on changes in free Ca2+ concentration ([Ca2+]i) in single rat hepatocytes, microinjected with the photoprotein aequorin, were investigated. [Arg8]vasopressin and phenylephrine induced a series of repetitive [Ca2+]i transients. Phorbol esters inhibited the alpha 1-adrenoceptor-induced response; sub-nanomolar concentrations decreased the transient frequency, and higher concentrations abolished the transients. The inhibitory effect of PDB was readily reversible. Phorbol esters were less effective in decreasing the frequency of [Arg8]-vasopressin-induced transients, and the inhibition could be overcome by high [Arg8]vasopressin concentrations. PMID:3479980

  4. Stimulation of Paramecium phagocytosis by phorbol ester and forskolin.

    PubMed

    Wyroba, E

    1987-09-01

    Phorbol ester (PMA) exerted a dose- and time- dependent stimulating effect on phagocytosis in axenic Paramecium aurelia. When cells were exposed to 200-800 nM PMA in the presence of latex beads, the phagocytic coefficient was enhanced 2.25 to 3.14 times, during 10 min of continuous treatment and then rapidly declined. A similar effect was observed when the cells were exposed to a forskolin treatment, which resulted in nearly a twofold increase in phagocytic activity after a 10 min pulse. Both PMA and forskolin strongly stimulated phagocytosis (i.e. fivefold and threefold, respectively) in cells in which such activity had been completely inhibited by pre-exposure to the beta-receptor antagonist 1-propranolol.

  5. Phorbol ester stimulates calcium sequestration in saponized human platelets

    SciTech Connect

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.

  6. Phorbol ester-stimulated phosphorylation of basolateral membranes from canine kidney

    SciTech Connect

    Hammerman, M.R.; Rogers, S.; Morrissey, J.J.; Gavin, J.R. III

    1986-06-01

    To determine whether protein kinase C is present in the basolateral membrane of the renal proximal tubular cell, we performed experiments to ascertain whether specific binding of (/sup 3/H)phorbol 12,13-dibutyrate could be demonstrated in basolateral membranes isolated from canine kidney. Specific binding was demonstrable that was half maximal at between 10(-7) and 10(-8) M phorbol 12,13-dibutyrate. Binding was inhibited by 12-O-tetradecanoylphorbol-13-acetate (TPA) and other tumor-promoting phorbol esters, but not by inactive phorbol esters, including 4 alpha-phorbol. Incubation of basolateral membranes with TPA and phorbol 12,13-dibutyrate, but not with 4 alpha-phorbol, in the presence of submicromolar concentrations of free calcium, enhanced phosphorylation of several proteins demonstrable in autoradiograms of sodium dodecyl sulfate-polyacrylamide gels originating from membranes subsequently exposed to (gamma-32P)ATP for 30 s. Dephosphorylation of (/sup 32/P)phosphoproteins was observed in gels from membranes incubated with (gamma-32P)ATP over time. TPA-stimulated phosphorylation of one protein band with Mr 135,000 was quantitated and was found to increase as a function of (TPA). Half-maximal TPA-stimulated phosphorylation of this protein band occurred at slightly less than 10(-9) M TPA. Our findings are consistent with a role for protein kinase C-effected phosphorylation of basolateral membrane proteins in the mediation or modulation of hormonal actions in the proximal tubular cell.

  7. Phorbol ester-induced activation of protein kinase C leads to increased formation of diacylglycerol in human neutrophils

    SciTech Connect

    Faellman, M.; Stendahl, O.; Andersson, T. )

    1989-03-01

    Human neutrophils stimulated with a phorbol ester (phorbol 12-myristate 13-acetate or phorbol 12,13-dibutyrate) responded with an increase in diacylglycerol, considered the natural activator of protein kinase C. The amounts of diacylglycerol formed were considerable, reaching 700-900% of basal after 20 minutes. In contrast, 4-{alpha}-phorbol 12-myristate 13-acetate did not induce any detectable formation of diacylglycerol. Simultaneously, phorbol 12-myristate 13-acetate exposure caused increased breakdown of both phosphatidylcholine and phosphatidylinositol 4,5-bisphosphate. These results suggest that once activated, protein kinase C can positively modulate its own activity by inducing additional formation of diacylglycerol from at least two different sources.

  8. The structural requirements for phorbol esters to enhance serotonin and acetylcholine release from rat brain cortex

    PubMed Central

    Iannazzo, L; Kotsonis, P; Majewski, H

    1999-01-01

    The effects of various phorbol-based protein kinase C (PKC) activators on the electrical stimulation-induced (S-I) release of serotonin and acetylcholine was studied in rat brain cortical slices pre-incubated with [3H]-serotonin or [3H]-choline to investigate possible structure-activity relationships. 4β-Phorbol 12,13-dibutyrate (4βPDB, 0.1–3.0 μM), enhanced S-I release of serotonin in a concentration-dependent manner whereas the structurally related inactive isomer 4α-phorbol 12, 13-dibutyrate (4αPDB) and phorbol 13-acetate (PA) were without effect. Another group of phorbol esters containing a common 13-ester substituent (phorbol 12,13-diacetate, PDA; phorbol 12-myristate 13-acetate, PMA; phorbol 12-methylaminobenzoate 13-acetate, PMBA) also enhanced S-I serotonin release with PMA being least potent. The deoxyphorbol monoesters, 12-deoxyphorbol 13-acetate (dPA), 12-deoxyphorbol 13-angelate (dPAng), 12-deoxyphorbol 13-phenylacetate (dPPhen) and 12-deoxyphorbol 13-isobutyrate (dPiB) enhanced S-I serotonin release but 12-deoxyphorbol 13-tetradecanoate (dPT) was without effect. The 20-acetate derivatives of dPPhen and dPAng were less effective in enhancing S-I serotonin release compared to the parent compounds. With acetylcholine release all phorbol esters tested had a far lesser effect when compared to their facilitatory action on serotonin release with only 4βPDB, PDA, dPA, dPAng and dPiB having significant effects. The effects of the phorbol esters on serotonin release were not correlated with their reported in vitro affinity and isozyme selectivity for PKC. A comparison across three transmitter systems (noradrenaline, dopamine, serotonin) suggests basic similarities in the structural requirements of phorbol esters to enhance transmitter release with short chain substituted mono- and diesters of phorbol being more potent facilitators of release than the long chain esters. Some compounds notably PDA, PMBA, dPPhen, dPPhenA had different potencies across

  9. Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C

    SciTech Connect

    Chauhan, A.; Cauhan, V.P.S.; Deshmukh, D.S.; Brokerhoff, H. )

    1989-06-13

    Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), can also activate PKC in the presence of phosphatidylserine (PS) and Ca{sup 2+} with a K{sub PIP{sub 2}} of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP{sub 2} and DG on PKC. Here, the authors investigate the effect of PIP{sub 2} on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP{sub 2} inhibited specific binding of ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP{sub 2} than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP{sub 2} is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (K{sub d{prime}}) against PIP{sub 2} concentration was linear over a range of 0.01-1 mol % with a K{sub i} of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP{sub 2}. Competition between PIP{sub 2} and phorbol ester could be determined in a liposomal assay system also. These results indicate that PIP{sub 2}, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP{sub 2} is a primary activator of the enzyme.

  10. Effects of phorbol esters on fluid transport and blood flow in the small intestine

    SciTech Connect

    Sjoeqvist, A.; Henderson, L.S.; Fondacaro, J.D.

    1986-07-01

    Studies were designed to examine the effects of phorbol esters on intestinal fluid transport and blood flow in the anesthetized cat and enteropooling in the conscious rat. Intraluminal administration of phorbol ester into a segment of isolated small bowel produced a copious intestinal secretion and a concomitant mesenteric hyperemia in the cat. Net fluid movement in the intestine was converted from absorption in the control state to secretion following phorbol ester administration. Intravenous atropine reduced the phorbol ester-induced secretion by 56%; clonidine abolished the remaining secretory response. In the rat, intragastric administration of phorbol ester produced enteropooling comparable to that of other potent intestinal secretagogues. Since phorbol esters are known to activate protein kinase C, these suggest that activation of protein kinase C in the small intestine may lead to a full secretory response. The evidence suggests that this secretion is accompanied by a metabolic hyperemia. These results suggest that protein kinase C plays an important role in the regulation of intestinal fluid transport.

  11. Phorbol esters modulate cyclic AMP accumulation in porcine thyroid cells

    SciTech Connect

    Emoto, T.; Kasai, K.; Hiraiwa, M.; Shimoda, S.

    1988-01-01

    In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E/sub 1/ or E/sub 2/ (PGE/sub 1/ and PGE/sub 2/) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10/sup -9/ M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.

  12. Phorbol ester and spontaneous activity in SHR aorta

    SciTech Connect

    Moisey, D.M.; Cox, R.H.

    1986-03-01

    Thoracic aortas (TA) were excised from 6-week old SHR and WKY. 2mm rings were mounted isometrically at optimum preload. Spontaneous rhythmical activity developed in TA from SHR and had a frequency of 3-4/min with varying periods of quiescence between bursts of activity. The spontaneous activity often produced an increase in tension development which was associated with increased frequency of oscillations. Verapamil (10/sup -7/ M) or Ca/sup + +/-free solution added during the contractile phase resulted in an immediate loss of tension and spontaneous activity. Addition of ouabain (10/sup -4/ M) during the contractile phase of spontaneous activity, increased the frequency of oscillations which appeared to fuse into a tetanus. Spontaneous rhythmical activity was infrequently observed in TA from WKY. However, addition of phorbol 12-myristate-13 acetate (TPA), frequently induced spontaneous rhythmic oscillations associated with tension development in TA from WKY. TPA contracted the SHR TA and increased the frequency of oscillations. SHR TA were more sensitive to TPA than WKY. This study demonstrates (1) spontaneous rhythmical activity, independent of agonist stimulation in TA from 6-week old SHR and (2) TPA induced spontaneous oscillatory activity. The mechanism underlying the spontaneous oscillatory activity may involve membrane coupling events and Na-pump difference between SHR and WKY.

  13. Phorbol myristate acetate receptors in human polymorphonuclear neutrophils

    SciTech Connect

    Nishihira, J.; O'Flaherty, J.T.

    1985-11-01

    Resting or phorbol myristate acetate (PMA)-pretreated neutrophils were disrupted by nitrogen cavitation and were fractionated on Percoll density gradients to identify the subcellular location of PMA receptors. Receptors were found in the cytoplasm of resting cells; neither primary nor secondary granules bound (/sup 3/H)PMA, and the few binding sites located in non-granule membrane fractions appeared to reflect cytosolic contamination. Contrastingly, PMA-pretreated cells lost cytosolic receptors; > 80% of PMA-binding sites were associated with non-granule membranes. Protein kinase C activity similarly shifted from cytosol to membranes after PMA treatment. Indeed, protein kinase C and PMA receptors co-sedimented on Percoll gradients, co-eluted from Ultragel AcA 44 columns loaded with neutrophil cytoplasm, and were identically influenced by various phospholipids. Finally, PMA, mezerein, diacylglycerol, and dialkylglycerol activated protein kinase C with potencies that paralleled their respective abilities to stimulate neutrophil aggregation responses and inhibit (/sup 3/H)PMA binding to whole cells or cytosol. These results fit a model of stimulus-response coupling wherein exogenous PMA or endogenous diacylglycerol solvate in cellular membranes. Cytosolic protein kinase C binds to the intramembranous ligand, forming an active, membrane-associated complex that phosphorylates nearby elements involved in triggering aggregation and other responses.

  14. Tumor promoting phorbol diesters: substrates for diacylglycerol lipase

    SciTech Connect

    Cabot, M.C.

    1984-08-30

    Enzyme activity in rat serum was examined utilizing the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and various glycerolipids as substrates. The serum activity was specific for hydrolysis of the long chain tetradecanoate moiety of TPA, hydrolyzed mono- and diacylglycerols, but was not effective against triacylglycerols, cholesterylesters, or phospholipids. Heating the enzyme preparation at 56/sup 0/C for 1 min was dually effective in reducing the hydrolysis of both TPA and dioleoylglycerol by 83-86% of control levels. The potent diacylglycerol lipase inhibitor, RHC 80267, inhibited the hydrolysis of TPA in the 0.2-1.0 ..mu..M range and was also a potent blocker of monoacyl- and diacylglycerol hydrolysis. In substrate competition studies, exogenous unlabeled TPA was added to the (/sup 14/C)dioleoylglycerol-containing reaction mixture, however, this produced an approximate 3-fold stimulation of (/sup 14/)dioleoylglycerol hydrolysis. Although we have not established whether the hydrolysis of TPA and diacylglycerol is the work of one enzyme, the effectiveness of the specific lipase inhibitor, RHC 80267, demonstrates that diacylglycerol lipase can utilize TPA as substrate, a finding never before documented. This point is of interest in light of the theory that phorbol esters act by mimicry of the natural lipid mediator, diacylglycerols. 44 references, 3 figures, 1 table.

  15. Phorbol myristate acetate and dioctanoylglycerol inhibit transport in rabbit proximal convoluted tubule

    SciTech Connect

    Baum, M.; Hays, S.R. )

    1988-01-01

    The present in vitro microperfusion study examined the effect of protein kinase C activation on transport in the rabbit proximal convoluted tubule (PCT). PCT were perfused with an ultrafiltrate-like solution and were bathed in a serumlike albumin solution. Addition of phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibited volume absorption from 1.06 {plus minus} 0.10 to 0.77 {plus minus} 0.07 nl{center dot}mm{sup {minus}1}min{sup {minus}1}, and 0.76 {plus minus} 0.14 to 0.48 {plus minus} 0.08 nl{center dot}mm{sup {minus}1}{center dot}min{sup {minus}1}, respectively. Bath phorbol 12-myristate 13-acetate had no effect on volume absorption. In contrast, bath 4{alpha}-phorbol, an inactive phorbol that does not activate protein kinase C, had no effect on J{sub v}. Bath L-{alpha}-dioctanoylglycerol, another known activator of protein kinase C, inhibited volume absorption. A 10-fold lower concentration of L-{alpha}-dioctanoylglycerol had no effect on J{sub v}. Both 5 x 10{sup {minus}8} M phorbol 12-myristate 13-acetate and 10{sup {minus}4} M L-{alpha}-dioctanoylglycerol inhibited glucose, bicarbonate, and chloride transport in the PCT. These data are consistent with protein kinase C activation playing a role in the modulation of proximal tubular transport.

  16. Effect of phorbol and Bryostatin I on chondrogenic expression of chick limb bud, in vitro

    SciTech Connect

    Garrison, J.C.; Pettit, G.R.; Uyeki, E.M.

    1987-10-26

    The present paper describes the effects of PMA (phorbol 12-myristate 13 acetate) on in vitro chondrogenesis in non-passaged, embryonic limb bud cells, relative to the effects of Bryostatin I. This compound also activates C kinase and binds competitively to the phorbol ester receptor, yet does not affect cell differentiation. Levels of PMA as low as 10/sup -7/ M markedly reduced cartilage formation in 4-day cultures, as indicated by nodule count and Alcian blue staining for chondroitin sulfate. Coadministration of Bryostatin I at equimolar concentration prevented the PMA inhibitory effect on chondrocytic expression. This confirms other findings that phorbol activation of C kinase cannot exclusively account for the activity of phorbol on cell expression. Altering the time of PMA exposure demonstrated that PMA inhibited chondrocyte phenotypic expression, rather than cell commitment: early exposure to PMA had little inhibitor effect on the staining index, whereas, exposure from 49-96 h and 0-96 h had moderate and strong inhibitory effects, respectively, on cartilage synthesis. Further research on the phorbol/Bryostatin I interaction should add to their knowledge of the control processes involved in tumor promotion and cell differentiation. 21 references, 3 figures.

  17. Five new phorbol esters with cytotoxic and selective anti-inflammatory activities from Croton tiglium.

    PubMed

    Wang, Jun-Feng; Yang, Sheng-Hui; Liu, Yan-Qun; Li, Din-Xiang; He, Wei-Jun; Zhang, Xiao-Xiao; Liu, Yong-Hong; Zhou, Xiao-Jiang

    2015-05-01

    Five new phorbol esters, (four phorbol diesters, 1-4, and one 4-deoxy-4α-phorbol diester, 5), as well as four known phorbol esters analogues (6-9) were isolated and identified from the branches and leaves of Croton tiglium. Their structures were elucidated mainly by extensive NMR spectroscopic, and mass spectrometric analysis. Among them, compound (1) was the first example of a naturally occurring phorbol ester with the 20-aldehyde group. Compounds 2-5, and 7-9 showed potent cytotoxicity against the K562, A549, DU145, H1975, MCF-7, U937, SGC-7901, HL60, Hela, and MOLT-4 cell lines, with IC50 values ranging from 1.0 to 43 μM, while none of the compounds exhibited cytotoxic effects on normal human cell lines 293T and LX-2, respectively. In addition, compound 3 exhibited moderate COX-1 and COX-2 inhibition, with IC50 values of 0.14 and 8.5 μM, respectively.

  18. Specific binding and biological effects of tumor promoting phorbol esters on sponges.

    PubMed

    Mazzorana, M; Garrone, R; Martel, N; Yamasaki, H

    1984-01-01

    Sponges grown in the presence of 12-O-tetradecanoyl phorbol-13-acetate (TPA) show deep alterations of their structure and development. Their aquiferous system (flagellated cells and canals) is largely altered and the tissues show an unusually high cell density. This focalized effect of TPA on the aquiferous system seems specific and is reversible at low concentrations (100 ng/ml). A toxic, non-specific effect is also noted, particularly at high concentrations (5000 ng/ml). Using 3H-phorbol-12, 13-dibutyrate (3H-PDBu), we demonstrate a class of specific binding sites for phorbol esters in the homogenates of sponges. These binding sites have high affinity (Kd = 26.0 nM) for PDBu and at saturation about 20 pmoles of 3H-PDBu is bound per mg protein of sponge homogenates. The binding of 3H-PDBu was inhibited by other phorbol esters and their congeners, and there was a good correlation between their potency in binding inhibition and their tumor promoting activity. It is concluded that sponges have a class of specific saturable and high affinity receptors for phorbol esters and that there is a very high conservation of these receptors during evolution. Such specific binding may be responsible for subsequent biological effect of TPA on sponges.

  19. Inhibition of transferring binding and iron uptake of hematopoietic cell lines by phorbol esters.

    PubMed

    Pelicci, P G; Testa, U; Thomopoulos, P; Tabilio, A; Vainchenker, W; Titeux, M; Gourdin, M F; Rochant, H

    1984-01-01

    Phorbol esters inhibit cell growth and the binding of transferrin to receptors on K 562, HL 60 and U 937 human leukemic cell lines. Exposure of these cells to 12-0-tetradecanoyl phorbol-13-acetate (TPA) at 37 degrees C results in a 40% reduction of the specific binding of 125I-transferrin, which is apparent within 15 min. Half-maximal inhibition occurs at about 1 nM. Other tumor promoting phorbol esters also inhibit 125I-transferrin binding in a dose-dependent manner which parallels their known promoting activity in vivo. TPA reduces the number of transferrin receptors, and does not alter the degradation or the internalization of transferrin. In addition, TPA inhibits iron uptake by these cell lines. These effects are specific, since phorbol esters do not affect either cell growth or the binding of transferrin to Friend erythroleukemia cells and Raji cell line. On the basis of these findings it is suggested that the inhibition of transferrin binding may represent one of the mechanisms by which phorbol esters affect the growth and the differentiation of hematopoietic cell lines. PMID:6088899

  20. Insulin reverses the growth retardation effect of phorbol ester in chicken embryos during organogenesis

    SciTech Connect

    Girbau, M.; Bassas, L.; Roth, J.; de Pablo, F. )

    1989-01-01

    The tumor promoting phorbol esters can affect early embryonic development by causing interference with the normal pathways of cellular growth and differentiation. The present study was designed to: (a) define a time in organogenesis when a vertebrate embryo model, the chicken, was sensitive to the phorbol ester 12-0-tetradecanoil-13-acetate (TPA), and (b) attempt a rescue of the embryos disturbed by TPA with simultaneous addition of insulin. In embryos treated at days 2 and 3 of development, TPA caused dose-dependent mortality. Survivors were biochemically retarded as indicated by their decreased weight, protein, DNA, RNA, total creatine kinase, triglycerides, phospholipids and cholesterol contents. When intermediated doses of TPA were applied together with insulin the embryonic growth disturbance was largely antagonized. These data, generated with an in vivo whole embryo, support the strong link between the mode of action of insulin and signal transduction mechanisms typical of phorbol esters.

  1. Receptor-mediated Modulation of Human Monocyte, Neutrophil, Lymphocyte, and Platelet Function by Phorbol Diesters

    PubMed Central

    Goodwin, Bonnie J.; Weinberg, J. Brice

    1982-01-01

    The tumor promoting phorbol diesters elicit a variety of responses from normal and leukemic blood cells in vitro by apparently interacting with cellular receptors. The biologically active ligand [20-3H] phorbol 12,13-dibutyrate ([3H]PDBu) bound specifically to intact human lymphocytes, monocytes, polymorphonuclear leukocytes (PMN), and platelets, but not to erythrocytes. Binding, which was comparable for all four blood cell types, occurred rapidly at 23° and 37°C, reaching a maximum by 20-30 min usually followed by a 30-40% decrease in cell associated radioactivity over the next 30-60 min. The time course for binding was temperature dependent with equilibrium binding occurring after 120-150 min at 4°C, with no subsequent loss of cell-associated radioactivity at this temperature. Bound [3H]PDBu could be eluted by addition of unlabeled PDBu. Scatchard analysis of data from 4°C binding studies revealed linear plots with high affinity receptors in these cell types with dissociation constants and receptors per cell of 60 nM and 7.8 × 105/cell for lymphocytes, 51 nM and 15.5 × 105/cell for monocytes, 38 nM and 4.0 × 105/cell for PMN, and 19 nM and 2.9 × 104/cell for platelets. Structure-activity studies using unlabeled phorbol-related compounds demonstrated a close correlation between their abilities to inhibit binding of [3H]PDBu to cells and their abilities to induce cellular responses (monocyte and PMN H2O2 secretion, lymphocyte 3HTdR incorporation, and platelet tritiated serotonin release); phorbol and 4-alpha phorbol were inactive while phorbol 12-myristate 13-acetate (PMA), PDBu, mezerein, and phorbol 12,13-diacetate (in decreasing order of potency) inhibited [3H]PDBu binding and elicited the various responses. Thus, these high affinity, specific receptors for the phorbol diesters, present on monocytes, lymphocytes, PMN, and platelets, mediate the pleiotypic effects induced by these ligands. PMID:6956584

  2. Potentiation of specific association of insulin with HepG2 cells by phorbol esters.

    PubMed Central

    Blake, A D; Strader, C D

    1986-01-01

    The effects of tumour-promoting phorbol esters on the receptor-mediated endocytosis of insulin were investigated in the human hepatoma cell line HepG2. Treatment of these cells with the biologically active phorbol 12-O-tetradecanoylphorbol 13-acetate (TPA), but not with the non-tumour-promoting analogue 4 alpha-phorbol 12,13-didecanoate, resulted in dramatic morphological changes, which were accompanied by a 1.5-2.5-fold increase in specific 125I-insulin association with the cells at 37 degrees C. This increase in insulin binding was not observed when the binding reaction was performed at 4 degrees C. The potentiation of 125I-insulin association with TPA-treated cells at 37 degrees C could be completely accounted for by an increase in the intracellular pool of internalized insulin; there was no concomitant increase in cell-surface insulin binding. Dissociation studies showed that the enhanced internalization of insulin by cells after treatment with TPA resulted from a decrease in the rate of intracellular processing of the insulin after receptor-mediated endocytosis. The phorbol-ester-induced enhancement of internalized insulin in HepG2 cells was additive with the potentiation of endocytosed insulin induced by both the lysosomotropic reagent chloroquine and the ionophore monensin; this indicates that TPA affects the intracellular processing of the insulin receptor at a point other than those disrupted by either of these two reagents. The potentiation of insulin receptor internalization by tumour-promoting phorbol esters could be completely mimicked by treatment with phospholipase C, but not with phospholipase A, and partially mimicked by treatment with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol. By these criteria, the effects of phorbol esters on the insulin receptor in HepG2 cells appear to be mediated through protein kinase C. These results support the concept that the activation of protein kinase C by treatment with phorbol esters causes a

  3. Carbamylcholine and phorbol esters desensitize muscarinic receptors by different mechanisms in rat pancreatic acini.

    PubMed

    Blanchard, L M; Paquette, B; Larose, L; Morisset, J

    1990-01-01

    Pretreatment of rat pancreatic acini with phorbol 12-myristate, 13-acetate (PMA), a protein kinase C (PK-C) activator, caused the desensitization of carbamylcholine (CBC)-induced amylase release in a concentration- and time-dependent fashion. The less potent phorbol-12, 13-dibutyrate (PDBu) also provoked a desensitization, but the inactive 4-alpha-phorbol-12,13-didecanoate had no effect. PMA or PDBu also significantly reduced subsequent amylase release induced by caerulein or secretin in contrast to CBC, which only reduced amylase release induced by CBC or secretin. Preincubation of acini with PMA did not lead to a decrease in PMA or A23187-stimulated amylase release. A 3 h resting period did not restore the desensitization induced by PMA or PDBu. Pretreatment with PMA did not cause changes in muscarinic receptor high- and low-affinity populations as observed with CBC pretreatment. The PK-C inhibitor H-7 completely prevented the desensitization induced by PDBu but not that induced by CBC. TMB-8, another PK-C inhibitor, also completely prevented the desensitization induced by PDBu but only partially that induced by CBC. These results suggest that phorbol esters can induce desensitization of muscarinic receptor-stimulated amylase release by a different mechanism than that involved in muscarinic agonist-induced desensitization.

  4. Method of phorbol ester degradation in Jatropha curcas L. seed cake using rice bran lipase.

    PubMed

    Hidayat, Chusnul; Hastuti, Pudji; Wardhani, Avita Kusuma; Nadia, Lana Santika

    2014-03-01

    A novel enzymatic degradation of phorbol esters (PE) in the jatropha seed cake was developed using lipase. Cihera rice bran lipase had the highest ability to hydrolyze PE, and reduced PE to a safe level after 8 h of incubation. Enzymatic degradation may be a promising method for PE degradation.

  5. Human brain n-chimaerin cDNA encodes a novel phorbol ester receptor.

    PubMed Central

    Ahmed, S; Kozma, R; Monfries, C; Hall, C; Lim, H H; Smith, P; Lim, L

    1990-01-01

    A human brain-specific cDNA encoding n-chimaerin, a protein of predicted molecular mass 34 kDa, has sequence identity with two different proteins: protein kinase C (PKC) at the N-terminus and BCR protein [product of the breakpoint-cluster-region (BCR) gene, involved in Philadelphia chromosome translocation] at the C-terminus [Hall, Monfries, Smith, Lim, Kozma, Ahmed, Vannaisungham, Leung & Lim (1990) J. Mol. Biol. 211, 11-16]. The sequence identity of n-chimaerin with PKC includes the cysteine-rich motif CX2CX13CX2CX7CX7C, and amino acids upstream of the first cysteine residue, but not the kinase domain. This region of PKC has been implicated in the binding of diacylglycerol and phorbol esters in a phospholipid-dependent fashion. Part of this cysteine-rich motif (CX2CX13CX2C) has the potential of forming a 'Zn-finger' structure. Phorbol esters cause a variety of physiological changes and are among the most potent tumour promoters that have been described. PKC is the only known protein target for these compounds. We now report that n-chimaerin cDNA encodes a novel phospholipid-dependent phorbol ester receptor, with the cysteine-rich region being responsible for this activity. This finding has wide implications for previous studies equating phorbol ester binding with the presence of PKC in the brain. Images Fig. 4. PMID:2268301

  6. Constitutive apoptosis in equine peripheral blood neutrophils in vitro

    PubMed Central

    Brazil, Timothy J.; Dixon, Padraic M.; Haslett, Christopher; Murray, Joanna; McGorum, Bruce C.

    2014-01-01

    The aim of this study was to characterise constitutive apoptosis in equine peripheral blood neutrophils, including assessment of factors that potentially modulate neutrophil survival through alteration of the rate of constitutive apoptosis. Cells underwent spontaneous time-dependent constitutive apoptosis when aged in culture for up to 36 h, developing the structural and functional features of apoptosis observed in many cell types, including human neutrophils. Neutrophils undergoing apoptosis also had diminished zymosan activated serum (ZAS)-stimulated chemiluminescence, but maintained responsiveness to phorbol myristate acetate (PMA). The constitutive rate of equine neutrophil apoptosis was promoted by lipopolysaccharide (LPS), tumour necrosis factor α and phagocytosis of opsonised ovine erythrocytes, while it was inhibited by dexamethasone and ZAS (a source of C5a). Formyl-Met-Leu-Phe, leukotriene B4, platelet activating factor and PMA had no demonstrable effect on equine neutrophil apoptosis. There was a difference between equine and human neutrophil apoptosis in response to LPS and the time-dependence of the response to dexamethasone. PMID:25239298

  7. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism.

    PubMed Central

    Leeb-Lundberg, L M; Cotecchia, S; Lomasney, J W; DeBernardis, J F; Lefkowitz, R J; Caron, M G

    1985-01-01

    DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. This turnover was measured by determining the 32P content of phosphatidylinositol and phosphatidic acid after prelabeling of the cellular ATP pool with 32Pi. These phorbol ester-treated cells also displayed a decrease in binding affinity of cellular alpha 1 receptors for agonists with no change in antagonist affinity. By using affinity chromatography on the affinity resin Affi-Gel-A55414, the alpha 1 receptors were purified approximately equal to 300-fold from control and phorbol ester-treated 32Pi-prelabeled cells. As assessed by NaDodSO4/polyacrylamide gel electrophoresis, the Mr 80,000 alpha 1-receptor ligand-binding subunit is a phosphopeptide containing 1.2 mol of phosphate per mol of alpha 1 receptor. After phorbol ester treatment this increased to 3.6 mol of phosphate per mol of alpha 1 receptor. The effect of phorbol esters on norepinephrine-stimulated inositol phospholipid turnover and alpha 1-receptor phosphorylation showed the same rapid time course with a t1/2 less than 2 min. These results indicate that calcium- and phospholipid-dependent protein kinase may play an important role in regulating the function of receptors that are coupled to the inositol phospholipid cycle by phosphorylating and deactivating them. Images PMID:2994039

  8. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    PubMed

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer. PMID:25066610

  9. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    PubMed

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer.

  10. Inhibition of cytopathic effect of human immunodeficiency virus type-1 by various phorbol derivatives.

    PubMed

    El-Mekkawy, Sahar; Meselhy, Meselhy Ragab; Abdel-Hafez, Atef Abdel-Monem; Nakamura, Norio; Hattori, Masao; Kawahata, Takuya; Otake, Toru

    2002-04-01

    Forty-eight derivatives of phorbol (9) and isophorbol (14) were evaluated for their inhibition of human immunodeficiency virus (HIV)-1 induced cytopathic effects (CPE) on MT-4 cells, as well as their activation of protein kinase C (PKC), as indices of anti-HIV-1 and tumor promoting activities, respectively. Of these compounds, the most potent inhibition of CPE was observed in 12-O-tetradecanoylphorbol 13-acetate (8) and 12-O-acetylphorbol 13-decanoate (6). The former also showed the strongest PKC activation activity, while the latter showed no activity at 10 ng/ml. Both activities were generally observed in those phorbol derivatives with an A/B trans configuration, but not in the isophorbol derivatives with an A/B cis configuration. Acetylation of 20-OH in the phorbol derivatives significantly reduced the inhibition of CPE, as shown in 12-O-, 20-O-diacetylphorbol 13-decanoate (6a) (IC100=15.6 microg/ml) vs. compound 6 (IC100=0.0076 microg/ml), and 12-O-tetradecanoylphorbol 13,20-diacetate (8a) (IC100=15.6 microg/ml) vs. 12-O-tetradecanoylphorbol 13-acetate (8) (IC100=0.00048 microg/ml), except in the case of 12-O-decanoylphorbol 13-(2-methylbutyrate) (4) and phorbol 12,13-diacetate (9c). The reduction of a carbonyl group at C-3 abruptly reduced the inhibition of CPE, as observed in 3beta-hydroxyphorbol 12,13,20-triacetate (9f) (IC100=500 microg/ml) vs. phorbol 12,13,20-triacetate (9d) (IC100=62.5 microg/ml). Although 8 was equipotent in the inhibition of CPE, and activation of PKC, both activities were abruptly decreased by the acetylation of 20-OH and methylation of 4-OH [as in 8a and 4-O-methyl-12-O-tetradecanoylphorbol 13,20-diacetate (8b), respectively]. On the other hand, its positional isomer (12-O-acetylphorbol 13-tetradecanoate (8c) showed neither activities. The removal of a long acyl group in 8 led to a substantial loss of both activities, as shown in phorbol 13-acetate (9b). Of the 12-O-acetyl-13-O-acylphorbol derivatives, the highest inhibition of CPE

  11. Novel type of phorbol ester-dependent protein phosphorylation in the particulate fraction of mouse epidermis

    SciTech Connect

    Gschwendt, M.; Kittstein, W.; Marks, F.

    1986-06-13

    In a Triton X100-extract from the particulate fraction of mouse epidermis but also of other murine tissues, the phosphorylation of a protein with the relative molecular mass of 82,000 (p82) is found to be dependent on phosphatidyl serine and the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Unlike protein kinase C-catalyzed phosphorylation, p82 phosphorylation is neither observed in the presence of high concentrations of Ca/sup 2 +/ and phosphatidyl serine alone nor after addition of exogenous protein kinase C. Dioctanoylglycerol and the incomplete promoter 12-O-retinoylphorbol-13-acetate are also capable of stimulating p82 phosphorylation, whereas the non-promoting phorbol ester 4-O-methyl-TPA is at least 100-fold less active in this respect.

  12. Tumor-promoting phorbol esters support the in vitro proliferation of murine pluripotent hematopoietic stem cells.

    PubMed Central

    Spivak, J L; Hogans, B B; Stuart, R K

    1989-01-01

    The effect of tumor-promoting phorbol esters on the in vitro proliferation of mouse pluripotent hematopoietic stem cells (CFU-S) was examined using a short-term in vitro culture system and an 11-d spleen colony assay. Phorbol myristate acetate (PMA, 10(-7) M), but not the inert compound phorbol, supported the in vitro survival of day 11 CFU-S for 72 h in a manner similar to IL 3. PMA also enhanced the effect of IL 3 on the in vitro survival of day 11 CFU-S and as little as 1 h of exposure to PMA was sufficient for this purpose. The effect of PMA on CFU-S survival in vitro was not mediated by prostaglandins, did not require an established adherent cell population, and was observed at a concentration of 10(-9) M. PMA alone did not enhance the in vitro survival of day 11 CFU-S at very low concentrations of FCS but was still able to potentiate the effect of IL 3 on these cells. PMA also enhanced the in vitro survival of day 11 CFU-S from mice treated with 5-fluorouracil or from marrow cells exposed to merocyanine 540 and light. The interaction of PMA with day 11 CFU-S was not inhibited by a neutralizing antiserum to IL 3 but was inhibited by the protein kinase inhibitor H-7. Together, the data indicate that tumor-promoting phorbol esters interact with pluripotent hematopoietic stem cells. Like IL 3, their effect appears to be permissive and involves stem cells with marrow repopulating ability. PMID:2463264

  13. Formation of a phorbol ester-binding fragment from protein kinase C by proteolytic digestion

    SciTech Connect

    Hoshijima, M.; Kikuchi, A.; Tanimoto, T.; Kaibuchi, K.; Takai, Y.

    1986-06-01

    When washed human platelets were disrupted by sonication in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, both the catalytic and (/sup 3/H)phorbol-12,13-dibutyrate (PDBu)-binding activities of protein kinase C were recovered in the soluble fraction and were not separable from each other upon several column chromatographies. Platelet protein kinase C required diacylglycerol, Ca2+, and phospholipid for its activation and showed a molecular weight of about 87,000 as estimated by gel filtration analysis. However, when platelets were first incubated with 2 microM Ca2+-ionophore A23187 for 5 min at 37 degrees C in the medium containing 3 mM CaCl/sub 2/ and then disrupted under the same conditions, the catalytic and (/sup 3/H)phorbol-12,13-dibutyrate-binding activities were separately recovered in the soluble and particulate fractions, respectively; moreover, the catalytic activity recovered in the soluble fraction became independent of diacylglycerol, Ca2+, and phospholipid, and showed a molecular weight of about 50,000 as estimated by gel filtration analysis. The kinetic properties of this Mr 50,000 enzyme were similar to those of the catalytic fragment of rat brain protein kinase C described previously. In a cell-free system, digestion with trypsin of protein kinase C highly purified from rat brain caused the generation of a fragment which had no catalytic activity but showed full (/sup 3/H)phorbol-12,13-dibutyrate-binding activity. The molecular weight of this fragment was estimated to be about 35,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results indicate that protein kinase C consists of at least two functionally different domains, a hydrophobic phorbol ester- or diacylglycerol-binding and hydrophilic catalytic domains.

  14. Effect of phorbol derivatives and staurosporine on gravitropic response of primary root of maize

    SciTech Connect

    Mulkey, T.J.; Kim, S.Y. ); Lee, J.S. )

    1991-05-01

    Time-lapse videography and computer-based, video image digitization were used to examine the effects of phorbol derivatives (phorbol 12-myristate 13-acetate, TPA; phorbol 12-myristate 13-acetate 4-O-methyl ether, mTPA) and staurosporine on the kinetics of gravicurvature of primary roots of maize (Zea mays L., Pioneer 3343 and Golden Cross Bantam). Pretreatment of roots with TPA (3 hr, 1 {mu}M) decreases the time lag prior to induction of positive gravicurvature in horizontally-oriented roots by > 60%. The rate of curvature is not significantly different than the rate observed in control roots. Wrongway curvature which is observed in 30-40% of control roots is not observed in TPA-pretreated roots. Oscillatory movements observed in control roots after completion of gravitropic reorientation is completely dampened in TPA-pretreated roots. Pretreatment of roots with mTPA(3hr,1{mu}M), the inactive analog of TPA, does not significantly alter the kinetics of gravicurvature of primary roots of maize. Staurosporine (10{sup {minus}8}M), a microbial alkaloid which has been reported to have antifungal activity and to inhibit phospholipid/Ca{sup ++} dependent protein kinase, completely inhibits TPA-induced alteration of the kinetics of gravitropism. DAG (1-oleoyl-2-acetyl-rac-glycerol), a synthetic diglyceride activator of protein kinase C, exhibits similar activity to TPA. TPA-induced alterations in tissue response to auxin are presented.

  15. Effect of phorbol esters on contractile state and calcium flux in cultured chick heart cells

    SciTech Connect

    Leatherman, G.F.; Kim, D.; Smith, T.W.

    1987-07-01

    Phorbol esters are potent tumor promoters that have been widely used in studies of transmembrane signaling because of their ability to activate protein kinase C. To study the effect of phorbol esters (and indirectly, the role of protein kinase C) on the cardiac muscle contractility, the authors examined the effects of phorbol myristate acetate (PMA) on contractile state, transmembrane /sup 45/Ca fluxes, and cytosolic free Ca concentration ((Ca)/sub i/) using spontaneously contracting cultured chick ventricular cells. PMA produced a concentration- and time-dependent decrease in the amplitude of cell motion (half maximum inhibitory concentration) with maximal effect observed at 1 ..mu..M. PMA (1 ..mu..M) reduced /sup 45/Ca uptake rate by 16 /plus minus/ 4% and the size of the rapidly exchangeable Ca pool by 11 /plus minus/ 2%, but did not alter the /sup 45/Ca efflux rate. In fura-2-loaded cells. PMA produced a decrease in (Ca)/sub i/ from 96 /plus minus/ 7 to 72 /plus minus/ 5 nM with a time course similar to that of alteration in contractile amplitude. These results indicate that PMA influences transsarcolemmal Ca uptake, and thus the excitation-contraction process, and suggest that protein kinase C may modulate myocardial Ca homeostassis and contractile state.

  16. Phorbol esters enhance attachment of NIH/3T3 cells to laminin and type IV collagen substrates

    SciTech Connect

    Kato, Shigemi; Ben, T.L.; De Luca, L.M. )

    1988-11-01

    The effect of phorbol esters on the adhesive properties of NIH/3T3 mouse fibroblasts was investigated using plastic substrates precoated with the extracellular matrix proteins fibronectin, collagen, and laminin. Treatment with phorbol 12-myristate 13-acetate (PMA) enhanced NIH/3T3 cell attachment to laminin and type IV collagen substrates but had little or no effect on attachment to fibronectin and type I collagen substrates. The effect of PMA in enhancing cell attachment to laminin and type IV collagen substrates was dose dependent between 10{sup {minus}9} and 10{sup {minus}7} M. PMA was effective as early as 30 min; the effect reached a maximum at 2 h and decreased gradually. Phorbol 12, 13-dibenzoate and phorbol 12, 13-diacetate were effective but to a lesser extent and phorbol 12-myristate and phorbol 13-acetate showed little or no effect. These results suggest that PMA may enhance NIH/3T3 cell adhesion through effects on laminin and type IV collagen receptors. Retinoic acid, which itself requires at least 6 h to show an effect on attachment, did not have any effect on cell attachment in 2 h and, if anything, slightly inhibited PMA-enhanced cell attachment to laminin and type IV collagen substrates.

  17. The peroxisome proliferator activated receptor delta is required for the differentiation of THP-1 monocytic cells by phorbol ester.

    PubMed

    Vosper, Helen; Khoudoli, Guennadi A; Palmer, Colin NA

    2003-12-11

    BACKGROUND: PPARdelta (NR1C2) promotes lipid accumulation in human macrophages in vitro and has been implicated in the response of macrophages to vLDL. We have investigated the role of PPARdelta in PMA-stimulated macrophage differentiation.The THP-1 monocytic cell line which displays macrophage like differentiation in response to phorbol esters was used as a model system. We manipulated the response to PMA using a potent synthetic agonist of PPARdelta, compound F. THP-1 sub-lines that either over-expressed PPARdelta protein, or expressed PPARdelta anti-sense RNA were generated. We then explored the effects of these genetic modulations on the differentiation process. RESULTS: The PPARdelta agonist, compound F, stimulated differentiation in the presence of sub-nanomolar concentrations of phorbol ester. Several markers of differentiation were induced by compound F in a synergistic fashion with phorbol ester, including CD68 and IL8. Over-expression of PPARdelta also sensitised THP-1 cells to phorbol ester and correspondingly, inhibition of PPARdelta by anti-sense RNA completely abolished this response. CONCLUSIONS: These data collectively demonstrate that PPARdelta plays a fundamental role in mediating a subset of cellular effects of phorbol ester and supports observations from mouse knockout models that PPARdelta is involved in macrophage-mediated inflammatory responses.

  18. Screening for toxic phorbol esters in jerky pet treat products using LC-MS.

    PubMed

    Nishshanka, Upul; Jayasuriya, Hiranthi; Chattopadhaya, Chaitali; Kijak, Philip J; Chu, Pak-Sin; Reimschuessel, Renate; Tkachenko, Andriy; Ceric, Olgica; De Alwis, Hemakanthi G

    2016-05-01

    Since 2007, the U.S. FDA's Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats. Jerky used in pet treats contains glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Because some biodiesel is produced using oil from Jatropha curcas, a plant that contains toxic compounds including phorbol esters, CVM developed a liquid chromatography-mass spectrometry (LC-MS) screening method to evaluate investigational jerky samples for the presence of these toxins. Results indicated that the samples analyzed with the new method did not contain Jatropha toxins at or above the lowest concentration tested. PMID:27038400

  19. The insulin-like effects of phorbol myristate acetate (PMA) in the isolated fat cell

    SciTech Connect

    Solomon, S.S.; Palazzolo, M. )

    1989-01-01

    Recent data from many laboratories suggest that insulin stimulates diacylglycerol formation. Data presented in this manuscript demonstrate an insulin-like effect of PMA, a tumor promoting agent that mimics the action of diacylglycerol, in isolated adipocytes on; (a) glucose oxidation using uniformly labelled, C-1-labelled and C-6-labelled glucose, (b) epinephrine-induced lipolysis and (c) low Km cAMP phosphodiesterase activity. Additionally, a lipolytic effect of PMA is identified when unopposed by epinephrine. These data not only demonstrate an insulin-like effect of phorbol esters in adipose tissue but they lend support to the concept of diacylglycerol involvement in the mechanism of insulin action.

  20. Luminol-dependent photoemission from single neutrophil stimulated by phorbol ester and calcium ionophore--role of degranulation and myeloperoxidase

    SciTech Connect

    Suematsu, M.; Oshio, C.; Miura, S.; Suzuki, M.; Houzawa, S.; Tsuchiya, M.

    1988-08-30

    Luminol-dependent photonic burst from phorbol ester-treated single neutrophil was visually investigated by using an ultrasensitive photonic image intensifier microscope. Neutrophils stimulated by phorbol myristate acetate (0.1 microgram/ml) alone produced a negligible level of photonic activities in the presence of luminol (10 micrograms/ml). The additional application of 0.1 microM Ca2+ ionophore A23187 induced explosive changes of photonic burst corresponding to the distribution of neutrophils, and these photonic activities were gradually spread to extracellular space. Sodium azide, which prevents myeloperoxidase activity, inhibited Ca2+ ionophore-induced photonic burst from phorbol ester-treated neutrophil. These findings suggest a prerequisite role of degranulation and myeloperoxidase release in luminol-dependent photoemission from stimulated neutrophils.

  1. Tumor promoter 12-O-tetradecanoyl phorbol 13-acetate and regulatory diacylglycerols are substrates for the same carboxylesterase

    SciTech Connect

    Mentlein, R.

    1986-06-15

    Rat liver homogenate or cell fractions deacylate 12-O-tetradecanoyl phorbol 13-acetate (TPA) in vitro mainly by conversion to phorbol 13-acetate. The highest specific activity is located in the microsomal fraction. The deacylation is inhibited by bis-(4-nitrophenyl) phosphate, a selective inhibitor of nonspecific carboxylesterases. Only two of five purified esterases from rat liver endoplasmic reticulum deacylate TPA. These two esterases have formerly been characterized as acylcarnitine hydrolases and the more active one is also a potent diacylglycerol lipase. Its TPA-hydrolyzing activity is inhibited by other substrates like 1-naphthylacetate, lauroylcarnitine, or dioleoyl glycerol. The results support the view that phorbol esters act like structural analogs of diacylglycerols, not only with respect to their activating effect on protein kinase C, but also as substrates for the same lipases.

  2. Phorbol esters and adenosine affect the readily releasable neurotransmitter pool by different mechanisms at amphibian motor nerve endings.

    PubMed

    Searl, T J; Silinsky, E M

    2003-12-01

    Phorbol esters and adenosine have been proposed to interact at common sites downstream of calcium entry at amphibian motor nerve endings. We thus studied the actions and interactions of phorbol esters and adenosine using electrophysiological recording techniques in conjunction with both binomial statistical analysis and high-frequency stimulation at the amphibian neuromuscular junction. To begin this study, we confirmed previous observations that synchronous evoked acetylcholine (ACh) release (reflected as endplate potentials, EPPs) is well described by a simple binomial distribution. We then used binomial analysis to study the effects of the phorbol ester phorbol dibutyrate (PDBu, 100 nM) and adenosine (50 microM) on the binomial parameters n (the number of calcium charged ACh quanta available for release) and p (the average probability of release), where the mean level of evoked ACh release (m) = np. We found that PDBu increased m by increasing the parameter n whilst adenosine reduced m by reducing n; neither agent affected the parameter p. PDBu had no effect on either the potency or efficacy of the inhibition produced by adenosine. Subtle differences between these two agents were revealed by the patterns of EPPs evoked by high-frequency trains of stimuli. Phorbol esters increased ACh release during the early phase of stimulation but not during the subsequent plateau phase. The inhibitory effect of adenosine was maximal at the beginning of the train and was still present with reduced efficacy during the plateau phase. When taken together with previous findings, these present results suggest that phorbol esters increase the immediately available store of synaptic vesicles by increasing the number of primed vesicles whilst adenosine acts at a later stage of the secretory process to decrease the number of calcium-charged primed vesicles.

  3. Tumor-promoting phorbol ester stimulates tyrosine phosphorylation in U-937 monocytes.

    PubMed Central

    Grunberger, G; Zick, Y; Taylor, S I; Gorden, P

    1984-01-01

    Solubilized lectin-purified extracts from human monocyte-like cells (U-937) and freshly isolated human mononuclear cells preincubated in the presence of phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of synthetic tyrosine-containing polymers and of casein. Tyrosine phosphorylation was confirmed by phospho amino acid analysis. PMA stimulated phosphorylation of exogenous substrates in a time- and concentration-dependent manner. This phosphorylation reaction did not require addition of phospholipid, diolein, or calcium. Biologically inactive phorbol compounds did not stimulate phosphorylation in this system. In addition, PMA enhanced phosphorylation of a Mr approximately equal to 140,000 protein as well as several other endogenous proteins in the U-937 extracts. PMA treatment stimulated predominantly phosphorylation on tyrosine residues of the Mr 140,000 protein. Tyrosine phosphorylation, typical of growth-promoting peptides such as insulin or epidermal growth factor, is believed to play a role in regulating normal and disordered cellular growth and proliferation. The demonstration of PMA-stimulated tyrosine phosphorylation might provide a clue to the mechanism of cellular differentiation and proliferation induced by the tumor promoter. Images PMID:6201862

  4. Oncogene transcription in normal human IMR-90 fibroblasts: induction by serum and tetradecanoyl phorbol acetate

    SciTech Connect

    Bower, E.A.; Kaji, H.

    1988-01-01

    The authors report studies of oncogene transcription induced by the addition of serum to quiescent cultures of human IMR-90 fibroblasts. Oncogene messenger RNAs for c-myc, c-erbB and c-ras were increased in a specific temporal sequence after the addition of serum. Compounds that are proposed to exert their actions by the stimulation of cell growth were tested for their effect on oncogene transcription in IMR-90 fibroblasts. The tumor promoter tetradecanoyl phorbol acetate (TPA) was found to selectively induce the transcription of c-myc without observable effect on the transcription of the other oncogenes studied, and without inducing cell division. The inactive analog, phorbol didecanoate (PDD), and two complete carcinogens dimethylbenzanthracene (DMBA) and 4-nitro quinoline-1-oxide (4NQO) were without effect on the transcription of the genes studied. These results suggest that the complete ordered sequence of gene transcription is necessary to achieve the physiologic response of cell division, and that classical promoters and complete carcinogens achieve their effects through different pathways.

  5. Degradation of phorbol 12,13-diacetate in aqueous solution by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kongmany, Santi; Furuta, Masakazu; Matsuura, Hiroto; Okuda, Shuichi; Imamura, Kiyoshi; Maeda, Yasuaki

    2014-12-01

    Phorbol esters (PEs) are highly toxic compounds that cause skin irritation, inflammation, and tumor promotion upon contact with humans or animals. These compounds are naturally present in Jatropha curcas L. To promote the use of J. curcas seed oil in bio-diesel production industries and reduce environmental concerns, it is necessary to find methods of degrading PEs. In this study, the degradation of phorbol 12,13-diacetate (PDA), as a representative PE, in aqueous solution at a concentration of 10 mg/L by 60Co-γ-irradiation was investigated. The results demonstrate that PDA was effectively degraded by this treatment and the degradation efficiency increased with the absorbed dose within the range of 0.5-3 kGy. Complete degradation of PDA was achieved at a dose of 3 kGy. In the presence of radical scavengers (i.e., methanol, tert-butanol, 2-propanol), reactive species from water radiolysis were scavenged, and significant inhibition of PDA degradation was observed at absorbed doses less than 1 kGy. In the presence of nitrous oxide, the generation of hydroxyl radicals (rad OH) was promoted during gamma irradiation and PDA degradation was drastically enhanced.

  6. An AP-2 element acts synergistically with the cyclic AMP- and Phorbol ester-inducible enhancer of the human proenkephalin gene

    SciTech Connect

    Hyman, S.E.; Comb, M.; Pearlberg, J.; Goodman, H.M.

    1989-01-01

    An enhancer with two DNA elements, one containing the sequence CGTCA, is required for cyclic AMP-and phorbol ester-inducible transcription of the human proenkephalin gene. The authors report that an AP-2 element located adjacent to the enhancer acts synergistically with it to confer maximal response to cyclic AMP and phorbol esters.

  7. Relationship between apoptosis and the cell cycle in lymphocytes: roles of protein kinase C, tyrosine phosphorylation, and AP1.

    PubMed

    Walker, P R; Kwast-Welfeld, J; Gourdeau, H; Leblanc, J; Neugebauer, W; Sikorska, M

    1993-07-01

    The mechanism of switching between the cell cycle and active cell death (apoptosis) was investigated in cytokine-dependent CTLL cells. These cells proliferate in the presence of interleukin 2 (IL2), but accumulate in early G1 and undergo apoptosis in its absence. In the absence of IL2 the cells also become sensitive to glucocorticoid-induced apoptosis. Using specific inhibitors of protein kinase C and tyrosine kinases we established that two signals are required to fully repress cell death and stimulate G1 progression. One of these signals activates protein kinase C (PKC) which represses cell death and the other activates a tyrosine kinase which confers glucocorticoid resistance and permits cell cycle progression. Thus, phorbol esters can activate PKC and maintain cell viability in the absence of IL2, but the cells cannot proliferate. Moreover, the cells remain sensitive to glucocorticoid-induced apoptosis unless the tyrosine kinase-mediated signal is also given. There is a correlation between the presence of AP1 DNA-binding activity and the repression of the cell death pathway. The c-jun gene is expressed constitutively and both IL2 and phorbol esters induce the expression of c-fos to generate a functional AP1 capable of repressing cell death. However, only interleukin 2 can initiate the tyrosine kinase-mediated modification that confers dexamethasone resistance and permits G1 progression. In the absence of IL2 glucocorticoids stimulate AP1 degradation and induce apoptosis.

  8. Phorbol ester-induced inhibition of. beta. -adrenergic - and vasopressin-mediated responses in an established smooth muscle cell line

    SciTech Connect

    Not Available

    1986-03-01

    A-10 cells which are derived from embryonic rat thoracic aorta contain a high density of vasopressin receptors and relatively fewer ..beta..-adrenergic receptors. The effects of vasopressin binding to these cells are two-fold: a) inhibition of isoproterenol-stimulated cAMP accumulation, and; b) stimulation of phosphatidyl inositol turnover. Incubation of these cells with phorbol dibutyrate leads to an attenuation of the responses mediated by ..beta..-adrenergic agonist as well as vasopressin. This effect of phorbol ester is concentration- and time-dependent and can be observed as early as five minutes. The inactive phorbol ester (4 ..cap alpha.. phorbol 12,13-didecanoate) is ineffective in inhibiting ..beta..-adrenergic agonist and vasopressin-mediated responses. Since present evidence indicates that the enzyme protein kinase C (PK-C) is involved in both short-term and long-term regulatory processes such as secretion, smooth muscle contraction and cell growth, these data suggest that both ..beta..-adrenergic and vasopressin receptors and/or some mediator(s) of ..beta..-adrenergic and/or vasopressin responses may be phosphorylated by protein kinase C resulting in an attenuated response of these two hormones.

  9. Tumour-promoting phorbol esters increase basal and inhibit insulin-stimulated lipogenesis in rat adipocytes without decreasing insulin binding.

    PubMed Central

    van de Werve, G; Proietto, J; Jeanrenaud, B

    1985-01-01

    In isolated rat adipocytes, tumour-promoting phorbol esters caused (1) dose-dependent stimulation of lipogenesis in the absence of insulin and (2) inhibition of the lipogenic effect of submaximal concentrations of insulin, but without affecting insulin binding. The possible involvement of protein kinase C in insulin action is discussed. PMID:3883992

  10. Effect of phorbol ester on the release of atrial natriuretic peptide from the hypertrophied rat myocardium.

    PubMed Central

    Kinnunen, P.; Taskinen, T.; Järvinen, M.; Ruskoaho, H.

    1991-01-01

    1. To determine the cellular mechanisms of atrial natriuretic peptide (ANP) release from ventricular cardiomyocytes, the secretory and the cardiac effects of a phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate protein kinase C activity in heart cells, were studied in isolated, perfused heart preparations from 2- and 21-month-old Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. TPA was added to the perfusion fluid for 30 min at a concentration of 46 nM after removal of atrial tissue. Additionally, atrial and ventricular levels of immunoreactive ANP (IR-ANP) and ANP mRNA, the distribution of ANP within ventricles as well as the relative contribution of atria and ventricles in the release of ANP were studied. 2. Ventricular hypertrophy that gradually developed in hypertensive rats resulted in remarkable augmentation of ANP gene expression, as reflected by elevated levels of immunoreactive ANP and ANP mRNA. The total amount of IR-ANP in the ventricles of the SHR rats increased 41 fold and ANP mRNA levels 12.9 fold from the age of 2 to 21 months. At the age of 21 months, levels of IR-ANP and ANP mRNA in the ventricles of SHR rats were 5.4 fold and 3.7 fold higher, respectively, than in the normotensive WKY rats. Immunohistochemical studies demonstrated ANP granules within the hypertrophic ventricles of the old SHR rats, but not within normal ventricular tissue. 3. In isolated perfused heart preparations, the severely hypertrophied ventricular tissue of SHR rats after atrialectomy secreted more ANP into the perfusate than did the control hearts.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 PMID:1826618

  11. Okadaic acid: An additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter

    SciTech Connect

    Suganuma, Masami; Fujiki, Hirota; Suguri, Hiroko; Yoshizawa, Shigeru; Hirota, Mitsuru; Nakayasu, Michie ); Ojika, Makoto; Wakamatsu, Kazumasa; Yamada, Kiyoyuki ); Sugimura, Takashi )

    1988-03-01

    Okadaic acid is a polyether compound of a C{sub 38} fatty acid, isolated from a black sponge, Halichondria okadai. Previous studies showed that okadaic acid is a skin irritant and induces ornithine decarboxylase in mouse skin 4 hr after its application to the skin. This induction was strongly inhibited by pretreatment of the skin with 13-cis-retinoic acid. A two-stage carcinogenesis experiment in mouse skin initiated by a single application of 100 {mu}g of 7,12-dimethylbenz(a)anthracene (DMBA) and followed by application of 10 {mu}g of okadaic acid twice a week revealed that okadaic acid is a potent additional tumor promoter: tumors developed in 93% of the mice treated with DMBA and okadaic acid by week 16. In contrast, tumors were found in only one mouse each in the groups treated with DMBA alone or okadaic acid alone. An average of 2.6 tumors per mouse was found in week 30 in the group treated with DMBA and okadaic acid. Unlike phorbol 12-tetradecanoate 13-acetate (TPA), teleocidin, and aplysiatoxin, okadaic acid did not inhibit the specific binding of ({sup 3}H)TPA to a mouse skin particulate fraction when added up to 100 {mu}M or activate calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in vitro when added up to 1.2 {mu}M. Therefore, the actions of okadaic acid and phorbol ester may be mediated in different ways. These results show that okadaic acid is a non-TPA-type tumor promoter in mouse skin carcinogenesis.

  12. Effect of phorbol esters on iron uptake in human hematopoietic cell lines

    SciTech Connect

    Testa, U.; Titeux, M.; Louache, F.; Thomopoulos, P.; Rochant, H.

    1984-11-01

    We have investigated the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on iron uptake into human hematopoietic cell lines K562, U937, and HL-60. TPA inhibited both cell growth and iron uptake by these cell lines. This effect was rapid, which is typical of phorbol esters which are biologically active, and it occurred at very low concentrations of TPA. This effect of TPA was dependent upon an inhibition of the transferrin-binding capacity as estimated on intact cells. However, experiments with transferrin binding on cell samples dissolved in 1% Triton X-100 showed that TPA-treated cells exhibited a transferrin-binding capacity similar to that of control cells. On the basis of this result, it is suggested that TPA modified a part of transferrin receptors present in the cells; as a result of this modification, these receptors became unavailable for binding transferrin, but they remained physically present in the cell. Other compounds capable of inducing the differentiation of leukemic cells, such as dimethyl sulfoxide, butyrate, retinoic acid, and 1 alpha,25-dihydroxy-vitamin D3, did not acutely inhibit iron uptake. We also investigated the effect of TPA on transferrin receptors in a cellular system in which phorbol esters stimulate cell proliferation. At 16 X 10(-9) M, TPA markedly stimulated the proliferation of T-lymphocytes. However, in spite of this marked stimulation of cell proliferation, TPA-stimulated lymphocytes exhibited a transferrin-binding capacity much inferior to cells stimulated by other mitogens, such as phytohemagglutinin.

