Sex-biased phoretic mite load on two seaweed flies: Coelopa frigida and Coelopa pilipes.
Gilburn, Andre S; Stewart, Katie M; Edward, Dominic A
2009-12-01
Two hypotheses explain male-biased parasitism. Physiological costs of male sexually selected characteristics can reduce immunocompetence. Alternatively, ecological differences could generate male-biased parasitism. One method of comparing the importance of the two theories is to investigate patterns of phoresy, which are only likely to be generated by ecological rather than immunological differences between the sexes. Here we studied the pattern of phoresy of the mite, Thinoseius fucicola, on two species of seaweed fly hosts, Coelopa frigida and Coelopa pilipes. We found a highly male-biased pattern of phoresy of T. fucicola on both species. These are the first reported instances of sex-biased phoresy in a solely phoretic parasite. We also show the first two cases of size-biased phoresy. We suggest that ecological factors, particularly, male mate searching, generated male biased patterns of phoresy. We highlight the potential importance of studies of phoresy in determining the relative roles of the immunocompetence and ecological theories in generating male-biased parasitism. We suggest that more studies of patterns of phoresy are carried out to allow detailed comparisons with patterns of parasitism.
21 CFR 866.4830 - Rocket immunoelectro-phoresis equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocket immunoelectro-phoresis equipment. 866.4830... § 866.4830 Rocket immunoelectro-phoresis equipment. (a) Identification. Rocket immunoelectrophoresis... called rocket immunoelectrophoresis. In this procedure, an electric current causes the protein in...
21 CFR 866.4830 - Rocket immunoelectro-phoresis equipment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rocket immunoelectro-phoresis equipment. 866.4830... § 866.4830 Rocket immunoelectro-phoresis equipment. (a) Identification. Rocket immunoelectrophoresis... called rocket immunoelectrophoresis. In this procedure, an electric current causes the protein in...
21 CFR 866.4830 - Rocket immunoelectro-phoresis equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rocket immunoelectro-phoresis equipment. 866.4830... § 866.4830 Rocket immunoelectro-phoresis equipment. (a) Identification. Rocket immunoelectrophoresis... called rocket immunoelectrophoresis. In this procedure, an electric current causes the protein in...
21 CFR 866.4830 - Rocket immunoelectro-phoresis equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rocket immunoelectro-phoresis equipment. 866.4830... § 866.4830 Rocket immunoelectro-phoresis equipment. (a) Identification. Rocket immunoelectrophoresis... called rocket immunoelectrophoresis. In this procedure, an electric current causes the protein in...
21 CFR 866.4830 - Rocket immunoelectro-phoresis equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rocket immunoelectro-phoresis equipment. 866.4830... § 866.4830 Rocket immunoelectro-phoresis equipment. (a) Identification. Rocket immunoelectrophoresis... called rocket immunoelectrophoresis. In this procedure, an electric current causes the protein in...
Importance of phoresy in the transmission of Acarina.
Macchioni, F
2007-06-01
Dispersal capacity plays a central role in the radiation of animals, facilitating the exploitation of habitats variously distributed in space or in time or both. Many living species are unable to leave a host, crawl around, and find a new host, so they must rely on external factors to be transmitted. Biotical factors may be important in passive transport and the process, by means of which an animal is passively transported by a selected carrier of different species, is known as "phoresy". Phoresy is a phenomenon in which one animal (the phoretic) seeks out and attaches to an animal of another species, with which it does not share any phase of the life cycle, for dispersal, during which time the phoretic animal becomes quiescent, stopping feeding and development. Activity starts again beginning with detachment, induced by stimuli originating from its carrier or the microhabitat. The adaptive traits of phoresy may be categorized as follow: host surface, quiescence, recognition of signals to abandon the carrier and, if needed, synchronization with the host life cycle. Phoresy is exploited by many Arthropods. In Acarina, there are basically four main types of phoresy. First, there is a type in which adult females are the only forms becoming phoretic and attachment is by means of chelicerae, palpal hooks and ambulacral claws, which grasp a seta or a fold of the integument of carrier-host. The second type is represented by mites, in which deutonymphs are phoretic; there is generally no cheliceral or sucker attachment in this group, mites instead hanging on by their ambulacral claws. The third type is similar to the second in that deutonymphs are phoretic; however, in this case, attachment to the host is by means of an anal pedicel formed by a substance, extruded through the anus, which hardens upon coming in contact with air and literally glues the mite to its host. In the fourth type there is a very highly modified deutonymph stage, called hypope, which only occurs at certain times, presumably when environmental conditions are no longer appropriate for the mite. Hypope is simplified morphologically, may have many sucker-like discs or claspers for efficient attachment, and is much more resistant to desiccation than are other stages of the life cycle.
Walk or ride? Phoretic behaviour of amblyceran and ischnoceran lice.
Bartlow, Andrew W; Villa, Scott M; Thompson, Michael W; Bush, Sarah E
2016-04-01
Phoresy is a behaviour where one organism hitches a ride on another more mobile organism. This is a common dispersal mechanism amongst relatively immobile species that specialise on patchy resources. Parasites specialise on patchily distributed resources: their hosts. Although host individuals are isolated in space and time, parasites must transmit between hosts or they will die with their hosts. Lice are permanent obligate ectoparasites that complete their entire life cycle on their host. They typically transmit when hosts come into direct contact; however, lice are also capable of transmitting phoretically. Yet, phoresy is rare amongst some groups of lice. Fundamental morphological differences have traditionally been used to explain the phoretic differences amongst different suborders of lice; however, these hypotheses do not fully explain observed patterns. We propose that a more fundamental natural history trait may better explain variation in phoresy. Species able to disperse under their own power should be less likely to engage in phoresy than more immobile species. Here we experimentally tested the relationship between independent louse mobility and phoresy using a system with four species of lice (Phthiraptera: Ischnocera and Amblycera) that all parasitize a single host species, the Rock Pigeon (Columba livia). We quantified the relative ability of all four species of lice to move independently off the host, and we quantified their ability to attach to, and remain attached to, hippoboscid flies (Pseudolynchia canariensis). Our results show that the most mobile louse species is the least phoretic, and the most phoretic species is quite immobile off the host. Our findings were consistent with the hypothesis that phoretic dispersal should be rare amongst species of lice that are capable of independent dispersal; however other factors such as interspecific competition may also play a role. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kukhtarev, N.; Kukhtareva, T.; Okafor, F.