  13. Regulation of osteosarcoma EGF receptor affinity by phorbol ester and cyclic AMP

    SciTech Connect

    Borst, S.E.; Catherwood, B.D. )

    1989-04-01

    We studied the binding and degradation of 125I-labeled epidermal growth factor (EGF) by UMR-106 osteosarcoma cells and the regulation of EGF receptor affinity for EGF by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and by treatments that raise intracellular levels of cyclic AMP. Cell surface binding of (125I)EGF to A431 cells reached a plateau after a 30 minute incubation at 37 degrees C but was undetectable in UMR-106 cells. Degradation of (125I)EGF proceeded at a 50-fold higher rate in A431 cells on a per cell basis, but receptor-bound (125I)EGF was internalized and degraded at a 3.5-fold higher rate by UMR-106 cells on a per receptor basis. At 4 degrees C, (125I)EGF labeled a single class of surface binding sites in the UMR-106 cell. Treatment with TPA at 37 degrees C reduced subsequent cell surface binding of (125I)EGF at 4 degrees C a maximum of 80% with an IC50 of 1.25 ng/ml. Maximal TPA reduction of (125I)EGF binding was observed within 5-15 minutes and was due to a reduction in the affinity of cell surface receptors of (125I)EGF without a change in receptor density. Pretreatment of the cells for 4 h with 30 microM forskolin, 1 mM isobutylmethylxanthine (IBMX) plus 30 microM forskolin, or 1 mM IBMX plus 100 ng/ml parathyroid hormone (PTH) attenuated the loss in (125I)EGF binding caused by a subsequent dose of 10 ng/ml of TPA by 17% (p less than 0.0005), 39% (p less than 0.0002), and 35% (p less than 0.002), respectively.

  14. Calcium-independent binding to interfacial phorbol esters causes protein kinase C to associate with membranes in the absence of acidic lipids.

    PubMed

    Mosior, M; Newton, A C

    1996-02-01

    The mechanism of interaction of phorbol esters with conventional protein kinase Cs was addressed by examining the direct binding of this class of activators to protein kinase C beta II. Binding measurements reveal that the major role of phorbol esters is to increase the affinity of protein kinase C for membranes by several orders of magnitude. The relative increase depends linearly on the mole fraction of phorbol esters in membranes, with the potency illustrated by the finding that 1 mol% phorbol 12-myristate 13-acetate (PMA) increases protein kinase C's membrane association by approximately 4 orders of magnitude. For comparison, diacylglycerol (DG), which also activates protein kinase C by increasing the enzyme's membrane affinity, is 2 orders of magnitude less effective than PMA in altering protein kinase C's membrane affinity. The remarkably high-affinity interaction with phorbol esters allowed us to measure the direct binding of protein kinase C to PMA in neutral membranes and, thus, to evaluate the effect of Ca2+ on the phorbol ester interaction in the absence of Ca2+ effects on the enzyme's interaction with acidic lipids. Changing the Ca2+ concentration over 5 orders of magnitude had no effect on the direct interaction of protein kinase C with PMA immobilized in phosphatidylcholine membranes. Thus, the Ca(2+)-binding site for membrane association and the phorbol ester-binding site do not interact allosterically. Lastly, a method that does not have the limitations of the Scatchard plot for analysis of amphitropic proteins was used to determine the dissociation constant of protein kinase C from phorbol esters: expressed relative to membrane lipids, the dissociation constant is 1.5 x 10(-5) mol %. In summary, our data reveal that (1) the direct binding of protein kinase C to phorbol esters, in the absence of interactions with acidic lipids, provides a major contribution to the free energy change involved in the association of protein kinase C with membranes and

  15. Potential treatments to reduce phorbol esters levels in jatropha seed cake for improving the value added product.

    PubMed

    Sadubthummarak, Umapron; Parkpian, Preeda; Ruchirawat, Mathuros; Kongchum, Manoch; Delaune, R D

    2013-01-01

    Jatropha seed cake contains high amounts of protein and other nutrients, however it has a drawback due to toxic compounds. The aim of this study was to investigate the methods applied to detoxify the main toxin, phorbol esters in jatropha seed cake, to a safe and acceptable level by maintaining the nutritional values. Phorbol esters are tetracyclic diterpenoids-polycyclic compounds that are known as tumor promoters and hence exhibited the toxicity within a broad range of species. Mismanagement of the jatropha waste from jatropha oil industries would lead to contamination of the environment, affecting living organisms and human health through the food chain, so several methods were tested for reducing the toxicity of the seed cake. The results from this investigation showed that heat treatments at either 120°C or 220°C for 1 hour and then mixing with adsorbing bentonite (10%), nanoparticles of zinc oxide (100 μg/g) plus NaHCO3 at 4%, followed by a 4-week incubation period yielded the best final product. The remaining phorbol esters concentration (0.05-0.04 mg/g) from this treatment was less than that reported for the nontoxic jatropha varieties (0.11-0.27 mg/g). Nutritional values of the seed cake after treatment remained at the same levels found in the control group and these values were crude protein (20.47-21.40 + 0.17-0.25%), crude lipid (14.27-14.68 + 0.13-0.14%) and crude fiber (27.33-29.67 + 0.58%). A cytotoxicity test conducted using L929 and normal human dermal fibroblast cell lines confirmed that most of the toxic compounds, especially phorbol esters, were shown as completely eliminated. The results suggested that the detoxification of phorbol esters residues in the jatropha seed cake was possible while it also retained nutritional values. Therefore, the methods to detoxify phorbol esters are necessary to minimize the toxicity of jatropha seed cake. Further, it is essential to reduce the possible environmental impacts that may be generated

  16. Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A

    SciTech Connect

    Kiguchi, Kaoru; Chubb, C.H.; Glesne, D.; Huberman, E. |; Fujiki, Hirota

    1994-09-01

    To investigate a possible relationship between apoptosis induction and protein phosphorylation in human breast carcinoma cells, the authors treated three such cell types, MB-231, MCF-7, and AU-565, wit okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A, or phorbol 12 myristate 13-acetate, an activator of protein kinase C. They then examined these cells of the appearance of apoptosis markers. While OA caused multiplication arrest and cytotoxicity in all three cell lines, apoptosis was induced in MB-231 and MCF-7 cells but not in AU-565 cells. A similar cell-specific apoptosis induction was also observed after treatment with dinophysistoxin-1 (an active OA analogue) and with calyculin A (a structurally unrelated protein phosphatase inhibitor) but not with analogues that either ar inactive or penetrate epithelial cells poorly. Phorbol 12-myristate 13-acetate also inhibited cell multiplication but was without effect in inducing apoptosis in these cells. Levels of the apoptosis-inhibitory protein BCL2 were examined in these cells, but they did to correlate with this differential susceptibility. They additionally treated the three cell types with 1-{beta}-D-arabinofuranosylcytosine and genistein to determine whether the AU-565 cell line would also be resistant to apoptosis induction by other chemical stimuli. Both of these agents led to the induction of apoptosis in all three cell lines. These results indicate that the AU-565 cells are specifically resistant to apoptosis induction by inhibitors of protein phosphatases 1 and 2A. This cell-specific resistance may thus allow one to identify cellular mediators of apoptosis by comparing protein phosphorylation patterns in these cells before and after treatment with OA or related inhibitors.

  17. Phorbol esters induce death in MCF-7 breast cancer cells with altered expression of protein kinase C isoforms. Role for p53-independent induction of gadd-45 in initiating death.

    PubMed Central

    de Vente, J E; Kukoly, C A; Bryant, W O; Posekany, K J; Chen, J; Fletcher, D J; Parker, P J; Pettit, G J; Lozano, G; Cook, P P

    1995-01-01

    Protein kinase C (PKC) modulates growth, differentiation and apoptosis in a cell-specific fashion. Overexpression of PKC-alpha in MCF-7 breast cancer cells (MCF-7-PKC-alpha cell) leads to expression of a more transformed phenotype. The response of MCF-7 and MCF-7-PKC-alpha cells to phorbol esters (TPA) was examined. TPA-treated MCF-7 cells demonstrated a modest cytostatic response associated with a G1 arrest that was accompanied by Cip1 expression and retinoblastoma hypophosphorylation. While p53 was detected in MCF-7 cells, evidence for TPA-induced stimulation of p53 transcriptional activity was not evident. In contrast, TPA treatment induced death of MCF-7-PKC-alpha cells. Bryostatin 1, another PKC activator, exerted modest cytostatic effects on MCF-7 cells while producing a cytotoxic response at low doses in MCF-7-PKC-alpha cells that waned at higher concentrations. TPA-treated MCF-7-PKC-alpha cells accumulated in G2/M, did not express p53, displayed decreased Cip1 expression, and demonstrated a reduction in retinoblastoma hypophosphorylation. TPA-treated MCF-7-PKC-alpha cells expressed gadd-45 which occurred before the onset of apoptosis. Thus, alterations in the PKC pathway can modulate the decision of a breast cancer cell to undergo death or differentiation. In addition, these data show that PKC activation can induce expression of gadd45 in a p53-independent fashion. Images PMID:7560079

  18. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids.

    PubMed

    Kazanietz, M G; Barchi, J J; Omichinski, J G; Blumberg, P M

    1995-06-16

    Binding of phorbol esters to protein kinase C (PKC) has been regarded as dependent on phospholipids, with phosphatidylserine being the most effective for reconstituting binding. By using a purified single cysteine-rich region from PKC delta expressed in Escherichia coli we were able to demonstrate that specific binding of [3H]phorbol 12,13-dibutyrate to the receptor still takes place in the absence of the phospholipid cofactor. However, [3H]phorbol 12,13-dibutyrate bound to the cysteine-rich region with 80-fold lower affinity in the absence than in the presence of 100 micrograms/ml phosphatidylserine. Similar results were observed with the intact recombinant PKC delta isolated from insect cells. When different phorbol derivatives were examined, distinct structure-activity relations for the cysteine-rich region were found in the presence and absence of phospholipid. Our results have potential implications for PKC translocation, for inhibitor design, and for PKC structural determination. PMID:7782331

  19. Special type of morphological reorganization induced by phorbol ester: reversible partition of cell into motile and stable domains

    SciTech Connect

    Dugina, V.B.; Svitkina, T.M.; Vasiliev, J.M.; Gelfand, I.M.

    1987-06-01

    The phorbol ester phorbol 12-myristate 13-acetate (PMA) induced reversible alteration of the shape of fibroblastic cells of certain transformed lines-namely, partition of the cells into two types of domains: motile body actively extending large lamellas and stable narrow cytoplasmic processes. Dynamic observations have shown that stable processes are formed from partially retracted lamellas and from contracted tail parts of cell bodies. Immunofluorescence microscopy and electron microscopy of platinum replicas of cytoskeleton have shown that PMA-induced narrow processes are rich in microtubules and intermediate filaments but relatively poor in actin microfilaments; in contrast, lamellas and cell bodies contained numerous microfilaments. Colcemid-induced depolymerization of microtubules led to contraction of PMA-induced processes; cytochalasin B prevented this contraction. It is suggested that PMA-induced separation of cell into motile and stable parts is due to directional movement of actin structures along the microtubular framework. Similar movements may play an important role in various normal morphogenetic processes.

  20. Alterations in polyamine levels induced by phorbol diesters and other agents that promote differentiation in human promyelocytic leukemia cells

    SciTech Connect

    Huberman, E.; Weeks, C.; Herrmann, A.; Callaham, M.; Slaga, T.

    1981-02-01

    Polyamine levels were evaluated in human HL-60 promyelocytic leukemia cells after treatment with inducers of terminal differentiation. Differentiation in these cells was determined by increases in the percentage of morphologically mature cells and in lysozyme activity. Treatment of the HL-60 cells with phorbol 12-myristate-13-acetate (PMA), phorbol 12,13-didecanoate or other inducers of terminal differentiation such as dimethylsulfoxide and retinoic acid resulted in increased levels of putrescine. However, no increase in putrescine could be detected after PMA treatment of a HL-60 cell variant that exhibited a decreased susceptibility to PMA-induced terminal differentiation. Similarly, no increase in putrescine was observed with two nontumor-promoters (phorbol 12,13-diacetate and 4-O-methyl-PMA) or with anthralin, a non-phorbol tumor promoter. In addition to enhancing putrescine levels, PMA also increased the amount of spermidine and decreased the amount of spermine. The increase in putrescine and spermidine preceded the expression of the various differentiation markers. Unlike the changes observed in the polyamine levels after PMA treatment, the activities of ornithine and S-adenosylmethionine decarboxylases, which are polyamine biosynthetic enzymes, did not significantly change. ..cap alpha..-Methylornithine and ..cap alpha..-difluoromethylornithine and methylglyoxal bis(guanylhydrazone), which are inhibitors of the polyamine biosynthetic enzymes, did not affect differentiation in control or PMA-treated cells. Because of these observations, we suggest that the change in polyamine levels involve biochemical pathways other than the known biosynthetic ones. By-products of these pathways may perhaps be the controlling factors involved in the induction of terminal differentiation in the HL-60 and other cell types as well.

  1. Vav Regulates Peptide-specific Apoptosis in Thymocytes

    PubMed Central

    Kong, Young-Yun; Fischer, Klaus-Dieter; Bachmann, Martin F.; Mariathasan, Sanjeev; Kozieradzki, Ivona; Nghiem, Mai P.; Bouchard, Dennis; Bernstein, Alan; Ohashi, Pamela S.; Penninger, Josef M.

    1998-01-01

    The protooncogene Vav functions as a GDP/GTP exchange factor (GEF) for Rho-like small GTPases involved in cytoskeletal reorganization and cytokine production in T cells. Gene-targeted mice lacking Vav have a severe defect in positive and negative selection of T cell antigen receptor transgenic thymocytes in vivo, and vav−/− thymocytes are completely resistant to peptide-specific and anti-CD3/anti-CD28–mediated apoptosis. Vav acts upstream of mitochondrial pore opening and caspase activation. Biochemically, Vav regulates peptide-specific Ca2+ mobilization and actin polymerization. Peptide-specific cell death was blocked both by cytochalasin D inhibition of actin polymerization and by inhibition of protein kinase C (PKC). Activation of PKC with phorbol ester restored peptide-specific apoptosis in vav−/− thymocytes. Vav was found to bind constitutively to PKC-θ in thymocytes. Our results indicate that peptide-triggered thymocyte apoptosis is mediated via Vav activation, changes in the actin cytoskeleton, and subsequent activation of a PKC isoform. PMID:9841924

  2. Contraction of rat thoracic aorta strips induced by phorbol 12-myristate 13-acetate

    SciTech Connect

    Itoh, H.; Lederis, K.

    1987-02-01

    Phorbol 12-myristate 13-acetate (PMA) induced a slow and progressive increase in tension of rat thoracic aorta strips in the presence of extracellular CaS . Complete relaxation could not be obtained in CaS -free buffer containing 1 mM ethyleneglycol-bis(US -aminoethylether)-N,N'-tetraacetic acid (EGTA) and 10 X M PMA. In the absence of extracellular CaS , PMA (10 X M) induced a small but sustained contraction which was not altered by the addition of another 2 mM EGTA and 3 x 10 V M verapamil. Papaverine (10 U M) relaxed the PMA-induced contraction to the base line, but phentolamine (10 V M), cyproheptadine (10 V M), atropine (10 V M) and tetrodotoxine (10 W M) did not change the contraction. CaS -depleted muscle strips, prepared by four repeated applications of 10 X M norepinephrine in CaS -free buffer, were contracted by 10 X M PMA, but at a lower maximum tension than nontreated strips. The action of PMA on rat aorta strips in CaS -free buffer did not require the presence of the adventitial layer or endothelial cells. These results suggest that PMA may induce activation of protein kinase C and smooth muscle contraction in the absence of extracellular CaS , without an increase in myoplasmic CaS .

  3. Rapid isolation and purification of phorbol esters from Jatropha curcas by high-speed countercurrent chromatography.

    PubMed

    Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo

    2015-03-18

    In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum. PMID:25686848

  4. Comparative effects of endothelin and phorbol 12-13 dibutyrate in rat aorta

    SciTech Connect

    Auguet, M.; Delaflotte, S.; Chabrier, P.E.; Braquet, P. )

    1989-01-01

    The vasoconstrictive properties of endothelin (ET-1) and the protein kinase C activator, phorbol 12-13 dibutyrate (PDB) were comparatively investigated in isolated rat aorta. ET-1 and PDB induced a slowly developing sustained contraction in endothelium denuded aorta. Maximal contractions induced by ET-1 and PDB were unaffected by diltiazem. Substantial contraction to ET-1 and PDB remained in calcium-free medium. Contractions of ET-1 and PDB in calcium-free medium were unaffected by intracellular calcium depletion induced by phenylephrine. Following the response to ET-1 and PDB in a calcium-free medium, an additional sustained was observed after calcium was added to the bath. The protein kinase C inhibitor, H7 was more potent in inhibiting contractions induced by phenylephrine and KCl than the ones elicited by ET-1 and PDB. The other protein kinase C inhibitors i.e. staurosporine and phloretin inhibited to a similar extent all the agonists tested. These results suggest that protein kinase C may play an important role in mediating the contraction to ET-1 in rat aorta.

  5. T-cell response to phorbol ester PMA and calcium ionophore A23187 in Down's syndrome.

    PubMed

    Bertotto, A; Crupi, S; Arcangeli, C; Gerli, R; Scalise, F; Fabietti, G; Agea, E; Vaccaro, R

    1989-11-01

    The proliferative response of purified T cells to anti-CD2 monoclonal antibodies (T112 plus T113) was found to be markedly reduced in 12 subjects with Down's syndrome (DS). The addition of phorbol ester PMA, which activates Ca2+/phospholipid-dependent enzyme protein kinase C, or calcium ionophore A23187, which increases intracytosolic free Ca2+ concentration, enhanced, but did not normalize, the defective anti-CD2-mediated T-cell mitogenesis. In contrast, the proliferation of resting lymphocytes from trisomic patients was comparable to that of the control cells when PMA and A23187 were used as co-blastogenic reagents. Because PMA and A23187 together bypass the early activation pathways and promote T-cell growth through the direct induction of membrane interleukin 2 (IL-2) receptor expression and IL-2 synthesis and secretion, it could reasonably be hypothesized that the faulty DS T-cell activation induced by antigen or mitogen is due to a deranged transmembrane signal transduction, rather than a defect in the later intracellular events. PMID:2573952

  6. Potentiation of phorbol ester-induced coronary vasoconstriction in dogs following endothelium disruption

    SciTech Connect

    Roberts, R.B.; Ku, D.D.

    1986-03-05

    In the present study, the effect of phorbol ester, 12-0-tetradecanoylphorbol 13-acetate (TPA), activation of protein kinase C on coronary vascular reactivity was studied in isolated dog coronary arteries. Addition of TPA (10-100 nM) produced a slow, time- and dose-dependent contraction reaching a maximum at approx 2-3 hrs and was essentially irreversible upon washing. Disruption of the endothelium(EC) greatly accelerated the development as well as increase the magnitude of TPA contraction (50-100%). Prior treatment of vessels with phentolamine (1..mu..M), cyproheptadine (1..mu..H) and ibuprofen (1..mu..g/ml) did not alter the TPA contraction. Furthermore, in contrast to previously reported calcium-dependence of TPA contraction in other vessels, complete removal of extracellular calcium (Ca/sub 0/) or addition of 1..mu..M nimodipine after TPA(30nM) resulted in only 32 +/- 4% and 25 +/- 3% reversal of TPA contraction, respectively. Addition of amiloride (10..mu..M to 1mM), however, resulted in a dose-dependent reversal of TPA contraction. The results of the present study indicate that a similar activation of protein kinase C by TPA leads to potent coronary vasoconstriction, which is not completely dependent on Ca/sub 0/. More importantly, these results further support their hypothesis that EC also functions as an inhibitory barrier to prevent circulating vasoconstrictors from exerting their deleterious constrictory effects.

  7. The effect of phorbol myristate acetate on the metabolism and ultrastructure of human alveolar macrophages.

    PubMed Central

    Hoidal, J. R.; Repine, J. E.; Beall, G. D.; Rasp, F. L.; White, J. G.

    1978-01-01

    In the present investigation we examined the influence of the surface-active agent phorbol myristate acetate (PMA) and opsonized heat-killed bacteria (HKB) on oxygen consumption, superoxide release, and glucose oxidation of human alveolar macrophages (AM). Both PMA and HKB produced a surge in oxygen consumption, superoxide release, and oxidation of 1-14C-glucose and 6-14C-glucose by human AM. Examination of AM by electron microscopy following stimulation by these two agents demonstrated membrane ruffling, loss of microvilli, and increased vacuolization in PMA-treated cells and phagocytic vacuoles containing bacteria in HKB-treated cells. The vacuolization produced by PMA-treated AM was much less striking than the vacuolization produced in PMA-treated leukocytes. The similarity in the metabolic and some of the physical responses of AM stimulated by PMA and HKB suggest that PMA may be a useful agent for evaluating cell-membrane-related events of phagocytosis in AM. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figures 9 and 10 Figures 11 and 12 PMID:207188

  8. Characterization of phorbol ester-stimulated serine phosphorylation of the human insulin receptor.

    PubMed Central

    Feener, E P; Shiba, T; Hu, K Q; Wilden, P A; White, M F; King, G L

    1994-01-01

    Phorbol 12-myristate 13-acetate (PMA)-stimulated phosphorylation of the human insulin receptor (IR) was characterized and compared in two cell types of different lineage: normal rat kidney epithelial (NRK) cells and Chinese hamster ovary (CHO) fibroblasts. PMA stimulation increased IR beta-subunit phosphorylation to 252 +/- 43 and 25- +/- 47% (+/- S.D.) of the unstimulated control in NRK and CHO cells respectively. Tryptic phosphopeptide analysis by Tricine/SDS/PAGE revealed significant differences in the PMA-stimulated phosphorylation of the IR in these two cell types. This phosphorylation of the IR was predominantly located in two tryptic phosphopeptides, and these phosphopeptides were absent in an IR mutant truncated by 43 C-terminal amino acids. The major PMA-stimulated tryptic phosphopeptide from in vivo-labelled CHO/IR was immunoprecipitated with an antibody against residues Ser1315 to Lys1329, and this precipitation was blocked with excess unlabelled peptide containing this sequence. Radiosequencing by manual Edman degradation revealed that this tryptic phosphopeptide was phosphorylated at Ser1315. This PMA-stimulated phosphorylation did not inhibit autophosphorylation of the IR in vivo. These results demonstrate that PMA-stimulated phosphorylation of the IR can exhibit significant differences when expressed in different cell types, and that Ser1315 is a major PMA-stimulated phosphorylation site on the human IR. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7945263

  9. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  10. Rapid isolation and purification of phorbol esters from Jatropha curcas by high-speed countercurrent chromatography.

    PubMed

    Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo

    2015-03-18

    In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum.

  11. GM-CSF and phorbol esters modulate GM-CSF receptor expression by independent mechanisms.

    PubMed

    Brizzi, M F; Arduino, C; Avanzi, G C; Bussolino, F; Pegoraro, L

    1991-07-01

    Human granulocyte-macrophage colony-stimulating factor (GM-CSF) (0.1 nM) down-modulates its receptor in IL-3/GM-CSF dependent M-07e cells, in KG-1 cells and normal granulocytes, whereas phorbol esters 12-O-tetradecanoylphorbol-13-acetate (TPA) (2 nM) down-modulates the GM-CSF receptor in M-07e cells and granulocytes but not in KG-1 cells. As data analysis shows by nonlinear regression, the decreased binding ability depends on a reduction of the binding sites with no significant change of their dissociation constant. To gain insight into the mechanisms involved in the GM-CSF receptor regulation, we investigated the role of protein kinase C (PKC). GM-CSF, unlike TPA, was unable to activate PKC in all the cells studied. Moreover, unlike TPA, GM-CSF was still able to down-modulate its receptor in cells where PKC was inhibited by 1-(5-isoquinolonesulphonyl)-2-methylpiperazine (H7) and staurosporine or in cells where PKC was exhausted by prolonged incubation with 1 microM TPA. Finally, the receptor re-expression rate was accelerated by protein kinases inhibitors. These results, taken together, indicate the presence of a PKC-dependent and -independent down-modulation mechanism and a negative role of the endogeneous protein kinases in GM-CSF receptor re-expression.

  12. Multianalyte Microphysiometry of Macrophage Responses to Phorbol Myristate Acetate, Lipopolysaccharide, and Lipoarabinomannan

    PubMed Central

    Kimmel, Danielle W.; Meschievitz, Mika E.; Hiatt, Leslie A.; Cliffel, David E.

    2015-01-01

    This study examined the hypothesis that mycobacterial antigens generate different metabolic responses in macrophages as compared to gram-negative effectors and macrophage activators. The metabolic activation of macrophages by PMA is a useful tool for studying virulent agents and can be compared to other effectors. While phorbol myristate acetate (PMA) is commonly used to study macrophage activation, the concentration used to create this physiological response varies. The response of RAW-264.7 macrophages is concentration-dependent, where the metabolic response to high concentrations of PMA decreases suggesting deactivation. The gram-negative effector, lipopolysaccharide (LPS), was seen to promote glucose and oxygen production which were used to produce a delayed onset of oxidative burst. Pre-incubation with interferon-γ (IFN-γ) increased the effect on cell metabolism, where the synergistic effects of IFN-γ and LPS immediately initiated oxidative burst. These studies exhibited a stark contrast with lipoarabinomannan (LAM), an antigenic glycolipid component associated with the bacterial genus Mycobacterium. The presence of LAM effectively inhibits any metabolic response preventing consumption of glucose and oxygen for the promotion of oxidative burst and to ensure pathogenic proliferation. This study demonstrates for the first time the immediate inhibitory metabolic effects LAM has on macrophages, suggesting implications for future intervention studies with Mycobacterium tuberculosis. PMID:25798034

  13. Study of protein modifications induced by phorbol ester tumor promoters in mouse skin

    SciTech Connect

    Nelson, K.G.

    1981-08-01

    The purpose of this study was to determine if the phorbol ester tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) induced any specific changes in mouse epidermal proteins using the high resolution technique of two-dimensional electrophoresis. To accomplish this goal of determining the specificity and possibly the stage in promotion with which these protein changes were associated, epidermal proteins were analyzed (1) after treatment of adult mouse epidermis with several weakly promoting hyperplasiogenic agents, (2) following treatment with TPA in combination with various inhibitors of tumor promotion, (3) in basal kerotinocytes isolated from adult epidermis following treatment with TPA or several weakly promoting agents, and (4) during an initiation-promotion experiment. Evidence was found which indicated that the potent tumor promoter TPA as well as the weakly promoting hyperplasiogenic agents, mezerein, ethylphenylpropiolate (EPP), and mechanical abrasion, induced similar modifications of epidermal proteins, particularly among the keratins. These keratin modifications progressed with time following treatment resulting in a keratin pattern which resembled that of newborn epidermis.

  14. Phorbol myristate acetate inhibits anti-IgM-mediated signaling in resting B cells.

    PubMed Central

    Mizuguchi, J; Beaven, M A; Li, J H; Paul, W E

    1986-01-01

    Cross-linking the membrane immunoglobulins of resting B cells leads to activation as judged by increased inositol phospholipid metabolism, intracellular free calcium concentration ([Ca2+]i), and cell volume. Such activated B cells enter S phase in the presence of B-cell stimulatory factor 1. Phorbol myristate acetate (PMA) is a potent inhibitor of anti-IgM- and anti-IgD-stimulated B-cell responses. In B cells concentrations of PMA ranging from 0.1 to 100 ng/ml completely inhibit anti-IgM-stimulated DNA synthesis and block anti-IgM-stimulated increases in inositol phospholipid metabolism and in [Ca2+]i. Preincubation periods as short as 4 min block these effects although longer preincubations are somewhat more effective in inhibiting increases in [Ca2+]i. Preincubation with PMA for 1.5 hr does not diminish expression of membrane IgM. This strongly suggests that PMA inhibits responses of resting B cells to anti-IgM by interrupting signal transmission rather than by diminishing cross-linking of membrane immunoglobulin on B cells. In contrast to resting B cells, B cells activated in vitro for 29 hr show enhanced responses to anti-IgM in the presence of PMA. PMID:3086884

  15. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy.

    PubMed

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-10-14

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs. PMID:26372376

  16. Identification of a phorbol ester-repressible v-src-inducible gene

    SciTech Connect

    Simmons, D.L.; Levy, D.B.; Yannoni, Y.; Erikson, R.L. )

    1989-02-01

    Chicken embryo fibroblasts (CEF) infected with a temperature-sensitive Rous sarcoma virus (RSV) mutant, tsNY72-4, express a set of pp60{sup v-src}-induced RNAs soon after shift to the permissive temperature. By subtractive and differential screening, the authors have cloned 12 of these sequences, 2 of which were c-fos and krox-24. Serum induced all the v-src-inducible genes tested, suggesting that these genes serve roles in normal cell division and are not specific to transformation per se. Significantly, however, v-src produced prolonged, and in some cases kinetically complex, patterns of induction compared to serum. For most of the clones, phorbol 12-tetradecanoate 13-acetate (TPA) induced mRNAs with kinetics similar to that of serum. However, one clone (CEF-4) was expressed in a biphasic manner. Another (CEF-10) was repressed by TPA at 1 hr, after which this mRNA was permanently induced. The pattern of repression-induction of CEF-10 mRNA is the inverse of protein kinase C (PKC) activity in the cell, suggesting that PKC actively represses this gene. In vivo expression of CEF-10 mRNA is restricted predominantly to the lung. A full-length CEF-10 cDNA encodes a 41-kDa protein that has an amino-terminal signal peptide for secretion, contains a markedly high number of cysteine residues, and shows no sequence similarity to known proteins.

  17. Increased phorbol 12,13-dibutyrate (PDBu) receptor function associated with sickle red cell membrane ghosts

    SciTech Connect

    Ramachandran, M.; Nair, C.N.; Abraham, E.C.

    1987-05-01

    The biological receptor for tumor-promoting phorbol esters has been identified as the CaS /phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular CaS is allowed to rise. Since cellular CaS in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of TH-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated TSP incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition.

  18. Insulin and phorbol ester stimulate conductive Na/sup +/ transport through a common pathway

    SciTech Connect

    Civan, M.M.; Peterson-Yantorno, K.; O'Brien, T.G.

    1988-02-01

    Insulin stimulates Na/sup +/ transport across frog skin, toad urinary bladder, and the distal renal nephron. This stimulation reflects an increase in apical membrane Na/sup +/ permeability and a stimulation of the basolateral membrane Na,K-exchange pump. Considerable indirect evidence has suggested that the apical natriferic effect of insulin is mediated by activation of protein kinase C. However, no direct information has been available documenting that insulin and protein kinase C indeed share a common pathway in stimulating Na/sup +/ transport across frog skin. In the present work, the authors have studied the interaction of insulin and phorbol 12-myristate 13-acetate (PMA), a documented activator of protein kinase C. Preincubation of skins with 1,2-dioctanoylglycerol, another activator of protein kinase C, increases baseline Na/sup +/ transport and reduces the subsequent natriferic response to PMA. Preincubation with PMA markedly reduces the subsequent natriferic action of insulin. This effect does not appear to primarily reflect PMA-induced internalization of insulin receptors. The insulin receptors are localized on the basolateral surface of frog skin, but the application of PMA to this surface is much less effective than mucosal treatment in reducing the response to insulin. The current results provide documentation that insulin and protein kinase C share a common pathway in stimulating Na/sup +/ transport across frog skin. The data are consistent with the concept that the natriferic effect of insulin on frog skin is, at least in part, mediated by activation of protein kinase C.

  19. Trypanosomatid apoptosis: 'Apoptosis' without the canonical regulators.

    PubMed

    Smirlis, Despina; Soteriadou, Ketty

    2011-01-01

    Apoptosis is a regulated process of cell death originally described in multicelullar organisms contributing to their development and functionality. There is now increasing experimental evidence that a similar form of cell death is operative in unicellular eukaryotes, including trypanosomatids of the genera Trypanosoma and Leishmania. The determination of ancestral executors and regulators of 'apoptosis' in these protozoa belonging to the most primitive eukaryotes that appeared on earth 1.5 billion years ago, provide an exciting challenge in the understanding of the evolution of apoptosis-regulating processes. A review of the present knowledge of trypanosomatid apoptosis points to the fact that these dying protozoa acquire common apoptotic morphological features as metazoan cells, although they lack many of the molecules accepted today as canonical apoptosis mediators (Bcl-2 family members, caspases, TNF related family of receptors). Herein, we discuss how the knowledge of regulators and executors of trypanosomatid apoptosis may provide answers to the gaps concerning the origin of apoptosis. The aim of this addendum is to emphasize the need for classifying the ancestral death program and to discuss how this relates to the complex death programs in multicellular lineages, with the hope to stimulate further enquiry and research into this area.

  20. The effects of phorbol ester activation and reactive oxygen species scavengers on the macrophage-mediated foreign body reaction to polyurethanes.

    PubMed

    McBane, Joanne E; Matheson, Loren A; Santerre, J Paul; Labow, Rosalind S

    2009-12-15

    Phorbol myristate acetate, a protein kinase C activator, inhibited monocyte-derived macrophage (MDM)-mediated degradation of aliphatic (HDI) polycarbonate-based polyurethanes but not degradation of the aromatic polycarbonate-based polyurethane (MDI). The objectives of this study were to determine if reactive oxygen species are involved in the phorbol myristate acetate effect on esterase activity and MDM-mediated polycarbonate-based polyurethane degradation and to find a good marker of material-initiated activation of MDM. The phorbol myristate acetate-dependent effects of the material chemistry on cell activation and degradation were evaluated by adding reactive oxygen species scavengers, catalase plus superoxide dismutase to MDM and assaying possible markers of MDM activation: esterase activity, acid phosphatase activity, and high molecular weight group box 1 protein (HMGB1). All treatments reduced the esterase activity in MDM on HDI but not in MDM on MDI. Acid phosphatase was inhibited in MDM to varying degrees on all surfaces by phorbol myristate acetate or catalase plus superoxide dismutase either alone or together. Secretion of HMGB1 from MDM on HDI431 was higher than MDI; however only secretion from MDM on HDI was inhibited by phorbol myristate acetate. In MDM on HDI, catalase plus superoxide dismutase reduced intracellular HMGB1 levels +/- phorbol myristate acetate; whereas, catalase, superoxide dismutase plus phorbol myristate acetate increased intracellular HMGB1 in MDM on MDI, suggesting that esterase and HMGB1 are more specific markers of activation than acid phosphatase. Manipulation of signaling pathways may provide insight surrounding the mechanism of activation for oxidative and/or hydrolytic degradative pathways in the MDM response to material surface chemistry.

  1. Bactericidal capacity of phorbol myristate acetate-treated human polymorphonuclear leukocytes.

    PubMed Central

    Wang-Iverson, P; Pryzwansky, K B; Spitznagel, J K; Cooney, M H

    1978-01-01

    Thus far, the functional capacity of phorbol myristate acetate- (PMA)-treated human polymorphonuclear leukocytes has been undefined. PMA induced exocytosis of lactoferrin, the specific granule marker, but not of myeloperoxidase, the azurophil granule marker. This phenomenon was demonstrated both biochemically and with fluorescent antibody conjugates. PMA-treated neutrophils contained virtually no specific granules when viewed by electron microscopy. Separation of the granule classes by linear sucrose density gradient centrifugation revealed the loss, from PMA-treated neutrophils, of lactoferrin and the specific granule (D20(20) = 1.89) band usually resolved from normal neutrophils. Cells treated with PMA appeared to retain those functions normally associated with intraleukocytic microbicidal action. The hexose monophosphate shunt activated by phagocytic challenge was present in PMA-treated neutrophils. As demonstrated by electron microscopy, the azurophil granules of these cells appeared intact, and they retained the capacity for degranulation with translocation of myeloperoxidase to the site of phagocytized Escherichia coli. The PMA-treated neutrophils also remained capable of degrading the ingested microorganisms. PMA-treated neutrophils exhibited a decrease in phagocytic ability at all levels of bacterial challenge. In the presence of a high multiplicity of bacteria they demonstrated an impairment in killing. These same cells were able to kill low multiplicities of E. coli as well as control cells. It thus appeared that the loss of the specific granules, plus other undefined PMA-induced alterations, impaired neither the viability of these neutrophils nor their killing ability in the presence of a modest phagocytic challenge. Images PMID:730386

  2. Phorbol myristate acetate and catechol as skin cocarcinogens in SENCAR mice

    SciTech Connect

    Van Duuren, B.L.; Melchionne, S.; Seidman, I.

    1986-09-01

    The enhancement of the carcinogenicity of benzo(a) pyrene (B(a)P) and ..beta..-propiolactone (BPL) by the mouse skin cocarcinogens phorbol myristate acetate (PMA) and catechol were examined in female SENCAR mice, 30 per group. The carcinogen and cocarcinogen were applied simultaneously, three times weekly for 490-560 days. B(a)P and BPL were used at constant doses of 5 and 50 ..mu..g, respectively, in all experiments. PMA was used at three doses, 2.5, 1.0, and 0.5 ..mu..g per application, and catechol was used at one dose, 2 mg per application. Control groups included animals that received carcinogen only, cocarcinogen only, acetone only, and no treatment. The carcinogenicity of B(a)P and BPL were enhanced by the cocarcinogens, particularly in terms of tumor multiplicity. For both carcinogens, the most marked cocarcinogenic effects were observed at the lowest dose of PMA used (0.5 ..mu..g per application). This observation applied for days to first tumor, animals with tumors, tumor multiplicity, and incidence of malignant skin tumors. Catechol applied alone did not induce any tumors; with PMA alone there were significant incidences of benign and malignant tumors, e.g., at a dose of only 0.5 ..mu..g per application, 15 of 30 animals had 28 tumors, 5 of which were squamous carcinomas. In two-stage carcinogenesis experiments with 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and PMA as promoter, SENCAR mice showed a greater susceptibility to tumor induction when compared to ICR/Ha mice used in earlier work. This susceptibility was most notable in terms of rate of tumor appearance and tumor multiplicity.

  3. Roles of phospholipase D in phorbol myristate acetate-stimulated neutrophil respiratory burst.

    PubMed

    Hu, Tianhui; Liu, Zhaoxia; Shen, Xun

    2011-03-01

    The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10-fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA-stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA-stimulated respiratory burst. Using 1-butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA-stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA-stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA-stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA-stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2-dioctanoyl-sn-glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA-stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA-stimulated respiratory burst.

  4. Increased intestinal protein permeability in a model of lung injury induced by phorbol myristate acetate.

    PubMed

    St John, R C; Mizer, L A; Weisbrode, S E; Dorinsky, P M

    1991-11-01

    Multiple nonpulmonary organ failure is a frequent complication of the adult respiratory distress syndrome (ARDS), and contributes significantly to the high mortality rate associated with this disorder. Although previous studies suggest that systemic organ injury may be an integral component of ARDS, little is known about the specific functional alterations that occur in these target organs. The present study was designed, therefore, to test the hypothesis that endothelial damage, as assessed by microvascular permeability changes, develops in systemic organs in a model of acute lung injury. To test this postulate, the microvascular permeability for total protein was estimated using the steady-state relationship between the lymph (CL) to plasma (Cp) protein concentration ratio (i.e., CL/Cp) and lymph flow in autoperfused cat ileum preparations. Specifically, CL/Cp was measured in five cats, 2 h after acute lung injury was induced by intravenously administered phorbol myristate acetate (PMA), 15 micrograms/kg, and the results were compared with those of seven time-matched control animals. Prior to PMA infusion, the PaO2/FIO2 ratio was 451 +/- 28 in both groups and remained unchanged (486 +/- 26) in the control group. By contrast, the PaO2/FIO2 ratio fell to 275 +/- 95 after PMA infusion (p less than 0.05). In addition, whereas CL/Cp was 0.099 +/- 0.008 in the control animals, it increased to 0.36 +/- 0.06 in the PMA-injured animals (p less than 0.01). In summary, this study demonstrated that in this model of acute lung injury produced by PMA-induced activation of circulating inflammatory cells, both acute lung injury and systemic organ injury (i.e., morphologic and permeability alterations) occurred.

  5. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    PubMed Central

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  6. Dietary lipid varying in corn and coconut oil influences protein kinase C in phorbol ester-treated mouse skin.

    PubMed

    Mouat, M F; Locniskar, M F

    1998-01-01

    An earlier study indicated that increased levels of corn oil in the diet resulted in decreased tumor yield after promotion by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate in Sencar mouse epidermis (J Leyton, ML Lee, M Locniskar, MA Belury, TJ Slaga, et al. Cancer Res 51, 907-915, 1991). In the present study we investigated whether corn oil diets could alter the subcellular distribution and activity of protein kinase C (PKC), which is part of an important signaling pathway in carcinogenesis. We used three 15% (wt/wt) fat semipurified diets containing three ratios of corn oil to coconut oil: 1.0%:14.0% (Diet L), 7.9%:7.1% (Diet M), and 15.0%:0.0% (Diet H). The translocation to the membrane fraction of epidermal PKC by 12-O-tetradecanoylphorbol-13-acetate was decreased as the corn oil content of the diet was increased, and this correlates with the decrease in tumor yield. The translocation to the membrane fraction of specific isoforms of PKC was affected by increased dietary corn oil: the largest decreases were in cytosolic PKC-alpha and -beta, and the smallest change was in PKC-epsilon. The other isoforms, PKC-delta and -zeta, were unaffected. The major constituent of corn oil is linoleic acid, which did not affect the binding of phorbol ester to PKC, which suggests that inhibition of such binding was not responsible for the effects of increased dietary corn oil. Products of linoleic acid metabolism, i.e., arachidonic acid and 13-hydroxyoctadecadienoic acid, also did not affect the binding of phorbol ester to PKC. Thus the results of these studies suggest that the subcellular distributions of PKC and its isoforms can be modulated by dietary lipids.

  7. The Phorbol Ester Fraction from Jatropha curcas Seed Oil: Potential and Limits for Crop Protection against Insect Pests

    PubMed Central

    Ratnadass, Alain; Wink, Michael

    2012-01-01

    The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a “miracle tree”, particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the “boom” in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed. PMID:23203190

  8. Regulation of plasminogen activator in 3T3 cells: effect of phorbol myristate acetate on subcellular distribution and molecular weight

    PubMed Central

    1981-01-01

    The tumor promoter, phorbol myristate acetate (PMA), stimulates plasminogen activator production and extracellular release in confluent Swiss 3T3 cells. Coordinated with the increased extracellular release is a redistribution of the activity into plasma membrane-enriched fractions and a shift in the predominant molecular weight species from 75,000 to 49,000 daltons. The evidence suggests that PMA induces the formation of the 49,000 dalton species which is preferentially located in plasma membrane-enriched fractions. PMID:7197280

  9. Association of phorbol ester-induced hyperphosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells.

    PubMed Central

    May, W S; Jacobs, S; Cuatrecasas, P

    1984-01-01

    Phorbol diesters are tumor-promoting agents that cause differentiation of HL60 human leukemic cells and concomitantly alter surface transferrin-receptor expression [Rovera, G., Ferreo, D., Pagliardi, G. L., Vartikar, J., Pessano, S., Bottero, L., Abraham, S. & Lebman, D. (1982) Ann. N.Y. Acad. Sci. 397, 211-220]. Transferrin-receptor regulation is shown here to result from a rapid and reversible internalization process that is temporally associated with reversible increased phosphorylation (hyperphosphorylation) of the transferrin receptor. Such a reversible mechanism involving regulation of these surface proteins could result in the rapid generation of an early signal for HL60 cellular differentiation. Images PMID:6326098

  10. Insulin and phorbol myristic acetate induce ornithine decarboxylase in Reuber H35 rat hepatoma cells by different mechanisms.

    PubMed

    Goodman, S A; Esau, B; Koontz, J W

    1988-11-01

    Reuber H35 rat hepatoma cells respond to insulin or to tumor promoting phorbol esters with an increase in ornithine decarboxylase enzyme activity. This occurs in a time- and dose-dependent manner with both types of agonist. We report here that the increase in ornithine decarboxylase activity with optimal concentrations of both agonists is additive. Furthermore, the initial increase is dependent on continued RNA and protein synthesis. We also find that both of these agonists cause an increase in mRNA coding for ornithine decarboxylase in a time- and dose-dependent manner which suggests that the increase in enzyme activity can be accounted for by the increase in transcript levels. The difference in the time course of induction by the agonists, the additivity of induction by the two agonists, the differential sensitivity of induction to cycloheximide and RNA synthesis inhibitors, and the observation that phorbol myristic acetate causes a further increase in ornithine decarboxylase activity and transcript levels in cells already maximally induced by insulin suggest that these two agonists act through separate mechanisms.

  11. Phorbol esters and A23187 regulate Na/sup +/=K/sup +/-pump activity in pancreatic acinar cells

    SciTech Connect

    Hootman, S.R.; Brown, M.E.; Williams, J.A.

    1987-04-01

    To clarify the subcellular mechanisms that mediate stimulation of Na/sup +/-K/sup +/-pump activity in pancreatic acinar cells by cholinergic agonists, the authors examined the effects of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca/sup 2 +/ ionophore A23187 on (/sup 3/H)ouabain binding to dispersed guinea pig pancreatic acinar cells under conditions in which binding reflects the average rate of pump cycling. The phorbol ester more than doubled Na/sup +/-K/sup +/-pump activity as did the diacylglycerol analogue, 1-oleoyl-2-acetolyl-sn-3-glycerol. A23187 increased pump activity by a maximum of 31% at 0.3 ..mu..M but was progressively inhibitory at higher concentrations. The stimulatory effects of TPA and A23187 were additive, although either secretagogue elicited a less than additive response when added together with a maximally effective concentration of the cholinergic agonist, carbachol. Removal of extracellular Ca/sup 2 +/ had little effect on the pump response to TPA and did not reduce the maximal effect of A23187 but abolished the inhibitory effect seen at high ionophore concentrations in Ca/sup 2 +/-containing medium. These results indicate that both Ca/sup 2 +/ and protein kinase c are involved in regulating Na/sup +/-K/sup +/-pump activity in the pancreatic acinar cell.

  12. Regulatory elements involved in constitutive and phorbol ester-inducible expression of the plasminogen activator inhibitor type 2 gene promoter.

    PubMed Central

    Cousin, E; Medcalf, R L; Bergonzelli, G E; Kruithof, E K

    1991-01-01

    Gene transcription rates and mRNA levels of plasminogen activator inhibitor type 2 (PAI-2) are markedly induced by the tumor promoting agent phorbol 12-myristate 13-acetate (PMA) in human HT1080 fibrosarcoma cells. To identify promoter elements required for basal-, and phorbol ester-inducible expression, deletion mutants of the PAI-1 promoter fused to the chloramphenicol acetyl transferase (CAT) reporter gene, were transiently expressed in HT1080 cells. Constitutive CAT activity was expressed from constructs containing more than 215 bp of promoter sequence, whereas deletion to position -91 bp abolished CAT gene expression. Treatment of transfected cells with PMA resulted in a three- to ten-fold increase in CAT expression from all constructs except from the construct shortened to position -91. DNAse1 protection analysis of the promoter region between -215 and the transcription initiation site revealed numerous protected regions, including two AP1-like binding sites (AP1a and AP1b) and one CRE-like element. Site-directed mutagenesis of the AP1a site or of the CRE-like site resulted in the loss of basal CAT activity and abolished the PMA effect, whereas mutagenesis of AP1b only partially inhibited basal and PMA-mediated expression. Our results suggest that the PAI-2 promoter contains at least two elements required for basal gene transcription and PMA-mediated induction. Images PMID:1650454

  13. Calpains, mitochondria, and apoptosis

    PubMed Central

    Smith, Matthew A.; Schnellmann, Rick G.

    2012-01-01

    Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca2+-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca2+ overload causes mitochondrial calpain 1 cleavage of the Na+/Ca2+ exchanger leading to mitochondrial Ca2+ accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca2+ overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system. PMID:22581845

  14. Mitochondrial regulation of apoptosis.

    PubMed

    Mayer, Bernd; Oberbauer, Rainer

    2003-06-01

    Mitochondria play a central part in cellular survival and apoptotic death. These processes are highly regulated by pro- and antiapoptotic Bcl-2 superfamily members. A key feature within apoptosis cascades is disruption of mitochondrial transmembrane potential and apoptogenic protein release, caused by opening of the permeability transition pore (PT). New data, however, indicate that mitochondrial apoptosis may occur without PT involvement.

  15. The apoptosis database.

    PubMed

    Doctor, K S; Reed, J C; Godzik, A; Bourne, P E

    2003-06-01

    The apoptosis database is a public resource for researchers and students interested in the molecular biology of apoptosis. The resource provides functional annotation, literature references, diagrams/images, and alternative nomenclatures on a set of proteins having 'apoptotic domains'. These are the distinctive domains that are often, if not exclusively, found in proteins involved in apoptosis. The initial choice of proteins to be included is defined by apoptosis experts and bioinformatics tools. Users can browse through the web accessible lists of domains, proteins containing these domains and their associated homologs. The database can also be searched by sequence homology using basic local alignment search tool, text word matches of the annotation, and identifiers for specific records. The resource is available at http://www.apoptosis-db.org and is updated on a regular basis.

  16. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  17. α-Tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells.

    PubMed

    Huang, Huarong; Chen, Shaohua; Van Doren, Jeremiah; Li, Dongli; Farichon, Chelsea; He, Yan; Zhang, Qiuyan; Zhang, Kun; Conney, Allan H; Goodin, Susan; Du, Zhiyun; Zheng, Xi

    2015-06-01

    α‑Tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α‑tomatine on human myeloid leukemia HL‑60 cells were investigated. Treatment of HL‑60 cells with α‑tomatine resulted in growth inhibition and apoptosis in a concentration‑dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL‑60 cells. Growth inhibition and apoptosis induced by α‑tomatine in HL‑60 cells was partially abrogated by addition of cholesterol indicating that interactions between α‑tomatine and cell membrane‑associated cholesterol may be important in mediating the effect of α‑tomatine. Activation of nuclear factor‑κB by the phorbol ester, 12‑O‑tetradecanoylphorbol‑13‑acetate failed to prevent apoptosis in HL‑60 cells treated with α‑tomatine. In animal experiments, it was found that treatment of mice with α‑tomatine inhibited the growth of HL‑60 xenografts in vivo. Results from the present study indicated that α‑tomatine may have useful anti‑leukemia activities. PMID:25625536

  18. α-tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells

    PubMed Central

    HUANG, HUARONG; CHEN, SHAOHUA; VAN DOREN, JEREMIAH; LI, DONGLI; FARICHON, CHELSEA; HE, YAN; ZHANG, QIUYAN; ZHANG, KUN; CONNEY, ALLAN H; GOODIN, SUSAN; DU, ZHIYUN; ZHENG, XI

    2015-01-01

    α-tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α-tomatine on human myeloid leukemia HL-60 cells were investigated. Treatment of HL-60 cells with α-tomatine resulted in growth inhibition and apoptosis in a concentration-dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL-60 cells. Growth inhibition and apoptosis induced by α-tomatine in HL-60 cells was partially abrogated by addition of cholesterol indicating that interactions between α-tomatine and cell membrane-associated cholesterol may be important in mediating the effect of α-tomatine. Activation of nuclear factor-κB by the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate failed to prevent apoptosis in HL-60 cells treated with α-tomatine. In animal experiments, it was found that treatment of mice with α-tomatine inhibited the growth of HL-60 xenografts in vivo. Results from the present study indicated that α-tomatine may have useful anti-leukemia activities. PMID:25625536

  19. Conformation of the C1 phorbol-ester-binding domain participates in the activating conformational change of protein kinase C.

    PubMed Central

    Ho, C; Slater, S J; Stagliano, B A; Stubbs, C D

    1999-01-01

    The fluorescent phorbol ester 12-N-methylanthraniloylphorbol 13-acetate [sapintoxin D (SAPD)] was used as both the activator and the probe for the activating conformational change of the C1 domain of recombinant protein kinase C (PKC)alpha. Fluorescence emission spectra and steady-state anisotropy measurements of SAPD in fully active membrane-associated PKC show that there is a relatively hydrophobic environment and restricted motional freedom characterizing the phorbol-ester-binding site. SAPD also interacts with the membrane lipids so that it was necessary to resort to time-resolved anisotropy measurements to resolve the signals corresponding to PKC-bound SAPD from that associated with buffer and lipid. In the presence of membrane lipids (unilamellar vesicles of phosphatidylcholine and phosphatidylserine, 4:1 molar ratio) and Ca(2+), at a concentration sufficient to activate the enzyme fully, a long correlation time characteristic of highly restricted motion was observed for PKC-associated SAPD. The fraction of SAPD molecules displaying this restricted motion, in comparison with the total SAPD including that in lipids and in buffer, increased with increasing concentrations of Ca(2+) and paralleled the appearance of enzyme activity, whereas the rotational correlation time remained constant. This could be rationalized as an increase in the number of active PKC conformers in the total population of PKC molecules. It therefore seems that there is a distinct conformation of the C1 activator-binding domain associated with the active form of PKC. The addition of SAPD and dioleoyl-sn-glycerol together produced an activity higher than that achievable by either activator alone both at concentrations that alone induced maximal activity for the respective activator; this higher activity was associated with a further restriction in SAPD motion. Increasing the cholesterol concentration, the phosphatidylethanolamine concentration, the sn-2 unsaturation in phosphatidylcholine

  20. The effect of lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response as assessed by luminol-amplified chemiluminescence in dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The differences between lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response using luminol-amplified chemiluminescence (CL) are currently unknown in cattle. Luminol-dependent CL measures the amount of reactive oxygen species released from leukocytes a...

  1. Apoptosis, autophagy, and more.

    PubMed

    Lockshin, Richard A; Zakeri, Zahra

    2004-12-01

    Cell death has been subdivided into the categories apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). The boundary between Type I and II has never been completely clear and perhaps does not exist due to intrinsic factors among different cell types and the crosstalk among organelles within each type. Apoptosis can begin with autophagy, autophagy can end with apoptosis, and blockage of caspase activity can cause a cell to default to Type II cell death from Type I. Furthermore, autophagy is a normal physiological process active in both homeostasis (organelle turnover) and atrophy. "Autophagic cell death" may be interpreted as the process of autophagy that, unlike other situations, does not terminate before the cell collapses. Since switching among the alternative pathways to death is relatively common, interpretations based on knockouts or inhibitors, and therapies directed at controlling apoptosis must include these considerations.

  2. Renal scarring is enhanced by phorbol myristate acetate following infection with bacteria with mannose-sensitive pili.

    PubMed

    Matsumoto, T; Haraoka, M; Mizunoe, Y; Kubo, S; Takahashi, K; Tanaka, M; Kumazawa, J

    1993-01-01

    Renal scarring is considered to develop in the later stages of chronic pyelonephritis. In our experimental model of pyelonephritis, bacteria with mannose-sensitive (MS) pili on their surface promoted renal scarring following inoculation into the renal parenchyma. The administration of cyclophosphamide to induce leukopenia and of superoxide dismutase to inactivate superoxide released from polymorphonuclear leukocytes (PMN) at the infection site suppressed any renal scarring following the infection. Conversely, the administration of phorbol myristate acetate at an early stage of infection significantly enhanced the renal scarring. These findings suggest that the PMNs which infiltrate the infection site and the superoxide they release play an important role in any renal scarring following infection with MS-piliated bacteria.

  3. Effects of 1-beta-D-arabinofuranosylcytosine and phorbol ester on differentiation of human K562 erythroleukemia cells.

    PubMed

    Watanabe, T; Mitchell, T; Sariban, E; Sabbath, K; Griffin, J; Kufe, D

    1985-06-01

    We have previously demonstrated that 1-beta-D-arabinofuranosylcytosine (ara-C) induces hemoglobin synthesis in human K562 erythroleukemia cells. The present study extends these findings by demonstrating that ara-C treatment of K562 cells results in both increased heme synthesis and accumulation of alpha-, gamma-, epsilon-, and zeta-globin RNA. The results also demonstrate that ara-C enhances K562 cell surface expression of glycophorin. Furthermore, we demonstrate that phorbol ester (12-O-tetradecanoylphorbol-13-acetate; TPA) inhibits the effects of ara-C on heme production, accumulation of globin RNA, and glycophorin expression. The inhibitory effect occurs maximally when K562 cells are treated with TPA before undergoing ara-C-induced commitment to erythroid differentiation. These findings suggest that TPA inhibits an early step in the process required for ara-C to enhance expression of genes involved in the erythroid program.

  4. Induction of Apoptosis.

    PubMed

    2016-01-01

    The apoptotic activity of plants is checked to confirm its anti-tumour and anti-cancer activity. Apoptosis is a specific process that leads to intrinsic programmed cell death which is essential in the homeostasis of normal tissues of the body and occurs in various physiological and pathological situations. Method to check apoptosis in EAC cells and DNA analysis are featured in this chapter as a preliminary test manner. PMID:26939284

  5. Detoxification of toxic phorbol esters from Malaysian Jatropha curcas Linn. kernel by Trichoderma spp. and endophytic fungi.

    PubMed

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-01-01

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs.

  6. Detoxification of Toxic Phorbol Esters from Malaysian Jatropha curcas Linn. Kernel by Trichoderma spp. and Endophytic Fungi

    PubMed Central

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-01-01

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%–99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%–92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%–96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs. PMID:24504029

  7. Effect of wortmannin and phorbol ester on Paramecium fluid-phase uptake in the presence of transferrin.

    PubMed

    Wiejak, J; Surmacz, L; Wyroba, E

    2001-01-01

    The kinetics of the uptake of the fluid phase marker Lucifer Yellow (LY), and its alteration by wortmannin, an inhibitor of phosphatidylinositol-3 kinase (PI-3K), and the PKC modulators: GF 109203 X, an inhibitor, and phorbol ester, an activator was studied in eukaryotic model Paramecium aurelia. Spectrophotometric quantification of LY accumulation was performed in the presence or absence of transferrin, a marker of receptor-mediated endocytosis. Internalization of LY showed a curvilinear kinetics: the high initial rate of LY uptake (575 ng LY/mg protein/hr) decreased almost 5-fold within 15 min, reaching plateau at 126 ng/mg protein/hr. Transferrin induced a small increase (7.5%) in the fluid phase uptake rate (after 5 min) followed by a small decrease at longer incubation times. Lucifer Yellow and transferrin (visualized by streptavidin-FITC) were localized in Paramecium by 3-D reconstruction by confocal microscopy. LY showed a scattered, diffuse fluorescence typical of fluid phase uptake whereas transferrin accumulated in membrane-surrounded endosomes. Wortmannin did not affect LY accumulation but decreased it when transferrin was present in the incubation medium. This suggests an effect on the transferrin uptake pathway, presumably on the stage of internalization in "mixing" endosomes to which transferrin and LY were targeted. Phorbol ester diminished LY accumulation by 22% and this effect persisted up to 25 min of incubation. PKC inhibitor did not affect LY uptake. However, in the presence of transferrin, the LY uptake increased within the first 15 minutes followed by a rapid 20% decrease in comparison to the control. Such an effect of PKC modulators suggests that PMA action on fluid phase uptake is not directly mediated by PKC.

  8. Detoxification of toxic phorbol esters from Malaysian Jatropha curcas Linn. kernel by Trichoderma spp. and endophytic fungi.

    PubMed

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-01-01

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs. PMID:24504029

  9. Opioids induce while nicotine suppresses apoptosis in human lung cancer cells.

    PubMed

    Maneckjee, R; Minna, J D

    1994-10-01

    Previously, we have shown that opioids acting via specific receptors inhibit the growth of human lung cancer cells while nicotine, acting through nicotinic acetylcholine receptors, reverses this inhibition. Therefore, we studied the role of apoptosis in these processes. Treatment of human lung cancer cells with 0.1-1 microM morphine or methadone resulted in morphological changes and cleavage of DNA into nucleosome-sized fragments characteristic of apoptosis. Quantitation of DNA fragmentation showed that a dose-dependent increase occurred within 2 h of opioid treatment and was blocked by the antagonist naloxone. The apoptotic effect of opioids was suppressed by nicotine, while the nicotinic acetylcholine receptor antagonists, hexamethonium and decamethonium, reversed this suppression. In contrast, sphingosine, a protein kinase C inhibitor, caused significant DNA fragmentation which was not suppressed by nicotine. Unexpectedly, the combination of hexamethonium and opioids or hexamethonium and nicotine stimulated apoptosis. We found that nicotine, like phorbol 12-myristate 13-acetate, increased total protein kinase C (PKC) activity, while morphine and sphingosine decreased PKC activity, and nicotine reversed morphine inhibition of PKC activity. In contrast, methadone unexpectedly increased PKC activity. These results indicate that engagement of opioid receptors in human lung cancer cells induces apoptosis, while engagement of nicotine receptors suppresses apoptosis, which in some cases appear to be working through a PKC pathway. They also suggest complexities in the system where blockade of C6 or C10 nicotinic receptors can lead to facilitation of apoptosis. These findings suggest new strategies for treatment and prevention of cancer using opioids or nicotine receptors antagonists and are consistent with the idea that nicotine functions as a tumor promoter. PMID:7848904

  10. Spaceflight Associated Apoptosis

    NASA Technical Reports Server (NTRS)

    Ichiki, Albert T.; Gibson, Linda A.; Allebban, Zuhair

    1996-01-01

    Lymphoid tissues have been shown to atrophy in rats flown on Russian spaceflights. Histological examination indicated evidence for cell degradation. Lymphoid tissues from rats flown on Spacelab Life Sciences-2 mission were analyzed for apoptosis by evidence of fragmented lymphocytes, which could be engulfed by macrophages, or DNA strand breaks using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Apoptosis was not detected in the thymus and spleen collected inflight or from the synchronous ground rats but was detected in the thymus, spleen and inguinal lymph node of the flight animals on recovery. These results indicate that the apoptosis observed in the lymphatic tissues of the rats on recovery could have been induced by the gravitational stress of reentry, corroborating the findings from the early space-flight observations.