2010-08-01
In this paper we describe photo-induced trapping/redistribution of silver nano-(micro) particles near the surface of photorefractive crystal LiNbO3:Fe. This type of optical trapping is due to combined forces of direct gradient-force trapping and asymmetric photorefractive forces of electro-phoresis and dielectro-phoresis. The silver nanoparticles were produced through extracellular biosynthesis on exposure to the fungus, Fusarium oxysporum (FO) and to the plant extracts. Pulsed and CW visible laser radiation lead to significant modification of nanoparticle clusters. This study indicates that extracellular biosynthesis can constitute a possible viable alternative method for the production of nanoparticles. In addition, the theoretical modeling of asymmetric photorefractive electric field grating has been presented and compared with the experimental results.
Phoretomorph: a new phoretic phase unique to the pyemotidae (Acarina: Tarsonemoidea)
John C. Moser; E.A. Cross
1975-01-01
The poretomorph, representing a new type of phoresy for the Acarina, is a female specialized for riding insects. Certain pyemotid species possess both phoretomorphic and non-phoretomorphic females, but others are monomorphic and ahve one or the other.
Angie K. Ambourn; Jennifer Juzwik; Jordan E. Eggers
2006-01-01
Oak bark beetles, Pseudopityophthorus minutissimus and P. pruinosus, are considered important vectors of the oak wilt fungus, Ceratocystis fagacearum, in Missouri and Ohio. However, the frequency of the species' association with diseased oaks in Minnesota and their relative importance in pathogen spread in...
[Magneto- laser-phoresis with heparin in the treatment of patients with chronic pharyngitis].
Portenko, G M; Grafskaia, N A
2002-01-01
The results of treatment of various forms of chronic pharyngitis by magnetolaserophoresis (MLP) with heparin show that MLP is more effective in hypertrophic chronic pharyngitis. It is emphasized that when planning treatment of chronic pharyngitis one should take into consideration the state of the gastrointestinal tract.
Mutualism and Antagonism: Ecological Interactions Among Bark Beetles, Mite and Fungi
K.D. Klepzig; J.C. Moser; M.J. Lombardero; M.P. Ayres; R.W. Hofstetter; C.J. Walkinshaw
2001-01-01
Insect-fungal complexes provide challenging and fascinating systems for the study of biotic interactions between plants. plant pathogens, insect vectors and other associated organisms. The types of interactions among these organisms (mutualism. antagonism. parasitism. phoresy. etc.) are as variable as the range of organisms involved (plants, fungi, insects. mites. etc...
Carla S. Pimentel; Matthew P. Ayres; Vallery Erich; Chris Young; Douglas Streett
2014-01-01
Bursaphelenchus xylophilus (Steiner & Buhrer) (Nematoda: Aphelenchoididae), the pinewood nematode and the causal agent of the pine wilt disease, is a globally important invasive pathogen of pine forests. It is phoretic in woodborer beetles of the genus Monochamus (Megerle) (Coleoptera, Cerambycidae) and has been able to exploit novel indigenous species of...
A hitchhiker's guide to parasite transmission: The phoretic behaviour of feather lice.
Harbison, Christopher W; Jacobsen, Matthew V; Clayton, Dale H
2009-04-01
Transmission to new hosts is a fundamental challenge for parasites. Some species meet this challenge by hitchhiking on other, more mobile parasite species, a behaviour known as phoresis. For example, feather-feeding lice that parasitise birds disperse to new hosts by hitchhiking on parasitic louse flies, which fly between individual birds. Oddly, however, some species of feather lice do not engage in phoresis. For example, although Rock Pigeon (Columba livia) "wing" lice (Columbicola columbae) frequently move to new hosts phoretically on louse flies (Pseudolynchia canariensis), Rock Pigeon "body" lice (Campanulotes compar) do not. This difference in phoretic behaviour is puzzling because the two species of lice have very similar life cycles and are equally dependent on transmission to new hosts. We conducted a series of experiments designed to compare the orientation, locomotion and attachment capabilities of these two species of lice, in relation to louse flies. We show that wing lice use fly activity as a cue in orientation and locomotion, whereas body lice do not. We also show that wing lice are more capable of remaining attached to active flies that are walking, grooming or flying. The superior phoretic ability of wing lice may be related to morphological adaptations for life on wing feathers, compared to body feathers.
2002-08-01
an increase in estrogen receptor activity. A second objective is to understand the potential role of Src in estrogen induced mammary ductal development ...bPcis i on to The Ser-ilS-dependent link wt GR- t KaroBio AB, a Swedish pharmaceutical development company with CBP is in addition to the Ser-1l8...the ECL detection kit (Amersham Pharmacia Biotech ). phoresis, stained with Coomassic Blue to monitor expression, and sub- Fluorescence Microscopy
Polymer Coatings Reduce Electro-osmosis
NASA Technical Reports Server (NTRS)
Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.