  11. Myocardial apoptosis and SIDS.

    PubMed

    Grasmeyer, Sarah; Madea, Burkhard

    2015-01-01

    Apoptosis mediates cardiac damage in severe forms of myocarditis. In fatal myocarditis, large amounts of cardiomyocytes show apoptotic DNA fragmentation, while in human controls, few apoptotic cardiomyocytes are found. In the present study the frequency of apoptosis in 88 SIDS cases (category 1b according to the San Diego Classification) and 15 control cases was investigated. In every case myocardial samples from 8 standard locations were collected. Detection of apoptotic cardiomyocytes was performed by TUNEL method. Furthermore the myocardial tissue was stained with HE and immunohistochemical methods (LCA, CD68, CD45-R0). More than 90% of the slides did not contain apoptotic cardiomyocytes at all. The detection rate of apoptotic cardiomyocytes was almost equal in control group (26.7%) and SIDS group (23.86%). A quantification of apoptotic cardiomyocytes per mm(2) revealed no significant difference between both groups either. Altogether there is no evidence for a higher rate of apoptosis in SIDS.

  12. Acetaminophen prevents oxidative burst and delays apoptosis in human neutrophils.

    PubMed

    Freitas, Marisa; Costa, Vera M; Ribeiro, Daniela; Couto, Diana; Porto, Graça; Carvalho, Félix; Fernandes, Eduarda

    2013-05-23

    Acetaminophen is a frequently prescribed over-the-counter drug to reduce fever and pain in the event of inflammatory process. As neutrophils are relevant cells in inflammatory processes, the putative interaction of acetaminophen with these cells, if present, would be of paramount importance. The present study was undertaken to evaluate the effect of acetaminophen in human neutrophils' oxidative burst and lifespan in vitro. The obtained results demonstrate that acetaminophen efficiently modulates neutrophils' oxidative burst in phorbol myristate acetate-activated neutrophils, in a concentration-dependent manner, at in vivo relevant concentrations. It was clearly demonstrated that acetaminophen is a strong scavenger of HOCl and H2O2, which probably contributed to the effect observed in neutrophils. Acetaminophen also induced the depletion of glutathione in stimulated neutrophils, suggesting its transformation into a reactive intermediate. Obtained results further revealed that acetaminophen affects programmed cell death of human neutrophils, resulting in a delay of previously stimulated neutrophils-mediated apoptosis. Overall, our data suggested that acetaminophen has considerable potential to be included in anti-inflammatory therapeutic strategies, by preventing biological damage induced by an excessive production of reactive species generated in activated neutrophils and by extending the lifespan of neutrophils, favoring the elimination of pathogens, thus contributing to tissue healing and resolution of inflammation. PMID:23518321

  13. Apoptosis-an introduction.

    PubMed

    Lawen, Alfons

    2003-09-01

    Apoptosis has become a major research area in the biomedical sciences. As there are more than 13,000 papers published annually on the topic, it is impossible to keep track on all developments in the area. The individual aspects of molecular control of apoptosis are well reviewed, but more general, introductory recent reviews into the field are lacking. This review aims to give a brief overview of the field, providing an introduction into the literature for students and newcomers; as it is written for the un-initiated, wherever possible, review articles will be cited rather than original papers.

  14. Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21(Cip1/Waf1) in phorbol 12-myristate-13- acetate-induced apoptotic cells.

    PubMed

    Lai, Jin-Mei; Wu, Sulin; Huang, Duen-Yi; Chang, Zee-Fen

    2002-11-01

    In response to treatment with phorbol-12-myristate-13-acetate (PMA), the half-population of erythromyeloblast D2 cells, a cytokine-independent variant of TF-1 cells, displayed adhesion and differentiated into a monocyte/macrophage-like morphology, while the other half-population remained in suspension and underwent apoptosis. Expression of the cell cycle inhibitor p21(Cip1/Waf1) was induced after PMA treatment in the adherent cells but not in the proapoptotic cells. We investigated the mechanism responsible for the impairment of p21(Cip1/Waf1) induction in PMA-induced proapoptotic cells. We demonstrated that in PMA-induced adherent cells, upregulation of p21(Cip1/Waf1) requires the activation and nuclear translocation of phosphorylated extracellular signal-regulated kinase (phospho-ERK). Although ERK was phosphorylated to comparable levels in PMA-induced proapoptotic and adherent cells, nuclear distribution of phospho-ERK was seen only in the adherent, not in the proapoptotic cells. We also found that only PMA-induced proapoptotic cells contained the phosphorylated form of myosin light chain, which is dependent on Rho-associated kinase (ROCK) activation, and that expression of a dominant-active form of ROCK suppressed activation of the p21(Cip1/Waf1) promoter during PMA induction. Finally, we demonstrated that inhibition of ROCK restores nuclear distribution of phospho-ERK and activation of p21(Cip1/Waf1) expression. Based on these findings, we propose that a ROCK-mediated signal is involved in interfering with the process of ERK-mediated p21(Cip1/Waf1) induction in PMA-induced proapoptotic TF-1 and D2 cells.

  15. Purification and characterization of a calcium-unresponsive, phorbol ester/phospholipid-activated protein kinase from porcine spleen.

    PubMed

    Leibersperger, H; Gschwendt, M; Marks, F

    1990-09-25

    A calcium-unresponsive, phorbol ester/phospholipid-activated protein kinase was purified to apparent homogeneity from a Triton X-100 extract of an EGTA/EDTA-preextracted particulate fraction of porcine spleen by chromatography on S-Sepharose Fast Flow, phenyl-Sepharose Fast Flow, protamine-agarose, and Superdex 200. The enzyme had a Mr of 76,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (p76-kinase). A similar value (78,000) was obtained by gel filtration. The purified p76-kinase proved to be much more stable than the enzyme in crude preparations. Storage in a buffer containing 50 mM mercaptoethanol and 20% glycerol at -20 degrees C for at least 4 months caused less than 20% loss in enzyme activity. The enzyme exhibited a pH optimum of 8.3. The affinity of the novel enzyme for substrates and cofactors differed to some extent from that of conventional alpha, beta, gamma protein kinase C (PKC). p76-kinase did not respond to calcium, had a lower requirement for magnesium, and a higher affinity for histone III-S than PKC. Both the p76-kinase-catalyzed phosphorylation of histone III-S and the autophosphorylation of the enzyme could be activated by the phorbol ester TPA (or diacylglycerol) plus phosphatidyl serine, but not by calcium plus phosphatidyl serine. The stoichiometry of autophosphorylation suggested that fully phosphorylated p76-kinase contained two phosphoserine residues and one phosphothreonine residue. Like PKC, p76-kinase bound TPA with high affinity (KD = 9.6 nM). In the absence of TPA, various unsaturated fatty acids, particularly arachidonic acid, were more potent as activators of the enzyme than phosphatidyl serine. The p76-kinase was recognized by an antiserum raised against a delta PKC-specific peptide, but not by an alpha, beta, gamma PKC-specific antiserum. The previously described p82-kinase of mouse epidermis and spleen exhibiting the same properties as the p76-kinase did also react with the p76-kinase

  16. Oxidant-dependent metabolic activation of polycyclic aromatic hydrocarbons by phorbol ester-stimulated human polymorphonuclear leukocytes: possible link between inflammation and cancer

    SciTech Connect

    Trush, M.A.; Seed, J.L.; Kensler, T.W.

    1985-08-01

    Oxidants, such as those generated by metabolically activated phagocytes in inflammation, have been implicated in the metabolic activation of carcinogens, and in this study the authors demonstrate that the interaction of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene (BP 7,8-dihydrodiol) with phorbol ester-stimulated polymorphonuclear leukocytes (PMNs) results in the generation of both a chemiluminescent intermediate and one that covalently binds to DNA. Concordant with the formation of a carcinogen-DNA adduct, the admixture of BP 7,8-dihydrodiol and phorbol ester-stimulated PMNs elicited mutagenesis in Salmonella typhimurium strain TA100. These results demonstrate that oxidants generated by metabolically stimulated PMNs can activate penultimate polycyclic aromatic hydrocarbons to a genotoxic metabolite and further defines a role for inflammation in carcinogenesis.

  17. Oscillations in cytosolic free Ca2+ induced by ADP and ATP in single rat hepatocytes display differential sensitivity to application of phorbol ester.

    PubMed Central

    Dixon, C J; Cobbold, P H; Green, A K

    1995-01-01

    We have previously described differences in the oscillatory responses of cytosolic free Ca2+ concentration ([Ca2+]i) in hepatocytes to ADP and ATP, which we have interpreted as evidence that these two nucleotides are acting at distinct receptors. We show here that ADP- and ATP-induced oscillations are differentially sensitive to application of the phorbol ester 4 beta-phorbol 12,13-dibutyrate (PDB). ADP-induced [Ca2+]i oscillations are abolished by low concentrations of PDB (5-10 nM), whereas ATP-induced oscillations of long duration are refractory to PDB, even at greatly elevated concentrations (100 nM). The data illustrate a further difference in the actions of ADP and ATP, strengthening the argument that these agonists are not acting at the same receptor on rat hepatocytes. PMID:7619050

  18. Apoptosis during intramembranous ossification

    PubMed Central

    Palumbo, Carla; Ferretti, Marzia; De Pol, Anto

    2003-01-01

    This paper concerns the role of apoptosis during the onset of bone histogenesis. Previous investigations by us performed on intramembranous ossification revealed the existence of two types of osteogenesis: static (SBF) and dynamic bone formation (DBF). During SBF, the first to occur, stationary osteoblasts transform into osteocytes in the same location where they differentiated, forming the primary spongiosa. DBF takes place later, when movable osteoblastic laminae differentiate along the surface of the primary trabeculae. The main distinctive feature between SBF and DBF is that the latter involves the invasion of pre-existing adjacent tissue, whereas the former does not. To ascertain whether programmed cell death during the invasive DBF process determines the fate of surrounding pre-existing mesenchyme differently from that occurring during the non-invasive SBF process, we studied apoptosis in ossification centres of tibial diaphysis in chick embryos and newborn rabbits with TUNEL and TEM. It emerged that, in both SBF and DBF, apoptosis affects mesenchymal cells located between the forming trabeculae and capillaries. However, apoptotic cells were observed more frequently during DBF than during SBF. This suggests that, during bone histogenesis, apoptosis, which is mostly associated with the invasive process of DBF, is probably dedicated to making space for advancing bone growth. PMID:14686694

  19. Involvement of Glutathione as a Mechanism of Indirect Protection against Spontaneous Ex Vivo Apoptosis Associated with Bovine Leukemia Virus

    PubMed Central

    Alcaraz, Teresa Sanchez; Kerkhofs, Pierre; Reichert, Michal; Kettmann, Richard; Willems, Luc

    2004-01-01

    Viruses have developed strategies to counteract the apoptotic response of the infected host cells. Modulation of apoptosis is also thought to be a major component of viral persistence and progression to leukemia induced by retroviruses like human T-lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV). Here, we analyzed the mechanism of ex vivo apoptosis occurring after isolation of peripheral blood mononuclear cells from BLV-infected sheep. We show that spontaneous apoptosis of ovine B lymphocytes requires at least in part a caspase 8-dependent pathway regardless of viral infection. Cell death is independent of cytotoxic response and does not involve the tumor necrosis factor alpha/NF-κB/nitric oxide synthase/cyclooxygenase pathway. In contrast, pharmaceutical depletion of reduced glutathione (namely, γ-glutamyl-l-cysteinyl-glycine [GSH]) by using ethacrynic acid or 1-pyrrolidinecarbodithioic acid specifically reverts inhibition of spontaneous apoptosis conferred indirectly by protective BLV-conditioned media; inversely, exogenously provided membrane-permeable GSH-monoethyl ester restores cell viability in B lymphocytes of BLV-infected sheep. Most importantly, intracellular GSH levels correlate with virus-associated protection against apoptosis but not with general inhibition of cell death induced by polyclonal activators, such as phorbol esters and ionomycin. Finally, inhibition of apoptosis does not correlate with the activities of GSH peroxidase and GSH reductase. In summary, our data fit into a model in which modulation of the glutathione system is a key event involved in indirect inhibition of apoptosis associated with BLV. These observations could have decisive effects during therapeutic treatment of δ-retroviral pathogenesis. PMID:15163711

  20. Neutrophil beta-adrenergic receptor responses are potentiated by acute exposure to phorbol ester without changes in receptor distribution or coupling

    SciTech Connect

    Kilfeather, S.A.; Stein, M.; O'Malley, K. )

    1991-01-01

    Exposure to the phorbol ester, phorbol 12-myristate, 13-acetate for 10 minutes enhanced cyclic AMP accumulation in human neutrophils under basal conditions and in response to the beta-adrenergic receptor agonist isoproterenol (ISO, 1{mu}M) and the adenylate cyclase activator forskolin (FSK, 10mM). Potentiation of responses to ISO by PMA was dose-dependent between 0.1 and 100nM PMA. The diacylglycerol analogue, 1-oleoyl-2-actylgylcerol (OAG) (50 {mu}M) also elevated beta-receptor responses, but 4beta-phorbol (100nM), lacking the capacity to activate PMA, was ineffective. Short-term exposure to the peptide n-formylmethionine leucyl-phenylalanine (FMLP, 1 {mu}M) also elevated neutrophil cyclic AMP accumulation. All potentiating effects of PMA on cyclic AMP production were inhibited by the protein kinase inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H{sub 7}). PMA had no apparent effect on beta-receptor agonist-affinity, distribution between cell-surface and internalized compartments, or the capacity of ISO to induce beta-receptor internalization. Responses to FSK or ISO in terms of fold-stimulation of basal cyclic AMP accumulation int he presence of PMA were not elevated by PMA.

  1. Enhancement of human polymorphonuclear leukocyte adherence to plastic and endothelium by phorbol myristate acetate. Comparison with human C5a.

    PubMed Central

    Webster, R. O.; Wysolmerski, R. B.; Lagunoff, D.

    1986-01-01

    The adherence of circulating neutrophils to vascular endothelium represents a necessary step in the chemotactic emigration of neutrophils to extravascular inflammatory sites. Studies of neutrophil adherence induced by phorbol myristate acetate (PMA) were undertaken to determine the ability of a nonchemotactic neutrophil stimulus to provoke increased adherence. The authors found that the adherence of human neutrophils to plastic surfaces or confluent monolayers of endothelial cells is enhanced in a concentration-dependent fashion by exposure of neutrophils to PMA. The effect of PMA concentration (0.1-5.0 ng/ml) on increased neutrophil adherence parallels that observed for superoxide anion generation and release of lysosomal enzymes from specific granules. Whereas complement C5a-treated neutrophils exhibited a fourfold to fivefold increase in adherence to endothelial cells, PMA-treated neutrophils showed a 10-fold to 20-fold increase. The ability of PMA to cause increased neutrophil adherence to endothelium appeared to be directed primarily at the neutrophil. Pretreatment of neutrophils with PMA was as effective as coincubation in causing increased adherence to plastic surfaces or confluent cultured endothelial cells, but pretreatment of endothelial cells with PMA failed to promote neutrophil adherence. Alteration of neutrophil cytoskeletal structures by cytochalasin B treatment did not prevent subsequent PMA-stimulated neutrophil adherence. These results demonstrate that increased neutrophil adherence to surfaces can be induced by a nonchemotactic stimulus and that neutrophil adherence is independent of organized microfilaments. Images Figure 4 Figure 6 PMID:3789092

  2. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    SciTech Connect

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. )

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  3. Phorbol 12-myristate 13-acetate prevents isoproterenol-induced morphological change in cultured vascular smooth muscle cells

    SciTech Connect

    Nabika, Toru; Chaldakov, G.N.; Nara, Yasuo; Endo, Jiro; Yamori, Yukio )

    1988-10-01

    The effect of phorbol 12-myristate 13-acetate (PMA) on isoproterenol (ISO)- and dibutyryl cAMP (dBcAMP)-induced morphological change and cytoskeletal reorganization was studied in cultured vascular smooth muscle cells (VSMC) using the fluorescence staining of actin and microtubules. The treatment of VSMC with 1.0 {mu}M of ISO or with 1.0 mM of dBcAMP for 90 min induced the disruption of actin-containing stress fibers followed by cytoplasmic arborization. The addition of 100 nM of PMA prevented both the destruction of actin fibers and cell arborization induced either by ISO or by dBcAMP. These results indicated that the inhibition of arborization by PMA was mediated through the activation of protein kinase C. Colchicine at 5.0 {mu}M also had an inhibitory effect on ISO- and dBcAMP-induced cell arborization. However, immunofluorescence studies revealed that colchicine but not PMA elicited the reorganization of microtubules, suggesting that the effect of PMA was mediated through a mechanism different from that of colchicine. The observations indicated that the morphology of VSMC was regulated through the alteration of cytoskeletal organization induced by cAMP-mediated and by protein kinase C-dependent systems.

  4. Phorbol 12,13-dibutyrate and 1-oleyl-2-acetyldiacylglycerol stimulate inositol trisphosphate dephosphorylation in human platelets

    SciTech Connect

    Molina y Vedia, L.M.; Lapetina, E.G.

    1986-08-15

    Inositol trisphosphate (IP3) is formed in response to specific agonists that cause activation of phospholipase C and degradation of phosphatidylinositol bisphosphate. IP3 is a second messenger that releases Ca/sup 2 +/ from the dense tubular system to the cytosol in stimulated platelets. Our present information indicates that (/sup 3/H)IP3 is dephosphorylated to (/sup 3/H)inositol bisphosphate (IP2) and (/sup 3/H)inositol monophosphate (IP) by human platelets treated with 0.05-0.10% Triton X-100. This dephosphorylation of (/sup 3/H)IP3 to (/sup 3/H)IP2 and (/sup 3/H)IP is also observed when platelets are permeabilized by electrical stimulation or by 20 micrograms/ml saponin. These detergents or electropermeabilization allow IP3 to access cytosolic IP3 phosphatase. Pretreatment of intact platelets with phorbol dibutyrate and 1-oleyl-2-acetyldiacylglycerol for 30 s, at concentrations that maximally activate protein kinase C, stimulates the conversion of IP3 to IP2 and IP. This suggests a role for protein kinase C in the regulation of IP3 degradation.

  5. Mortalin, Apoptosis, and Neurodegeneration

    PubMed Central

    Londono, Carolina; Osorio, Cristina; Gama, Vivian; Alzate, Oscar

    2012-01-01

    Mortalin is a highly conserved heat-shock chaperone usually found in multiple subcellular locations. It has several binding partners and has been implicated in various functions ranging from stress response, control of cell proliferation, and inhibition/prevention of apoptosis. The activity of this protein involves different structural and functional mechanisms, and minor alterations in its expression level may lead to serious biological consequences, including neurodegeneration. In this article we review the most current data associated with mortalin’s binding partners and how these protein-protein interactions may be implicated in apoptosis and neurodegeneration. A complete understanding of the molecular pathways in which mortalin is involved is important for the development of therapeutic strategies for cancer and neurodegenerative diseases. PMID:24970131

  6. Modulation of phorbol ester-elicited events in mouse epidermis by dietary n-3 and n-6 fatty acids.

    PubMed

    Belury, M A; Leyton, J; Patrick, K E; Cumberland, A G; Locniskar, M; Fischer, S M

    1991-09-01

    Because arachidonic acid-derived eicosanoids are potent modulators of hyperproliferation and inflammation during skin tumor promotion with the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA) (17, 18), it was hypothesized that dietary modification of epidermal fatty acids might modulate TPA-induced biochemical events in mouse skin. Semipurified diets containing 10% total fat composed of corn oil (CO) or a combination of CO and menhaden oil (MO) or coconut oil (CT) were fed to SENCAR mice for 4 weeks. Fatty acid composition of epidermal phospholipids generally reflected fatty acid composition of dietary oils fed to the mice. Since fatty acid-derived eicosanoids are thought to be essential in tumorigenesis, we compared the effects of dietary fats on prostaglandin E (PGE) production in epidermis treated with a single dose of TPA. TPA-induced PGE production in mouse epidermis from mice fed the MO diet was significantly reduced compared to PGE production in epidermal homogenates from mice fed the CO or CT diets. Type of dietary fats did not appear to modulate TPA-induced vascular permeability, however hyperplasia was slightly elevated in skins of mice fed MO. The subcellular distribution of protein kinase C, the plasma membrane receptor for TPA predominantly located in the cytosol (80%), was altered in epidermis from mice fed the MO diet compared to preparations from mice fed CO or CT diets which exhibited normal protein kinase C distribution. Our results suggest that n-3 rich dietary lipids modulate TPA-elicited events in mouse skin to a greater extent than diets containing higher proportions of saturated or n-6 fatty acids.

  7. Phorbol 12,13-Dibutyrate-Induced, Protein Kinase C-Mediated Contraction of Rabbit Bladder Smooth Muscle

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Trappanese, Danielle M.; Smolock, Elaine M.; Moreland, Robert S.

    2012-01-01

    Contraction of bladder smooth muscle is predominantly initiated by M3 muscarinic receptor-mediated activation of the Gq/11-phospholipase C β-protein kinase C (PKC) and the G12/13-RhoGEF-Rho kinase (ROCK) pathways. However, these pathways and their downstream effectors are not well understood in bladder smooth muscle. We used phorbol 12,13-dibutyrate (PDBu), and 1,2-dioctanoyl-sn-glycerol (DOG), activators of PKC, in this investigation. We were interested in dissecting the role(s) of PKC and to clarify the signaling pathways in bladder smooth muscle contraction, especially the potential cross-talk with ROCK and their downstream effectors in regulating myosin light chain phosphatase activity and force. To achieve this goal, the study was performed in the presence or absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr38-CPI-17 and Thr696/Thr850 myosin phosphatase target subunit (MYPT1) were measured during PDBu or DOG stimulation using site specific antibodies. PDBu-induced contraction in bladder smooth muscle involved both activation of PKC and PKC-dependent activation of ROCK. CPI-17 as a major downstream effector, is phosphorylated by PKC and ROCK during PDBu and DOG stimulation. Our results suggest that Thr696 and Thr850-MYPT1 phosphorylation are not involved in the regulation of a PDBu-induced contraction. The results also demonstrate that bladder smooth muscle contains a constitutively active isoform of ROCK that may play an important role in the regulation of bladder smooth muscle basal tone. Together with the results from our previous study, we developed a working model to describe the complex signaling pathways that regulate contraction of bladder smooth muscle. PMID:22232602

  8. Activation of resting T cells: distinct roles of intact accessory cells, phorbol myristate acetate and interleukin 1

    SciTech Connect

    Davis, L.; Lipsky, P.E.

    1986-03-05

    The accessory cell (AC) signals involved in the activation of resting guinea pig T lymphocytes stimulated with mitogen (PHA), or the calcium ionophore, ionomycin (Ion) were examined. Activation of T cells was assessed by cell cycle analysis after acridine orange staining and /sup 3/H-thymidine incorporation. PHA-stimulated T cells depleted of all AC were unable to respond in the presence of phorbol myristate acetate (PMA), and/or interleukin 1 (IL 1). With suboptimal numbers of AC, PMA greatly augmented the number of T cells activated by PHA to enter and progress through the cell cycle, but only when present during the first few hours of culture. By contrast, IL 1 had little effect on the number of cells entering the cell cycle, although it enhanced S phase entry of the activated cells. IL 1 augmented DNA synthesis when added initially or later in culture. In contrast to the effects noted with PHA, PMA promoted activation and DNA synthesis of the majority of Ion stimulated cells in the complete absence of AC. IL 1 alone could not support Ion induced T cell activation although it enhanced T cell DNA synthesis in cultures stimulated by PMA and Ion. These studies indicate that intact AC, IL 1 and PMA-like signals play distinct roles in the progression of T cells through the initial cell cycle. Stimulation by Ion requires only PMA whereas PHA responses require intact AC and can be amplified by PMA. The major effect of IL 1 is to promote S phase entry of activated T cells.

  9. 1,25-dihydroxycholecalciferol-induced differentiation of myelomonocytic leukemic cells unresponsive to colony stimulating factors and phorbol esters

    SciTech Connect

    Bettens, F.; Schlick, E.; Farrar, W.; Ruscetti, F.

    1986-12-01

    The murine myelomonocytic leukemia cell line WEHI-3B D/sup +/, which differentiates in response to granulocyte colony stimulating factor (G-CSF), can also be induced to differentiate into monocyte-macrophages by phorbol myristate acetate (PMA) treatment, whereas the WEHI-3B D/sup -/ subline, which is unresponsive to G-CSF and PMA, can be induced to differentiate to granulocytes as well as monocytes by 1,25-dihydroxycholecalciferol (1,25-(OH)/sub 2/ D3), the biologically active metabolite of vitamin D3. A newly developed variant of the WEHI-3B D/sup +/ line, named WEHI-3B D/sup +/G, which was responsive to G-CSF but not to PMA, was also differentiated to granulocytes by 1,25-(OH)/sub 2/ D3. Although vitamin D3 has been reported to induce macrophage differentiation in responsive tumor cells, this is the first demonstration that 1,25-(OH)/sub 2/ D3 can induce granulocyte differentiation. In both differentiation pathways, cessation of cellular proliferation accompanies changes in morphologic and cytochemical properties of the cells. This suggests that leukemic cell lines unresponsive to differentiation agents acting at the cell surface retain their ability to differentiate in response to agents that do not act via the plasma membrane such as 1,25-(OH)/sub 2/ D3, which has cytosolic/nuclear receptors. These results suggest that low doses of 1,25-(OH)/sub 2/ D3 may be useful in combination with hemopoietic growth factors (CSFs) as therapeutic agent to induce leukemic cell differentiation in vivo.

  10. Pathophysiological Significance of Hepatic Apoptosis

    PubMed Central

    Wang, Kewei; Lin, Bingliang

    2013-01-01

    Apoptosis is a classical pathological feature in liver diseases caused by various etiological factors such as drugs, viruses, alcohol, and cholestasis. Hepatic apoptosis and its deleterious effects exacerbate liver function as well as involvement in fibrosis/cirrhosis and carcinogenesis. An imbalance between apoptotic and antiapoptotic capabilities is a prominent characteristic of liver injury. The regulation of apoptosis and antiapoptosis can be a pivotal step in the treatment of liver diseases. PMID:27335822

  11. Apoptosis pathways and neuroblastoma therapy.

    PubMed

    Fulda, S

    2009-01-01

    Evasion of apoptosis, the cell's intrinsic death program, is a hallmark of human cancers including neuroblastoma. Also, failure to undergo apoptosis may cause treatment resistance, since the cytotoxic activity of anticancer therapies commonly used in the clinic, e.g. chemotherapy, gamma-irradiation or immunotherapy, is predominantly mediated by triggering apoptosis in tumor cells. Therefore, a better understanding of the signaling pathways and molecules that govern apoptosis in neuroblastoma cells is expected to open new avenues for the design of molecular targeted therapies for neuroblastoma.

  12. Role of Apoptosis in disease

    PubMed Central

    Favaloro, B.; Allocati, N.; Graziano, V.; Di Ilio, C.; De Laurenzi, V.

    2012-01-01

    Since the initial description of apoptosis, a number of different forms of cell death have been described. In this review we will focus on classic caspase-dependent apoptosis and its variations that contribute to diseases. Over fifty years of research have clarified molecular mechanisms involved in apoptotic signaling as well and shown that alterations of these pathways lead to human diseases. Indeed both reduced and increased apoptosis can result in pathology. More recently these findings have led to the development of therapeutic approaches based on regulation of apoptosis, some of which are in clinical trials or have entered medical practice. PMID:22683550

  13. The beetroot component betanin modulates ROS production, DNA damage and apoptosis in human polymorphonuclear neutrophils.

    PubMed

    Zielińska-Przyjemska, Małgorzata; Olejnik, Anna; Kostrzewa, Artur; Łuczak, Michał; Jagodziński, Paweł P; Baer-Dubowska, Wanda

    2012-06-01

    The aim of this study was to evaluate the effect of betanin, one of the beetroot major components, on ROS production, DNA damage and apoptosis in human resting and stimulated with phorbol 12-myristate13-acetate polymorphonuclear neutrophils, one of the key elements of the inflammatory response. Incubation of neutrophils with betanin in the concentration range 2-500 µM resulted in significant inhibition of ROS production (by 15-46%, depending on the ROS detection assay). The antioxidant capacity of betanin was most prominently expressed in the chemiluminescence measurements. This compound decreased also the percentage of DNA in comet tails in stimulated neutrophils, but only at the 24 h time point. In resting neutrophils an increased level of DNA in comet tails was observed. Betanin did not affect the activity of caspase-3, in resting neutrophils, but significantly enhanced the enzyme activity in stimulated neutrophils. The western blot analysis showed, however, an increased level of caspase-3 cleavage products as a result of betanin treatment both in resting and stimulated neutrophils. The results indicate that betanin may be responsible for the effect of beetroot products on neutrophil oxidative metabolism and its consequences, DNA damage and apoptosis. The dose and time dependent effects on these processes require further studies.

  14. Neutrophil function and apoptosis in patients with chronic hepatitis C treated with pegylated interferon α and ribavirin.

    PubMed

    Jabłonowska, Elżbieta; Wójcik, Kamila; Kur, Barbara; Lewkowicz, Przemysław; Nocuń, Marek

    2012-02-01

    The role of neutrophils in the pathogenesis of chronic hepatitis C as well as the effect of pegylated interferon α (PEG-IFN-α) and ribavirin treatment on neutrophil function is not precisely known. The study included 32 patients with CCH aged between 19 and 58 years (mean 33.5 years). Before and after 12 weeks of treatment with Peg-IFN-α and ribavirin, intracellular reactive oxygen species (ROS) level, expression of adhesion molecules CD11b/MAC-1, CD16, CD18 and CD62L on neutrophils, as well as apoptosis and necrosis of these cells were analyzed with the use of flow cytometry. During antiviral therapy, a statistically significant decrease of mean fluorescence intensity for CD16 high and CD62 and increase for CD11b/MAC-1 along with the increased apoptosis and decreased necrosis of neutrophils were observed. After 12 weeks of treatment, intracellular ROS production by unstimulated neutrophils did not change, but after stimulation with phorbol 12-myristate 13-acetate, statistically significant increase of ROS level was observed. During PEG-IFN-α and ribavirin treatment, activation of neutrophil function and increased ROS production were reported, which possibly resulted in accelerated apoptosis of these cells.

  15. Apoptosis Evaluation by Electrochemical Techniques.

    PubMed

    Yin, Jian; Miao, Peng

    2016-03-01

    Apoptosis has close relevance to pathology, pharmacology, and toxicology. Accurate and convenient detection of apoptosis would be beneficial for biological study, clinical diagnosis, and drug development. Based on distinct features of apoptotic cells, a diversity of analytical techniques have been exploited for sensitive analysis of apoptosis, such as surface plasmon resonance, electrochemical methods, flow cytometry, and some imaging assays. Among them, the features of simplicity, easy operation, low cost, and high sensitivity make electrochemical techniques powerful tools to investigate electron-transfer processes of in vitro biological systems. In this contribution, a general overview of current knowledge on various technical approaches for apoptosis evaluation is provided. Furthermore, recently developed electrochemical biosensors for detecting apoptotic cells and their advantages over traditional methods are summarized. One of the main considerations focuses on designing the recognition elements based on various biochemical events during apoptosis.

  16. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  17. High ACSL5 Transcript Levels Associate with Systemic Lupus Erythematosus and Apoptosis in Jurkat T Lymphocytes and Peripheral Blood Cells

    PubMed Central

    2011-01-01

    Background Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which increased apoptosis and decreased apoptotic cells removal has been described as most relevant in the pathogenesis. Long-chain acyl-coenzyme A synthetases (ACSLs) have been involved in the immunological dysfunction of mouse models of lupus-like autoimmunity and apoptosis in different in vitro cell systems. The aim of this work was to assess among the ACSL isoforms the involvement of ACSL2, ACSL4 and ACSL5 in SLE pathogenesis. Findings With this end, we determined the ACSL2, ACSL4 and ACSL5 transcript levels in peripheral blood mononuclear cells (PBMCs) of 45 SLE patients and 49 healthy controls by quantitative real time-PCR (q-PCR). We found that patients with SLE had higher ACSL5 transcript levels than healthy controls [median (range), healthy controls = 16.5 (12.3–18.0) vs. SLE = 26.5 (17.8–41.7), P = 3.9×10 E-5] but no differences were found for ACSL2 and ACSL4. In in vitro experiments, ACSL5 mRNA expression was greatly increased when inducing apoptosis in Jurkat T cells and PBMCs by Phorbol-Myristate-Acetate plus Ionomycin (PMA+Io). On the other hand, short interference RNA (siRNA)-mediated silencing of ACSL5 decreased induced apoptosis in Jurkat T cells up to the control levels as well as decreased mRNA expression of FAS, FASLG and TNF. Conclusions These findings indicate that ACSL5 may play a role in the apoptosis that takes place in SLE. Our results point to ACSL5 as a potential novel functional marker of pathogenesis and a possible therapeutic target in SLE. PMID:22163040

  18. Anesthesia and cerebral apoptosis.

    PubMed

    Brée, B; Gourdin, M; De Kock, M

    2008-01-01

    General anesthetics interact with targets at the cellular and molecular levels. They have the potential to induce changes in the body and the brain. Usually, these interactions are thought to be short lasting. In contrast, recent evidences suggest that alcohol, a toxic sharing many mechanisms with general anesthetics, induces long term effect at these levels. This is particularly evident in the period of synaptogenesis during which alcohol can induce excessive cerebral apoptosis (histopathologic changes) in juvenile animal models. Even if the vast majority of our patients seems to completely restore homeostasis after general anesthesia, we don't know if the changes induced at the brain level in animal models exist in human. This article intends to supply biological, pharmacological and experimental basis for a possible long term effect of general anesthetics on the human developing brain. PMID:19051443

  19. An activator of protein kinase C (phorbol dibutyrate) attenuates atrial-natriuretic-factor-stimulated cyclic GMP accumulation in smooth-muscle cells.

    PubMed Central

    Nambi, P; Whitman, M; Aiyar, N; Stassen, F; Crooke, S T

    1987-01-01

    Rat thoracic aortic smooth-muscle cells (A-10; A.T.C.C. CRL 1476) displays a high density of vasopressin and atrial-natriuretic-factor (ANF) receptors and a low density of beta-adrenergic receptors. ANF stimulates cGMP (cyclic GMP) accumulation in a time- and dose-dependent fashion. Pretreatment of these cells with phorbol dibutyrate (PDBu), a known activator of protein kinase C, attenuated ANF-stimulated cGMP accumulation without affecting basal cGMP concentrations. This effect was concentration-dependent and was observed as early as 2 min after treatment. 4 alpha-Phorbol 12, 13-didecanoate (alpha PDD), which does not activate protein kinase C, did not inhibit the cGMP accumulation. PDBu pretreatment did not affect the density and affinity of ANF receptors. These data suggest that PDBu, presumably via activation of protein kinase C, might stimulate phosphorylation of a key regulatory protein in the ANF/cGMP pathway. PMID:2822009

  20. Phenotypic modulation of chronic lymphocytic leukemia cells by phorbol ester: induction of IgM secretion and changes in the expression of B cell-associated surface antigens.

    PubMed

    Gordon, J; Mellstedt, H; Aman, P; Biberfeld, P; Klein, G

    1984-01-01

    Freshly explanted neoplastic populations from 22 cases of phenotypically well-characterized chronic type B lymphocytic leukemia were studied for their capacity to respond to the phorbol ester TPA in vitro. In all but four cases the secretion of IgM was either induced or increased, often to a high level. In contrast, the export of free immunoglobulin (Ig) light chains, an almost consistent feature of the B lymphocytic leukemias, remained relatively constant after TPA treatment. Parallel changes in leukemic cell surface phenotype were probed with both "conventional" and monoclonal antibodies, revealing some modulation of markers in every case investigated. A diminution in the level of surface Ig (preferentially IgD) and the accumulation of cytoplasmic Ig observed after phorbol ester treatment were accompanied by a corresponding reduction or loss of the B1 antigen and usually of B2 when present. The most consistent change induced by TPA was the appearance of BB-1, a marker of activated B lymphocytes, which was rarely expressed on fresh leukemic cells. Another marker of activated lymphocytes, LB-1, was also often induced or increased in its expression after exposure of the cells to TPA. The magnitude of the TPA response appeared to relate to the stage of maturation arrest of the individual leukemic clones rather than to any clinical parameter explored. The significance of the findings to normal B cell differentiation and their potential clinical utility are discussed.

  1. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones

    PubMed Central

    Rogatsky, Inez; Zarember, Kol A.; Yamamoto, Keith R.

    2001-01-01

    To investigate determinants of specific transcriptional regulation, we measured factor occupancy and function at a response element, col3A, associated with the collagenase-3 gene in human U2OS osteosarcoma cells; col3A confers activation by phorbol esters, and repression by glucocorticoid and thyroid hormones. The subunit composition and activity of AP-1, which binds col3A, paralleled the intracellular level of cFos, which is modulated by phorbol esters and glucocorticoids. In contrast, a similar AP-1 site at the collagenase-1 gene, not inducible in U2OS cells, was not bound by AP-1. The glucocorticoid receptor (GR) associated with col3A through protein–protein interactions with AP-1, regardless of AP-1 subunit composition, and repressed transcription. TIF2/GRIP1, reportedly a coactivator for GR and the thyroid hormone receptor (TR), was recruited to col3A and potentiated GR-mediated repression in the presence of a GR agonist but not antagonist. GRIP1 mutants deficient in GR binding and coactivator functions were also defective for corepression, and a GRIP1 fragment containing the GR-interacting region functioned as a dominant-negative for repression. In contrast, repression by TR was unaffected by GRIP1. Thus, the composition of regulatory complexes, and the biological activities of the bound factors, are dynamic and dependent on cell and response element contexts. Cofactors such as GRIP1 probably contain distinct surfaces for activation and repression that function in a context-dependent manner. PMID:11689447

  2. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones.

    PubMed

    Rogatsky, I; Zarember, K A; Yamamoto, K R

    2001-11-01

    To investigate determinants of specific transcriptional regulation, we measured factor occupancy and function at a response element, col3A, associated with the collagenase-3 gene in human U2OS osteosarcoma cells; col3A confers activation by phorbol esters, and repression by glucocorticoid and thyroid hormones. The subunit composition and activity of AP-1, which binds col3A, paralleled the intracellular level of cFos, which is modulated by phorbol esters and glucocorticoids. In contrast, a similar AP-1 site at the collagenase-1 gene, not inducible in U2OS cells, was not bound by AP-1. The glucocorticoid receptor (GR) associated with col3A through protein-protein interactions with AP-1, regardless of AP-1 subunit composition, and repressed transcription. TIF2/GRIP1, reportedly a coactivator for GR and the thyroid hormone receptor (TR), was recruited to col3A and potentiated GR-mediated repression in the presence of a GR agonist but not antagonist. GRIP1 mutants deficient in GR binding and coactivator functions were also defective for corepression, and a GRIP1 fragment containing the GR-interacting region functioned as a dominant-negative for repression. In contrast, repression by TR was unaffected by GRIP1. Thus, the composition of regulatory complexes, and the biological activities of the bound factors, are dynamic and dependent on cell and response element contexts. Cofactors such as GRIP1 probably contain distinct surfaces for activation and repression that function in a context-dependent manner. PMID:11689447

  3. Overexpression of protein kinase C. beta. 1 enhances phospholipase D activity and diacylglycerol formation in phorbol ester-stimulated rat fibroblasts

    SciTech Connect

    Pai, Jinkeon; Pachter, J.A.; Bishop, W.R. ); Weinstein, I.B. )

    1991-01-15

    The authors are using a Rat-6 fibroblast cell line that stably overexpresses the {beta}1 isozyme of protein kinase C (PKC) to study regulation of phospholipid hydrolysis by PKC. Stimulation of control (R6-C1) or overexpressing (R6-PKC3) cells with phorbol ester results in an increase in diacylglycerol (DAG) mass with no increase in inositol phosphates, indicating that DAG is not formed by inositol phospholipid breakdown. A more dramatic DAG increase occurs in R6-PKC3 cells compared to R6-C1 cells. To further define the source of DAG, phosphatidylcholine (PC) pools were labeled with ({sup 3}H)myristic acid or with ({sup 3}H)- or ({sup 32}P)alkyllyso-PC and formation of labeled phosphatidylethanol, an unambiguous marker of phospholipase D activation, was monitored. Phorbol ester-stimulated phosphatidylethanel formation is 5-fold greater in the R6-PKC3 cell line. Formation of radiolabeled phosphatidic acid (PA) is also enhanced by PKC overepression. In cells double-labeled with ({sup 3}H)- and ({sup 32}P)-alkyl-lysoPC, the {sup 3}H/{sup 32}P ratio of PA and PC are identical 15 min after stimulation, suggesting that a phospholipase D mechanism predominates. These results indicate that phospholipase D is regulated by the action of PKC. Enhanced phospholipase D activity may contribute to the growth abnormalities seen in PKC-overexpressing cells.

  4. Mitochondrial control of nuclear apoptosis

    PubMed Central

    1996-01-01

    Anucleate cells can be induced to undergo programmed cell death (PCD), indicating the existence of a cytoplasmic PCD pathway that functions independently from the nucleus. Cytoplasmic structures including mitochondria have been shown to participate in the control of apoptotic nuclear disintegration. Before cells exhibit common signs of nuclear apoptosis (chromatin condensation and endonuclease-mediated DNA fragmentation), they undergo a reduction of the mitochondrial transmembrane potential (delta psi m) that may be due to the opening of mitochondrial permeability transition (PT) pores. Here, we present direct evidence indicating that mitochondrial PT constitutes a critical early event of the apoptotic process. In a cell-free system combining purified mitochondria and nuclei, mitochondria undergoing PT suffice to induce chromatin condensation and DNA fragmentation. Induction of PT by pharmacological agents augments the apoptosis-inducing potential of mitochondria. In contrast, prevention of PT by pharmacological agents impedes nuclear apoptosis, both in vitro and in vivo. Mitochondria from hepatocytes or lymphoid cells undergoing apoptosis, but not those from normal cells, induce disintegration of isolated Hela nuclei. A specific ligand of the mitochondrial adenine nucleotide translocator (ANT), bongkreik acid, inhibits PT and reduces apoptosis induction by mitochondria in a cell-free system. Moreover, it inhibits the induction of apoptosis in intact cells. Several pieces of evidence suggest that the proto-oncogene product Bcl-2 inhibits apoptosis by preventing mitochondrial PT. First, to inhibit nuclear apoptosis, Bcl-2 must be localized in mitochondrial but not nuclear membranes. Second, transfection-enforced hyperexpression of Bcl-2 directly abolishes the induction of mitochondrial PT in response to a protonophore, a pro- oxidant, as well as to the ANT ligand atractyloside, correlating with its apoptosis-inhibitory effect. In conclusion, mitochondrial PT appears

  5. Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs).

    PubMed

    Berthelet, Jean; Dubrez, Laurence

    2013-03-14

    Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform formation. Mammalian IAPs, mainly X-linked IAP (XIAP) and cellular IAPs (cIAPs) appeared to be important determinants of the response of cells to endogenous or exogenous cellular injuries, able to convert the survival signal into a cell death-inducing signal. This review highlights the role of IAP in regulating apoptosis in Drosophila and Mammals.

  6. Differentiation, early response gene expression, and apoptosis induction in human breast tumor cells by Okadaic Acid and related inhibitors of protein phosphatases 1 and 2A. Okadaic acid effects on human breast tumor cells

    SciTech Connect

    Kiguchi, K.; Giometti, C.; Chubb, C.H.; Huberman, E.; Fujiki, H.

    1992-08-20

    Okadaic acid (OA), a tumor promoter and an inhibitor of protein phosphatases (PPH) 1 and 2A, was tested for its ability to induce events associated with differentiation and apoptosis induction in the human MCF-7, AU-565, and MB-231 breast tumor cells. Differentiation in these cells was characterized by inhibition of cell multiplication, reactivity with monoclonal antibodies to {alpha}-lactalbumin and {beta}-casein, and the appearance of large lipid droplets; apoptosis was characterized by the appearance of cells with segmented and fragmented nuclei. In the MCF-7 cell line, OA at nanomolar concentrations elicited within 5 min an increase in the phosphorylation of a set of cellular proteins, within hours expression of the early response genes, junB, c-jun, and c-fos and within days manifestation of differentiation and apoptosis markers. Differentiation and apoptosis were also induced by dinophysistoxin-1 and calyculin A, two other tumor promoters and inhibitors of PPH 1 and 2A, but not by OA tetramethyl ether, an inactive OA derivative, or microcystin LR, a PPH 1 and 2A inhibitor that penetrates epithelial cells poorly. OA induced both differentiation and apoptosis in MB-231 cells and MCF-7, but only differentiation in AU-565 cells. Phorbol 12-myristate 13-acetate (PMA), a tumor promoter that is not an inhibitor of PPH 1 and 2A but rather an activator of protein kinase C, also induced within minutes the phosphorylation of proteins, within hours the expression of early response genes, and within days differentiation, but not apoptosis; yet PMA was able to attenuate apoptosis induced by the okadaic acid class of tumor promoters. These results indicate that OA and related agents can induce processes that result in tumor breast cell differentiation and apoptosis, and this induction is associated with their ability to inhibit PPH 1 and 2A. Yet apoptosis is not necessarily required for differentiation induction by these agents.

  7. [Apoptosis and its biomedical significance].

    PubMed

    Ortega-Camarillo, C; Díaz-Flores, M; Avalos-Rodríguez, A; Vergara-Onofre, M; Rosales-Torres, A M

    2001-01-01

    Cell death can occur through apoptotic or necrotic death pathways. Membrane disruption leads to inflammation, a typical feature of necrosis. Apoptosis constitutes a genetically controlled physiologic process of cell removal. It is characterized by cell shrinkage, chromatin condensation, and DNA cleavage. Apoptotic cells are rapidly recognized and engulfed by phagocytes thus inhibiting an inflammatory response following necrosis. Apoptosis has been proposed as a basic event to protect tissue homeostasis. This paper analyzes the genetic, biochemical, and morphologic characteristics related to apoptosis, as well as its relationship to certain illnesses. PMID:11766462

  8. Apoptosis pathways in neuroblastoma therapy.

    PubMed

    Fulda, Simone; Debatin, Klaus Michael

    2003-07-18

    Apoptosis, the cell's intrinsic death program, plays a crucial role in the regulation of tissue homeostasis, and an imbalance between cell death and proliferation may result in tumor formation. Also, killing of tumor cells by diverse cytotoxic approaches such as anticancer drugs, gamma-irradiation, suicide genes or immunotherapy, is predominantly mediated through induction of apoptosis. Failure to activate apoptotic pathways in response to drug treatment may lead to resistance of neuroblastoma cells to anticancer therapies. Understanding the molecular events that regulate apoptosis induced by cytotoxic therapies and how neuroblastoma cells evade apoptotic events may provide a new paradigm for neuroblastoma therapy. Thus, novel strategies targeting resistance of neuroblastoma cells will be based on insights into the molecular mechanisms of apoptosis as well as other forms of cell death.

  9. Protooncogenes as mediators of apoptosis.

    PubMed

    Teng, C S

    2000-01-01

    Apoptosis has been well established as a vital biological phenomenon that is important in the maintenance of cellular homeostasis. Three major protooncogene families and their encoded proteins function as mediators of apoptosis in various cell types and are the subject of this chapter. Protooncogenic proteins such as c-Myc/Max, c-Fos/c-Jun, and Bcl-2/Bax utilize a synergetic effect to enhance their roles in the pro- or antiapoptotic action. These family members activate and repress the expression of their target genes, control cell cycle progression, and execute programmed cell death. Repression or overproduction of these protooncogenic proteins induces apoptosis, which may vary as a result of either cell type specificity or the nature of the apoptotic stimuli. The proapoptotic and antiapoptotic proteins exert their effects in the membrane of cellular organelles. Here they generate cell-type-specific signals that activate the caspase family of proteases and their regulators for the execution of apoptosis.

  10. Apoptosis and acute kidney injury

    PubMed Central

    Havasi, Andrea; Borkan, Steven C.

    2015-01-01

    Improved mechanistic understanding of renal cell death in acute kidney injury (AKI) has generated new therapeutic targets. Clearly, the classic lesion of acute tubular necrosis is not adequate to describe the consequences of renal ischemia, nephrotoxin exposure, or sepsis on glomerular filtration rate. Experimental evidence supports a pathogenic role for apoptosis in AKI. Interestingly, proximal tubule epithelial cells are highly susceptible to apoptosis, and injury at this site contributes to organ failure. During apoptosis, well-orchestrated events converge at the mitochondrion, the organelle that integrates life and death signals generated by the BCL2 (B-cell lymphoma 2) protein family. Death requires the ‘perfect storm’ for outer mitochondrial membrane injury to release its cellular ‘executioners’. The complexity of this process affords new targets for effective interventions, both before and after renal insults. Inhibiting apoptosis appears to be critical, because circulating factors released by the injured kidney induce apoptosis and inflammation in distant organs including the heart, lung, liver, and brain, potentially contributing to the high morbidity and mortality associated with AKI. Manipulation of known stress kinases upstream of mitochondrial injury, induction of endogenous, anti-apoptotic proteins, and improved understanding of the timing and consequences of renal cell apoptosis will inevitably improve the outcome of human AKI. PMID:21562469

  11. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding.

    PubMed

    Gopalakrishna, R; Chen, Z H; Gundimeda, U

    1993-12-25

    Since S-nitrosylation of protein thiols is one of the cellular regulatory mechanisms induced by nitric oxide (NO), and since protein kinase C (PKC) has critical thiol residues which influence its kinase activity, we have determined whether NO could regulate this enzyme. Initial studies were carried out with purified PKC and the NO-generating agent S-nitrosocysteine. This agent decreased phosphotransferase activity of PKC in a Ca(2+)- and oxygen-dependent manner with an IC50 of 75 microM. Phorbol ester binding was affected partially only at higher concentrations (> 100 microM) of S-nitrosocysteine. This inactivation of PKC was blocked by the NO scavenger oxyhemoglobin or reversed by dithiothreitol. It is likely that NO initially induced an S-nitrosylation of vicinal thiols, which were then oxidized to form an intramolecular disulfide. Other NO-generating agents such as S-nitroso-N-acetylpenicillamine and sodium nitroprusside, as well as authentic NO gas, induced similar types of PKC modifications. In intact B16 melanoma cells treated with S-nitrosocysteine a rapid decrease in PKC activity in both cytosol and membrane was observed. Unlike in experiments with purified PKC, in intact cells treated with S-nitrosocysteine the phorbol ester binding also decreased to a rate equal to that of PKC activity. These modifications were readily reversed by treating the homogenates with dithiothreitol in test tubes or by removing the NO-generating source from intact cells. To determine whether the limited amounts of NO generated within the intact cells could induce this type of PKC modification, the macrophage cell line IC-21 was treated with lipopolysacharide and Ca2+ ionophore A23187 to induce the NO production. With an increase in generation of NO (3-12-h period) in these cells, a parallel and irreversible decrease in PKC activity and phorbol ester binding was observed. A specific inhibitor for NO synthase, NG-monomethyl-L-arginine, inhibited both the production of NO and PKC

  12. Effects of insulin and phorbol esters on MARCKS (myristoylated alanine-rich C-kinase substrate) phosphorylation (and other parameters of protein kinase C activation) in rat adipocytes, rat soleus muscle and BC3H-1 myocytes.

    PubMed Central

    Arnold, T P; Standaert, M L; Hernandez, H; Watson, J; Mischak, H; Kazanietz, M G; Zhao, L; Cooper, D R; Farese, R V

    1993-01-01

    To evaluate the question of whether or not insulin activates protein kinase C (PKC), we compared the effects of insulin and phorbol esters on the phosphorylation of the PKC substrate, i.e. myristoylated alanine-rich C-kinase substrate (MARCKS). In rat adipocytes, rat soleus muscle and BC3H-1 myocytes, maximally effective concentrations of insulin and phorbol esters provoked comparable, rapid, 2-fold (on average), non-additive increases in the phosphorylation of immunoprecipitable MARCKS. These effects of insulin and phorbol esters on MARCKS phosphorylation in intact adipocytes and soleus muscles were paralleled by similar increases in the phosphorylation of an exogenous, soluble, 85 kDa PKC substrate (apparently a MARCKS protein) during incubation of post-nuclear membrane fractions in vitro. Increases in the phosphorylation of this 85 kDa PKC substrate in vitro were also observed in assays of both plasma membranes and microsomes obtained from rat adipocytes that had been treated with insulin or phorbol esters. These insulin-induced increases in PKC-dependent phosphorylating activities of adipocyte plasma membrane and microsomes were associated with increases in membrane contents of diacylglycerol, PKC-beta 1 and PKC-beta 2. Our findings suggest that insulin both translocates and activates PKC in rat adipocytes, rat soleus muscles and BC3H-1 myocytes. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 Figure 10 PMID:8216211

  13. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    NASA Astrophysics Data System (ADS)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  14. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions.

    PubMed

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-06

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  15. Signals involved in T cell activation. II. Distinct roles of intact accessory cells, phorbol esters, and interleukin 1 in activation and cell cycle progression of resting T lymphocytes

    SciTech Connect

    Davis, L.; Lipsky, P.E.

    1986-05-15

    The signals involved in the initiation of mitogen-induced activation of resting guinea pig T cells were examined. The combination of phytohemagglutinin (PHA) and 4..beta..-phorbol 12-myristate 13-acetate (PMA) stimulated DNA synthesis by accessory cell (AC)-depleted T cells cultured at high density, but the use of low density cultures indicated that intact AC were absolutely necessary for PHA-stimulated T cell DNA synthesis even in the presence of PMA, interleukin 1 (IL 1), or interleukin 2 (IL 2). In contrast, AC-depleted T cells were able to respond to the combination of the calcium ionophore, ionomycin, and PMA regardless of the cell density at which they were cultured. Results of cell cycle analysis support the conclusion that intact AC, IL 1, and a PMA-like signal play distinct roles in the progression of mitogen stimulated T cells through the first round of the cell cycle.

  16. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    SciTech Connect

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.; Mosimann, W.F.; Yanagihara, N.; Weiner, N.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin are independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.

  17. Myosin light chain phosphorylation in sup 32 P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine

    SciTech Connect

    Singer, H.A.; Oren, J.W.; Benscoter, H.A. )

    1989-12-15

    The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.

  18. Inhibition of hormone-sensitive lipase gene expression by cAMP and phorbol esters in 3T3-F442A and BFC-1 adipocytes.

    PubMed

    Plée-Gautier, E; Grober, J; Duplus, E; Langin, D; Forest, C

    1996-09-15

    Hormone-sensitive lipase (HSL) catalyses the rate-limiting step in adipocyte lipolysis. Short-term hormonal regulation of HSL activity is well characterized, whereas little is known about the control of HSL gene expression. We have measured HSL mRNA content of 3T3-F442A and BFC-1 adipocytes in response to the cAMP analogue 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP) and to the phorbol ester phorbol 12-myristate 13-acetate (PMA) by Northern blot, using a specific mouse cDNA fragment. Treatment of the cells for 12 or 6 h with, respectively, 0.5 mM 8-CPT-cAMP or 1 microM PMA produced a maximal decrease of about 60% in HSL mRNA. These effects were unaffected by the protein-synthesis inhibitor anisomycin, suggesting that cAMP and PMA actions were direct. The reduction in HSL mRNA was accompanied by a reduction in HSL total activity. The intracellular routes that cAMP and PMA follow for inducing such an effect seemed clearly independent. (i) After desensitization of the protein kinase C regulation pathway by a 24 h treatment of the cells with 1 microM PMA, PMA action was abolished whereas cAMP was still fully active. (ii) Treatment with saturating concentrations of both agents produced an additive effect. (iii) The synthetic glucocorticoid dexamethasone had no proper effect on HSL gene expression but potentiated cAMP action without affecting PMA action. cAMP inhibitory action on HSL is unexpected. Indeed, the second messenger of catecholamines is the main activator of HSL by phosphorylation. We envision that a long-term cAMP treatment of adipocytes induces a counter-regulatory process that reduces HSL content and, ultimately, limits fatty acid depletion from stored triacylglycerols.

  19. Rat neuropeptide Y precursor gene expression. mRNA structure, tissue distribution, and regulation by glucocorticoids, cyclic AMP, and phorbol ester.

    PubMed

    Higuchi, H; Yang, H Y; Sabol, S L

    1988-05-01

    Rat brain neuropeptide Y precursor (prepro-NPY) cDNA clones were isolated and sequenced in order to study regulation of the prepro-NPY gene. Rat prepro-NPY (98 amino acid residues) contains a 36-residue NPY sequence, followed by a proteolysis/amidation site Gly-Lys-Arg, followed by a 30-residue COOH-terminal sequence. The strong evolutionary conservation of rat and human sequences of NPY (100%) and COOH-terminal peptide (93%) suggests that both peptides have important biological functions. In the rat central nervous system, prepro-NPY mRNA (800 bases) is most abundant in the striatum and cortex and moderately abundant in the hippocampus, hypothalamus, and spinal cord. The rat adrenal, spleen, heart, and lung have significant levels of prepro-NPY mRNA. Regulation of the prepro-NPY mRNA abundance was studied in several rodent neural cell lines. PC12 rat pheochromocytoma and N18TG-2 mouse neuroblastoma cells possess low basal levels of prepro-NPY mRNA, while NG108-15 hybrid cells possess high levels. Treatment of PC12 cells with a glucocorticoid such as dexamethasone or elevation of cAMP by forskolin increased the prepro-NPY mRNA level 2-3-fold or 3-10-fold, respectively. In N18TG-2 cells dexamethasone and forskolin synergistically increased prepro-NPY mRNA 7-fold. Treatment of PC12 cells with the protein kinase C activator phorbol 12-myristate 13-acetate alone elevated prepro-NPY mRNA marginally, but the phorbol ester plus forskolin elicited 20-70-fold increases, which were further enhanced to over 200-fold by dexamethasone and the calcium ionophore A23187. These results indicate that NPY gene expression can be positively regulated by synergistic actions of glucocorticoids, cAMP elevation, and protein kinase C activation.

  20. Viral Control of Mitochondrial Apoptosis

    PubMed Central

    Morselli, Eugenia; Touat, Zahia; Kroemer, Guido

    2008-01-01

    Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus. PMID:18516228

  1. Analysis of the mechanisms involved in the stimulation of neutrophil apoptosis by tumour necrosis factor-α

    PubMed Central

    Salamone, Gabriela; Trevani, Analía; Martínez, Diego; Vermeulen, Mónica; Gamberale, Romina; Fernández-Calotti, Paula; Raiden, Silvina; Giordano, Mirta; Geffner, Jorge

    2004-01-01

    We have previously reported that human neutrophils pretreated with tumour necrosis factor-α (TNF-α) and then exposed to a variety of agents such as immune complexes, zymosan, phorbol 12-myristate 13-acetate (PMA), C5a, fMLP, or granulocyte–macrophage colony-stimulating factor (GM-CSF), undergo a dramatic stimulation of apoptosis, suggesting that TNF-α is able to prime an apoptotic death programme which can be rapidly triggered by different stimuli. We report here that this response involves the participation of Mac-1 (CD11b/CD18), is dependent on caspases 3, 8 and 9, and is associated with both a loss of mitochondrial transmembrane potential and a down-regulation in expression of the anti-apoptotic protein, Mcl-1. Interestingly, we also found that the anti-apoptotic cytokine interleukin-1 (IL-1) improves the ability of TNF-α to promote apoptosis, supporting the notion than TNF-α, acting together with IL-1, may favour the depletion of neutrophils from the inflammatory areas during the course of acute inflammation. PMID:15500622

  2. Molecular mechanisms of hepatic apoptosis

    PubMed Central

    Wang, K

    2014-01-01

    Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis. PMID:24434519

  3. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future. PMID:15084979

  4. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  5. Fluorescence Lifetime Imaging of Apoptosis

    PubMed Central

    Xiao, Annie; Gibbons, Anne E.; Luker, Kathryn E.; Luker, Gary D.