1989-01-01
Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.
Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida.
Campos-Herrera, Raquel; Trigo, Dolores; Gutiérrez, Carmen
2006-05-01
The free-living stage of entomopathogenic nematodes occurs in soil, and is an environmental-friendly alternative for biological control. However, their dispersal capability is limited. Earthworms improve soil characteristics, changing soil structure and influencing many edaphic organisms. Thus, earthworms could be used as vectors to introduce/disperse beneficial organisms. Nevertheless this interaction has not been studied in detail. This study presents the infectivity results of Steinernema feltiae after passing through the Eisenia fetida gut. Although entomopathogenic nematodes have no deleterious effects on earthworms, their passage through E. fetida gut seriously affected their mobility and virulence.
Brenner, Howard
2011-12-01
This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.
Shape dependent phoretic propulsion of slender active particles
NASA Astrophysics Data System (ADS)
Ibrahim, Y.; Golestanian, R.; Liverpool, T. B.
2018-03-01
We theoretically study the self-propulsion of a thin (slender) colloid driven by asymmetric chemical reactions on its surface at vanishing Reynolds number. Using the method of matched asymptotic expansions, we obtain the colloid self-propulsion velocity as a function of its shape and surface physicochemical properties. The mechanics of self-phoresis for rod-like swimmers has a richer spectrum of behaviors than spherical swimmers due to the presence of two small length scales, the slenderness of the rod and the width of the slip layer. This leads to subtleties in taking the limit of vanishing slenderness. As a result, even for very thin rods, the distribution of curvature along the surface of the swimmer, namely, its shape, plays a surprising role in determining the efficiency of propulsion. We find that thin cylindrical self-phoretic swimmers with blunt ends move faster than thin prolate spheroid shaped swimmers with the same aspect ratio.
High spatial and temporal resolution cell manipulation techniques in microchannels.
Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P
2016-03-21
The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.
Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association
Lachaud, Jean-Paul; Klompen, Hans; Pérez-Lachaud, Gabriela
2016-01-01
Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites’ characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites. PMID:27444515
Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association.
Lachaud, Jean-Paul; Klompen, Hans; Pérez-Lachaud, Gabriela
2016-07-21
Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites' characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites.
Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo
2015-04-01
To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (P<0.05). The MTT assay showed that the IC50 value of aptamer-siRNA compound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.
Ecology of Caenorhabditis species.
Kiontke, Karin; Sudhaus, Walter
2006-01-01
Although several Caenorhabditis species are now studied in laboratories in great detail, the knowledge of the ecology of most Caenorhabditis species is scarce. In this chapter we present data on the habitat, animal associations, and geographical distribution of the eighteen described and five undescribed Caenorhabditis species currently known to science. The habitats of these species are very diverse, ranging from rotting cactus tissue to inflamed auditory canals of zebu cattle. Some species, including C. elegans, have only been isolated from anthropogenic habitats. Consequently, their natural habitat is unknown. All Caenorhabditis species are colonizers of nutrient- and bacteria-rich substrates and none of them is a true soil nematode. Dauer juveniles of many Caenorhabditis species were shown to be associated with terrestrial arthropods or gastropods. An association with invertebrates is also likely for the remaining species. The type of association is either phoresy (for transport to a new habitat) or necromeny (to secure the body of the associated animal as a future food source). There are also some records of Caenorhabditis species associated with vertebrates. The Caenorhabditis stem species was probably a colonizer of nutrient-rich substrates and was phoretic on arthropods. Some evolutionary trends within the taxon are discussed. PMID:18050464
A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes.
Ogawa, Akira; Streit, Adrian; Antebi, Adam; Sommer, Ralf J
2009-01-13
Under harsh environmental conditions, Caenorhabditis elegans larvae undergo arrest and form dauer larvae that can attach to other animals to facilitate dispersal. It has been argued that this phenomenon, called phoresy, represents an intermediate step toward parasitism. Indeed, parasitic nematodes invade their hosts as infective larvae, a stage that shows striking morphological similarities to dauer larvae. Although the molecular regulation of dauer entry in C. elegans involves insulin and TGF-beta signaling, studies of TGF-beta orthologs in parasitic nematodes didn't provide evidence for a common origin of dauer and infective larvae. To identify conserved regulators between Caenorhabditis and parasitic nematodes, we used an evolutionary approach involving Pristionchus pacificus as an intermediate. We show by mutational and pharmacological analysis that Pristionchus and Caenorhabditis share the dafachronic acid-DAF-12 system as the core endocrine module for dauer formation. One dafachronic acid, Delta7-DA, has a conserved role in the mammalian parasite Strongyloides papillosus by controlling entry into the infective stage. Application of Delta7-DA blocks formation of infective larvae and results in free-living animals. Conservation of this small molecule ligand represents a fundamental link between dauer and infective larvae and might provide a general strategy for nematode parasitism.
Phoretic dispersal of armored scale crawlers (Hemiptera: Diaspididae).