    2015-01-01

    Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity. PMID:26771007

  6. Analysis of fumonisin B1-induced apoptosis.

    PubMed Central

    Jones, C; Ciacci-Zanella, J R; Zhang, Y; Henderson, G; Dickman, M

    2001-01-01

    Fumonisins are mycotoxins produced by Fusarium moniliforme, a prevalent fungus that infects corn and other cereal grains. Fumonisin B1(FB1 is the most common mycotoxin produced by F. moniliforme, suggesting it has toxicologic significance. The structure of FB1 resembles sphingoid bases, and it inhibits ceramide synthase. Because sphingoid bases regulate cell growth, differentiation, transformation, and apoptosis, it is not surprising to find that FB1 can alter growth of certain mammalian cells. Previous studies concluded FB1-induced apoptosis, or cell cycle arrest, in African green monkey kidney fibroblasts (CV-1). In this study we have identified genes that inhibit FB1 induced apoptosis in CV-1 cells and two mouse embryo fibroblasts (MEF). A baculovirus gene, inhibitor of apoptosis (CpIAP), protected these cells from apoptosis. CpIAP blocks apoptosis induced by the tumor necrosis factor (TNF) pathway as well as other mechanisms. Further support for the involvement of the TNF signal transduction pathway in FB1 induced apoptosis was the cleavage of caspase 8. Inhibition of caspases by the baculovirus gene (italic)p35 also inhibited FB1-induced apoptosis. The tumor suppressor gene p53 was not required for FB1 induced apoptosis because p53-/- MEF undergo apoptosis following FB1 treatment. Furthermore, Bcl-2 was not an effective inhibitor of FB1-induced apoptosis in CV-1 cells or p53+/+ MEF. In summary, these results provide new information to help understand the mechanism by which FB1 induces apoptosis. PMID:11359701

  7. Evaluation of effects of various drugs on platelet functions using phorbol 12-myristate 13-acetate-induced megakaryocytic human erythroid leukemia cells

    PubMed Central

    Tada, Tomoki; Aki, Kensaku; Oboshi, Wataru; Kawazoe, Kazuyoshi; Yasui, Toshiyuki; Hosoi, Eiji

    2016-01-01

    Background The hyperfunction and activation of platelets have been strongly implicated in the development and recurrence of arterial occlusive disease, and various antiplatelet drugs are used to treat and prevent such diseases. New antiplatelet drugs and many other drugs have been developed, but some drugs may have adverse effects on platelet functions. Objective The aim of this study was to establish an evaluation method for evaluating the effect and adverse effect of various drugs on platelet functions. Materials and methods Human erythroid leukemia (HEL) cells were used after megakaryocytic differentiation with phorbol 12-myristate 13-acetate as an alternative to platelets. Drugs were evaluated by changes in intracellular Ca2+ concentration ([Ca2+]i) mobilization in Fura2-loaded phorbol 12-myristate 13-acetate-induced HEL cells. Aspirin and cilostazol were selected as antiplatelet drugs and ibuprofen and sodium valproate as other drugs. Results There was a positive correlation between [Ca2+]i and platelet aggregation induced by thrombin. Aspirin (5.6–560 µM) and cilostazol (5–10 µM) significantly inhibited thrombin-induced increases in [Ca2+]i in a concentration-dependent manner. On the other hand, ibuprofen (8–200 µM) and sodium valproate (50–1,000 µg/mL) also significantly inhibited thrombin-induced increases in [Ca2+]i in a concentration-dependent manner. Furthermore, the interaction effects of the simultaneous combined use of aspirin and ibuprofen or sodium valproate were evaluated. When the inhibitory effect of aspirin was higher than that of ibuprofen, the effect of aspirin was reduced, whereas when the inhibitory effect of aspirin was lower than that of ibuprofen, the effect of ibuprofen was reduced. The combination of aspirin and sodium valproate synergistically inhibited thrombin-induced [Ca2+]i. Conclusion It is possible to induce HEL cells to differentiate into megakaryocytes, which are a useful model for the study of platelet functions

  8. Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQQ209L-driven melanoma

    PubMed Central

    Patel, B R; Tall, G G

    2016-01-01

    The heterotrimeric G protein α subunit oncogenes GNAQ or GNA11 carry Q209X or R183X activating mutations and are present with ~90% frequency in human uveal melanomas. Forced expression of GNAQ/11Q209L in melanocytes is sufficient to drive metastatic melanoma in immune-compromised mice. No known drugs directly target these oncogenic G proteins. Ric-8A is the molecular chaperone that selectively folds Gαq/i/13 subunits. Targeting Ric-8A serves as a rational, yet unexplored approach to reduce the functional abundance of oncogenic Gαq/11 in order to blunt cancer signaling. Here, using mouse melanocyte cell graft tumorigenesis models, we determined that Ric-8A genetic ablation attenuated the abundance and melanoma-driving potential of Gαq-Q209L. A new conditional Ric-8AFlox/Flox; Rosa-CreER+/− mouse strain was derived and used as a tissue source to culture an immortalized, tamoxifen-inducible Ric-8A knockout melanocyte cell line that required 12-O-tetradecanoylphorbol-13-acetate (TPA, phorbol ester) for growth. The cell line failed to grow tumors when grafted into immune-compromised mice regardless of Ric-8A expression. Stable expression of human GNAQQ209L, but not GNAQWT in the cell line promoted TPA-independent cell proliferation, and upon cell grafting in mice, the initiation and robust growth of darkly-pigmented melanoma tumors. Deletion of Ric-8A in GNAQQ209L cells restored TPA-dependent growth, reduced Gαq-Q209L below detectable levels and completely mitigated tumorigenesis from primary or secondary cell line grafts. Interestingly, TPA treatment of cultured GNAQQ209L cells or host animals grafted with GNAQQ209L cells also sharply reduced Gαq-Q209L abundance and tumorigenic capacity. Finally, tumorigenesis initiated from GNAQQ209L cell grafts, followed by host mouse systemic tamoxifen treatment to delete Ric-8A in the grafted cells completely abrogated GNAQQ209L-driven tumor progression unless a stable human RIC-8A transgene was used to rescue the floxed

  9. Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQ(Q209L)-driven melanoma.

    PubMed

    Patel, B R; Tall, G G

    2016-01-01

    The heterotrimeric G protein α subunit oncogenes GNAQ or GNA11 carry Q209X or R183X activating mutations and are present with ~90% frequency in human uveal melanomas. Forced expression of GNAQ/11(Q209L) in melanocytes is sufficient to drive metastatic melanoma in immune-compromised mice. No known drugs directly target these oncogenic G proteins. Ric-8A is the molecular chaperone that selectively folds Gαq/i/13 subunits. Targeting Ric-8A serves as a rational, yet unexplored approach to reduce the functional abundance of oncogenic Gαq/11 in order to blunt cancer signaling. Here, using mouse melanocyte cell graft tumorigenesis models, we determined that Ric-8A genetic ablation attenuated the abundance and melanoma-driving potential of Gαq-Q209L. A new conditional Ric-8A(Flox/Flox); Rosa-CreER(+/)(-) mouse strain was derived and used as a tissue source to culture an immortalized, tamoxifen-inducible Ric-8A knockout melanocyte cell line that required 12-O-tetradecanoylphorbol-13-acetate (TPA, phorbol ester) for growth. The cell line failed to grow tumors when grafted into immune-compromised mice regardless of Ric-8A expression. Stable expression of human GNAQ(Q209L), but not GNAQ(WT) in the cell line promoted TPA-independent cell proliferation, and upon cell grafting in mice, the initiation and robust growth of darkly-pigmented melanoma tumors. Deletion of Ric-8A in GNAQ(Q209L) cells restored TPA-dependent growth, reduced Gαq-Q209L below detectable levels and completely mitigated tumorigenesis from primary or secondary cell line grafts. Interestingly, TPA treatment of cultured GNAQ(Q209L) cells or host animals grafted with GNAQ(Q209L) cells also sharply reduced Gαq-Q209L abundance and tumorigenic capacity. Finally, tumorigenesis initiated from GNAQ(Q209L) cell grafts, followed by host mouse systemic tamoxifen treatment to delete Ric-8A in the grafted cells completely abrogated GNAQ(Q209L)-driven tumor progression unless a stable human RIC-8A transgene was used to

  10. Mechanisms of p53-induced apoptosis.

    PubMed

    Bennett, M R

    1999-10-01

    The p53 tumour suppressor gene functions in both cell cycle arrest and apoptosis. Despite considerable advances in understanding as to how p53 regulates growth arrest, the mechanisms by which p53 regulates apoptosis are only just emerging. In particular, there appears to be a structural and functional separation between the ability of p53 to induce growth arrest and apoptosis. This review examines the interactions between p53-induced growth arrest and apoptosis, and the mechanisms of p53-induced apoptosis, both via induction of p53 transcriptional targets and via nontranscriptional mechanisms.

  11. [Apoptosis modulation by human papillomavirus].

    PubMed

    Jave-Suárez, Luis Felipe; Ratkovich-González, Sarah; Olimón-Andalón, Vicente; Aguilar-Lemarroy, Adriana

    2015-01-01

    One of the most important processes to keep the homeostasis in organisms is the apoptosis, also called programmed cell death. This mechanism works through two pathways: The intrinsic or mitochondrial, which responds to DNA damage and extern agents like UV radiation; and the extrinsic or receptor-mediated, which binds to their ligands to initiate the apoptotic trail. The evasion of apoptosis is one of the main causes of cellular transformation to malignity. Many viruses had shown capacity to modify the apoptotic process; among them is the human papillomavirus, which, by means of its oncoproteins, interferes in pathways, reacting with the receptors and molecules and participating in the death mechanism. This creates ideal conditions for cancer development.

  12. Phorbol ester stimulates membrane association of protein kinase C and inhibits spontaneous Ca/sup 2 +/ dependent sarcoplasmic reticulum Ca/sup 2 +/ release in rat cardiac cells

    SciTech Connect

    Capogrossi, M.C.; Kaku, T.; Filburn, C.H.; Pelto, D.J.; Hansford, R.G.; Lakatta, E.G.

    1986-03-01

    Spontaneous oscillatory Ca/sup 2 +/ release from sarcoplasmic reticulum (SR) occurs in rat cardiac myocytes at hyperpolarized membrane potentials and is manifested as contractile waves (W). W frequency varies with SR functional status and cell Ca/sup 2 +/ loading. In myocyte suspensions (Hepes buffer, 37/sup 0/C (Ca/sup 2 +/) = 1.0mM) phorbol myristate acetate, PMA, (10/sup -7/ M) increased protein kinase C activity in membranes as a fraction of total (PKCAM) fivefold with a t 1/2 of < 30 sec (n = 3) and decreased W frequency in individual myocytes (n = 8). This effect varied directly and linearly with baseline W frequency, r = .94, p < .001). Dioctanoyl glycerol (10 ..mu.. M) had a similar effect on W. The PMA effect to decrease W frequency could be a direct one on SR or result from a reduction in cell Ca/sup 2 +/. The time course of PKCAM change is sufficiently rapid for it to mediate the effect on W. Thus, enhanced PKCAM may exert negative feedback control on Ca/sup 2 +/ mobilization during ..cap alpha..-adrenergic stimulation.

  13. Insights on profiling of phorbol, deoxyphorbol, ingenol and jatrophane diterpene esters by high performance liquid chromatography coupled to multiple stage mass spectrometry.

    PubMed

    Nothias-Scaglia, Louis-Félix; Schmitz-Afonso, Isabelle; Renucci, Franck; Roussi, Fanny; Touboul, David; Costa, Jean; Litaudon, Marc; Paolini, Julien

    2015-11-27

    This paper reports our effort to develop a comprehensive HPLC-MS(n)-based dereplication strategy for phorbol ester (PE), deoxyphorbol ester (dPE) and ingenol ester (IE) profiling in plant extracts. This strategy is composed of two sequential analysis exploiting specific hybrid triple quadrupole/linear ion trap instrument modes. A first run was performed using a multiple reaction monitoring (MRM) mode targeting fragmentation of PE and dPE/IE coupled with the acquisition of MS(2) spectrum for the ions at m/z 311 and m/z 313, respectively. A second run was then completed based on precursor ion scan mode (PIS) and automatic MS(2) acquisition for each quasimolecular ion. The developed approach was used to investigate ten Euphorbia extracts showing bioactivity against chikungunya virus replication. Experiments allowed partial annotation of three dPE/IE but no PE was detected. Results suggested that other types of diterpene esters displayed PE- and dPE/IE-like fragmentations. The study of jatrophane ester (JE) standards by CID fragmentation using low and high resolution mass spectrometry confirmed this hypothesis, highlighting challenges and difficulties of diterpene esters profiling within plant extracts. Nonetheless, the present LC-MS(n) method can be easily adapted to profile other types of diterpene esters.

  14. A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation.

    PubMed

    Azevedo, Estefania P; Rochael, Natalia C; Guimarães-Costa, Anderson B; de Souza-Vieira, Thiago S; Ganilho, Juliana; Saraiva, Elvira M; Palhano, Fernando L; Foguel, Debora

    2015-09-01

    Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation.

  15. A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation*

    PubMed Central

    Azevedo, Estefania P.; Rochael, Natalia C.; Guimarães-Costa, Anderson B.; de Souza-Vieira, Thiago S.; Ganilho, Juliana; Saraiva, Elvira M.; Palhano, Fernando L.; Foguel, Debora

    2015-01-01

    Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation. PMID:26198639

  16. Optimization of chemical induction conditions for human herpesvirus 8 (HHV-8) reactivation with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) from latently-infected BC-3 cells.

    PubMed

    Ma, Wenbin; Galvin, Teresa A; Ma, Hailun; Ma, Yunkun; Muller, Jacqueline; Khan, Arifa S

    2011-05-01

    Human herpesvirus 8 (HHV-8) persists as episomal DNA in latently-infected cells and can establish two alternative life cycles, latent or lytic. 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is a known inducer of HHV-8 in several human primary effusion lymphoma cell lines and has been widely used for HHV-8 reactivation; however, induction conditions have differed, resulting in varying levels of virus expression. We have used HHV-8 latently-infected BC-3 cells as a model to determine critical parameters for optimizing virus reactivation by TPA. We found that cell growth properties and drug treatment conditions were important for maximum reactivation of HHV-8. Addition of TPA to cells in the early log phase of a sigmoidal growth curve, which was tightly associated with high percentage of the cells in early S phase and with lower histone deacetylase activity in the cells, provided the optimum cell conditions for latent virus to switch to lytic replication. Furthermore, increasing TPA concentration (up to 320 ng per ml) at 48 h exposure time resulted in increased virus production. The results demonstrate the use of a step-wise strategy with chemical induction that may facilitate broad detection of latent DNA viruses and novel virus discovery. PMID:21470875

  17. Influence of hyaluronic acid or phorbol 12-myristate 13-acetate on the migration capacity of a murine lymphoma cell line (Eb) and its metastatic variant (ESb).

    PubMed

    Kubens, B S; Nikolai, G; Zänker, K S

    1997-10-14

    The in vitro migration of two murine T cell lymphoma cell lines (Eb and ESb) was studied employing a three-dimensional collagen matrix and time-lapse video recording. In the highly metastatic cell line ESb, which had a low spontaneous locomoting activity, migration could clearly be stimulated by hyaluronic acid (HA) whereas only a small increase was found after incubation with phorbol myristate acetate (PMA). The observed stimulation could be attributed to an increase in recruitment of locomoting cells and not to changes in migration parameters of motile individual cells such as percentage of time locomoting, velocity or distance migrated. Incubation of the low metastatic cell line Eb with HA led to a decrease in migration but blocking of CD44, the principle ligand for HA, by preincubation with an anti-CD44 mAb (KM114), followed by HA exposure increased the locomoting activity significantly. The effect was based on both an increase in recruitment as well as in all migration parameters regarding motile individual Eb cells.

  18. A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras, phorbol 12-myristate 13-acetate, and serum.

    PubMed Central

    Frost, J A; Geppert, T D; Cobb, M H; Feramisco, J R

    1994-01-01

    The role of ERK-1 and ERK-2 in wild-type (wt) Ha-Ras, phorbol 12-myristate 13-acetate (PMA), and serum-induced AP-1 activity was studied. Microinjection of ERK-specific substrate peptides inhibited the induction of AP-1 activity by all three stimuli, whereas a control peptide had no effect. By using eukaryotic expression constructs encoding wt ERK-1 and kinase-deficient mutants of ERKs 1 and 2, it was found that ERK-1 and ERK-2 activities are required for AP-1 activation stimulated by either wt Ha-Ras, PMA, or serum. Overexpression of ERK-1 augmented wt Ha-Ras stimulation of AP-1, while having no effect upon PMA or serum stimulation. Overexpression of either kinase-deficient ERK-1 or kinase-deficient ERK-2 partially inhibited AP-1 activation by wt Ha-Ras but had no effect on PMA or serum-induced activation. Coexpression of both interfering mutants abolished AP-1 induction by wt Ha-Ras, PMA, or serum. We conclude that ERKs are necessary components in the pathway leading to the activation of AP-1 stimulated by these agents. Images PMID:8170999

  19. Myristic Acid, A Side Chain of Phorbol Myristate Acetate (PMA), Can Activate Human Polymorphonuclear Leukocytes to Produce Oxygen Radicals More Potently than PMA

    PubMed Central

    Tada, Mika; Ichiishi, Eiichiro; Saito, Rumiko; Emoto, Natsumi; Niwano, Yoshimi; Kohno, Masahiro

    2009-01-01

    Myristic acid (MyA), which is a saturated fatty acid (C14:0) and a side chain of phorbol 12-myristate 13-acetate (PMA), was examined if MyA stimulates human polymorphonuclear leukocytes (PMNs) to release oxygen radicals comparable to PMA by applying electron paramagnetic resonance (EPR)-spin-trapping method. When MyA was added to isolated human PMNs, spin adducts of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-OH and DMPO-OOH were time-dependently observed. The amounts of these spin adducts were larger than those of PMNs stimulated by PMA. These results clearly show that MyA is more potent agent to prime human PMNs than PMA, in a point of view of not only O2·− but also ·OH production. This fact calls attention that too much intake of MyA that is known to be contained vegetable oils can lead to crippling effect through uncontrolled production of reactive oxygen species. PMID:19902021

  20. Amplification of insulin secretion by acetylcholine or phorbol ester is independent of β-cell microfilaments and distinct from metabolic amplification.

    PubMed

    Mourad, Nizar I; Nenquin, Myriam; Henquin, Jean-Claude

    2013-03-10

    Insulin secretion (IS) triggered by β-cell [Ca(2+)](c) is amplified by metabolic and receptor-generated signals. Diacylglycerol largely mediates acetylcholine (ACh) effects through protein-kinase C and other effectors, which can be directly activated by phorbol-ester (PMA). Using mouse islets, we investigated the possible role of microfilaments in ACh/PMA-mediated amplification of IS. PMA had no steady-state impact on actin microfilaments. Although ACh slightly augmented and PMA diminished glucose- and tolbutamide-induced increases in β-cell [Ca(2+)](c), both amplified IS in control islets and after microfilament disruption (latrunculin) or stabilization (jasplakinolide). Both phases of IS were larger in response to glucose than tolbutamide, although [Ca(2+)](c) was lower. This difference in secretion, which reflects metabolic amplification, persisted in presence of ACh/PMA and was independent of microfilaments. Amplification of IS by ACh/PMA is thus distinct from metabolic amplification, but both pathways promote acquisition of release competence by insulin granules, which can access exocytotic sites without intervention of microfilaments.

  1. Amphiregulin: A bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7

    SciTech Connect

    Shoyab, M.; McDonald, V.L.; Bradley, G.; Todaro, G.J. )

    1988-09-01

    A glycoprotein, termed amphiregulin (AR), inhibits growth of several human carcinoma cells in culture and stimulates proliferation of human fibroblasts and certain other tumor cells. It has been purified to apparent homogeneity from serum-free conditioned medium of MCF-7 human breast carcinoma cells that had been treated with phorbol 12-myristate 13-acetate. AR is a single-chain extremely hydrophilic glycoprotein containing cysteines in disulfide linkage(s) that are essential for biological activity; it is stable between pH2 and pH12 and after heating for 30 min at 56{degree}C but unstable at 100{degree}C. The apparent molecular weights of AR and N-Glycanase-treated AR are 14,000 and 15,000, respectively, as assessed by gel chromatography, and {approx}22,500 and {approx}14,000, respectively, as determined by polyacrylamide gel electrophoresis. A growth modulatory assay was performed with {sup 125}I-labeled deoxyuridine incorporation into DNA. The amino-terminal amino acid sequence of AR has been determined, and no significant sequence homology between AR and other proteins was found. The molecule thus appears to be a distinct growth regulatory protein.

  2. Involvement of Ca/sup 2 +//phospholipid-dependent C-kinase in phorbol ester-mediated activation of normal human T cell

    SciTech Connect

    Dirienzo, W.; Nel, A.E.; Lattanze, G.R.; Galbraith, R.M.

    1986-03-01

    C-kinase appears to be involved in biological responses of T cells, and phorbol myristate acetate (PMA) is a direct activator of this enzyme. In this study, reaction of T cells with PMA (0.1-50 ng/ml) showed a dose-dependent increase in /sup 3/H-thymidine incorporation; higher concentrations were toxic. C-kinase assays performed in parallel demonstrated sustained translocation of >99% of C-kinase activity from the cytosol to the detergent-soluble membrane fraction. Experiments were done in the presence of cyclosporine (CSA), and of polymyxin B (PMB) which also inhibits C-kinase. Both PMA and CSA caused profound and dose-dependent reduction in proliferation, with maximal inhibition of >70% and >90% respectively. Moreover, addition of PMB showed coordinate inhibition of C-kinase activity (>80% at 10 ..mu..M), whereas at similar concentrations inhibiting cell proliferation CSA had no detectable effect. These results indicate that PMA initiates activation and proliferation by stimulation of at least two distinct pathways, one of which involves C-kinase activation and is inhibited by PMB.

  3. Apoptosis in Cryopreserved Eukaryotic Cells.

    PubMed

    Savitskaya, M A; Onishchenko, G E

    2016-05-01

    This review considers apoptosis mechanisms that have been revealed in cryopreserved cells and which can be controlled using different chemical agents, thereby improving the viability of cells after their return to normal conditions. The role of oxidative stress as of the most significant damaging factor is discussed, as well as the reasonability of including antioxidants into cryopreservation/thawing protocols as independent agents or in combination with other compounds.

  4. Apoptosis in irradiated murine tumors.

    PubMed

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors.

  5. Apoptosis in irradiated murine tumors.

    PubMed

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors. PMID:1886987

  6. Human papillomavirus oncoproteins and apoptosis (Review)

    PubMed Central

    JIANG, PEIYUE; YUE, YING

    2014-01-01

    The aim of this study was to review the literature and identify the association between human papillomavirus (HPV) oncoproteins and apoptosis. HPV-associated apoptosis may be primarily blocked by a number of oncoproteins, including E5, E6 and E7. E5 protein protects cells from tumor necrosis factor-associated apoptosis; the oncoprotein E6 predominantly inhibits apoptosis through the p53 pathway; and oncoprotein E7 is involved in apoptosis activation and inhibition. In addition, HPV oncoproteins are involved in activating or repressing the transcription of E6/E7. In conclusion, HPV oncoproteins, including E5, E6 and E7 protein, may interfere with apoptosis via certain regulatory principles. PMID:24348754

  7. Apoptosis in cancer: from pathogenesis to treatment

    PubMed Central

    2011-01-01

    Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects. PMID:21943236

  8. Effects of phorbol 12-myristate 13-acetate on triglyceride and cholesteryl ester synthesis in cultured coronary smooth muscle cells and macrophages.

    PubMed

    Moinat, M; Chevey, J M; Muzzin, P; Giacobino, J P; Kossovsky, M

    1990-02-01

    In cultured pig coronary smooth muscle cells phorbol 12-myristate 13-acetate (PMA) stimulated the conversion of [4-14C]cholesterol into cholesteryl esters and the incorporation of [2-3H]glycerol into triglycerides 6.4- and 4.5-fold, respectively. The maximal effects occurred after 3 h of treatment and there was a return to basal values after 72 h. In the presence of 400 microM oleic acid, PMA stimulated the conversion of [4-14C]cholesterol into cholesteryl esters and that of [2-3H]glycerol into triglycerides 5.3- and 2.3-fold, respectively. The stimulatory effects were more sustained (still significant after 72 h) and their maxima were delayed (peaks after 24 h). PMA was also found to increase 2-fold the amount of triglyceride that accumulated in the cells in the presence of oleic acid after 24 h. In macrophages IC-21, the effects of PMA were observed only in the presence of oleic acid. They consisted of a 1.9-fold stimulation in the conversion of [4-14C]cholesterol into cholesteryl esters after 72 h and of a 1.7-fold stimulation in the incorporation of [2-3H]glycerol into triglycerides after 24 h. PMA also increased the amount of triglyceride that accumulated in the cells 1.9-fold after 72 h. It is concluded that PMA, and possibly growth factors, may promote lipid storage in smooth muscle cells and that fatty acids favor long lasting effects of PMA in smooth muscle cells and are necessary for any effect of PMA in macrophages. PMID:2324651

  9. WISP-2/CCN5 is involved as a novel signaling intermediate in phorbol ester-protein kinase Calpha-mediated breast tumor cell proliferation.

    PubMed

    Sengupta, Krishanu; Banerjee, Snigdha; Dhar, Kakali; Saxena, Neela K; Mehta, Smita; Campbell, Donald R; Banerjee, Sushanta K

    2006-09-01

    PMA and active phorbol esters stimulate the proliferation of various tumor cells, including ER-positive human breast tumor cell lines. However, the specific signaling pathways involved in the PMA-induced mitogenic effect on breast tumor cells have not been fully elucidated. In the present study, we explored the mechanisms associated with the mitogenic influence of PMA on breast tumor cells. Following an acute exposure (i.e., within 2 to 6 h) to PMA (50 nM), a mitogenic effect was observed on WISP-2/CCN5-positive breast tumor cell lines, including MCF-7, ZR-75-1 and SKBR-3 cells, and induction of WISP-2/CCN5 mRNA expression paralleled the observed mitogenic proliferation. This effect was undetected in WISP-2/CCN5 negative MDA-MB-231 breast tumor cells or human mammary epithelial cells with or without ER-alpha transfection. The mitogenic effect of PMA was perturbed by short hairpin RNA (shRNA)-mediated inhibition of WISP-2/CCN5 signaling in MCF-7 cells. Moreover, the upregulation of WISP-2/CCN5 by PMA is not ER dependent but is instead mediated through a complex PKCalpha-MAPK/ERK and SAPK/JNK signaling pathway, which leads to growth stimulation of MCF-7 breast tumor cells. These series of experiments provide the first evidence that WISP-2/CCN5 is a novel signaling molecule that critically participates in the mitogenic action of PMA on noninvasive, WISP-2/CCN5-positive breast tumor cells through PKCalpha-dependent, multiple molecular signal transduction pathways.

  10. “Slow” Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA)

    PubMed Central

    Zhu, Lei; McDavid, Sarah; Currie, Kevin P. M.

    2015-01-01

    CaV2.2 (N-type) voltage-gated calcium channels (Ca2+ channels) play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. “Fast” voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of “slow” voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate “slow” inactivation of sodium channels, but little is known about if/how second messengers control “slow” inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA) dramatically prolonged recovery from “slow” inactivation, but an inactive control (4α-PMA) had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating “slow” inactivation. We postulate that the kinetics of recovery from “slow” inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe. PMID:26222492

  11. Phorbol ester attenuates the KCl-induced increase in (Ca/sup 2 +/) and inhibits spontaneous sarcoplasmic reticulum Ca/sup 2 +/ release, in rat cardiac myocytes

    SciTech Connect

    Hansford, R.G.; Capogrossi, M.C.; Kaku, T.; Pelto, D.J.; Filburn, C.H.; Lakatta, E.G.

    1986-03-01

    Partial membrane depolarization induced by increasing the KCl concentration of the medium bathing cardiac myocytes leads to an increase in cell (Ca/sup 2 +/), and accelerates the frequency of spontaneous contractile waves (W) caused by periodic sarcoplasmic reticulum (SR) Ca/sup 2 +/ release. In suspensions of myocytes bathed in 1.0mM Ca/sup 2 +/ at 37 (pH 7.4) and loaded with the fluorescent Ca/sup 2 +/ - indicator Fura-2, by incubation with 2 ..mu..M acetoxymethyl ester for 30 min, the addition of KCl to raise (K/sup +/) from 5 to 30 mM is associated with a rapid (< 10 sec) increase in fluorescence, corresponding to an increased cell (Ca/sup 2 +/). Prior exposure (3 min) to 10/sup -7/ M phorbol myristate acetate (PMA) diminishes this response to 44 +/- 10% of that in control suspensions (n = 9). Under the same conditions W frequency (min/sup -1/) in individual cells in 30 mM KCl averaged 8.3 +/- 0.6. Addition of PMA abolished W within 1 min. Diacylglycerol (10 ..mu..M L..cap alpha..-1,2-dioctanoylglycerol, di C8) had a similar effect on W frequency. The thesis is that PMA attenuates cell Ca/sup 2 +/ overload and its associated potentiation of spontaneous SR Ca/sup 2 +/ oscillations. In view of the efficacy of PMA and di C8, it is suggested that the effect is mediated by protein kinase c, and it may involve an alteration in the intracellular distribution of this enzyme.

  12. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus.

    PubMed

    Lund, Maria E; To, Joyce; O'Brien, Bronwyn A; Donnelly, Sheila

    2016-03-01

    The human monocytic cell line, THP-1, is the most widely used model for primary human monocytes/macrophages. This is because, following differentiation using phorbol 12-myristate 13-acetate (PMA), THP-1 cells acquire a macrophage-like phenotype, which mimics, in many respects, primary human macrophages. Despite the widespread use of THP-1 cells in studies elucidating macrophage responses to inflammatory stimuli, as well as the development and screening of potential therapeutics, there is currently no standardised protocol for the reliable differentiation of THP-1 monocytes to a macrophage phenotype using PMA. Consequently, reports using THP-1 cells have demonstrated significant phenotypic and functional differences between resultant THP-1 macrophage populations, which are largely attributable to the varying PMA differentiation methods used. Thus, to guarantee consistency and reproducibility between studies, and to ensure the relevance of THP-1 cells as an appropriate model for primary human macrophages, it is crucial to develop a standardised protocol for the differentiation of THP-1 macrophages. Accordingly, we compared the function and phenotype of THP-1 macrophages generated using the range of published PMA differentiation protocols, specifically in response to the pro-inflammatory stimulus, lipopolysaccharide (LPS). Our results demonstrated that the function of the resultant THP-1 macrophage populations, as determined by tumour necrosis factor (TNF) secretion in response to LPS stimulation, varied significantly, and was dependent upon the concentration of PMA used to stimulate the differentiation of monocytes, and the period of rest following PMA exposure. These data indicate that exposure of monocytic THP-1 cells to 25 nM PMA over 48 h, followed by a recovery period of 24h in culture in the absence of PMA, was the optimal protocol for the differentiation of THP-1 cells.

  13. Antioxidant and Antiradical Activities of Manihot esculenta Crantz (Euphorbiaceae) Leaves and Other Selected Tropical Green Vegetables Investigated on Lipoperoxidation and Phorbol-12-myristate-13-acetate (PMA) Activated Monocytes

    PubMed Central

    Tsumbu, Cesar N.; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Franck, Thierry; Serteyn, Didier; Mouithys-Mickalad, Ange

    2011-01-01

    Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae), Manihot esculenta Crantz (Euphorbiaceae) and Pteridium aquilinum (Dennstaedtiaceae) leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N′-dimethyl-p-phenylene-diamine (DMPD). The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS) in “inflammation like” conditions was studied by fluorescence technique using 2′,7′-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells) activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration. PMID:22254126

  14. Antioxidant and antiradical activities of Manihot esculenta Crantz (Euphorbiaceae) leaves and other selected tropical green vegetables investigated on lipoperoxidation and phorbol-12-myristate-13-acetate (PMA) activated monocytes.

    PubMed

    Tsumbu, Cesar N; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Franck, Thierry; Serteyn, Didier; Mouithys-Mickalad, Ange

    2011-09-01

    Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae), Manihot esculenta Crantz (Euphorbiaceae) and Pteridium aquilinum (Dennstaedtiaceae) leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N'-dimethyl-p-phenylene-diamine (DMPD). The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS) in "inflammation like" conditions was studied by fluorescence technique using 2',7'-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells) activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration.

  15. Signals involved in T cell activation. I. Phorbol esters enhance responsiveness but cannot replace intact accessory cells in the induction of mitogen-stimulated T cell proliferation

    SciTech Connect

    Davis, L.; Lipsky, P.E.

    1985-11-01

    The role of accessory cells (AC) in the initiation of mitogen-induced T cell proliferation was examined by comparing the effect of intact macrophages (M phi) with that of 4-..beta..-phorbol 12-myristate 13-acetate (PMA). In high-density cultures, purified guinea pig T cells failed to proliferate in response to stimulation with phytohemagglutinin (PHA), concanavalin A (Con A), or PMA alone. The addition of M phi to PHA or Con A but not PMA-stimulated cultures restored T cell proliferation. The addition of PMA to high-density T cell cultures stimulated with PHA or Con A also permitted (/sup 3/H)thymidine incorporation, but was less effective than intact M phi in this regard. This action of PMA was dependent on the small number of Ac contaminating the T cell cultures as evidenced by the finding that PMA could not support mitogen responsiveness of T cells that had been depleted of Ia-bearing cells by panning, even when these cells were cultured at high density. A low-density culture system was used to examine in greater detail the possibility that PMA could completely substitute for M phi in promoting T cells activation. In low-density cultures, mitogen-induced T cell proliferation required intact M phi. These results support a model of T cell activation in which AC play at least two distinct roles. The initiation of the response requires a signal conveyed by an intact M phi, which cannot be provided by either a M phi supernatant factor or PMA. The response can be amplified by additional M phi or M phi supernatant factors. PMA can substitute for M phi in this regard and can provide the signal necessary for amplification of T cell proliferation supported by small numbers of intact AC.

  16. Topical Application of a Platelet Activating Factor Receptor Agonist Suppresses Phorbol Ester-Induced Acute and Chronic Inflammation and Has Cancer Chemopreventive Activity in Mouse Skin

    PubMed Central

    Ocana, Jesus A.; DaSilva-Arnold, Sonia C.; Bradish, Joshua R.; Richey, Justin D.; Warren, Simon J.; Rashid, Badri; Travers, Jeffrey B.; Konger, Raymond L.

    2014-01-01

    Platelet activating factor (PAF) has long been associated with acute edema and inflammatory responses. PAF acts by binding to a specific G-protein coupled receptor (PAF-R, Ptafr). However, the role of chronic PAF-R activation on sustained inflammatory responses has been largely ignored. We recently demonstrated that mice lacking the PAF-R (Ptafr-/- mice) exhibit increased cutaneous tumorigenesis in response to a two-stage chemical carcinogenesis protocol. Ptafr-/- mice also exhibited increased chronic inflammation in response to phorbol ester application. In this present study, we demonstrate that topical application of the non-hydrolysable PAF mimetic (carbamoyl-PAF (CPAF)), exerts a potent, dose-dependent, and short-lived edema response in WT mice, but not Ptafr -/- mice or mice deficient in c-Kit (c-KitW-sh/W-sh mice). Using an ear inflammation model, co-administration of topical CPAF treatment resulted in a paradoxical decrease in both acute ear thickness changes associated with a single PMA application, as well as the sustained inflammation associated with chronic repetitive PMA applications. Moreover, mice treated topically with CPAF also exhibited a significant reduction in chemical carcinogenesis. The ability of CPAF to suppress acute and chronic inflammatory changes in response to PMA application(s) was PAF-R dependent, as CPAF had no effect on basal or PMA-induced inflammation in Ptafr-/- mice. Moreover, c-Kit appears to be necessary for the anti-inflammatory effects of CPAF, as CPAF had no observable effect in c-KitW-sh/W-sh mice. These data provide additional evidence that PAF-R activation exerts complex immunomodulatory effects in a model of chronic inflammation that is relevant to neoplastic development. PMID:25375862

  17. Topical application of the adenosine A2A receptor agonist CGS-21680 prevents phorbol-induced epidermal hyperplasia and inflammation in mice.

    PubMed

    Arasa, Jorge; Martos, Patricio; Terencio, María Carmen; Valcuende-Cavero, Francisca; Montesinos, María Carmen

    2014-08-01

    The nucleoside adenosine is a known regulator of immunity and inflammation that mediates, at least in part, the anti-inflammatory effect of methotrexate, an immunosuppressive agent widely used to treat autoimmune inflammatory diseases. Adenosine A2A receptors play a key role in the inhibition of the inflammatory process besides promoting wound healing. Therefore, we aimed to determine the topical effect of a selective agonist, CGS-21680, on a murine model of skin hyperplasia with a marked inflammatory component. Pretreatment with either CGS-21680 (5 μg per site) or the reference agent dexamethasone (200 μg/site) prevented the epidermal hyperplasia and inflammatory response induced by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA, 2 nmol/site) for three consecutive days. The histological analysis showed that both CGS-21680 and dexamethasone produced a marked reduction of inflammatory cell infiltrate, which correlated with diminished myeloperoxidase (MPO) activity in skin homogenates. Both treatments reduced the levels of the chemotactic mediators LTB4 and CXCL-1, and the inflammatory cytokine TNF-α, through the suppression of NFκB phosphorylation. The immunohistochemical analysis of the hyperproliferative markers cytokeratin 6 (CK6) and Ki67 revealed that while both agents inhibit the number of proliferating cells in the epidermis, CGS-21680 treatment promoted dermal fibroblasts proliferation. Consistently, increased collagen deposition in dermis was observed in tissue sections from agonist-treated mice. Our results showed that CGS 21680 efficiently prevents phorbol-induced epidermal hyperplasia and inflammation in mice without the deleterious atrophic effect of topical corticosteroids. PMID:24889129

  18. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  19. The benzene metabolite para-benzoquinone is genotoxic in human, phorbol-12-acetate-13-myristate induced, peripheral blood mononuclear cells at low concentrations.

    PubMed

    Westphal, Götz Alexander; Bünger, Jürgen; Lichey, Nadine; Taeger, Dirk; Mönnich, Angelika; Hallier, Ernst

    2009-07-01

    Benzene is one of the most prominent occupational and environmental pollutants. The substance is a proven human carcinogen that induces hematologic malignancies in humans, probably at even low doses. Yet knowledge of the mechanisms leading to benzene-induced carcinogenesis is still incomplete. Benzene itself is not genotoxic. The generation of carcinogenic metabolites involves the production of oxidized intermediates such as catechol, hydroquinone and para-benzoquinone (p-BQ) in the liver. Further activation to the ultimate carcinogenic intermediates is most probably catalyzed by myeloperoxidase (MPO). Yet the products of the MPO pathway have not been identified. If an oxidized benzene metabolite such as p-BQ was actually the precursor for the ultimate carcinogenic benzene metabolite and further activation proceeds via MPO mediated reactions, it should be possible to activate p-BQ to a genotoxic compound in vitro. We tested this hypothesis with phorbol-12-acetate-13-myristate (PMA) activated peripheral blood cells exposed to p-BQ, using the cytokinesis-block micronucleus test. Addition of 20-28 ng/ml PMA caused a significant increase of micronuclei at low and non-cytotoxic p-BQ concentrations between 0.04 and 0.2 microg/ml (0.37-1.85 microM). Thus with PMA or p-BQ alone no reproducible elevation of micronuclei was seen up to toxic concentrations. PMA and p-BQ induce micronuclei when administered jointly. Our results add further support to the hypothesis that MPO is a key enzyme in the activation of benzene. PMID:19212761

  20. Transplacental arsenic plus postnatal 12-O-teradecanoyl phorbol-13-acetate exposures associated with hepatocarcinogenesis induce similar aberrant gene expression patterns in male and female mouse liver

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Merrick, B. Alex; Shen Jun; Ducharme, Danica M.K.; Collins, Jennifer; Diwan, Bhalchandra A.; Logsdon, Daniel; Waalkes, Michael P.

    2006-06-15

    Our prior work shows that in utero arsenic exposure alone is a complete transplacental carcinogen, producing hepatocellular carcinoma in adult male offspring but not in females. In a follow-up study to potentially promote arsenic-initiated tumors, mice were exposed to arsenic (85 ppm) from gestation day 8 to 18 and then exposed to 12-O-teradecanoyl phorbol-13-acetate (TPA), a well-known tumor promoter after weaning. The dermal application of TPA (2 {mu}g/0.1 ml acetone, twice/week for 21 weeks) after transplacental arsenic did not further increase arsenic-induced liver tumor formation in adult males but significantly increased liver tumor formation in adult females. Thus, for comparison, liver tumors and normal liver samples taken from adult male and female mice at necropsy were analyzed for aberrant gene/protein expression by microarray, real-time RT-PCR and Western blot analysis. Arsenic/TPA treatment resulted in increased expression of {alpha}-fetoprotein, k-ras, c-myc, estrogen receptor-{alpha}, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA also decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in normal and cancerous livers. Alterations in these gene products were associated with arsenic/TPA-induced liver tumors, regardless of sex. Thus, transplacental arsenic plus postnatal TPA exposure induced similar aberrant gene expression patterns in male and female mouse liver, which are persistent and potentially important to the mechanism of arsenic initiation of hepatocarcinogenesis.

  1. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium

    SciTech Connect

    Henriksen, E.J.; Rodnick, K.J.; Holloszy, J.O. )

    1989-12-25

    It has been hypothesized on the basis of studies on BC3H-1 myocytes that diacylglycerol generation with activation of protein kinase C (PKC) is involved in the stimulation of glucose transport in muscle by insulin. In the present study, we used the rat epitrochlearis muscle to evaluate the possibility that PKC activity mediates the stimulation of glucose transport by insulin in mammalian skeletal muscle. Phospholipase C from Clostridium perfringens (PLC-Cp), which generates diacylglycerol from membrane phospholipids, and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) induced increases in glucose transport activity (assessed using 3-O-methylglucose transport) that were approximately 80 and approximately 20% as great, respectively, as that induced by a maximal insulin stimulus. PLC-Cp and PMA both caused a approximately 2-fold increase in membrane-associated PKC activity. In contrast, insulin did not affect PKC activity. These findings argue against a role of diacylglycerol-mediated PKC activation in the stimulation of skeletal muscle glucose transport by insulin. They also show that the BC3H-1 myocyte is not a good model for studying regulation of glucose transport in skeletal muscle. Neither the submaximal nor maximal effects of PLC-Cp and insulin on glucose transport were additive, suggesting that PLC-Cp interferes with insulin action. The maximal effects of PLC-Cp and hypoxia or muscle contractions were also not additive. However, the submaximal effects of hypoxia and PLC-Cp were completely additive. These findings raise the possibility that PLC-Cp stimulates glucose transport by the exercise/hypoxia-activated, not the insulin-activated, pathway in skeletal muscle.

  2. Ionic, electrical, and secretory effects of protein kinase C activation in mouse pancreatic B-cells: studies with a phorbol ester

    SciTech Connect

    Bozem, M.; Nenquin, M.; Henquin, J.C.

    1987-09-01

    The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was used to study the effects of protein kinase C activation on stimulus-secretion coupling in mouse pancreatic B-cells. At a nonstimulatory concentration of glucose (3 mM), 100 nM TPA, but not 10 nM TPA, slightly and slowly increased insulin release and /sup 45/Ca/sup 2 +/ efflux and decreased /sup 86/Rb/sup +/ efflux, but did not affect the membrane potential of B-cells. At a threshold concentration of glucose (7 mM), 100 nM TPA markedly increased insulin release without triggering electrical activity in B-cells. At a stimulatory concentration of glucose (10 mM), TPA caused a dose-dependent irreversible increase in insulin release, /sup 45/Ca/sup 2 +/ efflux, and /sup 86/Rb/sup +/ efflux and slightly augmented islet cAMP levels. Omission of extracellular Ca/sup 2 +/ abolished the effects of 10 nM TPA and partially inhibited those of 100 nM TPA on insulin release and /sup 45/Ca/sup 2 +/ efflux. In contrast, their effect on /sup 86/Rb/sup +/ efflux was paradoxically augmented. Glucose-induced electrical activity in B-cells was only marginally affected by TPA; the duration of the slow waves with spikes was not modified, but a small shortening of the polarized intervals raised their frequency and slightly increased the overall activity. This increase was significant only with 10 nM TPA, whereas only 100 nM TPA brought about a minute increase in /sup 45/Ca/sup 2 +/ influx. These results thus show that TPA induces insulin release or potentiates glucose-induced insulin release without mimicking or amplifying the initial ionic and electrical signals triggered by glucose. They suggest that protein kinase C activation affects stimulus-secretion coupling by modulating intracellular and/or nonelectrogenic membrane events.

  3. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  4. Antioxidant and antiradical activities of Manihot esculenta Crantz (Euphorbiaceae) leaves and other selected tropical green vegetables investigated on lipoperoxidation and phorbol-12-myristate-13-acetate (PMA) activated monocytes.

    PubMed

    Tsumbu, Cesar N; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Franck, Thierry; Serteyn, Didier; Mouithys-Mickalad, Ange

    2011-09-01

    Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae), Manihot esculenta Crantz (Euphorbiaceae) and Pteridium aquilinum (Dennstaedtiaceae) leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N'-dimethyl-p-phenylene-diamine (DMPD). The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS) in "inflammation like" conditions was studied by fluorescence technique using 2',7'-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells) activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration. PMID:22254126

  5. Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-beta1 induced murine tissue inhibitor of metalloproteinases-1 gene expression.

    PubMed

    Young, David A; Billingham, Olivia; Sampieri, Clara L; Edwards, Dylan R; Clark, Ian M

    2005-04-01

    Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor beta1 (TGF-beta1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-beta1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-beta1-induced Timp-1 expression. The repression of TGF-beta1-induced Timp-1 by TSA was maximal at 5 ng.mL(-1), while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is > 500 ng x mL(-1) TSA. A further HDACi, valproic acid, did not block TGF-beta1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-beta1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (-59/-53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun-/- cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif.

  6. Apoptosis in myocardial ischaemia and infarction.

    PubMed

    Krijnen, P A J; Nijmeijer, R; Meijer, C J L M; Visser, C A; Hack, C E; Niessen, H W M

    2002-11-01

    Recent studies indicate that, in addition to necrosis, apoptosis also plays a role in the process of tissue damage after myocardial infarction, which has pathological and therapeutic implications. This review article will discuss studies in which the role and mechanisms of apoptosis in myocardial infarction were analysed in vivo and in vitro in humans and in animals.

  7. Proteases in Fas-mediated apoptosis.

    PubMed

    Zhivotovsky, B; Burgess, D H; Schlegel, J; Pörn, M I; Vanags, D; Orrenius, S

    1997-01-01

    Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis.

  8. CHCHD2 connects mitochondrial metabolism to apoptosis.

    PubMed

    Liu, Yong; Zhang, Yanping

    2015-01-01

    As the powerhouse of cells and gatekeeper for apoptosis, mitochondria control life and death. CHCHD2, a mitochondrial protein previously known to regulate metabolism, has recently been identified as an apoptosis inhibitor. New data suggest a model in which CHCHD2 performs a prosurvival function by acting as both a reactive oxygen species scavenger and BCL-XL activator. PMID:27308501

  9. THE ROLE OF APOPTOSIS IN NEUROTOXICOLOGY.

    EPA Science Inventory

    The role of apoptosis in neurodegeneration in developing animals and in adults has become increasingly apparent in the past ten years. Normal apoptosis occurs in the CNS from the embryonic stage through senescence, with different cells in each region of the nervous system having ...

  10. Induction of apoptosis by Shiga toxins

    PubMed Central

    Tesh, Vernon L

    2010-01-01

    Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed. PMID:20210553

  11. The stimulation of rat astrocytes with phorbol-12-myristate-13-acetate increases the proenkephalin mRNA: involvement of proto-oncogenes.

    PubMed

    Won, J S; Song, D K; Kim, Y H; Huh, S O; Suh, H W

    1998-03-01

    The effect of phorbol-12-myristate-13-acetate (PMA) on the regulation of proenkephalin (proENK) mRNA level, ENKCRE-2 or AP-1 DNA binding activity, and the mRNA and protein levels of proto-oncogenes (c-fos, fra-1, and c-jun) in primary cultured rat astrocytes were studied. The proENK mRNA level was elevated at 4 h after the treatment of PMA (2.5 microM) without altering the intracellular proENK protein level, and this increase was attenuated by pre-treatment with cycloheximide (CHX; 15 microM), a protein synthesis inhibitor. Both AP-1 and ENKCRE-2 DNA binding activities were markedly increased at 1-4 h by PMA treatment and these PMA-induced responses were inhibited by pre-treatment with CHX, showing that the increase of proENK mRNA level was well correlated with the AP-1 and ENKCRE-2 DNA binding activities. In contrast, although the phospho-CREBP level was also increased by PMA at 0.5-1 h, the pre-treatment with CHX further increased the PMA-induced phospho-CREBP level. In addition, PMA caused the induction of c-fos, c-jun and fra-1 mRNA level and, especially, PMA-induced increase of fra-1 mRNA level was further enhanced by CHX treatment at 4 h. Furthermore, western immunoblot assay showed that PMA caused induction of c-Fos, Fra-1, and c-Jun protein levels. PMA-induced increases of proto-oncoproteins levels were also inhibited by CHX treatment. The results suggest that newly synthesized AP-1 proteins, such as c-Fos, Fra-1, and c-Jun may play important roles in the regulation of PMA-induced proENK gene expression in cultured rat astrocytes. Phospho-CREB protein appears not to be involved in the regulation of PMA-induced proENK gene expression.

  12. Early activation of the Kaposi's sarcoma-associated herpesvirus RTA, RAP, and MTA promoters by the tetradecanoyl phorbol acetate-induced AP1 pathway.

    PubMed

    Wang, Shizhen Emily; Wu, Frederick Y; Chen, Honglin; Shamay, Meir; Zheng, Qizhi; Hayward, Gary S

    2004-04-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) maintains a latent infection in primary effusion lymphoma (PEL) cells, but treatment with tetradecanoyl phorbol acetate (TPA) can trigger the full lytic-cycle replication in some of these cells. During lytic-cycle replication, the KSHV-encoded replication and transcription activator (RTA or ORF50), the mRNA transport and accumulation protein (MTA), and the replication-associated protein (RAP) all play crucial roles in expression of downstream viral genes as well as in mediation of viral DNA replication. The cellular CCAAT/enhancer-binding protein alpha (C/EBP alpha) is induced in TPA-treated PEL cells and contributes to transactivation of the promoters for all of these genes through both direct binding and cooperative interactions with RTA and RAP targeted to upstream C/EBP sites. However, little is known about how RTA expression is triggered initially at the earliest stages after TPA induction when the C/EBP alpha levels are still limited. Treatment with TPA proved to significantly induce both AP1 DNA-binding activity and levels of activated phosphorylated cJUN in PEL cells and ectopic expression of cJUN-plus-cFOS-induced RTA protein expression in PEL cells. Cotransfected cJUN plus cFOS or TPA treatment transactivated the KSHV RTA, RAP, and MTA promoters in an AP1-binding site-dependent manner in all three promoters. Chromatin immunoprecipitation assays confirmed that cJUN associates with these KSHV target promoters in PEL cells as early as 4 h after TPA treatment. Furthermore, the KSHV RTA and RAP proteins both interact with cJUN or both cJUN and cFOS in vitro or by coimmunoprecipitation from induced PEL cells and enhance cJUN-plus-cFOS-mediated transactivation of these viral promoters. Both increased phosphorylated cJUN and AP1 DNA-binding activity was detected as early as 1 h after TPA treatment in PEL cells, suggesting that AP1 activity may be crucial for very early activation of the RAP, MTA, and RTA promoters

  13. MDP(Lysyl)GDP, a nontoxic muramyl dipeptide derivative, inhibits cytokine production by activated macrophages and protects mice from phorbol ester- and oxazolone-induced inflammation.

    PubMed

    Zunic, M; Bahr, G M; Mudde, G C; Meingassner, J G; Lam, C

    1998-07-01

    High levels of pro-inflammatory cytokines and nitric oxide are proposed to orchestrate pathophysiologic mechanism(s) associated with various inflammatory dermatoses. This study examines whether a water soluble 3-O-[N-acetylmuramyl-L-lysyl-D-iso]-2-di-on-glycine [MDP(Lysyl)GDP], a nontoxic and nonpyrogenic derivative of muramyl dipeptide (MDP), can inhibit the in vitro production of inflammatory mediators by lipopolysaccharide- or interferon-gamma-activated macrophages, and whether such an inhibitory effect can translate into in vivo protection of mice from irritant and allergic contact dermatitis. Thioglycollate-elicited peritoneal macrophages cultured in medium alone or in medium supplemented with MDP(Lysyl)GDP (1-100 microg per ml) expressed neither mRNA transcripts for inducible nitric oxide synthase, interleukin-1beta, and tumor necrosis factor-alpha, nor cytokine proteins and nitric oxide activity. Incubation of the cells with either lipopolysaccharide or interferon-gamma for 6 h resulted in a significant induction of inducible nitric oxide synthase, interleukin-1beta, and tumor necrosis factor-alpha mRNA, and the accumulation of high levels of monokines and nitrites in cultures by 24 h. Co-incubation of the macrophages with lipopolysaccharide or interferon-gamma and MDP(Lysyl)GDP (1-100 microg per ml) resulted in a concentration-dependent suppression of the steady-state mRNA transcripts for inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1beta, induced by lipopolysaccharide, but not by interferon-gamma. In mouse models of phorbol ester- and oxazolone-induced ear inflammation, topical application of MDP(Lysyl)GDP significantly suppressed ear swelling in a dose-dependent manner. Likewise, oral treatment with MDP(Lysyl)GDP at days -3, -2, and -1 before elicitation with oxazolone also significantly inhibited ear inflammation. Taken together, our findings suggest that MDP(Lysyl)GDP has the potential to be a therapeutic application in

  14. Ras activation in response to phorbol ester proceeds independently of the EGFR via an unconventional nucleotide-exchange factor system in COS-7 cells.

    PubMed

    Rubio, Ignacio; Rennert, Knut; Wittig, Ute; Beer, Katrin; Dürst, Matthias; Stang, Stacey L; Stone, Jim; Wetzker, Reinhard

    2006-09-01

    Ras is a major mediator of PE (phorbol ester) effects in mammalian cells. Various mechanisms for PE activation of Ras have been reported [Downward, Graves, Warne, Rayter and Cantrell (1990) Nature (London) 346, 719-723; Shu, Wu, Mosteller and Broek (2002) Mol. Cell. Biol. 22, 7758-7768; Roose, Mollenauer, Gupta, Stone and Weiss (2005) Mol. Cell. Biol. 25, 4426-4441; Grosse, Roelle, Herrlich, Höhn and Gudermann (2000) J. Biol. Chem. 275, 12251-12260], including pathways that target GAPs (GTPase-activating proteins) for inactivation and those that result in activation of GEFs (guanine nucleotide-exchange factors) Sos (son of sevenless homologue) or RasGRP (RAS guanyl releasing protein). However, a biochemical link between PE and GAP inactivation is missing and GEF stimulation is hard to reconcile with the observation that dominant-negative S17N-Ras does not compromise Ras-dependent ERK (extracellular-signal-regulated kinase) activation by PE. We have addressed this controversy and carried out an in-depth biochemical study of PE-induced Ras activation in COS-7 cells. Using a cell-permeabilization approach to monitor nucleotide exchange on Ras, we demonstrate that PE-induced Ras-GTP accumulation results from GEF stimulation. Nucleotide exchange stimulation by PE is prevented by PKC (protein kinase C) inhibition but not by EGFR [EGF (epidermal growth factor) receptor] blockade, despite the fact that EGFR inhibition aborts basal and PE-induced Shc (Src homology and collagen homology) phosphorylation and Shc-Grb2 (growth-factor-receptor-bound protein 2) association. In fact, EGFR inhibition ablates basal nucleotide exchange on Ras in growth-arrested COS-7 cells. These data disclose the existence of two separate GEF systems that operate independently from each other to accomplish PE-dependent formation of Ras-GTP and to maintain resting Ras-GTP levels respectively. We document that COS-7 cells do not express RasGRP and present evidence that the PE-responsive GEF system

  15. Liganded thyroid hormone receptor inhibits phorbol 12-O-tetradecanoate-13-acetate-induced enhancer activity via firefly luciferase cDNA.

    PubMed

    Misawa, Hiroko; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Iwaki, Hiroyuki; Matsunaga, Hideyuki; Suzuki, Shingo; Ishizuka, Keiko; Oki, Yutaka; Nakamura, Hirotoshi

    2012-01-01

    Thyroid hormone receptor (TR) belongs to the nuclear hormone receptor (NHR) superfamily and regulates the transcription of its target genes in a thyroid hormone (T3)-dependent manner. While the detail of transcriptional activation by T3 (positive regulation) has been clarified, the mechanism of T3-dependent repression (negative regulation) remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR) is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1). Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL) gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT)-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA). TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional activity

  16. Inhibition of phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate-caused inflammatory responses in SENCAR mouse skin by black tea polyphenols.

    PubMed

    Katiyar, S K; Mukhtar, H

    1997-10-01

    Over the past 10 years many studies from several laboratories defined anticarcinogenic and anti-inflammatory effects of tea, a widely consumed beverage by the human population. Much of such work has been conducted with green tea or its polyphenolic constituents. Regarding black tea, studies have shown that its water extract affords protection against tumor promotion caused by chemical carcinogens or ultraviolet B radiation in murine skin carcinogenesis models. Several studies have shown that topical application of chemical tumor promoters to murine skin results in the induction of epidermal edema, hyperplasia and ornithine decarboxylase (ODC) and cyclo-oxygenase activities, and interleukin-1 alpha (IL-1alpha) and ODC mRNA expression. In this study, we assessed whether topical application of polyphenols isolated from black tea leaves (hereafter referred to as BTP) mainly consisting of theaflavine gallates and (-)-epigallocatechin-3-gallate, inhibits phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)-caused induction of these markers of inflammatory responses in murine skin. Topical application of BTP (6 mg in 0.2 ml acetone/animal) 30 min prior to TPA application on to the mouse skin resulted in significant inhibition against TPA-caused induction of epidermal edema (40%, P < 0.01), hyperplasia (57%, P < 0.005), leukocytes infiltration (50%), and induction of epidermal ODC (57%) and pro-inflammatory cytokine IL-1alpha mRNA expression (69%). Pre-application of BTP to that of TPA also resulted in significant inhibition of TPA-caused induction of epidermal ODC (23-73%, P < 0.005-0.0001), and cyclo-oxygenase, in terms of prostaglandins metabolites formation (38-65%, P < 0.01-0.0005), enzyme activities. Our data indicate that the inhibition of TPA-caused changes in these markers of inflammatory responses in murine skin by BTP may be one of the possible mechanisms of chemopreventive effects associated with black tea against tumorigenesis. The results

  17. Activation of p38 and JNK MAPK pathways abrogates requirement for new protein synthesis for phorbol ester mediated induction of select MMP and TIMP genes.

    PubMed

    Sampieri, Clara L; Nuttall, Robert K; Young, David A; Goldspink, Deborah; Clark, Ian M; Edwards, Dylan R

    2008-03-01

    The human matrix metalloproteinase (MMP) gene family includes 24 genes whose regulated expression, together with that of four tissue inhibitors of metalloproteinases (TIMPs), is essential in tissue remodelling and cell signalling. Quantitative real-time-PCR (qPCR) analysis was used to evaluate the shared and unique patterns of control of these two gene families in human MRC-5 and WI-38 fibroblasts in response to the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA). The requirement for ongoing translation was analysed using three protein synthesis inhibitors, anisomycin, cycloheximide and emetine. PMA induced MMP1, 3, 8, 9, 10, 12, 13, 14 and TIMP1 and TIMP3 RNAs after 4-8 h, and induction of all except MMP9 and TIMP3 was blocked by all protein synthesis inhibitors. However, even though all inhibitors effectively blocked translation, PMA-induction of MMP9 and TIMP3 was blocked by emetine but was insensitive to cycloheximide and anisomycin. Anisomycin alone induced MMP9 and TIMP3, along with MMP25 and MMP19. The extracellular signal-regulated kinases (ERKs)-1/2 were strongly activated by PMA, while anisomycin activated the c-Jun N-terminal kinase (JNK) and p38 pathways, and cycloheximide activated p38, but emetine had no effect on the stress-activated mitogen-activated protein kinase (MAPK) pathways. The involvement of the p38 and JNK pathways in the selective effects of anisomycin and cycloheximide on MMP/TIMP expression was supported by use of pharmacological inhibitors. These data confirm that most inducible MMPs and TIMP1 behave as "late" activated, protein synthesis-dependent genes in fibroblasts. However, the requirement of protein synthesis for PMA-induction of MMPs and TIMPs is not universal, since it is abrogated for MMP9 and TIMP3 by stimulation of the stress-activated MAPK pathways. The definition of clusters of co-regulated genes among the two gene families will aid in bioinformatic dissection of control mechanisms.

  18. Enhancement of TPA-induced growth inhibition and apoptosis in myeloid leukemia cells by BAY 11-7082, an NF-kappaB inhibitor.

    PubMed

    Hansson, Annette; Marín, Yarí E; Suh, Junghan; Rabson, Arnold B; Chen, Suzie; Huberman, Eliezer; Chang, Richard L; Conney, Allan H; Zheng, Xi

    2005-10-01

    The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) is a potent stimulator of differentiation and apoptosis in myeloid leukemia cells. In the present study, we investigated the role of the transcription factor NF-kappaB in TPA-induced growth inhibition and apoptosis in the myeloid leukemia HL-60 cell line and its TPA-resistant cell variant HL-525. Unlike the parental cell line, HL-525 cells are protein kinase C (PKC)-beta deficient and resistant to TPA-induced differentiation and apoptosis. We found that treatment of HL-60 cells with TPA resulted in a concentration-dependent growth inhibition and an increase in apoptotic cells. TPA only had a small effect on growth and apoptosis in HL-525 cells. Treatment of HL-60 cells with TPA (0.64-3.2 nM) caused a rapid activation of NF-kappaB as determined by electrophoresis mobility shift assay (EMSA) and immunocytochemistry. Although the basal level of NF-kappaB activity was low in HL-60 cells, TPA-resistant HL-525 cells had a high basal level of NF-kappaB activity. Treatment of HL-525 cells with higher concentrations of TPA (16-80 nM) resulted in a further increase in NF-kappaB activity. (E)3-[(4-methylphenyl)-sulfonyl]-2-propenenitrile (BAY 11-7082; BAY), which inhibits IkappaB alpha phosphorylation and thus decreases NF-kappaB activation, was found to decrease TPA-induced nuclear translocation of NF-kappaB. Furthermore, BAY enhanced TPA-induced growth inhibition and apoptosis in both HL-60 and HL-525 cells. Results from the present study indicate that inhibition of NF-kappaB by BAY was associated with enhanced TPA-induced growth inhibition and apoptosis in human myeloid leukemia cells. TPA in combination with pharmacological inhibitors of NF-kappaB may improve the therapeutic efficacy of TPA and overcome the resistance to TPA in some myeloid leukemia patients.