Magsig-Castillo, J; Morse, J G; Walker, G P; Bi, J L; Rugman-Jones, P F; Stouthamer, R
2010-08-01
Dispersal and colonization of new areas by armored scale insects (Hemiptera: Diaspididae) is achieved by mobile first-instar nymphs, called crawlers. Few studies have considered the actual mechanisms by which crawlers disperse, and although crawlers are capable of actively wandering over short distances (generally < 1 m), their dispersal over longer distances has been thought to be wind-mediated. Here, we present evidence of a potentially more important means of dispersal over longer distances (> 1 m). We first confirmed that crawlers of four species of Diaspididae [Abgrallaspis aguacatae Evans, Watson & Miller; Hemiberlesia lataniae (Signoret); Aspidiotus nerii Bouché; and Diaspidiotus perniciosus (Comstock)] have four hairs on the end of each of their legs and that each of these hairs ends in a suction cup-like structure, reminiscent of the attachment structures possessed by phoretic mites. In a controlled environment, using crawlers of A. nerii, we then showed that the crawlers use these structures to attach themselves to three different insect species [Musca domestica L., Cryptolaemus montrouzieri Mulsant and Linepithema humile (Mayr)] and can effectively be moved phoretically by these insects. Crawlers can remain attached to flying insects for considerable periods of time, suggesting that this may be an important means of dispersal for armored scale insects. The importance of phoresy for diaspidid dispersal in the field remains to be determined.
Reversed Janus Micro/Nanomotors with Internal Chemical Engine
2016-01-01
Self-motile Janus colloids are important for enabling a wide variety of microtechnology applications as well as for improving our understanding of the mechanisms of motion of artificial micro- and nanoswimmers. We present here micro/nanomotors which possess a reversed Janus structure of an internal catalytic “chemical engine”. The catalytic material (here platinum (Pt)) is embedded within the interior of the mesoporous silica (mSiO2)-based hollow particles and triggers the decomposition of H2O2 when suspended in an aqueous peroxide (H2O2) solution. The pores/gaps at the noncatalytic (Pt) hemisphere allow the exchange of chemical species in solution between the exterior and the interior of the particle. By varying the diameter of the particles, we observed size-dependent motile behavior in the form of enhanced diffusion for 500 nm particles, and self-phoretic motion, toward the nonmetallic part, for 1.5 and 3 μm ones. The direction of motion was rationalized by a theoretical model based on self-phoresis. For the 3 μm particles, a change in the morphology of the porous part is observed, which is accompanied by a change in the mechanism of propulsion via bubble nucleation and ejection as well as a change in the direction of motion. PMID:27598543
Dynamic self-organization of side-propelling colloidal rods: experiments and simulations.
Vutukuri, Hanumantha Rao; Preisler, Zdeněk; Besseling, Thijs H; van Blaaderen, Alfons; Dijkstra, Marjolein; Huck, Wilhelm T S
2016-12-06
In recent years, there is a growing interest in designing artificial analogues of living systems, fueled not only by potential applications as 'smart micro-machines', but also by the demand for simple models that can be used to study the behavior of their more complex natural counterparts. Here, we present a facile, internally driven, experimental system comprised of fluorescently labeled colloidal silica rods of which the self-propulsion is powered by the decomposition of H 2 O 2 catalyzed by a length-wise half Pt coating of the particles in order to study how shape anisotropy and swimming direction affect the collective behavior. We investigated the emerging structures and their time evolution for various particle concentrations in (quasi-)two dimensional systems for three aspect ratios of the rods on a single particle level using a combination of experiments and simulations. We found that the dynamic self-organization relied on a competition between self-propulsion and phoretic attractions induced by phoresis of the rods. We observed that the particle clustering behavior depends on the concentration as well as the aspect ratio of the rods. Our findings provide a more detailed understanding of dynamic self-organization of anisotropic particles and the role the propulsion direction plays in internally driven systems.
Guha, Rajarshi; Mohajerani, Farzad; Mukhopadhyay, Ahana; Collins, Matthew D; Sen, Ayusman; Velegol, Darrell
2017-12-13
Spatiotemporal particle patterning in evaporating droplets lacks a common design framework. Here, we demonstrate autonomous control of particle distribution in evaporating droplets through the imposition of a salt-induced self-generated electric field as a generalized patterning strategy. Through modeling, a new dimensionless number, termed "capillary-phoresis" (CP) number, arises, which determines the relative contributions of electrokinetic and convective transport to pattern formation, enabling one to accurately predict the mode of particle assembly by controlling the spontaneous electric field and surface potentials. Modulation of the CP number allows the particles to be focused in a specific region in space or distributed evenly. Moreover, starting with a mixture of two different particle types, their relative placement in the ensuing pattern can be controlled, allowing coassemblies of multiple, distinct particle populations. By this approach, hypermethylated DNA, prevalent in cancerous cells, can be qualitatively distinguished from normal DNA of comparable molecular weights. In other examples, we show uniform dispersion of several particle types (polymeric colloids, multiwalled carbon nanotubes, and molecular dyes) on different substrates (metallic Cu, metal oxide, and flexible polymer), as dictated by the CP number. Depending on the particle, the highly uniform distribution leads to surfaces with a lower sheet resistance, as well as superior dye-printed displays.
Santoso, Aline T; Deng, Xiaoyan; Lee, Jeong-Hyun; Matthews, Kerryn; Duffy, Simon P; Islamzada, Emel; McFaul, Sarah M; Myrand-Lapierre, Marie-Eve; Ma, Hongshen
2015-12-07
Changes in red blood cell (RBC) deformability are associated with the pathology of many diseases and could potentially be used to evaluate disease status and treatment efficacy. We developed a simple, sensitive, and multiplexed RBC deformability assay based on the spatial dispersion of single cells in structured microchannels. This mechanism is analogous to gel electrophoresis, but instead of transporting molecules through nano-structured material to measure their length, RBCs are transported through micro-structured material to measure their deformability. After transport, the spatial distribution of cells provides a readout similar to intensity bands in gel electrophoresis, enabling simultaneous measurement on multiple samples. We used this approach to study the biophysical signatures of falciparum malaria, for which we demonstrate label-free and calibration-free detection of ring-stage infection, as well as in vitro assessment of antimalarial drug efficacy. We show that clinical antimalarial drugs universally reduce the deformability of RBCs infected by Plasmodium falciparum and that recently discovered PfATP4 inhibitors, known to induce host-mediated parasite clearance, display a distinct biophysical signature. Our process captures key advantages from gel electrophoresis, including image-based readout and multiplexing, to provide a functional screen for new antimalarials and adjunctive agents.
Dihydroartemisinin is an inhibitor of ovarian cancer cell growth.
Jiao, Yang; Ge, Chun-min; Meng, Qing-hui; Cao, Jian-ping; Tong, Jian; Fan, Sai-jun
2007-07-01
To investigate the anticancer activity of dihydroartemisinin (DHA), a derivative of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cytotoxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.
A Conserved Endocrine Mechanism Controls the Formation of Dauer and Infective Larvae in Nematodes
Ogawa, Akira; Streit, Adrian; Antebi, Adam; Sommer, Ralf J.
2009-01-01
Summary Under harsh environmental conditions Caenorhabditis elegans larvae undergo arrest and form dauer larvae that can attach to other animals to facilitate dispersal[1]. It has been argued that this phenomenon, called phoresy, represents an intermediate step towards parasitism[2, 3]. Indeed, parasitic nematodes invade their hosts as infective larvae, a stage that shows striking morphological similarities to dauer larvae[1]. While the molecular regulation of dauer entry in C. elegans involves insulin and TGF-ß signaling[4-8], studies of TGF-ß orthologues in parasitic nematodes did not provide evidence for a common origin of dauer and infective larvae[9-14]. To identify conserved candidate regulators between Caenorhabditis and parasitic nematodes we used an evolutionary approach involving Pristionchus pacificus as intermediate. We show by mutational and pharmacological analysis that Pristionchus and Caenorhabditis share the dafachronic acid-DAF-12 system as core endocrine module for dauer formation. One of the dafachronic acids, Δ7-DA, has a conserved role in the mammalian parasite Strongyloides papillosus where it controls entry into the infective stage. Application of Δ7-DA blocks formation of infective larvae and results in the generation of free-living animals. The conservation of this small molecule ligand represents a fundamental link between dauer and infective larvae and might provide a general strategy for nematode parasitism. PMID:19110431
Thompson, W L
1980-01-01
HES products should be designated by both their number average of molecular weight (that determines colloidal activity) and molar substitution ratios. In addition to the original HES-70/70 developed in 1960, a rapidly excreted HES-50/50 has been available since 1977. HES-70/70 and human albumin are equivalent in both healthy and hypoalbuminemia subjects in regard to maximal and total effects on plasma volume, intravascular colloidal activity and plasma concentration of ingested colloid. Albumin and HES-70/70 are extravasated at nearly equal rates. Albumin elimination is predominantly monoexponential. HES-70/70 however, is partly metabolized and partly excreted in urine at rates that decrease progressively as the amount remaining in the body decreases. HES-50/50 has maximal effects on plasma volume and colloidal activity similar to those of dextran-40, but it is eliminated twice as rapidly and unlike dextran-40, does not accumulate on repeated ingestion of large doses. HES ingestion increases apparent serum activity of alpha amylase by slowing enzyme elimination. Anaphylactoid reactions have been infrequent and mild, even on repetitive ingestion in recurrent "Phoresis" donors. The effect of HES on coagulation in urine but does not slow urine flow by hyperviscosity. Hydroxyethylation of waxy starches yields safe colloids with the advantage of permitting selective control of drug effects by altering independently molecular size and rate of enzymatic hydrolysis, tailoring drug kinetics to specific uses.
Campos-Herrera, R; El-Borai, F E; Duncan, L W
2012-09-01
Quantitative real-time PCR (qPCR) is a powerful tool to study species of cryptic organisms in complex food webs. This technique was recently developed to detect and quantify several species of entomopathogenic nematodes (EPNs), which are widely used for biological control of insects, and some natural enemies of EPNs such as nematophagous fungi and the phoretic bacteria Paenibacillus sp. and Paenibacillus nematophilus. A drawback to the use of primers and TaqMan probes designed for Paenibacillus sp. is that the qPCR also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two closely related species that are not phoretically associated with EPNs. Here, we report that the detection of Paenibacillus sp. DNA in nematode samples was two orders of magnitude greater (P < 0.001) when the bacterium was added to soil together with its EPN species-specific host Steinernema diaprepesi than when it was added concomitantly with other EPNs or with species of bacterial-feeding nematodes. Just 6% of samples detected trace amounts of P. thiaminolyticus and P. popilliae exposed to the same experimental conditions. Thus, although the molecular assay detects Paenibacillus spp. DNA in nonphoretic associations, the levels are essentially background compared to the detection of Paenibacillus sp. in association with its nematode host. © 2012 Blackwell Publishing Ltd.
Bullimore, Alan; Swan, Nicola; Alawode, Wemimo; Skinner, Murray
2011-09-01
Grass allergy immunotherapies often consist of a mix of different grass extracts, each containing several proteins of different physiochemical properties; however, the subtle contributions of each protein are difficult to elucidate. This study aimed to identify and characterize the group 1 and 5 allergens in a 13 grass extract and to standardize the extraction method. The grass pollens were extracted in isolation and pooled and also in combination and analyzed using a variety of techniques including enzyme-linked immunosorbent assay, liquid chromatog-raphy-mass spectrometry, and sodium dodecyl sulfate-polyacrylam-ide gel electrophoresis. Gold-staining and IgE immunoblotting revealed a high degree of homology of protein bands between the 13 species and the presence of a densely stained doublet at 25-35 kD along with protein bands at approximately 12.5, 17, and 50 kD. The doublet from each grass species demonstrated a high level of group 1 and 5 interspecies homology. However, there were a number of bands unique to specific grasses consistent with evolutionary change and indicative that a grass mix immunotherapeutic could be considered broad spectrum. Sodium dodecyl sulfate-polyacrylamide gel electro-phoresis and IgE immunoblotting showed all 13 grasses share a high degree of homology, particularly in terms of group 1 and 5 allergens. IgE and IgG enzyme-linked immunosorbent assay potencies were shown to be independent of extraction method.