  19. The Role of Mitochondria in Apoptosis*

    PubMed Central

    Wang, Chunxin; Youle, Richard J.

    2016-01-01

    Mitochondria play key roles in activating apoptosis in mammalian cells. Bcl-2 family members regulate the release of proteins from the space between the mitochondrial inner and outer membrane that, once in the cytosol, activate caspase proteases that dismantle cells and signal efficient phagocytosis of cell corpses. Here we review the extensive literature on proteins released from the intermembrane space and consider genetic evidence for and against their roles in apoptosis activation. We also compare and contrast apoptosis pathways in Caenorhabditis elegans, Drosophila melanogaster, and mammals that indicate major mysteries remaining to be solved. PMID:19659442

  20. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase.

    PubMed

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood-brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2 (•-) generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2 (•-) by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2 (•-) production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase.

  1. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase

    PubMed Central

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood–brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2•- generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2•- by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2•- production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase. PMID:24936444

  2. Quantification of Apoptosis in Mouse Atherosclerotic Lesions.

    PubMed

    Figg, Nichola L; Bennett, Martin R

    2015-01-01

    Apoptosis is a key process occurring in atherosclerosis, both in humans and in animal models. Apoptosis occurs in all cell types studied thus far, and thus lineage marking is often necessary. Apoptosis should be ascertained using a combination of morphological features and activation of specific pathways (e.g., terminal UTP nick end labeling-TUNEL). Both TUNEL and cryptic epitope antibodies (e.g., cleaved caspase 3) can be used, although they will often give different frequencies. Apoptotic frequency but not rate can be estimated from these methods, as we do not know the timing of apoptosis or how much of the process is marked by each method. We describe the morphological and immunohistochemical methods used in our laboratory to detect apoptotic cells in animal and human atherosclerotic plaques.

  3. [The comeback of mitochondria in Drosophila apoptosis].

    PubMed

    Clavier, Amandine; Rincheval-Arnold, Aurore; Mignotte, Bernard; Guénal, Isabelle

    2016-05-01

    The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans. PMID:27225920

  4. Autophagy and apoptosis in liver injury

    PubMed Central

    Wang, Kewei

    2015-01-01

    Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease. PMID:25927598

  5. In vivo apoptosis in Shigella flexneri infections.

    PubMed Central

    Zychlinsky, A; Thirumalai, K; Arondel, J; Cantey, J R; Aliprantis, A O; Sansonetti, P J

    1996-01-01

    Shigella flexneri, an etiological agent of bacillary dysentery, causes apoptosis in vitro. Here we show that it also induces apoptosis in vivo. We were able to quantify the number of apoptotic cells in rabbit Peyer's patches infected with S. flexneri by detecting cells with fragmented DNA. Infection with virulent S. flexneri results in massive numbers of apoptotic cells within the lymphoid follicles. In contrast, neither an avirulent strain nor an avirulent strain capable of colonizing Peyer's patches increases the background level of apoptotic cells. Macrophages, T cells, and B cells are shown to undergo apoptosis in vivo. These results indicate that apoptosis may play a crucial role in the pathogenesis of shigellosis. PMID:8945588

  6. Noninvasive real-time imaging of apoptosis.

    PubMed

    Laxman, Bharathi; Hall, Daniel E; Bhojani, Mahaveer Swaroop; Hamstra, Daniel A; Chenevert, Thomas L; Ross, Brian D; Rehemtulla, Alnawaz

    2002-12-24

    Strict coordination of proliferation and programmed cell death (apoptosis) is essential for normal physiology. An imbalance in these two opposing processes results in various diseases including AIDS, neurodegenerative disorders, myelodysplastic syndromes, ischemiareperfusion injury, cancer, autoimmune disease, among others. Objective and quantitative noninvasive imaging of apoptosis would be a significant advance for rapid and dynamic screening as well as validation of experimental therapeutic agents. Here, we report the development of a recombinant luciferase reporter molecule that when expressed in mammalian cells has attenuated levels of reporter activity. In cells undergoing apoptosis, a caspase-3-specific cleavage of the recombinant product occurs, resulting in the restoration of luciferase activity that can be detected in living animals with bioluminescence imaging. The ability to image apoptosis noninvasively and dynamically over time provides an opportunity for high-throughput screening of proapoptotic and antiapoptotic compounds and for target validation in vivo in both cell lines and transgenic animals. PMID:12475931

  7. Measuring Apoptosis at the Single Cell Level

    PubMed Central

    Bouchier-Hayes, Lisa; Muñoz-Pinedo, Cristina; Connell, Samuel; Green, Douglas R.

    2008-01-01

    The use of live cell microscopy has made a number of contributions to the study of apoptosis. Many of the tools and techniques are available that allow us to image the key events that occur during cell death including mitochondrial outer membrane permeabilization, mitochondrial transmembrane potential changes, translocation of Bcl-2 family members, caspase activation, phosphatidylserine flip and plasma membrane rupture. We discuss these techniques here and highlight the advantages and drawbacks of using such approaches to study apoptosis. PMID:18314052

  8. Umbelliprenin Induces Apoptosis in CLL Cell Lines.

    PubMed

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V-FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate.

  9. Umbelliprenin Induces Apoptosis in CLL Cell Lines

    PubMed Central

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

  10. [Protein kinase C activation induces platelet apoptosis].

    PubMed

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  11. Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation.

    PubMed

    Lemarie, Anthony; Morzadec, Claudie; Mérino, Delphine; Micheau, Olivier; Fardel, Olivier; Vernhet, Laurent

    2006-01-01

    Arsenic trioxide (As(2)O(3)) is known to be toxic toward leukemia cells. In this study, we determined its effects on survival of human monocytic cells during macrophagic differentiation, an important biological process involved in the immune response. As(2)O(3) used at clinically relevant pharmacological concentrations induced marked apoptosis of human blood monocytes during differentiation with either granulocyte-macrophage colony-stimulating factor or macrophage colony-stimulating factor. Apoptosis of monocytes was associated with increased caspase activities and decreased DNA binding of p65 nuclear factor-kappaB (NF-kappaB); like As(2)O(3), the selective NF-kappaB inhibitor (E)-3-[(4-methylphenyl)-sulfonyl]-2-propenenitrile (Bay 11-7082) strongly reduced survival of differentiating monocytes. The role of NF-kappaB in arsenic toxicity was also studied in promonocytic U937 cells during phorbol 12-myristate 13-acetate-induced macrophagic differentiation. In these cells, As(2)O(3) first reduced DNA binding of p65 NF-kappaB and subsequently induced apoptosis. In addition, overexpression of the p65 NF-kappaB subunit, following stable infection with a p65 retroviral expressing vector, increased survival of As(2)O(3)-treated U937 cells. As(2)O(3) specifically decreased protein levels of X-linked inhibitor of apoptosis protein and FLICE-inhibitory protein, two NF-kappaB-regulated genes in both U937 cells and blood monocytes during their differentiations. Finally, As(2)O(3) was found to inhibit macrophagic differentiation of monocytic cells when used at cytotoxic concentrations; however, overexpression of the p65 NF-kappaB subunit in U937 cells reduced its effects toward differentiation. In contrast to monocytes, well differentiated macrophages were resistant to low concentrations of As(2)O(3). Altogether, our study demonstrates that clinically relevant concentrations of As(2)O(3) induced marked apoptosis of monocytic cells during in vitro macrophagic differentiation

  12. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis

    PubMed Central

    Hwang, Hyun Sook; Kim, Hyun Ah

    2015-01-01

    Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid

  13. Evidence of apoptosis in alcoholic cardiomyopathy.

    PubMed

    Fernández-Solà, Joaquim; Fatjó, Francesc; Sacanella, Emilio; Estruch, Ramón; Bosch, Xavier; Urbano-Márquez, Alvaro; Nicolás, José-María

    2006-08-01

    Apoptosis is a mechanism of cell death implicated in the pathogenesis of alcohol-induced organ damage. Experimental studies have suggested alcohol-mediated apoptosis in the cardiac muscle, and there is evidence of skeletal muscle apoptosis in long-term high-dose alcohol consumers. The relation between skeletal and cardiac muscle damage in alcoholism led us to consider the pathogenic role of apoptosis in alcoholic dilated cardiomyopathy. We evaluated apoptosis in the hearts of individuals with long-term alcoholism (n = 19), of those with long-standing hypertension (n = 20), and of those with no known disease as control subjects (n = 7). Alcohol consumption measurement, heart function evaluation, and myocardial immunohistochemical and morphometric analysis were performed. Apoptosis was evaluated with deoxyribonucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay, and BAX and BCL-2 expressions were used to detect induction of and protection from proapoptotic mechanisms, respectively. Hearts from patients with a history of alcoholism showed apoptotic indexes similar to those of organs from hypertensive donors. Subjects with structural heart damage of alcoholic or hypertensive origin showed higher apoptotic indexes in deoxyribonucleotidyl transferase-mediated dUTP-biotin nick end-labeling, BAX, and BCL-2 assays as compared with control subjects (P < .001 for all). Moreover, New York Heart Association class I alcoholic patients displayed higher BAX and BCL-2 expressions as compared with control subjects. We conclude that apoptosis is present to a similar degree in the heart muscle of high-dose alcohol consumers and long-standing hypertensive subjects and is related to structural damage. Proapoptotic mechanisms are activated in alcoholic patients without heart damage.

  14. Solamargine triggers hepatoma cell death through apoptosis

    PubMed Central

    XIE, XIAODONG; ZHU, HAITAO; YANG, HUIJIAN; HUANG, WENSI; WU, YINGYING; WANG, YING; LUO, YANLING; WANG, DONGQING; SHAO, GENBAO

    2015-01-01

    Solamargine (SM), a steroidal alkaloid glycoside extracted from the traditional Chinese herb Solanum incanum, has been evidenced to inhibit the growth and induce apoptosis in a number of human cancer cell lines. In the present study, the anticancer effect of SM and underlying molecular mechanism of SM-induced apoptosis were investigated on the human hepatocellular carcinoma cells, SMMC7721 and HepG2. The proliferation effects of SM on the SMMC7721 and HepG2 cell lines were evaluated using MTT and colony formation assays. In addition, the percentage of apoptosis was measured using an Annexin V/propidium iodide staining method and the cell cycle distribution mediated by SM was analyzed using flow cytometry. The expression levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, caspase-9, proliferating cell nuclear antigen (pcna) and Ki67 proteins were examined to further demonstrate the proliferate and apoptosis effects of SM on the hepatoma cells. The results indicated that SM effectively inhibited hepatoma cell proliferation and promoted apoptosis. SM resulted in cell cycle arrest at the G2/M phase in the two cell lines. In addition, SM downregulated the levels of proliferation-associated (Ki67 and pcna) and anti-apoptotic (Bcl-2) proteins, and promoted the activity of apoptosis-associated proteins (Bax, caspase-3 and caspase-9). Therefore, the activation of the Bcl-2/Bax and caspase signaling pathways may be involved in the SM-induced apoptosis of hepatoma cells. PMID:26170994

  15. CASPASE CONTROL: PROTAGONISTS OF CANCER CELL APOPTOSIS

    PubMed Central

    Fiandalo, M.V.; Kyprianou, N.

    2013-01-01

    Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”. PMID:23070001

  16. Sodium nitroprusside induces apoptosis of rabbit chondrocytes

    NASA Astrophysics Data System (ADS)

    Liang, Qian; Wang, Xiao-Ping; Chen, Tong-Sheng

    2013-02-01

    Osteoarthritis (OA) is characterized by a slowly progressing degradation of the matrix and destruction of articular cartilage. Apoptosis of chondrocyte is accounted for the mechanism of OA. Nitric oxide (NO), as a stimulus, has been shown to induce chondrocyte apoptosis by activating the matrix metalloproteinases (MMPs), increasing the expression of cyclooxygenase 2 (COX-2) and the level of prostaglandin E2 (PGE2), inhibiting the proteoglycan synthesis and type II collagen expression. In this study, sodium nitroprusside (SNP) was administered to be the NO donor to explore the mechanism of NO-induced apoptosis of rabbit chondrocytes obtained from six weeks old New Zealand rabbits. CCK-8 assay revealed the inhibitory effect of SNP on cell viability. We used flow cytometry (FCM) to assess the form of cell death by Annexin-V/propidium iodide (PI) double staining, and evaluate the change of mitochondrial membrane potential (ΔΨm). We found that the SNP induced chondrocyte apoptosis in a dose- and time-dependent manner and an observable reduction of ΔΨm. In conclusion, our findings indicate that SNP induces apoptosis of rabbit chondrocytes via a mitochondria-mediated pathway.

  17. BASP1 Promotes Apoptosis in Diabetic Nephropathy

    PubMed Central

    Sanchez-Niño, Maria Dolores; Sanz, Ana Belen; Lorz, Corina; Gnirke, Andrea; Rastaldi, Maria Pia; Nair, Viji; Egido, Jesus; Ruiz-Ortega, Marta

    2010-01-01

    Apoptosis contributes to the development of diabetic nephropathy (DN), but the mechanisms that lead to diabetes-induced cell death are not fully understood. Here, we combined a functional genomics screen for cDNAs that induce apoptosis in vitro with transcriptional profiling of renal biopsies from patients with DN. Twelve of the 138 full-length cDNAs that induced cell death in human embryonic kidney cells matched upregulated mRNA transcripts in tissue from human DN. Confirmatory screens identified induction of BASP1 in tubular cross sections of human DN tissue. In vitro, apoptosis-inducing conditions such as serum deprivation, high concentrations of glucose, and proinflammatory cytokines increased BASP1 mRNA and protein in human tubular epithelial cells. In normal cells, BASP1 localized to the cytoplasm, but in apoptotic cells, it colocalized with actin in the periphery. Overexpression of BASP1 induced cell death with features of apoptosis; conversely, small interfering RNA (siRNA)-mediated knockdown of BASP1 protected tubular cells from apoptosis. Supporting possible involvement of BASP1 in renal disease other than DN, we also observed significant upregulation of renal BASP1 in spontaneously hypertensive rats and a trend toward increased tubulointerstitial BASP1 mRNA in human hypertensive nephropathy. In summary, a combined functional genomics approach identified BASP1 as a proapoptotic factor in DN and possibly also in hypertensive nephropathy. PMID:20110383

  18. Lysosomal destabilization in p53-induced apoptosis

    PubMed Central

    Yuan, Xi-Ming; Li, Wei; Dalen, Helge; Lotem, Joseph; Kama, Rachel; Sachs, Leo; Brunk, Ulf T.

    2002-01-01

    The tumor suppressor wild-type p53 can induce apoptosis. M1-t-p53 myeloid leukemic cells have a temperature-sensitive p53 protein that changes its conformation to wild-type p53 after transfer from 37°C to 32°C. We have now found that these cells showed an early lysosomal rupture after transfer to 32°C. Mitochondrial damage, including decreased membrane potential and release of cytochrome c, and the appearance of apoptotic cells occurred later. Lysosomal rupture, mitochondrial damage, and apoptosis were all inhibited by the cytokine IL-6. Some other compounds can also inhibit apoptosis induced by p53. The protease inhibitor N-tosyl-l-phenylalanine chloromethyl ketone inhibited the decrease in mitochondrial membrane potential and cytochrome c release, the Ca2+-ATPase inhibitor thapsigargin inhibited only cytochrome c release, and the antioxidant butylated hydroxyanisole inhibited only the decrease in mitochondrial membrane potential. In contrast to IL-6, these other compounds that inhibited some of the later occurring mitochondrial damage did not inhibit the earlier p53-induced lysosomal damage. The results indicate that apoptosis is induced by p53 through a lysosomal-mitochondrial pathway that is initiated by lysosomal destabilization, and that this pathway can be dissected by using different apoptosis inhibitors. These findings on the induction of p53-induced lysosomal destabilization can also help to formulate new therapies for diseases with apoptotic disorders. PMID:11959917

  19. Apoptosis of beta cells in diabetes mellitus.

    PubMed

    Anuradha, Rachakatla; Saraswati, Mudigonda; Kumar, Kishore G; Rani, Surekha H

    2014-11-01

    Diabetes mellitus is a multifactorial metabolic disorder characterized by hyperglycemia. Apoptosis in beta cells has been observed in response to diverse stimuli, such as glucose, cytokines, free fatty acids, leptin, and sulfonylureas, leading to the activation of polyol, hexosamine, and diacylglycerol/protein kinase-C (DAG/PKC) pathways that mediate oxidative and nitrosative stress causing the release of different cytokines. Cytokines induce the expression of Fas and tumor necrosis factor-alpha (TNF-α) by activating the transcription factor, nuclear factor-κb, and signal transducer and activator of transcription 1 (STAT-1) in the β cells in the extrinsic pathway of apoptosis. Cytokines produced in beta cells also induce proapoptotic members of the intrinsic pathway of apoptosis. The genetic alterations in apoptosis signaling machinery and the pathogenesis of diabetes include Fas, FasL, Akt, caspases, calpain-10, and phosphatase and tensin homolog (Pten). The other gene products that are involved in diabetes are nitric oxide synthase-2 (NOS2), small ubiquitin-like modifier (SUMO), apolipoprotein CIII (ApoCIII), forkhead box protein O1 (FOXO1), and Kruppel-like zinc finger protein Gli-similar 3 (GLIS3). The gene products having antiapoptotic nature are Bcl-2 and Bcl-XL. Epigenetic mechanisms play an important role in type I and type II diabetes. Further studies on the apoptotic genes and gene products in diabetics may be helpful in pharmacogenomics and individualized treatment along with antioxidants targeting apoptosis in diabetes. PMID:25093391

  20. Estrogen Regulation of Apoptosis in Osteoblasts

    PubMed Central

    Bradford, Peter G; Gerace, Ken V; Roland, Renée L; Chrzan, Brian G

    2010-01-01

    Dysregulated apoptosis is a critical failure associated with prominent degenerative diseases including osteoporosis. In bone, estrogen deficiency has been associated with accelerated osteoblast apoptosis and susceptibility to osteoporotic fractures. Hormone therapy continues to be an effective option for preventing osteoporosis and bone fractures. Induction of apoptosis in G-292 human osteoblastic cells by exposure to etoposide or the inflammatory cytokine TNFα promoted acute caspase-3/7 activity and this increased activity was inhibited by pretreatment with estradiol. Etoposide also increased the expression of a battery of apoptosis-promoting genes and this expression was also inhibited by estradiol. Among the apoptotic genes whose expression was inhibited by estradiol was ITPR1, which encodes the type 1 InsP3R. InsP3Rs are intracellular calcium channels and key proapoptotic mediators. Estradiol via estrogen receptor β1 suppresses ITPR1 gene transcription in G-292 cells. These analyses suggest that an underlying basis of the beneficial activity of estrogens in combating osteoporosis may involve the prevention of apoptosis in osteoblasts and that a key event in this process is the repression of apoptotic gene expression and inhibition of caspase-3/7. PMID:19426747

  1. Targeting the Apoptosis Pathway in Hematologic Malignancies

    PubMed Central

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2014-01-01

    Apoptosis is a cell death program that is well-orchestrated for normal tissue homeostasis and for removal of damaged, old, or infected cells. It is regulated by intrinsic and extrinsic pathways. The intrinsic pathway responds to signals such as ultraviolet radiation or DNA damage and activates “executioner” caspases through a mitochondria-dependent pathway. The extrinsic pathway is activated by death signals induced, for example, by an infection that activates the immune system or receptor-mediated pathways. The extrinsic pathway signals also cascade down to executioner caspases that cleave target proteins and lead to cell death. Strict control of cellular apoptosis is important for the hematopoietic system as it has a high turnover rate. However, the apoptosis program is often deregulated in hematologic malignancies leading to the accumulation of malignant cells. Therefore, apoptosis pathways have been identified for development of anticancer therapeutics. We review here the proteins that have been targeted for anticancer drug development in hematologic malignancies. These include BCL-2 family proteins, death ligands and receptors, inhibitor of apoptosis family proteins, and caspases. Except for caspase activators, drugs that target each of these classes of proteins have advanced into clinical trials. PMID:24295132

  2. Measuring Apoptosis by Microscopy and Flow Cytometry.

    PubMed

    Hollville, Emilie; Martin, Seamus J

    2016-02-02

    Apoptosis is a mode of programmed cell death that plays an important role during development and in the maintenance of tissue homeostasis. Numerous physiological as well as pathological stimuli trigger apoptosis such as engagement of Fas, TRAIL, or TNF receptors, growth factor deprivation, hypoxia, or exposure to cytotoxic drugs. Apoptosis is coordinated from within by members of the caspase family of cysteine proteases that, upon activation, trigger a series of morphological changes including cell shrinkage, extensive plasma membrane blebbing, chromatin condensation, DNA hydrolysis, and nuclear fragmentation. These dramatic structural and biochemical alterations result not only in the controlled dismantling of the cell, but also in the efficient recognition and removal of apoptotic cells by phagocytes. Necrosis, which is typically nonprogrammed or imposed upon the cell by overwhelming membrane or organelle damage, is characterized by rapid plasma membrane rupture followed by organelle and cell swelling. Necrosis is often provoked by infectious agents or a severe departure from physiological conditions. This unit describes protocols for the measurement of apoptosis and for distinguishing apoptosis from necrosis.

  3. Apoptosis in Drosophila: which role for mitochondria?

    PubMed

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

  4. Apoptosis and its functional significance in molluscs.

    PubMed

    Kiss, Tibor

    2010-03-01

    Programmed cell death leading to apoptosis is essential for normal development and homeostasis in plants and throughout the animal kingdom. Although there are differences in apoptotic mechanisms between lower animals and vertebrates, crucial biochemical components of the programmed cell death pathways remained remarkably conserved throughout evolution. Despite decades of studies on the neurobiology and development of mollusks, comparatively little is known about the mechanisms of apoptosis in this phylum. In this review, an attempt is made to summarize data obtained on mollusks so far, and to discuss the molecular mechanisms, the functional and ecological significance of apoptosis and the advantages of snail preparations as tools for programmed cell death research. A definitive comparison of the data obtained on mollusks with those obtained on the more widely studied vertebrates, will contribute to the better understanding of the apoptotic process in general and of its evolutionary development.

  5. Apoptosis in Drosophila: which role for mitochondria?

    PubMed

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human. PMID:26679112

  6. Downregulation of Reactive Oxygen Species in Apoptosis

    PubMed Central

    Jeong, Chul-Ho; Joo, Sang Hoon

    2016-01-01

    Generation of reactive oxygen species (ROS) by diverse anti-cancer drugs or phytochemicals has been closely related with the induction of apoptosis in cancers. Also, the downregulation of ROS by these chemicals has been found to block initiation of carcinogenesis. Therefore, modulation of ROS by phytochemicals emerges as a crucial mechanism to regulate apoptosis in cancer prevention or therapy. This review summarizes the current understanding of the selected chemical compounds and related cellular components that modulate ROS during apoptotic process. Metformin, quercetin, curcumin, vitamin C, and other compounds have been shown to downregulate ROS in the cellular apoptotic process, and some of them even induce apoptosis in cancer cells. The cellular components mediating the downregulation of ROS include nuclear factor erythroid 2-related factor 2 antioxidant signaling pathway, thioredoxin, catalase, glutathione, heme oxygenase-1, and uncoupling proteins. The present review provides information on the relationship between these compounds and the cellular components in modulating ROS in apoptotic cancer cells. PMID:27051644

  7. Lipid Metabolism, Apoptosis and Cancer Therapy

    PubMed Central

    Huang, Chunfa; Freter, Carl

    2015-01-01

    Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy. PMID:25561239

  8. Death penalty for keratinocytes: apoptosis versus cornification.

    PubMed

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W

    2005-11-01

    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  9. Control of apoptosis by Drosophila DCAF12.

    PubMed

    Hwangbo, Dae-Sung; Biteau, Benoit; Rath, Sneha; Kim, Jihyun; Jasper, Heinrich

    2016-05-01

    Regulated Apoptosis (Programmed Cell Death, PCD) maintains tissue homeostasis in adults, and ensures proper growth and morphogenesis of tissues during development of metazoans. Accordingly, defects in cellular processes triggering or executing apoptotic programs have been implicated in a variety of degenerative and neoplastic diseases. Here, we report the identification of DCAF12, an evolutionary conserved member of the WD40-motif repeat family of proteins, as a new regulator of apoptosis in Drosophila. We find that DCAF12 is required for Diap1 cleavage in response to pro-apoptotic signals, and is thus necessary and sufficient for RHG (Reaper, Hid, and Grim)-mediated apoptosis. Loss of DCAF12 perturbs the elimination of supernumerary or proliferation-impaired cells during development, and enhances tumor growth induced by loss of neoplastic tumor suppressors, highlighting the wide requirement for DCAF12 in PCD. PMID:26972874

  10. Control of apoptosis by Drosophila DCAF12.

    PubMed

    Hwangbo, Dae-Sung; Biteau, Benoit; Rath, Sneha; Kim, Jihyun; Jasper, Heinrich

    2016-05-01

    Regulated Apoptosis (Programmed Cell Death, PCD) maintains tissue homeostasis in adults, and ensures proper growth and morphogenesis of tissues during development of metazoans. Accordingly, defects in cellular processes triggering or executing apoptotic programs have been implicated in a variety of degenerative and neoplastic diseases. Here, we report the identification of DCAF12, an evolutionary conserved member of the WD40-motif repeat family of proteins, as a new regulator of apoptosis in Drosophila. We find that DCAF12 is required for Diap1 cleavage in response to pro-apoptotic signals, and is thus necessary and sufficient for RHG (Reaper, Hid, and Grim)-mediated apoptosis. Loss of DCAF12 perturbs the elimination of supernumerary or proliferation-impaired cells during development, and enhances tumor growth induced by loss of neoplastic tumor suppressors, highlighting the wide requirement for DCAF12 in PCD.

  11. Neisseria meningitidis Lacking the Major Porins PorA and PorB Is Viable and Modulates Apoptosis and the Oxidative Burst of Neutrophils.

    PubMed

    Peak, Ian R; Chen, Adrienne; Jen, Freda E-C; Jennings, Courtney; Schulz, Benjamin L; Saunders, Nigel J; Khan, Arshad; Seifert, H Steven; Jennings, Michael P

    2016-08-01

    The bacterial pathogen Neisseria meningitidis expresses two major outer-membrane porins. PorA expression is subject to phase-variation (high frequency, random, on-off switching), and both PorA and PorB are antigenically variable between strains. PorA expression is variable and not correlated with meningococcal colonisation or invasive disease, whereas all naturally-occurring strains express PorB suggesting strong selection for expression. We have generated N. meningitidis strains lacking expression of both major porins, demonstrating that they are dispensable for bacterial growth in vitro. The porAB mutant strain has an exponential growth rate similar to the parental strain, as do the single porA or porB mutants, but the porAB mutant strain does not reach the same cell density in stationary phase. Proteomic analysis suggests that the double mutant strain exhibits compensatory expression changes in proteins associated with cellular redox state, energy/nutrient metabolism, and membrane stability. On solid media, there is obvious growth impairment that is rescued by addition of blood or serum from mammalian species, particularly heme. These porin mutants are not impaired in their capacity to inhibit both staurosporine-induced apoptosis and a phorbol 12-myristate 13-acetate-induced oxidative burst in human neutrophils suggesting that the porins are not the only bacterial factors that can modulate these processes in host cells.

  12. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    PubMed

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  13. Stress response and apoptosis in pro- and antiinflammatory macrophages.

    PubMed

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M

    2004-08-01

    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  14. Ethanol extract of Forsythia suspensa root induces apoptosis of esophageal carcinoma cells via the mitochondrial apoptotic pathway

    PubMed Central

    ZHAO, LIANMEI; YAN, XI; SHI, JUAN; REN, FENGZHI; LIU, LIHUA; SUN, SHIPING; SHAN, BAOEN

    2015-01-01

    Forsythia suspensa root is used in the treatment of fever and jaundice in Traditional Chinese Medicine. In the present study, the anti-tumor activity of the ethanolic extract of Forsythia suspensa root (FSREE) against esophageal carcinoma cells was investigated in vitro and in vivo and its anti-cancer mechanism was examined. The results revealed that FSREE, rather than Forsythia suspensa ethanolic extracts from the leaf (FSLEE) and fruit (FSFEE) exhibited marked anti-tumor activity towards human esophageal cancer cells. FSREE induced cancer cell apoptosis and growth arrest by downregulating B-cell lymphoma (Bcl)-2, Bcl-extra large and myeloid cell leukemia 1, while upregulating Bcl-2-associated X protein, Bcl-2 antagonist of cell death and phorbol-12-myristate-13-acetate-induced protein 1. This led to the activation of poly(ADP ribose) polymerase, caspase-3 and caspase-9, but not caspase-8. Furthermore, the anti-cancer activity of FSREE was associated with a decreased level of phosphorylated Janus kinase/signal transducer and activator of transcription 3 and extracellular-signal-regulated kinase signaling activity. It was also observed that the levels of cytochrome c were elevated in the cytoplasm, accounting for the loss of mitochondrial membrane potential in the TE-13 cells upon treatment with FSEER. In addition, FSEER inhibited the growth of esophageal cancer cells in xenograft models and no detectable toxicity was present in the lung or liver tissues. These observations provided further evidence of the anti-tumor effect of FSEER and may be of importance to further examine the potential role of Forsythia suspensa root as a therapeutic agent in esophageal carcinoma therapy. PMID:25373392

  15. Drosophila grim induces apoptosis in mammalian cells.

    PubMed Central

    Clavería, C; Albar, J P; Serrano, A; Buesa, J M; Barbero, J L; Martínez-A, C; Torres, M

    1998-01-01

    Genetic studies have shown that grim is a central genetic switch of programmed cell death in Drosophila; however, homologous genes have not been described in other species, nor has its mechanism of action been defined. We show here that grim expression induces apoptosis in mouse fibroblasts. Cell death induced by grim in mammalian cells involves membrane blebbing, cytoplasmic loss and nuclear DNA fragmentation. Grim-induced apoptosis is blocked by both natural and synthetic caspase inhibitors. We found that grim itself shows caspase-dependent proteolytic processing of its C-terminus in vitro. Grim-induced death is antagonized by bcl-2 in a dose-dependent manner, and neither Fas signalling nor p53 are required for grim pro-apoptotic activity. Grim protein localizes both in the cytosol and in the mitochondria of mouse fibroblasts, the latter location becoming predominant as apoptosis progresses. These results show that Drosophila grim induces death in mammalian cells by specifically acting on mitochondrial apoptotic pathways executed by endogenous caspases. These findings advance our knowledge of the mechanism by which grim induces apoptosis and show the conservation through evolution of this crucial programmed cell death pathway. PMID:9857177

  16. Apoptosis regulates notochord development in Xenopus

    PubMed Central

    Malikova, Marina; Van Stry, Melanie

    2009-01-01

    The notochord is the defining characteristic of the chordate embryo, and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirror that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed. PMID:17920580

  17. The molecular legacy of apoptosis in transplantation.

    PubMed

    Pallet, N; Dieudé, M; Cailhier, J; Hébert, M

    2012-06-01

    Transplanted organs have to cope with diverse immunologic and metabolic stressors that augment the percentage of stressed and dying cells. Cell death, whether apoptotic or necrotic, is crucial in various transplantation-associated conditions. Necrosis, a proinflammatory type of cell death classically considered as accidental, is increasingly recognized as a highly controlled death program. Apoptosis, the classical programmed cell death mode program, is tightly orchestrated and culminates in the activation of caspases. Apoptosis was classically regarded as a silent form of cell death, but mounting evidence indicates that apoptotic cells "don't go silently" and leave a heritage to the local microenvironment. This apoptotic legacy, embedded within the effector phase of apoptosis, is aimed, at least in part, at controlling leukocyte trafficking and fostering tissue remodeling at sites of apoptotic cell deletion and can promote maladaptive remodeling pathways of importance for obliterative vascular remodeling. Moreover, apoptotic cells can transfer bioactive molecules by the release of apoptotic membrane vesicles that, in turn, shapes the phenotype and functions of immune cells. In this review, we summarize recent data highlighting the importance of apoptosis-associated intercellular communication networks in the regulation of allograft remodeling and immune responses in transplantation. PMID:22420581

  18. A novel method for detection of apoptosis

    SciTech Connect

    Zagariya, Alexander M.

    2012-04-15

    There are two different Angiotensin II (ANG II) peptides in nature: Human type (ANG II) and Bovine type (ANG II*). These eight amino acid peptides differ only at position 5 where Valine is replaced by Isoleucine in the Bovine type. They are present in all species studied so far. These amino acids are different by only one atom of carbon. This difference is so small, that it will allow any of ANG II, Bovine or Human antibodies to interact with all species and create a universal method for apoptosis detection. ANG II concentrations are found at substantially higher levels in apoptotic, compared to non-apoptotic, tissues. ANG II accumulation can lead to DNA damage, mutations, carcinogenesis and cell death. We demonstrate that Bovine antiserum can be used for universal detection of apoptosis. In 2010, the worldwide market for apoptosis detection reached the $20 billion mark and significantly increases each year. Most commercially available methods are related to Annexin V and TUNNEL. Our new method based on ANG II is more widely known to physicians and scientists compared to previously used methods. Our approach offers a novel alternative for assessing apoptosis activity with enhanced sensitivity, at a lower cost and ease of use.

  19. Techniques to Distinguish Apoptosis from Necroptosis.

    PubMed

    Feoktistova, Maria; Wallberg, Fredrik; Tenev, Tencho; Geserick, Peter; Leverkus, Martin; Meier, Pascal

    2016-04-01

    The processes by which cells die are as tightly regulated as those that govern cell growth and proliferation. Recent studies of the molecular pathways that regulate and execute cell death have uncovered a plethora of signaling cascades that lead to distinct modes of cell death, including "apoptosis," "necrosis," "autophagic cell death," and "mitotic catastrophe." Cells can readily switch from one form of death to another; therefore, it is vital to have the ability to monitor the form of death that cells are undergoing. A number of techniques are available that allow the detection of cell death and when combined with either knockdown approaches or inhibitors of specific signaling pathways, such as caspase or RIP kinase pathways, they allow the rapid dissection of divergent cell death pathways. However, techniques that reveal the end point of cell death cannot reconstruct the sequence of events that have led to death; therefore, they need to be complemented with methods that can distinguish all forms of cell death. Apoptotic cells frequently undergo secondary necrosis under in vitro culture conditions; therefore, novel methods relying on high-throughput time-lapse fluorescence video microscopy are necessary to provide temporal resolution to cell death events. Further, visualizing the assembly of multiprotein signaling hubs that can execute apoptosis or necroptosis helps to explore the underlying processes. Here we introduce a suite of techniques that reliably distinguish necrosis from apoptosis and secondary necrosis, and that enable investigation of signaling platforms capable of instructing apoptosis or necroptosis. PMID:27037077

  20. THE ROLE OF APOPTOSIS IN NEUROTOXICOLOGY

    EPA Science Inventory

    Apoptosis, a form of programmed cell death, occurs in the nervous system throughout development, but with a preponderance of cell death occurring during the prenatal and perinatal periods. Aberrant periods of increased or decreased cell death, induced by toxicants in air, water,...

  1. Biophotonic probing of macromolecular transformations during apoptosis

    PubMed Central

    Pliss, Artem; Kuzmin, Andrey N.; Kachynski, Aliaksandr V.; Prasad, Paras N.

    2010-01-01

    We introduce here multiplex nonlinear optical imaging as a powerful tool for studying the molecular organization and its transformation in cellular processes, with the specific example of apoptosis. Apoptosis is a process of self-initiated cell death, critically important for physiological regulation and elimination of genetic disorders. Nonlinear optical microscopy, combining the coherent anti-Stokes Raman scattering (CARS) microscopy and two-photon excited fluorescence (TPEF), has been used for analysis of spatial distribution of major types of biomolecules: proteins, lipids, and nucleic acids in the cells while monitoring their changes during apoptosis. CARS imaging revealed that in the nuclei of proliferating cells, the proteins are distributed nearly uniformly, with local accumulations in several nuclear structures. We have found that this distribution is abruptly disrupted at the onset of apoptosis and is transformed to a progressively irregular pattern. Fluorescence recovery after photobleaching (FRAP) studies indicate that pronounced aggregation of proteins in the nucleoplasm of apoptotic cells coincides with a gradual reduction in their mobility. PMID:20615987

  2. Fluorescence spectroscopy to assess apoptosis in myocardium

    NASA Astrophysics Data System (ADS)

    Ranji, Mahsa; Matsubara, Muneaki; Grosso, Michael A.; Jaggard, Dwight L.; Chance, Britton; Gorman, Robert C.; Gorman, Joseph H., III

    2007-02-01

    Apoptosis induced mitochondrial destruction and dysfunction has been shown to play an important role in the pathogenesis of both acute cardiac ischemia-reperfusion injury and chronic myocardial infarction-induced ventricular remodeling. Unfortunately this understanding has not translated into effective therapeutic strategies for either condition-mostly due to an inability to assess mitochondrial dysfunction/apoptosis effectively in humans. All current measures of apoptosis are pseudo-quantitative and require invasive tissue biopsy. Our group has developed an optical, non-tissue destructive catheter based device that allows the quantitative regional assessment of this pathological process in vivo. This instrument has been designed to acquire fluorescence signals of intrinsic mitochondrial fluorophores, Nicotinamide Adenine Dinucleotide (NAD) and Flavoprotein (FP). The normalized ratio of these fluorophores (FP/FP+NADH) called the redox ratio, is an indicator of the in vivo mitochondrial dysfunction. 1-3 We have demonstrated in a rabbit reperfusion model of apoptotic myocyte injury that this redox ratio is drastically increased which is consistent with profound apoptosis-induced "unhinging" of the mitochondrial respiratory function.

  3. PECAM-1, apoptosis and CD34+ precursors.

    PubMed

    Zocchi, Maria R; Poggi, A

    2004-11-01

    Apoptosis is a physiological process that controls tissue homeostasis, in combination with survival signals delivered by distinct receptors that bind hormones, growth factors or extracellular matrix components. The extrinsic pathway of apoptosis is due to the triggering of death receptors and the activation of the caspase cascade; the intrinsic pathway is due to withdrawal of growth factors and mainly related to mitochondrial metabolism. The choice between survival or apoptosis, which is the result of such different integrated environmental signals, is crucial for the maintainance of bone marrow reservoir of hematopoietic precursors (HPC). CD34+ HPC can receive multiple survival signals during homing and maturation, due to different interactions with adhesion molecules expressed on endothelial and bone marrow stromal cells, proteins of the extracellular matrix and chemokines or growth factors. Among them, the signal delivered via platelet endothelial cell adhesion molecule-1 (PECAM-1) seems to contribute to the resistance of this cell population to starvation, and it is related to the maintainance of mitochondrial metabolism. Indeed, this molecule, originally described as an adhesion receptor belonging to the immunoglobulin superfamily, capable of homophilic and heterophilic interactions, turned out to be a signalling molecule, containing an immunoreceptor tyrosine-based inhibitory motifs (ITIM) within its cytoplasmic domain. In particular, it has been shown that PECAM-1 binds to different kinases and phosphatases, including the phosphatidylinositide-3-kinase that phosphorylates Akt, which, in turn can upregulate transcription and function of antiapoptotic proteins, such as Bcl-2 and Bcl-x or A1, responsible for the rescue from mitochondrial apoptosis. The possible role of PECAM-1 engagement in the prevention of starvation-induced apoptosis of HPC precursors and in the maintainance of their survival is discussed. PMID:15512808

  4. Is there, and should there be, apoptosis in bacteria?

    PubMed

    Häcker, Georg

    2013-01-01

    Apoptosis is a well-studied form of cell death in metazoans, where it has a clear role during the life of the (multicellular) animal. Some situations of cell death in unicellular eukaryotes (protozoa and yeast) have also been referred to as apoptosis. In recent years apoptosis has further been identified in bacteria several times. As a bacterial response to external stimuli, apoptosis could be important not only for the bacteria but also to the host. Here I will discuss why I believe that the term apoptosis should be avoided for these situations in bacteria, no matter how interesting the molecular background or how biologically important the underlying mechanism may be.

  5. Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Trovato, Francesca Maria; Weinberg, Annelie Martina; Al-Wasiyah, Mohammad K.; Alqahtani, Mohammed H.; Mobasheri, Ali

    2015-01-01

    Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA. PMID:26334269

  6. Rabies virus matrix protein induces apoptosis by targeting mitochondria.

    PubMed

    Zan, Jie; Liu, Juan; Zhou, Jian-Wei; Wang, Hai-Long; Mo, Kai-Kun; Yan, Yan; Xu, Yun-Bin; Liao, Min; Su, Shuo; Hu, Rong-Liang; Zhou, Ji-Yong

    2016-09-10

    Apoptosis, as an innate antiviral defense, not only functions to limit viral replication by eliminating infected cells, but also contribute to viral dissemination, particularly at the late stages of infection. A highly neurotropic CVS strain of rabies virus induces apoptosis both in vitro and in vivo. However, the detailed mechanism of CVS-mediated neuronal apoptosis is not entirely clear. Here, we show that CVS induces apoptosis through mitochondrial pathway by dissipating mitochondrial membrane potential, release of cytochrome c and AIF. CVS blocks Bax activation at the early stages of infection; while M protein partially targets mitochondria and induces mitochondrial apoptosis at the late stages of infection. The α-helix structure spanning 67-79 amino acids of M protein is essential for mitochondrial targeting and induction of apoptosis. These results suggest that CVS functions on mitochondria to regulate apoptosis at different stages of infection, so as to for viral replication and dissemination. PMID:27426727

  7. Premature apoptosis of Chlamydia-infected cells disrupts chlamydial development.

    PubMed

    Ying, Songmin; Pettengill, Matthew; Latham, E Ray; Walch, Axel; Ojcius, David M; Häcker, Georg

    2008-11-15

    The obligate intracellular development of Chlamydia suggests that the bacteria should be vulnerable to premature host cell apoptosis, but because Chlamydia-infected cells are apoptosis resistant, this has never been able to be tested. We have devised a system to circumvent the apoptotic block imposed by chlamydial infection. When the proapoptotic protein Bim(S) was experimentally induced, epithelial cells underwent apoptosis that was not blocked by chlamydial infection. Apoptosis during the developmental cycle prevented the generation of infectious bacteria and caused transcriptional changes of bacterial genes and loss of intracellular ATP. Intriguingly, although apoptosis resulted in destruction of host cell structures and of the Chlamydia inclusion, and prevented generation of elementary bodies, Bim(S) induction in the presence of a caspase inhibitor allowed differentiation into morphologically normal but noninfectious elementary bodies. These data show that chlamydial infection renders host cells apoptosis resistant at a premitochondrial step and demonstrate the consequences of premature apoptosis for development of the bacteria.

  8. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    PubMed

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-01

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  9. Maternal undernutrition upregulates apoptosis in offspring nephrogenesis.

    PubMed

    Tafti, S A; Nast, C C; Desai, M; Amaya, K E; Ross, M G; Magee, T R

    2011-08-01

    Maternal undernutrition (MUN) results in growth-restricted newborns with reduced nephron numbers that is associated with increased risk of hypertension and renal disease. The total adult complement of nephrons is set during nephrogenesis suggesting that MUN affects the staged development of nephrons in as yet unknown manner. A possible cause may be the increased renal apoptosis; therefore, we investigated whether apoptotic signaling and cell death were increased in MUN rat kidneys. Pregnant rat dams were fed an ad libitum diet [control] or were 50% food restricted (MUN) starting at embryonic day (E) 10. Male offspring kidneys (n = 5 each, MUN and control) were analyzed for mRNA using quantitative PCR (E20) and for protein expression using Western blotting and immunohistochemistry (E20 and postnatal day 1, P1). Apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Upregulation of pro-apoptotic protein expression was detected at E20 (Fas receptor, caspase 9) and at P1 (caspase 3, Bax). The anti-apoptotic factor Bcl2 was significantly decreased in P1 kidneys. Kidney TUNEL showed apoptotic nuclei significantly increased in the P1 nephrogenic zone (MUN 3.3 + 0.3 v. C 1.6 + 0.5, P = 0.002). The majority of apoptotic nuclei co-localized to mesenchyme and pretubular aggregates in the nephrogenic zone. Differential regulation of apoptosis in mesenchyme and pretubular aggregates following parturition suggests a mechanism for nephropenia in gestational programming of the kidney.

  10. Safrole oxide inhibits angiogenesis by inducing apoptosis.

    PubMed

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2005-06-01

    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (P<.01). The culture of rat aorta treated with safrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  11. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  12. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    PubMed Central

    Kuo, Chen-Tzu; Chen, Bing-Chang; Yu, Chung-Chi; Weng, Chih-Ming; Hsu, Ming-Jen; Chen, Chien-Chih; Chen, Mei-Chieh; Teng, Che-Ming; Pan, Shiow-Lin; Bien, Mauo-Ying; Shih, Chung-Hung; Lin, Chien-Huang

    2009-01-01

    In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1) in denbinobin-induced apoptosis in human lung adenocarcinoma (A549) cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN), two antioxidants (N-acetyl-L-cysteine (NAC) and glutathione (GSH)), a c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and an activator protein-1 (AP-1) inhibitor (curcumin). Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS) production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis. PMID:19405983

  13. Modulation of human neutrophil apoptosis by immune complexes.

    PubMed

    Gamberale, R; Giordano, M; Trevani, A S; Andonegui, G; Geffner, J R

    1998-10-01

    In the present study we examined whether immune complexes (IC) are able to modulate human neutrophil apoptosis. We observed different effects depending on the type of IC employed. Precipitating IC (pIC) and Ab-coated erythrocytes (E-IgG) triggered a marked stimulation of apoptosis, while heat-aggregated IgG and soluble IC, significantly delayed spontaneous apoptosis. Blocking Abs directed to Fcgamma receptor type II (FcgammaRII), but not to FcgammaRIII, markedly diminished the acceleration of apoptosis triggered by either pIC or E-IgG, supporting a critical role for FcgammaRII in apoptosis stimulation. This phenomenon, on the other hand, does not appear to involve IC phagocytosis or the participation of CR3. Acceleration of neutrophil apoptosis triggered by either pIC or E-IgG seems to require the activation of the respiratory burst, as suggested by 1) the ability of catalase to prevent apoptosis stimulation; 2) the effect of azide, an heme enzyme inhibitor, which dramatically enhanced apoptosis induced by pIC or E-IgG; and 3) the inability of pIC or E-IgG to accelerate apoptosis of neutrophils isolated from CGD patients. It is well established that IC affect the course of inflammation by inducing the release of inflammatory cytokines, proteolytic enzymes, oxidative agents, and other toxic molecules. Our results suggest that IC may also affect the course of inflammation by virtue of their ability to modulate neutrophil apoptosis.

  14. Inhibitor of apoptosis proteins (IAPs) as regulatory factors of hepatic apoptosis.

    PubMed

    Wang, Kewei; Lin, Bingliang

    2013-10-01

    IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.

  15. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells.

    PubMed

    Chung, Myung-Hoon; Kim, Do-Hee; Na, Hye-Kyung; Kim, Jung-Hwan; Kim, Ha-Na; Haegeman, Guy; Surh, Young-Joon

    2014-10-01

    Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.

  16. Andrographolide suppresses thymic stromal lymphopoietin in phorbol myristate acetate/calcium ionophore A23187-activated mast cells and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like mice model

    PubMed Central

    Li, Chun-xiao; Li, Hua-guo; Zhang, Hui; Cheng, Ru-hong; Li, Ming; Liang, Jian-ying; Gu, Yan; Ling, Bo; Yao, Zhi-rong; Yu, Hong

    2016-01-01

    Background Atopic dermatitis (AD) is one of the most common inflammatory cutaneous diseases. Thymic stromal lymphopoietin (TSLP) has been demonstrated to be an important immunologic factor in the pathogenesis of AD. The production of TSLP can be induced by a high level of intracellular calcium concentration and activation of the receptor-interacting protein 2/caspase-1/NF-κB pathway. Andrographolide (ANDRO), a natural bicyclic diterpenoid lactone, has been found to exert anti-inflammatory effects in gastrointestinal inflammatory disorders through suppressing the NF-κB pathway. Objective To explore the effect of ANDRO on the production of TSLP in human mast cells and AD mice model. Methods We utilized enzyme-linked immunosorbent assay, real-time reverse transcription polymerase chain reaction analysis, Western blot analysis, and immunofluorescence staining assay to investigate the effects of ANDRO on AD. Results ANDRO ameliorated the increase in the intracellular calcium, protein, and messenger RNA levels of TSLP induced by phorbol myristate acetate/calcium ionophore A23187, through the blocking of the receptor-interacting protein 2/caspase-1/NF-κB pathway in human mast cell line 1 cells. ANDRO, via oral or local administration, also attenuated clinical symptoms in 2,4-dinitrofluorobenzene-induced AD mice model and suppressed the levels of TSLP in lesional skin. Conclusion Taken together, ANDRO may be a potential therapeutic agent for AD through suppressing the expression of TSLP. PMID:26929603

  17. Interferon-γ enhances phorbol myristate acetate-induced cell attachment and tumor necrosis factor production via the NF-κB pathway in THP-1 human monocytic cells.

    PubMed

    Kurihara, Yuichi; Furue, Masutaka

    2013-06-01

    During inflammation, activated macrophages express adhesion molecules and produce cytokines that interact with other hematopoietic and stromal cells. THP-1 non-adherent human monocytic cells differentiate into plastic-adherent macrophages via αVβ3 integrin, by ERK activation in the presence of phorbol myristate acetate (PMA). This has proven to be a valuable model for investigating functional monocyte/macrophage diversity. Interferon-γ (IFN-γ) is a Th1-cytokine that is crucial in macrophage activation. In this study, we investigated the effects of IFN-γ on adhesion and the secretion of tumor necrosis factor (TNF) by PMA-stimulated THP-1 cells. IFN-γ is incapable of inducing cell attachment and TNF production; however, it cumulatively upregulated PMA-induced basal adhesion and TNF production. IFN-γ increased αV integrin, ICAM-1 and VCAM-1 expression and among these PMA-induced cell surface adhesion molecules, the blocking antibody for αV integrin suppressed adhesion and TNF production. Furthermore, IFN-γ enhanced PMA-induced NF-κB phosphorylation and not ERK phosphorylation. Accordingly, the NF-κB pathway inhibitor (BAY 11-7082) inhibited the enhancing effect of IFN-γ on adhesion and TNF production. By contrast, the MEK inhibitor (U0126) almost completely eliminated PMA-induced basal adhesion and TNF production. In conclusion, IFN-γ regulates macrophage activation by mediating the NF-κB signaling pathway. PMID:23589028

  18. Dual stimulus-dependent effect of Oenothera paradoxa extract on the respiratory burst in human leukocytes: suppressing for Escherichia coli and phorbol myristate acetate and stimulating for formyl-methionyl-leucyl-phenylalanine.

    PubMed

    Burzynska-Pedziwiatr, Izabela; Bukowiecka-Matusiak, Malgorzata; Wojcik, Marzena; Machala, Waldemar; Bienkiewicz, Malgorzata; Spolnik, Grzegorz; Danikiewicz, Witold; Wozniak, Lucyna Alicja

    2014-01-01

    Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans. PMID:25298860

  19. Interferon-γ enhances phorbol myristate acetate-induced cell attachment and tumor necrosis factor production via the NF-κB pathway in THP-1 human monocytic cells.

    PubMed

    Kurihara, Yuichi; Furue, Masutaka

    2013-06-01

    During inflammation, activated macrophages express adhesion molecules and produce cytokines that interact with other hematopoietic and stromal cells. THP-1 non-adherent human monocytic cells differentiate into plastic-adherent macrophages via αVβ3 integrin, by ERK activation in the presence of phorbol myristate acetate (PMA). This has proven to be a valuable model for investigating functional monocyte/macrophage diversity. Interferon-γ (IFN-γ) is a Th1-cytokine that is crucial in macrophage activation. In this study, we investigated the effects of IFN-γ on adhesion and the secretion of tumor necrosis factor (TNF) by PMA-stimulated THP-1 cells. IFN-γ is incapable of inducing cell attachment and TNF production; however, it cumulatively upregulated PMA-induced basal adhesion and TNF production. IFN-γ increased αV integrin, ICAM-1 and VCAM-1 expression and among these PMA-induced cell surface adhesion molecules, the blocking antibody for αV integrin suppressed adhesion and TNF production. Furthermore, IFN-γ enhanced PMA-induced NF-κB phosphorylation and not ERK phosphorylation. Accordingly, the NF-κB pathway inhibitor (BAY 11-7082) inhibited the enhancing effect of IFN-γ on adhesion and TNF production. By contrast, the MEK inhibitor (U0126) almost completely eliminated PMA-induced basal adhesion and TNF production. In conclusion, IFN-γ regulates macrophage activation by mediating the NF-κB signaling pathway.

  20. Participation of cyclin A in Myc-induced apoptosis.

    PubMed Central

    Hoang, A T; Cohen, K J; Barrett, J F; Bergstrom, D A; Dang, C V

    1994-01-01

    The involvement of c-Myc in cellular proliferation or apoptosis has been linked to differential cyclin gene expression. We observed that in both proliferating cells and cells undergoing apoptosis, cyclin A (but not B, C, D1, and E) mRNA level was elevated in unsynchronized Myc-overexpressing cells when compared with parental Rat1a fibroblasts. We further demonstrated that Zn(2+)-inducible cyclin A expression was sufficient to cause apoptosis. When Myc-induced apoptosis was blocked by coexpression of Bcl-2, the levels of cyclin C, D1, and E mRNAs were also elevated. Thus, while apoptosis induced by c-Myc is associated with an elevated cyclin A mRNA level, protection from apoptosis by coexpressed Bcl-2 is associated with a complementary increase in cyclin C, D1, and E mRNAs. Images PMID:8041712

  1. Crk is required for apoptosis in Xenopus egg extracts.

    PubMed Central

    Evans, E K; Lu, W; Strum, S L; Mayer, B J; Kornbluth, S

    1997-01-01

    Apoptosis is essential for the development and homeostasis of multicellular organisms. Recently, a cell-free extract prepared from Xenopus eggs was shown to recapitulate intracellular apoptotic pathways in vitro. While many stimuli have been shown to trigger apoptosis in a variety of cell types, the intracellular signaling pathways involved in apoptosis remain largely unknown. Here we show that addition of a recombinant protein containing the phosphotyrosine binding (SH2) domain from the adaptor protein crk, but not those derived from a panel of other signaling proteins, can prevent apoptosis in the Xenopus egg extract system. Furthermore, immunodepletion of endogenous crk protein from the egg extracts, or addition of anti-crk antisera to these extracts, prevents apoptosis. The ability to undergo apoptosis can be restored to these extracts by addition of recombinant crk protein. These results directly demonstrate that crk participates in apoptotic signaling. PMID:9029144

  2. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  3. Self-consumption: the interplay of autophagy and apoptosis

    PubMed Central

    Mariño, Guillermo; Niso-Santano, Mireia; Baehrecke, Eric H.; Kroemer, Guido

    2014-01-01

    Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to ‘autophagic cell death’. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences. PMID:24401948

  4. The actin cytoskeleton as a sensor and mediator of apoptosis

    PubMed Central

    Desouza, Melissa; Gunning, Peter W.; Stehn, Justine R.

    2012-01-01

    Apoptosis is an important biological process required for the removal of unwanted or damaged cells. Mounting evidence implicates the actin cytoskeleton as both a sensor and mediator of apoptosis. Studies also suggest that actin binding proteins (ABPs) significantly contribute to apoptosis and that actin dynamics play a key role in regulating apoptosis signaling. Changes in the organization of the actin cytoskeleton has been attributed to the process of malignant transformation and it is hypothesized that remodeling of the actin cytoskeleton may enable tumor cells to evade normal apoptotic signaling. This review aims to illuminate the role of the actin cytoskeleton in apoptosis by systematically analyzing how actin and ABPs regulate different apoptosis pathways and to also highlight the potential for developing novel compounds that target tumor-specific actin filaments. PMID:22880146

  5. CD45 regulates apoptosis in peripheral T lymphocytes.

    PubMed

    Liu, Zhe; Dawes, Ritu; Petrova, Svetla; Beverley, Peter C L; Tchilian, Elma Z

    2006-06-01

    Programmed cell death (apoptosis) is a key mechanism for regulating lymphocyte numbers. Murine lymph node lymphocytes cultured in vitro without added stimuli show significant levels of apoptosis over 24 h, detectable by staining with Annexin V. CD4 and CD8 T lymphocytes from transgenic (Tg) mice expressing single CD45RABC or CD45RO isoforms show increased apoptosis and the extent of apoptosis is inversely correlated with the level of CD45 expression. CD45 Tg cells exhibit phosphatidyl serine translocation and DNA oligonucleosome formation, and can be partially rescued from apoptosis by culture in caspase inhibitors or common gamma-chain-binding cytokines. We conclude that CD45 is an important regulator of spontaneous apoptosis in T lymphocytes and this mechanism may contribute to the disease associations reported for individuals expressing CD45 variant alleles. PMID:16621865

  6. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  7. Apoptosis as a Mechanism for Liver Disease Progression

    PubMed Central

    Guicciardi, Maria Eugenia; Gores, Gregory J.

    2011-01-01

    Hepatocyte injury is ubiquitous in clinical practice, and the mode of cell death associated with this injury is often apoptosis, especially by death receptors. Information from experimental systems demonstrates that hepatocyte apoptosis is sufficient to cause liver hepatic fibrogenesis. The mechanisms linking hepatocyte apoptosis to hepatic fibrosis remain incompletely understood, but likely relate to engulfment of apoptotic bodies by professional phagocytic cells and stellate cells, and release of mediators by cells undergoing apoptosis. Inhibition of apoptosis with caspase inhibitors has demonstrated beneficial effects in murine models of hepatic fibrosis. Recent studies implicating Toll-like receptor 9 (TLR9) in liver injury and fibrosis are also of particular interest. Engulfment of apoptotic bodies is one mechanism by which the TLR9 ligand (CpG DNA motifs) could be delivered to this intracellular receptor. These concepts suggest therapy focused on interrupting the cellular mechanisms linking apoptosis to fibrosis would be useful in human liver diseases. PMID:20960379

  8. Detection of apoptosis of bone cells in vitro.

    PubMed

    Bellido, Teresita; Plotkin, Lilian I

    2008-01-01

    Studies during the last decade demonstrated that apoptosis is as important as mitosis for the growth and maintenance of the skeleton and provided information on the significance and molecular regulation of apoptosis of bone cells. It is now known that: (1) all osteoclasts die by apoptosis after completing a bone resorption cycle; (2) the majority of osteoblasts also die, whereas the remainder become lining cells or osteocytes; and (3) osteocytes, although long-living cells, also can die prematurely. Furthermore, mounting evidence indicates that systemic hormones, local growth factors, cytokines, and pharmacological agents, as well as mechanical forces regulate the rate of bone cell apoptosis. This chapter summarizes the methods developed in the last few years to examine apoptosis of cultured bone cells and identify the signaling pathways and molecules involved in apoptosis regulation by diverse skeletal stimuli.

  9. Differential effect of interleukin-10 on hepatocyte apoptosis.

    PubMed

    Santiago-Lomelí, Mariana; Gómez-Quiroz, Luis E; Ortíz-Ortega, Víctor M; Kershenobich, David; Gutiérrez-Ruiz, Maria Concepción

    2005-04-15

    Current data suggests that hepatocyte apoptosis is an essential feature contributing to several chronic liver diseases. It has been shown that IL-10 has diverse and potentially pleiotropic actions that suggest that it may have a direct effect on apoptosis. It has been established that NF-kappaB activation is essential to protect hepatocytes from apoptosis. The purpose of the present work is to evaluate the effect of the anti-inflammatory cytokine, IL-10 on the activation of NF-kappaB in primary cultured rat hepatocytes and hepatoblastoma (HepG2) cell line and explore its consequences on apoptosis. Apoptosis was induced by TNF-alpha and cicloheximide in HepG2 hepatoblastoma cells and by ethanol and a glutathione depletor in primary cultured rat hepatocytes. NF-kappaB activation was determined by EMSA. IL-10 increased ethanol induced apoptosis in primary culture rat hepatocytes (28%). These effects were enhanced when the cells were pre-treated with IL-10 under conditions of oxidative stress (glutathione depletion). The effects of IL-10 on primary cultured hepatocytes were independent of NF-kappaB activation. When apoptosis was induced by cicloheximide and TNF-alpha in hepatoblastoma cells, pretreatment with IL-10 was accompanied by a decrease of 38% in apoptosis. IL-10 did not have any effect on the signaling cascade of apoptosis but caused a significant increase in NF-kappaB activation. When NF-kappaB activation was inhibited by sulfazalazine the decrease in apoptosis was reversed. The present study demonstrates the importance of differential cell marking when trying to characterize the effects of cytokines in their contribution to liver cell apoptosis. The study provides insight into the mechanisms by which IL-10 affects apoptosis through a differential effect on NF-kappaB activation.