Harbison, Christopher W.; Clayton, Dale H.
2011-01-01
Reciprocal selective effects between coevolving species are often influenced by interactions with the broader ecological community. Community-level interactions may also influence macroevolutionary patterns of coevolution, such as cospeciation, but this hypothesis has received little attention. We studied two groups of ecologically similar feather lice (Phthiraptera: Ischnocera) that differ in their patterns of association with a single group of hosts. The two groups, “body lice” and “wing lice,” are both parasites of pigeons and doves (Columbiformes). Body lice are more host-specific and show greater population genetic structure than wing lice. The macroevolutionary history of body lice also parallels that of their columbiform hosts more closely than does the evolutionary history of wing lice. The closer association of body lice with hosts, compared with wing lice, can be explained if body lice are less capable of switching hosts than wing lice. Wing lice sometimes disperse phoretically on parasitic flies (Diptera: Hippoboscidae), but body lice seldom engage in this behavior. We tested the hypothesis that wing lice switch host species more often than body lice, and that the difference is governed by phoresis. Our results show that, where flies are present, wing lice switch to novel host species in sufficient numbers to establish viable populations on the new host. Body lice do not switch hosts, even where flies are present. Thus, differences in the coevolutionary history of wing and body lice can be explained by differences in host-switching, mediated by a member of the broader parasite community. PMID:21606369
Sweet, Andrew D.; Chesser, R. Terry; Johnson, Kevin P.
2017-01-01
Host–parasite coevolutionary histories can differ among multiple groups of parasites associated with the same group of hosts. For example, parasitic wing and body lice (Insecta: Phthiraptera) of New World pigeons and doves (Aves: Columbidae) differ in their cophylogenetic patterns, with body lice exhibiting higher phylogenetic congruence with their hosts than wing lice. In this study, we focus on the wing and body lice of Australian phabine pigeons and doves to determine whether the patterns in New World pigeons and doves are consistent with those of pigeons and doves from other regions. Using molecular sequence data for most phabine species and their lice, we estimated phylogenetic trees for all three groups (pigeons and doves, wing lice and body lice), and compared the phabine (host) tree with both parasite trees using multiple cophylogenetic methods. We found a pattern opposite to that found for New World pigeons and doves, with Australian wing lice showing congruence with their hosts, and body lice exhibiting a lack of congruence. There are no documented records of hippoboscid flies associated with Australian phabines, thus these lice may lack the opportunity to disperse among host species by attaching to hippoboscid flies (phoresis), which could explain these patterns. However, additional sampling for flies is needed to confirm this hypothesis. Large differences in body size among phabine pigeons and doves may also help to explain the congruence of the wing lice with their hosts. It may be more difficult for wing lice than body lice to switch among hosts that vary more dramatically in size. The results from this study highlight how host–parasite coevolutionary histories can vary by region, and how local factors can shape the relationship.
Giblin-Davis, Robin M.; Kanzaki, Natsumi; Ye, Weimin; Mundo-Ocampo, Manuel; Baldwin, James G.; Thomas, W. Kelley
2006-01-01
Bursaphelenchus platzeri n. sp., an associate of nitidulid beetles in southern California, is described and illustrated. Adult males and females of B. platzeri n. sp. were examined by scanning electron microscopy for ultrastructural comparisons with other members of the genus. Bursaphelenchus cocophilus (red ring nematode) appears to be the closest related taxon to B. platzeri n. sp. based upon shared morphological features of the fused spicules, female tail shape, phoresy with non-scolytid beetles, and molecular analysis of the near full-length small subunit (SSU) rDNA. Unfortunately, sequence data from the D2D3 expansion segments of the large subunit (LSU) rDNA and partial mitochondrial DNA COI did not help resolve the relationship of nearest relative. In addition to significant molecular sequence differences in SSU, LSU, and COI, B. platzeri n. sp., which is an obligate fungal feeder, can be differentiated from B. cocophilus because it is an obligate parasite of palms. Bursaphelenchus platzeri n. sp. can be differentiated from all other species of Bursaphelenchus by the length and shape of the female tail and spicule morphology. The spicules are fused along the ventral midline and possess unfused cucullae; the fused unit appears to function as a conduit for sperm. Population growth of B. platzeri n. sp. was measured in a time-course experiment at 25°C in the laboratory on cultures of the fungus Monilinia fructicola grown on 5% glycerol-supplemented potato dextrose agar (GPDA). Nematode population densities rapidly increased from 25 to approximately 200,000/culture within 14 d and then plateaued for up to 28 d. PMID:19259440
Sweet, Andrew D; Chesser, R Terry; Johnson, Kevin P
2017-05-01
Host-parasite coevolutionary histories can differ among multiple groups of parasites associated with the same group of hosts. For example, parasitic wing and body lice (Insecta: Phthiraptera) of New World pigeons and doves (Aves: Columbidae) differ in their cophylogenetic patterns, with body lice exhibiting higher phylogenetic congruence with their hosts than wing lice. In this study, we focus on the wing and body lice of Australian phabine pigeons and doves to determine whether the patterns in New World pigeons and doves are consistent with those of pigeons and doves from other regions. Using molecular sequence data for most phabine species and their lice, we estimated phylogenetic trees for all three groups (pigeons and doves, wing lice and body lice), and compared the phabine (host) tree with both parasite trees using multiple cophylogenetic methods. We found a pattern opposite to that found for New World pigeons and doves, with Australian wing lice showing congruence with their hosts, and body lice exhibiting a lack of congruence. There are no documented records of hippoboscid flies associated with Australian phabines, thus these lice may lack the opportunity to disperse among host species by attaching to hippoboscid flies (phoresis), which could explain these patterns. However, additional sampling for flies is needed to confirm this hypothesis. Large differences in body size among phabine pigeons and doves may also help to explain the congruence of the wing lice with their hosts. It may be more difficult for wing lice than body lice to switch among hosts that vary more dramatically in size. The results from this study highlight how host-parasite coevolutionary histories can vary by region, and how local factors can shape the relationship. Copyright © 2017 Australian Society for Parasitology. All rights reserved.
Low-Level Laser Therapy in Russia: History, Science and Practice
Moskvin, Sergey Vladimirovich
2017-01-01
In Russia (formerly USSR) study of biomodulation action (BMA) mechanisms of low-intensity laser irradiation (LILI) began in 1964, immediately after the development of lasers. During the period from 1965 to 1972 several dozens of scientific conferences were held, hundreds of studies were published. Generally, secondary mechanisms and results of LILI effect on patients with various diseases were studied. This data was immediately implemented into practical medicine in the fields of oncology, surgery, dermatology and dentistry, and since 1974 low level laser therapy (LLLT) is included in the standard of state medical care. For 50 years no less than 1000 books were published (monographs, collections, methodical and clinical materials), thousands of researches were carried out. Primary mechanism and patterns of interaction of LILI with acceptors within cells can be represented in the following order: absorption of photon’s energy – emergence of a local temperature gradient – release of Ca2+ from intracellular stores – stimulating Ca2+–dependent processes. Understanding of this process allowed the explanation of all known secondary effects, optimized methods and extremely increased effectiveness of LLLT. Owing to the knowledge of BMA mechanisms of LILI, numerous associated and combined LLLT techniques were developed and are widely used nowadays: locally, on the projection of internal organs, laser acupuncture, reflexology, intracavitary, transdermal and intravenous laser blood illumination, magnetic-laser therapy, laser phoresis, laser-vacuum massage, biomodulation, etc. About 400 000 laser therapeutic devices are used in Russian practical healthcare. Unique, having no analogues in the world devices, are produced – red pulsed laser diodes (wavelength 635 nm, power 5-40 W, pulse duration 100 ns, frequency 10 000 Hz) are designed specially for effective laser therapy. PMID:28652897
Serum Protein Electrophoresis in the Evaluation of Lytic Bone Lesions
Nystrom, Lukas M.; Buckwalter, Joseph A.; Syrbu, Sergei; Miller, Benjamin J.
2013-01-01
Serum protein electrophoresis (SPEP) is often obtained at the initial evaluation of a radiolucent bone lesion of unknown etiology. The results are considered convincing evidence of the presence or absence of a plasma cell neoplasm. The sensitivity and specificity of the SPEP have not been reported in this clinical scenario. Our purpose is to assess the diagnostic value of the SPEP in the initial work-up of the radiolucent bone lesion. We identified 182 patients undergoing evaluation of a radiolucent bone lesion that included tissue biopsy and an SPEP value. We then calculated the sen-sitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of SPEP as a diagnostic test for a plasma cell neo-plasm in this clinical scenario. Forty-six of 182 (25.3%) patients in our series were diagnosed with a plasma cell neo-plasm by histopathologic analysis. The sensitivity of SPEP was 71% and the specificity was 83%. PPV was 47% and NPV was 94%. When analyzing only those presenting with multiple lesions, the percentage of patients diag-nosed with multiple myeloma increased to 44.7% (34 of 76 patients). The SPEP, however, did not have a substantially increased diagnostic accuracy with sensitivity of 71%, specificity 79%, PPV 40% and NPV 93%. SPEP lacks sensitivity and positive predictive value to provide a definitive diagnosis of myeloma in radiolucent bone lesions, but has a high negative predictive value which may make it useful in ruling out the disease. We recommend that this test either be performed in conjunction with urine electrophoresis, immunofixation electro-phoresis and free light chain assay, or after biopsy confirming the diagnosis of myeloma. PMID:24027470
Low-Level Laser Therapy in Russia: History, Science and Practice.
Moskvin, Sergey Vladimirovich
2017-01-01
In Russia (formerly USSR) study of biomodulation action (BMA) mechanisms of low-intensity laser irradiation (LILI) began in 1964, immediately after the development of lasers. During the period from 1965 to 1972 several dozens of scientific conferences were held, hundreds of studies were published. Generally, secondary mechanisms and results of LILI effect on patients with various diseases were studied. This data was immediately implemented into practical medicine in the fields of oncology, surgery, dermatology and dentistry, and since 1974 low level laser therapy (LLLT) is included in the standard of state medical care. For 50 years no less than 1000 books were published (monographs, collections, methodical and clinical materials), thousands of researches were carried out. Primary mechanism and patterns of interaction of LILI with acceptors within cells can be represented in the following order: absorption of photon's energy - emergence of a local temperature gradient - release of Ca 2+ from intracellular stores - stimulating Ca 2+ -dependent processes. Understanding of this process allowed the explanation of all known secondary effects, optimized methods and extremely increased effectiveness of LLLT. Owing to the knowledge of BMA mechanisms of LILI, numerous associated and combined LLLT techniques were developed and are widely used nowadays: locally, on the projection of internal organs, laser acupuncture, reflexology, intracavitary, transdermal and intravenous laser blood illumination, magnetic-laser therapy, laser phoresis, laser-vacuum massage, biomodulation, etc. About 400 000 laser therapeutic devices are used in Russian practical healthcare. Unique, having no analogues in the world devices, are produced - red pulsed laser diodes (wavelength 635 nm, power 5-40 W, pulse duration 100 ns, frequency 10 000 Hz) are designed specially for effective laser therapy.