  10. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  11. Carbamate Pesticide-Induced Apoptosis in Human T Lymphocytes

    PubMed Central

    Li, Qing; Kobayashi, Maiko; Kawada, Tomoyuki

    2015-01-01

    We previously found that carbamate pesticides induced significant apoptosis in human natural killer cells. To investigate whether carbamate pesticides also induce apoptosis in human T lymphocytes, in the present study Jurkat human T cells were treated in vitro with thiram, maneb, carbaryl or ziram. Apoptosis was determined by FITC-Annexin-V/PI staining. To explore the mechanism of apoptosis, intracellular levels of active caspase 3 and mitochondrial cytochrome-c release were determined by flow cytometry. We found that thiram, ziram, maneb and carbaryl also induced apoptosis in a time- and dose-dependent manner in the human T cells. However, the strength of the apoptosis-inducing effect differed among the pesticides, with the: thiram > ziram > maneb > carbaryl. Moreover, thiram significantly increased the intracellular level of active caspase 3 and caspase inhibitors significantly inhibited apoptosis. Thiram also significantly caused mitochondrial cytochrome-c release. These findings indicate that carbamate pesticides can induce apoptosis in human T cells, and the apoptosis is mediated by the activation of caspases and the release of mitochondrial cytochrome-c. PMID:25837344

  12. Functional role of apoptosis in oral diseases: An update

    PubMed Central

    Misra, Akansha; Rai, Shalu; Misra, Deepankar

    2016-01-01

    Cell death appears to be a basic biological phenomenon which is maintained by the human body. The term apoptosis, also known as programmed cell death, is characterized by several unique morphological and biochemical features. Apoptosis and its different forms are essential for tissue homeostasis. Alteration in molecular mechanisms involved in apoptotic signaling contributes to a vast range of oral diseases. An understanding of the regulation of apoptosis has led to the development of many therapeutic approaches and better management of oral diseases. The review updates us the correlation between apoptosis in normal oral tissues and oral diseases. PMID:27721616

  13. Research Advances on Pathways of Nickel-Induced Apoptosis.

    PubMed

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2016-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  14. Role of PUMA in methamphetamine-induced neuronal apoptosis.

    PubMed

    Chen, Chuanxiang; Qincao, Litao; Xu, Jingtao; Du, Sihao; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-01

    Exposure to methamphetamine (METH), a widely used illicit drug, has been shown to cause neuron apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a key mediator in neuronal apoptosis. This study aimed to examine the effects of PUMA in METH-induced neuronal apoptosis. We determined PUMA protein expression in PC12 cells and SH-SY5Y cells after METH exposure using western blot. We also observed the effect of METH on neuronal apoptosis after silencing PUMA expression with siRNA using TUNEL staining and flow cytometry. Additionally, to investigate possible mechanisms of METH-induced PUMA-mediated neuronal apoptosis, we measured the protein expression of apoptotic markers, including cleaved caspase-3, cleaved PARP, Bax, B-cell leukemia/lymphoma-2 (Bcl-2) and cytochrome c (cyto c), after METH treatment with or without PUMA knockdown. Results showed that METH exposure induced cell apoptosis, increased PUMA protein levels, activated caspase-3 and PARP, elevated Bax and reduced Bcl-2 expression, as well as increased the release of cyto c from mitochondria to the cytoplasm in both PC12 and SH-SY5Y cells. All these effects were attenuated or reversed after silencing PUMA. A schematic depicting the role of PUMA in METH-induced mitochondrial apoptotic pathway was proposed. Our results suggest that PUMA plays an important role in METH-triggered apoptosis and it may be a potential target for ameliorating neuronal injury and apoptosis caused by METH.

  15. Tom70 Mediates Sendai Virus-Induced Apoptosis on Mitochondria

    PubMed Central

    Wei, Bo; Cui, Ye; Huang, Yuefeng; Liu, Heng; Li, Lin; Li, Mi; Ruan, Kang-Cheng

    2015-01-01

    ABSTRACT Virus infection triggers immediate innate immune responses. Apoptosis represents another effective means to restrict virus invasion, besides robust expression of host cytokines and chemokines. IRF3 was recently demonstrated to be indispensable for Sendai virus (SeV)-induced apoptosis, but the underlying mechanism is not fully understood. Here we report that a dynamic protein complex, Tom70/Hsp90/IRF3/Bax, mediates SeV-induced apoptosis. The cytosolic proapoptotic protein Bax interacts specifically with IRF3 upon virus infection. The mitochondrial outer membrane protein Tom70 recruits IRF3 to mitochondria via Hsp90. Consequently, the relocation of Bax onto mitochondria induces the leakage of cytochrome c into the cytosol and initiates the corresponding apoptosis. Interestingly, IKK-i is essential for this apoptosis, whereas TBK1 is dispensable. Collectively, our study characterizes a novel protein complex that is important for SeV-induced apoptosis. IMPORTANCE Apoptosis is an effective means of sacrificing virus-infected cells and restraining the spread of virus. In this study, we demonstrate that IRF3 associates with Bax upon virus infection. Tom70 recruits this protein complex to the mitochondrial outer membrane through Hsp90, which thus induces the release of cytochrome c into the cytosol, initiating virus-induced apoptosis. Interestingly, IKK-i plays an essential role in this activation. This study uncovers a novel mechanism of SeV-induced apoptosis. PMID:25609812

  16. Research Advances on Pathways of Nickel-Induced Apoptosis

    PubMed Central

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  17. Apoptosis in the vasculature: mechanisms and functional importance

    PubMed Central

    Mallat, Ziad; Tedgui, Alain

    2000-01-01

    Apoptotic death has now been recognized in a number of common and threatening vascular diseases, including atherosclerosis. Interest in apoptosis research relates to the fact that apoptosis, in contrast to oncosis, is a highly regulated process of cell death which raises the hope for the development of specific therapeutic strategies to alter disease progression. This review summarizes the mechanisms involved in vascular endothelial and smooth muscle cell survival/apoptosis, and the potential roles of apoptotic death in atherosclerosis and restenosis. The potential effects of modulation of apoptosis in these diseases are also discussed. PMID:10882378

  18. Platelets induce apoptosis via membrane-bound FasL

    PubMed Central

    Schleicher, Rebecca I.; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O’Reilly, Lorraine; Meuth, Sven G.; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank

    2015-01-01

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL△m/△m) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre+ FasLfl/fl mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis. PMID:26232171

  19. Apoptosis Induced by Metal Complexes and Interaction with Dexamethasone

    PubMed Central

    Kim, Jung Sun; Barros, José Carlos Almeida

    2002-01-01

    Apoptosis induced by rhodium II amidate, rhodium II propionate, cisplatin and interactions with dexamethaxone were studied on some human leukemia cell lines Raji, Jurkat and U937. Apoptosis was studied by flow cytometry, agarose gel electrophoresis and morphological analysis. Rhodium II propionate induced apoptosis in all the three cell lines, Rhodium II amidate, in the lymphoid cell lines Jurkat and Raji, and cisplatin, only in the Jurkat, a T lymphoid cell line. It has also been observed that the addition of dexamethasone enhances the apoptosis index only in U937, a monocytic line with a glucocorticoid receptor bearing. PMID:18476001

  20. Platelets induce apoptosis via membrane-bound FasL.

    PubMed

    Schleicher, Rebecca I; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O'Reilly, Lorraine; Meuth, Sven G; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank; Langer, Harald F

    2015-09-17

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL(△m/△m)) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre(+) FasL(fl/fl) mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis.

  1. Cardiac Apoptosis in Severe Relapsing Fever Borreliosis

    PubMed Central

    Londoño, Diana; Bai, Yunhong; Zückert, Wolfram R.; Gelderblom, Harald; Cadavid, Diego

    2005-01-01

    Previous studies revealed that the heart suffers significant injury during experimental Lyme and relapsing fever borreliosis when the immune response is impaired (D. Cadavid, Y. Bai, E. Hodzic, K. Narayan, S. W. Barthold, and A. R. Pachner, Lab. Investig. 84:1439-1450, 2004; D. Cadavid, T. O'Neill, H. Schaefer, and A. R. Pachner, Lab. Investig. 80:1043-1054, 2000; and D. Cadavid, D. D. Thomas, R. Crawley, and A. G. Barbour, J. Exp. Med. 179:631-642, 1994). To investigate cardiac injury in borrelia carditis, we used antibody-deficient mice persistently infected with isogenic serotypes of the relapsing fever agent Borrelia turicatae. We studied infection in hearts 1 to 2 months after inoculation by TaqMan reverse transcription-PCR and immunohistochemistry (IHC) and inflammation by hematoxylin and eosin and trichrome staining, IHC, and in situ hybridization (ISH). We studied apoptosis by terminal transferase-mediated DNA nick end labeling assay and measured expression of apoptotic molecules by RNase protection assay, immunofluorescence, and immunoblot. All antibody-deficient mice, but none of the immunocompetent controls, developed persistent infection of the heart. Antibody-deficient mice infected with serotype 2 had more severe cardiac infection and injury than serotype 1-infected mice. The injury was more severe around the base of the heart and pericardium, corresponding to sites of marked infiltration by activated macrophages and upregulation of interleukin-6 (IL-6). Infected hearts showed evidence of apoptosis of macrophages and cardiomyocytes as well as significant upregulation of caspases, most notably caspase-1. We conclude that persistent infection with relapsing fever borrelias causes significant loss of cardiomyocytes associated with prominent infiltration by activated macrophages, upregulation of IL-6, induction of caspase-1, and apoptosis. PMID:16239571

  2. Taurine induces the apoptosis of breast cancer cells by regulating apoptosis-related proteins of mitochondria.

    PubMed

    Zhang, Xiali; Lu, Hongfei; Wang, Yibing; Liu, Chunju; Zhu, Weifeng; Zheng, Shuangyan; Wan, Fusheng

    2015-01-01

    Taurine (Tau), the most abundant free amino acid in humans has numerous potential health benefits through its antioxidant and anti-inflammatory properties. However, limited studies have assessed its effect on tumors and the antitumor mechanism remains unknown. The present study investigated the cellular and molecular changes induced by Tau, leading to the induction of apoptosis in human breast cancer cell lines MCF-7 and MDA-MB-231. MCF-7 is p53 proficient (p53+/+) and MDA-MB-231 is a p53 null mutant (p53-/-). Cell proliferation and viability were assessed by MTT. Flow cytometry and hoechst33342 fluorescent staining were employed to detect apoptosis. Spectrophotometry was used to detect caspase-3 activity. Reverse transcription-polymerase chain reaction and western blot analysis were used to detect the levels of mRNA and proteins of p53-upregulated modulator of apoptosis (PUMA), Bax and Bcl-2. Finally, the affect of Tau on the growth of MDA-MB-231-cell-nude mice xenografts was examined. In the study, Tau inhibited growth and induced apoptosis of the two cell lines in a concentration- and time-dependent manner. Notably, the inhibitory effect of Tau on p53-/- cancer cells was clearly significant compared to the p53+/+ cancer cells. Further studies showed that Tau promoted apoptosis in human breast cancer cells and inhibited the growth of tumor in nude mice by inducing the expression of PUMA, which further up- and downregulated the expression of Bax and Bcl-2 protein, giving rise to increased activation of caspase-3. Collectively, these results indicate that Tau is a potent candidate for the chemotherapy of breast cancer through increasing the PUMA expression independent of p53 status. PMID:25395275

  3. Rac1 mediates intestinal epithelial cell apoptosis via JNK.

    PubMed

    Jin, Shi; Ray, Ramesh M; Johnson, Leonard R

    2006-12-01

    Apoptosis plays a key role in the maintenance of a constant cell number and a low incidence of cancer in the mucosa of the intestine. Although the small GTPase Rac1 has been established as an important regulator of migration of intestinal epithelial cells, whether Rac1 is also involved in apoptosis is unclear. The present study tested the hypothesis that Rac1 mediates TNF-alpha-induced apoptosis in IEC-6 cells. Rac1 is activated during TNF-alpha-induced apoptosis as judged by the level of GTP-Rac1, the level of microsomal membrane-associated Rac1, and lamellipodia formation. Although expression of constitutively active Rac1 does not increase apoptosis in the basal condition, inhibition of Rac1 either by NSC-23766 (Rac1 inhibitor) or expression of dominant negative Rac1 protects cells from TNF-alpha-induced apoptosis by inhibiting caspase-3, -8, and -9 activities. Inhibition of Rac1 before the administration of apoptotic stimuli significantly prevents TNF-alpha-induced activation of JNK1/2, the key proapoptotic regulator in IEC-6 cells. Inhibition of Rac1 does not modulate TNF-alpha-induced ERK1/2 and Akt activation. Inhibition of ERK1/2 and Akt activity by U-0126 and LY-294002, respectively, increased TNF-alpha-induced apoptosis. However, inhibition of Rac1 significantly decreased apoptosis in the presence of ERK1/2 and Akt inhibitors, similar to the effect observed with NSC-23766 alone in response to TNF-alpha. Thus, Rac1 inhibition protects cells independently of ERK1/2 and Akt activation during TNF-alpha-induced apoptosis. Although p38 MAPK is activated in response to TNF-alpha, inhibition of p38 MAPK did not decrease apoptosis. Rac1 inhibition did not alter p38 MAPK activity. Thus, these results indicate that Rac1 mediates apoptosis via JNK and plays a key role in proapoptotic pathways in intestinal epithelial cells.

  4. Evolution of the animal apoptosis network.

    PubMed

    Zmasek, Christian M; Godzik, Adam

    2013-03-01

    The number of available eukaryotic genomes has expanded to the point where we can evaluate the complete evolutionary history of many cellular processes. Such analyses for the apoptosis regulatory networks suggest that this network already existed in the ancestor of the entire animal kingdom (Metazoa) in a form more complex than in some popular animal model organisms. This supports the growing realization that regulatory networks do not necessarily evolve from simple to complex and that the relative simplicity of these networks in nematodes and insects does not represent an ancestral state, but is the result of secondary simplifications. Network evolution is not a process of monotonous increase in complexity, but a dynamic process that includes lineage-specific gene losses and expansions, protein domain reshuffling, and emergence/reemergence of similar protein architectures by parallel evolution. Studying the evolution of such networks is a challenging yet interesting subject for research and investigation, and such studies on the apoptosis networks provide us with interesting hints of how these networks, critical in so many human diseases, have developed.

  5. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients.

  6. Bistability in Apoptosis by Receptor Clustering

    PubMed Central

    Ho, Kenneth L.; Harrington, Heather A.

    2010-01-01

    Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering. PMID:20976242

  7. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients. PMID:26828436

  8. Role of the Crosstalk between Autophagy and Apoptosis in Cancer

    PubMed Central

    Mei, Yang

    2013-01-01

    Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics. PMID:23840208

  9. Phorbol ester stimulates ethanolamine release from the metastatic basal prostate cancer cell line PC3 but not from prostate epithelial cell lines LNCaP and P4E6

    PubMed Central

    Schmitt, J; Noble, A; Otsuka, M; Berry, P; Maitland, N J; Rumsby, M G

    2014-01-01

    Background: Malignancy alters cellular complex lipid metabolism and membrane lipid composition and turnover. Here, we investigated whether tumorigenesis in cancer-derived prostate epithelial cell lines influences protein kinase C-linked turnover of ethanolamine phosphoglycerides (EtnPGs) and alters the pattern of ethanolamine (Etn) metabolites released to the medium. Methods: Prostate epithelial cell lines P4E6, LNCaP and PC3 were models of prostate cancer (PCa). PNT2C2 and PNT1A were models of benign prostate epithelia. Cellular EtnPGs were labelled with [1-3H]-Etn hydrochloride. PKC was activated with phorbol ester (TPA) and inhibited with Ro31-8220 and GF109203X. D609 was used to inhibit PLD (phospholipase D). [3H]-labelled Etn metabolites were resolved by ion-exchange chromatography. Sodium oleate and mastoparan were tested as activators of PLD2. Phospholipase D activity was measured by a transphosphatidylation reaction. Cells were treated with ionomycin to raise intracellular Ca2+ levels. Results: Unstimulated cell lines release mainly Etn and glycerylphosphorylEtn (GPEtn) to the medium. Phorbol ester treatment over 3h increased Etn metabolite release from the metastatic PC3 cell line and the benign cell lines PNT2C2 and PNT1A but not from the tumour-derived cell lines P4E6 and LNCaP; this effect was blocked by Ro31-8220 and GF109203X as well as by D609, which inhibited PLD in a transphosphatidylation reaction. Only metastatic PC3 cells specifically upregulated Etn release in response to TPA treatment. Oleate and mastoparan increased GPEtn release from all cell lines at the expense of Etn. Ionomycin stimulated GPEtn release from benign PNT2C2 cells but not from cancer-derived cell lines P4E6 or PC3. Ethanolamine did not stimulate the proliferation of LNCaP or PC3 cell lines but decreased the uptake of choline (Cho). Conclusions: Only the metastatic basal PC3 cell line specifically increased the release of Etn on TPA treatment most probably by PKC activation of

  10. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    PubMed Central

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  11. ASB16165, a phosphodiesterase 7A inhibitor, reduces cutaneous TNF-alpha level and ameliorates skin edema in phorbol ester 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation model in mice.

    PubMed

    Kadoshima-Yamaoka, Kumiko; Goto, Megumi; Murakawa, Masao; Yoshioka, Ryosuke; Tanaka, Yoshitaka; Inoue, Hidekazu; Murafuji, Hidenobu; Kanki, Satomi; Hayashi, Yasuhiro; Nagahira, Kazuhiro; Ogata, Atsuto; Nakatsuka, Takashi; Fukuda, Yoshiaki

    2009-06-24

    Possible role of phosphodiesterase 7A (PDE7A) in skin inflammation was examined using ASB16165, a specific inhibitor for PDE7A. Epicutaneous application of phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse ear resulted in induction of skin edema, and topical treatment with ASB16165 inhibited the induction of skin edema in a dose-dependent manner. The TPA challenge also increased the level of TNF-alpha at the application site, and the ASB16165 treatment reduced the TNF-alpha level in the skin. In addition, ASB16165 suppressed the production of TNF-alpha by human keratinocytes stimulated in vitro with TPA and calcium ionophore. Forskolin, an activator of adenylyl cyclase, as well as dibutyryl cAMP also showed inhibitory effect on the TNF-alpha production in the cells, suggesting involvement of cAMP in TNF-alpha generation. These results demonstrate that PDE7A might regulate TNF-alpha production in keratinocytes in a cAMP-dependent fashion. As immunostaining analysis revealed that PDE7A is expressed in the epidermis and TNF-alpha is known to contribute to the TPA-induced edema, it is possible that the inhibitory effect of ASB16165 on skin edema in mouse TPA-induced dermatitis model is mediated by suppression of TNF-alpha production. This is the first report suggesting the association of PDE7A with the function of keratinocytes. ASB16165 will be useful as an agent for skin inflammation in which TNF-alpha plays a pathogenic role (e.g. psoriasis).

  12. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    SciTech Connect

    Maier, Jana V.; Volz, Yvonne; Berger, Caroline; Schneider, Sandra; Cato, Andrew C.B.

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulate the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.

  13. Differential effect of 1{alpha},25-dihydroxyvitamin D{sub 3} on Hsp28 and PKC{beta} gene expression in the phorbol ester-resistant human myeloid HL-525 leukemic cells

    SciTech Connect

    Lee, Yong J.; Galoforo, S.S.; Berns, C.M.

    1997-08-01

    We investigated the effect of 1{alpha},25-dihydroxyvitamin D{sub 3} [1,25-(OH){sub 2}D{sub 3}] on the expression of the 28-kDa heat shock protein gene (hsp28) and the protein kinase C beta gene (PKC{beta}) in the human myeloid HL-60 leukemic cell variant HL-525, which is resistance to phorbol ester-induced macrophage differentiation. Northern and Western blot analysis showed little or no hsp28 gene expression in the HL-60 cell variant, HL-205, which is susceptible to such differentiation, while a relatively high basal level of hps28 gene expression was observed in the HL-525 cells. However, both cell lines demonstrated heat shock-induced expression of this gene. During treatment with 50-300 nM 1,25-(OH){sub 2}D{sub 3}, a marked reduction of hsp28 gene expression was not associated with heat shock transcription factor-heat shock element (HSF-HSE) binding activity. Our results suggest that the differential effect of 1,25-(OH){sub 2}D{sub 3} on hsp28 and PKC{beta} gene expression is due to the different sequence composition of the vitamin D response element in the in the promoter region as well as an accessory factor for each gene or that 1,25-(OH){sub 2}D{sub 3} increases PKC{beta} gene expression, which in turn negatively regulates the expression of the hsp28 gene, or vice versa.

  14. Intracoronary Levosimendan during Ischemia Prevents Myocardial Apoptosis

    PubMed Central

    Malmberg, Markus; Vähäsilta, Tommi; Saraste, Antti; Koskenvuo, Juha W.; Pärkkä, Jussi P.; Leino, Kari; Laitio, Timo; Stark, Christoffer; Heikkilä, Aira; Saukko, Pekka; Savunen, Timo

    2012-01-01

    Background: Levosimendan is a calcium sensitizer that has been shown to prevent myocardial contractile depression in patients post cardiac surgery. This drug exhibits an anti-apoptotic property; however, the underlying mechanism remains elusive. In this report, we characterized the myocardial protective of levosimendan in preventing cardiomyocyte apoptosis and post-operative stunning in an experimental ischemia–reperfusion model. Methods: Three groups of pigs (n = 8 per group) were subjected to 40 min of global, cardioplegic ischemia followed by 240 min of reperfusion. Levosimendan (65 μg/kg body weight) was given to pigs by intravenous infusion (L-IV) before ischemia or intracoronary administration during ischemia (L-IC). The Control group did not receive any levosimendan. Echocardiography was used to monitor cardiac function in all groups. Apoptosis levels were assessed from the left ventricle using the terminal transferase mediated dUTP nick end labeling (TUNEL) assay and immunocytochemical detection of Caspase-3. Results: Pigs after ischemia–reperfusion had a much higher TUNEL%, suggesting that our treatment protocol was effective. Levels of apoptosis were significantly increased in Control pigs that did not receive any levosimendan (0.062 ± 0.044%) relative to those received levosimendan either before (0.02 ± 0.017%, p = 0.03) or during (0.02 ± 0.017%, p = 0.03) the ischemia phase. Longitudinal left ventricular contraction in pigs that received levosimendan before ischemia (0.75 ± 0.12 mm) was significantly higher than those received levosimendan during ischemia (0.53 ± 0.11 mm, p = 0.003) or Control pigs (0.54 ± 0.11 mm, p = 0.01). Conclusion: Our results suggested that pigs received levosimendan displayed a markedly improved cell survival post I–R. The effect on cardiac contractility was only significant in our perfusion heart model when levosimendan was delivered intravenously before

  15. Accelerated neutrophil apoptosis in the acquired immunodeficiency syndrome.

    PubMed Central

    Pitrak, D L; Tsai, H C; Mullane, K M; Sutton, S H; Stevens, P

    1996-01-01

    Neutrophil (PMNL) function defects occur as a consequence of HIV infection. This study examined PMNL apoptosis in patients with the acquired immunodeficiency syndrome (AIDS) to determine if accelerated apoptosis contributes to impaired function. PMNL were isolated from 10 HIV-infected patients with CD4+ lymphocyte counts < 200/mm3 without signs of active infection and 7 healthy volunteers. PMNL were stained with acridine orange and ethidium bromide after 0, 3, 6, and 18 h in culture, and examined for the morphologic changes of apoptosis and viability by fluorescent microscopy. Apoptosis was also demonstrated by electron microscopy, flow cytometry, and DNA gel electrophoresis. Apoptosis was minimal at 0 h, but PMNL from AIDS patients exhibited significantly greater apoptosis than controls at 3 h (22.5+/-11.5 vs. 8.9+/-6.9%, P = 0.015), 6 h (38.1+/-14.2 vs. 18.1+/-4.5%, P = 0.003), and 18 h (71.3+/-19.0 vs. 38.8+/-16.7%, P = 0.002). Viabilities were > or = 88.0% for both groups from 0-6 h, but by 18 h viability was significantly decreased for the HIV group (58.8+/-12.4 vs. 83.5+/-10.4%, P = 0.001) due to an increase in non-viable apoptotic cells. Incubation with serum from AIDS patients had no effect on control PMNL, and incubation with control serum did not reduce the rate of apoptosis of PMNL from AIDS patients. Incubation with granulocyte colony-stimulating factor (G-CSF) in vitro significantly decreased apoptosis for PMNL from AIDS patients. PMNL from patients with AIDS exhibit markedly accelerated apoptosis ex vivo. In vivo, apoptosis and functional impairment of PMNL may contribute to the risk of secondary infections, and cytokine therapy may be of potential clinical benefit in this circumstance. PMID:8981916

  16. The developing mouse dentition: a new tool for apoptosis study.

    PubMed

    Peterková, Renata; Peterka, Miroslav; Lesot, Hervé

    2003-12-01

    Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo-spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth-activating and growth-inhibiting signals, and (2) apoptosis stimulation by the failure of death-suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth-activating (apoptosis-suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell "suicide" by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering. PMID:15033770

  17. Apoptosis in capillary endothelial cells in ageing skeletal muscle

    PubMed Central

    Wang, Huijuan; Listrat, Anne; Meunier, Bruno; Gueugneau, Marine; Coudy-Gandilhon, Cécile; Combaret, Lydie; Taillandier, Daniel; Polge, Cécile; Attaix, Didier; Lethias, Claire; Lee, Kijoon; Goh, Kheng Lim; Béchet, Daniel

    2014-01-01

    The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age-related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing. PMID:24245531

  18. Cytotoxic activity and apoptosis induction by gaillardin.

    PubMed

    Moghadam, Maryam Hamzeloo; Naghibi, Farzaneh; Atoofi, Azadeh; Rezaie, Mitra Asgharian; Irani, Mahboobeh; Mosaddegh, Mahmoud

    2013-01-01

    Cytotoxic activity of gaillardin, a sesquiterpene lactone isolated from Inula oculus-christi L. (Asteraceae), was assessed in the human breast adenocarcinoma cell line MCF-7, human hepatocellular carcinoma cell line HepG-2, human non-small cell lung carcinoma cell line A-549, and human colon adenocarcinoma cell line HT-29, resulting in IC50 values of 6.37, 6.20, 4.76, and 1.81 microg/mL, respectively, in the microculture tetrazolium-formazan MTT assay. In vitro apoptosis-inducing properties of gaillardin were also evaluated in MCF-7 cells with the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. The results suggest gaillardin as a candidate for further studies in cancer therapy PMID:23819305

  19. LFG: a candidate apoptosis regulatory gene family.

    PubMed

    Hu, Lan; Smith, Temple F; Goldberger, Gabriel

    2009-11-01

    The expanding wealth of human, model and other organism's genomic data has allowed the identification of a distinct gene family of apoptotic related genes. Most of these genes are currently unannotated or have been subsumed under two questionably related gene families in the past. For example the transmembrane Bax inhibitor 1 (BI1) motif family has been reported to play a role in apoptosis and to consist of at least seven mammalian protein genes, GRINA, BI1, Lfg/FAIM2, Ghitm, RESC1/Tmbim1, GAAP/Tmbim4, and Tmbm1b. However, a detailed sequence and phylogenetic analysis shows that only five of these form a clear and unique protein family. This now provides information for understanding and investigating the biological roles of these proteins across a wide range of tissues in model organisms. The evolutionary relationships among these genes provide a powerful prospective for extrapolating to human conditions.

  20. Quercetin-induced apoptosis prevents EBV infection.

    PubMed

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung

    2015-05-20

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  1. Quercetin-induced apoptosis prevents EBV infection

    PubMed Central

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-01-01

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma

  2. Apoptosis and the systolic dysfunction in congestive heart failure. Story of apoptosis interruptus and zombie myocytes.

    PubMed

    Narula, J; Arbustini, E; Chandrashekhar, Y; Schwaiger, M

    2001-02-01

    Although previously it was believed that apoptosis could not occur in the terminally differentiated tissue, such as adult heart muscle cells, recent studies in endomyocardial biopsies from patients with dilated cardiomyopathy and in explanted hearts from patients with end-stage heart failure undergoing cardiac transplantation have demonstrated histologic evidence of apoptosis. Whereas neurohormonal activation during heart failure leads to compensatory hemodynamic alterations, coupled with ventricular dilatation, it induces transcription factors and myocyte hypertrophy. Persistent growth stimulation in terminally differentiated cells may lead paradoxically to apoptotic cell death. The apoptosis in cardiomyopathic hearts is associated with cytochrome c release from mitochondria to cytoplasm and activation of proteolytic caspase-8 and -3. Although the caspases are duly processed, the fragmentation of the nuclear proteins (including DNA) is completed less frequently, and only a variable degree of fragmentation of cytoplasmic proteins (including contractile proteins) is observed. It is hypothesized that release of cytochrome c from mitochondria should interfere with energy production and lead to functional impairment and variable loss of contractile proteins in a living heart muscle cell should contribute to systolic dysfunction. Because a nuclear blueprint is retained, however, the dysfunctional cell may continue to exist and in favorable conditions, such as with LVAD support, the apoptotic process may subside. Potential feasibility of reversal of heart failure should renew efforts to develop more targeted pharmaceutical intervention within the apoptotic cascade and allow newer paradigm for the management of heart failure. PMID:11787805

  3. Modulation of macrophage apoptosis by antimycobacterial therapy: physiological role of apoptosis in the control of Mycobacterium tuberculosis.

    PubMed

    Gil, Diana; Garcia, Luis F; Rojas, Mauricio

    2003-07-15

    Apoptosis is a form of cell death that avoids inflammatory responses. We had previously reported that Mycobacterium tuberculosis (Mtb) and Purified Protein Derivative (PPD) induce apoptosis in murine macrophages. The production of TNFalpha and IL-10 in response to Mtb infection modulates apoptosis by controlling nitric oxide production and caspase activation. Furthermore, Mtb triggers calcium influx responsible for mitochondrial alterations, an early pathway of apoptosis, independently of TNFalpha and IL-10. In tuberculosis patients apoptotic macrophages are found in granulomas and bronchoalveolar lavages, suggesting that apoptosis may participate in the control of Mtb. To further explore the role of macrophage apoptosis in tuberculosis, we studied the capacity of standard antimycobacterial drugs to modulate different events associated with the induction of apoptosis. The B10R murine macrophage line was infected or not with Mtb (5:1 bacteria to macrophage ratio) or exposed to PPD (10 microg/ml), in the presence or absence of varying concentrations (1-20 microg/ml) of anti mycobacterial drugs (isoniazid, rifampin, thiacetazone, streptomycin, and ethambutol). Inhibition of the intracellular growth of M. tuberculosis by all drugs studied/correlated with inhibition of permeability transition (PT) alterations; TNFalpha, IL-10, and nitric oxide production, and caspase-1 activation. However, these drugs did not affect PPD-induced apoptosis or its associated events, suggesting that the ability of antimycobacterial drugs to block macrophage apoptosis could be explained by their effects on the metabolic activities of Mtb. All drugs, except isoniazid, at higher concentrations, induced PT alterations in noninfected macrophages in a way that appears to be dependent of calcium, since a calcium chelator prevented it. The results presented herein suggest that the pharmacological manipulation of pathways associated with macrophage apoptosis may affect the intracellular growth of

  4. Apoptosis of cholangiocytes modulated by thioredoxin of carcinogenic liver fluke.

    PubMed

    Matchimakul, Pitchaya; Rinaldi, Gabriel; Suttiprapa, Sutas; Mann, Victoria H; Popratiloff, Anastas; Laha, Thewarach; Pimenta, Rafael N; Cochran, Christina J; Kaewkes, Sasithorn; Sripa, Banchob; Brindley, Paul J

    2015-08-01

    Chronic infection with the food-borne liver fluke, Opisthorchis viverrini, frequently induces cancer of the bile ducts, cholangiocarcinoma. Opisthorchiasis is endemic in Thailand, Lao PDR, Cambodia and Vietnam, where eating undercooked freshwater fish carrying the juvenile stage of this pathogen leads to human infection. Because inhibition of apoptosis facilitates carcinogenesis, this study investigated modulation by thioredoxin from O. viverrini of apoptosis of bile duct epithelial cells, cholangiocytes. Cells of a cholangiocyte line were incubated with the parasite enzyme after which they were exposed hydrogen peroxide. Oxidative stress-induced apoptosis was monitored using flow cytometry, growth in real time and imaging of living cells using laser confocal microscopy. Immunolocalization revealed liver fluke thioredoxin within cholangiocytes. Cells exposed to thioredoxin downregulated apoptotic genes in the mitogen activated protein kinases pathway and upregulated anti-apoptosis-related genes including apoptosis signaling kinase 1, caspase 9, caspase 8, caspase 3, survivin and others. Western blots of immunoprecipitates of cell lysates revealed binding of thioredoxin to apoptosis signaling kinase 1. Together the findings indicated that thioredoxin from O. viverrini inhibited oxidative stress-induced apoptosis of bile duct epithelial cells, which supports a role for this liver fluke oxidoreductase in opisthorchiasis-induced cholangiocarcinogenesis. PMID:26007234

  5. Role of apoptosis in atherosclerosis and its therapeutic implications.

    PubMed

    Stoneman, Victoria E A; Bennett, Martin R

    2004-10-01

    Atherosclerotic plaques develop as a consequence of the accumulation of circulating lipid and the subsequent migration of inflammatory cells (macrophages and T-lymphocytes) and VSMCs (vascular smooth muscle cells). Advanced plaques consist of a lipid-rich core, separated from the lumen by a fibrous cap composed of VSMCs, collagen and extracellular matrix. Plaque enlargement ultimately narrows the lumen (stenosis) causing angina. However, recent studies have emphasized that acute coronary syndromes (unstable angina/myocardial infarction) are caused by lesion erosion/rupture with superimposed thrombus formation on often small non-stenotic plaques. Thus current therapies work predominantly on stabilization of plaques rather than plaque regression. Apoptosis (programmed cell death) is increasingly observed as plaques develop, although the exact mechanisms and consequences of apoptosis in the development and progression of atherosclerosis are still controversial. Increased endothelial cell apoptosis may initiate atherosclerosis, whereas apoptosis of VSMCs and macrophages localizes in 'vulnerable' lesions, i.e. those most likely to rupture, and at sites of rupture. This review will focus on the regulation of apoptosis of cells within the vasculature, concentrating on the relevance of apoptosis to plaque progression and clinical consequences of vascular cell apoptosis.

  6. Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes

    PubMed Central

    Smith, Lindsay K.; Cidlowski, John A.

    2016-01-01

    Glucocorticoids exert a wide range of physiological effects, including the induction of apoptosis in lymphocytes. The progression of glucocorticoid-induced apoptosis is a multi-component process requiring contributions from both genomic and cytoplasmic signaling events. There is significant evidence indicating that the transactivation activity of the glucocorticoid receptor is required for the initiation of glucocorticoid-induced apoptosis. However, the rapid cytoplasmic effects of glucocorticoids may also contribute to the glucocorticoid-induced apoptosis-signaling pathway. Endogenous glucocorticoids shape the T-cell repertoire through both the induction of apoptosis by neglect during thymocyte maturation and the antagonism of T-cell receptor (TCR)-induced apoptosis during positive selection. Owing to their ability to induce apoptosis in lymphocytes, synthetic glucocorticoids are widely used in the treatment of haematological malignancies. Glucocorticoid chemotherapy is limited, however, by the emergence of glucocorticoid resistance. The development of novel therapies designed to overcome glucocorticoid resistance will dramatically improve the efficacy of glucocorticoid therapy in the treatment of haematological malignancies. PMID:20541659

  7. Recovering drug-induced apoptosis subnetwork from Connectivity Map data.

    PubMed

    Yu, Jiyang; Putcha, Preeti; Silva, Jose M

    2015-01-01

    The Connectivity Map (CMAP) project profiled human cancer cell lines exposed to a library of anticancer compounds with the goal of connecting cancer with underlying genes and potential treatments. Since the therapeutic goal of most anticancer drugs is to induce tumor-selective apoptosis, it is critical to understand the specific cell death pathways triggered by drugs. This can help to better understand the mechanism of how cancer cells respond to chemical stimulations and improve the treatment of human tumors. In this study, using CMAP microarray data from breast cancer cell line MCF7, we applied a Gaussian Bayesian network modeling approach and identified apoptosis as a major drug-induced cellular-pathway. We then focused on 13 apoptotic genes that showed significant differential expression across all drug-perturbed samples to reconstruct the apoptosis network. In our predicted subnetwork, 9 out of 15 high-confidence interactions were validated in the literature, and our inferred network captured two major cell death pathways by identifying BCL2L11 and PMAIP1 as key interacting players for the intrinsic apoptosis pathway and TAXBP1 and TNFAIP3 for the extrinsic apoptosis pathway. Our inferred apoptosis network also suggested the role of BCL2L11 and TNFAIP3 as "gateway" genes in the drug-induced intrinsic and extrinsic apoptosis pathways. PMID:25883971

  8. Probing of cancer cell apoptosis by SERS and LSCM

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Gu, Huaimin

    2009-07-01

    Surface enhanced Raman spectroscopy (SERS) can provide information of internal structures and chemical components from different kinds of samples. Laser scanning confocal microscopy (LSCM) can show morphologic information of samples by high-resolution optical images with different focal planes. In this paper, the dynamic variation of cancer cells (HELA cells) in the apoptosis was first studied by combining SERS and LSCM. After gold nanoparticles (GNPS) uptake, HELA cells were divided into two groups, and were respectively studied at six different time points of cell apoptosis period by SERS and LSCM. The LSCM images of HELA cells obtained at different time points were analyzed, and the morphology varieties of HELA cells apoptosis were obtained. It suggests that HELA cells apoptosis gradually in the apoptosis period until they died. In addition, Raman spectra of HELA cells measured at different time points were also compared. It shows that some Raman signal peaks shift, and FWHM of Raman peaks change too. The variation of internal structures and chemical constituents were analyzed according to the shifts and FWHM of the Raman peaks. The internal dynamic information and morphologic varieties from HELA cells apoptosis gained by combining SERS and LSCM will make us to understand cancer cell apoptosis throughly.

  9. Nitric oxide and its congeners in mitochondria: implications for apoptosis.

    PubMed Central

    Richter, C

    1998-01-01

    Apoptosis is an evolutionarily conserved form of physiologic cell death important for tissue development and homeostasis. The causes and execution mechanisms of apoptosis are not completely understood. Nitric oxide (NO) and its congeners, oxidative stress, Ca2+, proteases, nucleases, and mitochondria are considered mediators of apoptosis. Recent findings strongly suggest that mitochondria contain a factor or factors that upon release from the destabilized organelles, induce apoptosis. We have found that oxidative stress-induced release of Ca2+ from mitochondria followed by Ca2+ reuptake (Ca2+ cycling) causes destabilization of mitochondria and apoptosis. The protein product of the protooncogene bcl-2 protects mitochondria and thereby prevents apoptosis. We have also found that NO and its congeners can induce Ca2+ release from mitochondria. Thus, nitrogen monoxide (.NO) binds to cytochrome oxidase, blocks respiration, and thereby causes mitochondrial deenergization and Ca2+ release. Peroxynitrite (ONOO-), on the other hand, causes Ca2+ release from mitochondria by stimulating a specific Ca2+ release pathway. This pathway requires oxidized nicotinamide adenine dinucleotide (NAD+) hydrolysis to adenosine diphosphate ribose and nicotinamide. NAD+ hydrolysis is only possible when some vicinal thiols are cross-linked. ONOO- is able to oxidize them. Our findings suggest that NO and its congeners can induce apoptosis by destabilizing mitochondria via deenergization and/or by inducing a specific Ca2+ release followed by Ca2+ cycling. PMID:9788886

  10. Ethanol promotes T cell apoptosis through the mitochondrial pathway

    PubMed Central

    Kapasi, Aditi A; Patel, Geeta; Goenka, Anuj; Nahar, Nilay; Modi, Neeraj; Bhaskaran, Madhu; Reddy, Krishna; Franki, Nicholas; Patel, Jaimita; Singhal, Pravin C

    2003-01-01

    Clinical reports suggest that acute ethanol intoxication is often associated with lymphopenia. Previously, ethanol was reported to invoke thymocyte apoptosis. We studied the effect of ethanol on T cell apoptosis. In addition, we evaluated the molecular mechanism of ethanol-induced T cell apoptosis. Human T cells harvested from healthy subjects after an alcohol drinking binge showed enhanced T cell apoptosis (before, 0·4 ± 0·2% versus after, 19·6 ± 2·5% apoptotic lymphocytes/field; P < 0·001). In in vitro studies, ethanol in a concentration of 50 mm and higher enhanced the apoptosis of Jurkat cells. DNA isolated from ethanol-treated Jurkat cells displayed integer multiples of 180 base pairs. Ethanol decreased Jurkat cell expression of Bcl-2, whereas ethanol increased Jurkat cell expression of Bax. Jurkat cells treated with ethanol also showed translocation of cytochrome C into cytosol. Moreover, a caspase-9 inhibitor partially inhibited ethanol-induced Jurkat cell apoptosis. In in vivo studies, after binge drinking, T cell expression of Bcl-2 also decreased. In addition, binge drinking induced the cleavage of caspase-3, suggesting activation of caspase-3 in T cells. These results suggest that ethanol promotes T cell apoptosis through the activation of intrinsic or mitochondrial pathway. PMID:12603597

  11. Role of Siglec-7 in Apoptosis in Human Platelets

    PubMed Central

    Nguyen, Kim Anh; Hamzeh-Cognasse, Hind; Palle, Sabine; Anselme-Bertrand, Isabelle; Arthaud, Charles-Antoine; Chavarin, Patricia; Pozzetto, Bruno; Garraud, Olivier; Cognasse, Fabrice

    2014-01-01

    Background Platelets participate in tissue repair and innate immune responses. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are well-characterized I-type lectins, which control apoptosis. Methodology/Principal Findings We characterized the expression of Siglec-7 in human platelets isolated from healthy volunteers using flow cytometry and confocal microscopy. Siglec-7 is primarily expressed on α granular membranes and colocalized with CD62P. Siglec-7 expression was increased upon platelet activation and correlated closely with CD62P expression. Cross-linking Siglec-7 with its ligand, ganglioside, resulted in platelet apoptosis without any significant effects on activation, aggregation, cell morphology by electron microscopy analysis or secretion. We show that ganglioside triggered four key pathways leading to apoptosis in human platelets: (i) mitochondrial inner transmembrane potential (ΔΨm) depolarization; (ii) elevated expression of pro-apoptotic Bax and Bak proteins with reduced expression of anti-apoptotic Bcl-2 protein; (iii) phosphatidylserine exposure and (iv), microparticle formation. Inhibition of NAPDH oxidase, PI3K, or PKC rescued platelets from apoptosis induced by Siglec-7 recruitment, suggesting that the platelet receptors P2Y1 and GPIIbIIIa are essential for ganglioside-induced platelet apoptosis. Conclusions/Significance The present work characterizes the role of Siglec-7 and platelet receptors in regulating apoptosis and death. Because some platelet pathology involves apoptosis (idiopathic thrombocytopenic purpura and possibly storage lesions), Siglec-7 might be a molecular target for therapeutic intervention/prevention. PMID:25230315

  12. How do viruses control mitochondria-mediated apoptosis?

    PubMed

    Neumann, Simon; El Maadidi, Souhayla; Faletti, Laura; Haun, Florian; Labib, Shirin; Schejtman, Andrea; Maurer, Ulrich; Borner, Christoph

    2015-11-01

    There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can "sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This "sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host.

  13. Dysregulated apoptosis and NFκB expression in COPD subjects

    PubMed Central

    Brown, Vanessa; Elborn, J Stuart; Bradley, Judy; Ennis, Madeleine

    2009-01-01

    Background The abnormal regulation of neutrophil apoptosis may contribute to the ineffective resolution of inflammation in chronic lung diseases. Multiple signalling pathways are implicated in regulating granulocyte apoptosis, in particular, NFκB (nuclear factor-kappa B) signalling which delays constitutive neutrophil apoptosis. Although some studies have suggested a dysregulation in the apoptosis of airway cells in chronic obstructive pulmonary disease (COPD), no studies to date have directly investigated if NFκB is associated with apoptosis of airway neutrophils from COPD patients. The objectives of this study were to examine spontaneous neutrophil apoptosis in stable COPD subjects (n = 13), healthy smoking controls (n = 9) and non-smoking controls (n = 9) and to investigate whether the neutrophil apoptotic process in inflammatory conditions is associated with NFκB activation. Methods Analysis of apoptosis in induced sputum was carried out by 3 methods; light microscopy, Annexin V/Propidium iodide and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method. Activation of NFκB was assessed using a flow cytometric method and the phosphorylation state of IκBα was carried out using the Bio-Rad Bio-Plex phosphoprotein IκBα assay. Results Flow cytometric analysis showed a significant reduction in the percentage of sputum neutrophils undergoing spontaneous apoptosis in healthy smokers and subjects with COPD compared to non-smokers (p < 0.001). Similar findings were demonstrated using the Tunel assay and in the morphological identification of apoptotic neutrophils. A significant increase was observed in the expression of both the p50 (p = 0.006) and p65 (p = 0.006) subunits of NFκB in neutrophils from COPD subjects compared to non-smokers. Conclusion These results demonstrate that apoptosis is reduced in the sputum of COPD subjects and in healthy control smokers and may be regulated by an associated activation of NFκB. PMID:19296848

  14. Apoptosis of circulating lymphocytes during pediatric cardiac surgery

    NASA Astrophysics Data System (ADS)

    Bocsi, J.; Pipek, M.; Hambsch, J.; Schneider, P.; Tárnok, A.

    2006-02-01

    There is a constant need for clinical diagnostic systems that enable to predict disease course for preventative medicine. Apoptosis, programmed cell death, is the end point of the cell's response to different induction and leads to changes in the cell morphology that can be rapidly detected by optical systems. We tested whether apoptosis of T-cells in the peripheral blood is useful as predictor and compared different preparation and analytical techniques. Surgical trauma is associated with elevated apoptosis of circulating leukocytes. Increased apoptosis leads to partial removal of immune competent cells and could therefore in part be responsible for reduced immune defence. Cardiovascular surgery with but not without cardiopulmonary bypass (CPB) induces transient immunosuppression. Its effect on T-cell apoptosis has not been shown yet. Flow-cytometric data of blood samples from 107 children (age 3-16 yr.) who underwent cardiac surgery with (78) or without (29) CPB were analysed. Apoptotic T-lymphocytes were detected based on light scatter and surface antigen (CD45/CD3) expression (ClinExpImmunol2000;120:454). Results were compared to staining with CD3 antibodies alone and in the absence of antibodies. T-cell apoptosis rate was comparable when detected with CD45/CD3 or CD3 alone, however not in the absence of CD3. Patients with but not without CPB surgery had elevated lymphocyte apoptosis. T-cell apoptosis increased from 0.47% (baseline) to 0.97% (1 day postoperatively). In CPB patients with complication 1.10% significantly higher (ANOVA p=0.01) comparing to CPB patients without complications. Quantitation of circulating apoptotic cells based on light scatter seems an interesting new parameter for diagnosis. Increased apoptosis of circulating lymphocytes and neutrophils further contributes to the immune suppressive response to surgery with CPB. (Support: MP, Deutsche Herzstiftung, Frankfurt, Germany)

  15. Protein tyrosine phosphatase regulation of endothelial cell apoptosis and differentiation.

    PubMed

    Yang, C; Chang, J; Gorospe, M; Passaniti, A

    1996-02-01

    Apoptosis, or programmed cell death, occurs during development and may also be an important factor in many diseases. However, little is known about the signal transduction pathways regulating apoptosis. In these studies, loss of endothelial cell-substrate attachment and apoptosis after removal of growth factors was associated with dephosphorylation of tyrosine residues at the cell periphery. Dephosphorylation of total cellular proteins accompanied apoptosis and was reduced by orthovanadate, an inhibitor of protein tyrosine phosphatases. Orthovanadate blocked the fragmentation of nuclear DNA, inhibited DNA laddering, and suppressed the expression of TRPM-2, an apoptosis-associated gene. The tyrosine phosphorylation levels of FAK125, erk1 (mitogen-activated kinase kinase), and cdc-2 were reduced during apoptosis. FAK125 dephosphorylation was inhibited by orthovanadate, but premature activation (tyrosine dephosphorylation) of cdc-2 was not. Orthovanadate was as effective as basic fibroblast growth factor in activating erk1 without increasing cell proliferation and in preventing the apoptosis of endothelial cells after treatment with tumor necrosis factor alpha. Endothelial cell differentiation on extracellular matrix (Matrigel) was also stimulated by orthovanadate in the absence of basic fibroblast growth factor without affecting growth arrest and inhibition of DNA synthesis. Expression of the cyclin-dependent kinase inhibitor p21 (Waf1/Cip1/Sdi1) was down-regulated during the early stages of differentiation, remained low for at least 6 hours as differentiation proceeded, and increased upon completion of differentiation. Cells that failed to down-regulate p21 mRNA on Matrigel in the absence of angiogenic factors underwent apoptosis. These results suggest that protein tyrosine phosphatases are actively involved in signal transduction during apoptosis and may regulate p21 expression to inhibit endothelial cell differentiation.

  16. The Interplays between Autophagy and Apoptosis Induced by Enterovirus 71

    PubMed Central

    Wang, Bei; Wang, Tao; Wang, Ji; Huang, He; Wang, Jianwei; Jin, Qi; Zhao, Zhendong

    2013-01-01

    Background Enterovirus 71 (EV71) is the causative agent of human diseases with distinct severity, from mild hand, foot and mouth disease to severe neurological syndromes, such as encephalitis and meningitis. The lack of understanding of viral pathogenesis as well as lack of efficient vaccine and drugs against this virus impedes the control of EV71 infection. EV71 virus induces autophagy and apoptosis; however, the relationship between EV71-induced autophagy and apoptosis as well as the influence of autophagy and apoptosis on virus virulence remains unclear. Methodology/Principal Findings In this study, it was observed that the Anhui strain of EV71 induced autophagy and apoptosis in human rhabdomyosarcoma (RD-A) cells. Additionally, by either applying chemical inhibitors or knocking down single essential autophagic or apoptotic genes, inhibition of EV71 induced autophagy inhibited the apoptosis both at the autophagosome formation stage and autophagy execution stage. However, inhibition of autophagy at the stage of autophagosome and lysosome fusion promoted apoptosis. In reverse, the inhibition of EV71-induced apoptosis contributed to the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I) to LC3-II and degradation of sequestosome 1 (SQSTM1/P62). Furthermore, the inhibition of autophagy in the autophagsome formation stage or apoptosis decreased the release of EV71 viral particles. Conclusions/Significance In conclusion, the results of this study not only revealed novel aspect of the interplay between autophagy and apoptosis in EV71 infection, but also provided a new insight to control EV71 infection. PMID:23437282

  17. Tumor promoters as inhibitors of apoptosis in rat hepatocytes.

    PubMed

    Schrenk, D; Schmitz, H-J; Bohnenberger, S; Wagner, B; Wörner, W

    2004-04-01

    Multistage carcinogenesis in rat liver is widely used as an experimental model for the study of the critical events in tumor promotion. After an initial treatment with a genotoxic liver carcinogen ('initiation'), subsequent application of certain non-genotoxic agents can lead to the clonal expansion of putative preneoplastic cells ('promotion'). Obviously, the expansion of these clones is correlated with an increased occurrence of benign and malignant liver tumors at later time points. Since both proliferation and apoptosis were reported to be enhanced in putative preneoplastic liver foci, inhibition of apoptosis was suggested to play a critical role in tumor promotion. In rat hepatocytes in primary culture, the liver tumor promoter 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited apoptosis initiated by treatment of the cultures with UV irradiation but did not affect apoptosis in non-irradiated cultures. The suppression of apoptosis with TCDD coincided with an attenuated increase of the tumor suppressor protein p53 observed upon UV irradiation. Furthermore, TCDD treatment resulted in a marked hyperphosphorylation of p53. The fact that almost identical concentration-response curves were obtained for the phosphorylation of p53 and the induction of cytochrome P450(CYP)1A-catalyzed 7-ethoxyresorufin O-deethylase (EROD) activity indicates that p53 phosphorylation after TCDD treatment is mediated by the aryl hydrocarbon receptor (AhR) signaling cascade. With tumor-promoting 'non-dioxin-like' polychlorinated biphenyls inhibition of UV-induced apoptosis was also observed. A comparative study investigating the effects of various concentrations did not reveal, however, a clear correlation between the suppression of apoptosis and the induction of CYP2B-catalyzed 7-pentoxyresorufin O-dealkylase (PROD) activity. In summary, inhibition of UV-induced apoptosis with liver tumor promoters is observed in rat hepatocytes in culture. Hyperphosphorylation of key proteins of

  18. Role of Fas/Fas-L in vascular cell apoptosis.

    PubMed

    Stoneman, Victoria E A; Bennett, Martin R

    2009-02-01

    Apoptosis of vascular cells is observed in vivo in normal vessel development and a variety of vascular pathologies. Apoptosis occurs in all cell types within the vessel wall, the consequences of which depend on both cell type and the pathology under study. The death receptor Fas is expressed throughout the vessel wall, and increasingly Fas-Fas-L-induced killing has been recognized in the vasculature. This review outlines the current developments in understanding the role, regulation, and consequences of Fas-Fas-L-induced apoptosis in vascular cells.

  19. Staying alive: bacterial inhibition of apoptosis during infection.

    PubMed

    Faherty, Christina S; Maurelli, Anthony T

    2008-04-01

    The ability of bacterial pathogens to inhibit apoptosis in eukaryotic cells during infection is an emerging theme in the study of bacterial pathogenesis. Prevention of apoptosis provides a survival advantage because it enables the bacteria to replicate inside host cells. Bacterial pathogens have evolved several ways to prevent apoptosis by protecting the mitochondria and preventing cytochrome c release, by activating cell survival pathways, or by preventing caspase activation. This review summarizes the most recent work on bacterial anti-apoptotic strategies and suggests new research that is necessary to advance the field.

  20. Photoinduced apoptosis using a peptide carrying a photosensitizer.

    PubMed

    Watanabe, Kazunori; Fujiwara, Hayato; Kitamatsu, Mizuki; Ohtsuki, Takashi

    2016-07-01

    A novel molecule, TatBim-Alexa, consisting of the HIV1 Tat cell-penetrating peptide, the Bim apoptosis-inducing peptide, and Alexa Fluor 546 was synthesized for photoinducion of apoptosis. The Alexa Fluor 546 was used as a photosensitizer and covalently attached at the C-terminus of TatBim peptide by the thiol-maleimide reaction. Photo-dependent cytosolic internalization of TatBim-Alexa and photo-dependent apoptosis using TatBim-Alexa were demonstrated in several kinds of mammalian cells including human cancer cell lines. PMID:27165853

  1. Apoptosis and T-cell depletion during feline infectious peritonitis.

    PubMed

    Haagmans, B L; Egberink, H F; Horzinek, M C

    1996-12-01

    Cats that have succumbed to feline infectious peritonitis, an immune-mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activated T cells. Since feline infectious peritonitis virus does not infect T cells, and viral proteins did not inhibit T-cell proliferation, we postulate that soluble mediators released during the infection cause apoptosis and T-cell depletion.

  2. Morphological and cytochemical determination of cell death by apoptosis

    PubMed Central

    Sobel, Burton E.; Budd, Ralph C.

    2007-01-01

    Several modes of cell death are now recognized, including necrosis, apoptosis, and autophagy. Oftentimes the distinctions between these various modes may not be apparent, although the precise mode may be physiologically important. Accordingly, it is often desirable to be able to classify the mode of cell death. Apoptosis was originally defined by structural alterations in cells observable by transmitted light and electron microscopy. Today, a wide variety of imaging and cytochemical techniques are available for the investigation of apoptosis. This review will highlight many of these methods, and provide a critique on the advantages and disadvantages associated with them for the specific identification of apoptotic cells in culture and tissues. PMID:18000678

  3. Radiation-induced apoptosis in the eye structures: a review

    NASA Astrophysics Data System (ADS)

    Belkacémi, Yazid; Huchet, Aymeri; Baudouin, Christophe; Lartigau, Éric

    2005-02-01

    Apoptosis plays a crucial role in tissue homeostasis and in the removal of damaged cells from tissues. Both increased and insufficient cell death can lead to human diseases. Apoptotic process is under the control of physiological metabolism as well as a panel of genes. After exposure to radiation, membrane damages induce the membrane pathway signal transduction for cell apoptosis. The importance of the radiation-induced apoptosis in the different ocular tissues and its relationship to the radiation parameters are reviewed in this article. This topic of ocular research has not been addressed in detail in the literature.

  4. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.

    SciTech Connect

    Huang, E. Y.; Madireddi, M. T.; Gopalkrishnan, R. V.; Leszczyniecka, M.; Su, Z. Z.; Lebedeva, I. V.; Kang, D. C.; Jian, H.; Lin, J. J.; Alexandre, D.; Chen, Y.; Vozhilla, N.; Mei, M. X.; Christiansen, K. A.; Sivo, F.; Goldstein, N. I.; Chada, S.; Huberman, E.; Pestka, S.; Fisher, P. B.; Biochip Technology Center; Columbia Univ.; Introgen Therapeutics Inc.; UMDNJ-Robert Wood Johnson Medical School

    2001-10-25

    Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and

  5. Inhibitor of Apoptosis Proteins Physically Interact with and Block Apoptosis Induced by Drosophila Proteins HID and GRIM

    PubMed Central

    Vucic, Domagoj; Kaiser, William J.; Miller, Lois K.

    1998-01-01

    Reaper (RPR), HID, and GRIM activate apoptosis in cells programmed to die during Drosophila development. We have previously shown that transient overexpression of RPR in the lepidopteran SF-21 cell line induces apoptosis and that members of the inhibitor of apoptosis (IAP) family of antiapoptotic proteins can inhibit RPR-induced apoptosis and physically interact with RPR through their BIR motifs (D. Vucic, W. J. Kaiser, A. J. Harvey, and L. K. Miller, Proc. Natl. Acad. Sci. USA 94:10183–10188, 1997). In this study, we found that transient overexpression of HID and GRIM also induced apoptosis in the SF-21 cell line. Baculovirus and Drosophila IAPs blocked HID- and GRIM-induced apoptosis and also physically interacted with them through the BIR motifs of the IAPs. The region of sequence similarity shared by RPR, HID, and GRIM, the N-terminal 14 amino acids of each protein, was required for the induction of apoptosis by HID and its binding to IAPs. When stably overexpressed by fusion to an unrelated, nonapoptotic polypeptide, the N-terminal 37 amino acids of HID and GRIM were sufficient to induce apoptosis and confer IAP binding activity. However, GRIM was more complex than HID since the C-terminal 124 amino acids of GRIM retained apoptosis-inducing and IAP binding activity, suggesting the presence of two independent apoptotic motifs within GRIM. Coexpression of IAPs with HID stabilized HID levels and resulted in the accumulation of HID in punctate perinuclear locations which coincided with IAP localization. The physical interaction of IAPs with RPR, HID, and GRIM provides a common molecular mechanism for IAP inhibition of these Drosophila proapoptotic proteins. PMID:9584170

  6. Overexpressed TP73 induces apoptosis in medulloblastoma

    PubMed Central

    Castellino, Robert C; De Bortoli, Massimiliano; Lin, Linda L; Skapura, Darlene G; Rajan, Jessen A; Adesina, Adekunle M; Perlaky, Laszlo; Irwin, Meredith S; Kim, John YH

    2007-01-01

    Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and sensitized them to cell death

  7. Dual concentration-dependent effects of phorbol 12, 13-dibutyrate on spontaneous and acetylcholine-induced electrical responses recorded from isolated circular smooth muscle of the guinea-pig stomach antrum.

    PubMed

    Nakamura, Eri; Suzuki, Hikaru

    2004-12-01

    Intracellular recordings of electrical activity were made from circular smooth muscle cells in small segments of tissue isolated from the guinea-pig stomach antrum. Every cell that was impaled exhibited a rhythmic generation of slow potentials. Experiments were carried out to test the effects of three different concentrations (1, 10 and 100 nM) of phorbol 12, 13-dibutyrate (PDBu) on these slow potentials and on the responses produced by acetylcholine (ACh), in the presence of nifedipine and N(omega)-nitro-L-arginine (nitroarginine), known inhibitors of L-type Ca-channels and nitric oxide synthase, respectively. The resting membrane potential was -62 +/- 7 mV, while the frequency and amplitude of the slow potentials were 1.6 +/- 0.1 cycle per min (cpm) and 33 +/- 1 mV, respectively. Application of 1 nM PDBu increased the frequency of slow potentials, with no significant change in the membrane potential and amplitude of slow potentials. At a concentration of 100 nM, PDBu depolarized the membrane by about 6 mV, and either decreased the amplitude and frequency of the slow potentials or abolished them. The amplitude and frequency of the slow potentials were not significantly changed in the presence of 10 nM PDBu. In the presence of chelerythrine (1-2 microM), a known inhibitor of protein kinase C (PKC), the increase in frequency of slow potentials by 1 nM PDBu and depolarization produced by 100 nM PDBu were not elicited. The increase in frequency of slow potentials by 100 nM ACh was inhibited by PDBu, in a concentration-dependent manner, and ACh-responses were abolished in the presence of 100 nM PDBu. These results indicate that PDBu has dual actions on the spontaneous activity of antral circular muscle, with low concentrations increasing and high concentrations inhibiting the frequency of the slow potentials. The former may be produced by activation of protein kinase C (PKC). As the ACh-induced excitation of slow potentials is inhibited by PDBu, a possible causal

  8. Demonstration of calcium-dependent phospholipase A2 activity in membrane preparation of rabbit neutrophils. Absence of activation by fMet-Leu-Phe, phorbol 12-myristate 13-acetate and A-kinase.

    PubMed Central

    Matsumoto, T; Tao, W; Sha'afi, R I

    1988-01-01

    The presence of a phospholipase A2 (PLA2) activity in rabbit neutrophil membrane preparation that is able to release [1-14C]oleic acid from labelled Escherichia coli has been demonstrated. The activity is critically dependent on the free calcium concentration and marginally stimulated by GTP gamma S. More than 80% of maximal activity is reached at 10 microM-Ca2+. The chemotactic factor, fMet-Leu-Phe, does not stimulate the PLA2 activity in this membrane preparation. Pretreatment of the membrane preparation, under various experimental conditions, or intact cells, before isolation of the membrane with phorbol 12-myristate 13-acetate (PMA), does not affect PLA2 activity. Addition of the catalytic unit of cyclic AMP-dependent kinase to membrane preparation has no effect on PLA2 activity. Pretreatment of the intact neutrophil with dibutyryl-cAMP before isolation of the membrane produces a small but consistent increase in PLA2 activity. The activity of PLA2 in membrane isolated from cells treated with the protein kinase inhibitor 1-(5-isoquinolinesulphonyl)-2-methyl piperazine dihydrochloride (H-7) is significantly decreased. Furthermore, although the addition of PMA to intact rabbit neutrophils has no effect on the release of [3H]arachidonic acid from prelabelled cells, it potentiates significantly the release produced by the calcium ionophore A23187. This potentiation is not due to an inhibition of the acyltransferase activity. H-7 inhibits the basal release of arachidonic acid but does not inhibit the potentiation by PMA. These results suggest several points. (1) fMet-Leu-Phe does not stimulate PLA2 directly, and its ability to release arachidonic acid in intact neutrophils is mediated through its action on phospholipase C. (2) The potentiating effect of PMA on A23187-induced arachidonic acid release is most likely due to PMA affecting either the environment of PLA2 and/or altering the organization of membrane phospholipids in such a way as to increase their

  9. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle...

  10. Oncogene-dependent apoptosis is mediated by caspase-9

    PubMed Central

    Fearnhead, Howard O.; Rodriguez, Joe; Govek, Eve-Ellen; Guo, Wenjun; Kobayashi, Ryuji; Hannon, Greg; Lazebnik, Yuri A.

    1998-01-01

    Understanding how oncogenic transformation sensitizes cells to apoptosis may provide a strategy to kill tumor cells selectively. We previously developed a cell-free system that recapitulates oncogene dependent apoptosis as reflected by activation of caspases, the core of the apoptotic machinery. Here, we show that this activation requires a previously identified apoptosis-promoting complex consisting of caspase-9, APAF-1, and cytochrome c. As predicted by the in vitro system, preventing caspase-9 activation blocked drug-induced apoptosis in cells sensitized by E1A, an adenoviral oncogene. Oncogenes, such as E1A, appear to facilitate caspase-9 activation by several mechanisms, including the control of cytochrome c release from the mitochondria. PMID:9811857

  11. Role of the nucleus in apoptosis: signaling and execution.

    PubMed

    Prokhorova, Evgeniia A; Zamaraev, Alexey V; Kopeina, Gelina S; Zhivotovsky, Boris; Lavrik, Inna N

    2015-12-01

    Since their establishment in the early 1970s, the nuclear changes upon apoptosis induction, such as the condensation of chromatin, disassembly of nuclear scaffold proteins and degradation of DNA, were, and still are, considered as the essential steps and hallmarks of apoptosis. These are the characteristics of the execution phase of apoptotic cell death. In addition, accumulating data clearly show that some nuclear events can lead to the induction of apoptosis. In particular, if DNA lesions resulting from deregulation during the cell cycle or DNA damage induced by chemotherapeutic drugs or viral infection cannot be efficiently eliminated, apoptotic mechanisms, which enable cellular transformation to be avoided, are activated in the nucleus. The functional heterogeneity of the nuclear organization allows the tight regulation of these signaling events that involve the movement of various nuclear proteins to other intracellular compartments (and vice versa) to initiate and govern apoptosis. Here, we discuss how these events are coordinated to execute apoptotic cell death.

  12. Targeting inhibitor of apoptosis proteins (IAPs) for cancer therapy.

    PubMed

    Fulda, Simone

    2008-06-01

    Since cell death by apoptosis plays a key role in the regulation of tissue homeostasis, dysregulation of the cell's intrinsic death program may foster tumor formation and progression. "Inhibitor of apoptosis proteins" (IAPs) block apoptosis at the core of the apoptotic machinery by inhibiting effector caspases. Aberrant expression and/or function of IAPs are found in many human cancers and have been implied in resistance to current treatment approaches. Recent insights into the role of IAPs have provided the basis for various exciting discoveries that aim at modulating expression or function of IAPs. Thus, targeting IAPs, e.g. by antisense approaches or small molecule inhibitors, presents a promising novel approach for future drug development and may proof to be a successful strategy to overcome apoptosis resistance of human cancers.

  13. Apoptosis and the target genes of microRNA-21

    PubMed Central

    Buscaglia, Lindsey E. Becker; Li, Yong

    2011-01-01

    MicroRNA-21 (miR-21) is frequently up-regulated in cancer and the majority of its reported targets are tumor suppressors. Through functional suppression, miR-21 is implicated in practically every walk of oncogenic life: the promotion of cell proliferation, invasion and metastasis, genome instability and mutation, inflammation, replicative immortalization, abnormal metabolism, angiogenesis, and evading apoptosis, immune destruction, and growth suppressors. In particular, miR-21 is strongly involved in apoptosis. In this article, we reviewed the experimentally validated targets of miR-21 and found that two thirds are linked to intrinsic and/or extrinsic pathways of cellular apoptosis. This suggests that miR-21 is an Oncogene which plays a key role in resisting programmed cell death in cancer cells and that targeting apoptosis is a viable therapeutic option against cancers expressing miR-21. PMID:21627859

  14. Programmed cell death and apoptosis: origins of the theory.

    PubMed

    Lockshin, R A; Zakeri, Z

    2001-07-01

    Interest in the study of apoptosis grew with the recognition that it is a highly regulated process. Such a change in attitude allowed the intellectual and technical breakthroughs that led to the explosive development of this subject.

  15. Induction of apoptosis by c-Fos protein.

    PubMed Central

    Preston, G A; Lyon, T T; Yin, Y; Lang, J E; Solomon, G; Annab, L; Srinivasan, D G; Alcorta, D A; Barrett, J C

    1996-01-01

    The role of c-Fos in apoptosis was examined in two Syrian hamster embryo cell lines (sup+I and sup-II) and a human colorectal carcinoma cell line (RKO), using the chimeric Fos-estrogen receptor fusion protein c-FosER. As previously reported, contrasting responses were observed when these two cell lines were placed under growth factor deprivation conditions; sup+I cells were highly susceptible to apoptosis, whereas sup-II cells were resistant. In this report, we show that the activated c-FosER protein induces apoptosis in sup-II preneoplastic cells in serum-free medium, indicating that c-Fos protein can induce apoptotic cell death in these cells. c-Fos-induced apoptosis was not blocked by the protein synthesis inhibitor cycloheximide, suggesting that the c-Fos transcriptional activation activity is not involved. This conclusion was further supported by the observation that overexpression of v-Fos, which is highly proficient in transcriptional activation but deficient in the transcriptional repression activity associated with c-Fos, did not induce apoptosis. Constitutively expressed Bcl-2 delayed the onset of low-serum-induced apoptosis in sup+I cells and enhanced survival in sup-II cells. Further, coexpression of Bcl-2 and c-FosER in sup+I or sup-II cells protected the cells from c-FosER-induced apoptosis. The possibility that c-FosER-induced apoptosis requires a p53 function was examined. Colorectal carcinoma RKOp53+/+ cells, which do not normally undergo apoptosis in serum-free medium, showed apoptotic DNA fragmentation upon expression and activation of c-FosER. Further, when the wild-type p53 protein was diminished in the RKO cells by infection with the papillomavirus E6 gene, subsequent c-FosER-induced apoptosis was blocked. The data suggest that c-Fos protein plays a causal role in the activation of apoptosis in a p53-dependent manner. This activity does not require new protein synthesis and is blocked by overexpression of Bcl-2 protein. PMID:8524298

  16. Apoptosis induced by granzyme B-glycosaminoglycan complexes: implications for granule-mediated apoptosis in vivo.

    PubMed

    Galvin, J P; Spaeny-Dekking, L H; Wang, B; Seth, P; Hack, C E; Froelich, C J

    1999-05-01

    Lymphocyte granule-mediated apoptosis occurs by perforin-mediated intracellular delivery of granule-associated serine proteases (granzymes). A granule-associated proteoglycan, namely serglycin, that contains chondroitin 4-sulfate (CS) glycosaminoglycans is present in the granules of cytotoxic cells. Serglycin acts as scaffold for packaging the positively charged granzymes and probably chaperones the proteases secreted extracellularly. To learn how the interaction of granzyme B (GrB) with serglycin might influence the apoptotic potential of this proteases, we have evaluated a model system where desalted CS is combined with isolated human granzyme. CS-GrB complexes were very stable, remaining undissociated in salt concentrations upwards to 500 mM (pH 7.4). On the basis of a capture enzyme immunoassay that accurately detects GrB, equivalent amounts of active free and CS-GrB, delivered by perforin or adenovirus, efficiently induced apoptosis in Jurkat cells and produced a similar time-dependent increase in caspase-3-like activity. CS-GrB processed isolated caspases-3 and -7 less efficiently than free granzyme. However, when added to cytosolic extracts, rates of processing were nearly equivalent for the two forms, suggesting cationic GrB may nonspecifically bind cytosolic proteins, leading to reduce proteolytic activity. Finally, GrB was found to be exocytosed from lymphocyte-activated killer cells as a neutral, high macromolecular weight complex, which possessed apoptotic activity. Collectively, the results indicate that neutral, high m.w. GrB has the capacity to induce cell death and will be useful to study the mechanism of cytotoxic cell-mediated apoptosis in vitro.

  17. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  18. Peptides regulate cortical thymocytes differentiation, proliferation, and apoptosis.

    PubMed

    Khavinson, V Kh; Polyakova, V O; Linkova, N S; Dudkov, A V; Kvetnoy, I M

    2011-01-01

    The processes of differentiation, proliferation, and apoptosis were studied in a cell culture of human cortical thymocytes under the influence of short peptides T-32 (Glu-Asp-Ala) and T-38 (Lys-Glu-Asp). Peptides T-32 and T-38 amplified cortical thymocytes differentiation towards regulatory T cells, increased their proliferative activity, and decreased the level of apoptosis. Moreover, peptides under study stimulated proliferative and antiapoptotic activity of the mature regulatory T cells.

  19. Peptides Regulate Cortical Thymocytes Differentiation, Proliferation, and Apoptosis

    PubMed Central

    Khavinson, V. Kh.; Polyakova, V. O.; Linkova, N. S.; Dudkov, A. V.; Kvetnoy, I. M.

    2011-01-01

    The processes of differentiation, proliferation, and apoptosis were studied in a cell culture of human cortical thymocytes under the influence of short peptides T-32 (Glu-Asp-Ala) and T-38 (Lys-Glu-Asp). Peptides T-32 and T-38 amplified cortical thymocytes differentiation towards regulatory T cells, increased their proliferative activity, and decreased the level of apoptosis. Moreover, peptides under study stimulated proliferative and antiapoptotic activity of the mature regulatory T cells. PMID:22312461

  20. Drug-Induced Reactivation of Apoptosis Abrogates HIV-1 Infection

    PubMed Central

    Hanauske-Abel, Hartmut M.; Saxena, Deepti; Palumbo, Paul E.; Hanauske, Axel-Rainer; Luchessi, Augusto D.; Cambiaghi, Tavane D.; Hoque, Mainul; Spino, Michael; Gandolfi, Darlene D'Alliessi; Heller, Debra S.; Singh, Sukhwinder; Park, Myung Hee; Cracchiolo, Bernadette M.; Tricta, Fernando; Connelly, John; Popowicz, Anthony M.; Cone, Richard A.; Holland, Bart; Pe’ery, Tsafi; Mathews, Michael B.

    2013-01-01

    HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal

  1. Social apoptosis in honey bee superorganisms.

    PubMed

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite's original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  2. Social apoptosis in honey bee superorganisms

    PubMed Central

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite’s original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  3. Redox control of apoptosis: an update.

    PubMed

    Filomeni, Giuseppe; Ciriolo, Maria R

    2006-01-01

    The redox environment of the cell is currently thought to be extremely important to control cell growth, differentiation, and apoptosis as many redox-sensitive proteins characterize these networks. A recent, widely accepted theory is that free radicals are not only dangerous species but, at low concentration, they have been designed by evolution to participate in the maintenance of cellular redox (reduction/oxidation) homeostasis. This notion derives from the evidence that cells constantly generate free radicals both as waste products of aerobic metabolism and in response to a large variety of stimuli. Free radicals, once produced, provoked cellular responses (redox regulation) against oxidative stress transducing the signals to maintain the cellular redox balance. Growing evidence suggests that in many instances the production of radical species is tightly regulated and their downstream targets are very specific, indicating that reactive oxygen species and reactive nitrogen species actively participate in several cell-signalling pathways as physiological "second messengers." In this review, we provide a general overview and novel insights into the redox-dependent pathways involved in programmed cell death. PMID:17034362

  4. Immunocytochemical detection of apoptosis in human odontoblasts.

    PubMed

    Franquin, J C; Remusat, M; Abou Hashieh, I; Dejou, J

    1998-01-01

    Pulpal chamber size decreases on ageing due to primary and secondary dentin deposition. This work was designed to find out the consequences of this pulp chamber reduction on odontoblast number and distribution. Twenty-one healthy human premolars were equally divided into three groups from 11-, 12.5- and 14-yr-old adolescents, respectively). The external and the internal perimeters of dentin were recorded on vestibulo-lingual sections, from buccal to lingual cemento-enamel junction using an image analysis system. Nuclei of the odontoblasts were recorded on 12 automatically selected fields. On nine erupted premolars (3 teeth from each 11-, 12.5- and 14-yr-old patients), apoptosis was detected by confocal microscopy using a modification of the original TUNEL method. Apoptotic cells were labeled in central pulp fibroblasts, perivascular endothelial cells, and in odontoblasts. When the pulp volume decreases due to primary dentin production, the decrease of the surface available for odontoblasts is compensated for by a multilayer distribution of cells. Secondary dentin deposition, associated with odontoblasts reorganization in a single layer, results in a hyperbolic decrease of the odontoblasts number. This decrease seems to result from a programmed cell death, which eliminates half of the odontoblasts over a 4-yr period. PMID:9541252

  5. Tributyltin stimulates apoptosis in rat thymocytes.

    PubMed

    Aw, T Y; Nicotera, P; Manzo, L; Orrenius, S

    1990-11-15

    Treatment of rat thymocytes with micromolar concentrations of tributyltin caused a rapid increase in the cytosolic free Ca2+ concentration that was inhibited by Ni2+, which blocks Ca2+ influx through membrane channels. The elevation of cytosolic Ca2+ was associated with extensive DNA fragmentation, which was prevented by pretreatment of the cells with either of the intracellular Ca2+ chelators quin-2 or 1,2-bis(2-amino-phenoxy)ethane-N',N',N',N',-tetraacetic acid. Loss of thymocyte viability, which followed DNA fragmentation, was also prevented by the two Ca2+ chelators or by removing extracellular Ca2+ with ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid. The pattern of DNA fragmentation was characteristic of that produced by agents which activate a Ca2(+)- and Mg2(+)-dependent endogenous endonuclease during apoptosis or programmed cell death. Additional studies showed that other organotin compounds, including trimethyltin, triphenyltin, and dibutyltin had minimal effects on cytosolic Ca2+, DNA fragmentation, and cell viability. These results are consistent with a greater susceptibility of thymocytes to tributyltin and provide a basis for understanding its selective immunotoxicity in vivo. PMID:2241174

  6. Simulated microgravity decreases apoptosis in fetal fibroblasts.

    PubMed

    Beck, Michaël; Tabury, Kevin; Moreels, Marjan; Jacquet, Paul; Van Oostveldt, Patrick; De Vos, Winnok H; Baatout, Sarah

    2012-08-01

    Space travel is a major challenge for human beings. Especially, the mechanisms through which space conditions might alter animal development have been questioned for a long time. The two major physical stress factors that are of relevance in this context are space radiation and weightlessness. While it has been extensively shown that high doses of ionizing radiation induce deleterious effects on embryonic development, so far, little is known about the potential harmful effects of radiation in combination with microgravity on the developing organism. In the present study, we investigated the effects of simulated microgravity on irradiated STO mouse fetal fibroblast cells using a random positioning machine (RPM). Radiation-induced cell cycle changes were not affected when cells were subjected to simulated microgravity for 24 h. Moreover, no morphological differences were observed in irradiated samples exposed to simulated microgravity compared to cells that were exclusively irradiated. However, microgravity simulation significantly decreased the level of apoptosis at all doses as measured by caspase-3 activity and it prevented cells from undergoing radiation-induced size increase up to 1 Gy.

  7. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  8. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus.

    PubMed

    Zhang, Yingying; Cheng, Mengqian; Wu, Lang; Zhang, Guo; Wang, Zaizhao

    2016-10-01

    Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not' been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225μgL(-1) (0.99μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest. PMID:27561114

  9. [Apoptosis during spermatogenesis and in ejaculated spermatozoa: importance for fertilization].

    PubMed

    Levy, R; Seifer-Aknin, I

    2001-01-01

    It has become clear in recent years that programmed cell death occurs spontaneously in the cycle of the seminiferous epithelium. Induced germ cell apoptosis occurs at specific stages of the spermatogenic cycle and the existence of supracellular control of germ cell death during spermatogenesis has been documented. If apoptosis is a key phenomenon in the control of sperm production, the existence and role of apoptosis in ejaculated sperm cells remain controversial. Apoptosis - as determined by DNA fragmentation (Tunel) and ultrastructural analysis - is abnormally frequent in the sperm cells of the ejaculate of sterile men. In this review, we discuss the possible origins of DNA damage in ejaculated human spermatozoa and the consequences of these DNA damage if the apoptotic spermatozoa is used for ICSI. Percentages of DNA fragmentation in human ejaculated sperm correlated with fertilization rates after FIV or ICSI assay. Detection of DNA fragmentation in human sperm could provide additional information about the biochemical integrity of sperm and may be used in future studies for fertilization failures not explained by conventional sperm parameters. However, the analysis of other molecular markers of apoptosis (Fas, Annexine V.) is now necessary to assess the role of apoptosis in human ejaculated sperm cells.

  10. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  11. Detection of radiation-induced apoptosis using the comet assay.

    PubMed

    Wada, Seiichi; Khoa, Tran Van; Kobayashi, Yasuhiko; Funayama, Tomoo; Yamamoto, Kazuo; Natsuhori, Masahiro; Ito, Nobuhiko

    2003-11-01

    The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to stain the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis. PMID:14665742

  12. Inhibition of apoptosis as a mechanism of tumor promotion.

    PubMed

    Wright, S C; Zhong, J; Larrick, J W

    1994-06-01

    Recent evidence supports the concept that tumor growth in vivo depends on evasion of normal homeostatic control mechanisms that operate through induction of cell death by apoptosis. This study tested the hypothesis that a common property shared by known or suspected tumor promoters is the ability to block the process of apoptosis. A total of 10 tumor promoters were tested and all were found to inhibit DNA fragmentation and cell death of 7 different cell lines triggered into apoptosis by diverse agents. Resistance to apoptosis could be induced rapidly (within 1 h) by treating with relatively high concentrations of promoters. However, low physiological concentrations of promoters could also induce complete resistance to apoptosis after prolonged exposure (5-15 days of culture). Like tumor promotion in vivo, promoter-induced resistance to apoptosis was reversible after culturing in the absence of promoter. These findings provide new insight into the mechanism of tumor promotion and suggest a novel in vitro screening assay to detect new tumor-promoting agents in the environment. PMID:8005393

  13. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Reynolds, J. L.; Cubano, L. A.; Hatton, J. P.; Lawless, B. D.; Piepmeier, E. H.

    1998-01-01

    Alteration in cytoskeletal organization appears to underlie mechanisms of gravity sensitivity in space-flown cells. Human T lymphoblastoid cells (Jurkat) were flown on the Space Shuttle to test the hypothesis that growth responsiveness is associated with microtubule anomalies and mediated by apoptosis. Cell growth was stimulated in microgravity by increasing serum concentration. After 4 and 48 h, cells filtered from medium were fixed with formalin. Post-flight, confocal microscopy revealed diffuse, shortened microtubules extending from poorly defined microtubule organizing centers (MTOCs). In comparable ground controls, discrete microtubule filaments radiated from organized MTOCs and branched toward the cell membrane. At 4 h, 30% of flown, compared to 17% of ground, cells showed DNA condensation characteristic of apoptosis. Time-dependent increase of the apoptosis-associated Fas/ APO-1 protein in static flown, but not the in-flight 1 g centrifuged or ground controls, confirmed microgravity-associated apoptosis. By 48 h, ground cultures had increased by 40%. Flown populations did not increase, though some cells were cycling and actively metabolizing glucose. We conclude that cytoskeletal alteration, growth retardation, and metabolic changes in space-flown lymphocytes are concomitant with increased apoptosis and time-dependent elevation of Fas/APO-1 protein. We suggest that reduced growth response in lymphocytes during spaceflight is linked to apoptosis.

  14. 6-Gingerol induces autophagy to protect HUVECs survival from apoptosis.

    PubMed

    Wang, Shaopeng; Sun, Xiance; Jiang, Liping; Liu, Xiaofang; Chen, Min; Yao, Xiaofeng; Sun, Qinghua; Yang, Guang

    2016-08-25

    6-Gingerol, the major pharmacologically-active component of ginger, has the potential to prevent heart disease. However, the mechanisms are not well understood. In this study, the protective effect of 6-gingerol against hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells (HUVECs) was investigated. Apoptosis was detected by Hoechst 33342 and Flow cytometry analysis. To further elucidate the crosstalk between apoptosis and autophagy, we tested the expression of autophagy related proteins, LC3B, Bcl-2, Beclin1, AKT, p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR. Furthermore, mitochondrial membrane potential and the intracellular generation of reactive oxygen species (ROS) were also investigated. Our data revealed that 6-gingerol significantly reduced apoptosis by inducing autophagy. It has been demonstrated that 6-gingerol suppressed the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway, increased the expression of Beclin1 to promote autophagy, and increased Bcl-2 expression to inhibit apoptosis. In addition, the damage of mitochondrial was protected, and ROS level was decreased by 6-gingerol. These firmly indicate 6-gingerol has a strong protective ability against the apoptosis caused by oxidative stress in HUVECs, and the mechanism may relate to the induction of autophagy. Our data suggest 6-gingerol may be beneficial in the prevention of atherosclerosis. PMID:27451028

  15. Does atorvastatin induce aortic smooth muscle cell apoptosis in vivo?

    PubMed

    Doyon, Marielle; Hale, Taben Mary; Huot-Marchand, Julie-Emilie; Wu, Rong; de Champlain, Jacques; DeBlois, Denis

    2011-01-01

    It has been reported that HMG-CoA reductase inhibitors such as atorvastatin induce vascular smooth muscle cell (SMC) apoptosis in vitro. However, this effect remains to be demonstrated in vivo. The present studies were designed to test the ability of atorvastatin to induce SMC apoptosis in vivo, using the spontaneously hypertensive rat (SHR) as a well-known reference model of SMC apoptosis induction in vivo by cardiovascular drugs including the calcium channel blocker amlodipine. Atorvastatin was administered to SHR for 3 or 6 weeks either alone or together with amlodipine, a drug combination clinically available to patients. Primary endpoints included aortic medial hypertrophy and aortic SMC hyperplasia, internucleosomal DNA fragmentation and expression of the apoptosis regulatory proteins Bax and Bcl-2. The SHR aorta showed no evidence of SMC apoptosis induction by atorvastatin, even at the high dose of 50 mg kg(-1) day(-1), although the statin significantly reduced oxidative stress after 3 weeks and blood pressure after 6 weeks of administration. Amlodipine-induced regression of aortic hypertophy and aortic SMC hyperplasia were dose- and time-dependent, but there was no interaction between atorvastatin and amlodipine in modulating the primary endpoints. These results do not support the notion that atorvastatin induces SMC apoptosis in the aortic media in vivo.

  16. Stress granules inhibit apoptosis by reducing reactive oxygen species production.

    PubMed

    Takahashi, Masahiko; Higuchi, Masaya; Matsuki, Hideaki; Yoshita, Manami; Ohsawa, Toshiaki; Oie, Masayasu; Fujii, Masahiro

    2013-02-01

    Cells can undergo two alternative fates following exposure to environmental stress: they either induce apoptosis or inhibit apoptosis and then repair the stress-induced alterations. These processes minimize cell loss and prevent the survival of cells with aberrant DNA and protein alterations. These two alternative fates are partly controlled by stress granules (SGs). While arsenite, hypoxia, and heat shock induce the formation of SGs that inhibit apoptosis, X-ray irradiation and genotoxic drugs do not induce SGs, and they are more prone to trigger apoptosis. However, it is unclear precisely how SGs control apoptosis. This study found that SGs suppress the elevation of reactive oxygen species (ROS), and this suppression is essential for inhibiting ROS-dependent apoptosis. This antioxidant activity of SGs is controlled by two SG components, GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and ubiquitin-specific protease 10 (USP10). G3BP1 elevates the steady-state ROS level by inhibiting the antioxidant activity of USP10. However, following exposure to arsenite, G3BP1 and USP10 induce the formation of SGs, which uncovers the antioxidant activity of USP10. We also found that the antioxidant activity of USP10 requires the protein kinase activity of ataxia telangiectasia mutated (ATM). This work reveals that SGs are critical redox regulators that control cell fate under stress conditions.

  17. Hepatic apoptosis can modulate liver fibrosis through TIMP1 pathway.

    PubMed

    Wang, Kewei; Lin, Bingliang; Brems, John J; Gamelli, Richard L

    2013-05-01

    Apoptotic injury participates in hepatic fibrosis, but the molecular mechanisms are not well understood. The present study aimed to investigate the role of inducible TIMP1 in the pathogenesis of hepatic apoptosis-fibrosis. Apoptosis was induced with GCDC, LPS, and alcohol in precision-cut liver slices or bile duct ligation (BDL) in rats, as reflected by caspase-3 activity, TUNEL assay, and apoptosis-related gene profiles. The hepatic fibrosis was detected with Picrosirius staining, hydroxyproline determination, and expression profiling of fibrosis-related genes. Levels of TIMP1 were upregulated by the hepatic apoptosis, but downregulated by caspase inhibitor. The inducible TIMP1 was apoptosis-dependent. Once TIMP1 was inhibited with treatment of TIMP1-siRNA, the fibrotic response was reduced as demonstrated by hydroxyproline assay. In addition, the expression of fibrosis-related genes aSMA, CTGF, and TGFb2r were down-regulated subsequent to the treatment of TIMP1-siRNA. TIMP1 could mediate the expression of fibrosis-related genes. TIMP1 was transcriptionally regulated by nuclear factor c-Jun as demonstrated by EMSA and ChIP assay. The treatment of c-Jun siRNA could significantly decrease the expression of TIMP1 induced by alcohol, GCDC, or LPS treatment. Hepatic apoptosis induces the expression of TIMP1. Inducible TIMP1 can modulate the expression of fibrosis-related genes in liver. TIMP1 pathway is a potential target for therapeutic intervention of fibrotic liver diseases.

  18. Mcl-1 downregulation sensitizes glioma to bortezomib-induced apoptosis.

    PubMed

    Zhang, Yang; Zhu, Xiaobo; Hou, Kun; Zhao, Jinchuan; Han, Zhiguo; Zhang, Xiaona

    2015-05-01

    Glioma is the most aggressive form of primary brain tumor, with dismal patient outcome and no effective therapeutic approaches available. Targeting the ubiquitin-proteasome pathway has recently emerged as a potent rational anticancer strategy. Bortezomib, a specific proteasome inhibitor, has been approved for the treatment of relapsed or refractory multiple myeloma and other hematological malignancies as a single agent or as part of a combination therapy. However, bortezomib alone or in combination showed only minimal effects in the treatment of solid tumors. Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic protein which protects tumor cells against spontaneous and chemotherapy-induced apoptosis. In multiple myeloma, specific downregulation of Mcl-1 induces apoptosis. Furthermore, previous studies demonstrated that proteasome inhibitors induce Mcl-1 accumulation that, in turn, slows down their pro-apoptotic effects, and the cell survival in multiple myeloma is highly dependent on Mcl-1. In the present study, we investigated the role of Mcl-1 downregulation in bortezomib-induced apoptosis in gliomas. We observed that bortezomib triggers caspase-3 and PARP activation, upregulates cytochrome c expression and induces apoptosis. Furthermore, we demonstrated that effective targeting of Mcl-1 in glioma cells by gene silencing technology augments the glioma cell sensitivity to bortezomib-induced apoptosis. In conclusion, the present study demonstrates that Mcl-1 plays a critical role in bortezomib-induced apoptosis. Mcl-1 inhibitor in combination with bortezomib present a promising novel strategy to trigger cell death pathways in the treatment of gliomas.

  19. Apoptosis, oncosis, and necrosis. An overview of cell death.

    PubMed Central

    Majno, G.; Joris, I.

    1995-01-01

    The historical development of the cell death concept is reviewed, with special attention to the origin of the terms necrosis, coagulation necrosis, autolysis, physiological cell death, programmed cell death, chromatolysis (the first name of apoptosis in 1914), karyorhexis, karyolysis, and cell suicide, of which there are three forms: by lysosomes, by free radicals, and by a genetic mechanism (apoptosis). Some of the typical features of apoptosis are discussed, such as budding (as opposed to blebbing and zeiosis) and the inflammatory response. For cell death not by apoptosis the most satisfactory term is accidental cell death. Necrosis is commonly used but it is not appropriate, because it does not indicate a form of cell death but refers to changes secondary to cell death by any mechanism, including apoptosis. Abundant data are available on one form of accidental cell death, namely ischemic cell death, which can be considered an entity of its own, caused by failure of the ionic pumps of the plasma membrane. Because ischemic cell death (in known models) is accompanied by swelling, the name oncosis is proposed for this condition. The term oncosis (derived from ónkos, meaning swelling) was proposed in 1910 by von Reckling-hausen precisely to mean cell death with swelling. Oncosis leads to necrosis with karyolysis and stands in contrast to apoptosis, which leads to necrosis with karyorhexis and cell shrinkage. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7856735

  20. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic Targets for Cardiac Diseases.

    PubMed

    Li, Meng; Gao, Ping; Zhang, Junping

    2016-03-03

    Autophagy is a cell survival process which is related to breaking down and reusing cytoplasm components. Moreover, autophagy regulates cell death under certain conditions. Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences, some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review highlights recent advances in the interaction of autophagy and apoptosis and its importance in the development of cardiovascular diseases.

  1. Calpain Inhibitor PD150606 Attenuates Glutamate Induced Spiral Ganglion Neuron Apoptosis through Apoptosis Inducing Factor Pathway In Vitro

    PubMed Central

    Song, Yong-Li; Chen, Xiao-Dong; Mi, Wen-Juan; Wang, Jian; Lin, Ying; Chen, Fu-Quan; Qiu, Jian-Hua

    2015-01-01

    Objective This research aimed to investigate whether glutamate induced spiral ganglion neurons (SGNs) apoptosis through apoptosis inducing factor (AIF) pathway. And verify whether PD150606, a calpain inhibitor could prevent apoptosis by inhibiting cleaving and releasing AIF in mitochondrion. Methods SGNs of postnatal days 0-3 were harvested and cultured in dishes. 20 mM Glu, the caspase inhibitor Z-VAD-FMK and calpain inhibitor PD150606 were added into cultured dishes separately. We used optical microscope and immunofluoresence staining to observe cell morphology and AIF distribution, RT-PCR and Westernblot to analyse AIF and calpain expression in SGNs. TUNEL assay was used to test cell apoptosis. Results Cell morphology and nuclear translocation of AIF were altered in SGNs by 20 mM Glu treated in vitro. The axon of SGN shortened, more apoptosis SGN were observed and the expression of AIF and calpain were up-regulated in Glu-treated group than the normal one (P<0.05). The same experiments were conducted in 20 mM+PD150606 treated group and 20 mM+Z-VAD-FMK group. Obviously AIF were located from cytoplasm to the nuclear and the expressions of AIF and calpain were down-regulated by PD150606 (P<0.05). Positive cells in TUNEL staining decreased after PD150606 treating. However, Z-VAD-FMK had no influence on AIF, calpain expression or cell apoptosis. Conclusion The AIF-related apoptosis pathway is involved in the process of Glu-induced SGN injury. Furthermore, the inhibition of calpain can prevent AIF from releasing the nuclear or inducing SGN apoptosis. PMID:25874633

  2. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    PubMed Central

    Pellegrini, Gretel G.; Morales, Cynthya C.; Wallace, Taylor C.; Plotkin, Lilian I.; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  3. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner.

    PubMed

    Pellegrini, Gretel G; Morales, Cynthya C; Wallace, Taylor C; Plotkin, Lilian I; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  4. Increased expression of cytokines, soluble cytokine receptors, soluble apoptosis ligand and apoptosis in dengue.

    PubMed

    Arias, Julia; Valero, Nereida; Mosquera, Jesús; Montiel, Milagros; Reyes, Eduardo; Larreal, Yraima; Alvarez-Mon, Melchor

    2014-03-01

    Several studies have been performed to determine biomarkers that define the risk factors to developing severe forms of dengue. In this study, the levels of TNF-α, IL-6, IL-1, IL-17, soluble interleukin-1 receptor like 1 protein (sST2), soluble TNF-related apoptosis-inducing ligand (sTRAIL), IL-12 and soluble receptors for TNF (sTNF-RI and sTNF-RII) were determined by ELISA in dengue patients and monocyte/macrophage cultures. Dengue was classified as dengue without warning symptoms (DNWS), with warning symptoms (DWWS) and severe dengue (SD). High values of IL-6, sTNFRI, sTNFRII and sST2 were observed in DWWS and/or SD and IL-12 and sTRAIL in DNWS. TNF-α and IL-17 were increased not associated to the disease severity. High production of TNF-α, IL-1β, IL-12, IL-17, sST2 and sTRAIL and apoptosis expression were observed in dengue monocyte/macrophage cultures. This study shows that beneficial or deleterious biomarkers can be present in dengue regardless the disease severity and that monocytes may be in part the source of studied molecules.

  5. Enoxacin directly inhibits osteoclastogenesis without inducing apoptosis.

    PubMed

    Toro, Edgardo J; Zuo, Jian; Ostrov, David A; Catalfamo, Dana; Bradaschia-Correa, Vivian; Arana-Chavez, Victor; Caridad, Aliana R; Neubert, John K; Wronski, Thomas J; Wallet, Shannon M; Holliday, L Shannon

    2012-05-18

    Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 μM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.

  6. Evidence of apoptosis in chronic alcoholic skeletal myopathy.

    PubMed

    Fernández-Solà, Joaquim; Nicolás, José-María; Fatjó, Francesca; García, Gloria; Sacanella, Emilio; Estruch, Ramón; Tobías, Esther; Badia, Eva; Urbano-Márquez, Alvaro

    2003-12-01

    Apoptosis is a common mechanism of programmed cell death that has been implicated in the pathogenesis of alcohol-induced organ damage. Experimental studies have suggested alcohol-mediated apoptosis in cardiac muscle. The relationship between skeletal and cardiac muscle damage in alcoholism led us to consider the possible role of apoptosis in the pathogenesis of skeletal myopathy. We prospectively evaluated apoptosis in skeletal muscle biopsies of 30 consecutively selected male high-dose well-nourished chronic alcohol consumers and 12 nonalcoholic controls. Alcohol consumption, evaluation of muscle strength by myometry, and deltoid muscle biopsy with immunohistochemical and morphometric analysis were performed. Apoptosis was assessed by TUNEL, BAX, and BCL-2 immunohistochemical assays. Chronic alcoholics compared with controls showed a significantly higher apoptotic index in TUNEL (2.35% +/- 0.25% versus 0.18% +/- 0.03%, P < 0.001), BAX (9.16% +/- 2.00% versus 0.66% +/- 0.22%, P < 0.001), and BCL-2 muscle assays (8.08% +/- 0.20% versus 0.83% +/- 0.20%, P = 0.001), respectively. In addition, these apoptotic indexes were higher in alcoholics with skeletal myopathy compared with in those without skeletal myopathy (3.04% +/- 0.36% versus 1.65% +/- 0.26%, P = 0.004 for TUNEL; 17.00% +/- 2.78% versus 1.33% +/- 0.22%, P < 0.001 for BAX; and 15.13% +/- 3.2% versus 1.03% +/- 0.33%, P < 0.001 for BCL-2 assays, respectively). We conclude that apoptosis is present in the skeletal muscle of high-dose alcohol consumers, mainly in those affected by myopathy. However, the specific pathogenic mechanism of apoptosis in chronic skeletal myopathy in alcoholics remains to be elucidated.

  7. Glutamate Excitotoxicity Mediates Neuronal Apoptosis After Hypothermic Circulatory Arrest

    PubMed Central

    Tseng, Elaine E.; Brock, Malcolm V.; Lange, Mary S.; Troncoso, Juan C.; Blue, Mary E.; Lowenstein, Charles J.; Johnston, Michael V.; Baumgartner, William A.

    2011-01-01

    Background Prolonged hypothermic circulatory arrest results in neuronal cell death and neurologic injury. We have previously shown that hypothermic circulatory arrest causes both neuronal apoptosis and necrosis in a canine model. Inhibition of neuronal nitric oxide synthase reduced neuronal apoptosis, while glutamate receptor antagonism reduced necrosis in our model. This study was undertaken to determine whether glutamate receptor antagonism reduces nitric oxide formation and neuronal apoptosis after hypothermic circulatory arrest. Methods Sixteen hound dogs underwent 2 hours of circulatory arrest at 18°C and were sacrificed after 8 hours. Group 1 (n=8) was treated with MK-801, 0.75 mg/kg IV prior to arrest followed by 75 μg/kg/hr infusion. Group 2 dogs (n=8) received vehicle only. Intracerebral levels of excitatory amino acids and citrulline, an equal co-product of nitric oxide, were measured. Apoptosis, identified by H&E staining and confirmed by electron microscopy, was blindly scored from 0 (normal) to 100 (severe injury), while nick-end labeling demonstrated DNA fragmentation. Results Group 1 and 2 dogs had similar intracerebral levels of glutamate. However, MK-801 significantly reduced intracerebral glycine and citrulline levels as compared to HCA controls. MK-801 significantly inhibited apoptosis (7.92 ± 7.85 vs. 62.08 ± 6.28, Group 1 vs. 2, p<0.001). Conclusions Our results showed that glutamate receptor antagonism significantly reduced nitric oxide formation and neuronal apoptosis. We provide evidence that glutamate excitotoxicity mediates neuronal apoptosis in addition to necrosis after hypothermic circulatory arrest. Clinical glutamate receptor antagonists may have therapeutic benefit in ameliorating both types of neurologic injury after hypothermic circulatory arrest. PMID:20103318

  8. Autophagy regulates colistin-induced apoptosis in PC-12 cells.

    PubMed

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli; Li, Jian; Li, Jichang

    2015-04-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons.

  9. Interdependent regulation of intracellular acidification and SHP-1 in apoptosis.

    PubMed

    Thangaraju, M; Sharma, K; Liu, D; Shen, S H; Srikant, C B

    1999-04-01

    The G protein-coupled receptor agonist somatostatin (SST)-induces apoptosis in MCF-7 human breast cancer cells. This is associated with induction of wild-type p53, Bax, and an acidic endonuclease. We have shown recently that its cytotoxic signaling is mediated via membrane-associated SHP-1 and is dependent on decrease in intracellular pH (pHi) to 6.5. Here we investigated the relationship between intracellular acidification and SHP-1 in cytotoxic signaling. Clamping of pHi at 7.25 by the proton-ionophore nigericin abolished SST-signaled apoptosis without affecting its ability to regulate SHP-1, p53, and Bax. Apoptosis could be induced by nigericin clamping of pHi to 6.5. Such acidification-induced apoptosis was not observed at pHi <6.0 or >6.7. pHi-dependent apoptosis was associated with the translocation of SHP-1 to the membrane, enhanced in cells overexpressing SHP-1, and was abolished by its inactive mutant SHP-1C455S. Acidification caused by inhibition of Na+/H+ exchanger and H+ ATPase (pHi = 6.55 and 6.65, respectively) also triggered apoptosis. The effect of concurrent inhibition of Na+/H+ exchanger and H(+)-ATPase on pHi and apoptosis was comparable with that of SST. Acidification-induced, SHP-1-dependent apoptosis occurred in breast cancer cell lines in which SST was cytotoxic (MCF-7 and T47D) or not (MDA-MB-231). We conclude that: (a) SST-induced SHP-1-dependent acidification occurs subsequent to or independent of the induction of p53 and Bax; (b) SST-induced intracellular acidification may arise due to inhibition of Na+/H+ exchanger and H(+)-ATPase; and (c) SHP-1 is necessary not only for agonist-induced acidification but also for the execution of acidification-dependent apoptosis. We suggest that combined targeting of SHP-1 and intracellular acidification may lead to a novel strategy of anticancer therapy bypassing the need for receptor-mediated signaling.

  10. Cleavage of rabaptin-5 blocks endosome fusion during apoptosis.

    PubMed Central

    Cosulich, S C; Horiuchi, H; Zerial, M; Clarke, P R; Woodman, P G

    1997-01-01

    Cells undergoing apoptosis exhibit striking changes in membrane organization, including plasma membrane blebbing and invagination, vacuolation and fragmentation of organelles, and alterations in the surface expression of receptors. The underlying mechanisms for these changes are unknown, though alterations in vesicular fusion are likely to play a role. Using a cell-free system based on Xenopus laevis egg extracts we have found that endosome fusion is blocked during apoptosis. Inhibition of fusion is prevented by Bcl-2 or Bcl-xL, two negative regulators of apoptosis, or by specific inhibitors of members of the caspase family of apoptotic proteases. Selective cleavage of Rabaptin-5, an essential and rate-limiting component of endosome fusion, is responsible for the loss of fusion activity. Cleavage of Rabaptin-5 also occurs in cellular models for apoptosis. These results suggest that inactivation of Rabaptin-5 and inhibition of vesicle transport lead to fragmentation of endosomes and inhibition of the endocytic pathway during the execution phase of apoptosis. We propose that parallel changes to other membrane transport pathways would give rise to general membrane fragmentation in apoptotic cells. These changes are likely to play an important role in the generation of apoptotic bodies and their recognition by phagocytosing cells. PMID:9321397

  11. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells.

    PubMed

    Shi, Miao-Qian; Su, Fei-Fei; Xu, Xuan; Liu, Xiong-Tao; Wang, Hong-Tao; Zhang, Wei; Li, Xue; Lian, Cheng; Zheng, Qiang-Sun; Feng, Zhi-Chun

    2016-03-01

    Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)‑induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase‑3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII‑induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII‑induced p‑Akt downregulation and cleaved caspase‑3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII‑induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII‑induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway.

  12. Apoptosis-based therapy to treat pulmonary arterial hypertension

    PubMed Central

    Suzuki, Yuichiro J.; Ibrahim, Yasmine F.; Shults, Nataliia V.

    2016-01-01

    Pulmonary arterial hypertension (PAH) is rare, but patients who are diagnosed with this disease still suffer from a lack of satisfactory treatment strategies to prolong survival. While currently approved drugs for PAH have some benefits, these vasodilators only have limited efficacy for eliminating pulmonary vascular remodeling and reducing mortality. Thus, our laboratory has been exploring the use of aggressive drugs, which are capable of causing apoptotic cell death, to treat PAH. We have so far found that three classes of anti-tumor agents, including anthracyclines, taxanes, and proteasome inhibitors, are capable of reducing pulmonary vascular thickness in rats with PAH. These drugs kill cells in remodeled pulmonary vessels without affecting the normal, healthy pulmonary vasculature, revealing that proliferating vascular cells in PAH patients are more sensitive to drug-induced apoptosis compared to the differentiated phenotype that is physiologically important for smooth muscle contraction. Since many apoptosis-inducing drugs cause cardiotoxicity in cancer patients, and because PAH patients already have a weakened heart, we focus on finding biological mechanisms that may reverse pulmonary vascular remodeling without promoting cardiotoxicity. We found two agents, dexrazoxane and pifithrin-α, that selectively inhibit cardiac muscle apoptosis without affecting the drug-induced apoptosis of the proliferating pulmonary vascular cells. Thus, we propose that the addition of apoptosis-inducing drugs and cardioprotectants to PAH therapies may be effective in treating patients and preventing right heart failure.

  13. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells

    PubMed Central

    SHI, MIAO-QIAN; SU, FEI-FEI; XU, XUAN; LIU, XIONG-TAO; WANG, HONG-TAO; ZHANG, WEI; LI, XUE; LIAN, CHENG; ZHENG, QIANG-SUN; FENG, ZHI-CHUN

    2016-01-01

    Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase-3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII-induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII-induced p-Akt downregulation and cleaved caspase-3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII-induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII-induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway. PMID:26862035

  14. HSP70 inhibits Bax translocation during Photofrin-PDT apoptosis

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan; Chen, Wei R.; Song, Sheng

    2009-02-01

    Apoptosis is an important cellular event that plays a key role in therapy of many diseases. The mechanisms of the initiation and regulation of photodynamic therapy (PDT) -induced apoptosis is complex. Some PDT-associated apoptosis pathways involved plasma membrane death receptors, mitochondria, lysosomes and endoplasmic reticulum (ER). Our previous study found that Photofrin were localized primarily in mitochondria, the primary targets of Photofrin-PDT. The key role of Bax in the mitochondrion-mediated apoptosis has been demonstrated in many systems. In order to determine the role of Bax in the mitochondrion-mediated apoptosis induced by Photofrin-PDT, we used the CFP/GFP-Bax plasmid to monitor the dynamics of Bax activation and translocation after PDT treatment. With laser scanning confocal microscopy, we found that PDT induced Bax translocation from the cytosol to mitochondria; however, with cells over-expressing YFP-HSP70 plasmids, Bax translocation was not detected. Thus, for Photofrin-PDT, Bax activation and translocation were inhibited by HSP70, not influence the cell death.

  15. Decreased apoptosis of beta 2- integrin-deficient bovine neutrophils.

    PubMed

    Nagahata, Hajime; Higuchi, Hidetoshi; Teraoka, Hiroki; Takahashi, Kenji; Takahashi, Kensi; Kuwabara, Mikinori; Inanami, Osamu; Kuwabara, Mikwori

    2004-02-01

    Stimulant-induced viability of neutrophils, nuclear-fragmentation, increase in intracellular calcium ([Ca2+]i), expression of annexin V on neutrophils and proteolysis of a fluorogenic peptide substrate Ac-DEVD-MCA (acetyl Asp-Glu-Val-Asp alpha-[4-methyl-coumaryl-7-amide]) by neutrophil lysates from five normal calves and three calves with leucocyte adhesion deficiency were determined to evaluate the apoptosis of normal and CD18-deficient neutrophils. Viability was markedly decreased in control neutrophils stimulated with opsonized zymosan (OPZ), compared to CD18-deficient neutrophils at 37 degrees C after incubation periods of 6 and 24 hours. The rate of apoptosis of control neutrophils stimulated with OPZ increased significantly depending on the incubation time, whereas no apparent increase in apoptosis was found in CD18-deficient neutrophils under the same conditions. Aggregated bovine (Agg) IgG-induced apoptosis of control neutrophils was not significantly different from that of CD18-deficient neutrophils. The expression of annexin V on OPZ-stimulated control neutrophils was greater than that of unstimulated ones 6 h after stimulation. No apparent increase in annexin V expression on CD18-deficient neutrophils was found with OPZ stimulation. A delay in apoptosis was demonstrated in CD18-deficient bovine neutrophils and this appeared to be closely associated with lowered signalling via [Ca2+]i, diminished annexin V expression on the cell surface, and decreased caspase 3 activity in lysates. PMID:14984592

  16. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    PubMed

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  17. TOSO promotes β-cell proliferation and protects from apoptosis.

    PubMed

    Dharmadhikari, G; Mühle, M; Schulthess, F T; Laue, S; Oberholzer, J; Pattou, F; Kerr-Conte, J; Maedler, K

    2012-01-01

    Decreased β-cell mass reflects a shift from quiescence/proliferation into apoptosis, it plays a crucial role in the pathophysiology of diabetes. A major attempt to restore β-cell mass and normoglycemia is to improve β-cell survival. Here we show that switching off the Fas pathway using Fas apoptotic inhibitory protein (Faim/TOSO), which regulates apoptosis upstream of caspase 8, blocked β-cell apoptosis and increased proliferation in human islets. TOSO was clearly expressed in pancreatic β-cells and down-regulated in T2DM. TOSO expression correlated with β-cell turnover; at conditions of improved survival, TOSO was induced. In contrast, TOSO downregulation induced β-cell apoptosis. Although TOSO overexpression resulted in a 3-fold induction of proliferation, proliferating β-cells showed a very limited capacity to undergo multiple rounds of replication. Our data suggest that TOSO is an important regulator of β-cell turnover and switches β-cell apoptosis into proliferation.

  18. The MAPK pathway as an apoptosis enhancer in melanoma.

    PubMed

    Haydn, Johannes M; Hufnagel, Anita; Grimm, Johannes; Maurus, Katja; Schartl, Manfred; Meierjohann, Svenja

    2014-07-15

    Inhibition of RAF/MEK/ERK signaling is beneficial for many patients with BRAF(V600E)-mutated melanoma. However, primary and secondary resistances restrict long-lasting therapy success. Combination therapies are therefore urgently needed. Here, we evaluate the cellular effect of combining a MEK inhibitor with a genotoxic apoptosis inducer. Strikingly, we observed that an activated MAPK pathway promotes in several melanoma cell lines the pro-apoptotic response to genotoxic stress, and MEK inhibition reduces intrinsic apoptosis. This goes along with MEK inhibitor induced increased RAS and P-AKT levels. The protective effect of the MEK inhibitor depends on PI3K signaling, which prevents the induction of pro-apoptotic PUMA that mediates apoptosis after DNA damage. We could show that the MEK inhibitor dependent feedback loop is enabled by several factors, including EGF receptor and members of the SPRED family. The simultaneous knockdown of SPRED1 and SPRED2 mimicked the effects of MEK inhibitor such as PUMA repression and protection from apoptosis. Our data demonstrate that MEK inhibition of BRAF(V600E)-positive melanoma cells can protect from genotoxic stress, thereby achieving the opposite of the intended anti-tumorigenic effect of the combination of MEK inhibitor with inducers of intrinsic apoptosis.

  19. Interaction between glutathione and Apoptosis in Systemic Lupus Erythematosus

    PubMed Central

    Shah, Dilip; Sah, Sangita; Nath, Swapan K.

    2013-01-01

    Systemic lupus erythematosus (SLE) is characterized by imbalance redox state and increased apoptosis. The activation, proliferation and cell death of lymphocytes are dependent on intracellular levels of glutathione and controlled production of reactive oxygen species (ROS). Changes in the intracellular redox environment of cells, through oxygen-derived free radical production known as oxidative stress, have been reported to be critical for cellular immune dysfunction, activation of apoptotic enzymes and apoptosis. The shift in the cellular GSH-to-GSSG redox balance in favor of the oxidized species, GSSG, constitutes an important signal that can decide the fate of the abnormal apoptosis in the disease. The current review will focus on four main areas: (1) general description of oxidative stress markers in SLE, (2) alteration of redox state and complication of disease (3) role of redox mechanisms in the initiation and execution phases of apoptosis, and (4) intracellular glutathione and its checkpoints with lymphocyte apoptosis represent novel targets for pharmacological intervention in SLE. PMID:23279845

  20. Apoptosis and the thymic microenvironment in murine lupus.

    PubMed

    Takeoka, Y; Taguchi, N; Shultz, L; Boyd, R L; Naiki, M; Ansari, A A; Gershwin, M E

    1999-11-01

    The thymus of New Zealand black (NZB) mice undergoes premature involution. In addition, cultured thymic epithelial cells from NZB mice undergo accelerated preprogrammed degeneration. NZB mice also have distinctive and well-defined abnormalities of thymic architecture involving stromal cells, defined by staining with monoclonal antibodies specific for the thymic microenvironment. We took advantage of these findings, as well as our large panel of monoclonal antibodies which recognize thymic stroma, to study the induction of apoptosis in the thymus of murine lupus and including changes of epithelial architecture. We studied NZB, MRL/lpr, BXSB/Yaa, C3H/gld mice and BALB/c and C57BL/6 as control mice. Apoptosis was studied both at basal levels and following induction with either dexamethasone or lipopolysaccharide (LPS). The apoptotic cells were primarily found in the thymic cortex, and the frequency of apoptosis in murine lupus was less than 20% of controls. Moreover, all strains of murine lupus had severe abnormalities of the cortical network. These changes were not accentuated by dexamethasone treatment in cultured thymocytes. However, the thymus in murine lupus was less susceptible to LPS-induced apoptosis than control mice. Finally we note that the number of thymic nurse cells (TNC) was lowest in NZB mice. Our findings demonstrate significant abnormalities in the induction of apoptosis and the formation of TNC-like epithelial cells in SLE mice, and suggest that the abnormalities of the thymic microenvironment have an important role in the pathogenesis of murine lupus.

  1. Targeting Erythroblast-specific Apoptosis in Experimental Anemia

    PubMed Central

    Diwan, Abhinav; Koesters, Andrew G; Capella, Devan; Geiger, Hartmut; Kalfa, Theodosia A.; Dorn, Gerald W

    2008-01-01

    Erythrocyte production is regulated by balancing precursor cell apoptosis and survival signaling. Previously, we found that BH3-only proapoptotic factor, Nix, opposed erythroblast-survival signaling by erythropoietin-induced Bcl-xl during normal erythrocyte formation. Since erythropoietin treatment of human anemia has limitations, we explored the therapeutic potential of abrogating Nix-mediated erythroblast apoptosis to enhance erythrocyte production. Nix gene ablation blunted the phenylhydrazine-induced fall in blood count, enhanced hematocrit recovery, and reduced erythroblast apoptosis, despite lower endogenous erythropoietin levels. Similar to erythropoietin, Nix ablation increased early splenic erythroblasts and circulating reticulocytes, while maintaining a pool of mature erythroblasts as erythropoietic reserve. Erythrocytes in Nix-deficient mice showed morphological abnormalities, suggesting that apoptosis during erythropoiesis not only controls red blood cell number, but also serves a “triage” function, preferentially eliminating abnormal erythrocytes. These results support the concept of targeting erythroblast apoptosis to maximize erythrocyte production in acute anemia, which may be of value in erythropoietin resistance. PMID:18584327

  2. Synergistic interactions between overlapping binding sites for the serum response factor and ELK-1 proteins mediate both basal enhancement and phorbol ester responsiveness of primate cytomegalovirus major immediate-early promoters in monocyte and T-lymphocyte cell types.

    PubMed Central

    Chan, Y J; Chiou, C J; Huang, Q; Hayward, G S

    1996-01-01

    Cytomegalovirus (CMV) infection is nonpermissive or persistent in many lymphoid and myeloid cell types but can be activated in differentiated macrophages. We have shown elsewhere that both the major immediate-early gene (MIE) and lytic cycle infectious progeny virus expression can be induced in otherwise nonpermissive monocyte-like U-937 cell cultures infected with either human CMV (HCMV) or simian CMV (SCMV) by treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Two multicopy basal enhancer motifs within the SCMV MIE enhancer, namely, 11 copies of the 16-bp cyclic AMP response element (CRE) and 3 copies of novel 17-bp serum response factor (SRF) binding sites referred to as the SNE (SRF/NFkappaB-like element), as well as four classical NFkappaB sites within the HCMV version, contribute to TPA responsiveness in transient assays in monocyte and T-cell types. The SCMV SNE sites contain potential overlapping core recognition binding motifs for SRF, Rel/NFkappaB, ETS, and YY1 class transcription factors but fail to respond to either serum or tumor necrosis factor alpha. Therefore, to evaluate the mechanism of TPA responsiveness of the SNE motifs and of a related 16-bp SEE (SRF/ETS element) motif found in the HCMV and chimpanzee CMV MIE enhancers, we have examined the functional responses and protein binding properties of multimerized wild-type and mutant elements added upstream to the SCMV MIE or simian virus 40 minimal promoter regions in the U-937, K-562, HL-60, THP-1, and Jurkat cell lines. Unlike classical NFkappaB sites, neither the SNE nor the SEE motif responded to phosphatase inhibition by okadaic acid. However, the TPA responsiveness of both CMV elements proved to involve synergistic interactions between the core SRF binding site (CCATATATGG) and the adjacent inverted ETS binding motifs (TTCC), which correlated directly with formation of a bound tripartite complex containing both the cellular SRF and ELK-1 proteins. This protein

  3. Mitochondrial apoptosis: killing cancer using the enemy within

    PubMed Central

    Lopez, J; Tait, S W G

    2015-01-01

    Apoptotic cell death inhibits oncogenesis at multiple stages, ranging from transformation to metastasis. Consequently, in order for cancer to develop and progress, apoptosis must be inhibited. Cell death also plays major roles in cancer treatment, serving as the main effector function of many anti-cancer therapies. In this review, we discuss the role of apoptosis in the development and treatment of cancer. Specifically, we focus upon the mitochondrial pathway of apoptosis—the most commonly deregulated form of cell death in cancer. In this process, mitochondrial outer membrane permeabilisation or MOMP represents the defining event that irrevocably commits a cell to die. We provide an overview of how this pathway is regulated by BCL-2 family proteins and describe ways in which cancer cells can block it. Finally, we discuss exciting new approaches aimed at specifically inducing mitochondrial apoptosis in cancer cells, outlining their potential pitfalls, while highlighting their considerable therapeutic promise. PMID:25742467

  4. Phenylephrine protects autotransplanted rabbit submandibular gland from apoptosis

    SciTech Connect

    Xiang Bin; Zhang Yan; Li Yuming; Gao Yan; Gan Yehua; Wu Liling Yu Guangyan

    2008-12-05

    Submandibular gland (SMG) autotransplantation is an effective treatment for severe keratoconjunctivitis sicca. Our previous studies have shown that phenylephrine attenuates structural injury and promotes cell proliferation in autotransplanted rabbit SMG. However, the mechanism by which phenylephrine reduces the injury has not been fully evaluated. In this study, we investigate the ability of phenylephrine to inhibit apoptosis in autotransplanted rabbit SMG. We observed that apoptosis occurred in the early phase of SMG transplantation and that phenylephrine treatment protected transplanted SMG from apoptosis. Furthermore, we found that phenylephrine could significantly upregulate the expression of Bcl-2, downregulate the expression of Bax, and inhibit the activation of both caspase-3 and p38 mitogen-activated protein kinase in autotransplanted SMG. Therefore, the cytoprotective effects of phenylephrine on autotransplanted SMG may be a novel clinical strategy for autotransplanted SMG protection during the early postoperative stage of transplantation.

  5. Triggering Apoptosis in Hematopoietic Cells with Cytotoxic Drugs.

    PubMed

    Crowley, Lisa C; Marfell, Brooke J; Scott, Adrian P; Waterhouse, Nigel J

    2016-01-01

    Cytotoxic agents are commonly added to cultured cells in the laboratory to investigate their efficacy, mechanism of action, and therapeutic potential. Most of these agents trigger cell death by apoptosis, which is also the most common form of cell death during development, aging, homeostasis, and eradication of disease. Treatment of cells with cytotoxic agents is therefore useful for investigating basic mechanisms of cell death in the human body. Actinomycin D, a cytotoxic agent isolated from Streptomyces, induces apoptosis in a variety of cell lines including the histiocytic lymphoma cell line U937. Treatment of U937 cells with actinomycin D provides an ideal model of drug-induced apoptosis that can also be used as a positive control for comparison with other treatments. PMID:27371592

  6. Molecular Imaging of Apoptosis: From Micro to Macro

    PubMed Central

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S.; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus. PMID:25825597

  7. Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity

    PubMed Central

    Kupsco, Allison; Schlenk, Daniel

    2016-01-01

    Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems. PMID:26008783

  8. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  9. Induction of apoptosis in human endothelial cells by nanodiamond particles.

    PubMed

    Solarska, K; Gajewska, A; Bartosz, G; Mitura, K

    2012-06-01

    Carbon nanoparticles are a promising material which finds application in different fields in industry and medicine. For medical applications, biocompatibility of nanoparticles is of critical importance because a lot of medical implants are coated by carbon coating. Our previous results showed that nanoparticles may induce increased production of ROS by the cells so we decided to checked if nanopowders can induce apoptosis. Apoptosis was quantified by double-staining with acridine orange and ethidium bromide. For comparison, we identified apoptotic cells with annexin V-FITC/propidium iodide. Our data demonstrate that treatment of the cells with diamond nanopowders may induce apoptosis and necrosis and this effect is dependent on the time of treatment and concentration of the nanopowders. The highest level of apoptotic cells was observed after incubation with Ultrananocrystalline Detonation Diamond (UDD) suggesting that the size is the main determinant of nanoparticle cytotoxicity. PMID:22905588

  10. Methylprednisolone exerts neuroprotective effects by regulating autophagy and apoptosis

    PubMed Central

    Gao, Wei; Chen, Shu-rui; Wu, Meng-yao; Gao, Kai; Li, Yuan-long; Wang, Hong-yu; Li, Chen-yuan; Li, Hong

    2016-01-01

    Methylprednisolone markedly reduces autophagy and apoptosis after secondary spinal cord injury. Here, we investigated whether pretreatment of cells with methylprednisolone would protect neuron-like cells from subsequent oxidative damage via suppression of autophagy and apoptosis. Cultured N2a cells were pretreated with 10 µM methylprednisolone for 30 minutes, then exposed to 100 µM H2O2 for 24 hours. Inverted phase contrast microscope images, MTT assay, flow cytometry and western blot results showed that, compared to cells exposed to 100 µM H2O2 alone, cells pretreated with methylprednisolone had a significantly lower percentage of apoptotic cells, maintained a healthy morphology, and showed downregulation of autophagic protein light chain 3B and Beclin-1 protein expression. These findings indicate that methylprednisolone exerted neuroprotective effects against oxidative damage by suppressing autophagy and apoptosis. PMID:27335569

  11. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc

    NASA Astrophysics Data System (ADS)

    Pusapati, Raju V.; Rounbehler, Robert J.; Hong, Sungki; Powers, John T.; Yan, Mingshan; Kiguchi, Kaoru; McArthur, Mark J.; Wong, Paul K.; Johnson, David G.