Shape-dependent guidance of active Janus particles by chemically patterned surfaces
NASA Astrophysics Data System (ADS)
Uspal, W. E.; Popescu, M. N.; Tasinkevych, M.; Dietrich, S.
2018-01-01
Self-phoretic chemically active Janus particles move by inducing—via non-equilibrium chemical reactions occurring on their surfaces—changes in the chemical composition of the solution in which they are immersed. This process leads to gradients in chemical composition along the surface of the particle, as well as along any nearby boundaries, including solid walls. Chemical gradients along a wall can give rise to chemi-osmosis, i.e., the gradients drive surface flows which, in turn, drive flow in the volume of the solution. This bulk flow couples back to the particle, and thus contributes to its self-motility. Since chemi-osmosis strongly depends on the molecular interactions between the diffusing molecular species and the wall, the response flow induced and experienced by a particle encodes information about any chemical patterning of the wall. Here, we extend previous studies on self-phoresis of a sphere near a chemically patterned wall to the case of particles with rod-like, elongated shape. We focus our analysis on the new phenomenology potentially emerging from the coupling—which is inoperative for a spherical shape—of the elongated particle to the strain rate tensor of the chemi-osmotic flow. Via detailed numerical calculations, we show that the dynamics of a rod-like particle exhibits a novel ‘edge-following’ steady state: the particle translates along the edge of a chemical step at a steady distance from the step and with a steady orientation. Moreover, within a certain range of system parameters, the edge-following state co-exists with a ‘docking’ state (the particle stops at the step, oriented perpendicular to the step edge), i.e., a bistable dynamics occurs. These findings are rationalized as a consequence of the competition between the fluid vorticity and the rate of strain by using analytical theory based on the point-particle approximation which captures quasi-quantitatively the dynamics of the system.
Effects of predatory ants within and across ecosystems in bromeliad food webs.
Gonçalves, Ana Z; Srivastava, Diane S; Oliveira, Paulo S; Romero, Gustavo Q
2017-07-01
Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda and Helobdella sp.). Our results suggest that the cross-ecosystem effect of this terrestrial predator on the aquatic metazoans was at least as strong as its within-ecosystem effect on the terrestrial ecosystem, and demonstrates that the same predator can simultaneously initiate cascades in multiple ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
[Mites associated with two species of the genus Odontotaenius (Coleoptera: Passalidae) in Mexico].
Barrios-Torres, Pilar Liliana; Villegas-Guzmán, Gabriel A
2015-09-01
Mites can establish association with different arthropods as coleopterans tamites scaraoaeicae ana Passalidae. Passalids are distributed in tropical and templates zones, and until now, more than 200 species of mites have been associated to them. One of the relationships between passalids and mites is the phoresy where one small animal (the phoretic) seeks out and attaches to another animal (the host) for transportation. Herein, we studied the mites associated to O. zodiacus and O. striatopunctatus; for this, 80 Odontotaenius with mites were reviewed; passalids were collected in and under decaying logs from six states of Mexico, and were individually kept in vials with 80% ethanol. The specimens were carried to the laboratory and mites removed with fine-pointed forceps under stereo microscope. The mites were stored with 80 % alcohol until some were cleared with lacto-phenol and mounted in Hoyer's solution. We found 1,945 mites belonging to 13 families (Acaridae, Ascidae, Diarthrophallidae, Digamasellidae, Diplogyniidae, Euzerconidae, Heterocheylidae, Histiostomatidae, Klinckowstroemiidae, Laelapidae, Megisthanidae, Trematuridae, and Uropodidae) and 42 species, being the most abundant species Anoelus sp. For O. striatopunctatus (16 specimens) we found 562 mites (95 female female, 34 male male, 197 hypopus, 234 deutonymph, 2 tritonymph) of 11 families and 22 species; the most abundant were Uropodidae (42 %) and Histiostomatidae (26 %). While for 0. zodiacus (64 specimens) were found 1,383 mites (300 female female, 204 male male, 608 hypopus, 139 deutonymphs, 133 tritonymphs) of 10 families and 30 species; the most abundant were: Diartrophallidae, Acaridae, and Histiostomatidae (23 % for the two first and 21 % for third). The high abundance and richness was in O. zodiacus, likewise Margalef (S') and Shanon-Winner (H') indexes were higher in this species (O. zodiacus S' = 4.05, H' = 2.2; O. striatopunctatus S' = 3.34, H' = 1.94), while Equity (EH) was similar to both hosts (0. zodiacus EH = 0.64; O. siriatopunctalus EH = 0.63). The mites were found principally in the protected zone of the passalid's body, as under elytron, membranous wings, and in the clefts of the ventral region of the passalid, and, in minor proportion, on the head and coxal regions. From our findings, 12 species were new records for the Mexican passalids: Abrotarsala cuneiformis, A. obesa, A. pyriformis, Brachytremella sp., Diarthrophallus cartwrighti, D. crinatus, Lombardiniella sp., Trichodiplogynium carlosi, T sahlbergi, T hirsutum and Trichodiplogynium sp., and additional studies may help describe and understand these mites-passalids associations.