    2006-01-01

    Overexpression of the c-myc oncogene contributes to the development of a significant number of human cancers. In response to deregulated Myc activity, the p53 tumor suppressor is activated to promote apoptosis and inhibit tumor formation. Here we demonstrate that p53 induction in response to Myc overexpression requires the ataxia-telangiectasia mutated (ATM) kinase, a major regulator of the cellular response to DNA double-strand breaks. In a transgenic mouse model overexpressing Myc in squamous epithelial tissues, inactivation of Atm suppresses apoptosis and accelerates tumorigenesis. Deregulated Myc expression induces DNA damage in primary transgenic keratinocytes and the formation of H2AX and phospho-SMC1 foci in transgenic tissue. These findings suggest that Myc overexpression causes DNA damage in vivo and that the ATM-dependent response to this damage is critical for p53 activation, apoptosis, and the suppression of tumor development. p53 | DNA damage

  12. Dendritic Cell Apoptosis and the Pathogenesis of Dengue

    PubMed Central

    Martins, Sharon de T.; Silveira, Guilherme F.; Alves, Lysangela R.; dos Santos, Claudia Nunes Duarte; Bordignon, Juliano

    2012-01-01

    Dengue viruses and other members of the Flaviviridae family are emerging human pathogens. Dengue is transmitted to humans by Aedes aegypti female mosquitoes. Following infection through the bite, cells of the hematopoietic lineage, like dendritic cells, are the first targets of dengue virus infection. Dendritic cells (DCs) are key antigen presenting cells, sensing pathogens, processing and presenting the antigens to T lymphocytes, and triggering an adaptive immune response. Infection of DCs by dengue virus may induce apoptosis, impairing their ability to present antigens to T cells, and thereby contributing to dengue pathogenesis. This review focuses on general mechanisms by which dengue virus triggers apoptosis, and possible influence of DC-apoptosis on dengue disease severity. PMID:23202502

  13. Ketamine-induced apoptosis in cultured rat cortical neurons

    SciTech Connect

    Takadera, Tsuneo . E-mail: t-takadera@hokuriku-u.ac.jp; Ishida, Akira; Ohyashiki, Takao

    2006-01-15

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons.

  14. Molecular imaging of apoptosis: from micro to macro.

    PubMed

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.

  15. Diabetes and apoptosis: neural crest cells and neural tube

    PubMed Central

    Chappell, James H.; Dan Wang, Xiao

    2016-01-01

    Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy. PMID:19333760

  16. Plasma-activated medium induced apoptosis on tumor cells

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Tanaka, Hiromasa; Mizuno, Masaaki; Nakamura, Kae; Kajiyama, Hiroaki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Kikkawa, Fumitaka

    2013-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has attracted attention in cancer therapy. In this study, the fresh medium was treated with our developed NEAPP, ultra-high electron density (approximately 2 × 1016 cm-3). The medium called the plasma-activated medium (PAM) killed not normal cells but tumor cells through induction of apoptosis. Cell proliferation assays showed that the tumor cells were selectively killed by the PAM. Those cells induced apoptosis using an apoptotic molecular marker, cleaved Caspase3/7. The molecular mechanisms of PAM-mediated apoptosis in the tumor cells were also found that the PAM downregulated the expression of AKT kinase, a marker molecule in a survival signal transduction pathway. These results suggest that PAM may be a promising tool for tumor therapy by downregulating the survival signals in cancers.

  17. Multipolar functions of BCL-2 proteins link energetics to apoptosis

    PubMed Central

    Hardwick, J. Marie; Chen, Ying-bei; Jonas, Elizabeth A.

    2012-01-01

    Classical apoptotic cell death is now sufficiently well understood to be interrogated with mathematical modeling and to be skillfully manipulated with targeted drugs for clinical benefit. However, a biological black hole has emerged with the realization that apoptosis regulators are functionally multipolar. BCL-2 family proteins appear to have much greater effects on cells than can be explained by their known roles in apoptosis. While these effects may be observable simply because the cell is not dead, the general assumption is that BCL-2 proteins have yet undiscovered biochemical activities. Conversely, these yet uncharacterized day-jobs may underlie their profound effects on cell survival, challenging current assumptions about classical apoptosis. Even their sub-mitochondrial localizations remain controversial. Here we attempt to integrate seemingly conflicting information with the prospect that BCL-2 proteins themselves may be the critical crosstalk between life and death. PMID:22560661

  18. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway.

    PubMed

    Niu, Huiyan; Zhang, Yifei; Wu, Baogang; Zhang, Yi; Jiang, Hongfang; He, Ping

    2014-09-01

    Lung cancer is the leading cause of cancer‑related mortality in humans. The prognosis for advanced lung cancer patients is extremely poor. Current standard care is rather ineffective for prolonging patient life while preserving satisfactory quality of life due to adverse side-effects. Matrine extracted from the traditional Chinese herbal plant Sophora flavescens was shown to induce cancer cell death in vitro. The aim of this study was to investigate the effect of matrine on the proliferation and apoptosis of lung cancer cells and the molecular basis of matrine-induced apoptosis. The results showed that matrine inhibited cell proliferation and induced apoptosis in lung cancer A549 and 95D cells in a dose- and time-dependent manner. The apoptotic effects of matrine on lung cancer cells appeared to act via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway and downregulation of the expression of the inhibitor of apoptosis protein (IAP) family proteins. Matrine exerts its cancer-killing effect via promoting apoptosis in lung cancer cells and may be a useful adjuvant therapeutic scheme for treating advanced lung cancer patients.

  19. Accelerated Apoptosis of Neutrophils in Familial Mediterranean Fever

    PubMed Central

    Manukyan, Gayane; Aminov, Rustam; Hakobyan, Gagik; Davtyan, Tigran

    2015-01-01

    The causative mutations for familial Mediterranean fever (FMF) are located in the MEFV gene, which encodes pyrin. Pyrin modulates the susceptibility to apoptosis via its PYD domain, but how the mutated versions of pyrin affect apoptotic processes are poorly understood. Spontaneous and induced rates of systemic neutrophil apoptosis as well as the levels of proteins involved in apoptosis were investigated ex vivo in patients with FMF using flow cytometry and RT-qPCR. The freshly collected neutrophils from the patients in FMF remission displayed a significantly larger number of cells spontaneously entering apoptosis compared to control (6.27 ± 2.14 vs. 1.69 ± 0.18%). This elevated ratio was retained after 24 h incubation of neutrophils in the growth medium (32.4 ± 7.41 vs. 7.65 ± 1.32%). Correspondingly, the mRNA level for caspase-3 was also significantly increased under these conditions. In response to the inducing agents, the neutrophils from FMF patients also displayed significantly elevated apoptotic rates compared to control. The elevated rates, however, can be largely explained by the higher basal ratio of apoptotic cells in the former group. Monitoring of several proteins involved in apoptosis has not revealed any conventional mechanisms contributing to the enhanced apoptotic rate of neutrophils in FMF. Although the exact molecular mechanisms of accelerated neutrophil apoptosis in FMF remain unknown, it may provide a protection against excessive inflammation and tissue damage due to a massive infiltration of neutrophils in the acute period of the disease. PMID:26042122

  20. Dividing roles of prion protein in staurosporine-mediated apoptosis.

    PubMed

    Zhang, Ying; Qin, Kefeng; Wang, Jianwei; Hung, Tao; Zhao, Richard Y

    2006-10-20

    Prion protein (PrPC) is a normal cellular glycoprotein that is expressed in almost all tissues including the central nervous system. Much attention has been focused on this protein because conversion of the normal PrPC to the diseased form (PrPSc) plays an essential role in transmissible spongiform encephalopathies such as mad cow disease and Creutzfeldt-Jakob disease. In spite of the extensive effort, the normal physiological function of PrPC remains elusive. Emerging evidence suggests that PrPC plays a protective role against cellular stresses including apoptosis induced by various pro-apoptotic agents such as Bax and staurosporine (STS), however, other reports showed overexpression of PrPC enhances STS-mediated apoptosis. In this study, we took a different approach by depleting endogenous PrPC using specific interfering RNA technique and compared the depleting and overproducing effects of PrPC on STS-induced apoptosis in neuro-2a (N2a) cells. We demonstrate here that down-regulation of PrPC sensitizes N2a cells to STS-induced cytotoxicity and apoptosis. The enhanced apoptosis induced by STS was shown by increased DNA fragmentation, immunoreactivity of Bax, and caspase-3 cleavage. We also showed that overproduction of PrPC had little or no effect on STS-mediated DNA fragmentation in N2a cells but it augments STS-mediated apoptosis in HEK293 cells, suggesting a cell line-specific effect. In addition, the inhibitory effect of PrPC on STS-mediated cellular stress appears to be modulated in part through induction of cell cycle G2 accumulation. Together, our data suggest that physiological level of endogenous PrPC plays a protective role against STS-mediated cellular stress. Loss of this protection could render cells more prone to cellular insults such as STS. PMID:16950206

  1. Nicotine induces Nme2-mediated apoptosis in mouse testes.

    PubMed

    Gu, Yunqi; Xu, Wangjie; Nie, Dongsheng; Zhang, Dong; Dai, Jingbo; Zhao, Xianglong; Zhang, Meixing; Wang, Zhaoxia; Chen, Zhong; Qiao, Zhongdong

    2016-04-15

    In mouse testes, germ cell apoptosis can be caused by cigarette smoke and lead to declining quality of semen, but the exact molecular mechanisms remain unclear. To evaluate the effects of nicotine exposure on apoptosis during spermatogenesis, we first constructed a nicotine-treated mouse model and detected germ cell apoptosis activity in the testes using the TUNEL method. Then we analyzed the variation of telomere length and telomerase activity by real-time PCR and TRAP-real-time PCR, respectively. Further, we investigated a highly expressed gene, Nme2, in mouse testes after nicotine treatment from our previous results, which has close correlation with the apoptosis activity predicted by bioinformatics. We performed NME2 overexpression in Hela cells to confirm whether telomere length and telomerase activity were regulated by the Nme2 gene. Finally, we examined methylation of CpG islands in the Nme2 promoter with the Bisulfite Sequencing (BSP) method. The results showed that apoptosis had increased significantly, and then telomerase activity became weak. Further, telomere length was shortened in the germ cells among the nicotine-treated group. In Hela cells, both overexpression of the Nme2 gene and nicotine exposure can suppress the activity of telomerase activity and shorten telomere length. BSP results revealed that the Nme2 promoter appeared with low methylation in mouse testes after nicotine treatment. We assume that nicotine-induced apoptosis may be caused by telomerase activity decline, which is inhibited by the up expression of Nme2 because of its hypomethylation in mouse germ cells.

  2. Smac/DIABLO regulates the apoptosis of hypertrophic scar fibroblasts.

    PubMed

    Liu, Bao-Heng; Chen, Liang; Li, Shi-Rong; Wang, Zhen-Xiang; Cheng, Wen-Guang

    2013-09-01

    In abnormal skin wound healing, hypertrophic scars (HS) are characterized by excessive fibroblast hypercellularity and an overproduction of collagen, leading to atypical extracellular matrix (ECM) remodeling. Although the exact mechanisms of HS remain unclear, decreased HS fibroblast (HSFB) apoptosis and increased proliferation are evident in the development of HS. In this study, the contribution of the second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein (IAP)-binding protein with a low isoelectric point (pI) (Smac/DIABLO), an apoptosis-promoting protein released from the mitochondria, was investigated in human normal skin and HSFB cultures. The expression of Smac/DIABLO is usually decreased in many malignant tumors compared with normal tissues. Immunohistochemical analysis of skin tissues and the western blot analyses of fibroblasts revealed that the expression of Smac/DIABLO was lower in HS tissues compared with normal skin tissues. Of note, adenovirus-mediated Smac/DIABLO overexpression in the cultured HSFBs significantly reduced cell proliferation, as detected by the cell counting kit-8, and increased caspase-3 and -9 activity, as detected by spectrofluorimetry. In addition, it increased apoptosis, as detected by fluorescence-activated cell sorting (FACS). Furthermore, we found that the silencing of Smac with siRNA in the HSFBs induced a noticeable decrease in caspase-3 and -9 activity, leading to a significant reduction in apoptosis. In addition, the mRNA expression of type I and III pro-collagen detected in the HSFBs was significantly increased following the silencing of Smac with siRNA and was inhibited following Smac/DIABLO overexpression, as shown by real-time RT-PCR. In conclusion, Smac/DIABLO decreases the proliferation and increases the apoptosis of HSFBs. To our knowledge, the data from our study suggest for the first time that Smac/DIABLO is a novel therapeutic target for HS.

  3. IGFBP-3 mediates p53-induced apoptosis during serum starvation.

    PubMed

    Grimberg, Adda; Liu, Bingrong; Bannerman, Peter; El-Deiry, Wafik S; Cohen, Pinchas

    2002-08-01

    Insulin-like growth factor binding protein (IGFBP)-3, a p53-response gene, can induce apoptosis in an IGF-independent manner. Here we demonstrate that IGFBP-3 mediates p53-induced apoptosis during serum starvation using two foil neoplastic cell models: one which introduces p53 activity and one which eliminates it. We created a doxycycline-inducible p53 model from the p53-negative PC-3 prostate cancer cell line. Doxycycline treatment increased both p53 and IGFBP-3 levels. It also augmented apoptosis, but not during insulin-like growth factor-I co-treatment. In a second model, lung carcinoma H460 cells expressing fully functional p53 were stably transfected with E6, which targets p53 for degradation. H460-E6 cells contained less p53 and IGFBP-3 than control neo-transfected cells, and proteasome blockade restored both. In serum deprivation, H460-E6 cells had enhanced growth and less apoptosis than did H460-neo cells. Reductions in H460-neo apoptosis, comparable in magnitude to H460-E6, were achieved by adding anti-IGFBP-3-antibody or IGFBP-3 antisense oligomers, but not non-specific immunoglobulin or IGFBP-3 sense oligomers. In summary, turning p53 in two foil neoplastic cell models induced IGFBP-3 expression and increased apoptosis during serum starvation, an effect inhibited by insulin-like growth factor-I treatment and specific IGFBP-3 blockade. This is the first demonstration of inhibition of p53 action by antagonizing IGFBP-3.

  4. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  5. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis.

    PubMed

    Liu, Gang; Beri, Rohinee; Mueller, Amanda; Kamp, David W

    2010-11-01

    Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required. PMID:20380827

  6. A mechanism of cell apoptosis by light irradiation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan; Wang, Fang

    2006-02-01

    Light irradiation can modulate various biological processes. For instance, low-power laser irradiation (LPLI) can induce cell proliferation and differentiation. It has been used to treat diseases of regeneration limitation and to promote wound healing. The biological mechanism of light irradiation remains unclear. Our previous studies have shown that low fluence LPLI induced the proliferation of human lung adenocarcinoma cells (ASTC-a-1) through PKC channel, while high fluence LPLI induced caspase-3 activation and cell apoptosis. The mechanisms of the initiation and regulation of apoptosis are complex and diverse. There are two main pathways to initiate and regulate cell apoptosis, one is the death receptor pathway (receptor/caspase-8/caspase-3), and the other is the mitochondria pathway (mitochondria/ caspase-9/caspase-3). Using fluorescent imaging techniques, we observed a temporal sequence of events during apoptosis induced by high fluence LPLI and PDT. Both the high fluence LPLI and PDT triggers mitochondrial ROS production resulting in dissipation of ΔΨ m and activation of caspase-3. Our results also show the two treatments do not activate caspase-8. These results suggest that caspase-3 activation induced by high fluence LPLI or PDT is initiated directly from mitochondria ROS generation and dissipation of ΔΨ m, and independent of the cell death pathway involving caspase-8 activation. Because the progression of the apoptosis induced by high fluence LPLI is the same as that of PDT, we concluded that light is absorbed directly either by endogenous porphyrins or by the cytochromes in mitochondrion, resulting in initial ROS generation. During light irradiation induced apoptosis, apoptotic signals are initiated from mitochondrial ROS production due to photosensitization.

  7. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    SciTech Connect

    Ilowski, Maren; Kleespies, Axel; Toni, Enrico N. de; Donabauer, Barbara; Jauch, Karl-Walter; Hengstler, Jan G.; Thasler, Wolfgang E.

    2011-01-07

    Research highlights: {yields} ALR decreases cytochrome c release from mitochondria. {yields} ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. {yields} ALR exerts a liver-specific anti-apoptotic effect. {yields} A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-{beta}, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  8. Transient elevations of cytosolic free calcium retard subsequent apoptosis in neutrophils in vitro.

    PubMed Central

    Whyte, M K; Hardwick, S J; Meagher, L C; Savill, J S; Haslett, C

    1993-01-01

    Elevation of cytosolic calcium ([Ca2+]i) has been reported to induce apoptosis in a number of cell types. However, in the neutrophil, which undergoes apoptosis constitutively during aging in vitro, activation by inflammatory mediators elevates [Ca2+]i and prolongs lifespan via inhibition of apoptosis. To examine this paradox, we investigated the effects of modulation of [Ca2+]i upon apoptosis of neutrophils in vitro. Calcium ionophores (A23187, ionomycin) retarded apoptosis in neutrophil populations after 20 h (P < 0.001). Conversely, intracellular Ca(2+)-chelation, using bis-(o-aminophenoxy)-N,N,N'N'-tetraacetic acid (BAPTA) acetoxymethyl ester (AM) promoted apoptosis (P < 0.02). W-7 (an inhibitor of calmodulin) also promoted apoptosis (P < 0.05). Measurements of [Ca2+]i, using fura-2, showed (a) increased apoptosis in neutrophil populations was not associated with elevated [Ca2+]i, (b) neutrophils cultured with ionophore at concentrations inhibiting apoptosis exhibited transient (< 1 h) elevations of [Ca2+]i, to levels previously reported with receptor-mediated stimuli, and (c) BAPTA was able to prevent the elevation of [Ca2+]i and the inhibition of apoptosis produced by ionophore. Modulation of apoptosis occurred without alterations in intracellular pH. Thus, in the neutrophil, unlike lymphoid cells, elevation of [Ca2+]i exerts an inhibitory effect upon apoptosis. Furthermore, these data suggest that transient elevation of [Ca2+]i elicits signaling events leading to prolonged inhibition of apoptosis. Images PMID:8392090

  9. Targeting the inhibitor of Apoptosis Protein BIR3 binding domains.

    PubMed

    Jaquith, James B

    2014-05-01

    The Inhibitor of Apoptosis Proteins (IAPs) play a critical role in the regulation of cellular apoptosis and cytokine signaling. IAP family members include XIAP, cIAP1, cIAP2, NAIP, survivin, Apollon/Bruce, ML-IAP/livin and TIAP. The IAPs have been targeted using both antisense oligonucleotides and small molecule inhibitors. Several research teams have advanced compounds that bind the highly conserved BIR3 domains of the IAPs into clinical trials, as single agents and in combination with standard of care. This patent review highlights the medicinal chemistry strategies that have been applied to the development of clinical compounds. PMID:24998289

  10. Relevance of signaling molecules for apoptosis induction on influenza A virus replication.

    PubMed

    Iwai, Atsushi; Shiozaki, Takuya; Miyazaki, Tadaaki

    2013-11-22

    Apoptosis is an important mechanism to maintain homeostasis in mammals, and disruption of the apoptosis regulation mechanism triggers a range of diseases, such as cancer, autoimmune diseases, and developmental disorders. The severity of influenza A virus (IAV) infection is also closely related to dysfunction of apoptosis regulation. In the virus infected cells, the functions of various host cellular molecules involved in regulation of induction of apoptosis are modulated by IAV proteins to enable effective virus replication. The modulation of the intracellular signaling pathway inducing apoptosis by the IAV infection also affects extracellular mechanisms controlling apoptosis, and triggers abnormal host responses related to the disease severity of IAV infections. This review focuses on apoptosis related molecules involved in IAV replication and pathogenicity, the strategy of the virus propagation through the regulation of apoptosis is also discussed.

  11. The Role of Apoptosis Associated Markers in Pathogenesis of Pulmonary Tuberculosis

    ClinicalTrials.gov

    2012-08-28

    To Compare the Serum Apoptosis-associated Markers Between Patients With Active TB and Patients With LTBI; To Evaluate the Efficiency of Apoptosis-associated Markers to Differentiate Potential of Active TB From LTBI

  12. Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion.

    PubMed

    Méndez Palacios, Néstor; Escobar, María Elena Ayala; Mendoza, Maximino Méndez; Crispín, Rubén Huerta; Andrade, Octavio Guerrero; Melández, Javier Hernández; Martínez, Andrés Aragón

    2016-04-01

    Male germ-cell apoptosis occurs naturally and can be increased by exposure to drugs and toxic chemicals. Individuals may have different rates of apoptosis and are likely to also exhibit differential sensitivity to outside influences. Previously, we reported that p-chloroamphetamine (pCA), a substance that inhibits serotonin synthesis, induced germ-cell apoptosis in prepubertal male rats. Here, we identified prepubertal rats with naturally high or low rates of germ-cell apoptosis and evaluated gene expression in both groups. Bax and Shbg mRNA levels were higher in rats with high rates of germ-cell apoptosis. Rats were then treated with pCA and the neuro-hormonal response and gene expression were evaluated. Treatment with pCA induced a reduction in serotonin concentrations but levels of sex hormones and gonadotrophins were not changed. Rats with initially high rates of germ-cell apoptosis had even higher rates of germ-cell apoptosis after treatment with pCA. In rats with high rates of germ-cell apoptosis Bax mRNA expression remained high after treatment with pCA. On the basis of category, an inverse relationship between mRNA expression of Bax and Bcl2, Bax and AR and Bax and Hsd3b2 was found. Here we provide evidence that innate levels of germ-cell apoptosis could be explained by the level of mRNA expression of genes involved with apoptosis and spermatogenesis.

  13. Cord Blood Stem Cell-Mediated Induction of Apoptosis in Glioma Downregulates X-Linked Inhibitor of Apoptosis Protein (XIAP)

    PubMed Central

    Dasari, Venkata Ramesh; Velpula, Kiran Kumar; Kaur, Kiranpreet; Fassett, Daniel; Klopfenstein, Jeffrey D.; Dinh, Dzung H.; Gujrati, Meena; Rao, Jasti S.

    2010-01-01

    Background XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death. Methodology/Principal Findings We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO. Conclusions/Significance Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic

  14. Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics.

    PubMed

    Wang, Shaomeng; Bai, Longchuan; Lu, Jianfeng; Liu, Liu; Yang, Chao-Yie; Sun, Haiying

    2012-12-01

    Apoptosis resistance is a hallmark of human cancer. Research in the last two decades has identified key regulators of apoptosis, including inhibitor of apoptosis proteins (IAPs). These critical apoptosis regulators have been targeted for the development of new cancer therapeutics. In this article, we will discuss three members of IAP proteins, namely XIAP, cIAP1 and cIAP2, as cancer therapeutic targets and the progress made in developing new cancer therapeutic agents to target these IAP proteins.

  15. Apoptosis Activation in Human Carious Dentin. An Immunohistochemical Study

    PubMed Central

    Loreto, C.; Psaila, A.; Musumeci, G.; Castorina, S.; Leonardi, R.

    2015-01-01

    The exact mechanisms and enzymes involved in caries progression are largely unclear. Apoptosis plays a key role in dentin remodelling related to damage repair; however, it is unclear whether apoptosis in decayed teeth is activated through the extrinsic or the intrinsic pathway. This ex vivo immunohistochemical study explored the localization of TRAIL, DR5, Bcl-2 and Bax, the main proteins involved in apoptosis, in teeth with advanced caries. To evaluate TRAIL, DR5, Bcl-2 and Bax immunoexpressions twelve permanent carious premolars were embedded in paraffin and processed for immunohistochemistry. The results showed that TRAIL and DR5 were overexpressed in dentin and in pulp vessels and mononuclear cells; strong Bax immunostaining was detected in dilated dentinal tubules close to the lesion, and Bcl-2 staining was weak in some dentin areas under the cavity or altogether absent. These findings suggest that both apoptosis pathways are activated in dental caries. Further studies are required to gain insights into its biomolecular mechanisms. PMID:26428882

  16. Delayed human neutrophil apoptosis by Trichomonas vaginalis lysate.

    PubMed

    Song, Hyun-Ouk; Lim, Young-Su; Moon, Sun-Joo; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2010-03-01

    Neutrophils play an important role in the human immune system for protection against such microorganisms as a protozoan parasite, Trichomonas vaginalis; however, the precise role of neutrophils in the pathogenesis of trichomoniasis is still unknown. Moreover, it is thought that trichomonal lysates and excretory-secretory products (ESP), as well as live T. vaginalis, could possibly interact with neutrophils in local tissues, including areas of inflammation induced by T. vaginalis in humans. The aim of this study was to investigate the influence of T. vaginalis lysate on the fate of neutrophils. We found that T. vaginalis lysate inhibits apoptosis of human neutrophils as revealed by Giemsa stain. Less altered mitochondrial membrane potential (MMP) and surface CD16 receptor expression also supported the idea that neutrophil apoptosis is delayed after T. vaginalis lysate stimulation. In contrast, ESP stimulated-neutrophils were similar in apoptotic features of untreated neutrophils. Maintained caspase-3 and myeloid cell leukemia-1 (Mcl-1) in neutrophils co-cultured with trichomonad lysate suggest that an intrinsic mitochondrial pathway of apoptosis was involved in T. vaginalis lysate-induced delayed neutrophil apoptosis; this phenomenon may contribute to local inflammation in trichomoniasis. PMID:20333279

  17. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis.

    PubMed

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F A

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  18. Capsaicin induces apoptosis in PC12 cells through ER stress.

    PubMed

    Krizanova, Olga; Steliarova, Iveta; Csaderova, Lucia; Pastorek, Michal; Hudecova, Sona

    2014-02-01

    Capsaicin, the pungent agent in chili peppers, has been shown to act as a tumor-suppressor in cancer. In our previous study, capsaicin was shown to induce apoptosis in the rat pheochromocytoma cell line (PC12 cells). Thus, the aim of the present study was to determine the potential mechanism by which capsaicin induces apoptosis. We treated PC12 cells with 50, 100 and 500 µM capsaicin and measured the reticular calcium content and expression of the reticular calcium transport systems. These results were correlated with endoplasmic reticulum (ER) stress markers CHOP, ATF4 and X-box binding protein 1 (XBP1), as well as with apoptosis induction. We observed that capsaicin decreased reticular calcium in a concentration-dependent manner. Simultaneously, expression levels of the sarco/endoplasmic reticulum pump and ryanodin receptor of type 2 were modified. These changes were accompanied by increased ER stress, as documented by increased stress markers. Thus, from these results we propose that in PC12 cells capsaicin induces apoptosis through increased ER stress. PMID:24337105

  19. Mutations in ribosomal proteins: Apoptosis, cell competition, and cancer.

    PubMed

    Baker, Nicholas E; Kale, Abhijit

    2016-01-01

    Mutations affecting multiple ribosomal proteins are implicated in cancer. Using genetic mosaics in the fruit fly Drosophila, we describe 3 apoptotic mechanisms that affect Rp/Rp homozygous mutant cells, Rp/+ heterozygous cells, or Rp/+ heterozygous cells in competition with nearby wild type cells, and discuss how apoptosis might be related to cancer predisposition. PMID:27308545

  20. Multifaceted role of prohibitin in cell survival and apoptosis.

    PubMed

    Peng, Ya-Ting; Chen, Ping; Ouyang, Ruo-Yun; Song, Lei

    2015-09-01

    Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.

  1. Apoptosis of human seminoma cells upon disruption of their microenvironment.

    PubMed Central

    Olie, R. A.; Boersma, A. W.; Dekker, M. C.; Nooter, K.; Looijenga, L. H.; Oosterhuis, J. W.

    1996-01-01

    One of the main obstacles encountered when trying to culture human seminoma (SE) cells in vitro is massive degeneration of the tumour cells. We investigated whether dissociation of tumour tissue, to obtain single-cell suspensions for in vitro culture, results in the onset of apoptosis. Using morphological analysis and in situ end labelling, less than 4% of apoptotic tumour cells were detected in intact tissue from 11 out of 14 SEs. In these 11 tumours, apoptosis-specific DNA ladders, indicative of internucleosomal double-strand DNA cleavage, were not detected on electrophoresis gels. In contrast, three SEs with over 12% of apoptotic tumour cells in the intact tissue and all analysed (pure) SE cell suspensions, obtained after mechanical dissociation of intact tumour tissue, showed DNA ladders. Flow cytometric analysis of end labelled SE suspensions showed DNA breaks in up to 85% of the tumour cells. As indicated by cell morphology and DNA degradation, SE cells appear to rapidly enter the apoptotic pathway upon mechanical disruption of their microenvironment. No expression of p53 and of the apoptosis-inhibitor bcl-2 was detectable in intact SE tissue or cell suspensions. Our data suggest that abrogation of apoptosis might be crucial to succeed in culturing human SE cells in vitro. Images Figure 1 Figure 2 Figure 4 PMID:8624259

  2. Punicalagin promotes autophagy to protect primary human syncytiotrophoblasts from apoptosis.

    PubMed

    Wang, Ying; Chen, Baosheng; Longtine, Mark S; Nelson, D Michael

    2016-02-01

    Punicalagin is a prominent polyphenol in pomegranate juice that protects cultured syncytiotrophoblasts from stress-induced apoptosis. Here, we test the hypothesis that punicalagin has this effect by inhibiting the mTOR kinase pathway to enhance autophagic turnover and limit apoptosis in cultured primary human syncytiotrophoblasts. In syncytiotrophoblasts, starvation, rapamycin, or punicalagin all decreased the expression of phosphorylated ribosomal protein S6, a downstream target of the mTOR kinase, and of the autophagy markers, LC3-II and p62. In contrast, in the presence of bafilomycin, an inhibitor of late stages of autophagy and degradation in the autophagolysosome, syncytiotrophoblasts exposed to starvation, rapamycin, or punicalagin all showed increased levels of LC3-II and p62. The number of LC3-II punctae also increased in punicalagin-treated syncytiotrophoblasts exposed to chloroquine, another inhibitor of autophagic degradation, and punicalagin increased the number of lysosomes. The apoptosis-reducing effect of punicalagin was attenuated by inhibition of autophagy using bafilomycin or knockdown of the autophagy related gene, ATG16L1. Collectively, these data support the hypothesis that punicalagin modulates the crosstalk between autophagy and apoptosis to promote survival in cultured syncytiotrophoblasts. PMID:26659860

  3. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  4. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  5. Regulation of apoptosis of rbf mutant cells during Drosophila development

    PubMed Central

    Tanaka-Matakatsu, Miho; Xu, Jinhua; Cheng, Leping; Du, Wei

    2008-01-01

    Inactivation of the retinoblastoma gene Rb leads to defects in cell proliferation, differentiation, or apoptosis, depending on specific cell or tissue types. To gain insights into the genes that can modulate the consequences of Rb inactivation, we carried out a genetic screen in Drosophila to identify mutations that affected apoptosis induced by inactivation of the Retinoblastoma-family protein (rbf) and identified a mutation that blocked apoptosis induced by rbf. We found this mutation to be a new allele of head involution defective (hid) and showed that hid expression is deregulated in rbf mutant cells in larval imaginal discs. We identified an enhancer that regulates hid expression in response to developmental cues as well as to radiation and demonstrated that this hid enhancer is directly repressed by RBF through an E2F binding site. These observations indicate that apoptosis of rbf mutant cells is mediated by an upregulation of hid. Finally, we showed that bantam, a miRNA that regulates hid translation, is expressed in the interommatidial cells in the larval eye discs and modulates the survival of rbf mutant cells. PMID:19100727

  6. Discoveries and controversies in BCL-2 protein-mediated apoptosis.

    PubMed

    Zheng, Janet H; Viacava Follis, Ariele; Kriwacki, Richard W; Moldoveanu, Tudor

    2016-07-01

    B-cell lymphoma 2 (BCL-2) family proteins mediate mitochondrial apoptosis by regulating mitochondrial outer membrane permeabilization (MOMP), which leads to the activation of the downstream caspase cascade to execute apoptosis. The pro-apoptotic and anti-apoptotic BCL-2 proteins function through protein-protein interactions in soluble and membrane-associated states. How soluble BCL-2 proteins interact is well understood. Anti-apoptotic proteins, such as BCL-2 and BCL-xL, and the pro-apoptotic effectors of MOMP, including BAK and BAX, interact with pro-apoptotic BCL-2 homology 3 (BH3)-only proteins similarly. Whereas anti-apoptotic BCL-2 proteins tightly bind all the BH3-only proteins to block apoptosis initiation, the effector BCL-2 proteins are potently triggered by specific BH3-only proteins to undergo conformational changes, membrane association and insertion, oligomerization, and pore formation. The anti-apoptotic BCL-2 proteins also inhibit the activated effectors. p53 is a direct BAX activator inhibited by BCL-xL, defining a prototype non-canonical modulator of BCL-2 proteins-mediated MOMP. How BCL-2 proteins cooperate in the presence of membranes remains poorly understood, impeding our understanding of MOMP and apoptosis. Here, we highlight the latest structural views of MOMP by BCL-2 proteins.

  7. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  8. Melatonin Alleviates Liver Apoptosis in Bile Duct Ligation Young Rats

    PubMed Central

    Sheen, Jiunn-Ming; Chen, Yu-Chieh; Hsu, Mei-Hsin; Tain, You-Lin; Huang, Ying-Hsien; Tiao, Mao-Meng; Li, Shih-Wen; Huang, Li-Tung

    2016-01-01

    Bile duct ligation (BDL)-treated rats display cholestasis and liver damages. The potential protective activity of melatonin in young BDL rats in terms of apoptosis, mitochondrial function, and endoplasmic reticulum (ER) homeostasis has not yet been evaluated. Three groups of young male Sprague-Dawley rats were used: one group received laparotomy (Sham), a second group received BDL for two weeks (BDL), and a third group received BDL and intraperitoneal melatonin (100 mg/day) for two weeks (BDL + M). BDL group rats showed liver apoptosis, increased pro-inflamamtory mediators, caspases alterations, anti-apoptotic factors changes, and dysfunction of ER homeostasis. Melatonin effectively reversed apoptosis, mainly through intrinsic pathway and reversed ER stress. In addition, in vitro study showed melatonin exerted its effect mainly through the melatonin 2 receptor (MT2) in HepG2 cells. In conclusion, BDL in young rats caused liver apoptosis. Melatonin rescued the apoptotic changes via the intrinsic pathway, and possibly through the MT2 receptor. Melatonin also reversed ER stress induced by BDL. PMID:27556445

  9. Mitochondria and apoptosis: HQ or high-security prison?

    PubMed

    Waterhouse, N J; Green, D R

    1999-11-01

    Whether we view the mitochondria as the headquarters for the leader of a crack suicide squad or as a prison for the leader of a militant coup, the role of the mitochondria in the apoptotic process is now well established. During apoptosis the integrity of the mitochondria is breeched, the mitochondrial transmembrane potential drops, the electron transport chain is disrupted. and proteins from the mitochondrial intermembrane space (MIS) such as cytochrome c are released into the cytosol, although not necessarily in that order. In the cytosol, cytochrome c forms part of a proteinaceous complex that directly activates caspase-9, one of the apical enzymes responsible for the dismantling of the cell. In this way a mitochondrial factor which is normally locked away from the rest of the cell can directly trigger apoptosis. The need to regulate the release of cytochrome c suggests that the mitochondria may be the decision center for whether a cell lives or dies. Various hypotheses have been formulated to explain how proteins of the MIS are released and how this process is regulated. These include the Bcl-2-regulated opening of a permeability transition pore or an increase in mitochondrial transmembrane potential followed by outer membrane rupture. It remains to be clarified which mitochondria specific events are essential for apoptosis and which are merely consequences of apoptosis. PMID:10634211

  10. Measurement and Characterization of Apoptosis by Flow Cytometry.

    PubMed

    Telford, William; Tamul, Karen; Bradford, Jolene

    2016-01-01

    Apoptosis is an important mechanism in cell biology, playing a critical regulatory role in virtually every organ system. It has been particularly well characterized in the immune system, with roles ranging from immature immune cell development and selection to down-regulation of the mature immune response. Apoptosis is also the primary mechanism of action of anti-cancer drugs. Flow cytometry has been the method of choice for analyzing apoptosis in suspension cells for more than 25 years. Numerous assays have been devised to measure both the earliest and latest steps in the apoptotic process, from the earliest signal-transduction events to the late morphological changes in cell shape and granularity, proteolysis, and chromatin condensation. These assays are particularly powerful when combined into multicolor assays determining several apoptotic characteristics simultaneously. The multiparametric nature of flow cytometry makes this technology particularly suited to measuring apoptosis. In this unit, we will describe the four main techniques for analyzing caspase activity in apoptotic cells, combined with annexin V and cell permeability analysis. These relatively simple multiparametric assays are powerful techniques for assessing cell death. © 2016 by John Wiley & Sons, Inc.

  11. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons.

    PubMed

    Holtsberg, F W; Steiner, M R; Keller, J N; Mark, R J; Mattson, M P; Steiner, S M

    1998-01-01

    A diverse body of evidence indicates a role for the lipid biomediator lysophosphatidic acid (LPA) in the CNS. This study identifies and characterizes the induction of neuronal death by LPA. Treatment of cultured hippocampal neurons from embryonic rat brains with 50 microM LPA resulted in neuronal necrosis, as determined morphologically and by the release of lactate dehydrogenase. A concentration of LPA as low as 10 microM led to the release of lactate dehydrogenase. In contrast, treatment of neurons with 0.1 or 1.0 microM LPA resulted in apoptosis, as determined by chromatin condensation. In addition, neuronal death induced by 1 microM LPA was characterized as apoptotic on the basis of terminal dUTP nick end-labeling (TUNEL) staining, externalization of phosphatidylserine, and protection against chromatin condensation, TUNEL staining, and phosphatidylserine externalization by treatment with N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad-spectrum inhibitor of caspases, i.e., members of the interleukin-1beta converting enzyme family. Studies with antagonists of ionotropic glutamate receptors did not indicate a significant role for these receptors in apoptosis induced by 1 microM LPA. LPA (1 microM) also induced a decrease in mitochondrial membrane potential. Moreover, pretreatment of neurons with cyclosporin A protected against the LPA-induced decrease in mitochondrial membrane potential and neuronal apoptosis. Thus, LPA, at pathophysiological levels, can induce neuronal apoptosis and could thereby participate in neurodegenerative disorders. PMID:9422348

  12. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis

    PubMed Central

    2014-01-01

    Background Oxidative stress has been suggested as a mechanism underlying skin aging, as it triggers apoptosis in various cell types, including fibroblasts, which play important roles in the preservation of healthy, youthful skin. Catechins, which are antioxidants contained in green tea, exert various actions such as anti-inflammatory, anti-bacterial, and anti-cancer actions. In this study, we investigated the effect of (+)-catechin on apoptosis induced by oxidative stress in fibroblasts. Methods Fibroblasts (NIH3T3) under oxidative stress induced by hydrogen peroxide (0.1 mM) were treated with either vehicle or (+)-catechin (0–100 μM). The effect of (+)-catechin on cell viability, apoptosis, phosphorylation of c-Jun terminal kinases (JNK) and p38, and activation of caspase-3 in fibroblasts under oxidative stress were evaluated. Results Hydrogen peroxide induced apoptotic cell death in fibroblasts, accompanied by induction of phosphorylation of JNK and p38 and activation of caspase-3. Pretreatment of the fibroblasts with (+)-catechin inhibited hydrogen peroxide-induced apoptosis and reduced phosphorylation of JNK and p38 and activation of caspase-3. Conclusion (+)-Catechin protects against oxidative stress-induced cell death in fibroblasts, possibly by inhibiting phosphorylation of p38 and JNK. These results suggest that (+)-catechin has potential as a therapeutic agent for the prevention of skin aging. PMID:24712558

  13. Killing Me Softly—Future Challenges in Apoptosis Research

    PubMed Central

    Westhoff, Mike-Andrew; Brühl, Oliver; Nonnenmacher, Lisa; Karpel-Massler, Georg; Debatin, Klaus-Michael

    2014-01-01

    The induction of apoptosis, a highly regulated and clearly defined mode of cell dying, is a vital tenet of modern cancer therapy. In this review we focus on three aspects of apoptosis research which we believe are the most crucial and most exciting areas currently investigated and that will need to be better understood in order to enhance the efficacy of therapeutic measures. First, we discuss which target to select for cancer therapy and argue that not the cancer cell as such, but its interaction with the microenvironment is a more promising and genetically stable site of attack. Second, the complexity of combination therapy is elucidated using the PI3-K-mediated signaling network as a specific example. Here we show that the current clinical approach to sensitize malignancies to apoptosis by maximal, prolonged inhibition of so-called survival pathways can actually be counter productive. Third, we propose that under certain conditions which will need to be clearly defined in future, chronification of a tumor might be preferable to the attempt at a cure. Finally, we discuss further problems with utilizing apoptosis induction in cancer therapy and propose a novel potential therapeutic approach that combines the previously discussed features. PMID:24595238

  14. H-Ras regulation of TRAIL death receptor mediated apoptosis

    PubMed Central

    Chen, Jun-Jie; Bozza, William P.; Di, Xu; Zhang, Yaqin; Hallett, William; Zhang, Baolin

    2014-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the death receptors (DRs) 4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. Here we provide evidence demonstrating the role of H-Ras in TRAIL receptor mediated apoptosis. By analyzing the genome wide mRNA expression data of the NCI60 cancer cell lines, we found that H-Ras expression was consistently upregulated in TRAIL-resistant cell lines. By contrast, no correlation was found between TRAIL sensitivity and K-Ras expression levels or their mutational profiles. Notably, H-Ras upregulation associated with a surface deficiency of TRAIL death receptors. Selective inhibition of H-Ras activity in TRAIL-resistant cells restored the surface expression of both DR4 and DR5 without changing their total protein levels. The resulting cells became highly susceptible to both TRAIL and agonistic DR5 antibody, whereas K-Ras inhibition had little or no effect on TRAIL-induced apoptosis, indicating H-Ras plays a distinct role in the regulation of TRAIL death receptors. Further studies are warranted to determine the therapeutic potential of H-Ras-specific inhibitors in combination with TRAIL receptor agonists. PMID:25026275

  15. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  16. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis.

    PubMed

    Taupin, D R; Kinoshita, K; Podolsky, D K

    2000-01-18

    Intestinal trefoil factor (ITF) is an essential regulator of colonic epithelial restitution, the rapid migration of colonocytes over mucosal wounds. High levels of ITF are frequently present in colorectal cancers and derived cell lines. Mucosal restitution requires the detachment of epithelium from substrate, which would be expected to induce apoptosis. However, mice deficient in ITF showed an increase in colonocyte apoptosis unaccompanied by changes in expression of receptor-related (TNFR/Fas) or stress-related (Bcl-family) cell death regulators. An ITF-expressing colonic (HT-ITF1) cell line was resistant to apoptosis induced by serum starvation and ceramide. Exogenous ITF also protected another human colonic carcinoma-derived cell line (HCT116) and a nontransformed rat intestinal epithelial cell line (IEC-6) from apoptosis. This effect was abrogated by wortmannin and tyrphostin A25, indicating the potential involvement of phosphatidylinositol 3-kinase and epidermal growth factor (EGF) receptor activation. Expression of phosphorylated Akt, which lies downstream of phosphatidylinositol 3-kinase activation, was elevated in this HT-29-ITF line. p53-dependent cell death in the AGS human gastric cancer cell line after etoposide was similarly inhibited by transient expression of ITF but not a C-terminal truncation mutant of ITF, and it required functional phosphatidylinositol 3-kinase and EGF receptor. These findings support a central role for ITF in the maintenance of intestinal mucosal continuity, and conversely demonstrate the potential for ITF expression to confer resistance of colorectal tumors to therapy.

  17. Melatonin Alleviates Liver Apoptosis in Bile Duct Ligation Young Rats.

    PubMed

    Sheen, Jiunn-Ming; Chen, Yu-Chieh; Hsu, Mei-Hsin; Tain, You-Lin; Huang, Ying-Hsien; Tiao, Mao-Meng; Li, Shih-Wen; Huang, Li-Tung

    2016-01-01

    Bile duct ligation (BDL)-treated rats display cholestasis and liver damages. The potential protective activity of melatonin in young BDL rats in terms of apoptosis, mitochondrial function, and endoplasmic reticulum (ER) homeostasis has not yet been evaluated. Three groups of young male Sprague-Dawley rats were used: one group received laparotomy (Sham), a second group received BDL for two weeks (BDL), and a third group received BDL and intraperitoneal melatonin (100 mg/day) for two weeks (BDL + M). BDL group rats showed liver apoptosis, increased pro-inflamamtory mediators, caspases alterations, anti-apoptotic factors changes, and dysfunction of ER homeostasis. Melatonin effectively reversed apoptosis, mainly through intrinsic pathway and reversed ER stress. In addition, in vitro study showed melatonin exerted its effect mainly through the melatonin 2 receptor (MT2) in HepG2 cells. In conclusion, BDL in young rats caused liver apoptosis. Melatonin rescued the apoptotic changes via the intrinsic pathway, and possibly through the MT2 receptor. Melatonin also reversed ER stress induced by BDL. PMID:27556445

  18. Crocetin prevents AGEs-induced vascular endothelial cell apoptosis.

    PubMed

    Xiang, Min; Yang, Min; Zhou, Chenghua; Liu, Juan; Li, Wenna; Qian, Zhiyu

    2006-10-01

    Advanced glycation end products (AGEs) are causally correlated with diabetic vascular complications. AGEs triggered oxidative reaction then accelerated endothelial cell apoptosis is a critical event in the process of vascular complications. Crocetin, a carotenoid has been previously shown to have strong antioxidant activates. Therefore, this study was designed to investigate the role of crocetin on the prevention of AGEs-mediated cell apoptosis in bovine aortic endothelial cells (BEC) and the mechanisms involved. Exposure of BEC to 200 microg/ml AGEs for 48 h results in a significant increase in apoptotic rate, compared with control. AGEs-induced DNA fragmentation preferentially occurred in the S phase cells. Crocetin prevented AGEs-induced BEC apoptosis, which correlates with crocetin attenuation of AGEs mediated increase of intracellular reactive oxygen species (ROS) formation and elevation of intracellular Ca2+ concentration ([Ca2+]i) level (P<0.01 versus AGEs group). These results demonstrate that crocetin prevents AGEs-induced BEC apoptosis through ROS inhibition and [Ca2+]i stabilization and suggest that crocetin may exert a beneficial effect in preventing diabetes-associated vascular complications. PMID:16899372

  19. Mitochondrial pathway of apoptosis is ancestral in metazoans

    PubMed Central

    Bender, Cheryl E.; Fitzgerald, Patrick; Tait, Stephen W. G.; Llambi, Fabien; McStay, Gavin P.; Tupper, Douglas O.; Pellettieri, Jason; Alvarado, Alejandro Sánchez; Salvesen, Guy S.; Green, Douglas R.

    2012-01-01

    The mitochondrial pathway of apoptosis is the major mechanism of physiological cell death in vertebrates. In this pathway, proapoptotic members of the Bcl-2 family cause mitochondrial outer membrane permeabilization (MOMP), allowing the release of cytochrome c, which interacts with Apaf-1 to trigger caspase activation and apoptosis. Despite conservation of Bcl-2, Apaf-1, and caspases in invertebrate phyla, the existence of the mitochondrial pathway in any invertebrate is, at best, controversial. Here we show that apoptosis in a lophotrochozoan, planaria (phylum Platyhelminthes), is associated with MOMP and that cytochrome c triggers caspase activation in cytosolic extracts from these animals. Further, planarian Bcl-2 family proteins can induce and/or regulate cell death in yeast and can replace Bcl-2 proteins in mammalian cells to regulate MOMP. These results suggest that the mitochondrial pathway of apoptosis in animals predates the emergence of the vertebrates but was lost in some lineages (e.g., nematodes). In further support of this hypothesis, we surveyed the ability of cytochrome c to trigger caspase activation in cytosolic extracts from a variety of organisms and found this effect in cytosolic extracts from invertebrate deuterostomes (phylum Echinodermata). PMID:22416118

  20. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    PubMed

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  1. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    PubMed Central

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  2. Cell shrinkage and monovalent cation fluxes: role in apoptosis.

    PubMed

    Bortner, Carl D; Cidlowski, John A

    2007-06-15

    The loss of cell volume or cell shrinkage has been a morphological hallmark of the programmed cell death process known as apoptosis. This isotonic loss of cell volume has recently been term apoptotic volume decrease or AVD to distinguish it from inherent volume regulatory responses that occurs in cells under anisotonic conditions. Recent studies examining the intracellular signaling pathways that result in this unique cellular characteristic have determined that a fundamental movement of ions, particularly monovalent ions, underlie the AVD process and plays an important role on controlling the cell death process. An efflux of intracellular potassium was shown to be a critical aspect of the AVD process, as preventing this ion loss could protect cells from apoptosis. However, potassium plays a complex role as a loss of intracellular potassium has also been shown to be beneficial to the health of the cell. Additionally, the mechanisms that a cell employs to achieve this loss of intracellular potassium vary depending on the cell type and stimulus used to induce apoptosis, suggesting multiple ways exist to accomplish the same goal of AVD. Additionally, sodium and chloride have been shown to play a vital role during cell death in both the signaling and control of AVD in various apoptotic model systems. This review examines the relationship between this morphological change and intracellular monovalent ions during apoptosis. PMID:17321483

  3. Linking apoptosis to cancer metabolism: Another missing piece of JuNK.

    PubMed

    Papa, Salvatore; Bubici, Concetta

    2016-03-01

    Cancer cells become dependent on aerobic glycolysis to sustain rapid proliferation and escape apoptosis. How this metabolic change, also known as the Warburg effect, is linked to apoptosis remains largely unknown. Our new data place c-Jun N-terminal kinase in the center of a hub regulating apoptosis and cancer metabolism. PMID:27308628

  4. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  5. Apoptosis and Inflammation: Role of Adipokines in Inflammatory Bowel Disease

    PubMed Central

    Ponemone, Venkatesh; Keshavarzian, Ali; Brand, Marc I; Saclarides, Theodore; Abcarian, Herand; Cabay, Robert J; Fletcher, Emma; Larsen, Bianca; Durstine, Larry J; Fantuzzi, Giamila; Fayad, Raja

    2010-01-01

    OBJECTIVES: Leptin and adiponectin (APN) are adipokines produced by adipocytes that participate in the modulation of immune and inflammatory responses. In Crohn's disease (CD), fat wrapping surrounding the inflamed intestine produces high levels of leptin and APN. In inflammatory bowel disease (IBD), apoptosis resistance of lamina propria T lymphocytes (LPL-T) is one of the mechanisms that maintains chronic inflammation. We addressed the mechanism by which leptin and APN regulate inflammation and apoptosis in IBD. METHODS: Immune cell infiltration, several factors expressed by adipose tissue (AT), and spontaneous release of cytokines by adipocytes were measured. The presence of APN and leptin in intestinal mucosa was detected and their effect on LPL-T apoptosis, signal transducer and activator of transcription 3 (STAT3), Suppressor of Cytokine Signaling 3 (SOCS3), Bcl-2 and Bcl-xL expression, and cytokine production was studied. In addition, the effects of globular and high-molecular-weight (HMW) APN on LPL-T cytokine production and apoptosis were studied. RESULTS: Higher levels of several chemokines, cytokines, and growth factors were present in AT near active than near inactive disease. A significantly higher amount of inflammatory infiltrate was present in AT near active CD than near ulcerative colitis, controls, and near the inactive area of CD. There were no changes in the ratios of APN molecular weight in control and IBD adipocyte products. Leptin and APN inhibited anti-CD3-stimulated-LPL-T apoptosis and potentiated STAT3 phosphorylation, Bcl-2, and Bcl-xL expression in IBD and control mucosa. However, SOCS3 expression was suppressed only in IBD. Both globular and HMW APN have similar effects on LPL-T cytokine production and apoptosis. Leptin and APN enhanced interleukin (IL)-10 production by anti-CD3-stimulated LPL-T in IBD only. APN, but not leptin, increased anti-CD3-induced IL-6 levels in LPL-T only in IBD patients. IL-10 exerts its anti

  6. Alpha Particles Induce Apoptosis through the Sphingomyelin Pathway

    PubMed Central

    Seideman, Jonathan H.; Stancevic, Branka; Rotolo, Jimmy A.; McDevitt, Michael R.; Howell, Roger W.; Kolesnick, Richard N.; Scheinberg, David A.

    2011-01-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET a particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with a particles emitted by the 225Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on α-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated a particles using a planar 241Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five α-particle traversals per cell. These data indicate that a particles can activate the sphingomyelin pathway to induce apoptosis. PMID:21631289

  7. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    PubMed

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  8. Silencing CDK4 radiosensitizes breast cancer cells by promoting apoptosis

    PubMed Central

    2013-01-01

    Background The discovery of molecular markers associated with various breast cancer subtypes has greatly improved the treatment and outcome of breast cancer patients. Unfortunately, breast cancer cells acquire resistance to various therapies. Mounting evidence suggests that resistance is rooted in the deregulation of the G1 phase regulatory machinery. Methods To address whether deregulation of the G1 phase regulatory machinery contributes to radiotherapy resistance, the MCF10A immortalized human mammary epithelial cell line, ER-PR-Her2+ and ER-PR-Her2- breast cancer cell lines were irradiated. Colony formation assays measured radioresistance, while immunocytochemistry, Western blots, and flow cytometry measured the cell cycle, DNA replication, mitosis, apoptosis, and DNA breaks. Results Molecular markers common to all cell lines were overexpressed, including cyclin A1 and cyclin D1, which impinge on CDK2 and CDK4 activities, respectively. We addressed their potential role in radioresistance by generating cell lines stably expressing small hairpin RNAs (shRNA) against CDK2 and CDK4. None of the cell lines knocked down for CDK2 displayed radiosensitization. In contrast, all cell lines knocked down for CDK4 were significantly radiosensitized, and a CDK4/CDK6 inhibitor sensitized MDA-MB-468 to radiation induced apoptosis. Our data showed that silencing CDK4 significantly increases radiation induced cell apoptosis in cell lines without significantly altering cell cycle progression, or DNA repair after irradiation. Our results indicate lower levels of phospho-Bad at ser136 upon CDK4 silencing and ionizing radiation, which has been shown to signal apoptosis. Conclusion Based on our data we conclude that knockdown of CDK4 activity sensitizes breast cancer cells to radiation by activating apoptosis pathways. PMID:23886499

  9. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury.

    PubMed

    White, Laura E; Santora, Rachel J; Cui, Yan; Moore, Frederick A; Hassoun, Heitham T

    2012-09-01

    Despite advancements in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely due to remote organ injury. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that incite a distinct pulmonary proinflammatory and proapoptotic response. Tumor necrosis factor receptor 1 (TNFR1) has been identified as a prominent death receptor activated in the lungs during ischemic AKI. We hypothesized that circulating TNF-α released from the postischemic kidney induces TNFR1-mediated pulmonary apoptosis, and we aimed to elucidate molecular pathways to programmed cell death. Using an established murine model of kidney IRI, we characterized the time course for increased circulatory and pulmonary TNF-α levels and measured concurrent upregulation of pulmonary TNFR1 expression. We then identified TNFR1-dependent pulmonary apoptosis after ischemic AKI using TNFR1-/- mice. Subsequent TNF-α signaling disruption with Etanercept implicated circulatory TNF-α as a key soluble mediator of pulmonary apoptosis and lung microvascular barrier dysfunction during ischemic AKI. We further elucidated pathways of TNFR1-mediated apoptosis with NF-κB (Complex I) and caspase-8 (Complex II) expression and discovered that TNFR1 proapoptotic signaling induces NF-κB activation. Additionally, inhibition of NF-κB (Complex I) resulted in a proapoptotic phenotype, lung barrier leak, and altered cellular flice inhibitory protein signaling independent of caspase-8 (Complex II) activation. Ischemic AKI activates soluble TNF-α and induces TNFR1-dependent pulmonary apoptosis through augmentation of the prosurvival and proapoptotic TNFR1 signaling pathway. Kidney-lung crosstalk after ischemic AKI represents a complex pathological process, yet focusing on specific biological pathways may yield potential future therapeutic targets.

  10. Alpha particles induce apoptosis through the sphingomyelin pathway.

    PubMed

    Seideman, Jonathan H; Stancevic, Branka; Rotolo, Jimmy A; McDevitt, Michael R; Howell, Roger W; Kolesnick, Richard N; Scheinberg, David A

    2011-10-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET α particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with α particles emitted by the ²²⁵Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on α-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated α particles using a planar ²⁴¹Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five α-particle traversals per cell. These data indicate that α particles can activate the sphingomyelin pathway to induce apoptosis.

  11. Iridovirus CARD Protein Inhibits Apoptosis through Intrinsic and Extrinsic Pathways.

    PubMed

    Chen, Chien-Wen; Wu, Ming-Shan; Huang, Yi-Jen; Lin, Pei-Wen; Shih, Chueh-Ju; Lin, Fu-Pang; Chang, Chi-Yao

    2015-01-01

    Grouper iridovirus (GIV) belongs to the genus Ranavirus of the family Iridoviridae; the genomes of such viruses contain an anti-apoptotic caspase recruitment domain (CARD) gene. The GIV-CARD gene encodes a protein of 91 amino acids with a molecular mass of 10,505 Daltons, and shows high similarity to other viral CARD genes and human ICEBERG. In this study, we used Northern blot to demonstrate that GIV-CARD transcription begins at 4 h post-infection; furthermore, we report that its transcription is completely inhibited by cycloheximide but not by aphidicolin, indicating that GIV-CARD is an early gene. GIV-CARD-EGFP and GIV-CARD-FLAG recombinant proteins were observed to translocate from the cytoplasm into the nucleus, but no obvious nuclear localization sequence was observed within GIV-CARD. RNA interference-mediated knockdown of GIV-CARD in GK cells infected with GIV inhibited expression of GIV-CARD and five other viral genes during the early stages of infection, and also reduced GIV infection ability. Immunostaining was performed to show that apoptosis was effectively inhibited in cells expressing GIV-CARD. HeLa cells irradiated with UV or treated with anti-Fas antibody will undergo apoptosis through the intrinsic and extrinsic pathways, respectively. However, over-expression of recombinant GIV-CARD protein in HeLa cells inhibited apoptosis induced by mitochondrial and death receptor signaling. Finally, we report that expression of GIV-CARD in HeLa cells significantly reduced the activities of caspase-8 and -9 following apoptosis triggered by anti-Fas antibody. Taken together, these results demonstrate that GIV-CARD inhibits apoptosis through both intrinsic and extrinsic pathways.

  12. Iridovirus CARD Protein Inhibits Apoptosis through Intrinsic and Extrinsic Pathways

    PubMed Central

    Chen, Chien-Wen; Wu, Ming-Shan; Huang, Yi-Jen; Lin, Pei-Wen; Shih, Chueh-Ju; Lin, Fu-Pang; Chang, Chi-Yao

    2015-01-01

    Grouper iridovirus (GIV) belongs to the genus Ranavirus of the family Iridoviridae; the genomes of such viruses contain an anti-apoptotic caspase recruitment domain (CARD) gene. The GIV-CARD gene encodes a protein of 91 amino acids with a molecular mass of 10,505 Daltons, and shows high similarity to other viral CARD genes and human ICEBERG. In this study, we used Northern blot to demonstrate that GIV-CARD transcription begins at 4 h post-infection; furthermore, we report that its transcription is completely inhibited by cycloheximide but not by aphidicolin, indicating that GIV-CARD is an early gene. GIV-CARD-EGFP and GIV-CARD-FLAG recombinant proteins were observed to translocate from the cytoplasm into the nucleus, but no obvious nuclear localization sequence was observed within GIV-CARD. RNA interference-mediated knockdown of GIV-CARD in GK cells infected with GIV inhibited expression of GIV-CARD and five other viral genes during the early stages of infection, and also reduced GIV infection ability. Immunostaining was performed to show that apoptosis was effectively inhibited in cells expressing GIV-CARD. HeLa cells irradiated with UV or treated with anti-Fas antibody will undergo apoptosis through the intrinsic and extrinsic pathways, respectively. However, over-expression of recombinant GIV-CARD protein in HeLa cells inhibited apoptosis induced by mitochondrial and death receptor signaling. Finally, we report that expression of GIV-CARD in HeLa cells significantly reduced the activities of caspase-8 and -9 following apoptosis triggered by anti-Fas antibody. Taken together, these results demonstrate that GIV-CARD inhibits apoptosis through both intrinsic and extrinsic pathways. PMID:260